WO2021049133A1 - Battery control apparatus and on-vehicle battery system - Google Patents

Battery control apparatus and on-vehicle battery system Download PDF

Info

Publication number
WO2021049133A1
WO2021049133A1 PCT/JP2020/025727 JP2020025727W WO2021049133A1 WO 2021049133 A1 WO2021049133 A1 WO 2021049133A1 JP 2020025727 W JP2020025727 W JP 2020025727W WO 2021049133 A1 WO2021049133 A1 WO 2021049133A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
phase change
control device
battery cell
Prior art date
Application number
PCT/JP2020/025727
Other languages
French (fr)
Japanese (ja)
Inventor
孝徳 山添
井上 健士
大輝 小松
修子 山内
茂樹 牧野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021049133A1 publication Critical patent/WO2021049133A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to a battery control device and an in-vehicle battery system.
  • Patent Document 1 Inventions related to battery control devices have been known conventionally (see Patent Document 1 below).
  • the conventional battery control device described in Patent Document 1 includes a control unit that controls the charge / discharge current of the storage battery.
  • the control unit predicts the temperature rise of the storage battery based on the battery temperature and the amount of charge / discharge current, and uses the prediction result of the temperature rise from the values of the plurality of upper limit charge / discharge currents so as not to exceed the upper limit temperature of the storage battery.
  • the charge / discharge current is controlled by selecting the value of one upper limit charge / discharge current (see the same document, claim 1 and paragraph 0007, etc.).
  • Patent Document 2 Further, inventions relating to a secondary battery module including a plurality of battery cells and a vehicle equipped with the secondary battery module are known (see Patent Document 2 below).
  • the conventional secondary battery module described in Patent Document 2 includes a plurality of battery cells, a cooling liquid vaporization layer, a temperature sensor, a liquid detection sensor, and a control unit (the same document, claim). 1 and paragraph 0007, etc.).
  • the coolant vaporization layer is provided on the peripheral surface of the battery cell, and holds and vaporizes the vaporizing coolant supplied from the coolant supply source.
  • the temperature sensor detects the temperature of the battery cell.
  • the liquid detection sensor detects whether or not the vaporization coolant has been supplied to the coolant vaporization layer of the battery cell to be detected by the temperature sensor.
  • the control unit controls the supply and stop of the vaporizing coolant from the coolant supply source to the coolant vaporization layer based on the detection values of the temperature sensor and the liquid detection sensor.
  • Patent Document 3 an invention relating to an assembled battery including a plurality of cells arranged adjacent to each other is known (see Patent Document 3 below).
  • the conventional assembled battery described in Patent Document 3 includes a phase-changing substance having a melting point higher than the temperature range during normal use of the cell and lower than the breakdown temperature at which the cell is thermally destroyed.
  • This assembled battery is arranged in a form in which this phase change substance is absorbed and melted when one of the cells generates heat between adjacent cells adjacent to each other to a temperature higher than the melting point. (See the same document, claim 1, paragraph 0007, etc.).
  • JP-A-2018-170904 Japanese Unexamined Patent Publication No. 2012-054202 Japanese Unexamined Patent Publication No. 2010-073406
  • the phase changing substance arranged between the cell cells is arranged. Absorbs the heat and melts. Since the phase-changing substance can absorb the heat of the abnormally generated cell by the latent heat at the time of phase change (melting), the temperature rise of the cell adjacent to the abnormally generated cell is suppressed, and the temperature rise of the adjacent cell is suppressed. It is possible to prevent the battery from reaching the breaking temperature (see the same document, paragraph 0008, etc.).
  • the present disclosure provides a battery control device and an in-vehicle battery system capable of effectively suppressing a temperature rise of a battery as compared with the conventional case when absorbing the heat of the battery by utilizing the latent heat of the phase change material. ..
  • One aspect of the present disclosure is a battery control device that controls a battery that is thermally conductively arranged with respect to the phase change material, and the phase is based on the phase change temperature of the phase change material and the temperature of the battery.
  • the battery control device is provided with a processing device that calculates the amount of heat absorbed or released as latent heat by the changing material and determines the charging conditions of the battery based on the amount of heat.
  • a battery control device and an in-vehicle battery system capable of effectively suppressing a temperature rise of the battery as compared with the conventional case are provided. Can be provided.
  • FIG. 5 is a flow chart illustrating the operation of the battery control device after charging is completed in FIG.
  • FIG. 5 is a flow chart illustrating the operation of the battery control device after the start of charging in FIG.
  • FIG. 5 is a flow chart illustrating the operation of the battery control device after the start of charging in FIG.
  • FIG. 5 is a flow chart illustrating the operation of the battery control device after the start of charging in FIG.
  • FIG. 5 is a flow chart illustrating the operation of the battery control device after the start of charging in FIG.
  • FIG. 5 is a flow chart illustrating the operation of the battery control device after the start of charging in FIG. The graph explaining the effect of suppressing the temperature rise of a battery cell by the battery control device of FIG.
  • the schematic block diagram which shows the embodiment of the vehicle-mounted battery system of this disclosure.
  • FIG. 1 is a block diagram showing an embodiment of the battery control device of the present disclosure.
  • the battery control device 200 of the present embodiment is a device for controlling a battery pack 100 which is mounted on a vehicle such as a hybrid vehicle or an electric vehicle and supplies electric power to an electric device including a traveling motor.
  • the battery control device 200 is connected to the battery pack 100 so that information can be communicated via, for example, a telecommunication line or signal wiring.
  • the battery control device 200 is connected to a higher-level control device 300 such as an electronic control device (ECU) of a vehicle so that information can be communicated via, for example, a telecommunication line or signal wiring.
  • ECU electronice control device
  • the battery control device 200 inputs the battery voltage value V, current value I, temperature T, charge rate (state of charge: SOC), etc. from the battery pack 100, and outputs a control signal CS to the battery pack 100.
  • SOC state of charge
  • the SOC may be calculated based on the voltage value V, the current value I, and the temperature T input from the battery pack 100 by, for example, the battery control device 200.
  • the control signal CS includes, for example, charge / discharge conditions such as a charge current value or a discharge current value, and cooling conditions such as a heat transfer coefficient.
  • the control signal CS may be, for example, a control amount of the cooling fan based on the relationship between the air volume of the cooling fan and the heat transfer coefficient.
  • the battery control device 200 outputs, for example, a battery state BS or the like to the upper control device 300, and a control signal or information Inf is input from the upper control device 300.
  • the battery control device 200 includes, for example, a processing device 201 such as a CPU and an MPU that processes data, and a storage device 202 that stores data, computer programs, and the like.
  • FIG. 2 is a plan view illustrating an example of the configuration of the battery pack 100 of FIG.
  • the battery pack 100 includes a plurality of battery cells 1 as batteries whose charge / discharge, temperature, and SOC are controlled by the battery control device 200.
  • the battery cell 1 is, for example, a secondary battery such as a flat rectangular lithium ion secondary battery, and a plurality of battery cells 1 are arranged side by side in the thickness direction thereof.
  • the plurality of battery cells 1 form two rows of battery rows 1L arranged so as to be stacked in the thickness direction.
  • the phase change material 2 is arranged between the battery cells 1 and 1 adjacent to each other in the arrangement direction.
  • the phase change material 2 has, for example, a structure in which a substance such as sodium acetate trihydrate having a melting point lower than the upper limit temperature of the battery cell 1 is sealed in an exterior material such as aluminum and formed into a sheet shape or a plate shape. doing.
  • the melting point or phase change temperature of the phase change material 2 that is, the melting point or phase change temperature of the substance enclosed in the exterior material of the phase change material 2, ranges from, for example, about 40 [° C.] to about 60 [° C.]. For example, it is about 50 [° C.].
  • the plurality of phase change materials 2 are arranged so as to be heat conductive with each of the battery cells 1. Specifically, the sheet-shaped or plate-shaped phase changing material 2 is arranged so as to be in contact with the side surface having the maximum area of the flat rectangular parallelepiped battery cell 1. Further, in the battery row 1L in which the battery cells 1 are laminated with the phase change material 2 interposed therebetween, end plates 3 are arranged at both ends of the battery cells 1 in the stacking direction via spacers having electrical insulation. By connecting the pair of end plates 3, the plurality of battery cells 1 and the plurality of phase change materials 2 are fixed between the pair of end plates 3. As a result, the phase change material 2 is pressed against the side surface of the battery cell 1 and is in close contact with each other.
  • FIG. 3 is a perspective view illustrating the configuration of the battery cell 1 of FIG.
  • the battery cell 1 includes, for example, a flat rectangular parallelepiped battery container 10.
  • the battery container 10 is made of a metal such as an aluminum alloy, and is composed of a bottomed square tubular battery can 11 and a battery lid 12 that seals an opening at the upper end of the battery can 11.
  • a band-shaped positive electrode and a band-shaped negative electrode are laminated and wound via a band-shaped separator, and positive electrodes and negative electrodes at both ends of this electrode group.
  • a pair of current collector plates, an electrically insulating member, an electrolytic solution, and the like, which are connected to each of the above, are housed.
  • the battery container 10 has a pair of wide side surfaces 10w on both sides in the thickness direction, a pair of narrow side surfaces 10n on both sides in the width direction, a bottom surface 10b, and an upper surface 10t. Of these surfaces of the battery container 10, the wide side surface 10w has the largest area.
  • the above-mentioned phase change material 2 is arranged so as to be in contact with the wide side surface 10w of the battery container 10.
  • On the upper surface 10t of the battery container 10 a pair of external terminals 14 are arranged at both ends in the width direction of the battery container 10 via a pair of insulating members 13, and a cleavage valve 15 and a note are provided between the pair of external terminals 14.
  • a liquid port 16 is provided.
  • one of the external terminals 14 is the external terminal 14P of the positive electrode connected to the positive electrode via the current collector plate, and the other external terminal 14 is the negative electrode of the negative electrode via the current collector plate. It is an external terminal 14N of the negative electrode connected to.
  • the cleavage valve 15 opens when the pressure inside the battery container 10 rises abnormally to ensure the safety of the battery cell 1.
  • the liquid injection port 16 is used for injecting an electrolytic solution into the battery container 10, and is sealed by a liquid injection plug 17.
  • the plurality of battery cells 1 have an external terminal 14P of the positive electrode of one adjacent battery cell 1 and an external terminal 14N of the negative electrode of the other battery cell 1, respectively.
  • the batteries are arranged so as to be adjacent to each other in the arrangement direction of the battery row 1L so as to be alternately inverted. Further, for example, a plurality of external terminals 14P of the positive electrode of one adjacent battery cell 1 and an external terminal 14N of the negative electrode of the other battery cell 1 are sequentially connected by a bus bar (not shown). Battery cells 1 are connected in series.
  • each bus bar is connected to, for example, a voltage detection unit that measures the voltage of each battery cell 1.
  • the voltage detection unit measures, for example, the voltage of each battery cell 1, the voltage of a plurality of battery cells 1 connected in series, or the voltage of a plurality of battery rows L connected in series or in parallel.
  • the voltage V of the battery detected by the voltage detection unit is output from the battery pack 100 to the battery control device 200.
  • the current I flowing through the battery cell 1 is measured by a current sensor (not shown), and is output from the battery pack 100 to the battery control device 200 as shown in FIG.
  • the battery pack 100 includes a plurality of temperature sensors 4 for measuring the surface temperatures of the plurality of battery cells 1.
  • the temperature T of the battery cell 1 measured by the temperature sensor 4 is output from the battery pack 100 to the battery control device 200.
  • the SOC of each battery cell 1 calculated by the calculation unit (not shown) is output from the battery pack 100 to the battery control device 200.
  • control signal CS output from the battery control device 200 is input to, for example, a battery management system (BMS) of the battery pack 100 (not shown), and the battery cell 1 is input via the BMS. Charging / discharging, temperature, SOC, etc. are controlled.
  • BMS battery management system
  • the operating temperature range of the battery pack 100 during normal use is, for example, a temperature range of about ⁇ 30 [° C.] to about 60 [° C.].
  • it is required to maintain the temperature of the battery cell 1 at a temperature equal to or lower than the upper limit of the operating temperature range of the battery pack 100.
  • FIG. 4 is a functional block diagram of the battery control device 200 of FIG.
  • the battery control device 200 has, for example, a data processing and storage function F1, a phase change material (substance) state determination function F2, and a control condition determination function F3.
  • the data processing and storage function F1 stores, for example, the data input from the battery pack 100 and the cooling conditions in the storage device 202 at a cycle of 1 [s].
  • the phase change material state determination function F2 determines the state of the phase change material 2 based on, for example, the cooling conditions and the time series data stored in the storage device 202.
  • determining the state of the phase change material 2 means, for example, determining the time for which the phase change material 2 stays at the phase change temperature Tpc.
  • the control condition determination function F3 determines the charging condition and the cooling condition of the battery pack 100 based on, for example, the determination result of the state determination function F2 of the phase changing material and the SOC of the battery pack 100.
  • Each of the functions from the function F1 to the function F3 is composed of, for example, the processing device 201 and the storage device 202 of the battery control device 200, and the data and the computer program stored in the storage device 202.
  • the operation of the battery control device 200 of the present embodiment will be described with reference to FIGS. 5, 6 and 7A to 7D.
  • FIG. 5 is a graph showing a time series of the temperatures of the battery cells 1 constituting the battery pack 100 of FIG.
  • the temperature of the battery cell 1 rises.
  • the temperature of the battery cell 1 reaches the phase change temperature Tpc of the phase change material 2, that is, the melting point of the phase change material 2.
  • the phase change material 2 absorbs the heat of the battery cell 1 as latent heat, the temperature becomes constant, and the temperature rise of the battery cell 1 is suppressed.
  • FIG. 6 is a flow chart illustrating the operation of the battery control device 200 after the charging of the battery pack 100 is completed at the time x3 shown in FIG.
  • the battery control device 200 first acquires the temperature T 0 of the battery cell 1 by the data processing and storage function F1, and the temperature T 0 is the temperature T of the battery cell 1.
  • the process P1 to be stored in the storage device 202 as the time series data of the above is executed.
  • the battery control unit 200, the data processing and storage functions F1 acquires the temperature T 1 of the battery cell 1, and stores the temperature T 1 in the storage device 202 as time-series data of the temperature T of the battery cells 1
  • Process P2 is executed.
  • the cycle in which the battery control device 200 acquires the temperature T of the battery cell 1 is, for example, 1 [s].
  • the battery controller 200 determines whether the temperature T 1 of the battery cell 1 acquired in the process P1 is equal to the phase change temperature Tpc of the phase change material 2
  • Process P3 is executed.
  • the battery controller 200 is performed again from step P1 to the processing P3.
  • the battery control unit 200 executes the processing P4.
  • the battery control device 200 executes the process P4 as a result of the determination of the process P3.
  • the time-series data Q 1 , Q 2 , Q 3 , ..., Q n of the amount of heat [J / s] released from the phase change material 2 per unit time is stored in the storage device 202.
  • the data processing and storage function F1 deletes the time-series data Q 1 , Q 2 , Q 3 , ..., Q n of the calorific value.
  • the battery control unit 200 executes the processing P5 for calculating the amount of heat Q 1 emitted from the phase change material 2 was changed to temperatures T 1 in the temperature T 0 process P2 in the process P1.
  • the battery controller 200 for example, the state determination function F2 of the phase change material, based on the following equation (1) to calculate the quantity of heat Q 1.
  • m [kg] is the sum of the mass of the battery cell 1 and the mass of the phase change material 2
  • c [J / kg ⁇ K] is the phase change of the phase change material 2. This is the specific heat of the battery cell 1 and the phase change material 2 at a temperature other than the temperature.
  • the battery control device 200 executes the process P6 for setting the natural number n to 1, for example, by the data processing and storage function F1.
  • the battery control device 200 executes the process P7 for setting the natural number n to n + 1, for example, by the data processing and storage function F1. That is, when the process P7 is executed after the natural number n is set to 1 in the process P6, n is set to 2.
  • the battery control unit 200 executes a process P8 of acquiring the temperature T n of the battery cell 1. For example, if the natural number n in the process P7 is set to 2, the process P8, acquired temperature T 2 of the battery cell 1, the storage device 202 that the temperature T 2 is as time-series data of the temperature T of the battery cells 1 Be remembered.
  • the battery controller 200 determines whether the temperature T n of the battery cell 1 acquired in the process P8 is equal to the phase change temperature Tpc of the phase change material 2
  • Process P9 is executed. For example, when the temperature T 2 of the battery cell 1 is acquired in the process P8, in the process P9, the state determination function F2 of the phase change material is such that the temperature T 2 of the battery cell 1 acquired in the process P8 is the phase change material 2. It is determined whether or not it is equal to the phase change temperature Tpc.
  • process P9 if the temperature T n of the battery cell 1 is equal to the phase change temperature Tpc of the phase change material 2 (YES), the battery control unit 200 executes the processing P13 and processing P14. On the other hand, in the process P9, if the phase change temperature Tpc temperature T n and the phase change material 2 of the battery cell 1 is different (NO), the battery control unit 200 executes the processing P10 and processing P11.
  • the temperature T of the battery cell 1 is higher than the phase change temperature Tpc of the phase change material 2 from the time x3 to the time x4 when the charging of the battery pack 100 is completed. Therefore, as a result of the determination of the process P9, the battery control device 200 executes the process P10.
  • the battery control device 200 obtains time-series data Q 1 , Q 2 , Q 3 , ..., Q n of the amount of heat emitted from the phase change material 2 per unit time by, for example, the data processing and storage function F1. , Delete from storage device 202.
  • the battery control device 200 determines the amount of heat Q n per unit time released from the phase change material 2 whose temperature has changed from T n -1 to T n by, for example, the phase change material state determination function F2.
  • the process P11 for calculating using the equation (2) of is executed.
  • n processing P7 is set to 2
  • the process P11 based on the equation (2), from temperatures T 1 obtained by the processing P2, changes to temperature T 2 which is obtained in the process P8 heat Q 2 per unit time released from the phase change material 2 is calculated and stored in the storage device 202.
  • the battery control device 200 executes a process P12 for determining whether or not charging of the battery pack 100 has been started by, for example, the data processing and storage function F1. As shown in FIG. 5, charging of the battery pack 100 is not started from the time x3 to the time x4 when the charging of the battery pack 100 is completed. In this case, the data processing and storage function F1 determines in the processing P12 that the charging of the battery pack 100 has not started (NO), and executes the processing P7 to the processing P9 again.
  • the state determination function F2 of the phase change material of the battery control device 200 changes the temperature Tn of the battery cell 1 to the phase in the process P9. It is determined that the temperature is equal to the change temperature Tpc (YES), and the process P13 is executed.
  • the battery control device 200 determines the amount of heat Q n released from the phase change material 2 whose temperature has changed from T n -1 to T n by, for example, the phase change material state determination function F2, and the temperature is T n.
  • the amount of heat released from the phase change material 2 changed from -2 to T n -1 is set to Q n-1.
  • the amount of heat Q n released from the phase change material 2 due to the temperature change (T n ⁇ T n-1 ) between the previous treatment P8 and the current treatment P8 is calculated two times before.
  • the amount of heat released from the phase change material 2 due to the temperature change (T n-1- T n-2 ) from the treatment P8 to the previous treatment P8 is set to Q n-1.
  • the battery control device 200 stores the calorific value Q n in the storage device 202 by, for example, the data processing and storage function F1.
  • the temperature T of the battery cell 1 is equal to the phase change temperature Tpc of the phase change material 2 from the time x4 to the time x5, it is estimated that the temperature of the phase change material 2 is also approximately equal to the phase change temperature Tpc. .. Therefore, between the time x4 and the time x5, the phase change material 2 changes from the liquid phase to the solid phase and releases heat, and the temperature of the phase change material 2 becomes constant at the phase change temperature Tpc.
  • the temperature of No. 1 does not decrease, and is generally constant at the phase change temperature Tpc.
  • the amount of heat Qn per unit time released by the phase change material 2 as latent heat can be calculated by the process P13 and the process P14.
  • the amount of heat released or absorbed by the phase change material 2 as latent heat per unit time is assumed as follows. That is, it is assumed that the amount of heat released or absorbed by the phase change material 2 as latent heat per unit time is equal to the amount of heat released or absorbed by the phase change material 2 immediately before reaching the phase change temperature Tpc. If such an assumption does not apply, the battery control device 200 releases the phase change material 2 as latent heat per unit time based on the current I or voltage V of the battery input from the battery pack 100. The amount of heat Q to be absorbed may be calculated.
  • the temperature of the phase change material 2 drops to a temperature lower than the phase change temperature Tpc as the temperature T of the battery cell 1 decreases.
  • the temperature T of the battery cell 1 and the temperature of the phase change material 2 are lowered from the time x5 to the time x6.
  • the charging of the battery cell 1 it is determined in the process P12 that the charging is started (YES), and the process shown in FIG. 6 ends. Further, when charging of the battery cell 1 is started at time x6, the battery control device 200 starts the processes shown in FIGS. 7A to 7D.
  • FIG. 7A to 7D are flow charts illustrating the operation of the battery control device 200 after the time x6 when the charging of the battery cell 1 in FIG. 5 is started.
  • the battery control device 200 acquires the temperature Tc of the battery cell 1 as shown in FIG. 7A by, for example, the data processing and storage function F1.
  • Process P21 is executed.
  • the process P22 for determining whether or not Tpc is equal is executed.
  • the battery control device 200 determines that the temperature Tc of the battery cell 1 and the phase change temperature Tpc of the phase change material 2 are not equal (NO).
  • Process P23 is executed.
  • the temperature Tc of the battery cell 1 acquired in the process P21 by the phase change material state determination function F2 is the phase change temperature of the phase change material 2 stored in the storage device 202. It is determined whether or not it is lower than Tpc.
  • the battery control device 200 determines that the temperature Tc of the battery cell 1 is lower than the phase change temperature Tpc of the phase change material 2 (YES), and executes the process P41 shown in FIG. 7C. ..
  • the battery control device 200 is the temperature of the battery cell 1 when the battery cell 1 is rapidly charged based on the following formula (3) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
  • T Tc + Qrc / (m ⁇ c) ... (3)
  • Tc [° C.] is the temperature of the battery cell 1 acquired in the process P21
  • Qrc [J] is the total heat capacity of the battery cell 1 during rapid charging
