WO2021049051A1 - Gas turbine - Google Patents

Gas turbine Download PDF

Info

Publication number
WO2021049051A1
WO2021049051A1 PCT/JP2020/001803 JP2020001803W WO2021049051A1 WO 2021049051 A1 WO2021049051 A1 WO 2021049051A1 JP 2020001803 W JP2020001803 W JP 2020001803W WO 2021049051 A1 WO2021049051 A1 WO 2021049051A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
conductive member
heat conductive
cabin
flanges
Prior art date
Application number
PCT/JP2020/001803
Other languages
French (fr)
Japanese (ja)
Inventor
真治 藤田
敏史 貫野
浩平 羽田野
石川 博司
光 黒崎
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2021049051A1 publication Critical patent/WO2021049051A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants

Definitions

  • the present disclosure relates to gas turbines.
  • the present application claims priority based on Japanese Patent Application No. 2019-165505 filed in Japan on September 11, 2019, the contents of which are incorporated herein by reference.
  • the gas turbine is equipped with a compressor, a combustor, and a turbine.
  • the compressor compresses the outside air to produce high pressure air.
  • the combustor mixes fuel with high-pressure air and burns it to generate high-temperature solid-pressure combustion gas.
  • the turbine is rotationally driven by the combustion gas.
  • the passenger compartment (casing) of the compressor and the passenger compartment of the turbine are integrally connected to form a gas turbine passenger compartment.
  • the combustor is installed between the compressor cabin and the turbine cabin.
  • high-temperature working fluid flows along the inner surface of the gas turbine cabin.
  • a working fluid of about 1500 ° C. flows on the downstream side of the combustor as an example. Therefore, in the region extending from the compressor cabin to the turbine casing, a temperature gradient is formed with the downstream portion of the combustor (turbine inlet) as the apex. In order to improve the performance of the gas turbine, it is important to raise the temperature of the working fluid at the turbine inlet.
  • Patent Document 1 a technique has been proposed in which the outer surface of a gas turbine is covered with a heat conductive member such as graphene to promote heat transfer and make the temperature gradient gentle.
  • the heat conductive member merely covers the outer surface of the gas turbine. Therefore, the heat of the working fluid is not positively transferred to the heat conductive member. As a result, a steep temperature gradient is still formed in the gas turbine cabin. This may hinder the stable operation of the gas turbine.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a gas turbine capable of more stable operation.
  • the gas turbine according to the present disclosure is formed of a gas turbine casing in which a working fluid flows inside and a material having a higher thermal conductivity than that of the gas turbine casing, and only a part of the gas turbine is formed.
  • a heat conductive member embedded in the interior of the gas turbine vehicle so as to come into contact with the working fluid is provided.
  • FIG. 1 It is a schematic diagram which shows the structure of the gas turbine which concerns on 1st Embodiment of this disclosure. It is sectional drawing of the gas turbine vehicle interior which concerns on 1st Embodiment of this disclosure as seen from the axial direction. It is sectional drawing of the gas turbine vehicle interior which concerns on 1st Embodiment of this disclosure as seen from the circumferential direction. It is sectional drawing of the gas turbine vehicle interior which concerns on 2nd Embodiment of this disclosure as seen from the axial direction. It is sectional drawing of the gas turbine vehicle interior which concerns on 3rd Embodiment of this disclosure as seen from the axial direction. It is sectional drawing of the gas turbine vehicle interior which concerns on 4th Embodiment of this disclosure as seen from the axial direction. It is sectional drawing which shows the attachment structure of the outer surface heat conduction member which concerns on 4th Embodiment of this disclosure.
  • the gas turbine 100 includes a compressor 1, a combustor 2, a turbine 3, and a heat conductive member M (see FIG. 2).
  • Compressor 1 takes in outside air and compresses it to generate high-pressure air.
  • the compressor 1 has a compressor rotor 11 extending along the axis O, and a tubular compressor cabin 12 that covers the compressor rotor 11 from the outer peripheral side.
  • a plurality of combustors 2 are attached to a portion on the downstream side of the compressor cabin 12.
  • the combustor 2 mixes fuel with the high-pressure air supplied from the compressor 1 and burns the fuel to generate high-temperature and high-pressure combustion gas.
  • a turbine 3 is provided on the downstream side of the combustor 2.
  • the turbine 3 is rotationally driven by the combustion gas.
  • the turbine 3 has a turbine rotor 31 extending along the axis O, and a tubular turbine casing 32 that covers the turbine rotor 31 from the outer peripheral side.
  • the compressor rotor 11 and the turbine rotor 31 are integrally connected on the axis O to form the gas turbine rotor 90 (rotor).
  • the compressor casing 12 and the turbine casing 32 are coaxially connected with the axis O as the center to form the gas turbine casing 91.
  • the gas turbine rotor 90 can rotate integrally around the axis O inside the gas turbine casing 91.
  • the gas turbine casing 91 is divided into two portions (upper half passenger compartment U and lower half passenger compartment L) in a horizontal plane including the axis O.
  • the upper half-chamber U has a semi-cylindrical upper half-chamber main body Uh and a flange F (upper half flange Fu) integrally formed with the upper half-chamber main body Uh.
  • the upper half passenger compartment main body Uh has a semi-cylindrical shape that is convex upward. That is, the upper half passenger compartment main body Uh opens downward.
  • the upper half flange Fu has a plate shape extending in a horizontal plane along the edge of the opening in the upper half passenger compartment main body Uh.
  • the lower half-chamber L has a semi-cylindrical lower half-chamber main body Lh and a flange F (lower half flange Fl) integrally formed with the lower half-chamber main body Lh.
  • the lower half-cabin body Lh has a semi-cylindrical shape that is convex downward. That is, the lower half passenger compartment main body Lh opens downward.
  • the lower half flange Fl has a plate shape extending in a horizontal plane along the edge of the opening in the lower half passenger compartment main body Lh.
  • the gas turbine casing 91 forms an integral cylindrical shape by aligning (contacting) the flanges F with each other in a horizontal plane. Specifically, as shown in FIG. 2, the upper half-chamber U and the lower half-chamber L are connected to each other by inserting the bolt B into the through holes formed in the upper half flange Fu and the lower half flange Fl. Will be done.
  • a heat conductive member M is sandwiched between the upper half flange Fu and the lower half flange Fl.
  • an upper half recess R1 recessed upward is formed on the lower surface of the upper half flange Fu
  • a lower half recess R2 recessed downward is formed on the upper surface of the lower flange Fl.
  • a plate-shaped heat conductive member M is embedded in the space defined by the upper half recess R1 and the lower half recess R2.
  • a part of the heat conductive member M is exposed inside the gas turbine casing 91 to form an exposed portion P.
  • the heat of the working fluid flowing inside the gas turbine casing 91 propagates to the entire heat conductive member M through the exposed portion P.
  • the portion other than the exposed portion P is embedded inside the upper half flange Fu or the lower half flange Fl.
  • the heat conductive member M extends in the axis O direction as a whole. That is, the heat input to the heat conductive member M through the exposed portion P propagates in the axis O direction through the heat conductive member M.
  • the exposed portion P is in contact with the working fluid in a relatively high temperature region in the gas turbine cabin 91.
  • the exposed portion P is arranged on the downstream side of the combustor 2 (that is, the inlet of the turbine 3) in the gas turbine cabin 91. It is desirable that the other parts of the heat conductive member M other than the exposed part P are buried in a relatively low temperature region in the gas turbine vehicle interior 91.
  • the heat conductive member M is made of a material having a higher thermal conductivity than the material forming the gas turbine passenger compartment 91. Specifically, graphene, a composite material containing carbon and copper, and a composite material containing copper and diamond are preferably used as such a material. These materials can be molded into a plate shape and exhibit a relatively high thermal conductivity.
  • the gas turbine rotor 90 is rotationally driven by an external power source (electric motor or the like).
  • the compressor 1 takes in outside air to generate high-pressure air.
  • the combustor 2 mixes fuel with this high-pressure air and burns it to generate high-temperature and high-pressure combustion gas.
  • the turbine 3 is rotationally driven by this combustion gas. The continuous occurrence of such a cycle causes the gas turbine 100 to operate.
  • the rotational energy of the gas turbine rotor 90 is taken out from the shaft end and used for driving a generator or the like, for example.
  • a high-temperature working fluid flows along the inner surface of the gas turbine cabin 91.
  • a working fluid of about 1500 ° C. flows on the downstream side of the combustor 2 as an example. Therefore, in the region extending from the compressor cabin 12 to the turbine casing 32, a temperature gradient is formed with the downstream portion (turbine inlet) of the combustor 2 as the apex. In order to improve the performance of the gas turbine 100, it is important to raise the temperature of the working fluid at the turbine inlet.
  • the heat conductive member M is provided inside the gas turbine casing 91. Further, the exposed portion P, which is a part of the heat conductive member M, is in contact with the working fluid. Therefore, the heat of the working fluid propagates to the heat conductive member M through the exposed portion P. After that, the above heat propagates to other parts of the gas turbine casing 91 through the heat conductive member M. As a result, the temperature gradient generated between the plurality of regions in the gas turbine passenger compartment 91 can be made gentle. As a result, the thermal stress generated in the gas turbine passenger compartment 91 can be relaxed. Therefore, the gas turbine 100 can be operated more stably.
  • the temperature of the working fluid changes along the axis O.
  • the heat conductive member M extends in the axis O direction, the temperature gradient due to the temperature difference of the working fluid in the axis O direction can be made gentle.
  • the temperature gradient in the extending region of the flange F can be made gentle.
  • the heat conductive member M is not provided, a steep temperature gradient is formed in the extending region of the flange F, and as a result, a gap based on the difference in the amount of thermal deformation is generated between the flanges F. There is a risk that it will end up.
  • the possibility of such thermal deformation occurring can be reduced.
  • heat in a relatively high temperature region can be propagated to a relatively low temperature region through a part of the heat conductive member M (exposed portion P).
  • the position of the downstream side (inlet of the turbine) of the combustor 2 in the gas turbine cabin 91 corresponds to this as a high temperature region
