WO2021048458A1 - Sistema de potencia con optimizador de fv para el suministro de potencia desde una instalación fotovoltaica - Google Patents

Sistema de potencia con optimizador de fv para el suministro de potencia desde una instalación fotovoltaica Download PDF

Info

Publication number
WO2021048458A1
WO2021048458A1 PCT/ES2020/070538 ES2020070538W WO2021048458A1 WO 2021048458 A1 WO2021048458 A1 WO 2021048458A1 ES 2020070538 W ES2020070538 W ES 2020070538W WO 2021048458 A1 WO2021048458 A1 WO 2021048458A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power
power system
optimizer
panel
Prior art date
Application number
PCT/ES2020/070538
Other languages
English (en)
French (fr)
Other versions
WO2021048458A4 (es
Inventor
José Angel Gracia Inglés
José Antonio VILLAREJO MAÑAS
María Esther De Jodar Bonilla
Original Assignee
Soltec Innovations, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soltec Innovations, S.L. filed Critical Soltec Innovations, S.L.
Priority to BR112022004197A priority Critical patent/BR112022004197A2/pt
Priority to MX2022002734A priority patent/MX2022002734A/es
Priority to EP20796855.3A priority patent/EP4030576A1/en
Priority to US17/641,714 priority patent/US11695295B2/en
Priority to CN202080063353.XA priority patent/CN114402525A/zh
Publication of WO2021048458A1 publication Critical patent/WO2021048458A1/es
Publication of WO2021048458A4 publication Critical patent/WO2021048458A4/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J11/00Circuit arrangements for providing service supply to auxiliaries of stations in which electric power is generated, distributed or converted
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/20Systems characterised by their energy storage means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention discloses a PV optimizer power system for supplying power from a photovoltaic installation.
  • the invention relates to an auxiliary power system for supplying electrical energy to solar trackers, electronic control, security systems, surveillance systems and other electronic equipment close to devices that require electrical energy.
  • PV installations usually include secondary or complementary systems or devices that require a source of electrical energy to function.
  • solutions commonly used in the current state of the art include:
  • photovoltaic installation should be understood here as an alternative to the photovoltaic solar plant, photovoltaic power plant, solar park, solar farm, photovoltaic installation or photovoltaic system, all of which are known used expressions in this specific field. .
  • PV photovoltaic
  • PV optimizer power system will be understood as a DC to DC converter technology implemented to maximize the energy collected from a photovoltaic solar panel.
  • Document WO2017174829 discloses an installation comprising: an arrangement for generating a direct current, formed by electrical generators (PV1 ... PVn) that are connected in series and located within a local area and that supply a direct current to a remote area total which is the sum of the current generated by each of the electric generators (PV1 ... PVn); an auxiliary power supply device (D) arranged within the local area and providing local supply voltage to an auxiliary device (E), the auxiliary power supply device (D) being composed of a DC power converter ( CP) electrically connected in series by the respective input terminals (T1, T2) in the arrangement to generate direct current between two connection points (p1, p2) of the electric generators located within the local area
  • CP DC power converter
  • US2028 / 0115165A1 discloses a rechargeable battery controller combined with a rechargeable battery and used in an existing PV system.
  • the controller includes a DC-DC converter that allows power to pass between a power line and a rechargeable battery, and a control unit, which determines whether a PCS performs Maximum Power Point Tracking (MPPT) control by scaling based on at an input voltage or a current value of the PCS.
  • MPPT Maximum Power Point Tracking
  • the control unit regulates the charge / discharge power of the rechargeable battery to allow the input power of the PCS to be a target value based on the input voltage and current values of the PCS while performing MPPT control by scaling and keeps the charge / discharge power to be the power at the beginning of the period in a period during which MPPT control is not performed by scaling.
  • the invention proposed in the present document is applicable to a PV installation that has several strings of PV panels and with at least one DC / DC converter connected to a PV panel of said plurality of PV panels of said string, to power one or more modules of energy storage or consumers as in the aforementioned patent documents.
