WO2021047155A1 - 一种电控双向弯曲型变形-变刚度一体化驱动器 - Google Patents

一种电控双向弯曲型变形-变刚度一体化驱动器 Download PDF

Info

Publication number
WO2021047155A1
WO2021047155A1 PCT/CN2020/078133 CN2020078133W WO2021047155A1 WO 2021047155 A1 WO2021047155 A1 WO 2021047155A1 CN 2020078133 W CN2020078133 W CN 2020078133W WO 2021047155 A1 WO2021047155 A1 WO 2021047155A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flexible electrode
electro
deformation
electric field
Prior art date
Application number
PCT/CN2020/078133
Other languages
English (en)
French (fr)
Inventor
董旭峰
李博
马宁
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/052,983 priority Critical patent/US11622491B2/en
Publication of WO2021047155A1 publication Critical patent/WO2021047155A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2046Cantilevers, i.e. having one fixed end adapted for multi-directional bending displacement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0613Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using layers of different materials joined together, e.g. bimetals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/062Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the activation arrangement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Definitions

  • the invention belongs to the technical field of soft robots, and relates to an electronically controlled bidirectional bending deformation-variable rigidity integrated driver.
  • Soft robotics is a new field in the ascendant. It focuses on the mechanical properties of soft machinery and the integration technology of materials, structures, and software. In recent years, a variety of soft robot technologies with deformation adaptation functions have been proposed, and some results have been achieved. However, these studies have mostly focused on the development of deformable materials/structures and the realization of the deformation process, while there are few studies on the functional docking after deformation. . In fact, the robot not only needs to deform, but also needs to maintain the shape to complete other mechanical operations. It should be a rigid-flexible robot. Flexibility makes the robot adaptable, sensitive and agile, while rigidity ensures that it has the necessary strength to complete the operation task.
  • Dielectric elastomer is a typical electrically driven deformable material.
  • the surface of the dielectric elastomer is covered with a flexible electrode.
  • the dielectric elastomer shrinks in the direction of the voltage and stretches perpendicular to the direction of the voltage.
  • dielectric elastomers Compared with other large-deformation materials, dielectric elastomers have the advantages of fast response, large deformation, low density, high flexibility, high energy density, and freedom from environmental factors, so they are widely concerned.
  • Electrorheological materials are smart materials whose viscosity or elastic modulus can be adjusted in real time, reversibly and rapidly by electric field, and have the characteristics of electro-variable damping/variable stiffness. Electrorheological materials have experienced the development process from electrorheological fluid to electrorheological glue and then to electrorheological elastomer. Electrorheological fluids are usually prepared by dispersing micron or nanometer dielectric particles in insulating oil, while electrorheological elastomers are composites formed by adding solid particles that can be polarized under the action of an electric field into the elastomer and then solidifying. Elastomer. During the solidification process, the solid particles under the action of the electric field gradually form a fibrous or columnar ordered structure. The ordered structure after curing is rooted in the matrix, so that the mechanical properties such as the elastic modulus and the damping loss factor of the electrorheological elastomer can be controlled in real time, reversibly and quickly by the electric field.
  • the purpose of the present invention is to provide an electronically controlled two-way bending deformation-variable stiffness integrated actuator in view of the defects of the prior art, so as to solve the complicated structure, slow response and control accuracy of the existing pneumatic deformation-variable stiffness integrated actuator Poor and other shortcomings.
  • An electronically controlled bidirectional bending type deformation-variable stiffness integrated driver includes two electro-deformable layers, one electro-variable stiffness layer and four flexible electrodes.
  • the electro-deformation layer is composed of a dielectric elastomer
  • the electro-variable rigidity layer is composed of an electrorheological material.
  • the electro-deformable layer, the flexible electrode, and the electro-mechanical stiffness layer constitute a laminated structure.
  • An electronically controlled bidirectional bending type deformation-variable rigidity integrated driver comprising an electro-deformable layer, an electro-variable rigidity layer and a flexible electrode;
  • the electronically controlled bidirectional bending deformation-variable rigidity integrated driver includes the first layer of flexible electrode 1, the first electromorphic layer 2, the second layer of flexible electrode 3, the electrovariable stiffness layer 4, and the third layer from top to bottom.
  • Layer of flexible electrode 5, second electro-deformable layer 6 and fourth layer of flexible electrode 7, each layer is connected by bonding;
  • the first layer of flexible electrodes 1, the second layer of flexible electrodes 3, the third layer of flexible electrodes 5, and the fourth layer of flexible electrodes 7 are made of carbon paste, conductive polymer, conductive hydrogel or conductive silver. Pulp