  • the outlet side of the turbine 3 and the inlet side of the compressor 1 correspond to this as a low temperature region. ..
  • the heat conductive member M is arranged in a through hole H for inserting a bolt B formed in the flange F (upper half flange Fu, lower half flange Fl).
  • the heat conductive member Mt has a cylindrical shape extending along the inner peripheral surface of the through hole H.
  • the outer peripheral surface of the heat conductive member Mt is in contact with the inner peripheral surface of the through hole H without a gap. That is, the outer diameter dimension of the heat conductive member Mt is set to the same value as or slightly smaller than the inner diameter dimension of the through hole H.
  • a protruding portion Pr that protrudes toward the inner peripheral side is formed.
  • the heat conductive member Mt is supported by the protruding portion Pr so as not to fall off from below.
  • a gap is formed between the inner peripheral surface of the heat conductive member Mt and the outer peripheral surface of the bolt B.
  • an upper half recess R1 that is recessed upward is formed on the lower surface of the upper half flange Fu
  • a lower half recess R2 that is recessed downward is formed on the upper surface of the lower half flange Fl.
  • the tubular heat conductive member Mt is inserted into the through hole H of the flange F.
  • heat transfer between the flanges F is promoted, and the temperature gradient formed between the flanges F can be made gentle.
  • the heat conductive member Mt is not provided, a steep temperature gradient is formed between the flanges F, and as a result, a gap based on the difference in the amount of thermal deformation may occur between the flanges F. There is.
  • the possibility of such thermal deformation occurring can be reduced.
  • a gap is formed between the heat conductive member Mt and the bolt B.
  • the heat propagated from the working fluid to the heat conductive member Mt can be propagated only to the flange F without propagating to the bolt B.
  • the temperature gradient between the flanges F can be made gentle.
  • an outer heat conductive member Mb is further provided on the outer surface of the gas turbine casing 91 (flange F). ..
  • the outer heat conductive member Mb has a plate shape extending from the upper half flange Fu to the lower half flange Fl.
  • the outer heat conductive member Mb is in contact with the outer surface (the surface facing the horizontal direction) of these flanges F without a gap. Further, the outer heat conductive member Mb extends in the axis O direction along the outer surface. That is, the heat conductive member Mb extends to a relatively high temperature region and a relatively low temperature region in the gas turbine casing 91.
  • it is desirable that one end of the outer heat conductive member Mb in the axis O direction is arranged on the downstream side of the combustor 2 (that is, the inlet of the turbine 3) in the gas turbine cabin 91.
  • FIGS. 6 and 7 the fourth embodiment of the present disclosure will be described with reference to FIGS. 6 and 7.
  • the same components as those in the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • a connecting heat conductive member Mc is further provided on the outer surface of the gas turbine vehicle interior 91.
  • the connecting heat conductive member Mc is between the upper half-chamber body Uh and the upper half flange Fu facing upward, and between the lower half-chamber body Lh and the lower half-chamber Fl, respectively. It is provided.
  • Each connecting heat conductive member Mc has an arcuate cross section when viewed from the axis O direction. That is, a space V for accommodating the bolt B is formed on the inner peripheral side of the connecting heat conductive member Mc. Further, although not shown in detail, the connection heat conductive member Mc is formed with an opening for allowing a tool or the like to reach the bolt B.
  • the connecting heat conductive member Mc is fixed to the flange F together with the bolt B by the fixture J.
  • the fixture J has a first portion J1 extending in the vertical direction, a second portion J2 extending in the radial direction with respect to the axis O, and a third portion J3 connecting the first portion J1 and the second portion J2.
  • the upper end of the first part J1 is embedded in the vicinity of the upper end of the connecting heat conductive member Mc.
  • the radial outer end of the second portion J2 is embedded near the lower end of the connecting heat conductive member Mc.
  • a hole through which the bolt B can be inserted is formed in the third portion J3. Therefore, by tightening the bolt B with the third portion sandwiched between the bolt B and the flange F, the connecting heat conductive member Mc and the fixture J are fixed to the flange F.
  • the flange F has a larger wall thickness than other parts in the gas turbine passenger compartment 91. Therefore, when the operation of the gas turbine 100 is started, the temperature of the other portion rises before the flange F.
  • the connection heat conductive member Mc promotes the transfer of heat from the upper half-chamber U or the lower half-chamber L toward the flange F. Thereby, the temperature gradient between the flange F and the other portion can be made gentle.
  • the gas turbine 100 is formed of a gas turbine casing 91 in which a working fluid flows inside and a material having a higher thermal conductivity than that of the gas turbine casing 91, and only a part of the gas turbine 100 is formed.
  • a heat conductive member M embedded inside the gas turbine casing 91 so as to come into contact with the working fluid is provided.
  • a heat conductive member is provided inside the gas turbine passenger compartment 91. Further, a part of the heat conductive member M is in contact with the working fluid. Therefore, the heat of the working fluid propagates to the heat conductive member M via the part thereof. After that, the above heat propagates to other parts of the gas turbine casing 91 through the heat conductive member M. As a result, the temperature gradient generated between the plurality of regions in the gas turbine passenger compartment 91 can be made gentle. As a result, the thermal stress generated in the gas turbine passenger compartment 91 can be relaxed.
  • the gas turbine 100 according to the second aspect further includes a rotor 90 rotatably provided around the axis O inside the gas turbine casing 91, and the heat conductive member M is the gas turbine vehicle. Inside the chamber 91, it extends in the direction of the axis O.
  • the temperature of the working fluid changes along the axis O of the rotor 90. According to the above configuration, since the heat conductive member M extends in the axis O direction, the temperature gradient due to the temperature difference of the working fluid in the axis O direction can be made gentle.
  • the gas turbine casing 91 has an upper half casing U and a lower half casing L that are coupled by aligning flanges F with each other, and the heat.
  • the conductive member M is sandwiched between the flanges F.
  • the temperature gradient in the extending region of the flange F can be made gentle.
  • the heat conductive member M is not provided, a steep temperature gradient is formed in the extending region of the flange F, and as a result, a gap based on the difference in the amount of thermal deformation is generated between the flanges F. There is a risk that it will end up.
  • the possibility of such thermal deformation occurring can be reduced.
  • the part of the heat conductive member M comes into contact with the working fluid in a relatively high temperature region in the gas turbine cabin 91, and the heat conductive member The other part of M is buried in a relatively low temperature region in the gas turbine cabin 91.
  • heat in a relatively high temperature region can be propagated to a relatively low temperature region through a part of the heat conductive member M.
  • the position of the downstream side (inlet of the turbine 3) of the combustor 2 in the gas turbine cabin 91 corresponds to this as a high temperature region
  • the outlet side of the turbine 3 and the inlet side of the compressor correspond to this as a low temperature region. ..
  • the gas turbine casing 91 has an upper half casing U and a lower half casing L that are coupled by aligning flanges F with each other, and has the heat.
  • the conductive member Mt has a tubular shape that penetrates the pair of flanges F in the vertical direction and extends along the inner peripheral surface of the through hole H through which the bolt B is inserted, and is a part between the flanges F.
  • a gap G is formed in the region of the above to communicate the inside of the gas turbine casing 91 and the outer peripheral surface of the heat conductive member Mt.
  • the tubular heat conductive member Mt is inserted into the through hole H of the flange F.
  • heat transfer between the flanges F is promoted, and the temperature gradient formed between the flanges F can be made gentle.
  • the heat conductive member Mt is not provided, a steep temperature gradient is formed between the flanges F, and as a result, a gap based on the difference in the amount of thermal deformation may occur between the flanges F. There is.
  • the possibility of such thermal deformation occurring can be reduced.
  • a gap is formed between the inner peripheral surface of the heat conductive member Mt and the outer peripheral surface of the bolt B.
  • the heat propagated from the working fluid to the heat conductive member Mt can be propagated only to the flange F without propagating to the bolt B.
  • the temperature gradient between the flanges F can be made gentle.
  • the gas turbine 100 according to the seventh aspect is provided on the outer surface of the gas turbine cabin 91, and extends from a relatively high temperature region to a relatively low temperature region in the gas turbine casing 91.
  • a heat conductive member Mb is further provided.
  • the gas turbine casing 91 has an upper chassis U and a lower chassis L which are coupled by matching flanges F to each other, and the above A connecting heat conductive member Mc extending from at least one outer surface of the half-chamber U and the lower half-chamber L to the flange F is further provided.
  • the flange F has a larger wall thickness than other parts in the gas turbine passenger compartment 91. Therefore, when the operation of the gas turbine 100 is started, the temperature of the other portion rises before the flange F.
  • the connection heat conductive member Mc promotes the transfer of heat from the upper half-chamber U or the lower half-chamber L toward the flange F. Thereby, the temperature gradient between the flange F and the other portion can be made gentle.
  • the present invention is applicable to gas turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This gas turbine is provided with: a gas turbine cabin through the inside of which a working fluid flows; and a heat conductive member which is formed from a material having a higher heat conduction than the gas turbine cabin, and which is embedded into the gas turbine cabin in such a way that only a portion thereof comes into contact with the working fluid. Heat in the working fluid propagates to the heat conductive member through said portion. The heat subsequently propagates to other parts of the gas turbine cabin through the heat conductive member. As a result, temperature gradients arising between a plurality of regions of the gas turbine cabin can be made gentle. In this way, thermal stresses generated in the gas turbine cabin can be alleviated, and the possibility of gaps arising between flanges provided along the outer surface of the gas turbine cabin can be reduced.