  • m [kg] is.
  • the total mass of the battery cell 1 and the phase change material 2, c [J / kg ⁇ K], is the specific heat of the battery cell 1 and the phase change material 2 at a temperature excluding the phase change temperature Tpc.
  • the battery control device 200 for example, whether the temperature T of the battery cell 1 at the time of rapid charging calculated by the process P41 by the phase change material state determination function F2 is equal to or less than the phase change temperature Tpc of the phase change material 2.
  • the process P42 for determining whether or not to perform is executed.
  • the battery control device 200 when the temperature T of the battery cell 1 at the time of rapid charging calculated in the process P41 is equal to or less than the phase change temperature Tpc of the phase change material 2 (YES), the battery control device 200 has the process P51 shown in FIG. 7D. To execute.
  • the battery control device 200 outputs a control signal CS to the battery pack 100 by, for example, the control condition determination function F3, and starts rapid charging of the battery cell 1.
  • the battery control device 200 executes the process P52 for acquiring the temperature Tc of the battery cell 1 by, for example, the data processing and storage function F1.
  • the battery control device 200 determines, for example, whether or not the temperature Tc of the battery cell 1 acquired in the process P52 is equal to the phase change temperature Tpc of the phase change material 2 by the phase change material state determination function F2.
  • Process P53 is executed.
  • the battery control device 200 determines that the temperature Tc of the battery cell 1 and the phase change temperature Tpc of the phase change material 2 are not equal (NO), and executes the process P54.
  • the battery control device 200 clears the counter value N to zero by, for example, the data processing and storage function F1.
  • the battery control device 200 executes the process P56 for calculating the amount of heat Qpmcc [J] stored as latent heat in the phase change material 2 when the battery cell 1 is charged.
  • the battery control device 200 calculates the calorific value Qpcmc based on the following equation (4) by, for example, the state determination function F2 of the phase changing material.
  • N is the counter value (natural number) set in the process P54 or the process P55
  • Qrcb [J / s] is the amount of heat per unit time during rapid charging of the battery cell 1. is there.
  • the battery control device 200 executes a process P57 for storing the heat amount Qpcmc calculated in the process P56 in the storage device 202 by, for example, the data processing and storage function F1.
  • the battery control device 200 executes a process P58 for determining whether or not the rapid charging of the battery cell 1 is completed by, for example, the data processing and storage function F1.
  • the battery control device 200 determines, for example, by the data processing and storage function F1 that the rapid charging of the battery cell 1 is not completed (NO)
  • the battery control device 200 executes the process P58 again from the process P52.
  • the control condition determination function F3 outputs a control signal CS to the battery pack 100 to output a control signal CS. The quick charging of the battery cell 1 is terminated.
  • the phase change material 2 changes from the solid phase to the liquid phase to absorb latent heat, and the temperature Tc of the battery cell 1 is the phase change temperature Tpc of the phase change material 2. Is roughly equal.
  • the battery control device 200 determines that the temperature Tc of the battery cell 1 acquired in the process P52 and the phase change temperature Tpc of the phase change material 2 are equal (YES), and executes the process P55.
  • the battery control device 200 sets the counter value N to N + 1 by, for example, the data processing and storage function F1.
  • the battery control device 200 calculates the amount of heat Qpcmc accumulated as latent heat in the phase change material 2 at the time of charging the battery cell 1 based on the equation (4) in the process P56, and in the process P57.
  • the calorific value Qpcmc is stored in the storage device 202.
  • N ⁇ Qrcb is calculated as the amount of heat Qpcmc accumulated as latent heat in the phase change material 2 when the battery cell 1 is charged.
  • the amount of heat Qpcmc accumulated as latent heat in the phase change material 2 between the time x7 and the time x8 can be calculated, and the state of the phase change of the phase change material 2 can be grasped.
  • the phase change material 2 becomes a liquid phase, and the temperature T of the phase change material 2 and the battery cell 1 rises to be higher than the phase change temperature Tpc of the phase change material 2.
  • the battery control device 200 determines that the temperature Tc of the battery cell 1 and the phase change temperature Tpc of the phase change material 2 are not equal (NO), and in the process P58, the battery control device 200 determines that the battery cell 1 Process P52 to process P58 are repeatedly executed until it is determined that the charging of the battery cell 1 is completed (YES), and the battery cell 1 is rapidly charged. Further, in the process P58, when the battery control device 200 determines that the charging of the battery cell 1 is completed (YES), the process shown in FIG. 7D is terminated, and the process shown in FIG. 6 is newly started.
  • the battery control device 200 when the temperature T at the time of rapid charging of the battery cell 1 calculated in the process P41 is higher than the phase change temperature Tpc of the phase change material 2 (NO), the battery control device 200 , Process P43 is executed.
  • the battery control device 200 is the temperature of the battery cell 1 when the battery cell 1 is rapidly charged based on the following formula (5) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
  • T Tpc + (Qrc-Qpcmt) / (m ⁇ c) ... (5)
  • Tpc is the phase change temperature of the phase change material 2
  • Qrc [J] is the total heat capacity of the battery cell 1 during rapid charging
  • Qpcmt [J] is the phase change material 2.
  • the total amount of heat that can be absorbed as latent heat is the total mass of the battery cell 1 and the phase change material 2
  • c [J / kg ⁇ K] is the battery cell 1 and the phase at a temperature excluding the phase change temperature Tpc. This is the specific heat of the changing material 2.
  • the temperature T of the battery cell 1 at the time of rapid charging calculated by the process P43 by the phase change material state determination function F2 is the upper limit temperature of the operating temperature range, for example, 60 [° C.] or less.
  • the process P44 for determining whether or not is is executed. In the process P44, when the temperature T of the battery cell 1 at the time of quick charging calculated in the process P43 is 60 [° C.] or less (YES), the battery control device 200 is the battery cell shown in FIG. 7D as described above. Perform a quick charge of 1.
  • the battery control device 200 uses, for example, the data processing and storage function F1 to obtain a battery.
  • the process P45 for calculating the temperature T at the time of normal charging of the cell 1 is executed.
  • the battery control device 200 normally charges the battery cell 1 based on the following formula (6) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
  • T Tpc + (Qtc-Qpcmt) / (m ⁇ c) ... (6)
  • Tpc is the phase change temperature of the phase change material 2
  • Qtc [J] is the total heat of the battery cell 1 during normal charging
  • Qpcmt [J] is the latent heat of the phase change material 2.
  • the total amount of heat that can be absorbed is the total mass of the battery cell 1 and the phase change material 2
  • c [J / kg ⁇ K] is the phase change of the battery cell 1 and the phase change at a temperature excluding the phase change temperature Tpc. This is the specific heat of material 2.
  • the temperature T of the battery cell 1 at the time of normal charging calculated by the process P45 by the phase change material state determination function F2 is the upper limit temperature of the operating temperature range, for example, 60 [° C.] or less.
  • the process P46 for determining whether or not is is executed.
  • the battery control device 200 is subjected to, for example, the control condition determination function F3 to the battery pack 100.
  • the control signal CS is output to the battery cell 1, and the process P47 for normally charging the battery cell 1 is executed.
  • the battery control device 200 executes the process P48.
  • the battery control device 200 outputs a control signal CS to the battery pack 100 by, for example, the control condition determination function F3 to perform a charge non-execution process in which the battery cell 1 is not charged, or the battery cell 1
  • the limited normal charging process for normally charging the battery cell 1 is executed until the temperature of the battery reaches the upper limit of the operating temperature range, for example, 60 [° C.].
  • the battery control device 200 is the temperature of the battery cell 1. It is determined that Tc and the phase change temperature Tpc of the phase change material 2 are equal (YES), and the process P31 shown in FIG. 7B is executed. In the process P31, the battery control device 200 is stored as latent heat in the phase change material 2 based on the data stored in the storage device 202 and the following equation (7) by, for example, the phase change material state determination function F2. Calculate the calorific value Qpcm [J].
  • Q 1 , Q 2 , Q 3 , ..., Q n [J / s] is the time series data of the amount of heat released from the phase change material 2 per unit time
  • Qpccm [J] is This is the amount of heat accumulated as latent heat in the phase change material 2 when the battery cell 1 is charged.
  • the battery control device 200 sets the cell temperature T when the battery cell 1 is rapidly charged by, for example, the data processing and storage function F1, based on the data stored in the storage device 202 and the following formula (8).
  • the process P32 for calculating is executed.
  • T Tpc + ⁇ Qrc- (Qpcmt-Qpcm) ⁇ / (m ⁇ c) ... (8)
  • Tpc is the phase change temperature of the phase change material 2
  • Qrc [J] is the total heat capacity of the battery cell 1 during rapid charging
  • Qpcmt [J] is the phase change material 2.
  • Qpcm [J] is the total amount of heat that can be absorbed as latent heat
  • Qpcm [J] is the amount of heat stored as latent heat in the phase change material 2
  • m [kg] is the total mass of the battery cell 1 and the phase change material 2
  • c [J / kg] is the specific heat of the battery cell 1 and the phase change material 2 at a temperature other than the phase change temperature Tpc.
  • the temperature T of the battery cell 1 at the time of rapid charging calculated by the process P32 by the phase change material state determination function F2 is the upper limit temperature of the operating temperature range, for example, 60 [° C.] or less.
  • the process P33 for determining whether or not is is executed. In the process P33, when the temperature T of the battery cell 1 at the time of quick charging calculated in the process P32 is 60 [° C.] or less (YES), the battery control device 200 is the battery cell shown in FIG. 7D as described above. Perform a quick charge of 1.
  • the battery control device 200 uses, for example, the data processing and storage function F1 to obtain a battery.
  • the process P34 for calculating the temperature T at the time of normal charging of the cell 1 is executed.
  • the battery control device 200 normally charges the battery cell 1 based on the following formula (9) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
  • T Tpc + ⁇ Qtc- (Qpcmt-Qpcm) ⁇ / (m ⁇ c) ... (9)
  • Tpc is the phase change temperature of the phase change material 2
  • Qtc [J] is the total heat of the battery cell 1 during normal charging
  • Qpcmt [J] is the latent heat of the phase change material 2.
  • the total amount of heat that can be absorbed Qpcm [J] is the amount of heat stored as latent heat in the phase change material 2
  • m [kg] is the total mass of the battery cell 1 and the phase change material 2
  • [K] is the specific heat of the battery cell 1 and the phase change material 2 at a temperature other than the phase change temperature Tpc.
  • the temperature T of the battery cell 1 at the time of normal charging calculated by the process P34 by the phase change material state determination function F2 is the upper limit temperature of the operating temperature range, for example, 60 [° C.] or less.
  • the process P35 for determining whether or not is is executed.
  • the battery control device 200 is subjected to, for example, the control condition determination function F3 to the battery pack 100.
  • the control signal CS is output to the battery cell 1, and the process P36 for normally charging the battery cell 1 is executed.
  • the battery control device 200 executes the process P37.
  • the battery control device 200 outputs a control signal CS to the battery pack 100 by, for example, the control condition determination function F3 to perform a charge non-execution process in which the battery cell 1 is not charged, or the battery cell 1
  • the limited normal charging process for normally charging the battery cell 1 is executed until the temperature of the battery reaches the upper limit of the operating temperature range, for example, 60 [° C.].
  • the battery control device 200 is the temperature of the battery cell 1. It is determined that Tc and the phase change temperature Tpc of the phase change material 2 are not equal (NO), and the process P23 is executed. In the process P23, the battery control device 200 determines that the temperature Tc of the battery cell 1 is higher than the phase change temperature Tpc of the phase change material 2 (NO) by, for example, the phase change material state determination function F2, and performs the process P24. Execute.
  • the battery control device 200 is the temperature of the battery cell 1 when the battery cell 1 is rapidly charged based on the above formula (3) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
  • the temperature T of the battery cell 1 at the time of rapid charging calculated by the process P24 by the phase change material state determination function F2 is the upper limit temperature of the operating temperature range, for example, 60 [° C.] or less.
  • the process P25 for determining whether or not is is executed. In the process P25, when the temperature T of the battery cell 1 at the time of quick charging calculated in the process P24 is 60 [° C.] or less (YES), the battery control device 200 is the battery cell shown in FIG. 7D as described above. Perform a quick charge of 1.
  • the battery control device 200 uses, for example, the data processing and storage function F1 to obtain a battery.
  • the process P26 for calculating the temperature T at the time of normal charging of the cell 1 is executed.
  • the battery control device 200 normally charges the battery cell 1 based on the following formula (10) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
  • T Tpc + Qtc / (m ⁇ c) ... (10)
  • Tpc is the phase change temperature of the phase change material 2
  • Qtc [J] is the total calorific value of the battery cell 1 during normal charging
  • m [kg] is the phase change with the battery cell 1.
  • the total mass of the material 2, c [J / kg ⁇ K], is the specific heat of the battery cell 1 and the phase change material 2 at a temperature excluding the phase change temperature Tpc.
  • the temperature T of the battery cell 1 during normal charging calculated by the process P26 by the phase change material state determination function F2 is equal to or less than the upper limit temperature of the operating temperature range, for example, 60 [° C.].
  • the process P27 for determining whether or not is is executed.
  • the battery control device 200 is subjected to, for example, the control condition determination function F3 to the battery pack 100.
  • the control signal CS is output to the battery cell 1, and the process P28 for normally charging the battery cell 1 is executed.
  • the battery control device 200 executes the process P29.
  • the battery control device 200 outputs a control signal CS to the battery pack 100 by, for example, the control condition determination function F3 to perform a charge non-execution process in which the battery cell 1 is not charged, or the battery cell 1
  • the limited normal charging process for normally charging the battery cell 1 is executed until the temperature of the battery reaches the upper limit of the operating temperature range, for example, 60 [° C.].
  • FIG. 8 is a graph illustrating the effect of suppressing the temperature rise of the battery cell 1 constituting the battery pack 100 by the battery control device 200 of FIG.
  • the battery control device 200 of the present embodiment is a device that controls a battery, that is, a battery pack 100 and a battery cell 1, which are arranged so as to be thermally conductive with respect to the phase change material 2.
  • the battery control device 200 calculates the amounts of heat Qn, Qpmcc, Qpcmt, and Qpcm absorbed or released as latent heat by the phase changing material 2 based on the phase changing temperature Tpc of the phase changing material 2 and the temperature Tc of the battery cell 1.
  • a processing device 201 that determines the charging conditions of the battery based on this amount of heat is provided.
  • the battery control device 200 of the present embodiment phase-changes the temperature rise of the battery including the battery cell 1 based on the amount of heat Qn, Qpmcc, Qpcmt, Qpcm absorbed or released as latent heat by the phase-changing material 2. It can be suppressed within a specific temperature range in the vicinity of the phase change temperature Tpc of the material 2.
  • the battery control device 200 of the present embodiment estimates the state of the phase change material 2 based on the phase change temperature Tpc of the phase change material 2 and the time series data of the temperature Tc of the battery including the battery cell 1. The amount of heat Qpcmt that the current phase change material 2 can absorb as latent heat can be grasped.
  • the battery control device 200 of the present embodiment when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effective than before.
  • the temperature rise of the battery cell 1 can be effectively suppressed.
  • the temperature Tc of the battery including the battery cell 1 is set to the upper limit of the operating temperature range of the battery cell 1. It can be more reliably maintained within a certain temperature range of 60 [° C.] or less.
  • the processing device 201 is based on the amount of heat Qrc generated by the battery cell 1 during rapid charging when the temperature Tc of the battery including the battery cell 1 is lower than the phase change temperature Tpc. Then, the temperature T of the battery at the time of quick charging is calculated. Then, the processing device 201 determines the charging condition of the battery including the battery cell 1 to be rapid charging when the calculated temperature T of the battery at the time of rapid charging is equal to or less than the phase changing temperature Tpc of the phase changing material 2.
  • the battery control device 200 of the present embodiment phase-changes the temperature Tc of the battery cell 1 based on the amount of heat Qrc generated by the battery, that is, the battery cell 1 when the battery, that is, the battery pack 100 is rapidly charged.
  • the temperature can be set to Tpc or less. Therefore, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effectively performed than before, and the temperature of the battery cell 1 rises. Can be effectively suppressed.
  • the calculated temperature T of the battery including the battery cell 1 at the time of rapid charging is higher than the phase change temperature Tpc, and is equal to or less than the upper limit temperature of the operating temperature range of the battery. If, the battery charging condition is determined to be quick charging.
  • the battery control device 200 of the present embodiment sets the temperature Tc of the battery including the battery cell 1 to the upper limit of the operating temperature range of the battery cell 1 when the battery, that is, the battery pack 100 is rapidly charged. It can be reliably maintained within the temperature range of [° C] or less. Therefore, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effectively performed than before, and the temperature of the battery cell 1 rises. Can be effectively suppressed.
  • the processing device 201 when the temperature Tc of the battery including the battery cell 1 is equal to the phase change temperature Tpc, the processing device 201 undergoes rapid charging based on the amount of heat Qrc generated by the battery cell 1. The temperature of the battery cell 1 of the above is calculated. Then, when the calculated temperature T of the battery cell 1 at the time of quick charging is equal to or less than the upper limit temperature of the operating temperature range of the battery cell 1, the processing device 201 determines the charging condition of the battery to be quick charging.
  • the battery control device 200 of the present embodiment uses the battery temperature as the operating temperature of the battery cell 1 even if quick charging is performed when the temperature Tc of the battery including the battery cell 1 is equal to the phase change temperature Tpc. It can be more reliably maintained within the temperature range of 60 [° C.] or lower, which is the upper limit of the range. Therefore, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effectively performed than before, and the temperature of the battery cell 1 rises. Can be effectively suppressed.
  • the processing device 201 is rapidly charged based on the amount of heat Qrc generated by the battery cell 1 when the temperature Tc of the battery including the battery cell 1 is higher than the phase change temperature Tpc. Calculate the temperature of the battery cell 1 at that time. Then, the processing device 201 determines the charging condition of the battery, that is, the battery pack 100 to be rapid charging when the calculated temperature T of the battery cell 1 at the time of rapid charging is equal to or less than the upper limit temperature of the operating temperature range of the battery cell 1. Can be done.
  • the battery control device 200 of the present embodiment can keep the battery temperature Tc even if the battery pack 100 is rapidly charged when the temperature Tc of the battery including the battery cell 1 is higher than the phase change temperature Tpc.
  • the temperature range of 60 [° C.] or less, which is the upper limit of the operating temperature range of the battery cell 1, can be reliably maintained. Therefore, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effectively performed than before, and the temperature of the battery cell 1 rises. Can be effectively suppressed.
  • the processing device 201 normally sets the charging conditions of the battery when the calculated temperature T of the battery including the battery cell 1 at the time of quick charging is higher than the upper limit temperature of the operating temperature range. Decide to charge.
  • the battery control device 200 of the present embodiment can select an appropriate charging condition, for example, quick charging or normal charging, according to the phase changing state of the phase changing material 2. Therefore, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effectively performed than before, and the temperature of the battery cell 1 rises. Can be effectively suppressed.
  • an appropriate charging condition for example, quick charging or normal charging
  • the latent heat of the phase change material 2 when used to absorb the heat of the battery including the battery cell 1, the temperature rise of the battery is effectively suppressed as compared with the conventional case. It is possible to provide a battery control device 200 capable of this.
  • FIG. 9 is a schematic configuration diagram showing an embodiment of the vehicle-mounted battery system of the present disclosure.
  • the in-vehicle battery system shown in FIG. 9 is mounted on a vehicle EV such as a hybrid vehicle or an electric vehicle, and includes a battery pack 100, a battery control device 200, and a host control device 300 shown in FIG. Since the configurations of the battery pack 100, the battery control device 200, and the host control device 300 are the same as the configurations described in the above-described embodiment, the description thereof will be omitted as appropriate.
  • the vehicle-mounted battery system of the present embodiment includes a battery control device 200, a phase change material 2, and a battery cell 1 controlled by the battery control device 200 and arranged so as to be thermally conductive to the phase change material 2. And a duct D that takes in outside air when the vehicle EV is traveling and supplies the outside air to the battery, that is, the battery pack 100.
  • the host control device 300 periodically outputs information Inf including the speed of the vehicle EV to the battery control device 200 while the vehicle EV is running.
  • the battery control device 200 stores, for example, the processing device 201 stores the time-series data of the vehicle EV speed input from the host control device 300 in the storage device 202.
  • the cooling condition of the battery that is, the battery pack 100 has a correlation with the flow rate of the outside air taken into the duct D, and the flow rate of the outside air taken into the duct D has a correlation with the speed of the vehicle EV. Therefore, in the present embodiment, the correlation between the cooling condition of the battery cell 1 and the speed of the vehicle EV is obtained in advance, and the correlation is stored in the storage device 202.
  • the in-vehicle battery system of the present embodiment not only the same effect as that of the battery control device 200 described above can be obtained, but also the correlation between the cooling condition of the battery pack 100 and the speed of the vehicle EV is obtained by the battery control device 200.
  • the battery pack 100 can be controlled based on the above. Therefore, according to the present embodiment, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, it is possible to effectively suppress the temperature rise of the battery as compared with the conventional case.
  • An in-vehicle battery system can be provided.
  • Battery cell battery cell
  • Battery pack battery control device
  • Processing device D Duct EV Vehicle
  • Qn Calorie
  • Qpcm Calorie
  • Qpcmt Calorie
  • Tc Battery temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention provides a battery control apparatus with which it is possible to suppress temperature rise in a battery more effectively compared with conventional products in cases where the heat of the battery is absorbed using latent heat of a phase-change material. This battery control apparatus 200 for controlling a battery that is disposed so as to be able to conduct heat to a phase-change material is provided with a processing device 201 for calculating, on the basis of the phase-change temperature of the phase-change material and the temperature of the battery, the quantity of heat that is absorbed or released, as latent heat, by the phase-change material, and for determining charging conditions for the battery on the basis of the calculated quantity of heat.

