WO2021046834A1 - Mitigation of control channel collision with carrier switching gap - Google Patents

Mitigation of control channel collision with carrier switching gap Download PDF

Info

Publication number
WO2021046834A1
WO2021046834A1 PCT/CN2019/105815 CN2019105815W WO2021046834A1 WO 2021046834 A1 WO2021046834 A1 WO 2021046834A1 CN 2019105815 W CN2019105815 W CN 2019105815W WO 2021046834 A1 WO2021046834 A1 WO 2021046834A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
configurations
configuration
switching gap
processors
Prior art date
Application number
PCT/CN2019/105815
Other languages
French (fr)
Inventor
Bo Chen
Chao Wei
Chenxi HAO
Yu Zhang
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/105815 priority Critical patent/WO2021046834A1/en
Publication of WO2021046834A1 publication Critical patent/WO2021046834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for mitigation of a control channel collision with a carrier switching gap.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include receiving or determining information identifying one or more physical uplink control channel (PUCCH) configurations; identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  • PUCCH physical uplink control channel
  • a method of wireless communication may include receiving or determining information identifying one or more PUCCH configurations for a UE; identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  • a UE for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to receive or determine information identifying one or more PUCCH configurations; identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  • a base station for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to receive or determine information identifying one or more PUCCH configurations for a UE; identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to: receive or determine information identifying one or more PUCCH configurations; identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a base station, may cause the one or more processors to: receive or determine information identifying one or more PUCCH configurations for a UE; identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  • an apparatus for wireless communication may include means for receiving or determining information identifying one or more PUCCH configurations; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the apparatus; and means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  • an apparatus for wireless communication may include means for receiving or determining information identifying one or more PUCCH configurations for a UE; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Figs. 3 and 4 are diagrams illustrating examples of sets of physical uplink control channels (PUCCHs) associated with a restricted PUCCH resource configuration technique for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
  • PUCCHs physical uplink control channels
  • Fig. 5 is a diagram illustrating an example of a set of PUCCHs associated with a puncturing or rate matching technique for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
  • Fig. 6 is a diagram illustrating an example of a set of PUCCHs associated with a shortened PUCCH configuration technique for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
  • Fig. 7 is a diagram illustrating an example of a set of PUCCHs associated with a priority-based omission technique for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
  • Fig. 8 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • Fig. 9 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Fig. 10 is a conceptual data flow diagram illustrating an example of a data flow between different modules/means/components in an example apparatus.
  • Fig. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • Fig. 12 is a conceptual data flow diagram illustrating an example of a data flow between different modules/means/components in an example apparatus.
  • Fig. 13 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with mitigation of a control channel collision with a carrier switching gap, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for receiving or determining information identifying one or more physical uplink control channel (PUCCH) configurations; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap; means for selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH; and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include receiving or determining information identifying one or more PUCCH configurations; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE;means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap; means for configuring the first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations other than the particular PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap; and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Some wireless communication technologies may use multiple, different uplink carriers for communication between a UE and a base station. Examples of such technologies include uplink carrier aggregation (UL CA) and supplemental uplink (SUL) .
  • uplink carrier aggregation (UL CA) and supplemental uplink (SUL) UL CA
  • SUL supplemental uplink
  • time division multiplexing TDM
  • TDD time division multiplexing
  • TDD time division duplex
  • TDMed time division multiplexed
  • FDD frequency division duplex
  • a carrier switching gap (sometimes referred to herein as a switching gap) may be introduced.
  • the carrier switching gap may be a time gap between an end of an uplink transmission on a first carrier and a beginning of an uplink transmission on a second carrier.
  • the carrier switching gap may enable the support of two-antenna transmission on a high band and one-antenna transmission on the low band for a UE with two physical antennas.
  • Different UEs may be associated with different capabilities for carrier switching gaps, since different UEs may be capable of switching from one carrier to another at different speeds.
  • a UE may signal capability information identifying a capability for a carrier switching gap to a base station.
  • a base station may select and/or configure carrier switching gaps for a set of UEs based at least in part on the capability information. Thus, carrier switching gaps for different UEs may be different.
  • a UE may transmit a physical uplink control channel (PUCCH) to provide uplink control information (UCI) to a base station.
  • the PUCCH may carry acknowledgment information, a scheduling request (SR) , channel state information (CSI) , and/or the like.
  • a PUCCH may use a PUCCH resource (e.g., a set of PUCCH resources or a PUCCH resource set) which may be indicated by a PUCCH configuration.
  • a PUCCH configuration may be common to all UEs covered by a base station, or may be dedicated for one or more particular UEs.
  • a collision may occur between a carrier switching gap of a UE and a PUCCH resource to be used for a PUCCH by the UE.
  • many PUCCH resource configurations may lead to collisions, so a pre-configured set of PUCCH configurations may not be valid for all UEs.
  • An unhandled collision of a PUCCH resource and a carrier switching gap may lead to diminished uplink performance and/or interrupted PUCCH transmission.
  • Some techniques and apparatuses described herein provide techniques for mitigating or avoiding a collision between a PUCCH resource and a carrier switching gap. For example, some techniques and apparatuses described herein provide a restricted PUCCH resource configuration, in which a base station may configure a PUCCH resource based at least in part on a capability for a carrier switching gap of a UE so as to avoid a collision of the PUCCH resource with the carrier switching gap. Some techniques and apparatuses described herein provide a puncturing or rate matching technique whereby a PUCCH is rate matched around or punctured by a carrier switching gap.
  • Some techniques and apparatuses described herein provide a shortened PUCCH for certain PUCCH formats, whereby a PUCCH is associated with a baseline PUCCH configuration for a non-colliding PUCCH and a shortened PUCCH configuration for a PUCCH that would otherwise collide with a carrier switching gap. Furthermore, some techniques and apparatuses described herein may provide for omission of certain content of a PUCCH based at least in part on a priority level of the content. In some aspects, the techniques described above may be applied for particular PUCCH formats (e.g., a first technique may be applied for a first PUCCH format, and so on) . In this way, collisions between PUCCHs and carrier switching gaps may be mitigated, thereby improving performance of multiple-carrier uplink systems and reducing the likelihood of loss or interruption of the PUCCH.
  • Figs. 3 and 4 are diagrams illustrating examples 300, 400 of sets of physical uplink control channels (PUCCHs) associated with a restricted PUCCH resource configuration technique 305 for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
  • examples 300 and 400 include a TDD carrier and an FDD uplink carrier.
  • the TDD carrier is associated with a wider bandwidth and the FDD uplink carrier is associated with a narrower bandwidth, though in some aspects, the TDD carrier and the FDD uplink carrier may have equal bandwidths or the FDD uplink carrier may have a wider bandwidth.
  • 3-13 may be applied for any combination of uplink carriers that are TDMed with each other.
  • downlink slots are indicated by the letter D
  • uplink slots are indicated by the letter U
  • special slots are indicated by the letter S.
  • An uplink transmission (e.g., a PUCCH and/or the like) on a particular carrier is indicated by a shaded rectangle including the letter U. Uplink transmissions may occur in special slots or uplink slots.
  • a carrier switching gap is indicated by a rectangle with a diagonally hatched fill.
  • a rectangle with a diagonally hatched fill may indicate individual symbols, as indicated by reference number 310, or may indicate a set of one or more symbols, as indicated by reference number 315.
  • An “X” on a resource of the FDD UL carrier indicates that that resource is unavailable for transmission because the UE has switched to the TDD carrier.
  • Reference numbers 320, 325, and 330 Examples of different carrier switching gap sizes are shown by reference numbers 320, 325, and 330.
  • Reference number 320 shows single-symbol carrier switching gaps
  • reference number 325 shows two-symbol carrier switching gaps
  • reference number 330 shows four-symbol carrier switching gaps.
  • the length of a carrier switching gap may be dependent on a capability of a UE (e.g., UE 120) .
  • a UE that is capable of more quickly switching between the TDD carrier and the FDD uplink carrier may use a single-symbol carrier switching gap 320, whereas a UE that is slower to switch between the TDD carrier and the FDD uplink carrier may use a two-symbol carrier switching gap 325 or a four-symbol carrier switching gap 330.
  • a UE may signal capability information to a base station (e.g., base station 110) that indicates a capability for a carrier switching gap of the UE.
  • the base station may select a carrier switching gap for the UE.
  • the base station may configure the UE to use the carrier switching gap.
  • the base station may configure a PUCCH configuration for the UE based at least in part on the carrier switching gap (e.g., without explicitly configuring the UE to use the carrier switching gap) .
  • the column of slot diagrams indicated by reference number 335 shows example carrier switching gap configurations for a 14-symbol uplink transmission with a carrier switching gap at the beginning of the uplink transmission.
  • Arrows from the slots of the FDD UL carrier to the slot diagrams shown by reference numbers 335, 340, and 345 indicate that the corresponding slot diagrams are examples of carrier switching gap configurations of the corresponding slots.
  • the column of slot diagrams shown by reference number 340 shows example carrier switching gap configurations for a 12-symbol uplink transmission with a carrier switching gap at the end of the uplink transmission.
  • the column of slot diagrams shown by reference number 345 shows example carrier switching gap configurations for a 7-symbol uplink transmission with a carrier switching gap at the beginning of the uplink transmission.
  • a PUCCH may be transmitted on one or more of the uplink transmission slots of the TDD carrier and/or the FDD UL carrier.
  • a PUCCH may be configured by a PUCCH configuration to use one or more PUCCH resource sets.
  • a PUCCH configuration may refer to a table that indicates a PUCCH format, a first symbol of the PUCCH, a number of symbols of the PUCCH, a physical resource block (PRB) offset of the PUCCH, and/or a set of initial indexes of the PUCCH.
  • a legacy PUCCH configuration may occupy the last X symbols of a slot, where X is an integer.