  • This first DC / DC converter is configured to redirect a portion of the power generated by said PV panel to said one or more energy storage modules.
  • the strings of PV panels of the PV installation are connected to a central inverter of the PV installation.
  • the invention proposes the use of a second DC / DC converter, connected in parallel to said PV panel of said chain (including the first mentioned DC / DC converter) in a way that avoids the input of the bypass diode of the PV panel in conduction and at the same time it allows to extract the maximum possible energy from the panel to which the consumer has been connected.
  • said second DC / DC converter is configured to function as an optimizer and execute an MPPT algorithm to determine the maximum power output of the PV panel, so that it indirectly helps the central inverter to obtain a maximum power from said at least one string.
  • the output current of the second DC / DC converter is determined by the string.
  • the second DC / DC converter is configured to operate at a voltage higher than the minimum starting load voltage VSL of the first DC / DC converter necessary to start said first DC / DC converter.
  • Figure 1 is a block diagram of the power system with PV optimizer for supplying energy from a PV installation, showing the second converter intended to implement an MPPT algorithm, connected in parallel with the first converter, said second converter also called optimizer because it avoids conduction of the bypass diodes while allowing maximum energy to be obtained from the PV panel.
  • the PV 4b panel is not part of the power system but rather of a chain in which the power system is installed. This has been indicated by illustrating the PV panel 4b out of a rectangle representing the PV optimizer power system.
  • Figure 2 is a schematic representation of the functional principle of the proposed PV optimizer power system with indication of the central inverter.
  • Figure 3 is a simplified representation of the voltage-current characteristic curve of the PV panel, load curve, panel + load curve and power panel + load curve.
  • Figure 4 is a representation of a PV optimizer power system according to the present invention within a string and with several additional strings from the entire string set supplying the input voltage of a central inverter.
  • FIG. 1 represents a block diagram of the power system 5 with PV optimizer of the present invention. This 5 power system with PV optimizer is connected in series with the existing chain.
  • This first DC / DC converter 1 is configured to redirect a portion of the power generated by the PV panel 4b to one or more energy storage modules 3 (for example, a battery). The portion of energy redirected by the DC / DC converter 1 is less than the total energy generated by the PV panel 4b.
  • Figure 1 also includes according to the principles of the present invention a second DC / DC converter 2, connected in parallel to the PV panel 4b and this second DC / DC converter is configured to function as an optimizer and execute an MPPT algorithm to determine the maximum power output of the PV panel (4b), to indirectly help the central inverter (6) to obtain a maximum power of said at least one chain (including this second DC / DC converter 2). Therefore, the output current of the second DC / DC converter 2 is determined by the chain and the MPPT algorithm of the second DC / DC converter 2 controls the voltage output of the second DC / DC converter 2 delivered to the chain.
  • the energy storage module charger 1 controls the current supplied to the energy storage modules 3 coming from the PV panel 4b according to the duty point controlled by the second DC / DC converter 2.
  • the energy storage modules 3 accumulate the current supplied by the PV panel 4b controlled by the energy storage module charger 1.
  • a voltage input of the second DC / DC converter 2 is equal to the voltage of the PV panel (4b) adjusted by the MPPT algorithm of the second DC / DC converter 2.
  • the second DC / DC converter (2) is a converter that reduces the voltage from its input to its output.
  • Several different solutions can be implemented, including the use of a buck converter, or two or more converters in parallel, etc.
  • FIG. 2 is a simplified diagram for ease of explanation representing the functional principle of the PV optimizer power system 5 of the present invention.
  • the tension of the chains 11 feeds a central inverter 6 of the installation.
  • a central inverter is a DC / AC power inverter connected to the electrical grid.
  • This central inverter 6 regulates the voltage in accordance with the MPPT of the entire installation.