Description

ガスタービンgas turbine
 本開示は、ガスタービンに関する。
 本願は、2019年9月11日に、日本に出願された特願2019-165505号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to gas turbines.
The present application claims priority based on Japanese Patent Application No. 2019-165505 filed in Japan on September 11, 2019, the contents of which are incorporated herein by reference.
 ガスタービンは、圧縮機と、燃焼器と、タービンとを備えている。圧縮機は外部の空気を圧縮して高圧空気を生成する。燃焼器は、高圧空気に燃料を混合して燃焼させ、高温固圧の燃焼ガスを生成する。タービンは、燃焼ガスによって回転駆動される。さらに、圧縮機の車室(ケーシング)と、タービンの車室は一体に結合されることで、ガスタービン車室をなしている。燃焼器は、この圧縮機車室とタービン車室の間に取り付けられている。 The gas turbine is equipped with a compressor, a combustor, and a turbine. The compressor compresses the outside air to produce high pressure air. The combustor mixes fuel with high-pressure air and burns it to generate high-temperature solid-pressure combustion gas. The turbine is rotationally driven by the combustion gas. Further, the passenger compartment (casing) of the compressor and the passenger compartment of the turbine are integrally connected to form a gas turbine passenger compartment. The combustor is installed between the compressor cabin and the turbine cabin.
 ガスタービンの運転中には、ガスタービン車室の内面に沿って高温の作動流体が流通する。特に、燃焼器の下流側では一例として1500℃程度の作動流体が流通する。したがって、圧縮機車室とタービン車室にかけての領域では、燃焼器の下流側の部分(タービン入口)を頂点とする温度勾配が形成される。ガスタービンの性能を向上させるためにはこのタービン入口における作動流体の温度を高めることが肝要である。 During operation of the gas turbine, high-temperature working fluid flows along the inner surface of the gas turbine cabin. In particular, a working fluid of about 1500 ° C. flows on the downstream side of the combustor as an example. Therefore, in the region extending from the compressor cabin to the turbine casing, a temperature gradient is formed with the downstream portion of the combustor (turbine inlet) as the apex. In order to improve the performance of the gas turbine, it is important to raise the temperature of the working fluid at the turbine inlet.
 一方で、上述の温度勾配が形成されると、各領域間で熱変形(熱ひずみ)の差が生じる。その結果、ガスタービン車室の外面に沿って設けられたフランジ同士の間に隙間が生じたり、当該フランジ付近で大きな熱応力を生じたりする可能性がある。 On the other hand, when the above-mentioned temperature gradient is formed, a difference in thermal deformation (thermal strain) occurs between each region. As a result, there is a possibility that a gap may be generated between the flanges provided along the outer surface of the gas turbine vehicle interior, or a large thermal stress may be generated in the vicinity of the flange.
 そこで、例えば下記特許文献1に記載されているように、ガスタービンの外面をグラフェン等の熱伝導部材で覆うことで、熱伝達を促進し、温度勾配を緩やかにする技術が提唱されている。 Therefore, for example, as described in Patent Document 1 below, a technique has been proposed in which the outer surface of a gas turbine is covered with a heat conductive member such as graphene to promote heat transfer and make the temperature gradient gentle.
特開2017-129132号公報JP-A-2017-129132
 しかしながら、上記特許文献1に記載された装置では、熱伝導部材はガスタービンの外面を単に覆っているに留まる。このため、作動流体の熱が当該熱伝導部材に対して積極的に伝達されない。その結果、依然としてガスタービン車室に急峻な温度勾配が形成されてしまう。これにより、ガスタービンの安定的な運転に支障を来たす虞がある。 However, in the apparatus described in Patent Document 1, the heat conductive member merely covers the outer surface of the gas turbine. Therefore, the heat of the working fluid is not positively transferred to the heat conductive member. As a result, a steep temperature gradient is still formed in the gas turbine cabin. This may hinder the stable operation of the gas turbine.
 本開示は上記課題を解決するためになされたものであって、より安定的に運転することが可能なガスタービンを提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a gas turbine capable of more stable operation.
 上記課題を解決するために、本開示に係るガスタービンは、内側を作動流体が流通するガスタービン車室と、前記ガスタービン車室よりも熱伝導率の高い材料によって形成され、一部のみが前記作動流体に接触するように前記ガスタービン車室内部に埋設された熱伝導部材と、を備える。 In order to solve the above problems, the gas turbine according to the present disclosure is formed of a gas turbine casing in which a working fluid flows inside and a material having a higher thermal conductivity than that of the gas turbine casing, and only a part of the gas turbine is formed. A heat conductive member embedded in the interior of the gas turbine vehicle so as to come into contact with the working fluid is provided.
 本開示によれば、より安定的に運転することが可能なガスタービンを提供することができる。 According to the present disclosure, it is possible to provide a gas turbine capable of more stable operation.
本開示の第一実施形態に係るガスタービンの構成を示す模式図である。It is a schematic diagram which shows the structure of the gas turbine which concerns on 1st Embodiment of this disclosure. 本開示の第一実施形態に係るガスタービン車室を軸線方向から見た断面図である。It is sectional drawing of the gas turbine vehicle interior which concerns on 1st Embodiment of this disclosure as seen from the axial direction. 本開示の第一実施形態に係るガスタービン車室を周方向から見た断面図である。It is sectional drawing of the gas turbine vehicle interior which concerns on 1st Embodiment of this disclosure as seen from the circumferential direction. 本開示の第二実施形態に係るガスタービン車室を軸線方向から見た断面図である。It is sectional drawing of the gas turbine vehicle interior which concerns on 2nd Embodiment of this disclosure as seen from the axial direction. 本開示の第三実施形態に係るガスタービン車室を軸線方向から見た断面図である。It is sectional drawing of the gas turbine vehicle interior which concerns on 3rd Embodiment of this disclosure as seen from the axial direction. 本開示の第四実施形態に係るガスタービン車室を軸線方向から見た断面図である。It is sectional drawing of the gas turbine vehicle interior which concerns on 4th Embodiment of this disclosure as seen from the axial direction. 本開示の第四実施形態に係る外面熱伝導部材の取り付け構造を示す断面図である。It is sectional drawing which shows the attachment structure of the outer surface heat conduction member which concerns on 4th Embodiment of this disclosure.
 以下、図面を参照して本発明を適用した実施形態について詳細に説明する。
<第一実施形態>
 以下、本開示の第一実施形態に係るガスタービン100について、図1から図3を参照して説明する。図1又は図2に示すように、ガスタービン100は、圧縮機1と、燃焼器2と、タービン3と、熱伝導部材M(図2参照)と、を備えている。
Hereinafter, embodiments to which the present invention has been applied will be described in detail with reference to the drawings.
<First Embodiment>
Hereinafter, the gas turbine 100 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 3. As shown in FIG. 1 or 2, the gas turbine 100 includes a compressor 1, a combustor 2, a turbine 3, and a heat conductive member M (see FIG. 2).
 圧縮機1は、外部の空気を取り込んで圧縮し、高圧空気を生成する。圧縮機1は、軸線Oに沿って延びる圧縮機ロータ11と、この圧縮機ロータ11を外周側から覆う筒状の圧縮機車室12と、を有している。燃焼器2は、圧縮機車室12の下流側の部分に複数取り付けられている。燃焼器2は、圧縮機1から供給された高圧空気に燃料を混合して燃焼させ、高温高圧の燃焼ガスを生成する。燃焼器2の下流側には、タービン3が設けられている。タービン3は、燃焼ガスによって回転駆動される。タービン3は、軸線Oに沿って延びるタービンロータ31と、このタービンロータ31を外周側から覆う筒状のタービン車室32と、を有している。 Compressor 1 takes in outside air and compresses it to generate high-pressure air. The compressor 1 has a compressor rotor 11 extending along the axis O, and a tubular compressor cabin 12 that covers the compressor rotor 11 from the outer peripheral side. A plurality of combustors 2 are attached to a portion on the downstream side of the compressor cabin 12. The combustor 2 mixes fuel with the high-pressure air supplied from the compressor 1 and burns the fuel to generate high-temperature and high-pressure combustion gas. A turbine 3 is provided on the downstream side of the combustor 2. The turbine 3 is rotationally driven by the combustion gas. The turbine 3 has a turbine rotor 31 extending along the axis O, and a tubular turbine casing 32 that covers the turbine rotor 31 from the outer peripheral side.
 圧縮機ロータ11と、タービンロータ31とは軸線O上で一体に接続されることで、ガスタービンロータ90(ロータ)を形成している。同様に、圧縮機車室12と、タービン車室32とは軸線Oを中心として同軸上に接続されることで、ガスタービン車室91を形成している。ガスタービンロータ90は、ガスタービン車室91の内部で軸線O回りに一体に回転可能である。 The compressor rotor 11 and the turbine rotor 31 are integrally connected on the axis O to form the gas turbine rotor 90 (rotor). Similarly, the compressor casing 12 and the turbine casing 32 are coaxially connected with the axis O as the center to form the gas turbine casing 91. The gas turbine rotor 90 can rotate integrally around the axis O inside the gas turbine casing 91.
 次いで、ガスタービン車室91の構成について詳述する。ガスタービン車室91は、軸線Oを含む水平面内で2つの部分(上半車室U、下半車室L)に分割されている。上半車室Uは、半円筒状の上半車室本体Uhと、この上半車室本体Uhと一体に形成されているフランジF(上半フランジFu)と、を有している。上半車室本体Uhは、上方へ向かって凸となる半円筒状をなしている。つまり、上半車室本体Uhは下方に向かって開口している。上半フランジFuは、上半車室本体Uhにおける開口部の端縁に沿って水平面内に広がる板状をなしている。 Next, the configuration of the gas turbine passenger compartment 91 will be described in detail. The gas turbine casing 91 is divided into two portions (upper half passenger compartment U and lower half passenger compartment L) in a horizontal plane including the axis O. The upper half-chamber U has a semi-cylindrical upper half-chamber main body Uh and a flange F (upper half flange Fu) integrally formed with the upper half-chamber main body Uh. The upper half passenger compartment main body Uh has a semi-cylindrical shape that is convex upward. That is, the upper half passenger compartment main body Uh opens downward. The upper half flange Fu has a plate shape extending in a horizontal plane along the edge of the opening in the upper half passenger compartment main body Uh.
 下半車室Lは、半円筒状の下半車室本体Lhと、この下半車室本体Lhと一体に形成されているフランジF(下半フランジFl)と、を有している。下半車室本体Lhは、下方へ向かって凸となる半円筒状をなしている。つまり、下半車室本体Lhは下方に向かって開口している。下半フランジFlは、下半車室本体Lhにおける開口部の端縁に沿って水平面内に広がる板状をなしている。ガスタービン車室91は、上記のフランジF同士を互いに水平面内で互いに合わせる(当接させる)ことで一体の円筒状をなす。具体的には図2に示すように、上半フランジFuと下半フランジFlに形成された貫通孔にボルトBを挿通することによって、上半車室Uと下半車室Lとが互いに結合される。 The lower half-chamber L has a semi-cylindrical lower half-chamber main body Lh and a flange F (lower half flange Fl) integrally formed with the lower half-chamber main body Lh. The lower half-cabin body Lh has a semi-cylindrical shape that is convex downward. That is, the lower half passenger compartment main body Lh opens downward. The lower half flange Fl has a plate shape extending in a horizontal plane along the edge of the opening in the lower half passenger compartment main body Lh. The gas turbine casing 91 forms an integral cylindrical shape by aligning (contacting) the flanges F with each other in a horizontal plane. Specifically, as shown in FIG. 2, the upper half-chamber U and the lower half-chamber L are connected to each other by inserting the bolt B into the through holes formed in the upper half flange Fu and the lower half flange Fl. Will be done.