  • a dedicated PUCCH configuration may be UE-specific or specific to a group of UEs.
  • Some PUCCH configurations may collide with one or more of the carrier switching gaps illustrated in example 300.
  • a PUCCH configuration that indicates a PUCCH resource that occupies an entire slot may collide with all of the carrier switching gaps shown in example 300.
  • a PUCCH configuration that indicates a PUCCH resource that occupies the last X symbols of a slot may collide with all carrier switching gaps shown by reference number 340, and with one or more of the carrier switching gaps shown by reference numbers 335 and 345, depending on the value of X and the size of the carrier switching gap.
  • a PUCCH configuration that indicates a PUCCH resource that is longer than the available number of symbols of a slot may collide with a corresponding carrier switching gap of that slot. For example, consider the carrier switching gap shown by reference number 350. In that case, any PUCCH configuration that indicates a PUCCH resource longer than 2 symbols may collide with the carrier switching gap.
  • Figs. 3 and 4 show examples of a restricted PUCCH resource configuration technique, in which a base station (e.g., a gNB) may configure PUCCH resources of one or more UEs based at least in part on a capability for a carrier switching gap of the one or more UEs.
  • a base station e.g., a gNB
  • PUCCH PUCCH resources
  • a UE may be configured with multiple PUCCH configurations corresponding to PUCCH resources (shown by rectangles labeled as “PUCCH” ) that avoid collision with a carrier switching gap of the UE.
  • PUCCH the PUCCH resources do not occupy carrier switching gap symbols, thus avoiding collision between corresponding PUCCHs and the carrier switching gap symbols.
  • Reference number 360 shows a first set of PUCCH configurations that avoid collision with the set of carrier switching gaps shown by reference number 335.
  • Reference number 365 shows a second set of PUCCH configurations that avoid collision with the set of carrier switching gaps shown by reference number 340. As shown, the second set of PUCCH configurations does not occupy an end of the slot, thereby avoiding collision with the carrier switching gap.
  • Reference number 370 shows a third set of PUCCH configurations that avoid collision with the set of carrier switching gaps shown by reference number 345.
  • a group of UEs that are associated with different carrier switching gaps or different carrier switching gap capabilities may be configured with one or more PUCCH configurations that collide with no carrier switching gap of the group of UEs.
  • a group of UEs may be configured with respective PUCCH configurations that do not collide with respective carrier switching gaps of the group of UEs.
  • This technique may be applicable for short PUCCHs (e.g., PUCCH Format 0 or PUCCH Format 2, which include one or two symbols) , since one or two symbols that do not collide with the carrier switching gap are likely to be available in each slot. Furthermore, this technique may be applicable for a long PUCCH format when the number of symbols of the PUCCH is less than or equal to the number of available symbols in a slot.
  • PUCCH Format 0 or PUCCH Format 2 which include one or two symbols
  • Fig. 4 shows an example 400 similar to example 300 with a different ratio of uplink transmissions on the TDD carrier and the FDD carrier, for example, due to different coverage conditions than example 300.
  • the PUCCH resources shown by reference number 405 are similar to those shown in example 300, and do not collide with corresponding carrier switching gaps shown by reference number 410.
  • the base station may configure PUCCH configurations for PUCCH resources that do not collide with carrier switching gaps, thereby mitigating such collisions and reducing loss or interruption of PUCCHs.
  • Figs. 3 and 4 are provided as one or more examples. Other examples may differ from what is described with respect to Figs. 3 and 4.
  • Fig. 5 is a diagram illustrating an example 500 of a set of PUCCHs associated with a puncturing or rate matching technique 505 for mitigation of a collision with a carrier switching gap, in accordance with various aspects of the present disclosure.
  • a UE and/or a base station may rate match a PUCCH around a carrier switching gap, or may puncture the PUCCH for the carrier switching gap.
  • a punctured symbol is indicated by a dotted fill. It should be understood that the dotted fill may indicate a symbol around which the PUCCH is rate matched.
  • a PUCCH may be rate matched around one or more symbols of a corresponding carrier switching gap.
  • the UE or the base station may rate match or puncture the PUCCH based at least in part on the colliding symbols and based at least in part on one or more configured PRBs of the PUCCH. This may be applicable for PUCCH Format 3 and PUCCH Format 4, which include four or more symbols.
  • the UE or the base station may determine whether to puncture the PUCCH. For example, the UE or the base station may determine an achievable effective coding rate if puncturing is performed. If the achievable coding rate satisfies a target coding rate threshold, then the UE or the base station may puncture the PUCCH. If the achievable coding rate fails to satisfy the threshold, then the UE or the base station may perform one or more of the other collision mitigation techniques described herein.
  • the target coding rate threshold may be defined as a maximum target coding rate.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating an example 600 of a set of PUCCHs associated with a shortened PUCCH configuration technique 605 for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
  • a UE may be configured with one or more legacy PUCCH configurations (e.g., using radio resource control (RRC) signaling and/or the like) and one or more shortened PUCCH configurations (e.g., using RRC signaling and/or the like) .
  • the UE is configured with respective legacy PUCCH configurations in a slot X and a slot Y, and with respective shortened PUCCH configurations in the slot X and the slot Y.
  • a shortened PUCCH configuration may refer to a PUCCH configuration associated with a PUCCH resource including fewer symbols than a corresponding legacy PUCCH configuration for the same PUCCH format.
  • a collision between a carrier switching gap and a PUCCH resource associated with a legacy PUCCH configuration on a slot X is shown by reference number 610.
  • the UE and/or the base station may use the shortened PUCCH configuration, which does not collide with the carrier switching gap in the slot X.
  • no collision between the legacy PUCCH configuration and the carrier switching gap occurs in the slot Y.
  • the UE or the base station may use the legacy PUCCH configuration shown by reference number 625.
  • only UEs with the same switching gap capability may be configured on a same time/frequency resource, and may be multiplexed using time domain orthogonal cover codes.
  • the base station may configure a legacy PUCCH configuration and a shortened PUCCH configuration, thereby permitting fallback to the shortened PUCCH configuration when collision with the legacy PUCCH configuration occurs.
  • this technique may be applied for a PUCCH Format 1.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
  • Fig. 7 is a diagram illustrating an example of a set of PUCCHs associated with a priority-based omission technique 705 for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
  • a PUCCH may include one or more of an acknowledgment (ACK) , a scheduling request (SR) , and/or channel state information (CSI) .
  • ACK acknowledgment
  • SR scheduling request
  • CSI channel state information
  • the PUCCH 720 or 725 may collide with the carrier switching gap.
  • part of the content of the PUCCH 720/725 may be omitted, thereby reducing the length of the PUCCH and mitigating the collision of the PUCCH 720/725 and the carrier switching gap.
  • the CSI is omitted, as indicated by the X over the CSI.
  • the UE or the base station may omit content based at least in part on a priority level of the content.
  • priority levels of the content may be defined (e.g., the ACK may be assigned a first priority level, the SR may be assigned a second priority level, the CSI may be assigned a third priority level, and so on) .
  • the UE or the base station may omit content associated with a threshold priority level (e.g., a lowest priority level, a lowest N priority levels where N is an integer, and/or the like) when a collision is identified.
  • the UE or the base station may omit the content based at least in part on a threshold.
  • the UE or the base station may omit the content when an effective coding rate of the PUCCH satisfies a threshold.
  • the UE or the base station may determine the effective coding rate based at least in part on a payload size, a modulation order, a number of available symbols of the PUCCH (e.g., configured symbols minus a number of symbols of the carrier switching gap) , a number of subcarriers or PRBs in the frequency domain, and/or the like) .
  • the UE or the base station may transmit higher-priority content and may omit lower-priority content when a collision occurs, thereby reducing interruption of the higher-priority content in the case of a collision.
  • the UE or the base station may select a technique for mitigating a collision based at least in part on a PUCCH format of a PUCCH. For example, if the PUCCH is associated with a PUCCH Format 0 or 2, then the UE or the base station may mitigate the collision using the restricted PUCCH resource configuration technique 305. If the PUCCH is associated with a PUCCH Format 1, then the UE or the base station may mitigate the collision using the shortened PUCCH configuration technique 605. If the PUCCH is associated with a PUCCH Format 3 or 4, then the UE or the base station may mitigate the collision using the puncturing or rate matching technique 505. In any of the above cases, the UE or the base station may omit content from the PUCCH based at least in part on the priority-based omission technique 705.
  • Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by an user equipment (UE) , in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where the UE (e.g., UE 120, apparatus 1002 (see Fig. 10) , and/or the like) performs operations associated with mitigation of control channel collision with carrier switching gap.
  • the UE e.g., UE 120, apparatus 1002 (see Fig. 10) , and/or the like
  • process 800 may include receiving or determining information identifying one or more PUCCH configurations (block 810) .
  • the UE e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or the like
  • process 800 may include identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE (block 820) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 800 may include modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap (block 830) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • modifying the at least one PUCCH comprises selectively rate matching the at least one PUCCH around the switching gap or puncturing the at least one PUCCH for the switching gap.
  • the particular PUCCH configuration is a first PUCCH configuration
  • modifying the at least one PUCCH comprises selecting a second PUCCH configuration, of the one or more PUCCH configurations, other than the particular PUCCH configuration, based at least in part on the collision.
  • the second PUCCH configuration is associated with a shortened PUCCH.
  • modifying the at least one PUCCH comprises selectively omitting at least part of the at least one PUCCH.
  • the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
  • selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
  • process 800 includes selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
  • the switching gap comprises a carrier switching gap.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 900 is an example where the base station (e.g., base station 110, apparatus 1202, and/or the like) performs operations associated with mitigation of control channel collision with carrier switching gap.
  • the base station e.g., base station 110, apparatus 1202, and/or the like.
  • process 900 may include receiving or determining information identifying one or more PUCCH configurations for a UE (block 910) .
  • the base station e.g., using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like
  • process 900 may include identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE (block 920) .
  • the base station e.g., using controller/processor 240 and/or the like
  • process 900 may include modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap (block 930) .
  • the base station e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like
  • the particular PUCCH configuration is a first PUCCH configuration