Description

電池制御装置および車載用電池システムBattery control device and in-vehicle battery system
 本開示は、電池制御装置および車載用電池システムに関する。 The present disclosure relates to a battery control device and an in-vehicle battery system.
 従来から電池制御装置に関する発明が知られている(下記特許文献1を参照)。特許文献1に記載された従来の電池制御装置は、蓄電池の充放電電流を制御する制御部を備えている。 Inventions related to battery control devices have been known conventionally (see Patent Document 1 below). The conventional battery control device described in Patent Document 1 includes a control unit that controls the charge / discharge current of the storage battery.
 制御部は、電池温度、および充放電電流量に基づいて、蓄電池の温度上昇を予測し、温度上昇の予測結果を用いて蓄電池の上限温度を超えないように複数の上限充放電電流の値から1つの上限充放電電流の値を選択して充放電電流を制御する(同文献、請求項1および第0007段落等を参照)。 The control unit predicts the temperature rise of the storage battery based on the battery temperature and the amount of charge / discharge current, and uses the prediction result of the temperature rise from the values of the plurality of upper limit charge / discharge currents so as not to exceed the upper limit temperature of the storage battery. The charge / discharge current is controlled by selecting the value of one upper limit charge / discharge current (see the same document, claim 1 and paragraph 0007, etc.).
 また、複数の電池セルを備える二次電池モジュール、および、その二次電池モジュールを備えた車両に関する発明が知られている(下記特許文献2を参照)。特許文献2に記載された従来の二次電池モジュールは、複数の電池セルと、冷却液気化層と、温度センサと、液検出センサと、制御部と、を備えている(同文献、請求項1および第0007段落等を参照)。 Further, inventions relating to a secondary battery module including a plurality of battery cells and a vehicle equipped with the secondary battery module are known (see Patent Document 2 below). The conventional secondary battery module described in Patent Document 2 includes a plurality of battery cells, a cooling liquid vaporization layer, a temperature sensor, a liquid detection sensor, and a control unit (the same document, claim). 1 and paragraph 0007, etc.).
 冷却液気化層は、電池セルの周面に設けられ、冷却液供給源から供給された気化用冷却液を保持するとともに気化させる。温度センサは、電池セルの温度を検出する。液検出センサは、温度センサの検出対象電池セルの冷却液気化層に、気化用冷却液が供給されたか否かを検出する。制御部は、温度センサおよび液検出センサの検出値に基づいて、冷却液供給源から冷却液気化層への気化用冷却液の供給および停止を制御する。 The coolant vaporization layer is provided on the peripheral surface of the battery cell, and holds and vaporizes the vaporizing coolant supplied from the coolant supply source. The temperature sensor detects the temperature of the battery cell. The liquid detection sensor detects whether or not the vaporization coolant has been supplied to the coolant vaporization layer of the battery cell to be detected by the temperature sensor. The control unit controls the supply and stop of the vaporizing coolant from the coolant supply source to the coolant vaporization layer based on the detection values of the temperature sensor and the liquid detection sensor.
 また、隣り合って配置された複数の単電池を備える組電池に関する発明が知られている(下記特許文献3を参照)。特許文献3に記載された従来の組電池は、単電池の通常使用時の温度域よりも高く、かつ、前記単電池が熱破壊される破壊温度よりも低い融点を有する相変化物質を備える。この組電池は、この相変化物質を、互いに隣り合う単電池同士の間に、単電池のうちの1つが融点よりも高い温度まで発熱した場合に、その熱を吸収して溶融する形態に配置してなる(同文献、請求項1、第0007段落等を参照)。 Further, an invention relating to an assembled battery including a plurality of cells arranged adjacent to each other is known (see Patent Document 3 below). The conventional assembled battery described in Patent Document 3 includes a phase-changing substance having a melting point higher than the temperature range during normal use of the cell and lower than the breakdown temperature at which the cell is thermally destroyed. This assembled battery is arranged in a form in which this phase change substance is absorbed and melted when one of the cells generates heat between adjacent cells adjacent to each other to a temperature higher than the melting point. (See the same document, claim 1, paragraph 0007, etc.).
特開2018-170904号公報JP-A-2018-170904 特開2012-054202号公報Japanese Unexamined Patent Publication No. 2012-054202 特開2010-073406号公報Japanese Unexamined Patent Publication No. 2010-073406
 特許文献1に記載された電池制御装置によれば、蓄電池の適切な温度制御が可能になり、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる(同文献、第0008段落等を参照)。しかし、この従来の電池制御装置では、蓄電池の放熱性の向上に改善の余地がある。 According to the battery control device described in Patent Document 1, appropriate temperature control of the storage battery becomes possible, and charge / discharge control can be performed without impairing the fuel efficiency performance and driving performance of the electric vehicle (the same document, the same document, See paragraph 0008, etc.). However, in this conventional battery control device, there is room for improvement in improving the heat dissipation of the storage battery.
 特許文献2に記載された二次電池モジュール、および、その二次電池モジュールを備えた車両によれば、冷却液気化層の作用により、二次電池モジュールに設けられた複数の電池セルに関して、温度の均一化を図ることができる(同文献、第0008段落等を参照)。しかし、この従来の二次電池モジュールは、冷却液供給源、気化用冷却液の供給経路、および冷却液気化層などの構成が必要になるという課題がある。 According to the secondary battery module described in Patent Document 2 and the vehicle provided with the secondary battery module, the temperature of a plurality of battery cells provided in the secondary battery module due to the action of the coolant vaporization layer. (See the same document, paragraph 0008, etc.). However, this conventional secondary battery module has a problem that a configuration such as a coolant supply source, a vaporization coolant supply path, and a coolant vaporization layer is required.
 特許文献3に記載された組電池によれば、組電池を構成する単電池の1つが異常発熱して、上記相変化物質の融点を超えた場合に、単電池間に配置された相変化物質がその熱を吸収して溶融する。相変化物質は、相変化(溶融)する際の潜熱分だけ、異常発熱した単電池の熱を吸収できるので、異常発熱した単電池に隣り合う単電池の温度上昇が抑えられ、この隣り合う単電池が破壊温度に達することを防止できる(同文献、第0008段落等を参照)。 According to the assembled battery described in Patent Document 3, when one of the cell cells constituting the assembled battery abnormally generates heat and exceeds the melting point of the phase changing substance, the phase changing substance arranged between the cell cells is arranged. Absorbs the heat and melts. Since the phase-changing substance can absorb the heat of the abnormally generated cell by the latent heat at the time of phase change (melting), the temperature rise of the cell adjacent to the abnormally generated cell is suppressed, and the temperature rise of the adjacent cell is suppressed. It is possible to prevent the battery from reaching the breaking temperature (see the same document, paragraph 0008, etc.).
 この従来の組電池では、相変化物質の融点に近い単電池の温度が検出された場合、単電池の熱を相変化物質が潜熱として吸収している状態であることが推定される。しかし、この従来の組電池では、相変化物質の融点に近い単電池の温度が検出された時点で、相変化物質が潜熱として吸収可能な残りの熱量が不明であるため、単電池の温度制御が困難になるという課題がある。 In this conventional assembled battery, when the temperature of the cell near the melting point of the phase change substance is detected, it is presumed that the phase change substance is absorbing the heat of the cell as latent heat. However, in this conventional assembled battery, when the temperature of the cell near the melting point of the phase change substance is detected, the remaining amount of heat that can be absorbed by the phase change substance as latent heat is unknown. Therefore, the temperature of the cell is controlled. There is a problem that it becomes difficult.
 本開示は、相変化材料の潜熱を利用して電池の熱を吸収する場合に、従来よりも電池の温度上昇を効果的に抑制することが可能な電池制御装置および車載用電池システムを提供する。 The present disclosure provides a battery control device and an in-vehicle battery system capable of effectively suppressing a temperature rise of a battery as compared with the conventional case when absorbing the heat of the battery by utilizing the latent heat of the phase change material. ..
 本開示の一態様は、相変化材料に対して熱伝導可能に配置された電池を制御する電池制御装置であって、前記相変化材料の相変化温度と前記電池の温度とに基づいて前記相変化材料が潜熱として吸収または放出する熱量を算出し、前記熱量に基づいて前記電池の充電条件を決定する処理装置を備えることを特徴とする電池制御装置である。 One aspect of the present disclosure is a battery control device that controls a battery that is thermally conductively arranged with respect to the phase change material, and the phase is based on the phase change temperature of the phase change material and the temperature of the battery. The battery control device is provided with a processing device that calculates the amount of heat absorbed or released as latent heat by the changing material and determines the charging conditions of the battery based on the amount of heat.
 本開示によれば、相変化材料の潜熱を利用して電池の熱を吸収する場合に、従来よりも電池の温度上昇を効果的に抑制することが可能な電池制御装置および車載用電池システムを提供することができる。 According to the present disclosure, when the latent heat of a phase change material is used to absorb the heat of a battery, a battery control device and an in-vehicle battery system capable of effectively suppressing a temperature rise of the battery as compared with the conventional case are provided. Can be provided.
本開示の電池制御装置の実施形態を示すブロック図。The block diagram which shows the embodiment of the battery control device of this disclosure. 図1の電池パックの構成を説明する平面図。The plan view explaining the structure of the battery pack of FIG. 図2の電池セルの構成を説明する斜視図。The perspective view explaining the structure of the battery cell of FIG. 図1の電池制御装置の機能ブロック図。The functional block diagram of the battery control device of FIG. 図1の電池パックを構成する電池セルの温度の時系列を示すグラフ。The graph which shows the time series of the temperature of the battery cell which comprises the battery pack of FIG. 図5における充電終了後の電池制御装置の動作を説明するフロー図。FIG. 5 is a flow chart illustrating the operation of the battery control device after charging is completed in FIG. 図5における充電開始後の電池制御装置の動作を説明するフロー図。FIG. 5 is a flow chart illustrating the operation of the battery control device after the start of charging in FIG. 図5における充電開始後の電池制御装置の動作を説明するフロー図。FIG. 5 is a flow chart illustrating the operation of the battery control device after the start of charging in FIG. 図5における充電開始後の電池制御装置の動作を説明するフロー図。FIG. 5 is a flow chart illustrating the operation of the battery control device after the start of charging in FIG. 図5における充電開始後の電池制御装置の動作を説明するフロー図。FIG. 5 is a flow chart illustrating the operation of the battery control device after the start of charging in FIG. 図1の電池制御装置による電池セルの温度上昇抑制効果を説明するグラフ。The graph explaining the effect of suppressing the temperature rise of a battery cell by the battery control device of FIG. 本開示の車載用電池システムの実施形態を示す概略構成図。The schematic block diagram which shows the embodiment of the vehicle-mounted battery system of this disclosure.
 以下、図面を参照して本開示の電池制御装置の実施形態を説明する。 Hereinafter, embodiments of the battery control device of the present disclosure will be described with reference to the drawings.
[実施形態1]
 図1は、本開示の電池制御装置の実施形態を示すブロック図である。本実施形態の電池制御装置200は、たとえばハイブリッド車や電気自動車などの車両に搭載され、走行モータを含む電気機器に電力を供給する電池パック100を制御するための装置である。電池制御装置200は、電池パック100に対し、たとえば電気通信回線や信号配線を介して情報通信可能に接続されている。また、電池制御装置200は、車両の電子制御装置(ECU)などの上位制御装置300に対し、たとえば電気通信回線や信号配線を介して情報通信可能に接続されている。
[Embodiment 1]
FIG. 1 is a block diagram showing an embodiment of the battery control device of the present disclosure. The battery control device 200 of the present embodiment is a device for controlling a battery pack 100 which is mounted on a vehicle such as a hybrid vehicle or an electric vehicle and supplies electric power to an electric device including a traveling motor. The battery control device 200 is connected to the battery pack 100 so that information can be communicated via, for example, a telecommunication line or signal wiring. Further, the battery control device 200 is connected to a higher-level control device 300 such as an electronic control device (ECU) of a vehicle so that information can be communicated via, for example, a telecommunication line or signal wiring.
 電池制御装置200は、たとえば、電池パック100から電池の電圧値V、電流値I、温度T、充電率(state of charge:SOC)などが入力され、電池パック100に対して制御信号CSを出力する。なお、SOCは、たとえば電池制御装置200により、電池パック100から入力された電圧値V、電流値I、温度Tに基づいて算出してもよい。 For example, the battery control device 200 inputs the battery voltage value V, current value I, temperature T, charge rate (state of charge: SOC), etc. from the battery pack 100, and outputs a control signal CS to the battery pack 100. To do. The SOC may be calculated based on the voltage value V, the current value I, and the temperature T input from the battery pack 100 by, for example, the battery control device 200.
 制御信号CSは、たとえば、充電電流値または放電電流値などの充放電条件、および熱伝達係数などの冷却条件を含む。制御信号CSは、たとえば、冷却ファンの風量と熱伝達係数の関係に基づく冷却ファンの制御量であってもよい。 The control signal CS includes, for example, charge / discharge conditions such as a charge current value or a discharge current value, and cooling conditions such as a heat transfer coefficient. The control signal CS may be, for example, a control amount of the cooling fan based on the relationship between the air volume of the cooling fan and the heat transfer coefficient.
 また、電池制御装置200は、たとえば、上位制御装置300に対して電池状態BSなどを出力し、上位制御装置300から制御信号や情報Infが入力される。電池制御装置200は、たとえば、データを処理するCPU、MPUなどの処理装置201と、データやコンピュータプログラムなどを記憶する記憶装置202と、を備えている。 Further, the battery control device 200 outputs, for example, a battery state BS or the like to the upper control device 300, and a control signal or information Inf is input from the upper control device 300. The battery control device 200 includes, for example, a processing device 201 such as a CPU and an MPU that processes data, and a storage device 202 that stores data, computer programs, and the like.
 図2は、図1の電池パック100の構成の一例を説明する平面図である。電池パック100は、電池制御装置200によって充放電、温度、およびSOCが制御される電池として、複数の電池セル1を備えている。電池セル1は、たとえば、扁平な角形リチウムイオン二次電池などの二次電池であり、その厚さ方向に複数の電池セル1が並べて配置されている。図2に示す例において、複数の電池セル1は、厚さ方向に積層して配置された二列の電池列1Lを構成している。 FIG. 2 is a plan view illustrating an example of the configuration of the battery pack 100 of FIG. The battery pack 100 includes a plurality of battery cells 1 as batteries whose charge / discharge, temperature, and SOC are controlled by the battery control device 200. The battery cell 1 is, for example, a secondary battery such as a flat rectangular lithium ion secondary battery, and a plurality of battery cells 1 are arranged side by side in the thickness direction thereof. In the example shown in FIG. 2, the plurality of battery cells 1 form two rows of battery rows 1L arranged so as to be stacked in the thickness direction.
 各電池列1Lにおいて、配列方向に隣り合うそれぞれの電池セル1,1の間に、相変化材料2が配置されている。相変化材料2は、たとえば、融点が電池セル1の使用上限温度よりも低い酢酸ナトリウム3水塩などの物質がアルミニウムなどの外装材に封入され、シート状または板状に成形された構成を有している。相変化材料2の融点または相変化温度、すなわち相変化材料2の外装材に封入された物質の融点または相変化温度は、たとえば約40[℃]から約60[℃]までの範囲であり、たとえば約50[℃]程度である。 In each battery row 1L, the phase change material 2 is arranged between the battery cells 1 and 1 adjacent to each other in the arrangement direction. The phase change material 2 has, for example, a structure in which a substance such as sodium acetate trihydrate having a melting point lower than the upper limit temperature of the battery cell 1 is sealed in an exterior material such as aluminum and formed into a sheet shape or a plate shape. doing. The melting point or phase change temperature of the phase change material 2, that is, the melting point or phase change temperature of the substance enclosed in the exterior material of the phase change material 2, ranges from, for example, about 40 [° C.] to about 60 [° C.]. For example, it is about 50 [° C.].
 複数の相変化材料2は、それぞれ電池セル1との間で熱伝導可能に配置されている。具体的には、シート状または板状の相変化材料2は、扁平な直方体形状の電池セル1の最大面積を有する側面に接するように配置されている。また、相変化材料2を介在させて電池セル1を積層させた電池列1Lは、電池セル1の積層方向の両端に電気絶縁性を有するスペーサを介してエンドプレート3が配置されている。これら一対のエンドプレート3を連結することで、複数の電池セル1および複数の相変化材料2が一対のエンドプレート3の間で固縛されている。これにより、相変化材料2は、それぞれ、電池セル1の側面に押し付けられて密着している。 The plurality of phase change materials 2 are arranged so as to be heat conductive with each of the battery cells 1. Specifically, the sheet-shaped or plate-shaped phase changing material 2 is arranged so as to be in contact with the side surface having the maximum area of the flat rectangular parallelepiped battery cell 1. Further, in the battery row 1L in which the battery cells 1 are laminated with the phase change material 2 interposed therebetween, end plates 3 are arranged at both ends of the battery cells 1 in the stacking direction via spacers having electrical insulation. By connecting the pair of end plates 3, the plurality of battery cells 1 and the plurality of phase change materials 2 are fixed between the pair of end plates 3. As a result, the phase change material 2 is pressed against the side surface of the battery cell 1 and is in close contact with each other.
 図3は、図2の電池セル1の構成を説明する斜視図である。電池セル1は、たとえば、扁平な直方体形状の電池容器10を備えている。電池容器10は、たとえば、アルミニウム合金などの金属製であり、有底角筒状の電池缶11と、電池缶11の上端の開口部を封止する電池蓋12とにより構成されている。図示を省略するが、電池容器10の内部には、帯状の正電極と帯状の負電極とを帯状のセパレータを介して重ねて巻回した電極群、この電極群の両端で正電極と負電極にそれぞれ接続された一対の集電板、電気絶縁部材、および電解液などが収容されている。 FIG. 3 is a perspective view illustrating the configuration of the battery cell 1 of FIG. The battery cell 1 includes, for example, a flat rectangular parallelepiped battery container 10. The battery container 10 is made of a metal such as an aluminum alloy, and is composed of a bottomed square tubular battery can 11 and a battery lid 12 that seals an opening at the upper end of the battery can 11. Although not shown, inside the battery container 10, a band-shaped positive electrode and a band-shaped negative electrode are laminated and wound via a band-shaped separator, and positive electrodes and negative electrodes at both ends of this electrode group. A pair of current collector plates, an electrically insulating member, an electrolytic solution, and the like, which are connected to each of the above, are housed.
 電池容器10は、厚さ方向両側の一対の広側面10w、幅方向両側の一対の狭側面10n、底面10b、および上面10tを有している。これら電池容器10の各面のうち、広側面10wが最大の面積を有している。前述の相変化材料2は、この電池容器10の広側面10wに接するように配置される。電池容器10の上面10tには、電池容器10の幅方向の両端に、一対の絶縁部材13を介して一対の外部端子14が配置され、一対の外部端子14の間に、開裂弁15および注液口16が設けられている。 The battery container 10 has a pair of wide side surfaces 10w on both sides in the thickness direction, a pair of narrow side surfaces 10n on both sides in the width direction, a bottom surface 10b, and an upper surface 10t. Of these surfaces of the battery container 10, the wide side surface 10w has the largest area. The above-mentioned phase change material 2 is arranged so as to be in contact with the wide side surface 10w of the battery container 10. On the upper surface 10t of the battery container 10, a pair of external terminals 14 are arranged at both ends in the width direction of the battery container 10 via a pair of insulating members 13, and a cleavage valve 15 and a note are provided between the pair of external terminals 14. A liquid port 16 is provided.
 一対の外部端子14のうち、一方の外部端子14は、集電板を介して正極電極に接続された正極の外部端子14Pであり、他方の外部端子14は、集電板を介して負極電極に接続された負極の外部端子14Nである。開裂弁15は、電池容器10の内部の圧力が異常に上昇したときに開裂して、電池セル1の安全性を確保する。注液口16は、電池容器10の内部に電解液を注入するのに用いられ、注液栓17によって封止されている。 Of the pair of external terminals 14, one of the external terminals 14 is the external terminal 14P of the positive electrode connected to the positive electrode via the current collector plate, and the other external terminal 14 is the negative electrode of the negative electrode via the current collector plate. It is an external terminal 14N of the negative electrode connected to. The cleavage valve 15 opens when the pressure inside the battery container 10 rises abnormally to ensure the safety of the battery cell 1. The liquid injection port 16 is used for injecting an electrolytic solution into the battery container 10, and is sealed by a liquid injection plug 17.
 図2に示すように、各電池列1Lにおいて、複数の電池セル1は、隣り合う一方の電池セル1の正極の外部端子14Pと、他方の電池セル1の負極の外部端子14Nとが、各電池列1Lの配列方向に隣接するように、交互に反転させて配置されている。さらに、たとえば、隣り合う一方の電池セル1の正極の外部端子14Pと、他方の電池セル1の負極の外部端子14Nとを、図示を省略するバスバーによって、順次、接続していくことで、複数の電池セル1が直列に接続される。 As shown in FIG. 2, in each battery row 1L, the plurality of battery cells 1 have an external terminal 14P of the positive electrode of one adjacent battery cell 1 and an external terminal 14N of the negative electrode of the other battery cell 1, respectively. The batteries are arranged so as to be adjacent to each other in the arrangement direction of the battery row 1L so as to be alternately inverted. Further, for example, a plurality of external terminals 14P of the positive electrode of one adjacent battery cell 1 and an external terminal 14N of the negative electrode of the other battery cell 1 are sequentially connected by a bus bar (not shown). Battery cells 1 are connected in series.
 図示を省略するが、各バスバーには、たとえば、個々の電池セル1の電圧を測定する電圧検出部が接続されている。電圧検出部は、たとえば、個々の電池セル1の電圧、直列に接続された複数の電池セル1の電圧、あるいは、直列または並列に接続された複数の電池列Lの電圧を測定する。電圧検出部によって検出された電池の電圧Vは、図1に示すように、電池パック100から電池制御装置200へ出力される。また、電池セル1を流れる電流Iが、図示を省略する電流センサによって測定され、図1に示すように、電池パック100から電池制御装置200へ出力される。 Although not shown, each bus bar is connected to, for example, a voltage detection unit that measures the voltage of each battery cell 1. The voltage detection unit measures, for example, the voltage of each battery cell 1, the voltage of a plurality of battery cells 1 connected in series, or the voltage of a plurality of battery rows L connected in series or in parallel. As shown in FIG. 1, the voltage V of the battery detected by the voltage detection unit is output from the battery pack 100 to the battery control device 200. Further, the current I flowing through the battery cell 1 is measured by a current sensor (not shown), and is output from the battery pack 100 to the battery control device 200 as shown in FIG.
 また、図2に示すように、電池パック100は、複数の電池セル1の表面温度を測定する複数の温度センサ4を備えている。温度センサ4によって測定された電池セル1の温度Tは、図1に示すように、電池パック100から電池制御装置200へ出力される。また、図示を省略する演算部によって算出された各々の電池セル1のSOCは、図1に示すように、電池パック100から電池制御装置200へ出力される。 Further, as shown in FIG. 2, the battery pack 100 includes a plurality of temperature sensors 4 for measuring the surface temperatures of the plurality of battery cells 1. As shown in FIG. 1, the temperature T of the battery cell 1 measured by the temperature sensor 4 is output from the battery pack 100 to the battery control device 200. Further, as shown in FIG. 1, the SOC of each battery cell 1 calculated by the calculation unit (not shown) is output from the battery pack 100 to the battery control device 200.
 また、図1に示すように、電池制御装置200から出力された制御信号CSは、たとえば、電池パック100の図示を省略するバッテリーマネジメントシステム(BMS)に入力され、BMSを介して電池セル1の充放電、温度、SOCなどが制御される。 Further, as shown in FIG. 1, the control signal CS output from the battery control device 200 is input to, for example, a battery management system (BMS) of the battery pack 100 (not shown), and the battery cell 1 is input via the BMS. Charging / discharging, temperature, SOC, etc. are controlled.