 図2、及び図3に示すように、上半フランジFuと下半フランジFlとの間には、熱伝導部材Mが挟み込まれている。図2に示すように、上半フランジFuの下面には、上方へ向かって凹む上半凹部R1が形成され、下半フランジFlの上面には、下方へ向かって凹む下半凹部R2が形成されている。これら上半凹部R1と下半凹部R2とによって画成される空間内に、板状の熱伝導部材Mが埋設されている。 As shown in FIGS. 2 and 3, a heat conductive member M is sandwiched between the upper half flange Fu and the lower half flange Fl. As shown in FIG. 2, an upper half recess R1 recessed upward is formed on the lower surface of the upper half flange Fu, and a lower half recess R2 recessed downward is formed on the upper surface of the lower flange Fl. ing. A plate-shaped heat conductive member M is embedded in the space defined by the upper half recess R1 and the lower half recess R2.
 さらに、図3に示すように、熱伝導部材Mの一部は、ガスタービン車室91の内部に露出することで、露出部Pとされている。ガスタービン車室91の内部を流通する作動流体の熱は、露出部Pを通じて熱伝導部材Mの全体に伝播する。この露出部Pを除く部分は、上半フランジFu又は下半フランジFlの内部に埋設されている。また、熱伝導部材Mは、全体として軸線O方向に延びている。つまり、露出部Pを通じて熱伝導部材Mに入力された熱は、当該熱伝導部材Mを通じて軸線O方向に伝播する。 Further, as shown in FIG. 3, a part of the heat conductive member M is exposed inside the gas turbine casing 91 to form an exposed portion P. The heat of the working fluid flowing inside the gas turbine casing 91 propagates to the entire heat conductive member M through the exposed portion P. The portion other than the exposed portion P is embedded inside the upper half flange Fu or the lower half flange Fl. Further, the heat conductive member M extends in the axis O direction as a whole. That is, the heat input to the heat conductive member M through the exposed portion P propagates in the axis O direction through the heat conductive member M.
 また、露出部Pは、ガスタービン車室91における相対的に高温の領域で作動流体に接触している。一例として、露出部Pは、ガスタービン車室91における燃焼器2の下流側(つまり、タービン3の入口)に配置されることが望ましい。露出部Pを除く熱伝導部材Mの他の部分は、ガスタービン車室91における相対的に低温の領域に埋設されていることが望ましい。 Further, the exposed portion P is in contact with the working fluid in a relatively high temperature region in the gas turbine cabin 91. As an example, it is desirable that the exposed portion P is arranged on the downstream side of the combustor 2 (that is, the inlet of the turbine 3) in the gas turbine cabin 91. It is desirable that the other parts of the heat conductive member M other than the exposed part P are buried in a relatively low temperature region in the gas turbine vehicle interior 91.
 熱伝導部材Mは、ガスタービン車室91を形成する材料よりも高い熱伝導率を有する材料で形成されている。このような材料として具体的には、グラフェンや、炭素と銅を含む複合材、銅とダイアモンドを含む複合材が好適に用いられる。これらの材料は、板状に成形することが可能であるとともに、比較的に高い熱伝導率を呈する。 The heat conductive member M is made of a material having a higher thermal conductivity than the material forming the gas turbine passenger compartment 91. Specifically, graphene, a composite material containing carbon and copper, and a composite material containing copper and diamond are preferably used as such a material. These materials can be molded into a plate shape and exhibit a relatively high thermal conductivity.
 (作用効果)
 次に、ガスタービン100の動作について説明する。ガスタービン100を運転するに当たってはまず、外部の動力源(電動機等)によってガスタービンロータ90を回転駆動する。ガスタービンロータ90の回転に伴って、圧縮機1は外部の空気を取り込んで高圧空気を生成する。燃焼器2は、この高圧空気に燃料を混合して燃焼させ、高温高圧の燃焼ガスを生成する。タービン3は、この燃焼ガスによって回転駆動される。このようなサイクルが連続的に生じることで、ガスタービン100が運転される。ガスタービンロータ90の回転エネルギーは軸端から取り出されて、例えば発電機等の駆動に用いられる。
(Action effect)
Next, the operation of the gas turbine 100 will be described. In operating the gas turbine 100, first, the gas turbine rotor 90 is rotationally driven by an external power source (electric motor or the like). As the gas turbine rotor 90 rotates, the compressor 1 takes in outside air to generate high-pressure air. The combustor 2 mixes fuel with this high-pressure air and burns it to generate high-temperature and high-pressure combustion gas. The turbine 3 is rotationally driven by this combustion gas. The continuous occurrence of such a cycle causes the gas turbine 100 to operate. The rotational energy of the gas turbine rotor 90 is taken out from the shaft end and used for driving a generator or the like, for example.
 ここで、ガスタービン100の運転中には、ガスタービン車室91の内面に沿って高温の作動流体が流通する。特に、燃焼器2の下流側では一例として1500℃程度の作動流体が流通する。したがって、圧縮機車室12とタービン車室32にかけての領域では、燃焼器2の下流側の部分(タービン入口)を頂点とする温度勾配が形成される。ガスタービン100の性能を向上させるためにはこのタービン入口における作動流体の温度を高めることが肝要である。 Here, during the operation of the gas turbine 100, a high-temperature working fluid flows along the inner surface of the gas turbine cabin 91. In particular, a working fluid of about 1500 ° C. flows on the downstream side of the combustor 2 as an example. Therefore, in the region extending from the compressor cabin 12 to the turbine casing 32, a temperature gradient is formed with the downstream portion (turbine inlet) of the combustor 2 as the apex. In order to improve the performance of the gas turbine 100, it is important to raise the temperature of the working fluid at the turbine inlet.
 一方で、上述の温度勾配が形成されると、各領域間で熱変形(熱ひずみ)の差が生じる。その結果、ガスタービン車室の外面に沿って設けられたフランジ同士の間に隙間が生じたり、当該フランジ付近で大きな熱応力を生じたりする可能性がある。 On the other hand, when the above-mentioned temperature gradient is formed, a difference in thermal deformation (thermal strain) occurs between each region. As a result, there is a possibility that a gap may be generated between the flanges provided along the outer surface of the gas turbine vehicle interior, or a large thermal stress may be generated in the vicinity of the flange.
 そこで、本実施形態では、ガスタービン車室91の内部に熱伝導部材Mが設けられている。さらに、この熱伝導部材Mの一部である露出部Pは作動流体に接触している。したがって、作動流体の熱は、当該露出部Pを経て熱伝導部材Mに伝播する。その後、熱伝導部材Mを通じてガスタービン車室91の他の部分に上記の熱が伝播する。その結果、ガスタービン車室91における複数の領域間に生じる温度勾配を緩やかにすることができる。これにより、ガスタービン車室91に生じる熱応力を緩和することができる。したがって、ガスタービン100をより安定的に運転することが可能となる。 Therefore, in the present embodiment, the heat conductive member M is provided inside the gas turbine casing 91. Further, the exposed portion P, which is a part of the heat conductive member M, is in contact with the working fluid. Therefore, the heat of the working fluid propagates to the heat conductive member M through the exposed portion P. After that, the above heat propagates to other parts of the gas turbine casing 91 through the heat conductive member M. As a result, the temperature gradient generated between the plurality of regions in the gas turbine passenger compartment 91 can be made gentle. As a result, the thermal stress generated in the gas turbine passenger compartment 91 can be relaxed. Therefore, the gas turbine 100 can be operated more stably.
 ここで、ガスタービン100では、軸線Oに沿って作動流体の温度が変化する。上記構成によれば、熱伝導部材Mが軸線O方向に延びていることから、軸線O方向における作動流体の温度差による温度勾配を緩やかにすることができる。 Here, in the gas turbine 100, the temperature of the working fluid changes along the axis O. According to the above configuration, since the heat conductive member M extends in the axis O direction, the temperature gradient due to the temperature difference of the working fluid in the axis O direction can be made gentle.
 上記構成によれば、熱伝導部材MがフランジF同士の間に挟みこまれていることから、当該フランジFの延在領域における温度勾配を緩やかにすることができる。一方で、この熱伝導部材Mが設けられていない場合、フランジFの延在領域内で急峻な温度勾配が形成され、結果としてフランジF同士の間に熱変形量の差に基づく隙間が生じてしまう虞がある。しかしながら、上記構成によれば、このような熱変形が生じる可能性を低減することができる。 According to the above configuration, since the heat conductive member M is sandwiched between the flanges F, the temperature gradient in the extending region of the flange F can be made gentle. On the other hand, when the heat conductive member M is not provided, a steep temperature gradient is formed in the extending region of the flange F, and as a result, a gap based on the difference in the amount of thermal deformation is generated between the flanges F. There is a risk that it will end up. However, according to the above configuration, the possibility of such thermal deformation occurring can be reduced.
 上記構成によれば、熱伝導部材Mの一部(露出部P)を通じて相対的に高温の領域の熱を、相対的に低温の領域に伝播させることができる。高温の領域として例えばガスタービン車室91における燃焼器2の下流側(タービンの入口)の位置がこれに相当し、低温の領域としてタービン3の出口側や圧縮機1の入口側がこれに相当する。 According to the above configuration, heat in a relatively high temperature region can be propagated to a relatively low temperature region through a part of the heat conductive member M (exposed portion P). For example, the position of the downstream side (inlet of the turbine) of the combustor 2 in the gas turbine cabin 91 corresponds to this as a high temperature region, and the outlet side of the turbine 3 and the inlet side of the compressor 1 correspond to this as a low temperature region. ..
 <第二実施形態>
 次に、本開示の第二実施形態について、図4を参照して説明する。なお、上記第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、熱伝導部材Mtの構成が上記第一実施形態と異なっている。
<Second embodiment>
Next, the second embodiment of the present disclosure will be described with reference to FIG. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in the figure, in the present embodiment, the configuration of the heat conductive member Mt is different from that of the first embodiment.