  • the method further comprises configuring the first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations, other than the particular PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap.
  • the second PUCCH configuration is associated with a shortened PUCCH.
  • the one or more PUCCH configurations are for a PUCCH having one or two symbols.
  • the one or more PUCCH configurations are for a PUCCH having at most a same number of symbols as a number of symbols available for the PUCCH based at least in part on the switching gap.
  • the one or more PUCCH configurations include a plurality of PUCCH configurations, and respective PUCCH resources of the plurality of PUCCH configurations are configured not to collide with respective carrier switching gaps.
  • modifying the at least one PUCCH comprises selectively omitting at least part of the at least one PUCCH.
  • the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
  • selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
  • process 900 includes selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
  • the switching gap comprises a carrier switching gap.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a conceptual data flow diagram illustrating an example 1000 of a data flow between different modules/means/components in an example apparatus 1002.
  • the apparatus 1002 may include, for example, a UE (e.g., UE 120) .
  • the apparatus 1002 includes a receiving module 1004, an identifying module 1006, a modifying module 1008, and/or a selecting module 1010.
  • the receiving module 1004 may receive information identifying one or more PUCCH configurations (e.g., from a base station, such as base station 110, the apparatus 1202 (see Fig. 12) , and/or the like) . In some aspects, the apparatus 1002 may determine such information (not shown) .
  • the information identifying the one or more PUCCH configurations may identify a PUCCH configuration in order to mitigate a collision between a PUCCH resource and a carrier switching gap and/or one or more legacy PUCCH configurations.
  • the identifying module 1006 may identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the apparatus 1002. For example, the identifying module 1006 may identify the collision based at least in part on the one or more PUCCH configurations and based at least in part on information indicating a carrier switching gap of the apparatus 1002. The identifying module 1006 may provide an indication of the collision to the modifying module 1008.
  • the modifying module 1008 may modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap. For example, the modifying module 1008 may apply one or more of the techniques described elsewhere herein to modify the at least one PUCCH, or may use a PUCCH configuration that mitigates the collision. In some aspects, the modifying module 1008 may apply a technique selected by the selecting module 1010. For example, the selecting module 1010 may select a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH. The selecting module 1010 may provide an indication of the selected technique to the modifying module 1008.
  • apparatus 1002 may include additional modules that perform each of the blocks of the algorithm in the flow chart of FIG. 4. Each block in the flow chart of FIG. 4 may be performed by a module, and apparatus 1002 may include one or more of those modules.
  • the modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • modules shown in FIG. 10 are provided as an example. In practice, there may be additional modules, fewer modules, different modules, or differently arranged modules than those shown in FIG. 10. Furthermore, two or more modules shown in FIG. 10 may be implemented within a single module, or a single module shown in FIG. 10 may be implemented as multiple, distributed modules. Additionally, or alternatively, a set of modules (e.g., one or more modules) shown in FIG. 10 may perform one or more functions described as being performed by another set of modules shown in FIG. 10.
  • FIG. 11 is a diagram illustrating an example 1100 of a hardware implementation for an apparatus (e.g., apparatus 1002 described above in connection with Fig. 10) employing a processing system 1102.
  • the apparatus 1002′ may include, for example, a UE (e.g., UE 120) .
  • the processing system 1102 may be implemented with a bus architecture, represented generally by the bus 1104.
  • the bus 1104 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1102 and the overall design constraints.
  • the bus 1104 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1106, the modules 1004, 1006, 1008, and/or 1010, and the computer-readable medium /memory 1108.
  • the bus 1104 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1102 may be coupled to a transceiver 1110.
  • the transceiver 1110 is coupled to one or more antennas 1112.
  • the transceiver 1110 provides a means for communicating with various other apparatuses over a transmission medium.
  • the transceiver 1110 receives a signal from the one or more antennas 1112, extracts information from the received signal, and provides the extracted information to the processing system 1102.
  • the transceiver 1110 receives information from the processing system 1102 and, based at least in part on the received information, generates a signal to be applied to the one or more antennas 1112.
  • the processing system 1102 includes a processor 1106 coupled to a computer-readable medium /memory 1108.
  • the processor 1106 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1108.
  • the software when executed by the processor 1406, causes the processing system 1102 to perform the various functions described herein for any particular apparatus.
  • the computer-readable medium /memory 1108 may also be used for storing data that is manipulated by the processor 1106 when executing software.
  • the processing system further includes at least one of the modules 1004, 1006, 1008, and/or 1010.
  • the modules may be software modules running in the processor 1106, resident/stored in the computer readable medium /memory 1108, one or more hardware modules coupled to the processor 1106, or some combination thereof.
  • the apparatus 1002 for wireless communication includes means for receiving or determining information identifying one or more PUCCH configurations; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the apparatus 1202; means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap; means for selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH; and/or the like.
  • the aforementioned means may be one or more of the aforementioned modules of the apparatus 1002 and/or the processing system 1102 of the apparatus 1002 configured to perform the functions recited by the aforementioned means.
  • Fig. 11 is provided as an example. Other examples may differ from what is described with regard to Fig. 11.
  • Fig. 12 is a conceptual data flow diagram illustrating an example 1200 of a data flow between different modules/means/components in an example apparatus 1202.
  • the apparatus 1202 may include, for example, a base station (e.g., base station 110) .
  • the apparatus 1202 includes a receiving module 1204, an identifying module 1206, a modifying module 1208, a selecting module 1210, and/or a configuring module 1212.
  • the receiving module 1204 may receive information identifying one or more PUCCH configurations.
  • the apparatus 1202 may determine or configure such information (e.g., using the configuring module 1212 and/or the like) .
  • the information identifying the one or more PUCCH configurations may identify a PUCCH configuration to mitigate a collision between a PUCCH resource and a carrier switching gap and/or one or more legacy PUCCH configurations.
  • the receiving module 1204 may receive capability information identifying one or more capabilities for a carrier switching gap of a UE.
  • the identifying module 1206 may identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of a UE. For example, the identifying module 1206 may identify the collision based at least in part on the one or more PUCCH configurations and based at least in part on information indicating a carrier switching gap of the apparatus 1202. The identifying module 1206 may provide an indication of the collision to the modifying module 1208.
  • the modifying module 1208 may modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap. For example, the modifying module 1208 may apply one or more of the techniques described elsewhere herein to modify the at least one PUCCH, or may use a PUCCH configuration that mitigates the collision. In some aspects, the modifying module 1208 may apply a technique selected by the selecting module 1210. For example, the selecting module 1210 may select a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH. The selecting module 1210 may provide an indication of the selected technique to the modifying module 1208.
  • the configuring module 1212 may modify at least one PUCCH, for example, by configuring a first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations other than the particular PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap.
  • apparatus 1202 may include additional modules that perform each of the blocks of the algorithm in the flow chart of FIG. 4. Each block in the flow chart of FIG. 4 may be performed by a module, and apparatus 1202 may include one or more of those modules.
  • the modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • modules shown in FIG. 12 are provided as an example. In practice, there may be additional modules, fewer modules, different modules, or differently arranged modules than those shown in FIG. 12. Furthermore, two or more modules shown in FIG. 12 may be implemented within a single module, or a single module shown in FIG. 12 may be implemented as multiple, distributed modules. Additionally, or alternatively, a set of modules (e.g., one or more modules) shown in FIG. 12 may perform one or more functions described as being performed by another set of modules shown in FIG. 12.
  • FIG. 13 is a diagram illustrating an example 1300 of a hardware implementation for an apparatus (e.g., apparatus 1202 described above in connection with Fig. 12) employing a processing system 1302.
  • the apparatus 1202′ may include, for example, a base station (e.g., base station 110) .
  • the processing system 1302 may be implemented with a bus architecture, represented generally by the bus 1304.
  • the bus 1304 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1302 and the overall design constraints.
  • the bus 1304 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1306, the modules 1204, 1206, 1208, 1210, and/or 1212, and the computer-readable medium /memory 1308.
  • the bus 1304 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1302 may be coupled to a transceiver 1310.
  • the transceiver 1310 is coupled to one or more antennas 1312.
  • the transceiver 1310 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1310 receives a signal from the one or more antennas 1312, extracts information from the received signal, and provides the extracted information to the processing system 1302.
  • the transceiver 1310 receives information from the processing system 1302 and, based at least in part on the received information, generates a signal to be applied to the one or more antennas 1312.
  • the processing system 1302 includes a processor 1306 coupled to a computer-readable medium /memory 1308.
  • the processor 1306 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1308.
  • the software when executed by the processor 1406, causes the processing system 1302 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1308 may also be used for storing data that is manipulated by the processor 1306 when executing software.
  • the processing system further includes at least one of the modules 1204, 1206, 1208, 1210, and/or 1212.
  • the modules may be software modules running in the processor 1306, resident/stored in the computer readable medium /memory 1308, one or more hardware modules coupled to the processor 1306, or some combination thereof.
  • the apparatus 1202 for wireless communication includes means for receiving or determining information identifying one or more PUCCH configurations for a UE; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap; means for configuring the first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations other than the particular PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap; means for selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH; and/or the like.
  • the aforementioned means may be one or more
  • Fig. 13 is provided as an example. Other examples may differ from what is described with regard to Fig. 13.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive or determine information identifying one or more physical uplink control channel (PUCCH) configurations; identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap. Numerous other aspects are provided.