  • This regulation carried out by the central inverter 6 is a slow voltage change to avoid harmonic current distortion. Therefore, the MPPT algorithm of the second DC / DC converter 2 of the power system 5 with PV optimizer should have faster response than the MPPT algorithm of the central inverter 6, which means that the power system with PV optimizer does not affect the performance of the string it is installed on, nor does it affect the performance of the string set of the entire installation.
  • the voltage V, nv represents the input voltage of the central inverter 6.
  • the central inverter 6 will modify this voltage to find the maximum power point of the installation. Since the central inverter 6 is injecting power into the grid and needs to maintain a harmonic distortion of the low current, this voltage will not change rapidly. This point is important because it is assumed at all times that the search for the maximum power point of the optimizer (converter 2) is much faster than that of the central inverter 6. In today's central inverters, this approach is totally valid.
  • the chain in the embodiment of this Figure 2 consists of 3 panels for simplicity, since the number of panels does not affect the focus of the problem.
  • the current represents the consumption of the load connected to the panel. This current can be calculated as the power required by the load divided by the panel voltage at a given time. A current source has been assumed since the DC / DC converter must keep the value of the voltage applied to the panel constant and correctly filtered.
  • the converter 2 to be used can be a step-down converter or possibly two converters connected in parallel with 180 ° ignition phase shift, to reduce input capacitor and output filter coil.
  • the efficacy of these converters can be very high, close to 99%.
  • Figure 3 schematically represents a voltage-current characteristic curve of a PV panel showing a simple load profile and a constant current source that is activated from the presence of a minimum initial load voltage VSL 9.
  • the load (converters 1 and 2) and the PV panel 4b are electrically connected in parallel, the current is the sum of the two currents.
  • the load would have a negative sign not included in the drawing but represented in the resulting characteristic curve, which shows a relative maximum 7 at the moment the load is connected (VSL).
  • VSL relative maximum 7 at the moment the load is connected
  • Figure 4 is a representation of the power system with PV optimizer installed in the string of the photovoltaic installation.
  • the tension of the strings 11 is the voltage input of the central inverter 6 that will be connected to the electrical grid.
  • the Figure shows an embodiment in which the PV optimizer power system 5 including the PV panel 4b with the converters 1 and 2 in parallel, is connected in series between the PV panel 4a and 4c of a string.
  • the algorithm that controls the first DC / DC converter 1 further takes into account the temperature and technology of the energy storage modules 3 to optimize the redirected power when charging the energy storage modules 3.
  • the electrical isolation between the input and the output of the second DC / DC converter 2 is at least 4 kV.
  • the proposed power system 5 with PV optimizer is configured to automatically adjust the load injected by the first DC / DC converter 1 to the energy storage modules 3 according to the incident radiation. in the photovoltaic panels of at least one string of a solar tracker, so that the load injected to the energy storage modules 3 increases according to the solar radiation power.
  • means such as sensors, controls and actuators can be included to automatically adjust the consumption of the DC / DC converter 1 according to the radiation that affects the PV panels of said at least one string of a solar tracker.
  • the aim is to minimize losses in the chain and apply a heavier load to the energy storage modules 3 when there is more photovoltaic power.
  • the inventors have discovered that it is important to be able to regulate the consumption of the converter 1 according to the radiation incident on the solar panels or alternatively according to the current in the chain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Sistema de potencia con optimizador de FV para el suministro de potencia desde una instalación fotovoltaica Un sistema de potencia (5) con optimizador FV para una instalación fotovoltaica para el suministro de potencia desde una instalación fotovoltaica. El sistema comprende un primer convertidor CC/CC (1) conectado a un panel FV (4b) y a uno o más módulos de almacenamiento de energía (3), y un segundo convertidor CC/CC (2), conectado en paralelo a dicho panel FV de una cadena de paneles FV de una instalación fotovoltaica, en el que dicho segundo convertidor CC/CC (2) está configurado para funcionar como un optimizador y ejecutar un algoritmo de seguimiento del punto de máxima potencia, MPPT, para determinar la salida de potencia máxima del panel FV (4b) de dicha pluralidad de paneles FV de dicha cadena.