 なお、電池パック100の通常使用時の温度範囲である動作温度範囲は、たとえば、約-30[℃]から約60[℃]までの温度範囲である。電池セル1の劣化を抑制し、電池セル1を可及的長期間にわたって使用するためには、電池セル1の温度を電池パック100の動作温度範囲の上限以下の温度に維持することが要求される。 The operating temperature range of the battery pack 100 during normal use is, for example, a temperature range of about −30 [° C.] to about 60 [° C.]. In order to suppress deterioration of the battery cell 1 and use the battery cell 1 for as long as possible, it is required to maintain the temperature of the battery cell 1 at a temperature equal to or lower than the upper limit of the operating temperature range of the battery pack 100. To.
 図4は、図1の電池制御装置200の機能ブロック図である。電池制御装置200は、たとえば、データ処理および記憶機能F1と、相変化材料(物質)の状態判定機能F2と、制御条件決定機能F3とを有している。 FIG. 4 is a functional block diagram of the battery control device 200 of FIG. The battery control device 200 has, for example, a data processing and storage function F1, a phase change material (substance) state determination function F2, and a control condition determination function F3.
 データ処理および記憶機能F1は、たとえば、電池パック100から入力されたデータおよび冷却条件を、1[s]の周期で記憶装置202に記憶させる。相変化材料の状態判定機能F2は、たとえば記憶装置202に記憶された冷却条件および時系列データに基づいて、相変化材料2の状態を判定する。ここで、相変化材料2の状態を判定するとは、たとえば、相変化材料2が相変化温度Tpcに留まる時間を求めることである。制御条件決定機能F3は、たとえば、相変化材料の状態判定機能F2の判定結果と、電池パック100のSOCに基づいて、電池パック100の充電条件および冷却条件を決定する。 The data processing and storage function F1 stores, for example, the data input from the battery pack 100 and the cooling conditions in the storage device 202 at a cycle of 1 [s]. The phase change material state determination function F2 determines the state of the phase change material 2 based on, for example, the cooling conditions and the time series data stored in the storage device 202. Here, determining the state of the phase change material 2 means, for example, determining the time for which the phase change material 2 stays at the phase change temperature Tpc. The control condition determination function F3 determines the charging condition and the cooling condition of the battery pack 100 based on, for example, the determination result of the state determination function F2 of the phase changing material and the SOC of the battery pack 100.
 これら機能F1から機能F3までの各機能は、たとえば、電池制御装置200の処理装置201および記憶装置202、ならびに記憶装置202に記憶されたデータおよびコンピュータプログラムなどによって構成されている。以下、図5、図6、および図7Aから図7Dまでを参照して、本実施形態の電池制御装置200の動作を説明する。 Each of the functions from the function F1 to the function F3 is composed of, for example, the processing device 201 and the storage device 202 of the battery control device 200, and the data and the computer program stored in the storage device 202. Hereinafter, the operation of the battery control device 200 of the present embodiment will be described with reference to FIGS. 5, 6 and 7A to 7D.
 図5は、図1の電池パック100を構成する電池セル1の温度の時系列を示すグラフである。時刻x0において、電池パック100の充電が開始されると、電池セル1の温度が上昇する。時刻x1において、電池セル1の温度が、相変化材料2の相変化温度Tpcすなわち相変化材料2の融点に到達する。すると、相変化材料2は、電池セル1の熱を潜熱として吸収して温度が一定になり、電池セル1の温度上昇が抑制される。その後、時刻x2において、相変化材料2の相変化が完了し、相変化材料2が電池セル1の熱を潜熱として吸収できなくなると、相変化材料2による吸熱効果が低下し、電池セル1の温度が上昇する。その後、時刻x3で電池パック100の充電が終了する。 FIG. 5 is a graph showing a time series of the temperatures of the battery cells 1 constituting the battery pack 100 of FIG. When charging of the battery pack 100 is started at time x0, the temperature of the battery cell 1 rises. At time x1, the temperature of the battery cell 1 reaches the phase change temperature Tpc of the phase change material 2, that is, the melting point of the phase change material 2. Then, the phase change material 2 absorbs the heat of the battery cell 1 as latent heat, the temperature becomes constant, and the temperature rise of the battery cell 1 is suppressed. After that, at time x2, when the phase change of the phase change material 2 is completed and the phase change material 2 cannot absorb the heat of the battery cell 1 as latent heat, the endothermic effect of the phase change material 2 is reduced and the battery cell 1 The temperature rises. After that, charging of the battery pack 100 is completed at time x3.
 図6は、図5に示す時刻x3において電池パック100の充電が終了した後の電池制御装置200の動作を説明するフロー図である。時刻x3で電池パック100の充電が終了すると、電池制御装置200は、まず、データ処理および記憶機能F1により、電池セル1の温度Tを取得し、その温度Tを電池セル1の温度Tの時系列データとして記憶装置202に記憶させる処理P1を実行する。次に、電池制御装置200は、データ処理および記憶機能F1により、電池セル1の温度Tを取得し、その温度Tを電池セル1の温度Tの時系列データとして記憶装置202に記憶させる処理P2を実行する。このとき、電池制御装置200が電池セル1の温度Tを取得する周期は、たとえば1[s]である。 FIG. 6 is a flow chart illustrating the operation of the battery control device 200 after the charging of the battery pack 100 is completed at the time x3 shown in FIG. When the charging of the battery pack 100 is completed at the time x3, the battery control device 200 first acquires the temperature T 0 of the battery cell 1 by the data processing and storage function F1, and the temperature T 0 is the temperature T of the battery cell 1. The process P1 to be stored in the storage device 202 as the time series data of the above is executed. Then, the battery control unit 200, the data processing and storage functions F1, acquires the temperature T 1 of the battery cell 1, and stores the temperature T 1 in the storage device 202 as time-series data of the temperature T of the battery cells 1 Process P2 is executed. At this time, the cycle in which the battery control device 200 acquires the temperature T of the battery cell 1 is, for example, 1 [s].
 次に、電池制御装置200は、たとえば、相変化材料の状態判定機能F2により、処理P1で取得した電池セル1の温度Tが相変化材料2の相変化温度Tpcと等しいか否かを判定する処理P3を実行する。処理P3において、電池セル1の温度Tが相変化材料2の相変化温度Tpcと等しい場合(YES)、電池制御装置200は、再度、処理P1から処理P3までを実行する。一方、処理P3において、電池セル1の温度Tと相変化材料2の相変化温度Tpcとが異なる場合(NO)、電池制御装置200は、処理P4を実行する。 Next, the battery controller 200, for example, the state determination function F2 of the phase change material, determine whether the temperature T 1 of the battery cell 1 acquired in the process P1 is equal to the phase change temperature Tpc of the phase change material 2 Process P3 is executed. In process P3, if the temperature T 1 of the battery cell 1 is equal to the phase change temperature Tpc of the phase change material 2 (YES), the battery controller 200 is performed again from step P1 to the processing P3. On the other hand, in the process P3, when the phase change temperature Tpc of temperatures T 1 and the phase change material 2 of the battery cell 1 is different (NO), the battery control unit 200 executes the processing P4.
 図5に示すように、電池パック100の充電が終了した時刻x3から時刻x4までの間は、たとえば、電池パック100を搭載した車両が走行し、電池セル1の温度が徐々に低下する。しかし、電池セル1の温度が相変化材料2の相変化温度Tpcよりも高いため、電池制御装置200は、処理P3の判定の結果、処理P4を実行する。処理P4において、電池制御装置200は、相変化材料2から放出された単位時間当たりの熱量[J/s]の時系列データQ,Q,Q,…,Qが、記憶装置202に記憶されている場合、たとえばデータ処理および記憶機能F1により、その熱量の時系列データQ,Q,Q,…,Qを削除する。 As shown in FIG. 5, for example, a vehicle equipped with the battery pack 100 runs between the time x3 and the time x4 when the charging of the battery pack 100 is completed, and the temperature of the battery cell 1 gradually decreases. However, since the temperature of the battery cell 1 is higher than the phase change temperature Tpc of the phase change material 2, the battery control device 200 executes the process P4 as a result of the determination of the process P3. In the process P4, in the battery control device 200, the time-series data Q 1 , Q 2 , Q 3 , ..., Q n of the amount of heat [J / s] released from the phase change material 2 per unit time is stored in the storage device 202. When stored in, for example, the data processing and storage function F1 deletes the time-series data Q 1 , Q 2 , Q 3 , ..., Q n of the calorific value.
 次に、電池制御装置200は、処理P1における温度Tから処理P2における温度Tに変化した相変化材料2から放出された熱量Qを演算する処理P5を実行する。処理P5において、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、以下の式(1)に基づいて、熱量Qを算出する。 Then, the battery control unit 200 executes the processing P5 for calculating the amount of heat Q 1 emitted from the phase change material 2 was changed to temperatures T 1 in the temperature T 0 process P2 in the process P1. In the process P5, the battery controller 200, for example, the state determination function F2 of the phase change material, based on the following equation (1) to calculate the quantity of heat Q 1.
        Q=(T-T)×m×c   ・・・(1) Q 1 = (T 1- T 0 ) x m x c ... (1)
 なお、上記の式(1)において、m[kg]は、電池セル1の質量と相変化材料2の質量の合計であり、c[J/kg・K]は、相変化材料2の相変化温度を除く温度における電池セル1および相変化材料2の比熱である。 In the above formula (1), m [kg] is the sum of the mass of the battery cell 1 and the mass of the phase change material 2, and c [J / kg · K] is the phase change of the phase change material 2. This is the specific heat of the battery cell 1 and the phase change material 2 at a temperature other than the temperature.
 次に、電池制御装置200は、たとえばデータ処理および記憶機能F1により、自然数nを1に設定する処理P6を実行する。処理P6の終了後、電池制御装置200は、たとえばデータ処理および記憶機能F1により、自然数nをn+1に設定する処理P7を実行する。すなわち、処理P6において自然数nが1に設定された後に処理P7が実行されると、nが2に設定される。 Next, the battery control device 200 executes the process P6 for setting the natural number n to 1, for example, by the data processing and storage function F1. After the end of the process P6, the battery control device 200 executes the process P7 for setting the natural number n to n + 1, for example, by the data processing and storage function F1. That is, when the process P7 is executed after the natural number n is set to 1 in the process P6, n is set to 2.
 次に、電池制御装置200は、たとえばデータ処理および記憶機能F1により、電池セル1の温度Tを取得する処理P8を実行する。たとえば、処理P7において自然数nが2に設定された場合、処理P8において、電池セル1の温度Tが取得され、その温度Tが電池セル1の温度Tの時系列データとして記憶装置202に記憶される。 Then, the battery control unit 200, for example, by the data processing and storage functions F1, executes a process P8 of acquiring the temperature T n of the battery cell 1. For example, if the natural number n in the process P7 is set to 2, the process P8, acquired temperature T 2 of the battery cell 1, the storage device 202 that the temperature T 2 is as time-series data of the temperature T of the battery cells 1 Be remembered.
 次に、電池制御装置200は、たとえば、相変化材料の状態判定機能F2により、処理P8で取得した電池セル1の温度Tが相変化材料2の相変化温度Tpcと等しいか否かを判定する処理P9を実行する。たとえば、処理P8において電池セル1の温度Tが取得された場合、処理P9において、相変化材料の状態判定機能F2は、処理P8で取得した電池セル1の温度Tが相変化材料2の相変化温度Tpcと等しいか否かを判定する。 Next, the battery controller 200, for example, the state determination function F2 of the phase change material, determine whether the temperature T n of the battery cell 1 acquired in the process P8 is equal to the phase change temperature Tpc of the phase change material 2 Process P9 is executed. For example, when the temperature T 2 of the battery cell 1 is acquired in the process P8, in the process P9, the state determination function F2 of the phase change material is such that the temperature T 2 of the battery cell 1 acquired in the process P8 is the phase change material 2. It is determined whether or not it is equal to the phase change temperature Tpc.
 処理P9において、電池セル1の温度Tが相変化材料2の相変化温度Tpcと等しい場合(YES)、電池制御装置200は、処理P13および処理P14を実行する。一方、処理P9において、電池セル1の温度Tと相変化材料2の相変化温度Tpcとが異なる場合(NO)、電池制御装置200は、処理P10および処理P11を実行する。 In process P9, if the temperature T n of the battery cell 1 is equal to the phase change temperature Tpc of the phase change material 2 (YES), the battery control unit 200 executes the processing P13 and processing P14. On the other hand, in the process P9, if the phase change temperature Tpc temperature T n and the phase change material 2 of the battery cell 1 is different (NO), the battery control unit 200 executes the processing P10 and processing P11.
 図5に示すように、電池パック100の充電が終了した時刻x3から時刻x4までの間は、電池セル1の温度Tが相変化材料2の相変化温度Tpcよりも高い。そのため、処理P9の判定の結果、電池制御装置200は、処理P10を実行する。処理P10において、電池制御装置200は、たとえばデータ処理および記憶機能F1により、相変化材料2から放出された単位時間当たりの熱量の時系列データQ,Q,Q,…,Qを、記憶装置202から削除する。 As shown in FIG. 5, the temperature T of the battery cell 1 is higher than the phase change temperature Tpc of the phase change material 2 from the time x3 to the time x4 when the charging of the battery pack 100 is completed. Therefore, as a result of the determination of the process P9, the battery control device 200 executes the process P10. In the process P10, the battery control device 200 obtains time-series data Q 1 , Q 2 , Q 3 , ..., Q n of the amount of heat emitted from the phase change material 2 per unit time by, for example, the data processing and storage function F1. , Delete from storage device 202.
 次に、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、温度がTn-1からTに変化した相変化材料2から放出された単位時間当たりの熱量Qを、以下の式(2)を用いて演算する処理P11を実行する。 Next, the battery control device 200 determines the amount of heat Q n per unit time released from the phase change material 2 whose temperature has changed from T n -1 to T n by, for example, the phase change material state determination function F2. The process P11 for calculating using the equation (2) of is executed.
        Q=(T-Tn-1)×m×c   ・・・(2) Q n = (T n −T n-1 ) × m × c ・ ・ ・ (2)
 たとえば、処理P7でnが2に設定された場合、処理P11では、上記式(2)に基づいて、処理P2で取得された温度Tから、処理P8で取得された温度Tに変化した相変化材料2から放出された単位時間当たりの熱量Qが算出され、記憶装置202に記憶される。 For example, if n processing P7 is set to 2, the process P11, based on the equation (2), from temperatures T 1 obtained by the processing P2, changes to temperature T 2 which is obtained in the process P8 heat Q 2 per unit time released from the phase change material 2 is calculated and stored in the storage device 202.
 次に、電池制御装置200は、たとえば、データ処理および記憶機能F1により、電池パック100の充電が開始されたか否かを判定する処理P12を実行する。図5に示すように、電池パック100の充電が終了した時刻x3から時刻x4までの間は、電池パック100の充電が開始されていない。この場合、データ処理および記憶機能F1は、処理P12において、電池パック100の充電が開始されてない(NO)と判定し、再度、処理P7から処理P9までを実行する。 Next, the battery control device 200 executes a process P12 for determining whether or not charging of the battery pack 100 has been started by, for example, the data processing and storage function F1. As shown in FIG. 5, charging of the battery pack 100 is not started from the time x3 to the time x4 when the charging of the battery pack 100 is completed. In this case, the data processing and storage function F1 determines in the processing P12 that the charging of the battery pack 100 has not started (NO), and executes the processing P7 to the processing P9 again.
 時刻x4において、電池セル1の温度が相変化材料2の相変化温度Tpcと等しくなると、電池制御装置200の相変化材料の状態判定機能F2は、処理P9において、電池セル1の温度Tnが相変化温度Tpcと等しい(YES)と判定し、処理P13を実行する。処理P13において、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、温度がTn-1からTに変化した相変化材料2から放出された熱量Qを、温度がTn-2からTn-1に変化した相変化材料2から放出された熱量Qn-1に設定する。 When the temperature of the battery cell 1 becomes equal to the phase change temperature Tpc of the phase change material 2 at the time x4, the state determination function F2 of the phase change material of the battery control device 200 changes the temperature Tn of the battery cell 1 to the phase in the process P9. It is determined that the temperature is equal to the change temperature Tpc (YES), and the process P13 is executed. In the process P13, the battery control device 200 determines the amount of heat Q n released from the phase change material 2 whose temperature has changed from T n -1 to T n by, for example, the phase change material state determination function F2, and the temperature is T n. The amount of heat released from the phase change material 2 changed from -2 to T n -1 is set to Q n-1.
 具体的には、たとえば、処理P13において、前回の処理P8から今回の処理P8までの間の温度変化(T-Tn-1)によって相変化材料2から放出された熱量Qを、前々回の処理P8から前回の処理P8までの温度変化(Tn-1-Tn-2)によって相変化材料2から放出された熱量Qn-1に設定する。次に、電池制御装置200は、たとえばデータ処理および記憶機能F1により、熱量Qを記憶装置202に記憶させる。 Specifically, for example, in the treatment P13, the amount of heat Q n released from the phase change material 2 due to the temperature change (T n − T n-1 ) between the previous treatment P8 and the current treatment P8 is calculated two times before. The amount of heat released from the phase change material 2 due to the temperature change (T n-1- T n-2 ) from the treatment P8 to the previous treatment P8 is set to Q n-1. Next, the battery control device 200 stores the calorific value Q n in the storage device 202 by, for example, the data processing and storage function F1.
 すなわち、時刻x4から時刻x5までの間は、電池セル1の温度Tが相変化材料2の相変化温度Tpcに等しいため、相変化材料2の温度も相変化温度Tpcにおおむね等しいと推定される。そのため、時刻x4から時刻x5までの間は、相変化材料2が液相から固相に変化して熱を放出し、相変化材料2の温度が相変化温度Tpcで一定になるため、電池セル1の温度も低下せず、おおむね相変化温度Tpcで一定になっている。このときに相変化材料2が潜熱として放出する単位時間当たりの熱量Qnを、処理P13および処理P14によって演算することができる。 That is, since the temperature T of the battery cell 1 is equal to the phase change temperature Tpc of the phase change material 2 from the time x4 to the time x5, it is estimated that the temperature of the phase change material 2 is also approximately equal to the phase change temperature Tpc. .. Therefore, between the time x4 and the time x5, the phase change material 2 changes from the liquid phase to the solid phase and releases heat, and the temperature of the phase change material 2 becomes constant at the phase change temperature Tpc. The temperature of No. 1 does not decrease, and is generally constant at the phase change temperature Tpc. At this time, the amount of heat Qn per unit time released by the phase change material 2 as latent heat can be calculated by the process P13 and the process P14.
 すなわち、本実施形態の電池制御装置200による処理P13および処理P14では、相変化材料2の温度が相変化温度Tpcである場合に、相変化材料2が潜熱として放出または吸収する単位時間当たりの熱量Qnを、次のように想定している。すなわち、相変化材料2が潜熱として放出または吸収する単位時間当たりの熱量が、相変化温度Tpcになる直前に相変化材料2が放出または吸収した単位時間当たりの熱量と等しいと想定している。なお、このような想定があてはまらない場合には、電池制御装置200は、電池パック100から入力された電池の電流Iまたは電圧Vに基づいて、相変化材料2が潜熱として単位時間当たりに放出または吸収する熱量Qを演算してもよい。 That is, in the treatment P13 and the treatment P14 by the battery control device 200 of the present embodiment, when the temperature of the phase change material 2 is the phase change temperature Tpc, the amount of heat released or absorbed by the phase change material 2 as latent heat per unit time. Qn is assumed as follows. That is, it is assumed that the amount of heat released or absorbed by the phase change material 2 as latent heat per unit time is equal to the amount of heat released or absorbed by the phase change material 2 immediately before reaching the phase change temperature Tpc. If such an assumption does not apply, the battery control device 200 releases the phase change material 2 as latent heat per unit time based on the current I or voltage V of the battery input from the battery pack 100. The amount of heat Q to be absorbed may be calculated.
 時刻x5において相変化材料2の相変化が完了すると、電池セル1の温度Tの低下にともなって相変化材料2の温度が相変化温度Tpcよりも低い温度に低下する。これにより、時刻x5から時刻x6までの間は、電池セル1の温度Tと相変化材料2の温度が低下している。そして、時刻x6において電池セル1の充電が開始されると、処理P12において、充電が開始されたことが判定され(YES)、図6に示す処理が終了する。また、時刻x6において電池セル1の充電が開始されると、電池制御装置200は、図7Aから図7Dに示す処理を開始する。 When the phase change of the phase change material 2 is completed at time x5, the temperature of the phase change material 2 drops to a temperature lower than the phase change temperature Tpc as the temperature T of the battery cell 1 decreases. As a result, the temperature T of the battery cell 1 and the temperature of the phase change material 2 are lowered from the time x5 to the time x6. Then, when the charging of the battery cell 1 is started at the time x6, it is determined in the process P12 that the charging is started (YES), and the process shown in FIG. 6 ends. Further, when charging of the battery cell 1 is started at time x6, the battery control device 200 starts the processes shown in FIGS. 7A to 7D.
 図7Aから図7Dまでは、図5における電池セル1の充電が開始された時刻x6後の電池制御装置200の動作を説明するフロー図である。図5に示す時刻x6において、電池セル1の充電が開始されると、電池制御装置200は、たとえばデータ処理および記憶機能F1により、図7Aに示すように、電池セル1の温度Tcを取得する処理P21を実行する。次に、電池制御装置200は、たとえば、相変化材料の状態判定機能F2により、処理P21で取得された電池セル1の温度Tcと、記憶装置202に記憶された相変化材料2の相変化温度Tpcとが等しいか否かを判定する処理P22を実行する。 7A to 7D are flow charts illustrating the operation of the battery control device 200 after the time x6 when the charging of the battery cell 1 in FIG. 5 is started. When charging of the battery cell 1 is started at the time x6 shown in FIG. 5, the battery control device 200 acquires the temperature Tc of the battery cell 1 as shown in FIG. 7A by, for example, the data processing and storage function F1. Process P21 is executed. Next, in the battery control device 200, for example, the temperature Tc of the battery cell 1 acquired in the process P21 and the phase change temperature of the phase change material 2 stored in the storage device 202 by the phase change material state determination function F2. The process P22 for determining whether or not Tpc is equal is executed.
 図5に示す時刻x6からx7までの間は、電池セル1の温度Tは、相変化材料2の相変化温度Tpcよりも低い。そのため、この時刻x6からx7までの間は、処理P22において、電池制御装置200は、電池セル1の温度Tcと、相変化材料2の相変化温度Tpcとは等しくない(NO)と判定し、処理P23を実行する。処理P23において、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、処理P21で取得された電池セル1の温度Tcが、記憶装置202に記憶された相変化材料2の相変化温度Tpcよりも低いか否かを判定する。 During the time x6 to x7 shown in FIG. 5, the temperature T of the battery cell 1 is lower than the phase change temperature Tpc of the phase change material 2. Therefore, during this time x6 to x7, in the process P22, the battery control device 200 determines that the temperature Tc of the battery cell 1 and the phase change temperature Tpc of the phase change material 2 are not equal (NO). Process P23 is executed. In the process P23, in the battery control device 200, for example, the temperature Tc of the battery cell 1 acquired in the process P21 by the phase change material state determination function F2 is the phase change temperature of the phase change material 2 stored in the storage device 202. It is determined whether or not it is lower than Tpc.
 時刻x6からx7までの間、電池制御装置200は、電池セル1の温度Tcが、相変化材料2の相変化温度Tpcよりも低い(YES)と判定し、図7Cに示す処理P41を実行する。処理P41において、電池制御装置200は、たとえばデータ処理および記憶機能F1により、記憶装置202に記憶された以下の式(3)に基づいて、電池セル1を急速充電した場合の電池セル1の温度Tを演算する。 From time x6 to x7, the battery control device 200 determines that the temperature Tc of the battery cell 1 is lower than the phase change temperature Tpc of the phase change material 2 (YES), and executes the process P41 shown in FIG. 7C. .. In the process P41, the battery control device 200 is the temperature of the battery cell 1 when the battery cell 1 is rapidly charged based on the following formula (3) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