  • the material used for the first electro-deformation layer 2 and the second electro-deformation layer 6 is a dielectric elastomer
  • the electrorheological rigidity layer 4 is made of electrorheological fluid, electrorheological gel or electrorheological elastomer;
  • the electrorheological fluid is a mixture of nano-dielectric particles and insulating oil, and the volume ratio of the two is 1:9 ⁇ 3:2;
  • the electrorheological gel is a mixture of nano-dielectric particles and hydrogel, the volume ratio of the two is 1:9 ⁇ 3:2;
  • the electrorheological elastomer is nanometer The mixture of dielectric particles and rubber, the volume ratio of the two is 1:9 ⁇ 1:1;
  • first electro-deformation layer 2 and the second electro-deformation layer 6 are made of silicone rubber, polyurethane, Acrylate, fluorosilicone rubber or silicone rubber filled with TiO2 nanoparticles.
  • the electronically controlled bidirectional bending deformation-variable stiffness integrated driver realizes the dual functions of deformation and variable stiffness through electric field adjustment, and has simple structure, precise control, rapid response, and convenient control. , The advantage of being less affected by the environment.
  • Fig. 1 is a schematic diagram of the structure of the electronically controlled bidirectional bending deformation-variable stiffness integrated actuator of the present invention.
  • Figure 2 is a schematic diagram of the principle of the upward deformation-variable rigidity test of the electronically controlled bidirectional bending deformation-variable stiffness integrated actuator of the present invention.
  • Fig. 3 is a schematic diagram of the principle of downward deformation-variable stiffness of the electronically controlled bidirectional bending deformation-variable stiffness integrated actuator of the present invention.
  • an electronically controlled bidirectional bending type deformation-variable stiffness integrated driver includes an electro-deformable layer, an electro-variable stiffness layer and a flexible electrode;
  • the electronically controlled bidirectional bending deformation-variable rigidity integrated driver includes the first layer of flexible electrode 1, the first electromorphic layer 2, the second layer of flexible electrode 3, the electrovariable stiffness layer 4, and the third layer from top to bottom.
  • Layer of flexible electrode 5, second electro-deformable layer 6 and fourth layer of flexible electrode 7, each layer is connected by bonding;
  • the first layer of flexible electrodes 1, the second layer of flexible electrodes 3, the third layer of flexible electrodes 5, and the fourth layer of flexible electrodes 7 are made of carbon paste, conductive polymer, conductive hydrogel or conductive silver. Pulp
  • the material used for the first electro-deformation layer 2 and the second electro-deformation layer 6 is a dielectric elastomer
  • the electrorheological rigidity layer 4 is made of electrorheological fluid, electrorheological gel or electrorheological elastomer;
  • the electrorheological fluid is a mixture of nano-dielectric particles and insulating oil, and the volume ratio of the two is 1:9 ⁇ 3:2;
  • the electrorheological gel is a mixture of nano-dielectric particles and hydrogel, the volume ratio of the two is 1:9 ⁇ 3:2;
  • the electrorheological elastomer is nanometer The mixture of dielectric particles and rubber, the volume ratio of the two is 1:9 ⁇ 1:1.
  • an electronically controlled bidirectional bending deformation-variable stiffness integrated actuator the implementation process of its downward bending deformation and variable stiffness is as follows: between the first layer of flexible electrode 1 and the second layer of flexible electrode 3 When an electric field is applied between them, the first electro-deformation layer 2 is deformed under the Maxwell effect, and the driver is unidirectionally bent; at this time, the electric field between the second layer of flexible electrode 3 and the third layer of flexible electrode 5 is kept at zero, and the third layer The electric field between the flexible electrode 5 and the fourth layer of flexible electrode 7 is zero, and the electrovariable stiffness layer 4 and the second electromorphic layer 6 deform in concert with the first electromorphic layer 2; subsequently, the second layer of flexible electrode 3 An electric field is applied between the third layer of flexible electrode 5, and the electro-variable rigidity layer 4 is transformed into a relatively rigid state, so as to maintain a stable state of the driver after being deformed.
  • an electronically controlled bidirectional bending deformation-variable rigidity integrated driver the implementation process of the upward bending deformation and variable rigidity is as follows: between the third layer of flexible electrode 5 and the fourth layer of flexible electrode 7 When an electric field is applied, the second electro-deformable layer 6 is deformed under the Maxwell effect, and the driver is bent to the other side; at this time, the electric field between the second layer of flexible electrode 3 and the third layer of flexible electrode 5 is kept at zero, and the first The electric field between the first layer of flexible electrode 1 and the second layer of flexible electrode 3 is zero, and the electrovariable rigidity layer 4 and the first electromorphic layer 2 deform cooperatively with the second electromorphic layer 6; subsequently, the second layer of flexible electrode An electric field is applied between the third layer of flexible electrode 3 and the third layer of flexible electrode 5, and the electrovariable rigidity layer 4 is transformed into a relatively rigid state, so as to maintain the stable state of the driver after the deformation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