 熱伝導部材Mは、フランジF(上半フランジFu、下半フランジFl)に形成されているボルトBを挿通させるための貫通孔H内に配置されている。熱伝導部材Mtは、貫通孔Hの内周面に沿って延びる円筒状をなしている。熱伝導部材Mtの外周面は貫通孔Hの内周面に隙間なく当接している。つまり、熱伝導部材Mtの外径寸法は、貫通孔Hの内径寸法と同一かわずかに小さな値に設定されている。貫通孔Hの下端には、内周側に向かって突出する突出部Prが形成されている。熱伝導部材Mtは、この突出部Prによって下方から脱落不能に支持されている。なお、本実施形態では、熱伝導部材Mtの内周面とボルトBの外周面との間に隙間が形成されている。一方で、この隙間を形成しない構成を採ることも可能である。 The heat conductive member M is arranged in a through hole H for inserting a bolt B formed in the flange F (upper half flange Fu, lower half flange Fl). The heat conductive member Mt has a cylindrical shape extending along the inner peripheral surface of the through hole H. The outer peripheral surface of the heat conductive member Mt is in contact with the inner peripheral surface of the through hole H without a gap. That is, the outer diameter dimension of the heat conductive member Mt is set to the same value as or slightly smaller than the inner diameter dimension of the through hole H. At the lower end of the through hole H, a protruding portion Pr that protrudes toward the inner peripheral side is formed. The heat conductive member Mt is supported by the protruding portion Pr so as not to fall off from below. In this embodiment, a gap is formed between the inner peripheral surface of the heat conductive member Mt and the outer peripheral surface of the bolt B. On the other hand, it is also possible to adopt a configuration that does not form this gap.
 さらに、上半フランジFuの下面には、上方へ向かって凹む上半凹部R1が形成され、下半フランジFlの上面には、下方へ向かって凹む下半凹部R2が形成されている。上半フランジFuと下半フランジFlとを結合したとき、これら上半凹部R1及び下半凹部R2によって、隙間Gが形成される。この隙間Gは、ガスタービン車室91の内部と、熱伝導部材Mtの外周面とを連通している。つまり、この隙間Gを通じて、作動流体の一部が熱伝導部材Mtに接触する。 Further, an upper half recess R1 that is recessed upward is formed on the lower surface of the upper half flange Fu, and a lower half recess R2 that is recessed downward is formed on the upper surface of the lower half flange Fl. When the upper half flange Fu and the lower half flange Fl are combined, a gap G is formed by the upper half recess R1 and the lower half recess R2. The gap G communicates the inside of the gas turbine casing 91 with the outer peripheral surface of the heat conductive member Mt. That is, a part of the working fluid comes into contact with the heat conductive member Mt through this gap G.
 上記構成によれば、筒状の熱伝導部材MtがフランジFの貫通孔Hに挿通されている。これにより、フランジF同士の間における熱の移動が促進され、当該フランジF同士の間に形成される温度勾配を緩やかにすることができる。一方で、この熱伝導部材Mtが設けられていない場合、フランジF同士の間で急峻な温度勾配が形成され、結果としてフランジF同士の間に熱変形量の差に基づく隙間が生じてしまう虞がある。しかしながら、上記構成によれば、このような熱変形が生じる可能性を低減することができる。 According to the above configuration, the tubular heat conductive member Mt is inserted into the through hole H of the flange F. As a result, heat transfer between the flanges F is promoted, and the temperature gradient formed between the flanges F can be made gentle. On the other hand, if the heat conductive member Mt is not provided, a steep temperature gradient is formed between the flanges F, and as a result, a gap based on the difference in the amount of thermal deformation may occur between the flanges F. There is. However, according to the above configuration, the possibility of such thermal deformation occurring can be reduced.
 さらに、上記構成によれば、熱伝導部材MtとボルトBとの間に隙間が形成されている。これにより、作動流体から熱伝導部材Mtに伝播した熱を、ボルトBに伝播させることなく、フランジFのみに伝播させることができる。これにより、フランジF同士の間の温度勾配を緩やかにすることができる。 Further, according to the above configuration, a gap is formed between the heat conductive member Mt and the bolt B. As a result, the heat propagated from the working fluid to the heat conductive member Mt can be propagated only to the flange F without propagating to the bolt B. As a result, the temperature gradient between the flanges F can be made gentle.
<第三実施形態>
 続いて、本開示の第三実施形態について、図5を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、第一実施形態で説明した熱伝導部材Mに加えて、ガスタービン車室91(フランジF)の外面に外側熱伝導部材Mbがさらに設けられている。
<Third Embodiment>
Subsequently, the third embodiment of the present disclosure will be described with reference to FIG. The same components as those in the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in the figure, in the present embodiment, in addition to the heat conductive member M described in the first embodiment, an outer heat conductive member Mb is further provided on the outer surface of the gas turbine casing 91 (flange F). ..
 外側熱伝導部材Mbは、上半フランジFuから下半フランジFlにかけて広がる板状をなしている。外側熱伝導部材Mbは、これらフランジFの外面(水平方向を向く面)に対して隙間なく当接している。また、外側熱伝導部材Mbは、この外面に沿って軸線O方向に延びている。つまり、熱伝導部材Mbは、ガスタービン車室91における相対的に高温の領域と相対的に低温の領域とにかけて延びている。一例として、外側熱伝導部材Mbの軸線O方向における一端は、ガスタービン車室91における燃焼器2の下流側(つまり、タービン3の入口)に配置されることが望ましい。 The outer heat conductive member Mb has a plate shape extending from the upper half flange Fu to the lower half flange Fl. The outer heat conductive member Mb is in contact with the outer surface (the surface facing the horizontal direction) of these flanges F without a gap. Further, the outer heat conductive member Mb extends in the axis O direction along the outer surface. That is, the heat conductive member Mb extends to a relatively high temperature region and a relatively low temperature region in the gas turbine casing 91. As an example, it is desirable that one end of the outer heat conductive member Mb in the axis O direction is arranged on the downstream side of the combustor 2 (that is, the inlet of the turbine 3) in the gas turbine cabin 91.
 上記構成によれば、外面熱伝導部材Mbによって、ガスタービン車室91の高温領域から低温領域にかけて熱を移動させることができる。その結果、ガスタービン車室91に生じる温度勾配をより一層緩やかにすることができる。 According to the above configuration, heat can be transferred from the high temperature region to the low temperature region of the gas turbine cabin 91 by the outer surface heat conductive member Mb. As a result, the temperature gradient generated in the gas turbine passenger compartment 91 can be made even gentler.
 <第四実施形態>
 次に、本開示の第四実施形態について、図6と図7を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図6に示すように、本実施形態では、第一実施形態で説明した熱伝導部材Mに加えて、ガスタービン車室91の外面に接続熱伝導率部材Mcがさらに設けられている。
<Fourth Embodiment>
Next, the fourth embodiment of the present disclosure will be described with reference to FIGS. 6 and 7. The same components as those in the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 6, in the present embodiment, in addition to the heat conductive member M described in the first embodiment, a connecting heat conductive member Mc is further provided on the outer surface of the gas turbine vehicle interior 91.
 接続熱伝導部材Mcは、上半車室本体Uhから上半フランジFuの上方を向く面との間、及び下半車室本体Lhから下半車室Flの下方を向く面との間にそれぞれ設けられている。各接続熱伝導部材Mcは、軸線O方向から見て円弧状の断面を有している。つまり、接続熱伝導部材Mcの内周側には、ボルトBを収容するための空間Vが形成されている。また、詳しくは図示しないが、接続熱伝導部材Mcには、ボルトBに工具等を到達させるための開口部が形成されている。 The connecting heat conductive member Mc is between the upper half-chamber body Uh and the upper half flange Fu facing upward, and between the lower half-chamber body Lh and the lower half-chamber Fl, respectively. It is provided. Each connecting heat conductive member Mc has an arcuate cross section when viewed from the axis O direction. That is, a space V for accommodating the bolt B is formed on the inner peripheral side of the connecting heat conductive member Mc. Further, although not shown in detail, the connection heat conductive member Mc is formed with an opening for allowing a tool or the like to reach the bolt B.
 さらに、図7に示すように、接続熱伝導部材Mcは、取付具Jによって、ボルトBとともにフランジFに固定されている。取付具Jは、上下方向に延びる第一部分J1と、軸線Oに対する径方向に延びる第二部分J2と、これら第一部分J1と第二部分J2とを接続する第三部分J3と、を有している。第一部分J1の上方の端部は、接続熱伝導部材Mcの上方の端部付近に埋設されている。第二部分J2の径方向外側の端部は、接続熱伝導部材Mcの下方の端部付近に埋設されている。第三部分J3には、ボルトBが挿通可能な孔が形成されている。したがって、ボルトBとフランジFとの間に第三部分を挟んだ状態で当該ボルトBを締めることで、接続熱伝導部材Mc、及び取付具JがフランジFに対して固定される。 Further, as shown in FIG. 7, the connecting heat conductive member Mc is fixed to the flange F together with the bolt B by the fixture J. The fixture J has a first portion J1 extending in the vertical direction, a second portion J2 extending in the radial direction with respect to the axis O, and a third portion J3 connecting the first portion J1 and the second portion J2. There is. The upper end of the first part J1 is embedded in the vicinity of the upper end of the connecting heat conductive member Mc. The radial outer end of the second portion J2 is embedded near the lower end of the connecting heat conductive member Mc. A hole through which the bolt B can be inserted is formed in the third portion J3. Therefore, by tightening the bolt B with the third portion sandwiched between the bolt B and the flange F, the connecting heat conductive member Mc and the fixture J are fixed to the flange F.
 一般的に、フランジFはガスタービン車室91における他の部分に比べて肉厚が大きい。したがって、ガスタービン100の運転開始に際しては、フランジFよりも当該他の部分が先に温度上昇する。上記構成によれば、接続熱伝導部材Mcによって上半車室U又は下半車室LからフランジFに向かう熱の移動が促進される。これにより、フランジFと他の部分との間における温度勾配を緩やかにすることができる。 Generally, the flange F has a larger wall thickness than other parts in the gas turbine passenger compartment 91. Therefore, when the operation of the gas turbine 100 is started, the temperature of the other portion rises before the flange F. According to the above configuration, the connection heat conductive member Mc promotes the transfer of heat from the upper half-chamber U or the lower half-chamber L toward the flange F. Thereby, the temperature gradient between the flange F and the other portion can be made gentle.
 以上、本開示の各実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。 The embodiments of the present disclosure have been described above. It is possible to make various changes and modifications to the above configuration as long as it does not deviate from the gist of the present disclosure.
 <付記>
 各実施形態に記載のガスタービンは、例えば以下のように把握される。
<Additional notes>
The gas turbine described in each embodiment is grasped as follows, for example.
(1)第1の態様に係るガスタービン100は、内側を作動流体が流通するガスタービン車室91と、前記ガスタービン車室91よりも熱伝導率の高い材料によって形成され、一部のみが前記作動流体に接触するように前記ガスタービン車室91内部に埋設された熱伝導部材Mと、を備える。 (1) The gas turbine 100 according to the first aspect is formed of a gas turbine casing 91 in which a working fluid flows inside and a material having a higher thermal conductivity than that of the gas turbine casing 91, and only a part of the gas turbine 100 is formed. A heat conductive member M embedded inside the gas turbine casing 91 so as to come into contact with the working fluid is provided.