         T=Tc+Qrc/(m×c)   ・・・(3) T = Tc + Qrc / (m × c) ... (3)
 なお、上記の式(3)において、Tc[℃]は、処理P21で取得した電池セル1の温度、Qrc[J]は、急速充電時の電池セル1の合計熱量、m[kg]は、電池セル1と相変化材料2の質量の合計、c[J/kg・K]は、相変化温度Tpcを除く温度における電池セル1および相変化材料2の比熱である。 In the above formula (3), Tc [° C.] is the temperature of the battery cell 1 acquired in the process P21, Qrc [J] is the total heat capacity of the battery cell 1 during rapid charging, and m [kg] is. The total mass of the battery cell 1 and the phase change material 2, c [J / kg · K], is the specific heat of the battery cell 1 and the phase change material 2 at a temperature excluding the phase change temperature Tpc.
 次に、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、処理P41で算出した急速充電時の電池セル1の温度Tが、相変化材料2の相変化温度Tpc以下であるか否かを判定する処理P42を実行する。処理P42において、処理P41で算出した急速充電時の電池セル1の温度Tが、相変化材料2の相変化温度Tpc以下である場合(YES)、電池制御装置200は、図7Dに示す処理P51を実行する。 Next, in the battery control device 200, for example, whether the temperature T of the battery cell 1 at the time of rapid charging calculated by the process P41 by the phase change material state determination function F2 is equal to or less than the phase change temperature Tpc of the phase change material 2. The process P42 for determining whether or not to perform is executed. In the process P42, when the temperature T of the battery cell 1 at the time of rapid charging calculated in the process P41 is equal to or less than the phase change temperature Tpc of the phase change material 2 (YES), the battery control device 200 has the process P51 shown in FIG. 7D. To execute.
 処理P51において、電池制御装置200は、たとえば制御条件決定機能F3により、電池パック100に対して制御信号CSを出力し、電池セル1の急速充電を開始する。次に、電池制御装置200は、たとえばデータ処理および記憶機能F1により、電池セル1の温度Tcを取得する処理P52を実行する。次に、電池制御装置200は、たとえば、相変化材料の状態判定機能F2により、処理P52で取得した電池セル1の温度Tcが、相変化材料2の相変化温度Tpcに等しいか否かを判定する処理P53を実行する。 In process P51, the battery control device 200 outputs a control signal CS to the battery pack 100 by, for example, the control condition determination function F3, and starts rapid charging of the battery cell 1. Next, the battery control device 200 executes the process P52 for acquiring the temperature Tc of the battery cell 1 by, for example, the data processing and storage function F1. Next, the battery control device 200 determines, for example, whether or not the temperature Tc of the battery cell 1 acquired in the process P52 is equal to the phase change temperature Tpc of the phase change material 2 by the phase change material state determination function F2. Process P53 is executed.
 図5に示す時刻x6から時刻x7までの間は、電池セル1の温度Tcは、相変化材料2の相変化温度Tpcよりも低くなる。そのため、処理P53において、電池制御装置200は、電池セル1の温度Tcと、相変化材料2の相変化温度Tpcとが等しくない(NO)と判定し、処理P54を実行する。処理P54において、電池制御装置200は、たとえばデータ処理および記憶機能F1により、カウンタ値Nをゼロにクリアする。 From time x6 to time x7 shown in FIG. 5, the temperature Tc of the battery cell 1 is lower than the phase change temperature Tpc of the phase change material 2. Therefore, in the process P53, the battery control device 200 determines that the temperature Tc of the battery cell 1 and the phase change temperature Tpc of the phase change material 2 are not equal (NO), and executes the process P54. In the process P54, the battery control device 200 clears the counter value N to zero by, for example, the data processing and storage function F1.
 次に、電池制御装置200は、電池セル1の充電時に相変化材料2に潜熱として蓄積された熱量Qpcmc[J]を演算する処理P56を実行する。処理P56において、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、以下の式(4)に基づいて、熱量Qpcmcを演算する。なお、以下の式(4)において、Nは、処理P54または処理P55で設定されるカウンタ値(自然数)、Qrcb[J/s]は、電池セル1の急速充電時の単位時間当たりの熱量である。 Next, the battery control device 200 executes the process P56 for calculating the amount of heat Qpmcc [J] stored as latent heat in the phase change material 2 when the battery cell 1 is charged. In the process P56, the battery control device 200 calculates the calorific value Qpcmc based on the following equation (4) by, for example, the state determination function F2 of the phase changing material. In the following equation (4), N is the counter value (natural number) set in the process P54 or the process P55, and Qrcb [J / s] is the amount of heat per unit time during rapid charging of the battery cell 1. is there.
           Qpcmc=N×Qrcb   ・・・(4) Qpccc = N × Qrcb ... (4)
 ここでは、処理P54においてカウンタ値Nがゼロになっているため、電池セル1の充電時に相変化材料2に潜熱として蓄積された熱量Qpcmcとして0[J]が算出される。次に、電池制御装置200は、たとえばデータ処理および記憶機能F1により、処理P56で算出された熱量Qpcmcを記憶装置202に記憶させる処理P57を実行する。次に、電池制御装置200は、たとえばデータ処理および記憶機能F1により、電池セル1の急速充電が終了したか否かを判定する処理P58を実行する。 Here, since the counter value N is zero in the process P54, 0 [J] is calculated as the amount of heat Qpcmc accumulated as latent heat in the phase change material 2 when the battery cell 1 is charged. Next, the battery control device 200 executes a process P57 for storing the heat amount Qpcmc calculated in the process P56 in the storage device 202 by, for example, the data processing and storage function F1. Next, the battery control device 200 executes a process P58 for determining whether or not the rapid charging of the battery cell 1 is completed by, for example, the data processing and storage function F1.
 処理P58において、電池制御装置200は、たとえばデータ処理および記憶機能F1により、電池セル1の急速充電が終了していない(NO)と判定すると、再度、処理P52から処理P58を実行する。一方、処理P58において、電池制御装置200は、電池セル1の急速充電が終了した(YES)と判定すると、たとえば制御条件決定機能F3により、電池パック100に対して制御信号CSを出力して、電池セル1の急速充電を終了させる。 In the process P58, when the battery control device 200 determines, for example, by the data processing and storage function F1 that the rapid charging of the battery cell 1 is not completed (NO), the battery control device 200 executes the process P58 again from the process P52. On the other hand, in the process P58, when the battery control device 200 determines that the rapid charging of the battery cell 1 is completed (YES), for example, the control condition determination function F3 outputs a control signal CS to the battery pack 100 to output a control signal CS. The quick charging of the battery cell 1 is terminated.
 図5に示す時刻x7から時刻x8までの間は、相変化材料2が固相から液相へ変化して潜熱を吸収し、電池セル1の温度Tcは、相変化材料2の相変化温度Tpcとおおむね等しくなる。すると、処理P53において、電池制御装置200は、処理P52で取得された電池セル1の温度Tcと相変化材料2の相変化温度Tpcが等しい(YES)と判定し、処理P55を実行する。処理P55において、電池制御装置200は、たとえばデータ処理および記憶機能F1により、カウンタ値NをN+1に設定する。 From time x7 to time x8 shown in FIG. 5, the phase change material 2 changes from the solid phase to the liquid phase to absorb latent heat, and the temperature Tc of the battery cell 1 is the phase change temperature Tpc of the phase change material 2. Is roughly equal. Then, in the process P53, the battery control device 200 determines that the temperature Tc of the battery cell 1 acquired in the process P52 and the phase change temperature Tpc of the phase change material 2 are equal (YES), and executes the process P55. In the process P55, the battery control device 200 sets the counter value N to N + 1 by, for example, the data processing and storage function F1.
 次に、電池制御装置200は、前述のように、処理P56で式(4)に基づいて、電池セル1の充電時に相変化材料2に潜熱として蓄積された熱量Qpcmcを演算し、処理P57で熱量Qpcmcを記憶装置202に記憶させる。ここでは、処理P55において、カウンタ値Nが1以上の自然数になっているため、電池セル1の充電時に相変化材料2に潜熱として蓄積された熱量Qpcmcとして、N×Qrcbが算出される。これにより、時刻x7から時刻x8までの間に相変化材料2に潜熱として蓄積された熱量Qpcmcを算出し、相変化材料2の相変化の状態を把握することができる。 Next, as described above, the battery control device 200 calculates the amount of heat Qpcmc accumulated as latent heat in the phase change material 2 at the time of charging the battery cell 1 based on the equation (4) in the process P56, and in the process P57. The calorific value Qpcmc is stored in the storage device 202. Here, since the counter value N is a natural number of 1 or more in the process P55, N × Qrcb is calculated as the amount of heat Qpcmc accumulated as latent heat in the phase change material 2 when the battery cell 1 is charged. As a result, the amount of heat Qpcmc accumulated as latent heat in the phase change material 2 between the time x7 and the time x8 can be calculated, and the state of the phase change of the phase change material 2 can be grasped.
 図5に示す時刻x8後は、相変化材料2が液相になり、相変化材料2と電池セル1の温度Tが上昇して相変化材料2の相変化温度Tpcよりも高くなる。すると、処理P53において、電池制御装置200により、電池セル1の温度Tcと相変化材料2の相変化温度Tpcとが等しくない(NO)と判定され、処理P58において電池制御装置200により電池セル1の充電が終了した(YES)と判定されるまで、処理P52から処理P58までが繰り返し実行され、電池セル1が急速充電される。また、処理P58において、電池制御装置200により電池セル1の充電が終了した(YES)と判定されると、図7Dに示す処理が終了され、あらたに図6に示す処理が開始される。 After the time x8 shown in FIG. 5, the phase change material 2 becomes a liquid phase, and the temperature T of the phase change material 2 and the battery cell 1 rises to be higher than the phase change temperature Tpc of the phase change material 2. Then, in the process P53, the battery control device 200 determines that the temperature Tc of the battery cell 1 and the phase change temperature Tpc of the phase change material 2 are not equal (NO), and in the process P58, the battery control device 200 determines that the battery cell 1 Process P52 to process P58 are repeatedly executed until it is determined that the charging of the battery cell 1 is completed (YES), and the battery cell 1 is rapidly charged. Further, in the process P58, when the battery control device 200 determines that the charging of the battery cell 1 is completed (YES), the process shown in FIG. 7D is terminated, and the process shown in FIG. 6 is newly started.
 一方、図7Cに示す処理P42において、処理P41で算出された電池セル1の急速充電時の温度Tが、相変化材料2の相変化温度Tpcよりも高い場合(NO)、電池制御装置200は、処理P43を実行する。処理P43において、電池制御装置200は、たとえばデータ処理および記憶機能F1により、記憶装置202に記憶された以下の式(5)に基づいて、電池セル1を急速充電した場合の電池セル1の温度Tを演算する。 On the other hand, in the process P42 shown in FIG. 7C, when the temperature T at the time of rapid charging of the battery cell 1 calculated in the process P41 is higher than the phase change temperature Tpc of the phase change material 2 (NO), the battery control device 200 , Process P43 is executed. In the process P43, the battery control device 200 is the temperature of the battery cell 1 when the battery cell 1 is rapidly charged based on the following formula (5) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
     T=Tpc+(Qrc-Qpcmt)/(m×c)   ・・・(5) T = Tpc + (Qrc-Qpcmt) / (m × c) ... (5)
 なお、上記の式(5)において、Tpcは、相変化材料2の相変化温度、Qrc[J]は、急速充電時の電池セル1の合計熱量、Qpcmt[J]は、相変化材料2が潜熱として吸収可能な合計熱量、m[kg]は、電池セル1と相変化材料2の質量の合計、c[J/kg・K]は、相変化温度Tpcを除く温度における電池セル1および相変化材料2の比熱である。 In the above formula (5), Tpc is the phase change temperature of the phase change material 2, Qrc [J] is the total heat capacity of the battery cell 1 during rapid charging, and Qpcmt [J] is the phase change material 2. The total amount of heat that can be absorbed as latent heat, m [kg] is the total mass of the battery cell 1 and the phase change material 2, and c [J / kg · K] is the battery cell 1 and the phase at a temperature excluding the phase change temperature Tpc. This is the specific heat of the changing material 2.
 次に、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、処理P43で算出した急速充電時の電池セル1の温度Tが、動作温度範囲の上限温度、たとえば60[℃]以下であるか否かを判定する処理P44を実行する。処理P44において、処理P43で算出した急速充電時の電池セル1の温度Tが、60[℃]以下である場合(YES)、電池制御装置200は、前述のように、図7Dに示す電池セル1の急速充電を実行する。 Next, in the battery control device 200, for example, the temperature T of the battery cell 1 at the time of rapid charging calculated by the process P43 by the phase change material state determination function F2 is the upper limit temperature of the operating temperature range, for example, 60 [° C.] or less. The process P44 for determining whether or not is is executed. In the process P44, when the temperature T of the battery cell 1 at the time of quick charging calculated in the process P43 is 60 [° C.] or less (YES), the battery control device 200 is the battery cell shown in FIG. 7D as described above. Perform a quick charge of 1.
 一方、処理P44において、処理P43で算出した急速充電時の電池セル1の温度Tが、60[℃]より高い場合(NO)、電池制御装置200は、たとえばデータ処理および記憶機能F1により、電池セル1の普通充電時の温度Tを演算する処理P45を実行する。処理P45において、電池制御装置200は、たとえばデータ処理および記憶機能F1により、記憶装置202に記憶された以下の式(6)に基づいて、電池セル1を普通充電した場合の電池セル1の温度Tを演算する。 On the other hand, in the process P44, when the temperature T of the battery cell 1 at the time of quick charging calculated in the process P43 is higher than 60 [° C.] (NO), the battery control device 200 uses, for example, the data processing and storage function F1 to obtain a battery. The process P45 for calculating the temperature T at the time of normal charging of the cell 1 is executed. In the process P45, the battery control device 200 normally charges the battery cell 1 based on the following formula (6) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
     T=Tpc+(Qtc-Qpcmt)/(m×c)   ・・・(6) T = Tpc + (Qtc-Qpcmt) / (m × c) ... (6)
 なお、上記式(6)において、Tpcは、相変化材料2の相変化温度、Qtc[J]は、普通充電時の電池セル1の合計熱量、Qpcmt[J]は、相変化材料2が潜熱として吸収可能な合計熱量、m[kg]は、電池セル1と相変化材料2の質量の合計、c[J/kg・K]は、相変化温度Tpcを除く温度における電池セル1および相変化材料2の比熱である。 In the above formula (6), Tpc is the phase change temperature of the phase change material 2, Qtc [J] is the total heat of the battery cell 1 during normal charging, and Qpcmt [J] is the latent heat of the phase change material 2. The total amount of heat that can be absorbed, m [kg] is the total mass of the battery cell 1 and the phase change material 2, and c [J / kg · K] is the phase change of the battery cell 1 and the phase change at a temperature excluding the phase change temperature Tpc. This is the specific heat of material 2.
 次に、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、処理P45で算出した普通充電時の電池セル1の温度Tが、動作温度範囲の上限温度、たとえば60[℃]以下であるか否かを判定する処理P46を実行する。処理P46において、処理P45で算出した普通充電時の電池セル1の温度Tが、60[℃]以下である場合(YES)、電池制御装置200は、たとえば制御条件決定機能F3により、電池パック100に対して制御信号CSを出力して、電池セル1を普通充電する処理P47を実行する。 Next, in the battery control device 200, for example, the temperature T of the battery cell 1 at the time of normal charging calculated by the process P45 by the phase change material state determination function F2 is the upper limit temperature of the operating temperature range, for example, 60 [° C.] or less. The process P46 for determining whether or not is is executed. In the process P46, when the temperature T of the battery cell 1 during normal charging calculated in the process P45 is 60 [° C.] or less (YES), the battery control device 200 is subjected to, for example, the control condition determination function F3 to the battery pack 100. The control signal CS is output to the battery cell 1, and the process P47 for normally charging the battery cell 1 is executed.
 一方、処理P46において、処理P45で算出した普通充電時の電池セル1の温度Tが、60[℃]よりも高い場合(NO)、電池制御装置200は、処理P48を実行する。処理P48において、電池制御装置200は、たとえば制御条件決定機能F3により、電池パック100に対して制御信号CSを出力して、電池セル1の充電を行わない充電不実施処理、または、電池セル1の温度が動作温度範囲の上限温度、たとえば60[℃]になるまで電池セル1を普通充電する制限普通充電処理を実行する。 On the other hand, in the process P46, when the temperature T of the battery cell 1 at the time of normal charging calculated in the process P45 is higher than 60 [° C.] (NO), the battery control device 200 executes the process P48. In the process P48, the battery control device 200 outputs a control signal CS to the battery pack 100 by, for example, the control condition determination function F3 to perform a charge non-execution process in which the battery cell 1 is not charged, or the battery cell 1 The limited normal charging process for normally charging the battery cell 1 is executed until the temperature of the battery reaches the upper limit of the operating temperature range, for example, 60 [° C.].
 また、電池セル1の充電が、図5に示す時刻x6より前の時刻x4から時刻x5まで間に開始された場合、図7Aに示す処理P22において、電池制御装置200は、電池セル1の温度Tcと、相変化材料2の相変化温度Tpcとが等しい(YES)と判定し、図7Bに示す処理P31を実行する。処理P31において、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、記憶装置202に記憶されたデータおよび以下の式(7)に基づいて、相変化材料2に潜熱として蓄積された熱量Qpcm[J]を演算する。 Further, when charging of the battery cell 1 is started between the time x4 and the time x5 before the time x6 shown in FIG. 5, in the process P22 shown in FIG. 7A, the battery control device 200 is the temperature of the battery cell 1. It is determined that Tc and the phase change temperature Tpc of the phase change material 2 are equal (YES), and the process P31 shown in FIG. 7B is executed. In the process P31, the battery control device 200 is stored as latent heat in the phase change material 2 based on the data stored in the storage device 202 and the following equation (7) by, for example, the phase change material state determination function F2. Calculate the calorific value Qpcm [J].
    Qpcm=Σ(Q+Q+Q+…+Q)+Qpcmc ・・・(7) Qpcm = Σ (Q 1 + Q 2 + Q 3 + ... + Q n ) + Qpcmc ・ ・ ・ (7)
 上記の式(7)においてQ,Q,Q,…,Q[J/s]は、相変化材料2から放出された単位時間当たりの熱量の時系列データ、Qpcmc[J]は、電池セル1の充電時に相変化材料2に潜熱として蓄積された熱量である。次に、電池制御装置200は、たとえばデータ処理および記憶機能F1により、電池セル1を急速充電したときのセルの温度Tを、記憶装置202に記憶されたデータおよび以下の式(8)に基づいて演算する処理P32を実行する。 In the above equation (7), Q 1 , Q 2 , Q 3 , ..., Q n [J / s] is the time series data of the amount of heat released from the phase change material 2 per unit time, and Qpccm [J] is This is the amount of heat accumulated as latent heat in the phase change material 2 when the battery cell 1 is charged. Next, the battery control device 200 sets the cell temperature T when the battery cell 1 is rapidly charged by, for example, the data processing and storage function F1, based on the data stored in the storage device 202 and the following formula (8). The process P32 for calculating is executed.
  T=Tpc+{Qrc-(Qpcmt-Qpcm)}/(m×c) ・・・(8) T = Tpc + {Qrc- (Qpcmt-Qpcm)} / (m × c) ... (8)
 なお、上記の式(8)において、Tpcは、相変化材料2の相変化温度、Qrc[J]は、急速充電時の電池セル1の合計熱量、Qpcmt[J]は、相変化材料2が潜熱として吸収可能な合計熱量、Qpcm[J]は、相変化材料2に潜熱として蓄積された熱量、m[kg]は、電池セル1と相変化材料2の質量の合計、c[J/kg・K]は、相変化温度Tpcを除く温度における電池セル1および相変化材料2の比熱である。 In the above formula (8), Tpc is the phase change temperature of the phase change material 2, Qrc [J] is the total heat capacity of the battery cell 1 during rapid charging, and Qpcmt [J] is the phase change material 2. Qpcm [J] is the total amount of heat that can be absorbed as latent heat, Qpcm [J] is the amount of heat stored as latent heat in the phase change material 2, and m [kg] is the total mass of the battery cell 1 and the phase change material 2, c [J / kg]. [K] is the specific heat of the battery cell 1 and the phase change material 2 at a temperature other than the phase change temperature Tpc.
 次に、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、処理P32で算出した急速充電時の電池セル1の温度Tが、動作温度範囲の上限温度、たとえば60[℃]以下であるか否かを判定する処理P33を実行する。処理P33において、処理P32で算出した急速充電時の電池セル1の温度Tが、60[℃]以下である場合(YES)、電池制御装置200は、前述のように、図7Dに示す電池セル1の急速充電を実行する。 Next, in the battery control device 200, for example, the temperature T of the battery cell 1 at the time of rapid charging calculated by the process P32 by the phase change material state determination function F2 is the upper limit temperature of the operating temperature range, for example, 60 [° C.] or less. The process P33 for determining whether or not is is executed. In the process P33, when the temperature T of the battery cell 1 at the time of quick charging calculated in the process P32 is 60 [° C.] or less (YES), the battery control device 200 is the battery cell shown in FIG. 7D as described above. Perform a quick charge of 1.
 一方、処理P33において、処理P32で算出した急速充電時の電池セル1の温度Tが、60[℃]より高い場合(NO)、電池制御装置200は、たとえばデータ処理および記憶機能F1により、電池セル1の普通充電時の温度Tを演算する処理P34を実行する。処理P34において、電池制御装置200は、たとえばデータ処理および記憶機能F1により、記憶装置202に記憶された以下の式(9)に基づいて、電池セル1を普通充電した場合の電池セル1の温度Tを演算する。 On the other hand, in the process P33, when the temperature T of the battery cell 1 at the time of rapid charging calculated in the process P32 is higher than 60 [° C.] (NO), the battery control device 200 uses, for example, the data processing and storage function F1 to obtain a battery. The process P34 for calculating the temperature T at the time of normal charging of the cell 1 is executed. In the process P34, the battery control device 200 normally charges the battery cell 1 based on the following formula (9) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
 T=Tpc+{Qtc-(Qpcmt-Qpcm)}/(m×c)
                            ・・・(9)
T = Tpc + {Qtc- (Qpcmt-Qpcm)} / (m × c)
... (9)
 なお、上記式(9)において、Tpcは、相変化材料2の相変化温度、Qtc[J]は、普通充電時の電池セル1の合計熱量、Qpcmt[J]は、相変化材料2が潜熱として吸収可能な合計熱量、Qpcm[J]は、相変化材料2に潜熱として蓄積された熱量、m[kg]は、電池セル1と相変化材料2の質量の合計、c[J/kg・K]は、相変化温度Tpcを除く温度における電池セル1および相変化材料2の比熱である。 In the above formula (9), Tpc is the phase change temperature of the phase change material 2, Qtc [J] is the total heat of the battery cell 1 during normal charging, and Qpcmt [J] is the latent heat of the phase change material 2. The total amount of heat that can be absorbed, Qpcm [J] is the amount of heat stored as latent heat in the phase change material 2, and m [kg] is the total mass of the battery cell 1 and the phase change material 2, c [J / kg. [K] is the specific heat of the battery cell 1 and the phase change material 2 at a temperature other than the phase change temperature Tpc.
 次に、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、処理P34で算出した普通充電時の電池セル1の温度Tが、動作温度範囲の上限温度、たとえば60[℃]以下であるか否かを判定する処理P35を実行する。処理P35において、処理P34で算出した普通充電時の電池セル1の温度Tが、60[℃]以下である場合(YES)、電池制御装置200は、たとえば制御条件決定機能F3により、電池パック100に対して制御信号CSを出力して、電池セル1を普通充電する処理P36を実行する。 Next, in the battery control device 200, for example, the temperature T of the battery cell 1 at the time of normal charging calculated by the process P34 by the phase change material state determination function F2 is the upper limit temperature of the operating temperature range, for example, 60 [° C.] or less. The process P35 for determining whether or not is is executed. In the process P35, when the temperature T of the battery cell 1 during normal charging calculated in the process P34 is 60 [° C.] or less (YES), the battery control device 200 is subjected to, for example, the control condition determination function F3 to the battery pack 100. The control signal CS is output to the battery cell 1, and the process P36 for normally charging the battery cell 1 is executed.