Description

DESCRIPCIÓN
Sistema de potencia con optimizador de FV para el suministro de potencia desde una instalación fotovoltaica
Campo técnico
La presente invención divulga un sistema de potencia con optimizador de FV para el suministro de potencia desde una instalación fotovoltaica. En particular, la invención se refiere a un sistema de potencia auxiliar para suministrar energía eléctrica a seguidores solares, control electrónico, sistemas de seguridad, sistemas de vigilancia y otros equipos electrónicos cercanos a los dispositivos que requieren energía eléctrica.
Las instalaciones fotovoltaicas (FV) suelen incluir sistemas o dispositivos secundarios o complementarios que requieren una fuente de energía eléctrica para funcionar. Varias soluciones comúnmente utilizadas en el estado actual de la técnica incluyen:
1. Instalaciones eléctricas de baja tensión alimentadas por una red eléctrica, que requieren el uso de una segunda instalación eléctrica aumentando los costes
2. Instalaciones eléctricas de baja tensión alimentadas por instalación fotovoltaica, que requieren también el uso de una segunda instalación eléctrica aumentando los costes
3. Fuente de alimentación de alta tensión de las cadenas de la instalación fotovoltaica, que requieren el uso de una instalación eléctrica de alta tensión y de un convertidor CC/CC de alta tensión aumentando los costes y la complejidad.
La expresión "instalación fotovoltaica", o instalación FV, debe entenderse aquí como una alternativa a la planta solar fotovoltaica, central eléctrica fotovoltaica, parque solar, granja solar, instalación fotovoltaica o sistema fotovoltaico, todos los que son expresiones usadas conocidas en este campo específico.
Además, la abreviatura/acrónimo "FV" se puede utilizar a lo largo del presente documento en lugar del término "fotovoltaico/a".
En esta descripción, un sistema de potencia con optimizador FV se entenderá como una tecnología de convertidor CC a CC implementada para maximizar la energía recolectada de un panel solar fotovoltaico. i Estado de la técnica
El documento WO2017174829 divulga una instalación que comprende: una disposición para generar una corriente continua, formada por generadores eléctricos (PV1... PVn) que están conectados en serie y ubicados dentro de una zona local y que suministran a una zona remota una corriente continua total que es la suma de la corriente generada por cada uno de los generadores eléctricos (PV1... PVn); un dispositivo auxiliar de suministro de potencia (D) dispuesto dentro de la zona local y que proporciona tensión de alimentación local a un dispositivo auxiliar (E), estando compuesto el dispositivo auxiliar de suministro de potencia (D) por un convertidor de potencia CC (CP) conectado eléctricamente en serie por los respectivos terminales de entrada (T1, T2) en la disposición para generar corriente continua entre dos puntos de conexión (p1, p2) de los generadores eléctricos ubicados dentro de la zona local
El documento US2028/0115165A1 divulga un controlador de batería recargable combinado con una batería recargable y utilizado en un sistema FV existente. El controlador incluye un convertidor CC-CC que permite que la potencia pase entre una línea eléctrica y una batería recargable, y una unidad de control, que determina si un PCS realiza el control de seguimiento del punto de máxima potencia (MPPT) mediante escalada basándose en una tensión de entrada o un valor de corriente del PCS. La unidad de control regula la potencia de carga/descarga de la batería recargable para permitir que la potencia de entrada del PCS sea un valor objetivo basándose en la tensión de entrada y los valores de corriente del PCS mientras se realiza el control MPPT mediante escalada y mantiene la potencia de carga/descarga para ser la potencia al comienzo del período en un período durante el que no se realiza el control MPPT mediante escalada.
Sin embargo, las soluciones en las que un convertidor CC/CC para alimentar una carga o consumidor está conectado en serie a uno o más paneles FV de una cadena FV de la instalación FV, han demostrado ser ineficaces porque pueden causar una caída de tensión en los terminales de la cadena si alguno de los paneles FV en dicha cadena que tiene conectado un convertidor CC/CC funciona mal debido al uso de diodos de derivación, reduciendo el resultado de potencia de la instalación FV y provocando una caída de tensión en los terminales de cadena. Breve descripción de la invención
La invención propuesta en el presente documento es aplicable a una instalación FV que tiene varias cadenas de paneles FV y con al menos un convertidor CC/CC conectado a un panel FV de dicha pluralidad de paneles FV de dicha cadena, para alimentar uno o más módulos de almacenamiento de energía o consumidores como en los documentos de patente antes mencionados. Este primer convertidor CC/CC está configurado para redirigir una porción de la potencia generada por dicho panel FV al citado uno o más módulos de almacenamiento de energía.
Las cadenas de paneles FV de la instalación FV están conectadas a un inversor central de la instalación FV.
La invención propone el uso de un segundo convertidor CC/CC, conectado en paralelo a dicho panel FV de dicha cadena (incluido el primer convertidor CC/CC citado) en una forma que evite la entrada del diodo de derivación del panel FV en conducción y al mismo tiempo permita extraer la máxima energía posible del panel al que se ha conectado el consumidor. De acuerdo con esta solución, dicho segundo convertidor CC/CC está configurado para funcionar como un optimizador y ejecutar un algoritmo MPPT para determinar la salida de potencia máxima del panel FV, de modo que ayuda indirectamente al inversor central a obtener una potencia máxima de dicha al menos una cadena. La corriente de salida del segundo convertidor CC/CC está determinada por la cadena.