一种电控双向弯曲型变形-变刚度一体化驱动器,属于软体机器人技术领域。电控双向弯曲型变形-变刚度一体化驱动器包括电致变形层、电致变刚度层及柔性电极三种功能层;自上而下依次为第一层柔性电极(1)、第一电致变形层(2)、第二层柔性电极(3)、电致变刚度层(4)、第三层柔性电极(5)、第二电致变形层(6)、第四层柔性电极(7),各层之间通过粘接连接;电致变形层所用材料为介电弹性体;电致变刚度层所用材料为电流变材料,包括电流变液、电流变凝胶及电流变弹性体。与现有气动式变形-变刚度一体化驱动器相比,具有结构简单、调控精确、响应迅速、控制方便、受环境影响小的优势。

Description

一种电控双向弯曲型变形-变刚度一体化驱动器 技术领域
本发明属于软体机器人技术领域,涉及一种电控双向弯曲型变形-变刚度一体化驱动器。
背景技术
软体机器人是当前一个方兴未艾的新领域,它聚焦于软机械的力学特性以及材料、结构、软件的集成技术。近年来已提出多种具有变形适应功能的软体机器人技术,也取得了一些成效,但是这些研究多关注于变形材料/结构的研发和变形过程的实现,而对于变形后的功能对接却鲜有研究。事实上机器人不仅需要变形,更需要保持该形状以完成其它机械操作,应该是一种具有刚柔特征的机器人。柔性使机器人具有适应性、敏感性和敏捷性,而刚性则确保其具备必要的力量以完成操作任务。
针对此,国内外学者已开发出一些变形-变刚度一体化驱动器,但采用的都是气动控制的模式。如美国麻省理工大学的Shepherd等将Ecoflex与PDMS复合构建了两种不同结构的刚度可控的气动式驱动器;此外,他们还将多孔PDMS与低熔点的合金泡沫复合,开发了具有形状记忆效应和自愈合功能的温/气双驱动变形-变刚度驱动器。香港大学的Chen等人则在气动驱动器中设置填充颗粒的腔体,利用负压下的颗粒的阻塞效应实现了刚度的调节。这类气动驱动的变形-变刚度一体化驱动器均需要复杂的机械结构管道、阀门等以及庞大的气泵负载,大大限制了应用扩展。因此,亟需探索具有其它驱动方式的变形-变刚度一体化驱动器。众所周知,电是一个通用的物理量,传输速度快,不受环境限制,适用于所有的机电系统,采用电驱动变形和变刚度的技术无疑具有颠覆性、创新性和普适性。
介电弹性体是一种典型的电驱动型的变形材料。在介电弹性体表面覆盖有柔性电极,当在柔性电极上施加电压时,介电弹性体沿电压方向收缩,而在垂直于电压方向伸长。相比其他大变形材料,介电弹性体具有响应快、形变量大、密度低、柔性大、能量密度高、不受环境因素的影响等优点,因此广泛关注。
电流变材料是一类粘度或弹性模量可由电场实时、可逆、迅速调控的智能材料,具有电致变阻尼/变刚度的特性。电流变材料经历了从电流变液到电流变胶再到电流变弹性体的发展历程。电流变液通常由微米级或纳米级的介电颗粒分散于绝缘油中制备而成,而电流变弹性体是将可在电场作用下极化的固体粒子加入到弹性体内,然后固化形成的复合弹性体。固化过程中,受到电场作用的固体颗粒逐渐形成纤维状或柱状的有序结构。这种固化后的有序结构根植在基体中,使电流变弹性体的弹性模量、阻尼损耗因子等力学性能可通过电场实时、可逆、迅速控制。