Description

MITIGATION OF CONTROL CHANNEL COLLISION WITH CARRIER SWITCHING GAP
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for mitigation of a control channel collision with a carrier switching gap.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to  the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include receiving or determining information identifying one or more physical uplink control channel (PUCCH) configurations; identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the  one or more PUCCH configurations, and a switching gap of the UE; and modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
In some aspects, a method of wireless communication, performed by a base station, may include receiving or determining information identifying one or more PUCCH configurations for a UE; identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
In some aspects, a UE for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to receive or determine information identifying one or more PUCCH configurations; identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
In some aspects, a base station for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to receive or determine information identifying one or more PUCCH configurations for a UE; identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modify at least one  PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to: receive or determine information identifying one or more PUCCH configurations; identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a base station, may cause the one or more processors to: receive or determine information identifying one or more PUCCH configurations for a UE; identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
In some aspects, an apparatus for wireless communication may include means for receiving or determining information identifying one or more PUCCH configurations; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the apparatus; and means for modifying at least one PUCCH,  associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
In some aspects, an apparatus for wireless communication may include means for receiving or determining information identifying one or more PUCCH configurations for a UE; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
Figs. 3 and 4 are diagrams illustrating examples of sets of physical uplink control channels (PUCCHs) associated with a restricted PUCCH resource configuration technique for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example of a set of PUCCHs associated with a puncturing or rate matching technique for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
Fig. 6 is a diagram illustrating an example of a set of PUCCHs associated with a shortened PUCCH configuration technique for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
Fig. 7 is a diagram illustrating an example of a set of PUCCHs associated with a priority-based omission technique for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure.
Fig. 8 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
Fig. 9 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
Fig. 10 is a conceptual data flow diagram illustrating an example of a data flow between different modules/means/components in an example apparatus.
Fig. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
Fig. 12 is a conceptual data flow diagram illustrating an example of a data flow between different modules/means/components in an example apparatus.
Fig. 13 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined  with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B,  a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a  camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization  signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) ,  and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with mitigation of a control channel collision with a carrier switching gap, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some  aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for receiving or determining information identifying one or more physical uplink control channel (PUCCH) configurations; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap; means for selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH; and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include receiving or determining information identifying one or more PUCCH configurations; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE;means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the  switching gap; means for configuring the first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations other than the particular PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap; and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Some wireless communication technologies may use multiple, different uplink carriers for communication between a UE and a base station. Examples of such technologies include uplink carrier aggregation (UL CA) and supplemental uplink (SUL) . In some deployments utilizing multiple uplink carriers, time division multiplexing (TDM) may be used to ensure that uplink communications on the multiple uplink carriers do not collide. For example, a time division duplex (TDD) carrier with a wider bandwidth may be time division multiplexed (TDMed) with a frequency division duplex (FDD) carrier with a wider bandwidth, so that only one of the TDD carrier and the FDD carrier is used for an uplink communication at a time. This may reduce hardware complexity of the UE and/or the base station.
In the case of a TDMed set of uplink carriers, a carrier switching gap (sometimes referred to herein as a switching gap) may be introduced. The carrier switching gap may be a time gap between an end of an uplink transmission on a first carrier and a beginning of an uplink transmission on a second carrier. For example, the  carrier switching gap may enable the support of two-antenna transmission on a high band and one-antenna transmission on the low band for a UE with two physical antennas. Different UEs may be associated with different capabilities for carrier switching gaps, since different UEs may be capable of switching from one carrier to another at different speeds. A UE may signal capability information identifying a capability for a carrier switching gap to a base station. A base station may select and/or configure carrier switching gaps for a set of UEs based at least in part on the capability information. Thus, carrier switching gaps for different UEs may be different.
A UE may transmit a physical uplink control channel (PUCCH) to provide uplink control information (UCI) to a base station. For example, the PUCCH may carry acknowledgment information, a scheduling request (SR) , channel state information (CSI) , and/or the like. A PUCCH may use a PUCCH resource (e.g., a set of PUCCH resources or a PUCCH resource set) which may be indicated by a PUCCH configuration. For example, a PUCCH configuration may be common to all UEs covered by a base station, or may be dedicated for one or more particular UEs.
Since different UEs can have different carrier switching gaps (e.g., different lengths of carrier switching gaps, different locations of carrier switching gaps, and/or the like) , a collision may occur between a carrier switching gap of a UE and a PUCCH resource to be used for a PUCCH by the UE. In this case, many PUCCH resource configurations may lead to collisions, so a pre-configured set of PUCCH configurations may not be valid for all UEs. An unhandled collision of a PUCCH resource and a carrier switching gap may lead to diminished uplink performance and/or interrupted PUCCH transmission.
Some techniques and apparatuses described herein provide techniques for mitigating or avoiding a collision between a PUCCH resource and a carrier switching  gap. For example, some techniques and apparatuses described herein provide a restricted PUCCH resource configuration, in which a base station may configure a PUCCH resource based at least in part on a capability for a carrier switching gap of a UE so as to avoid a collision of the PUCCH resource with the carrier switching gap. Some techniques and apparatuses described herein provide a puncturing or rate matching technique whereby a PUCCH is rate matched around or punctured by a carrier switching gap. Some techniques and apparatuses described herein provide a shortened PUCCH for certain PUCCH formats, whereby a PUCCH is associated with a baseline PUCCH configuration for a non-colliding PUCCH and a shortened PUCCH configuration for a PUCCH that would otherwise collide with a carrier switching gap. Furthermore, some techniques and apparatuses described herein may provide for omission of certain content of a PUCCH based at least in part on a priority level of the content. In some aspects, the techniques described above may be applied for particular PUCCH formats (e.g., a first technique may be applied for a first PUCCH format, and so on) . In this way, collisions between PUCCHs and carrier switching gaps may be mitigated, thereby improving performance of multiple-carrier uplink systems and reducing the likelihood of loss or interruption of the PUCCH.
Figs. 3 and 4 are diagrams illustrating examples 300, 400 of sets of physical uplink control channels (PUCCHs) associated with a restricted PUCCH resource configuration technique 305 for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure. As shown, examples 300 and 400 include a TDD carrier and an FDD uplink carrier. As further shown, in these examples, the TDD carrier is associated with a wider bandwidth and the FDD uplink carrier is associated with a narrower bandwidth, though in some aspects, the TDD carrier and the FDD uplink carrier may have equal bandwidths or the FDD uplink  carrier may have a wider bandwidth. Furthermore, the techniques and apparatuses described herein in connection with Figs. 3-13 may be applied for any combination of uplink carriers that are TDMed with each other. In Figs. 3-7, downlink slots are indicated by the letter D, uplink slots are indicated by the letter U, and special slots are indicated by the letter S. An uplink transmission (e.g., a PUCCH and/or the like) on a particular carrier is indicated by a shaded rectangle including the letter U. Uplink transmissions may occur in special slots or uplink slots.
A carrier switching gap is indicated by a rectangle with a diagonally hatched fill. A rectangle with a diagonally hatched fill may indicate individual symbols, as indicated by reference number 310, or may indicate a set of one or more symbols, as indicated by reference number 315. An “X” on a resource of the FDD UL carrier indicates that that resource is unavailable for transmission because the UE has switched to the TDD carrier.
Examples of different carrier switching gap sizes are shown by  reference numbers  320, 325, and 330. Reference number 320 shows single-symbol carrier switching gaps, reference number 325 shows two-symbol carrier switching gaps, and reference number 330 shows four-symbol carrier switching gaps. The length of a carrier switching gap may be dependent on a capability of a UE (e.g., UE 120) . For example, a UE that is capable of more quickly switching between the TDD carrier and the FDD uplink carrier may use a single-symbol carrier switching gap 320, whereas a UE that is slower to switch between the TDD carrier and the FDD uplink carrier may use a two-symbol carrier switching gap 325 or a four-symbol carrier switching gap 330.
A UE may signal capability information to a base station (e.g., base station 110) that indicates a capability for a carrier switching gap of the UE. The base station may select a carrier switching gap for the UE. In some aspects, the base station may  configure the UE to use the carrier switching gap. In some aspects, the base station may configure a PUCCH configuration for the UE based at least in part on the carrier switching gap (e.g., without explicitly configuring the UE to use the carrier switching gap) .
The column of slot diagrams indicated by reference number 335 shows example carrier switching gap configurations for a 14-symbol uplink transmission with a carrier switching gap at the beginning of the uplink transmission. Arrows from the slots of the FDD UL carrier to the slot diagrams shown by  reference numbers  335, 340, and 345 indicate that the corresponding slot diagrams are examples of carrier switching gap configurations of the corresponding slots. The column of slot diagrams shown by reference number 340 shows example carrier switching gap configurations for a 12-symbol uplink transmission with a carrier switching gap at the end of the uplink transmission. The column of slot diagrams shown by reference number 345 shows example carrier switching gap configurations for a 7-symbol uplink transmission with a carrier switching gap at the beginning of the uplink transmission.
A PUCCH may be transmitted on one or more of the uplink transmission slots of the TDD carrier and/or the FDD UL carrier. A PUCCH may be configured by a PUCCH configuration to use one or more PUCCH resource sets. For example, a PUCCH configuration may refer to a table that indicates a PUCCH format, a first symbol of the PUCCH, a number of symbols of the PUCCH, a physical resource block (PRB) offset of the PUCCH, and/or a set of initial indexes of the PUCCH. A legacy PUCCH configuration may occupy the last X symbols of a slot, where X is an integer. In some aspects, a dedicated PUCCH configuration may be UE-specific or specific to a group of UEs.
Some PUCCH configurations may collide with one or more of the carrier switching gaps illustrated in example 300. For example, a PUCCH configuration that indicates a PUCCH resource that occupies an entire slot may collide with all of the carrier switching gaps shown in example 300. As another example, a PUCCH configuration that indicates a PUCCH resource that occupies the last X symbols of a slot may collide with all carrier switching gaps shown by reference number 340, and with one or more of the carrier switching gaps shown by  reference numbers  335 and 345, depending on the value of X and the size of the carrier switching gap. As a third example, a PUCCH configuration that indicates a PUCCH resource that is longer than the available number of symbols of a slot may collide with a corresponding carrier switching gap of that slot. For example, consider the carrier switching gap shown by reference number 350. In that case, any PUCCH configuration that indicates a PUCCH resource longer than 2 symbols may collide with the carrier switching gap.