Así mismo, para un buen funcionamiento del sistema de potencia con optimizador de FV, el segundo convertidor CC/CC está configurado para funcionar a una tensión superior a la tensión de carga de arranque mínima VSL del primer convertidor CC/CC necesaria para que arranque dicho primer convertidor CC/CC.
Otras características de la invención son evidentes a partir de la siguiente descripción detallada de una realización.
Breve descripción de las Figuras
Las ventajas y características anteriores y otras se comprenderán mejor a partir de la siguiente descripción detallada de una realización con referencia a los dibujos adjuntos, para ser tomados de forma ilustrativa y no limitativa, en los que: La Figura 1 es un diagrama de bloques del sistema de potencia con optimizador FV para el suministro de energía desde una instalación FV, que muestra el segundo convertidor destinado a implementar un algoritmo MPPT, conectado en paralelo con el primer convertidor, dicho segundo convertidor denominado también optimizador porque evita la conducción de los diodos de derivación al mismo tiempo que permiten obtener una energía máxima del panel FV. Cabe destacar que el panel FV 4b, no forma parte del sistema de potencia sino de una cadena en la que está instalado el sistema potencia. Esto se ha indicado ilustrando el panel FV 4b fuera de un rectángulo que representa el sistema de potencia con optimizador FV.
La Figura 2 es una representación esquemática del principio funcional del sistema de potencia con optimizador FV propuesto con indicación del inversor central.
La Figura 3 es una representación simplificada de la curva característica tensión-corriente del panel FV, curva de carga, panel + curva de carga y panel de potencia + curva de carga.
La Figura 4 es una representación de un sistema de potencia con optimizador de FV de acuerdo con la presente invención dentro de una cadena y con varias cadenas adicionales de todo el conjunto de cadenas que alimentan la tensión de entrada de un inversor central.
Descripción detallada de una realización
Las ventajas y características anteriores y otras se comprenderán mejor a partir de la siguiente descripción detallada de una realización con referencia a los dibujos adjuntos, para tomarse de formarse ilustrativa y no limitativa, en los que:
La Figura 1 representa un diagrama de bloques del sistema de potencia 5 con optimizador de FV de la presente invención. Este sistema de potencia 5 con optimizador FV está conectado en serie con la cadena existente.
Muestra un primer convertidor CC/CC 1 conectado en paralelo a un panel FV 4b de la cadena. Este primer convertidor CC/CC 1 está configurado para redirigir una porción de la potencia generada por el panel FV 4b a uno o más módulos de almacenamiento de energía 3 (por ejemplo, una batería). La porción de energía redirigida por el convertidor CC/CC 1 es menor que la energía total generada por el panel FV 4b. La Figura 1 incluye también de acuerdo con los principios de la presente invención un segundo convertidor CC/CC 2, conectado en paralelo al panel FV 4b y este segundo convertidor CC/CC está configurado para funcionar como un optimizador y ejecutar un algoritmo MPPT para determinar la salida de potencia máxima del panel FV (4b), para ayudar indirectamente al inversor central (6) a obtener una potencia máxima de dicha al menos una cadena (incluyendo este segundo convertidor CC/CC 2). Por lo tanto, la corriente de salida del segundo convertidor CC/CC 2 está determinada por la cadena y el algoritmo MPPT del segundo convertidor CC/CC 2 controla la salida de la tensión del segundo convertidor CC/CC 2 entregada a la cadena. El cargador de módulos de almacenamiento de energía 1 controla la corriente suministrada a los módulos de almacenamiento de energía 3 que proviene del panel FV 4b de acuerdo con el punto de trabajo controlado por el segundo convertidor CC/CC 2. Los módulos de almacenamiento de energía 3 acumulan la corriente suministrada por el panel FV 4b controlado por el cargador de módulos de almacenamiento de energía 1.
De acuerdo con los principios de la presente invención, una entrada de tensión del segundo convertidor CC/CC 2 es igual a la tensión del panel FV (4b) ajustado por el algoritmo MPPT del segundo convertidor CC/CC 2.
De acuerdo con una realización preferida de la invención, el segundo convertidor CC/CC (2) es un convertidor que reduce la tensión de su entrada a su salida. Se pueden implementar varias soluciones diferentes, entre ellas el uso de un convertidor buck, o dos o más convertidores en paralelo, etc.
La Figura 2 es un esquema simplificado para facilitar la explicación que representa el principio funcional del sistema 5 de potencia con optimizador de FV de la presente invención. La tensión de las cadenas 11 alimenta un inversor central 6 de la instalación. Un inversor central es un inversor de potencia CC/CA conectado a la red eléctrica. Este inversor central 6 regula la tensión de acuerdo con el MPPT de toda la instalación. Esta regulación realizada por el inversor central 6 es un cambio de tensión lento para evitar la distorsión armónica de corriente. Por lo tanto, el algoritmo MPPT del segundo convertidor CC/CC 2 del sistema de potencia 5 con optimizador FV debe tener una respuesta más rápida que el algoritmo MPPT del inversor central 6, lo que significa que el sistema de potencia con optimizador FV no afecta el rendimiento de la cadena en la que está instalado, ni tampoco afecta el rendimiento del conjunto de cadenas de toda la instalación. Considerando con mayor detalle esta Figura 2, la tensión V¡nv representa la tensión de entrada del inversor central 6. El inversor central 6 modificará esta tensión para encontrar el punto de máxima potencia de la instalación. Puesto que el inversor central 6 está inyectando energía a la red y necesita mantener una distorsión armónica de la baja corriente, esta tensión no cambiará rápidamente. Este punto es importante porque se asume en todo momento que la búsqueda del punto de máxima potencia del optimizador (convertidor 2) es mucho más rápida que la del inversor central 6. En los inversores centrales actuales, este enfoque es totalmente válido. La cadena en la realización de esta Figura 2 consiste en 3 paneles por simplicidad, puesto que el número de paneles no afecta el enfoque del problema. La corriente le representa el consumo de la carga conectada al panel. Esta corriente se puede calcular como la potencia requerida por la carga dividida entre la tensión del panel en un momento dado. Se ha asumido una fuente de corriente puesto que el convertidor CC/CC debe mantener el valor de la tensión aplicado al panel constante y correctamente filtrado.