 上記構成によれば、ガスタービン車室91の内部に熱伝導部材が設けられている。さらに、この熱伝導部材Mの一部は作動流体に接触している。したがって、作動流体の熱は、当該一部を経て熱伝導部材Mに伝播する。その後、熱伝導部材Mを通じてガスタービン車室91の他の部分に上記の熱が伝播する。その結果、ガスタービン車室91における複数の領域間に生じる温度勾配を緩やかにすることができる。これにより、ガスタービン車室91に生じる熱応力を緩和することができる。 According to the above configuration, a heat conductive member is provided inside the gas turbine passenger compartment 91. Further, a part of the heat conductive member M is in contact with the working fluid. Therefore, the heat of the working fluid propagates to the heat conductive member M via the part thereof. After that, the above heat propagates to other parts of the gas turbine casing 91 through the heat conductive member M. As a result, the temperature gradient generated between the plurality of regions in the gas turbine passenger compartment 91 can be made gentle. As a result, the thermal stress generated in the gas turbine passenger compartment 91 can be relaxed.
(2)第2の態様に係るガスタービン100は、前記ガスタービン車室91の内部で軸線O回りに回転可能に設けられたロータ90をさらに備え、前記熱伝導部材Mは、前記ガスタービン車室91内部で前記軸線O方向に延びている。 (2) The gas turbine 100 according to the second aspect further includes a rotor 90 rotatably provided around the axis O inside the gas turbine casing 91, and the heat conductive member M is the gas turbine vehicle. Inside the chamber 91, it extends in the direction of the axis O.
 ガスタービン100では、ロータ90の軸線Oに沿って作動流体の温度が変化する。上記構成によれば、熱伝導部材Mが軸線O方向に延びていることから、軸線O方向における作動流体の温度差による温度勾配を緩やかにすることができる。 In the gas turbine 100, the temperature of the working fluid changes along the axis O of the rotor 90. According to the above configuration, since the heat conductive member M extends in the axis O direction, the temperature gradient due to the temperature difference of the working fluid in the axis O direction can be made gentle.
(3)第3の態様に係るガスタービン100では、前記ガスタービン車室91は、互いのフランジFを合わせて結合された上半車室U、及び下半車室Lを有し、前記熱伝導部材Mは、前記フランジF同士の間に挟みこまれている。 (3) In the gas turbine 100 according to the third aspect, the gas turbine casing 91 has an upper half casing U and a lower half casing L that are coupled by aligning flanges F with each other, and the heat. The conductive member M is sandwiched between the flanges F.
 上記構成によれば、熱伝導部材MがフランジF同士の間に挟みこまれていることから、当該フランジFの延在領域における温度勾配を緩やかにすることができる。一方で、この熱伝導部材Mが設けられていない場合、フランジFの延在領域内で急峻な温度勾配が形成され、結果としてフランジF同士の間に熱変形量の差に基づく隙間が生じてしまう虞がある。しかしながら、上記構成によれば、このような熱変形が生じる可能性を低減することができる。 According to the above configuration, since the heat conductive member M is sandwiched between the flanges F, the temperature gradient in the extending region of the flange F can be made gentle. On the other hand, when the heat conductive member M is not provided, a steep temperature gradient is formed in the extending region of the flange F, and as a result, a gap based on the difference in the amount of thermal deformation is generated between the flanges F. There is a risk that it will end up. However, according to the above configuration, the possibility of such thermal deformation occurring can be reduced.
(4)第4の態様に係るガスタービン100では、前記熱伝導部材Mの前記一部は、前記ガスタービン車室91における相対的に高温の領域で前記作動流体に接触し、前記熱伝導部材Mの他の部分は前記ガスタービン車室91における相対的に低温の領域に埋設されている。 (4) In the gas turbine 100 according to the fourth aspect, the part of the heat conductive member M comes into contact with the working fluid in a relatively high temperature region in the gas turbine cabin 91, and the heat conductive member The other part of M is buried in a relatively low temperature region in the gas turbine cabin 91.
 上記構成によれば、熱伝導部材Mの一部を通じて相対的に高温の領域の熱を、相対的に低温の領域に伝播させることができる。高温の領域として例えばガスタービン車室91における燃焼器2の下流側(タービン3の入口)の位置がこれに相当し、低温の領域としてタービン3の出口側や圧縮機の入口側がこれに相当する。 According to the above configuration, heat in a relatively high temperature region can be propagated to a relatively low temperature region through a part of the heat conductive member M. For example, the position of the downstream side (inlet of the turbine 3) of the combustor 2 in the gas turbine cabin 91 corresponds to this as a high temperature region, and the outlet side of the turbine 3 and the inlet side of the compressor correspond to this as a low temperature region. ..
(5)第5の態様に係るガスタービン100では、前記ガスタービン車室91は、互いのフランジFを合わせて結合された上半車室U、及び下半車室Lを有し、前記熱伝導部材Mtは、一対の前記フランジFを上下方向に貫通するとともに内部にボルトBが挿通される貫通孔Hの内周面に沿って延びる筒状をなし、前記フランジF同士の間における一部の領域には、前記ガスタービン車室91の内部と前記熱伝導部材Mtの外周面とを連通する隙間Gが形成されている。 (5) In the gas turbine 100 according to the fifth aspect, the gas turbine casing 91 has an upper half casing U and a lower half casing L that are coupled by aligning flanges F with each other, and has the heat. The conductive member Mt has a tubular shape that penetrates the pair of flanges F in the vertical direction and extends along the inner peripheral surface of the through hole H through which the bolt B is inserted, and is a part between the flanges F. A gap G is formed in the region of the above to communicate the inside of the gas turbine casing 91 and the outer peripheral surface of the heat conductive member Mt.
 上記構成によれば、筒状の熱伝導部材MtがフランジFの貫通孔Hに挿通されている。これにより、フランジF同士の間における熱の移動が促進され、当該フランジF同士の間に形成される温度勾配を緩やかにすることができる。一方で、この熱伝導部材Mtが設けられていない場合、フランジF同士の間で急峻な温度勾配が形成され、結果としてフランジF同士の間に熱変形量の差に基づく隙間が生じてしまう虞がある。しかしながら、上記構成によれば、このような熱変形が生じる可能性を低減することができる。 According to the above configuration, the tubular heat conductive member Mt is inserted into the through hole H of the flange F. As a result, heat transfer between the flanges F is promoted, and the temperature gradient formed between the flanges F can be made gentle. On the other hand, if the heat conductive member Mt is not provided, a steep temperature gradient is formed between the flanges F, and as a result, a gap based on the difference in the amount of thermal deformation may occur between the flanges F. There is. However, according to the above configuration, the possibility of such thermal deformation occurring can be reduced.
(6)第6の態様に係るガスタービンでは、前記熱伝導部材Mtの内周面と前記ボルトBの外周面との間には隙間が形成されている。 (6) In the gas turbine according to the sixth aspect, a gap is formed between the inner peripheral surface of the heat conductive member Mt and the outer peripheral surface of the bolt B.
 上記構成によれば、作動流体から熱伝導部材Mtに伝播した熱を、ボルトBに伝播させることなく、フランジFのみに伝播させることができる。これにより、フランジF同士の間の温度勾配を緩やかにすることができる。 According to the above configuration, the heat propagated from the working fluid to the heat conductive member Mt can be propagated only to the flange F without propagating to the bolt B. As a result, the temperature gradient between the flanges F can be made gentle.
(7)第7の態様に係るガスタービン100は、前記ガスタービン車室91の外面に設けられ、該ガスタービン車室91における相対的に高温の領域と相対的に低温の領域とにかけて延びる外側熱伝導部材Mbをさらに備える。 (7) The gas turbine 100 according to the seventh aspect is provided on the outer surface of the gas turbine cabin 91, and extends from a relatively high temperature region to a relatively low temperature region in the gas turbine casing 91. A heat conductive member Mb is further provided.
 上記構成によれば、外面熱伝導部材Mbによって、ガスタービン車室91の高温領域から低温領域にかけて熱を移動させることができる。その結果、ガスタービン車室91に生じる温度勾配をより一層緩やかにすることができる。 According to the above configuration, heat can be transferred from the high temperature region to the low temperature region of the gas turbine cabin 91 by the outer surface heat conductive member Mb. As a result, the temperature gradient generated in the gas turbine passenger compartment 91 can be made even gentler.
(8)第8の態様に係るガスタービン100では、前記ガスタービン車室91は、互いのフランジFを合わせて結合された上半車室U、及び下半車室Lを有し、前記上半車室U、及び前記下半車室Lの少なくとも一方の外面から前記フランジFにかけて延びる接続熱伝導部材Mcをさらに備える。 (8) In the gas turbine 100 according to the eighth aspect, the gas turbine casing 91 has an upper chassis U and a lower chassis L which are coupled by matching flanges F to each other, and the above A connecting heat conductive member Mc extending from at least one outer surface of the half-chamber U and the lower half-chamber L to the flange F is further provided.
 一般的に、フランジFはガスタービン車室91における他の部分に比べて肉厚が大きい。したがって、ガスタービン100の運転開始に際しては、フランジFよりも当該他の部分が先に温度上昇する。上記構成によれば、接続熱伝導部材Mcによって上半車室U又は下半車室LからフランジFに向かう熱の移動が促進される。これにより、フランジFと他の部分との間における温度勾配を緩やかにすることができる。 Generally, the flange F has a larger wall thickness than other parts in the gas turbine passenger compartment 91. Therefore, when the operation of the gas turbine 100 is started, the temperature of the other portion rises before the flange F. According to the above configuration, the connection heat conductive member Mc promotes the transfer of heat from the upper half-chamber U or the lower half-chamber L toward the flange F. Thereby, the temperature gradient between the flange F and the other portion can be made gentle.
 本発明は、ガスタービンに適用可能である。 The present invention is applicable to gas turbines.
 100  ガスタービン
 1  圧縮機
 2  燃焼器
 3  タービン
 11  圧縮機ロータ
 12  圧縮機車室
 31  タービンロータ
 32  タービン車室
 90  ガスタービンロータ
 91  ガスタービン車室
 B  ボルト
 F  フランジ
 Fl  下半フランジ
 Fu  上半フランジ
 G  隙間
 H  貫通孔
 J  取付具
 J1  第一部分
 J2  第二部分
 J3  第三部分
 L  下半車室
 Lh  下半車室本体
 M,Mt  熱伝導部材
 Mb  外側熱伝導部材
 Mc  接続熱伝導部材
 O  軸線
 P  露出部
 Pr  突出部
 R1  第一凹部
 R2  第二凹部
 U  上半車室
 Uh  上半車室本体
 V  空間
100 Gas Turbine 1 Compressor 2 Combustor 3 Turbine 11 Compressor Rotor 12 Compressor Car Room 31 Turbine Rotor 32 Turbine Car Room 90 Gas Turbine Rotor 91 Gas Turbine Car Room B Bolt F Flange Fl Lower Half Flange Fu Upper Half Flange G Gap H Through hole J Fixture J1 1st part J2 2nd part J3 3rd part L Lower half-chamber Lh Lower half-chamber body M, Mt Heat-conducting member Mb Outer heat-conducting member Mc Connection heat-conducting member O Axis P Exposed part Pr Projection Part R1 First recess R2 Second recess U Upper cab Uh Upper cab body V space