综上,国内外学者开发了一系列具有大变形功能的驱动器,但如何维持变形后的形态以完成必要的机械操作是制约大变形驱动器推广的难点。采用电驱动的方式,将具有电致变形与电致变刚度功能的材料进行有机结合,构建电致变形-变刚度一体化驱动器是解决这一问题的途径之一。
技术问题
本发明的目的在于针对已有技术存在的缺陷,提供一种电控双向弯曲型变形-变刚度一体化驱动器,以解决现有气动式变形-变刚度一体化驱动器结构复杂、响应慢、控制精度差等缺点。
技术解决方案
一种电控双向弯曲型变形-变刚度一体化驱动器,包括两层电致变形层、一层电致变刚度层及四层柔性电极。电致变形层由介电弹性体构成,电致变刚度层由电流变材料构成。电致变形层、柔性电极及电致电刚度层构成层叠结构,当需要变形时,通过柔性电极对电致变形层施加电场;当需要维持形态或提供必要的刚度时,对电致变刚度层施加电压。最终实现可双向弯曲的电致变形和变刚度双功能。
本发明的技术方案:
一种电控双向弯曲型变形-变刚度一体化驱动器,包括电致变形层、电致变刚度层及柔性电极;
该电控双向弯曲型变形-变刚度一体化驱动器自上而下依次为第一层柔性电极1、第一电致变形层2、第二层柔性电极3、电致变刚度层4、第三层柔性电极5、第二电致变形层6和第四层柔性电极7,各层之间通过粘接连接;
所述的第一层柔性电极1、第二层柔性电极3、第三层柔性电极5和第四层柔性电极7采用的材质为涂覆碳膏、导电聚合物、导电水凝胶或导电银浆;
所述的第一电致变形层2和第二电致变形层6采用的材质为介电弹性体;
所述的电致变刚度层4采用的材质为电流变液、电流变凝胶或电流变弹性体;所述的电流变液是纳米介电颗粒与绝缘油的混合物,二者的体积比为1:9~3:2;所述的电流变凝胶是纳米介电颗粒与水凝胶的混合物,二者的体积比为1:9~3:2;所述的电流变弹性体是纳米介电颗粒与橡胶的混合物,二者的体积比为1:9~1:1;
在第一层柔性电极1和第二层柔性电极3之间施加电场,第一电致变形层2在Maxwell 效应作用下发生变形,驱动器单向弯曲;此时保持第二层柔性电极3与第三层柔性电极5之间电场为零,以及第三层柔性电极5与第四层柔性电极7之间电场为零,电致变刚度层4及第二电致变形层6随第一电致变形层2协同变形;随后,在第二层柔性电极3与第三层柔性电极5之间施加电场,电致变刚度层4转变为较刚的状态,从而维持驱动器保持变形后的状态稳定;
反之,在第三层柔性电极5和第四层柔性电极7之间施加电场,第二电致变形层6在Maxwell 效应作用下发生变形,驱动器向另一侧弯曲;此时保持第二层柔性电极3与第三层柔性电极5之间电场为零,以及第一层柔性电极1与第二层柔性电极3之间电场为零,电致变刚度层4及第一电致变形层2随第二电致变形层6协同变形;随后,在第二层柔性电极3与第三层柔性电极5之间施加电场,电致变刚度层4转变为较刚的状态,从而维持驱动器保持变形后的状态稳定。
2.根据权利要求1所述的电控双向弯曲型变形-变刚度一体化驱动器,其特征在于,所述的第一电致变形层2、第二电致变形层6为硅橡胶、聚氨酯、丙烯酸酯、氟硅橡胶或填充TiO2纳米颗粒的硅橡胶。