Si el algoritmo del seguidor del punto de máxima potencia del inversor central 6 funciona correctamente, la corriente ls (corriente de entrada al inversor central 6) debe estar muy próxima a la corriente del punto de máxima potencia de los paneles (ls= lmpp). Suponiendo que todos los paneles son iguales y que reciben la misma radiación, todos deben estar trabajando en estas condiciones con una tensión aproximada a su tensión del punto de máxima potencia Vm p (VP3 = VP2 = VP1 = Vmpp). Suponiendo una eficacia del 100 % en el convertidor, la potencia entregada a la cadena es igual a Vmpp *lmpp-Vmpp *lc, es decir, la potencia proporcionada por el panel menos la carga. Si el resto de la instalación también se encuentra en su punto de máxima potencia, la corriente ls es igual a lmpp, por lo que la potencia a la salida del convertidor se puede calcular como se indica en la ecuación (1). En estas condiciones se puede deducir que para que el sistema funcione correctamente la tensión de salida debe ser inferior a la del punto de máxima potencia, como se muestra en la ecuación (2).
Vo ' Impp — Vmpp ' Impp ~ Vmpp ' lc (1)
Vo Vmpp - Vmpp ' lc lmpp (2J
De acuerdo con estos resultados y bajo la premisa de que el aislamiento galvánico no es necesario en esta parte, el convertidor 2 que se va a utilizar puede ser un convertidor reductor o posiblemente dos convertidores conectados en paralelo con 180° de desfase de ignición, para reducir el condensador de entrada y la bobina del filtro de salida. La eficacia de estos convertidores puede ser muy alta, cerca del 99%.
La Figura 3 representa esquemáticamente una curva característica de tensión-corriente de un panel FV que muestra un perfil de carga simple y una fuente de corriente constante que se activa a partir de la presencia de una tensión de carga inicial mínima VSL 9. Como la carga (convertidores 1 y 2) y el panel FV 4b están conectados eléctricamente en paralelo, la corriente es la suma de las dos corrientes. En este caso la carga tendría un signo negativo no incluido en el dibujo pero representado en la curva característica resultante, que muestra un máximo relativo 7 en el momento en que se conecta la carga (VSL). Para que el algoritmo de búsqueda del seguimiento del punto de máxima potencia funcione correctamente, se debe tomar el punto máximo absoluto 8 y no el máximo relativo 7 que se ocasiona cuando la carga está conectada, por lo que el valor debe ser mayor que el valor VSL 9.
La Figura 4 es una representación del sistema de potencia con optimizador FV instalado en la cadena de la instalación fotovoltaica. La tensión de las cadenas 11 es la entrada de tensión del inversor central 6 que se conectará a la red eléctrica. La Figura muestra una realización en la que el sistema de potencia 5 con optimizador FV que incluye el panel FV 4b con los convertidores 1 y 2 en paralelo, está conectado en serie entre el panel FV 4a y 4c de una cadena.
El algoritmo que controla el primer convertidor CC/CC 1 tiene en cuenta además la temperatura y la tecnología de los módulos de almacenamiento de energía 3 para optimizar la potencia redirigida al cargar los módulos de almacenamiento de energía 3.
El aislamiento eléctrico entre la entrada y la salida del segundo convertidor CC/CC 2 es de al menos 4 kV.
De acuerdo con una realización adicional de la invención, el sistema de potencia 5 con optimizador FV propuesto está configurado para ajustar automáticamente la carga inyectada por el primer convertidor CC/CC 1 a los módulos de almacenamiento de energía 3 de acuerdo con la radiación que incide en los paneles fotovoltaicos de al menos una cadena de un seguidor solar, de modo que la carga inyectada a los módulos de almacenamiento de energía 3 se incrementa de acuerdo con la potencia de radiación solar.
Para este fin, medios como sensores, controles y accionadores se pueden incluir para ajustar automáticamente el consumo del convertidor CC/CC 1 de acuerdo con la radiación que incide en los paneles PV de dicha al menos una cadena de un seguidor solar. El objetivo es minimizar las pérdidas en la cadena y aplicar una carga más intensa de los módulos de almacenamiento de energía 3 cuando hay más potencia fotovoltaica.
Los inventores han descubierto que es importante poder regular el consumo del convertidor 1 de acuerdo con la radiación que incide sobre los paneles solares o de forma alternativa de acuerdo con la corriente de la cadena.
Cuanto mayor sea la relación entre la potencia del panel y la potencia de la carga 3 que se va a alimentar, menor será el efecto en toda la instalación.
Estas medidas permiten aprovechar los momentos de mayor radiación del día para realizar la alimentación de la carga 3 bajo una gran exigencia energética.
También es posible evitar conectar la carga a primera hora de la mañana y a última hora de la tarde. En caso de radiación muy baja, la carga debe ajustarse a la potencia generada por el panel.
Se entenderá que varias partes de una realización de la invención pueden combinarse libremente con partes descritas en otras realizaciones, incluso si dicha combinación no se describe explícitamente, siempre que no haya ningún daño en tal combinación.