Various techniques are provided herein for mitigating collisions between the PUCCH and the carrier switching gap. Figs. 3 and 4 show examples of a restricted PUCCH resource configuration technique, in which a base station (e.g., a gNB) may configure PUCCH resources of one or more UEs based at least in part on a capability for a carrier switching gap of the one or more UEs. For example, as shown by reference number 355, a UE may be configured with multiple PUCCH configurations corresponding to PUCCH resources (shown by rectangles labeled as “PUCCH” ) that avoid collision with a carrier switching gap of the UE. As can be seen by comparing the vertical alignment of the carrier switching gaps and the PUCCH resources, the PUCCH resources do not occupy carrier switching gap symbols, thus avoiding collision between corresponding PUCCHs and the carrier switching gap symbols.
Reference number 360 shows a first set of PUCCH configurations that avoid collision with the set of carrier switching gaps shown by reference number 335. Reference number 365 shows a second set of PUCCH configurations that avoid collision with the set of carrier switching gaps shown by reference number 340. As shown, the second set of PUCCH configurations does not occupy an end of the slot, thereby avoiding collision with the carrier switching gap. Reference number 370 shows a third set of PUCCH configurations that avoid collision with the set of carrier switching gaps shown by reference number 345. In some aspects, a group of UEs that are associated with different carrier switching gaps or different carrier switching gap capabilities may be configured with one or more PUCCH configurations that collide with no carrier switching gap of the group of UEs. In some aspects, a group of UEs may be configured with respective PUCCH configurations that do not collide with respective carrier switching gaps of the group of UEs.
This technique may be applicable for short PUCCHs (e.g., PUCCH Format 0 or PUCCH Format 2, which include one or two symbols) , since one or two symbols that do not collide with the carrier switching gap are likely to be available in each slot. Furthermore, this technique may be applicable for a long PUCCH format when the number of symbols of the PUCCH is less than or equal to the number of available symbols in a slot.
Fig. 4 shows an example 400 similar to example 300 with a different ratio of uplink transmissions on the TDD carrier and the FDD carrier, for example, due to different coverage conditions than example 300. The PUCCH resources shown by reference number 405 are similar to those shown in example 300, and do not collide with corresponding carrier switching gaps shown by reference number 410. Thus, the base station may configure PUCCH configurations for PUCCH resources that do not  collide with carrier switching gaps, thereby mitigating such collisions and reducing loss or interruption of PUCCHs.
As indicated above, Figs. 3 and 4 are provided as one or more examples. Other examples may differ from what is described with respect to Figs. 3 and 4.
Fig. 5 is a diagram illustrating an example 500 of a set of PUCCHs associated with a puncturing or rate matching technique 505 for mitigation of a collision with a carrier switching gap, in accordance with various aspects of the present disclosure. In some aspects, a UE and/or a base station may rate match a PUCCH around a carrier switching gap, or may puncture the PUCCH for the carrier switching gap. In example 500, a punctured symbol is indicated by a dotted fill. It should be understood that the dotted fill may indicate a symbol around which the PUCCH is rate matched. As shown, a PUCCH may be rate matched around one or more symbols of a corresponding carrier switching gap.
In some aspects, when a configured PUCCH resource collides with a carrier switching gap, the UE or the base station may rate match or puncture the PUCCH based at least in part on the colliding symbols and based at least in part on one or more configured PRBs of the PUCCH. This may be applicable for PUCCH Format 3 and PUCCH Format 4, which include four or more symbols.
In some aspects, the UE or the base station may determine whether to puncture the PUCCH. For example, the UE or the base station may determine an achievable effective coding rate if puncturing is performed. If the achievable coding rate satisfies a target coding rate threshold, then the UE or the base station may puncture the PUCCH. If the achievable coding rate fails to satisfy the threshold, then the UE or the base station may perform one or more of the other collision mitigation techniques  described herein. As just one example, the target coding rate threshold may be defined as a maximum target coding rate.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating an example 600 of a set of PUCCHs associated with a shortened PUCCH configuration technique 605 for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure. As shown in example 600, a UE may be configured with one or more legacy PUCCH configurations (e.g., using radio resource control (RRC) signaling and/or the like) and one or more shortened PUCCH configurations (e.g., using RRC signaling and/or the like) . Here, the UE is configured with respective legacy PUCCH configurations in a slot X and a slot Y, and with respective shortened PUCCH configurations in the slot X and the slot Y. As used herein, a shortened PUCCH configuration may refer to a PUCCH configuration associated with a PUCCH resource including fewer symbols than a corresponding legacy PUCCH configuration for the same PUCCH format.
A collision between a carrier switching gap and a PUCCH resource associated with a legacy PUCCH configuration on a slot X is shown by reference number 610. As shown by reference number 615, in this case, the UE and/or the base station may use the shortened PUCCH configuration, which does not collide with the carrier switching gap in the slot X. As shown by reference number 620, no collision between the legacy PUCCH configuration and the carrier switching gap occurs in the slot Y. Thus, the UE or the base station may use the legacy PUCCH configuration shown by reference number 625. In some aspects, only UEs with the same switching gap capability may be configured on a same time/frequency resource, and may be  multiplexed using time domain orthogonal cover codes. In this way, the base station may configure a legacy PUCCH configuration and a shortened PUCCH configuration, thereby permitting fallback to the shortened PUCCH configuration when collision with the legacy PUCCH configuration occurs. In some aspects, this technique may be applied for a PUCCH Format 1.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
Fig. 7 is a diagram illustrating an example of a set of PUCCHs associated with a priority-based omission technique 705 for mitigation of a collision with a switching gap, in accordance with various aspects of the present disclosure. In example 700, collisions between a carrier switching gap and a PUCCH resource are shown by reference number 710. As shown by reference number 715, a PUCCH may include one or more of an acknowledgment (ACK) , a scheduling request (SR) , and/or channel state information (CSI) .
If the  PUCCH  720 or 725 were to include all of the content (e.g., the ACK, the SR, and the CSI) , then the  PUCCH  720 or 725 may collide with the carrier switching gap. Thus, as shown by reference number 730, part of the content of the PUCCH 720/725 may be omitted, thereby reducing the length of the PUCCH and mitigating the collision of the PUCCH 720/725 and the carrier switching gap. Here, the CSI is omitted, as indicated by the X over the CSI.
In some aspects, the UE or the base station may omit content based at least in part on a priority level of the content. For example, priority levels of the content may be defined (e.g., the ACK may be assigned a first priority level, the SR may be assigned a second priority level, the CSI may be assigned a third priority level, and so on) . The UE or the base station may omit content associated with a threshold priority level (e.g.,  a lowest priority level, a lowest N priority levels where N is an integer, and/or the like) when a collision is identified. In some aspects, the UE or the base station may omit the content based at least in part on a threshold. For example, the UE or the base station may omit the content when an effective coding rate of the PUCCH satisfies a threshold. The UE or the base station may determine the effective coding rate based at least in part on a payload size, a modulation order, a number of available symbols of the PUCCH (e.g., configured symbols minus a number of symbols of the carrier switching gap) , a number of subcarriers or PRBs in the frequency domain, and/or the like) . In this way, the UE or the base station may transmit higher-priority content and may omit lower-priority content when a collision occurs, thereby reducing interruption of the higher-priority content in the case of a collision.
In some aspects, the UE or the base station may select a technique for mitigating a collision based at least in part on a PUCCH format of a PUCCH. For example, if the PUCCH is associated with a PUCCH Format 0 or 2, then the UE or the base station may mitigate the collision using the restricted PUCCH resource configuration technique 305. If the PUCCH is associated with a PUCCH Format 1, then the UE or the base station may mitigate the collision using the shortened PUCCH configuration technique 605. If the PUCCH is associated with a PUCCH Format 3 or 4, then the UE or the base station may mitigate the collision using the puncturing or rate matching technique 505. In any of the above cases, the UE or the base station may omit content from the PUCCH based at least in part on the priority-based omission technique 705.
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by an user equipment (UE) , in accordance with various aspects of the present disclosure. Example process 800 is an example where the UE (e.g., UE 120, apparatus 1002 (see Fig. 10) , and/or the like) performs operations associated with mitigation of control channel collision with carrier switching gap.
As shown in Fig. 8, in some aspects, process 800 may include receiving or determining information identifying one or more PUCCH configurations (block 810) . For example, the UE (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or the like) may receive or determine information identifying one or more PUCCH configurations, as described above in connection with Figs. 3-7.
As further shown in Fig. 8, in some aspects, process 800 may include identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE (block 820) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE, as described above in connection with Figs. 3-7.
As further shown in Fig. 8, in some aspects, process 800 may include modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap (block 830) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may modify at least one PUCCH, associated with the one or more PUCCH configurations,  based at least in part on the particular PUCCH configuration and the switching gap, as described above in connection with Figs. 3-7.
In a first aspect, modifying the at least one PUCCH comprises selectively rate matching the at least one PUCCH around the switching gap or puncturing the at least one PUCCH for the switching gap.
In a second aspect, alone or in combination with the first aspect, the particular PUCCH configuration is a first PUCCH configuration, and modifying the at least one PUCCH comprises selecting a second PUCCH configuration, of the one or more PUCCH configurations, other than the particular PUCCH configuration, based at least in part on the collision.
In a third aspect, alone or in combination with one or more of the first and second aspects, the second PUCCH configuration is associated with a shortened PUCCH.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, modifying the at least one PUCCH comprises selectively omitting at least part of the at least one PUCCH.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 800 includes selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the switching gap comprises a carrier switching gap.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 900 is an example where the base station (e.g., base station 110, apparatus 1202, and/or the like) performs operations associated with mitigation of control channel collision with carrier switching gap.
As shown in Fig. 9, in some aspects, process 900 may include receiving or determining information identifying one or more PUCCH configurations for a UE (block 910) . For example, the base station (e.g., using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like) may receive or determine information identifying one or more PUCCH configurations for a UE, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE (block 920) . For example, the base station (e.g., using controller/processor 240 and/or the like) may identify a collision between a PUCCH resource, associated with a  particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap (block 930) . For example, the base station (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like) may modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap, as described above.
In a first aspect, the particular PUCCH configuration is a first PUCCH configuration, and the method further comprises configuring the first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations, other than the particular PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap.
In a second aspect, alone or in combination with the first aspect, the second PUCCH configuration is associated with a shortened PUCCH.