Claims (8)

  1.  内側を作動流体が流通するガスタービン車室と、
     前記ガスタービン車室よりも熱伝導率の高い材料によって形成され、一部のみが前記作動流体に接触するように前記ガスタービン車室内部に埋設された熱伝導部材と、を備えるガスタービン。
    The gas turbine cabin where the working fluid flows inside, and
    A gas turbine including a heat conductive member formed of a material having a higher thermal conductivity than that of the gas turbine vehicle interior and embedded in the gas turbine vehicle interior so that only a part of the material comes into contact with the working fluid.
  2.  前記ガスタービン車室の内部で軸線回りに回転可能に設けられたロータをさらに備え、
     前記熱伝導部材は、前記ガスタービン車室内部で前記軸線方向に延びている請求項1に記載のガスタービン。
    Further, a rotor provided so as to be rotatable around the axis inside the gas turbine cabin is provided.
    The gas turbine according to claim 1, wherein the heat conductive member extends in the axial direction inside the gas turbine vehicle interior.
  3.  前記ガスタービン車室は、互いのフランジを合わせて結合された上半車室、及び下半車室を有し、
     前記熱伝導部材は、前記フランジ同士の間に挟みこまれている請求項1又は2に記載のガスタービン。
    The gas turbine cabin has an upper and lower cabins that are joined together by fitting flanges to each other.
    The gas turbine according to claim 1 or 2, wherein the heat conductive member is sandwiched between the flanges.
  4.  前記熱伝導部材の前記一部は、前記ガスタービン車室における相対的に高温の領域で前記作動流体に接触し、前記熱伝導部材の他の部分は前記ガスタービン車室における相対的に低温の領域に埋設されている請求項1から3のいずれか一項に記載のガスタービン。 The part of the heat conductive member comes into contact with the working fluid in a relatively hot region in the gas turbine cabin, and the other part of the heat conductive member is relatively cold in the gas turbine cabin. The gas turbine according to any one of claims 1 to 3, which is embedded in the area.
  5.  前記ガスタービン車室は、互いのフランジを合わせて結合された上半車室、及び下半車室を有し、
     前記熱伝導部材は、一対の前記フランジを上下方向に貫通するとともに内部にボルトが挿通される貫通孔の内周面に沿って延びる筒状をなし、
     前記フランジ同士の間における一部の領域には、前記ガスタービン車室の内部と前記熱伝導部材の外周面とを連通する隙間が形成されている請求項1に記載のガスタービン。
    The gas turbine cabin has an upper and lower cabins that are joined together by fitting flanges to each other.
    The heat conductive member has a tubular shape that penetrates the pair of flanges in the vertical direction and extends along the inner peripheral surface of the through hole through which a bolt is inserted.
    The gas turbine according to claim 1, wherein a gap is formed in a part of the region between the flanges so as to communicate the inside of the gas turbine casing and the outer peripheral surface of the heat conductive member.
  6.  前記熱伝導部材の内周面と前記ボルトの外周面との間には隙間が形成されている請求項5に記載のガスタービン。 The gas turbine according to claim 5, wherein a gap is formed between the inner peripheral surface of the heat conductive member and the outer peripheral surface of the bolt.
  7.  前記ガスタービン車室の外面に設けられ、該ガスタービン車室における相対的に高温の領域と相対的に低温の領域とにかけて延びる外側熱伝導部材をさらに備える請求項1から6のいずれか一項に記載のガスタービン。 Any one of claims 1 to 6, further comprising an outer heat conductive member provided on the outer surface of the gas turbine cabin and extending over a relatively high temperature region and a relatively low temperature region in the gas turbine casing. The gas turbine described in.
  8.  前記ガスタービン車室は、互いのフランジを合わせて結合された上半車室、及び下半車室を有し、
     前記上半車室、及び前記下半車室の少なくとも一方の外面から前記フランジにかけて延びる接続熱伝導部材をさらに備える請求項1から7のいずれか一項に記載のガスタービン。
    The gas turbine cabin has an upper and lower cabins that are joined together by fitting flanges to each other.
    The gas turbine according to any one of claims 1 to 7, further comprising a connecting heat conductive member extending from the outer surface of at least one of the upper half passenger compartment and the lower half passenger compartment to the flange.
PCT/JP2020/001803 2019-09-11 2020-01-21 Gas turbine WO2021049051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019165505A JP2021042714A (en) 2019-09-11 2019-09-11 gas turbine
JP2019-165505 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021049051A1 true WO2021049051A1 (en) 2021-03-18