Claims

REIVINDICACIONES
1. Un sistema de potencia (5) con optimizador FV para el suministro de potencia desde una instalación fotovoltaica, en el que al menos una cadena de un seguidor solar de dicha instalación FV comprende una pluralidad de paneles FV conectados, conectada a un inversor central (6) de la instalación FV, en el que el sistema de potencia comprende:
- al menos un primer convertidor CC/CC (1), y
- uno o más módulos de almacenamiento de energía (3) cargados por dicho primer convertidor CC/CC (1) en el que dicho al menos primer convertidor CC/CC (1) está conectado a un panel FV (4b) de dicha pluralidad de paneles FV de dicha cadena caracterizado por que dicho sistema de potencia (5) con optimizador FV comprende además:
- un segundo convertidor CC/CC (2), conectado en paralelo a dicho panel FV (4b) de dicha cadena, en el que dicho segundo convertidor CC/CC (2) está configurado para funcionar como un optimizador y para ejecutar un algoritmo de seguimiento del punto de máxima potencia, MPPT, para determinar la salida de potencia máxima del panel FV (4b), de modo que ayuda indirectamente al inversor central (6) a obtener una potencia máxima de dicha al menos una cadena. en el que dicho primer convertidor CC/CC (1), también conectado en paralelo a dicho panel FV (4b) de dicha cadena, está configurado para redirigir una porción de la energía generada por dicho panel FV (4b) a dicho uno o más módulos de almacenamiento de energía (3), y en el que la corriente de salida del segundo convertidor CC/CC (2) está determinada por la cadena.
2. Sistema de potencia (5) con optimizador FV de acuerdo con la reivindicación 1, en el que una entrada de tensión del segundo convertidor CC/CC (2) es igual a la tensión del panel FV (4b) ajustada por el algoritmo MPPT del segundo convertidor CC/CC (2).
3. Sistema de potencia (5) con optimizador FV de acuerdo con la reivindicación 1, en el que la cadena está conectada a un inversor central (6) de la instalación FV.
4. Sistema de potencia (5) con optimizador FV de acuerdo con la reivindicación 3, en el que el algoritmo MPPT del segundo convertidor CC/CC (2) tiene una respuesta más rápida que el algoritmo MPPT del inversor central (6).
5. Sistema de potencia (5) con optimizador FV de acuerdo con la reivindicación 1, en el que el segundo convertidor CC/CC (2) está configurado para funcionar a una tensión superior a la tensión de carga de arranque mínima VSL (9) del primer convertidor CC/CC (1) necesaria para que arranque dicho primer convertidor CC/CC (1).
6. Sistema de potencia (5) con optimizador FV de acuerdo con la reivindicación 1, en el que el segundo convertidor CC/CC (2) es un convertidor que reduce la tensión de su entrada a su salida.
7. Sistema de potencia (5) con optimizador FV de acuerdo con la reivindicación 1, en el que el sistema de potencia con (5) con optimizador FV está conectado en paralelo con el panel FV (4b) y en serie con la pluralidad de paneles FV de una de las cadenas de la instalación FV.
8. Sistema de potencia (5) con optimizador FV de acuerdo con la reivindicación 1, en el que dicha porción de potencia redirigida al sistema de módulos de almacenamiento de energía (3) se ajusta además considerando la temperatura y la tecnología de los módulos de almacenamiento de energía (3).
9. Sistema de potencia (5) con optimizador FV de acuerdo con la reivindicación 1, en el que la entrada y la salida del segundo convertidor CC/CC (2) está eléctricamente aislada.
10. Sistema de potencia (5) con optimizador FV de acuerdo con la reivindicación 1 , en el que el sistema está configurado para ajustar automáticamente la carga inyectada por el primer convertidor CC/CC (1) a los módulos de almacenamiento de energía (3) de acuerdo con la radiación que incide en los paneles FV de al menos una cadena de un seguidor solar, de modo que la carga inyectada a los módulos de almacenamiento de energía (3) se incrementa de acuerdo con la potencia de radiación solar.
PCT/ES2020/070538 2019-09-10 2020-09-09 Sistema de potencia con optimizador de fv para el suministro de potencia desde una instalación fotovoltaica WO2021048458A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112022004197A BR112022004197A2 (pt) 2019-09-10 2020-09-09 Sistema de potência otimizador pv para provisão de potência a partir de uma instalação fotovoltaica
MX2022002734A MX2022002734A (es) 2019-09-10 2020-09-09 Sistema de potencia con optimizador de fv para el suministro de potencia desde una instalacion fotovoltaica.
EP20796855.3A EP4030576A1 (en) 2019-09-10 2020-09-09 Pv-optimiser power system for supply of power from a photovoltaic installation
US17/641,714 US11695295B2 (en) 2019-09-10 2020-09-09 PV-optimiser power system for supply of power from a photovoltaic installation
CN202080063353.XA CN114402525A (zh) 2019-09-10 2020-09-09 对来自光伏装置的电力进行供应的光伏优化器电力系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19382787.0 2019-09-10
EP19382787.0A EP3793054A1 (en) 2019-09-10 2019-09-10 Pv-optimiser power system for supply of power from a photovoltaic installation

Publications (2)

Publication Number Publication Date
WO2021048458A1 true WO2021048458A1 (es) 2021-03-18
WO2021048458A4 WO2021048458A4 (es) 2021-04-22

Family

ID=68069696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070538 WO2021048458A1 (es) 2019-09-10 2020-09-09 Sistema de potencia con optimizador de fv para el suministro de potencia desde una instalación fotovoltaica

Country Status (8)