In a third aspect, alone or in combination with one or more of the first and second aspects, the one or more PUCCH configurations are for a PUCCH having one or two symbols.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the one or more PUCCH configurations are for a PUCCH having at most a same number of symbols as a number of symbols available for the PUCCH based at least in part on the switching gap.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the one or more PUCCH configurations include a plurality of PUCCH configurations, and respective PUCCH resources of the plurality of PUCCH configurations are configured not to collide with respective carrier switching gaps.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, modifying the at least one PUCCH comprises selectively omitting at least part of the at least one PUCCH.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 900 includes selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the switching gap comprises a carrier switching gap.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a conceptual data flow diagram illustrating an example 1000 of a data flow between different modules/means/components in an example apparatus 1002. The apparatus 1002 may include, for example, a UE (e.g., UE 120) . In some aspects, the apparatus 1002 includes a receiving module 1004, an identifying module 1006, a modifying module 1008, and/or a selecting module 1010.
The receiving module 1004 may receive information identifying one or more PUCCH configurations (e.g., from a base station, such as base station 110, the apparatus 1202 (see Fig. 12) , and/or the like) . In some aspects, the apparatus 1002 may determine such information (not shown) . The information identifying the one or more PUCCH configurations may identify a PUCCH configuration in order to mitigate a collision between a PUCCH resource and a carrier switching gap and/or one or more legacy PUCCH configurations.
The identifying module 1006 may identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the apparatus 1002. For example, the identifying module 1006 may identify the collision based at least in part on the one or more PUCCH configurations and based at least in part on information indicating a carrier switching gap of the apparatus 1002. The identifying module 1006 may provide an indication of the collision to the modifying module 1008.
The modifying module 1008 may modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap. For example, the modifying module 1008 may apply one or more of the techniques described elsewhere herein to modify the at least one PUCCH, or may use a PUCCH configuration that mitigates the collision. In some aspects, the modifying module 1008 may apply a technique selected by the  selecting module 1010. For example, the selecting module 1010 may select a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH. The selecting module 1010 may provide an indication of the selected technique to the modifying module 1008.
In some aspects, apparatus 1002 may include additional modules that perform each of the blocks of the algorithm in the flow chart of FIG. 4. Each block in the flow chart of FIG. 4 may be performed by a module, and apparatus 1002 may include one or more of those modules. The modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
The number and arrangement of modules shown in FIG. 10 are provided as an example. In practice, there may be additional modules, fewer modules, different modules, or differently arranged modules than those shown in FIG. 10. Furthermore, two or more modules shown in FIG. 10 may be implemented within a single module, or a single module shown in FIG. 10 may be implemented as multiple, distributed modules. Additionally, or alternatively, a set of modules (e.g., one or more modules) shown in FIG. 10 may perform one or more functions described as being performed by another set of modules shown in FIG. 10.
FIG. 11 is a diagram illustrating an example 1100 of a hardware implementation for an apparatus (e.g., apparatus 1002 described above in connection with Fig. 10) employing a processing system 1102. The apparatus 1002′may include, for example, a UE (e.g., UE 120) .
The processing system 1102 may be implemented with a bus architecture, represented generally by the bus 1104. The bus 1104 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1102 and the overall design constraints. The bus 1104 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1106, the  modules  1004, 1006, 1008, and/or 1010, and the computer-readable medium /memory 1108. The bus 1104 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1102 may be coupled to a transceiver 1110. The transceiver 1110 is coupled to one or more antennas 1112. The transceiver 1110 provides a means for communicating with various other apparatuses over a transmission medium. The transceiver 1110 receives a signal from the one or more antennas 1112, extracts information from the received signal, and provides the extracted information to the processing system 1102. In addition, the transceiver 1110 receives information from the processing system 1102 and, based at least in part on the received information, generates a signal to be applied to the one or more antennas 1112.
The processing system 1102 includes a processor 1106 coupled to a computer-readable medium /memory 1108. The processor 1106 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1108. The software, when executed by the processor 1406, causes the processing system 1102 to perform the various functions described herein for any particular apparatus. The computer-readable medium /memory 1108 may also be used for storing data that is manipulated by the processor 1106 when executing software. The processing system further includes at least one of the  modules  1004, 1006, 1008,  and/or 1010. The modules may be software modules running in the processor 1106, resident/stored in the computer readable medium /memory 1108, one or more hardware modules coupled to the processor 1106, or some combination thereof.
In some aspects, the apparatus 1002 for wireless communication includes means for receiving or determining information identifying one or more PUCCH configurations; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the apparatus 1202; means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap; means for selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH; and/or the like. The aforementioned means may be one or more of the aforementioned modules of the apparatus 1002 and/or the processing system 1102 of the apparatus 1002 configured to perform the functions recited by the aforementioned means.
As indicated above, Fig. 11 is provided as an example. Other examples may differ from what is described with regard to Fig. 11.
Fig. 12 is a conceptual data flow diagram illustrating an example 1200 of a data flow between different modules/means/components in an example apparatus 1202. The apparatus 1202 may include, for example, a base station (e.g., base station 110) . In some aspects, the apparatus 1202 includes a receiving module 1204, an identifying module 1206, a modifying module 1208, a selecting module 1210, and/or a configuring module 1212.
The receiving module 1204 may receive information identifying one or more PUCCH configurations. In some aspects, the apparatus 1202 may determine or  configure such information (e.g., using the configuring module 1212 and/or the like) . The information identifying the one or more PUCCH configurations may identify a PUCCH configuration to mitigate a collision between a PUCCH resource and a carrier switching gap and/or one or more legacy PUCCH configurations. In some aspects, the receiving module 1204 may receive capability information identifying one or more capabilities for a carrier switching gap of a UE.
The identifying module 1206 may identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of a UE. For example, the identifying module 1206 may identify the collision based at least in part on the one or more PUCCH configurations and based at least in part on information indicating a carrier switching gap of the apparatus 1202. The identifying module 1206 may provide an indication of the collision to the modifying module 1208.
The modifying module 1208 may modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap. For example, the modifying module 1208 may apply one or more of the techniques described elsewhere herein to modify the at least one PUCCH, or may use a PUCCH configuration that mitigates the collision. In some aspects, the modifying module 1208 may apply a technique selected by the selecting module 1210. For example, the selecting module 1210 may select a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH. The selecting module 1210 may provide an indication of the selected technique to the modifying module 1208. In some aspects, the configuring module 1212 may modify at least one PUCCH, for example, by configuring a first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH  configurations other than the particular PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap.
In some aspects, apparatus 1202 may include additional modules that perform each of the blocks of the algorithm in the flow chart of FIG. 4. Each block in the flow chart of FIG. 4 may be performed by a module, and apparatus 1202 may include one or more of those modules. The modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
The number and arrangement of modules shown in FIG. 12 are provided as an example. In practice, there may be additional modules, fewer modules, different modules, or differently arranged modules than those shown in FIG. 12. Furthermore, two or more modules shown in FIG. 12 may be implemented within a single module, or a single module shown in FIG. 12 may be implemented as multiple, distributed modules. Additionally, or alternatively, a set of modules (e.g., one or more modules) shown in FIG. 12 may perform one or more functions described as being performed by another set of modules shown in FIG. 12.
FIG. 13 is a diagram illustrating an example 1300 of a hardware implementation for an apparatus (e.g., apparatus 1202 described above in connection with Fig. 12) employing a processing system 1302. The apparatus 1202′may include, for example, a base station (e.g., base station 110) .
The processing system 1302 may be implemented with a bus architecture, represented generally by the bus 1304. The bus 1304 may include any number of  interconnecting buses and bridges depending on the specific application of the processing system 1302 and the overall design constraints. The bus 1304 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1306, the  modules  1204, 1206, 1208, 1210, and/or 1212, and the computer-readable medium /memory 1308. The bus 1304 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1302 may be coupled to a transceiver 1310. The transceiver 1310 is coupled to one or more antennas 1312. The transceiver 1310 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1310 receives a signal from the one or more antennas 1312, extracts information from the received signal, and provides the extracted information to the processing system 1302. In addition, the transceiver 1310 receives information from the processing system 1302 and, based at least in part on the received information, generates a signal to be applied to the one or more antennas 1312.
The processing system 1302 includes a processor 1306 coupled to a computer-readable medium /memory 1308. The processor 1306 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1308. The software, when executed by the processor 1406, causes the processing system 1302 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1308 may also be used for storing data that is manipulated by the processor 1306 when executing software. The processing system further includes at least one of the  modules  1204, 1206, 1208, 1210, and/or 1212. The modules may be software modules running in the processor  1306, resident/stored in the computer readable medium /memory 1308, one or more hardware modules coupled to the processor 1306, or some combination thereof.
In some aspects, the apparatus 1202 for wireless communication includes means for receiving or determining information identifying one or more PUCCH configurations for a UE; means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap; means for configuring the first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations other than the particular PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap; means for selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH; and/or the like. The aforementioned means may be one or more of the aforementioned modules of the apparatus 1202 and/or the processing system 1302 of the apparatus 1202 configured to perform the functions recited by the aforementioned means.
As indicated above, Fig. 13 is provided as an example. Other examples may differ from what is described with regard to Fig. 13.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any  combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (80)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving or determining information identifying one or more physical uplink control channel (PUCCH) configurations;
    identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and
    modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  2. The method of claim 1, wherein modifying the at least one PUCCH comprises selectively rate matching the at least one PUCCH around the switching gap or puncturing the at least one PUCCH for the switching gap.
  3. The method of claim 1, wherein the particular PUCCH configuration is a first PUCCH configuration, and wherein modifying the at least one PUCCH comprises selecting a second PUCCH configuration, of the one or more PUCCH configurations, other than the particular PUCCH configuration, based at least in part on the collision.
  4. The method of claim 3, wherein the second PUCCH configuration is associated with a shortened PUCCH.
  5. The method of claim 1, wherein modifying the at least one PUCCH comprises selectively omitting at least part of the at least one PUCCH.
  6. The method of claim 5, wherein the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
  7. The method of claim 5, wherein selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
  8. The method of claim 1, further comprising:
    selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
  9. The method of claim 1, wherein the switching gap comprises a carrier switching gap.
  10. A method of wireless communication performed by a base station, comprising:
    receiving or determining information identifying one or more physical uplink control channel (PUCCH) configurations for a user equipment (UE) ;
    identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and
    modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  11. The method of claim 10, wherein the particular PUCCH configuration is a first PUCCH configuration, and wherein the method further comprises:
    configuring the first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations other than the particular PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap.
  12. The method of claim 11, wherein the second PUCCH configuration is associated with a shortened PUCCH.
  13. The method of claim 10, wherein the one or more PUCCH configurations are for a PUCCH having one or two symbols.
  14. The method of claim 10, wherein the one or more PUCCH configurations are for a PUCCH having at most a same number of symbols as a number of symbols available for the PUCCH based at least in part on the switching gap.
  15. The method of claim 10, wherein the one or more PUCCH configurations include a plurality of PUCCH configurations, and wherein respective PUCCH resources  of the plurality of PUCCH configurations are configured not to collide with respective carrier switching gaps.
  16. The method of claim 10, wherein modifying the at least one PUCCH comprises selectively omitting at least part of the at least one PUCCH.
  17. The method of claim 16, wherein the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
  18. The method of claim 16, wherein selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
  19. The method of claim 10, further comprising:
    selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
  20. The method of claim 10, wherein the switching gap comprises a carrier switching gap.
  21. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive or determine information identifying one or more physical uplink control channel (PUCCH) configurations;
    identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and
    modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  22. The UE of claim 21, wherein the one or more processors, when modifying the at least one PUCCH, are further configured to selectively rate match the at least one PUCCH around the switching gap or puncturing the at least one PUCCH for the switching gap.
  23. The UE of claim 21, wherein the particular PUCCH configuration is a first PUCCH configuration, and wherein the one or more processors, when modifying the at least one PUCCH, are further configured to select a second PUCCH configuration, of the one or more PUCCH configurations, other than the particular PUCCH configuration, based at least in part on the collision.
  24. The UE of claim 21, wherein the second PUCCH configuration is associated with a shortened PUCCH.
  25. The UE of claim 21, wherein the one or more processors, when modifying the at least one PUCCH, are further configured to selectively omit at least part of the at least one PUCCH.
  26. The UE of claim 25, wherein the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
  27. The UE of claim 25, wherein selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
  28. The UE of claim 21, wherein the one or more processors are further configured to:
    select a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
  29. The UE of claim 21, wherein the switching gap comprises a carrier switching gap.
  30. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive or determine information identifying one or more physical uplink control channel (PUCCH) configurations for a user equipment (UE) ;
    identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and
    modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  31. The base station of claim 30, wherein the particular PUCCH configuration is a first PUCCH configuration, and wherein the one or more processors are further configured to:
    configure the first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations, other than the particular PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap.
  32. The base station of claim 31, wherein the second PUCCH configuration is associated with a shortened PUCCH.
  33. The base station of claim 30, wherein the one or more PUCCH configurations are for a PUCCH having one or two symbols.
  34. The base station of claim 30, wherein the one or more PUCCH configurations are for a PUCCH having at most a same number of symbols as a number of symbols available for the PUCCH based at least in part on the switching gap.
  35. The base station of claim 30, wherein the one or more PUCCH configurations include a plurality of PUCCH configurations, and wherein respective PUCCH resources of the plurality of PUCCH configurations are configured not to collide with respective carrier switching gaps.
  36. The base station of claim 30, wherein the one or more processors, when modifying the at least one PUCCH, are further configured to selectively omit at least part of the at least one PUCCH.
  37. The base station of claim 36, wherein the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
  38. The base station of claim 36, wherein selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
  39. The base station of claim 30, wherein the one or more processors are further configured to:
    select a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
  40. The base station of claim 30, wherein the switching gap comprises a carrier switching gap.
  41. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    receive or determine information identifying one or more physical uplink control channel (PUCCH) configurations;
    identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and
    modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  42. The non-transitory computer-readable medium of claim 41, wherein the one or more instructions, that cause one or more processors of the UE to modify the at least one PUCCH, cause the one or more processors to selectively rate match the at least one PUCCH around the switching gap or puncturing the at least one PUCCH for the switching gap.
  43. The non-transitory computer-readable medium of claim 41, wherein the particular PUCCH configuration is a first PUCCH configuration, and wherein the one or  more instructions, that cause one or more processors of the UE to modify the at least one PUCCH, cause the one or more processors to select a second PUCCH configuration, of the one or more PUCCH configurations other than the particular PUCCH configuration, based at least in part on the collision.
  44. The non-transitory computer-readable medium of claim 413, wherein the second PUCCH configuration is associated with a shortened PUCCH.
  45. The non-transitory computer-readable medium of claim 41, wherein the one or more instructions, that cause one or more processors of the UE to modify the at least one PUCCH, cause the one or more processors to selectively omit at least part of the at least one PUCCH.
  46. The non-transitory computer-readable medium of claim 45, wherein the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
  47. The non-transitory computer-readable medium of claim 45, wherein selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
  48. The non-transitory computer-readable medium of claim 41, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to:
    select a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
  49. The non-transitory computer-readable medium of claim 41, wherein the switching gap comprises a carrier switching gap.
  50. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    receive or determine information identifying one or more physical uplink control channel (PUCCH) configurations for a user equipment (UE) ;
    identify a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and
    modify at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  51. The non-transitory computer-readable medium of claim 50, wherein the particular PUCCH configuration is a first PUCCH configuration, and wherein the non-transitory computer-readable medium wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to:
    configure the first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations other than the particular PUCCH configuration,  wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap.
  52. The non-transitory computer-readable medium of claim 51, wherein the second PUCCH configuration is associated with a shortened PUCCH.
  53. The non-transitory computer-readable medium of claim 50, wherein the one or more PUCCH configurations are for a PUCCH having one or two symbols.
  54. The non-transitory computer-readable medium of claim 50, wherein the one or more PUCCH configurations are for a PUCCH having at most a same number of symbols as a number of symbols available for the PUCCH based at least in part on the switching gap.
  55. The non-transitory computer-readable medium of claim 50, wherein the one or more PUCCH configurations include a plurality of PUCCH configurations, and wherein respective PUCCH resources of the plurality of PUCCH configurations are configured not to collide with respective carrier switching gaps.
  56. The non-transitory computer-readable medium of claim 50, wherein the one or more instructions, that cause one or more processors to modify the at least one PUCCH, cause the one or more processors to selectively omit at least part of the at least one PUCCH.
  57. The non-transitory computer-readable medium of claim 56, wherein the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
  58. The non-transitory computer-readable medium of claim 56, wherein selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
  59. The non-transitory computer-readable medium of claim 50, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to:
    select a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
  60. The non-transitory computer-readable medium of claim 50, wherein the switching gap comprises a carrier switching gap.
  61. An apparatus for wireless communication, comprising:
    means for receiving or determining information identifying one or more physical uplink control channel (PUCCH) configurations;
    means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the apparatus; and
    means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  62. The apparatus of claim 61, wherein the means for modifying the at least one PUCCH comprises means for selectively rate matching the at least one PUCCH around the switching gap or puncturing the at least one PUCCH for the switching gap.
  63. The apparatus of claim 61, wherein the particular PUCCH configuration is a first PUCCH configuration, and wherein the means for modifying the at least one PUCCH comprises means for selecting a second PUCCH configuration, of the one or more PUCCH configurations other than the particular PUCCH configuration, based at least in part on the collision.
  64. The apparatus of claim 63, wherein the second PUCCH configuration is associated with a shortened PUCCH.
  65. The apparatus of claim 61, wherein the means for modifying the at least one PUCCH comprises means for selectively omitting at least part of the at least one PUCCH.
  66. The apparatus of claim 65, wherein the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
  67. The apparatus of claim 65, wherein selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
  68. The apparatus of claim 61, further comprising:
    means for selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
  69. The apparatus of claim 61, wherein the switching gap comprises a carrier switching gap.
  70. An apparatus for wireless communication, comprising:
    means for receiving or determining information identifying one or more physical uplink control channel (PUCCH) configurations for a user equipment (UE) ;
    means for identifying a collision between a PUCCH resource, associated with a particular PUCCH configuration of the one or more PUCCH configurations, and a switching gap of the UE; and
    means for modifying at least one PUCCH, associated with the one or more PUCCH configurations, based at least in part on the particular PUCCH configuration and the switching gap.
  71. The apparatus of claim 70, wherein the particular PUCCH configuration is a first PUCCH configuration, and wherein the apparatus further comprises:
    means for configuring the first PUCCH configuration and a second PUCCH configuration, of the one or more PUCCH configurations other than the particular  PUCCH configuration, wherein the second PUCCH configuration is configured not to collide with the switching gap of the UE based at least in part on a capability of the UE associated with the switching gap.
  72. The apparatus of claim 71, wherein the second PUCCH configuration is associated with a shortened PUCCH.
  73. The apparatus of claim 70, wherein the one or more PUCCH configurations are for a PUCCH having one or two symbols.
  74. The apparatus of claim 70, wherein the one or more PUCCH configurations are for a PUCCH having at most a same number of symbols as a number of symbols available for the PUCCH based at least in part on the switching gap.
  75. The apparatus of claim 70, wherein the one or more PUCCH configurations include a plurality of PUCCH configurations, and wherein respective PUCCH resources of the plurality of PUCCH configurations are configured not to collide with respective carrier switching gaps.
  76. The apparatus of claim 70, wherein the means for modifying the at least one PUCCH comprises means for selectively omitting at least part of the at least one PUCCH.
  77. The apparatus of claim 76, wherein the at least part of the at least one PUCCH is selected for omission based at least in part on a priority level of the at least part of the at least one PUCCH.
  78. The apparatus of claim 76, wherein selectively omitting the at least part of the at least one PUCCH is based at least in part on whether an effective coding rate of the at least one PUCCH satisfies a threshold.
  79. The apparatus of claim 70, further comprising:
    means for selecting a technique for modifying the at least one PUCCH based at least in part on a PUCCH format of the at least one PUCCH.
  80. The apparatus of claim 70, wherein the switching gap comprises a carrier switching gap.
PCT/CN2019/105815 2019-09-13 2019-09-13 Mitigation of control channel collision with carrier switching gap WO2021046834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105815 WO2021046834A1 (en) 2019-09-13 2019-09-13 Mitigation of control channel collision with carrier switching gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105815 WO2021046834A1 (en) 2019-09-13 2019-09-13 Mitigation of control channel collision with carrier switching gap