 一方、処理P35において、処理P34で算出した普通充電時の電池セル1の温度Tが、60[℃]よりも高い場合(NO)、電池制御装置200は、処理P37を実行する。処理P37において、電池制御装置200は、たとえば制御条件決定機能F3により、電池パック100に対して制御信号CSを出力して、電池セル1の充電を行わない充電不実施処理、または、電池セル1の温度が動作温度範囲の上限温度、たとえば60[℃]になるまで電池セル1を普通充電する制限普通充電処理を実行する。 On the other hand, in the process P35, when the temperature T of the battery cell 1 at the time of normal charging calculated in the process P34 is higher than 60 [° C.] (NO), the battery control device 200 executes the process P37. In the process P37, the battery control device 200 outputs a control signal CS to the battery pack 100 by, for example, the control condition determination function F3 to perform a charge non-execution process in which the battery cell 1 is not charged, or the battery cell 1 The limited normal charging process for normally charging the battery cell 1 is executed until the temperature of the battery reaches the upper limit of the operating temperature range, for example, 60 [° C.].
 また、電池セル1の充電が、図5に示す時刻x4より前の時刻x3から時刻x4まで間に開始された場合、図7Aに示す処理P22において、電池制御装置200は、電池セル1の温度Tcと、相変化材料2の相変化温度Tpcとが等しくない(NO)と判定し、処理P23を実行する。処理P23において、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、電池セル1の温度Tcが相変化材料2の相変化温度Tpcよりも高い(NO)と判定し、処理P24を実行する。 Further, when charging of the battery cell 1 is started between the time x3 and the time x4 before the time x4 shown in FIG. 5, in the process P22 shown in FIG. 7A, the battery control device 200 is the temperature of the battery cell 1. It is determined that Tc and the phase change temperature Tpc of the phase change material 2 are not equal (NO), and the process P23 is executed. In the process P23, the battery control device 200 determines that the temperature Tc of the battery cell 1 is higher than the phase change temperature Tpc of the phase change material 2 (NO) by, for example, the phase change material state determination function F2, and performs the process P24. Execute.
 処理P24において、電池制御装置200は、たとえばデータ処理および記憶機能F1により、記憶装置202に記憶された上記の式(3)に基づいて、電池セル1を急速充電した場合の電池セル1の温度Tを演算する。次に、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、処理P24で算出した急速充電時の電池セル1の温度Tが、動作温度範囲の上限温度、たとえば60[℃]以下であるか否かを判定する処理P25を実行する。処理P25において、処理P24で算出した急速充電時の電池セル1の温度Tが、60[℃]以下である場合(YES)、電池制御装置200は、前述のように、図7Dに示す電池セル1の急速充電を実行する。 In the process P24, the battery control device 200 is the temperature of the battery cell 1 when the battery cell 1 is rapidly charged based on the above formula (3) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T. Next, in the battery control device 200, for example, the temperature T of the battery cell 1 at the time of rapid charging calculated by the process P24 by the phase change material state determination function F2 is the upper limit temperature of the operating temperature range, for example, 60 [° C.] or less. The process P25 for determining whether or not is is executed. In the process P25, when the temperature T of the battery cell 1 at the time of quick charging calculated in the process P24 is 60 [° C.] or less (YES), the battery control device 200 is the battery cell shown in FIG. 7D as described above. Perform a quick charge of 1.
 一方、処理P25において、処理P24で算出した急速充電時の電池セル1の温度Tが、60[℃]より高い場合(NO)、電池制御装置200は、たとえばデータ処理および記憶機能F1により、電池セル1の普通充電時の温度Tを演算する処理P26を実行する。処理P26において、電池制御装置200は、たとえばデータ処理および記憶機能F1により、記憶装置202に記憶された以下の式(10)に基づいて、電池セル1を普通充電した場合の電池セル1の温度Tを演算する。 On the other hand, in the process P25, when the temperature T of the battery cell 1 at the time of rapid charging calculated in the process P24 is higher than 60 [° C.] (NO), the battery control device 200 uses, for example, the data processing and storage function F1 to obtain a battery. The process P26 for calculating the temperature T at the time of normal charging of the cell 1 is executed. In the process P26, the battery control device 200 normally charges the battery cell 1 based on the following formula (10) stored in the storage device 202 by, for example, the data processing and storage function F1. Calculate T.
       T=Tpc+Qtc/(m×c)   ・・・(10) T = Tpc + Qtc / (m × c) ... (10)
 なお、上記式(10)において、Tpcは、相変化材料2の相変化温度、Qtc[J]は、普通充電時の電池セル1の合計熱量、m[kg]は、電池セル1と相変化材料2の質量の合計、c[J/kg・K]は、相変化温度Tpcを除く温度における電池セル1および相変化材料2の比熱である。 In the above formula (10), Tpc is the phase change temperature of the phase change material 2, Qtc [J] is the total calorific value of the battery cell 1 during normal charging, and m [kg] is the phase change with the battery cell 1. The total mass of the material 2, c [J / kg · K], is the specific heat of the battery cell 1 and the phase change material 2 at a temperature excluding the phase change temperature Tpc.
 次に、電池制御装置200は、たとえば相変化材料の状態判定機能F2により、処理P26で算出した普通充電時の電池セル1の温度Tが、動作温度範囲の上限温度、たとえば60[℃]以下であるか否かを判定する処理P27を実行する。処理P27において、処理P26で算出した普通充電時の電池セル1の温度Tが、60[℃]以下である場合(YES)、電池制御装置200は、たとえば制御条件決定機能F3により、電池パック100に対して制御信号CSを出力して、電池セル1を普通充電する処理P28を実行する。 Next, in the battery control device 200, for example, the temperature T of the battery cell 1 during normal charging calculated by the process P26 by the phase change material state determination function F2 is equal to or less than the upper limit temperature of the operating temperature range, for example, 60 [° C.]. The process P27 for determining whether or not is is executed. In the process P27, when the temperature T of the battery cell 1 during normal charging calculated in the process P26 is 60 [° C.] or less (YES), the battery control device 200 is subjected to, for example, the control condition determination function F3 to the battery pack 100. The control signal CS is output to the battery cell 1, and the process P28 for normally charging the battery cell 1 is executed.
 一方、処理P27において、処理P26で算出した普通充電時の電池セル1の温度Tが、60[℃]よりも高い場合(NO)、電池制御装置200は、処理P29を実行する。処理P29において、電池制御装置200は、たとえば制御条件決定機能F3により、電池パック100に対して制御信号CSを出力して、電池セル1の充電を行わない充電不実施処理、または、電池セル1の温度が動作温度範囲の上限温度、たとえば60[℃]になるまで電池セル1を普通充電する制限普通充電処理を実行する。 On the other hand, in the process P27, when the temperature T of the battery cell 1 at the time of normal charging calculated in the process P26 is higher than 60 [° C.] (NO), the battery control device 200 executes the process P29. In the process P29, the battery control device 200 outputs a control signal CS to the battery pack 100 by, for example, the control condition determination function F3 to perform a charge non-execution process in which the battery cell 1 is not charged, or the battery cell 1 The limited normal charging process for normally charging the battery cell 1 is executed until the temperature of the battery reaches the upper limit of the operating temperature range, for example, 60 [° C.].
 以下、図8を参照して本実施形態の電池制御装置200の作用および効果を説明する。図8は、図1の電池制御装置200による電池パック100を構成する電池セル1の温度上昇抑制効果を説明するグラフである。 Hereinafter, the operation and effect of the battery control device 200 of the present embodiment will be described with reference to FIG. FIG. 8 is a graph illustrating the effect of suppressing the temperature rise of the battery cell 1 constituting the battery pack 100 by the battery control device 200 of FIG.
 前述のように、本実施形態の電池制御装置200は、相変化材料2に対して熱伝導可能に配置された電池、すなわち電池パック100および電池セル1を制御する装置である。電池制御装置200は、相変化材料2の相変化温度Tpcと電池セル1の温度Tcとに基づいて、相変化材料2が潜熱として吸収または放出する熱量Qn,Qpcmc,Qpcmt,Qpcmを算出し、この熱量に基づいて電池の充電条件を決定する処理装置201を備える。 As described above, the battery control device 200 of the present embodiment is a device that controls a battery, that is, a battery pack 100 and a battery cell 1, which are arranged so as to be thermally conductive with respect to the phase change material 2. The battery control device 200 calculates the amounts of heat Qn, Qpmcc, Qpcmt, and Qpcm absorbed or released as latent heat by the phase changing material 2 based on the phase changing temperature Tpc of the phase changing material 2 and the temperature Tc of the battery cell 1. A processing device 201 that determines the charging conditions of the battery based on this amount of heat is provided.
 この構成により、本実施形態の電池制御装置200は、相変化材料2が潜熱として吸収または放出する熱量Qn,Qpcmc,Qpcmt,Qpcmに基づいて、電池セル1を含む電池の温度上昇を、相変化材料2の相変化温度Tpcの近傍の特定の温度範囲内に抑制することができる。換言すると、本実施形態の電池制御装置200は、相変化材料2の相変化温度Tpcと電池セル1を含む電池の温度Tcの時系列データとに基づいて相変化材料2の状態を推定し、現在の相変化材料2が潜熱として吸収可能な熱量Qpcmtを把握することができる。 With this configuration, the battery control device 200 of the present embodiment phase-changes the temperature rise of the battery including the battery cell 1 based on the amount of heat Qn, Qpmcc, Qpcmt, Qpcm absorbed or released as latent heat by the phase-changing material 2. It can be suppressed within a specific temperature range in the vicinity of the phase change temperature Tpc of the material 2. In other words, the battery control device 200 of the present embodiment estimates the state of the phase change material 2 based on the phase change temperature Tpc of the phase change material 2 and the time series data of the temperature Tc of the battery including the battery cell 1. The amount of heat Qpcmt that the current phase change material 2 can absorb as latent heat can be grasped.
 そのため、本実施形態の電池制御装置200によれば、相変化材料2の潜熱を利用して電池セル1を含む電池の熱を吸収する場合に、従来よりも電池の電流制御や冷却制御を効果的に実施して、電池セル1の温度上昇を効果的に抑制することができる。その結果、図8に示すように、電池制御装置200により電池パック100を制御して充放電を繰り返す場合に、電池セル1を含む電池の温度Tcを、電池セル1の動作温度範囲の上限である60[℃]以下の温度範囲内に、より確実に維持することができる。 Therefore, according to the battery control device 200 of the present embodiment, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effective than before. The temperature rise of the battery cell 1 can be effectively suppressed. As a result, as shown in FIG. 8, when the battery pack 100 is controlled by the battery control device 200 and charging / discharging is repeated, the temperature Tc of the battery including the battery cell 1 is set to the upper limit of the operating temperature range of the battery cell 1. It can be more reliably maintained within a certain temperature range of 60 [° C.] or less.
 また、本実施形態の電池制御装置200において、処理装置201は、電池セル1を含む電池の温度Tcが相変化温度Tpcよりも低い場合に、急速充電時に電池セル1が発生させる熱量Qrcに基づいて、急速充電時の電池の温度Tを算出する。そして、処理装置201は、算出した急速充電時の電池の温度Tが相変化材料2の相変化温度Tpc以下である場合に、電池セル1を含む電池の充電条件を急速充電に決定する。 Further, in the battery control device 200 of the present embodiment, the processing device 201 is based on the amount of heat Qrc generated by the battery cell 1 during rapid charging when the temperature Tc of the battery including the battery cell 1 is lower than the phase change temperature Tpc. Then, the temperature T of the battery at the time of quick charging is calculated. Then, the processing device 201 determines the charging condition of the battery including the battery cell 1 to be rapid charging when the calculated temperature T of the battery at the time of rapid charging is equal to or less than the phase changing temperature Tpc of the phase changing material 2.
 この構成により、本実施形態の電池制御装置200は、電池すなわち電池パック100の急速充電を行う場合に、電池すなわち電池セル1が発生する熱量Qrcに基づいて、電池セル1の温度Tcを相変化温度Tpc以下の温度にすることができる。したがって、相変化材料2の潜熱を利用して電池セル1を含む電池の熱を吸収する場合に、従来よりも電池の電流制御や冷却制御を効果的に実施して、電池セル1の温度上昇を効果的に抑制することができる。 With this configuration, the battery control device 200 of the present embodiment phase-changes the temperature Tc of the battery cell 1 based on the amount of heat Qrc generated by the battery, that is, the battery cell 1 when the battery, that is, the battery pack 100 is rapidly charged. The temperature can be set to Tpc or less. Therefore, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effectively performed than before, and the temperature of the battery cell 1 rises. Can be effectively suppressed.
 また、本実施形態の電池制御装置200において、処理装置201は、算出した急速充電時の電池セル1を含む電池の温度Tが相変化温度Tpcよりも高く、電池の動作温度範囲の上限温度以下である場合に、電池の充電条件を急速充電に決定する。 Further, in the battery control device 200 of the present embodiment, in the processing device 201, the calculated temperature T of the battery including the battery cell 1 at the time of rapid charging is higher than the phase change temperature Tpc, and is equal to or less than the upper limit temperature of the operating temperature range of the battery. If, the battery charging condition is determined to be quick charging.
 この構成により、本実施形態の電池制御装置200は、電池すなわち電池パック100の急速充電を行う際に、電池セル1を含む電池の温度Tcを、電池セル1の動作温度範囲の上限である60[℃]以下の温度範囲内により確実に維持することができる。したがって、相変化材料2の潜熱を利用して電池セル1を含む電池の熱を吸収する場合に、従来よりも電池の電流制御や冷却制御を効果的に実施して、電池セル1の温度上昇を効果的に抑制することができる。 With this configuration, the battery control device 200 of the present embodiment sets the temperature Tc of the battery including the battery cell 1 to the upper limit of the operating temperature range of the battery cell 1 when the battery, that is, the battery pack 100 is rapidly charged. It can be reliably maintained within the temperature range of [° C] or less. Therefore, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effectively performed than before, and the temperature of the battery cell 1 rises. Can be effectively suppressed.
 また、本実施形態の電池制御装置200において、処理装置201は、電池セル1を含む電池の温度Tcが相変化温度Tpcと等しい場合に、電池セル1が発生する熱量Qrcに基づいて急速充電時の電池セル1の温度を算出する。そして、処理装置201は、算出した急速充電時の電池セル1の温度Tが電池セル1の動作温度範囲の上限温度以下である場合に、電池の充電条件を急速充電に決定する。 Further, in the battery control device 200 of the present embodiment, when the temperature Tc of the battery including the battery cell 1 is equal to the phase change temperature Tpc, the processing device 201 undergoes rapid charging based on the amount of heat Qrc generated by the battery cell 1. The temperature of the battery cell 1 of the above is calculated. Then, when the calculated temperature T of the battery cell 1 at the time of quick charging is equal to or less than the upper limit temperature of the operating temperature range of the battery cell 1, the processing device 201 determines the charging condition of the battery to be quick charging.
 この構成により、本実施形態の電池制御装置200は、電池セル1を含む電池の温度Tcが相変化温度Tpcと等しい場合に急速充電を行っても、電池の温度を、電池セル1の動作温度範囲の上限である60[℃]以下の温度範囲内により確実に維持することができる。したがって、相変化材料2の潜熱を利用して電池セル1を含む電池の熱を吸収する場合に、従来よりも電池の電流制御や冷却制御を効果的に実施して、電池セル1の温度上昇を効果的に抑制することができる。 With this configuration, the battery control device 200 of the present embodiment uses the battery temperature as the operating temperature of the battery cell 1 even if quick charging is performed when the temperature Tc of the battery including the battery cell 1 is equal to the phase change temperature Tpc. It can be more reliably maintained within the temperature range of 60 [° C.] or lower, which is the upper limit of the range. Therefore, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effectively performed than before, and the temperature of the battery cell 1 rises. Can be effectively suppressed.
 また、本実施形態の電池制御装置200において、処理装置201は、電池セル1を含む電池の温度Tcが相変化温度Tpcよりも高い場合に、電池セル1が発生する熱量Qrcに基づいて急速充電時の電池セル1の温度を算出する。そして、処理装置201は、算出した急速充電時の電池セル1の温度Tが電池セル1の動作温度範囲の上限温度以下である場合に電池すなわち電池パック100の充電条件を急速充電に決定する。
ができる。
Further, in the battery control device 200 of the present embodiment, the processing device 201 is rapidly charged based on the amount of heat Qrc generated by the battery cell 1 when the temperature Tc of the battery including the battery cell 1 is higher than the phase change temperature Tpc. Calculate the temperature of the battery cell 1 at that time. Then, the processing device 201 determines the charging condition of the battery, that is, the battery pack 100 to be rapid charging when the calculated temperature T of the battery cell 1 at the time of rapid charging is equal to or less than the upper limit temperature of the operating temperature range of the battery cell 1.
Can be done.
 この構成により、本実施形態の電池制御装置200は、電池セル1を含む電池の温度Tcが相変化温度Tpcよりも高い場合に、電池パック100の急速充電を行っても、電池の温度Tcを、電池セル1の動作温度範囲の上限である60[℃]以下の温度範囲内により確実に維持することができる。したがって、相変化材料2の潜熱を利用して電池セル1を含む電池の熱を吸収する場合に、従来よりも電池の電流制御や冷却制御を効果的に実施して、電池セル1の温度上昇を効果的に抑制することができる。 With this configuration, the battery control device 200 of the present embodiment can keep the battery temperature Tc even if the battery pack 100 is rapidly charged when the temperature Tc of the battery including the battery cell 1 is higher than the phase change temperature Tpc. , The temperature range of 60 [° C.] or less, which is the upper limit of the operating temperature range of the battery cell 1, can be reliably maintained. Therefore, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effectively performed than before, and the temperature of the battery cell 1 rises. Can be effectively suppressed.
 また、本実施形態の電池制御装置200において、処理装置201は、算出した急速充電時の電池セル1を含む電池の温度Tが動作温度範囲の上限温度より高い場合に、電池の充電条件を普通充電に決定する。 Further, in the battery control device 200 of the present embodiment, the processing device 201 normally sets the charging conditions of the battery when the calculated temperature T of the battery including the battery cell 1 at the time of quick charging is higher than the upper limit temperature of the operating temperature range. Decide to charge.
 この構成により、本実施形態の電池制御装置200は、相変化材料2の相変化状態に応じて適切な充電条件、たとえば急速充電または普通充電を選択することができる。したがって、相変化材料2の潜熱を利用して電池セル1を含む電池の熱を吸収する場合に、従来よりも電池の電流制御や冷却制御を効果的に実施して、電池セル1の温度上昇を効果的に抑制することができる。 With this configuration, the battery control device 200 of the present embodiment can select an appropriate charging condition, for example, quick charging or normal charging, according to the phase changing state of the phase changing material 2. Therefore, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the current control and the cooling control of the battery are more effectively performed than before, and the temperature of the battery cell 1 rises. Can be effectively suppressed.
 以上説明したように、本実施形態によれば、相変化材料2の潜熱を利用して電池セル1を含む電池の熱を吸収する場合に、従来よりも電池の温度上昇を効果的に抑制することが可能な電池制御装置200を提供することができる。 As described above, according to the present embodiment, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, the temperature rise of the battery is effectively suppressed as compared with the conventional case. It is possible to provide a battery control device 200 capable of this.
[実施形態2]
 以下、図1から図8までを援用し、図9を参照して、本開示の車載用電池システムの実施形態を説明する。図9は、本開示の車載用電池システムの実施形態を示す概略構成図である。図9に示す車載用電池システムは、たとえば、ハイブリッド車や電気自動車などの車両EVに搭載され、図1に示す電池パック100、電池制御装置200、および上位制御装置300を備えている。電池パック100、電池制御装置200、および上位制御装置300の構成は、前述の実施形態において説明した構成と同様であるため、適宜、説明を省略する。
[Embodiment 2]
Hereinafter, embodiments of the in-vehicle battery system of the present disclosure will be described with reference to FIGS. 1 to 8 and with reference to FIG. FIG. 9 is a schematic configuration diagram showing an embodiment of the vehicle-mounted battery system of the present disclosure. The in-vehicle battery system shown in FIG. 9 is mounted on a vehicle EV such as a hybrid vehicle or an electric vehicle, and includes a battery pack 100, a battery control device 200, and a host control device 300 shown in FIG. Since the configurations of the battery pack 100, the battery control device 200, and the host control device 300 are the same as the configurations described in the above-described embodiment, the description thereof will be omitted as appropriate.
 本実施形態の車載用電池システムは、電池制御装置200と、相変化材料2と、電池制御装置200によって制御されて相変化材料2に対して熱伝導可能に配置された電池セル1を含む電池と、車両EVの走行時に外気を取り込んで電池すなわち電池パック100へ供給するダクトDと、を備える。本実施形態において、上位制御装置300は、車両EVの走行中に、車両EVの速度を含む情報Infを電池制御装置200に対して周期的に出力する。 The vehicle-mounted battery system of the present embodiment includes a battery control device 200, a phase change material 2, and a battery cell 1 controlled by the battery control device 200 and arranged so as to be thermally conductive to the phase change material 2. And a duct D that takes in outside air when the vehicle EV is traveling and supplies the outside air to the battery, that is, the battery pack 100. In the present embodiment, the host control device 300 periodically outputs information Inf including the speed of the vehicle EV to the battery control device 200 while the vehicle EV is running.
 電池制御装置200は、たとえば処理装置201により、上位制御装置300から入力される車両EVの速度の時系列データを記憶装置202に記憶させる。電池すなわち電池パック100の冷却条件は、ダクトDに取り込まれる外気の流量と相関があり、ダクトDに取り込まれる外気の流量は、車両EVの速度に相関がある。そのため、本実施形態では、あらかじめ、電池セル1の冷却条件と車両EVの速度との相関関係を求め、その相関関係を記憶装置202に記憶させておく。 The battery control device 200 stores, for example, the processing device 201 stores the time-series data of the vehicle EV speed input from the host control device 300 in the storage device 202. The cooling condition of the battery, that is, the battery pack 100 has a correlation with the flow rate of the outside air taken into the duct D, and the flow rate of the outside air taken into the duct D has a correlation with the speed of the vehicle EV. Therefore, in the present embodiment, the correlation between the cooling condition of the battery cell 1 and the speed of the vehicle EV is obtained in advance, and the correlation is stored in the storage device 202.
 本実施形態の車載用電池システムによれば、前述の電池制御装置200と同様の効果が得られるだけでなく、電池制御装置200により、電池パック100の冷却条件と車両EVの速度との相関関係に基づいて、電池パック100を制御することができる。したがって、本実施形態によれば、相変化材料2の潜熱を利用して電池セル1を含む電池の熱を吸収する場合に、従来よりも電池の温度上昇を効果的に抑制することが可能な車載用電池システムを提供することができる。 According to the in-vehicle battery system of the present embodiment, not only the same effect as that of the battery control device 200 described above can be obtained, but also the correlation between the cooling condition of the battery pack 100 and the speed of the vehicle EV is obtained by the battery control device 200. The battery pack 100 can be controlled based on the above. Therefore, according to the present embodiment, when the latent heat of the phase change material 2 is used to absorb the heat of the battery including the battery cell 1, it is possible to effectively suppress the temperature rise of the battery as compared with the conventional case. An in-vehicle battery system can be provided.
 以上、図面を用いて本開示に係る電池制御装置および車載用電池システムの実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。 Although the embodiment of the battery control device and the vehicle-mounted battery system according to the present disclosure has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment and deviates from the gist of the present disclosure. Any design changes, etc. to the extent that they are not included are included in this disclosure.
1     電池セル(電池)
2     相変化材料
100   電池パック(電池)
200   電池制御装置
201   処理装置
D     ダクト
EV    車両
Qn    熱量
Qpcm  熱量
Qpcmc 熱量
Qpcmt 熱量
T     電池の温度
Tc    電池の温度
Tpc   相変化温度
1 Battery cell (battery)
2-phase change material 100 Battery pack (battery)
200 Battery control device 201 Processing device D Duct EV Vehicle Qn Calorie Qpcm Calorie Qpcmc Calorie Qpcmt Calorie T Battery temperature Tc Battery temperature Tpc Phase change temperature