Country Link
US (1) US11695295B2 (es)
EP (2) EP3793054A1 (es)
CN (1) CN114402525A (es)
AR (1) AR119923A1 (es)
BR (1) BR112022004197A2 (es)
CL (1) CL2022000570A1 (es)
MX (1) MX2022002734A (es)
WO (1) WO2021048458A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4181350A1 (en) * 2021-11-12 2023-05-17 Soltec Innovations, S.L. Charging arrangement for solar tracker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248259A1 (en) * 2013-11-04 2016-08-25 Sma Solar Technology Ag Method for operating a photovoltaic system comprising an energy store and a bidirectional converter for connection of an energy store
WO2017174829A1 (es) 2016-04-07 2017-10-12 Soltec Energías Renovables, S.L. Instalación para alimentación de equipos auxiliares en plantas generadoras de energía eléctrica
US20180115165A1 (en) 2015-06-02 2018-04-26 Omron Corporation Rechargeable battery controller
US20180331543A1 (en) * 2017-05-15 2018-11-15 Dynapower Company Llc Energy storage system for photovoltaic energy and method of storing photovoltaic energy
EP3514911A1 (en) * 2018-01-18 2019-07-24 Soltec Energías Renovables, SL Photovoltaic system for generating electricity with an auxiliary charging module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202334369U (zh) * 2010-12-27 2012-07-11 董密 一种光伏电能优化器
CN102237823A (zh) * 2010-12-30 2011-11-09 保定天威集团有限公司 一种光伏功率优化器
CN203883764U (zh) * 2014-04-30 2014-10-15 广西师范大学 带有太阳能功率优化器的光伏发电阵列
US20150364918A1 (en) * 2014-06-11 2015-12-17 Innorel System Private Limited System and method of optimizing load current in a string of solar panels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248259A1 (en) * 2013-11-04 2016-08-25 Sma Solar Technology Ag Method for operating a photovoltaic system comprising an energy store and a bidirectional converter for connection of an energy store
US20180115165A1 (en) 2015-06-02 2018-04-26 Omron Corporation Rechargeable battery controller
WO2017174829A1 (es) 2016-04-07 2017-10-12 Soltec Energías Renovables, S.L. Instalación para alimentación de equipos auxiliares en plantas generadoras de energía eléctrica
US20180331543A1 (en) * 2017-05-15 2018-11-15 Dynapower Company Llc Energy storage system for photovoltaic energy and method of storing photovoltaic energy
EP3514911A1 (en) * 2018-01-18 2019-07-24 Soltec Energías Renovables, SL Photovoltaic system for generating electricity with an auxiliary charging module

Also Published As

Publication number Publication date
US11695295B2 (en) 2023-07-04
EP3793054A1 (en) 2021-03-17
CN114402525A (zh) 2022-04-26
AR119923A1 (es) 2022-01-19
WO2021048458A4 (es) 2021-04-22
CL2022000570A1 (es) 2022-09-30
US20220399743A1 (en) 2022-12-15
BR112022004197A2 (pt) 2022-06-21
EP4030576A1 (en) 2022-07-20
MX2022002734A (es) 2022-04-06

Similar Documents

Publication Publication Date Title
US20130027979A1 (en) Converters and inverters for photovoltaic power systems
US20060174939A1 (en) Efficiency booster circuit and technique for maximizing power point tracking
US20110089886A1 (en) Maximum Power Point Tracking Bidirectional Charge Controllers for Photovoltaic Systems
US20120080943A1 (en) Photovoltaic Power Systems
US20060185727A1 (en) Converter circuit and technique for increasing the output efficiency of a variable power source
Senivasan et al. An MPPT micro solar energy harvester for wireless sensor networks
WO2021048458A1 (es) Sistema de potencia con optimizador de fv para el suministro de potencia desde una instalación fotovoltaica
Jaureguizar et al. Enerlight project: Walking from electronic lighting systems to Lighting Smart Grid
Elangovan et al. Modelling and Simulation of High Gain Hybrid Boost Converter
Habib et al. Frequency control in off-grid hybrid diesel/PV/battery power system
Parvathy et al. A photovoltaic water pumping system with high efficiency and high lifetime
Elfeqy et al. Design of a low voltage DC grid interfacing PV and energy storage systems
CN110198073B (zh) 能源供应系统及能源管理的方法
CN102035438A (zh) 一种蓄能太阳能电池组件及其智能存储控制方法
Liang et al. A novel three-port dc-dc converter for photovoltaic electric vehicles
RU219061U1 (ru) Интеллектуальное устройство электропитания на основе солнечных батарей
Kusmantoro et al. Voltage stability in DC micro grid by controlling two battery units with hybrid network systems
Daut et al. Three level single phase photovoltaic and wind power hybrid inverter
RU2811080C1 (ru) Устройство электропитания на основе фотоэлектрических панелей
Duarte et al. Single-stage standalone lighting system based on gan transistors
Awaji et al. Energy Management System for Direct current (DC) Microgrid
KR20140099989A (ko) 신재생 에너지원에 대한 전력 조절 장치
Raghav et al. Design of solar power based water pumping system
Chokchai Power flow control and MPPT parameter selection for residential grid-connected PV systems with battery storage
Bharathi et al. Power optimization of embedded controller PV powered stand alone system for rural electrification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022004197

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020796855

Country of ref document: EP

Effective date: 20220411

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022004197

Country of ref document: BR

Free format text: APRESENTAR NOVAS FOLHAS REFERENTES AO QUADRO REIVINDICATORIO ALTERADO, UMA VEZ QUE O CONJUNTO APRESENTADO TEM INCORRECAO NA NUMERACAO DE SUAS PAGINAS OU PAGINAS FALTANTES (3/3).

ENP Entry into the national phase

Ref document number: 112022004197

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220307