Publications (1)

Publication Number Publication Date
WO2021046834A1 true WO2021046834A1 (en) 2021-03-18

Family

ID=74866986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105815 WO2021046834A1 (en) 2019-09-13 2019-09-13 Mitigation of control channel collision with carrier switching gap

Country Status (1)

Country Link
WO (1) WO2021046834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322407A1 (en) * 2021-04-05 2022-10-06 Qualcomm Incorporated Frequency resource hop extension, skipping, and modification, and rescheduling uplink and downlink transmissions that overlap with time gap for frequency resource switching

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120039307A1 (en) * 2010-08-11 2012-02-16 Samsung Electronics Co. Ltd. Method and apparatus for performing carrier switching in a wireless communication system using multi-carriers
CN109792358A (en) * 2016-09-30 2019-05-21 瑞典爱立信有限公司 The system and method switched for allocating and measuring gap and detection reference signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120039307A1 (en) * 2010-08-11 2012-02-16 Samsung Electronics Co. Ltd. Method and apparatus for performing carrier switching in a wireless communication system using multi-carriers
CN109792358A (en) * 2016-09-30 2019-05-21 瑞典爱立信有限公司 The system and method switched for allocating and measuring gap and detection reference signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Specification Impacts to Support SRS Carrier based Switching", 3GPP DRAFT; R1-162586, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20160411 - 20160415, 2 April 2016 (2016-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051080274 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322407A1 (en) * 2021-04-05 2022-10-06 Qualcomm Incorporated Frequency resource hop extension, skipping, and modification, and rescheduling uplink and downlink transmissions that overlap with time gap for frequency resource switching
US11800530B2 (en) * 2021-04-05 2023-10-24 Qualcomm Incorporated Frequency resource hop extension, skipping, and modification, and rescheduling uplink and downlink transmissions that overlap with time gap for frequency resource switching

Similar Documents

Publication Publication Date Title
US11013003B2 (en) Configuring a user equipment to operate in a transmission/reception point (TRP) mode
US11888766B2 (en) Uplink transmission collision management
US11470588B2 (en) Techniques for managing physical uplink control channel grouping for multiple transmit receive points
WO2022052015A1 (en) Uplink transmit switching for two frequency bands
CN111713072A (en) Physical resource block bundling size selection
US11729801B2 (en) Dynamic HARQ-ACK codebook construction for multiple active semi-persistent scheduling configurations
CN113994748A (en) Conditional Medium Access Control (MAC) layer based prioritized uplink channel collision resolution
US11963163B2 (en) LCP restriction based on a CORESET pool index value
US20230388096A1 (en) Half-duplex user equipment operation in new radio frequency division duplexed bands
WO2021173529A1 (en) Determining time domain resources for uplink cancellation
US11563550B2 (en) Transmission configuration indicator state activation and deactivation
WO2021138864A1 (en) Uplink preemption for multi-slot uci multiplexing
WO2021046834A1 (en) Mitigation of control channel collision with carrier switching gap
US20210377767A1 (en) Physical uplink control channel transmission for low latency communication deployments
US11265134B2 (en) Feedback transmission using multiple access signatures
WO2021138881A1 (en) Multi-slot transmission time interval based channel state information and uplink shared channel multiplexing
WO2021154445A1 (en) Timing advance command in downlink control information
CN113647044A (en) Beam indication for semi-persistent transmission
CN113170421A (en) Resource allocation for reserving resources
US11510222B2 (en) Signaling for protocol data unit preemption
WO2022021061A1 (en) Downlink control information signaling with a resource repetition factor
WO2021179193A1 (en) Contention-based access for uplink transmission with carrier aggregation
WO2021022392A1 (en) Techniques for carrier switching for two-step random access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944983

Country of ref document: EP

Kind code of ref document: A1