Claims (7)

  1.  相変化材料に対して熱伝導可能に配置された電池を制御する電池制御装置であって、
     前記相変化材料の相変化温度と前記電池の温度とに基づいて前記相変化材料が潜熱として吸収または放出する熱量を算出し、前記熱量に基づいて前記電池の充電条件を決定する処理装置を備えることを特徴とする電池制御装置。
    A battery control device that controls batteries arranged so that they can conduct heat with respect to a phase change material.
    A processing device is provided that calculates the amount of heat absorbed or released as latent heat by the phase-changing material based on the phase-changing temperature of the phase-changing material and the temperature of the battery, and determines the charging conditions of the battery based on the amount of heat. A battery control device characterized by the fact that.
  2.  前記処理装置は、前記電池の温度が前記相変化温度よりも低い場合に前記熱量に基づいて急速充電時の前記電池の温度を算出し、算出した前記急速充電時の前記電池の前記温度が前記相変化材料の相変化温度以下である場合に前記電池の充電条件を急速充電に決定することを特徴とする請求項1に記載の電池制御装置。 When the temperature of the battery is lower than the phase change temperature, the processing device calculates the temperature of the battery at the time of rapid charging based on the amount of heat, and the calculated temperature of the battery at the time of rapid charging is the said. The battery control device according to claim 1, wherein the charging condition of the battery is determined to be rapid charging when the temperature is equal to or lower than the phase change temperature of the phase changing material.
  3.  前記処理装置は、算出した前記急速充電時の前記電池の前記温度が前記相変化温度よりも高く前記電池の動作温度範囲の上限温度以下である場合に前記電池の充電条件を急速充電に決定することを特徴とする請求項2に記載の電池制御装置。 The processing device determines the charging condition of the battery to be rapid charging when the calculated temperature of the battery at the time of rapid charging is higher than the phase change temperature and is equal to or lower than the upper limit temperature of the operating temperature range of the battery. The battery control device according to claim 2, wherein the battery control device is characterized by the above.
  4.  前記処理装置は、前記電池の温度が前記相変化温度と等しい場合に前記熱量に基づいて急速充電時の前記電池の温度を算出し、算出した前記急速充電時の前記電池の前記温度が前記電池の動作温度範囲の上限温度以下である場合に前記電池の充電条件を急速充電に決定することを特徴とする請求項1に記載の電池制御装置。 The processing device calculates the temperature of the battery at the time of rapid charging based on the amount of heat when the temperature of the battery is equal to the phase change temperature, and the calculated temperature of the battery at the time of rapid charging is the battery. The battery control device according to claim 1, wherein the charging condition of the battery is determined to be rapid charging when the temperature is equal to or lower than the upper limit temperature of the operating temperature range of the above.
  5.  前記処理装置は、前記電池の温度が前記相変化温度よりも高い場合に前記熱量に基づいて急速充電時の前記電池の温度を算出し、算出した前記急速充電時の前記電池の前記温度が前記電池の動作温度範囲の上限温度以下である場合に前記電池の充電条件を急速充電に決定することを特徴とする請求項1に記載の電池制御装置。 When the temperature of the battery is higher than the phase change temperature, the processing device calculates the temperature of the battery at the time of rapid charging based on the amount of heat, and the calculated temperature of the battery at the time of rapid charging is the said. The battery control device according to claim 1, wherein the charging condition of the battery is determined to be rapid charging when the temperature is equal to or lower than the upper limit temperature of the operating temperature range of the battery.
  6.  前記処理装置は、算出した前記急速充電時の前記電池の前記温度が前記動作温度範囲の上限温度より高い場合に前記電池の充電条件を普通充電に決定することを特徴とする請求項3から請求項5のいずれか一項に記載の電池制御装置。 The third aspect of the present invention is characterized in that the processing device determines the charging condition of the battery to be normal charging when the calculated temperature of the battery at the time of rapid charging is higher than the upper limit temperature of the operating temperature range. Item 5. The battery control device according to any one of items 5.
  7.  請求項1から請求項6のいずれか一項に記載の電池制御装置と、相変化材料と、前記電池制御装置によって制御され前記相変化材料に対して熱伝導可能に配置された電池と、車両の走行時に外気を取り込んで前記電池へ供給するダクトと、を備えることを特徴とする車載用電池システム。 The battery control device according to any one of claims 1 to 6, a phase change material, a battery controlled by the battery control device and arranged to be thermally conductive with respect to the phase change material, and a vehicle. An in-vehicle battery system including a duct that takes in outside air and supplies it to the battery during traveling.
PCT/JP2020/025727 2019-09-11 2020-06-30 Battery control apparatus and on-vehicle battery system WO2021049133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-165558 2019-09-11
JP2019165558A JP2021044157A (en) 2019-09-11 2019-09-11 Battery control device and in-vehicle battery system