有益效果
本发明与现有技术相比较,具有以下特征和优点:电控双向弯曲型变形-变刚度一体化驱动器通过电场调节实现变形及变刚度双功能,具有结构简单、调控精确、响应迅速、控制方便、受环境影响小的优势。
附图说明
图1 为本发明电控双向弯曲型变形-变刚度一体化驱动器结构示意图。
图2 为本发明电控双向弯曲型变形-变刚度一体化驱动器向上侧变形-变刚试原理示意图。
图3 为本发明电控双向弯曲型变形-变刚度一体化驱动器向下侧变形-变刚度原理示意图。
图中:1上层柔性电极;2电致变形层;3中层柔性电极;4电致变刚度层;5下层柔性电极;6第二电致变形层;7第四层柔性电极。
本发明的实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
如图1所示,一种电控双向弯曲型变形-变刚度一体化驱动器,包括电致变形层、电致变刚度层及柔性电极;
该电控双向弯曲型变形-变刚度一体化驱动器自上而下依次为第一层柔性电极1、第一电致变形层2、第二层柔性电极3、电致变刚度层4、第三层柔性电极5、第二电致变形层6和第四层柔性电极7,各层之间通过粘接连接;
所述的第一层柔性电极1、第二层柔性电极3、第三层柔性电极5和第四层柔性电极7采用的材质为涂覆碳膏、导电聚合物、导电水凝胶或导电银浆;
所述的第一电致变形层2和第二电致变形层6采用的材质为介电弹性体;
所述的电致变刚度层4采用的材质为电流变液、电流变凝胶或电流变弹性体;所述的电流变液是纳米介电颗粒与绝缘油的混合物,二者的体积比为1:9~3:2;所述的电流变凝胶是纳米介电颗粒与水凝胶的混合物,二者的体积比为1:9~3:2;所述的电流变弹性体是纳米介电颗粒与橡胶的混合物,二者的体积比为1:9~1:1。
如图2所示,一种电控双向弯曲型变形-变刚度一体化驱动器,其向下侧弯曲变形及变刚度的实施过程如下:在第一层柔性电极1和第二层柔性电极3之间施加电场,第一电致变形层2在Maxwell 效应作用下发生变形,驱动器单向弯曲;此时保持第二层柔性电极3与第三层柔性电极5之间电场为零,以及第三层柔性电极5与第四层柔性电极7之间电场为零,电致变刚度层4及第二电致变形层6随第一电致变形层2协同变形;随后,在第二层柔性电极3与第三层柔性电极5之间施加电场,电致变刚度层4转变为较刚的状态,从而维持驱动器保持变形后的状态稳定。
如图3所示,一种电控双向弯曲型变形-变刚度一体化驱动器,其向上侧弯曲变形及变刚度的实施过程如下:在第三层柔性电极5和第四层柔性电极7之间施加电场,第二电致变形层6在Maxwell 效应作用下发生变形,驱动器向另一侧弯曲;此时保持第二层柔性电极3与第三层柔性电极5之间电场为零,以及第一层柔性电极1与第二层柔性电极3之间电场为零,电致变刚度层4及第一电致变形层2随第二电致变形层6协同变形;随后,在第二层柔性电极3与第三层柔性电极5之间施加电场,电致变刚度层4转变为较刚的状态,从而维持驱动器保持变形后的状态稳定。