Family

ID=74862894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001803 WO2021049051A1 (en) 2019-09-11 2020-01-21 Gas turbine

Country Status (2)

Country Link
JP (1) JP2021042714A (en)
WO (1) WO2021049051A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2844117A (en) * 1954-10-14 1958-07-22 Macgregor Robert Device for protecting ships' holds, wagons, during cargo working
JPS62137195U (en) * 1986-02-24 1987-08-29
US5322405A (en) * 1991-10-30 1994-06-21 Pacific Coast Cement Corporation Dust control system
EP0916572A2 (en) * 1997-11-14 1999-05-19 Chang, Johnny Yung-Ping Dust and water proof apparatus for bulk carrier
WO2014167417A2 (en) * 2013-04-08 2014-10-16 Matias Carlos Jose Duarte Weather proof bulk hold hatch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2844117A (en) * 1954-10-14 1958-07-22 Macgregor Robert Device for protecting ships' holds, wagons, during cargo working
JPS62137195U (en) * 1986-02-24 1987-08-29
US5322405A (en) * 1991-10-30 1994-06-21 Pacific Coast Cement Corporation Dust control system
EP0916572A2 (en) * 1997-11-14 1999-05-19 Chang, Johnny Yung-Ping Dust and water proof apparatus for bulk carrier
WO2014167417A2 (en) * 2013-04-08 2014-10-16 Matias Carlos Jose Duarte Weather proof bulk hold hatch

Also Published As

Publication number Publication date
JP2021042714A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP5577264B2 (en) Exhaust manifold for internal combustion engine
JP5246845B2 (en) Shaft for improving weight and vibration characteristics and turbine engine including the shaft
JP6126246B2 (en) Turbine housing
JP2008215083A (en) Mounting structure for variable nozzle mechanism in variable geometry exhaust turbocharger
JP2011241835A (en) Exhaust-gas turbocharger
JP2007182881A (en) Gas turbine stator and turbine blade assembly
EP2148065B1 (en) Gas turbine engine
JP6704456B2 (en) Shaft/hub connection
JP6360140B2 (en) Combustor assembly
JP5512893B2 (en) Gas turbine rotor having a turbine rotor shaft movable in the axial direction
JP2018527499A (en) Flexible interface for bellows ball joint assembly for controlled rotational restraint
JP6248628B2 (en) Turbocharger
WO2021049051A1 (en) Gas turbine
EP3470648B1 (en) Turbocharger
EP3857042B1 (en) Hybrid jet engine
CN110520607A (en) Turbine and turbocharger with the turbine
JP2017150795A (en) Combustor assembly
JP6033112B2 (en) Exhaust duct and turbine
JP2017096249A (en) Steam turbine inner casing with modular insert
CN104975949B (en) Exhaust-driven turbo-charger exhaust-gas turbo charger
US9989061B2 (en) Geometry for the compensation of axial gaps arising in electric pumps
US20050120719A1 (en) Internally insulated turbine assembly
JP2009103087A (en) Gas turbine and its rotor
US11674449B2 (en) Mount assembly for accessory gearbox of aircraft engine and associated method of assembly
ITCO20110017A1 (en) INTEGRATED GAS TURBINE SYSTEM AND METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862959

Country of ref document: EP

Kind code of ref document: A1