Publications (1)

Publication Number Publication Date
WO2021049133A1 true WO2021049133A1 (en) 2021-03-18

Family

ID=74862472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025727 WO2021049133A1 (en) 2019-09-11 2020-06-30 Battery control apparatus and on-vehicle battery system

Country Status (2)

Country Link
JP (1) JP2021044157A (en)
WO (1) WO2021049133A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117199671A (en) * 2023-11-02 2023-12-08 中国华能集团清洁能源技术研究院有限公司 Design method of phase-change flame-retardant component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024082151A (en) * 2022-12-07 2024-06-19 株式会社デンソー Monitoring device, control device, traffic control system, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075282A (en) * 2010-09-29 2012-04-12 Panasonic Corp Charging control device
JP2014152947A (en) * 2013-02-05 2014-08-25 Taisei Corp Heat storage amount calculation method and heat storage amount calculation device
WO2018156251A1 (en) * 2017-02-22 2018-08-30 All Cell Technologies, Llc Thermal state of charge estimation of phase change material (pcm) in a battery pack with a pcm thermal management system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075282A (en) * 2010-09-29 2012-04-12 Panasonic Corp Charging control device
JP2014152947A (en) * 2013-02-05 2014-08-25 Taisei Corp Heat storage amount calculation method and heat storage amount calculation device
WO2018156251A1 (en) * 2017-02-22 2018-08-30 All Cell Technologies, Llc Thermal state of charge estimation of phase change material (pcm) in a battery pack with a pcm thermal management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117199671A (en) * 2023-11-02 2023-12-08 中国华能集团清洁能源技术研究院有限公司 Design method of phase-change flame-retardant component
CN117199671B (en) * 2023-11-02 2024-02-02 中国华能集团清洁能源技术研究院有限公司 Design method of phase-change flame-retardant component

Also Published As

Publication number Publication date
JP2021044157A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US9653724B2 (en) Secondary battery, and secondary battery module and secondary battery pack comprising the same
WO2021049133A1 (en) Battery control apparatus and on-vehicle battery system
US10992013B2 (en) Battery system for a vehicle and method for detecting an overheat situation of the battery system
Bugryniec et al. Computational modelling of thermal runaway propagation potential in lithium iron phosphate battery packs
US20130193927A1 (en) Electrochemical energy storage device, battery having at least two such electrochemical energy storage devices, and method for operating such an electrochemical energy strorage device
JP2009048965A (en) Battery pack, and manufacturing method thereof
EP3633754B1 (en) Battery system for a vehicle and method for detecting an overheat situation of the battery system
JP2015225846A (en) Power storage system
CN110114903B (en) Partition member, battery pack, and heat transfer control method for battery pack
US20220021037A1 (en) Method and Device for Detecting a Thermal Runaway in a Battery Module
EP3843178A1 (en) Battery module with improved safety, battery pack comprising battery module, and vehicle comprising battery pack
WO2020244761A1 (en) Method for operating a battery of a vehicle to reduce an impact of a thermal runaway, battery management system as wells as battery arrangement
US20230077121A1 (en) Method of detecting an operating condition of a battery system, which may lead to a thermal runaway
US20220115717A1 (en) Apparatus for detecting thermal runaway of battery for electric vehicle
Yeow et al. Characterizing thermal runaway of lithium-ion cells in a battery system using finite element analysis approach
US20190386359A1 (en) Cell carrier comprising phase change material
JP6954213B2 (en) Control method of filling member, assembled battery and heat transfer
KR20130089376A (en) Secondary battery having temperature sensor
JP6504012B2 (en) Assembled battery
JP2020064755A (en) Battery pack
US11316215B2 (en) Battery structure reducing lithium deposition
KR20130141769A (en) Battery module with improved safety
JP5673512B2 (en) Power storage system and temperature estimation method for power storage element
EP4144569A1 (en) Method of detecting an operating condition of a battery system, which may lead to a thermal runaway
JP6954214B2 (en) Filling member, battery assembly, and heat transfer control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864133

Country of ref document: EP

Kind code of ref document: A1