Claims (2)

  1. 一种电控双向弯曲型变形-变刚度一体化驱动器,包括电致变形层、电致变刚度层及柔性电极,其特征在于,
    该电控双向弯曲型变形-变刚度一体化驱动器自上而下依次为第一层柔性电极(1)、第一电致变形层(2)、第二层柔性电极(3)、电致变刚度层(4)、第三层柔性电极(5)、第二电致变形层(6)和第四层柔性电极(7),各层之间通过粘接连接;
    所述的第一层柔性电极(1)、第二层柔性电极(3)、第三层柔性电极(5)和第四层柔性电极(7)采用的材质为涂覆碳膏、导电聚合物、导电水凝胶或导电银浆;
    所述的第一电致变形层(2)和第二电致变形层(6)采用的材质为介电弹性体;
    所述的电致变刚度层(4)采用的材质为电流变液、电流变凝胶或电流变弹性体;所述的电流变液是纳米介电颗粒与绝缘油的混合物,二者的体积比为1:9~3:2;所述的电流变凝胶是纳米介电颗粒与水凝胶的混合物,二者的体积比为1:9~3:2;所述的电流变弹性体是纳米介电颗粒与橡胶的混合物,二者的体积比为1:9~1:1;
    在第一层柔性电极(1)和第二层柔性电极(3)之间施加电场,第一电致变形层(2)在Maxwell 效应作用下发生变形,驱动器单向弯曲;此时保持第二层柔性电极(3)与第三层柔性电极(5)之间电场为零,以及第三层柔性电极(5)与第四层柔性电极(7)之间电场为零,电致变刚度层(4)及第二电致变形层(6)随第一电致变形层(2)协同变形;随后,在第二层柔性电极(3)与第三层柔性电极(5)之间施加电场,电致变刚度层(4)转变为较刚的状态,从而维持驱动器保持变形后的状态稳定;
    反之,在第三层柔性电极(5)和第四层柔性电极(7)之间施加电场,第二电致变形层(6)在Maxwell 效应作用下发生变形,驱动器向另一侧弯曲;此时保持第二层柔性电极(3)与第三层柔性电极(5)之间电场为零,以及第一层柔性电极(1)与第二层柔性电极(3)之间电场为零,电致变刚度层(4)及第一电致变形层(2)随第二电致变形层(6)协同变形;随后,在第二层柔性电极(3)与第三层柔性电极(5)之间施加电场,电致变刚度层(4)转变为较刚的状态,从而维持驱动器保持变形后的状态稳定。
  2. 根据权利要求1所述的电控双向弯曲型变形-变刚度一体化驱动器,其特征在于,所述的第一电致变形层(2)、第二电致变形层(6)为硅橡胶、聚氨酯、丙烯酸酯、氟硅橡胶或填充TiO2纳米颗粒的硅橡胶。
PCT/CN2020/078133 2019-09-10 2020-03-06 一种电控双向弯曲型变形-变刚度一体化驱动器 WO2021047155A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/052,983 US11622491B2 (en) 2019-09-10 2020-03-06 Electric controlled bi-directional bending actuator with deformability and stiffness tunable capacity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910853199.5 2019-09-10
CN201910853199.5A CN110576447A (zh) 2019-09-10 2019-09-10 一种电控双向弯曲型变形-变刚度一体化驱动器

Publications (1)

Publication Number Publication Date
WO2021047155A1 true WO2021047155A1 (zh) 2021-03-18

Family

ID=68812879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078133 WO2021047155A1 (zh) 2019-09-10 2020-03-06 一种电控双向弯曲型变形-变刚度一体化驱动器

Country Status (3)

Country Link
US (1) US11622491B2 (zh)
CN (1) CN110576447A (zh)
WO (1) WO2021047155A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110576447A (zh) * 2019-09-10 2019-12-17 大连理工大学 一种电控双向弯曲型变形-变刚度一体化驱动器
CN110900642A (zh) * 2019-12-24 2020-03-24 东北林业大学 一种万向变刚度的软体执行器
CN111396496A (zh) * 2020-03-24 2020-07-10 太原理工大学 一种具有自耦合功能的电流变弹性体减振器
CN111923022B (zh) * 2020-07-08 2022-09-30 杭州电子科技大学 一种无约束移动软体机器人及其驱动方法
CN112045694A (zh) * 2020-08-04 2020-12-08 华中科技大学 一种利用巨电流变液实现分段弯曲的软体手指
CN113452280B (zh) * 2021-06-04 2023-03-21 西安交通大学 一种利用弹性模量梯度和复合驻极弹性体的摆动式作动器
CN114367966A (zh) * 2022-01-12 2022-04-19 苏州大学 基于介电弹性体最小能量结构的机械臂
CN114603873B (zh) * 2022-03-29 2023-01-24 吉林大学 一种变刚度软体驱动器的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050200238A1 (en) * 2004-03-10 2005-09-15 Samsung Electro-Mechanics Co., Ltd. Dielectric polymer actuator and inchworm robot using same
CN104900798A (zh) * 2015-04-03 2015-09-09 南京航空航天大学 具有双致动效应的电致动柔性聚合物、制备方法及测试方法
KR20180105062A (ko) * 2017-03-14 2018-09-27 포항공과대학교 산학협력단 초저전력 자동 모션-잠금 소프트 액추에이터
CN109571453A (zh) * 2018-12-18 2019-04-05 上海交通大学 基于磁流变弹性体的变刚度介电弹性体驱动器
CN110576447A (zh) * 2019-09-10 2019-12-17 大连理工大学 一种电控双向弯曲型变形-变刚度一体化驱动器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7598651B2 (en) * 2004-03-12 2009-10-06 Sri International Mechanical meta-materials
CN205983389U (zh) * 2016-06-13 2017-02-22 王良 一种基于电流变液原件的虚拟现实被动触觉反馈装置
JP6663081B2 (ja) * 2016-11-14 2020-03-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 電気活性アクチュエータの剛性制御
JP7034639B2 (ja) * 2017-09-14 2022-03-14 キヤノン株式会社 圧電材料、圧電素子、および電子機器
CN109129456B (zh) * 2018-10-16 2022-01-14 江西理工大学 一种基于折纸结构的气动双向弯曲软体驱动器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050200238A1 (en) * 2004-03-10 2005-09-15 Samsung Electro-Mechanics Co., Ltd. Dielectric polymer actuator and inchworm robot using same
CN104900798A (zh) * 2015-04-03 2015-09-09 南京航空航天大学 具有双致动效应的电致动柔性聚合物、制备方法及测试方法
KR20180105062A (ko) * 2017-03-14 2018-09-27 포항공과대학교 산학협력단 초저전력 자동 모션-잠금 소프트 액추에이터
CN109571453A (zh) * 2018-12-18 2019-04-05 上海交通大学 基于磁流变弹性体的变刚度介电弹性体驱动器
CN110576447A (zh) * 2019-09-10 2019-12-17 大连理工大学 一种电控双向弯曲型变形-变刚度一体化驱动器

Also Published As

Publication number Publication date
US11622491B2 (en) 2023-04-04
CN110576447A (zh) 2019-12-17
US20210376221A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2021047155A1 (zh) 一种电控双向弯曲型变形-变刚度一体化驱动器
Dong et al. Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection
Zhang et al. Pneumatically actuated soft gripper with bistable structures
Gao et al. Magnetic driving flowerlike soft platform: Biomimetic fabrication and external regulation
Wang et al. Recent progress in 3D printing of bioinspired structures
Ni et al. Experimental study of multi-stable morphing structures actuated by pneumatic actuation
CN111416546B (zh) 一种磁场驱动双稳态结构及其制作方法
CN103826805A (zh) 智能柔性复合驱动器
Haghparast et al. Effect of fluid–structure interaction on vibration of moving sandwich plate with Balsa wood core and nanocomposite face sheets
Dharmadhikari et al. Design and analysis of composite drive shaft using ANSYS and genetic algorithm-a critical review
CN110474565A (zh) 一种电控单向弯曲型变形-变刚度一体化驱动器
KR20130093256A (ko) 플래핑 기반 수중 로봇
He et al. An antifatigue liquid metal composite electrode ionic polymer-metal composite artificial muscle with excellent electromechanical properties
Ge et al. Deformation characteristics of corrugated composites for morphing wings
Ji et al. Recent progress in 3D printing of smart structures: classification, challenges, and trends
Qiu et al. Smart skin and actuators for morphing structures
Samatham et al. Active polymers: an overview
CN107834897A (zh) 基于压电驱动的爬行作动器及其工作方法
Nie et al. Simulation and experiment study on deformation characteristics of the water hydraulic flexible actuator used for the underwater gripper
CN112440271B (zh) 一种电控双向弯曲型复合人工肌肉
Xiang et al. Soft electroadhesive grippers with variable stiffness and deflection motion capabilities
Bandopadhya et al. Active vibration control strategy for a single-link flexible manipulator using ionic polymer metal composite
Majid et al. Effect of fiber orientation on the structural response of a smart composite structure
Cai et al. Vibration analysis of a beam with an active constraining layer damping patch
CN207530724U (zh) 基于压电驱动的爬行作动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864020

Country of ref document: EP

Kind code of ref document: A1