WO2021046795A1 - Robot, connection assembly and assembly method thereof - Google Patents

Robot, connection assembly and assembly method thereof Download PDF

Info

Publication number
WO2021046795A1
WO2021046795A1 PCT/CN2019/105607 CN2019105607W WO2021046795A1 WO 2021046795 A1 WO2021046795 A1 WO 2021046795A1 CN 2019105607 W CN2019105607 W CN 2019105607W WO 2021046795 A1 WO2021046795 A1 WO 2021046795A1
Authority
WO
WIPO (PCT)
Prior art keywords
gearbox
motor
input
connection assembly
intermediate member
Prior art date
Application number
PCT/CN2019/105607
Other languages
French (fr)
Inventor
Bin Liu
Xiaodong Cao
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to PCT/CN2019/105607 priority Critical patent/WO2021046795A1/en
Publication of WO2021046795A1 publication Critical patent/WO2021046795A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/029Gearboxes; Mounting gearing therein characterised by means for sealing the gearboxes, e.g. to improve airtightness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/031Gearboxes; Mounting gearing therein characterised by covers or lids for gearboxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • F16H2057/0235Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly specially adapted to allow easy accessibility and repair

Definitions

  • Embodiments of the present disclosure generally relate to a robot as well as a connection assembly for connecting a motor to a gearbox of the robot.
  • a robot typically comprises robot arm links and joints.
  • the robot arm link can be driven to rotate or move by a motor arranged in the joint or a base.
  • a gearbox is needed to be arranged between the motor and the robot arm links to be driven.
  • the gearbox is a device that uses gears and gear trains to provide speed and torque conversions from a rotating power source to another device.
  • the gearbox is separated from robot structure manufacturing, which is further connected on the robot structure in the following assembly process.
  • Such separated gearbox and structure designs require connection interfaces and occupy space.
  • gearboxes such as rotary vector (RV) gearbox
  • at least one gear as an input of the RV gearbox is located outside of the gearbox, and needs to be lubricated during operation to meet its transmission performance and extend service life.
  • at least a part, such as an output of the motor coupled to the input of gearbox needs to be immersed in the lubricant for lubricating the input of gearbox.
  • the lubricant may leak into the motor and cause damage to the motor.
  • connection assembly for connecting a motor to a gearbox of the robot.
  • connection assembly for connecting a motor to a gearbox.
  • the connection assembly comprises a sealing housing coupled to the gearbox and defining a cavity for receiving a lubricant to lubricate an input of the gearbox; and an intermediate member at least partially passing through the gearbox or the sealing housing to connect an output of the motor to the input of the gearbox for transmission.
  • the lubricant would not leak into the motor, thus improving the stability and service life of the motor and even the robot.
  • the motor and/or the gearbox can be removed from or installed on each other in an easier way, for example, merely by decoupling the motor from the intermediate member without the need to dump and refill the lubricant.
  • the intermediate member comprises an internal spline part adapted to be coupled to the output of the motor to rotate with the output; and a gear shaft coupled to the internal spline part and the input of the gearbox for transmission. In this way, the assembly difficulty and cost may be further reduced.
  • the internal spline part is arranged adjacent to an end of the gearbox away from the input of the gearbox, and the intermediate member at least partially passes through the gearbox and a coupling end of the intermediate member away from the internal spline part is coupled to the input.
  • the connection assembly can be more compact.
  • connection assembly further comprises a rotary sealing member arranged between the intermediate member and the gearbox.
  • a rotary sealing member arranged between the intermediate member and the gearbox.
  • the internal spline part is arranged adjacent to the input, and the intermediate member at least partially passes through the sealing housing and a coupling end of the intermediate member away from the internal spline part is coupled to the input.
  • the connection assembly may be achieved in an easier way and can be applied on the conventional motor or gearbox to reduce the maintenance cost.
  • connection assembly further comprises a rotary sealing member arranged between the sealing housing and the intermediate member.
  • the internal spline part and the gear shaft are coaxial. In this way, the volume occupied by the connection assembly may be further reduced with a further improved transmission performance.
  • the coupling end comprises external teeth for coupling with at least one gear as the input of the gearbox.
  • the connection assembly can be applied to a gearbox, such as a rotary vector gearbox with at least one gear as the input, to improve the transmission performance while reducing maintenance costs.
  • a robot in second aspect, comprises a joint, a connection assembly as mentioned in the first aspect and a robot arm link coupled to the joint and driven to rotate via the connection assembly.
  • a sealing housing of the connection assembly is integrated in the joint or the robot arm link.
  • an assembly method of a connection assembly comprises providing a sealing housing coupled to the gearbox to form a cavity for receiving a lubricating medium to lubricate an input of the gearbox; and arranging an intermediate member to pass through the gearbox or the sealing housing to couple an output of the motor to the input of the gearbox for transmission.
  • FIG. 1 shows a sectional side view and a perspective view of a traditional gearbox
  • FIG. 2 shows a sectional side view of a traditional power unit comprising a motor connected with a gearbox
  • FIG. 3 shows a sectional side view of a gearbox with a connection assembly according to embodiments of the present disclosure
  • FIG. 4 shows a sectional side view of a power unit comprising a motor connected to a gearbox via a connection assembly according to embodiments of the present disclosure
  • FIG. 5 shows a perspective view of a gearbox with a connection assembly according to embodiments of the present disclosure.
  • FIG. 6 shows a flowchart illustrating an assembly method of a connection assembly according to embodiments of the present disclosure.
  • the term “comprises” and its variants are to be read as open terms that mean “comprises, but is not limited to. ”
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be comprised below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
  • gearboxes such as rotary vector (RV) gearboxes 300’
  • at least one gear as an input 301’ is located outside of the gearbox, which needs to be lubricated during operation to meet its transmission performance and extend service life, as shown in FIG. 1.
  • at least a part, such as an output 201’ of a motor 200’ coupled to the input 301’ of the gearbox 300’ needs to be immersed in the lubricant for lubricating the input 301’ of gearbox 300’ , as shown in FIG. 2.
  • sealing means arranged in the motor may be worn out. As a result, the lubricant may leak into the motor and cause damage to the motor 200’ .
  • the space for receiving the lubricant is formed by parts of motor 200’ and gearbox 300’ with a cylindered housing 101’a rranged therebetween.
  • the motor needs to be disassembled from or assembled to the gearbox, for example, during the maintenance of the power unit of a robot, the lubricant in the space needs to be released first.
  • the motor is reassembled to the gearbox, the lubricant needs to be refilled.
  • connection assembly 100 for connecting an output 201 of a motor 200 to an input 301 of a gearbox 300. Now some example embodiments will be described with reference to FIGS. 3-5.
  • FIG. 3 shows a sectional side view of a gearbox 300 with a connection assembly 100
  • FIG. 4 shows a sectional side view of a power unit comprising a motor 200 connected to a gearbox 300 via a connection assembly 100
  • FIG. 5 shows a perspective view of a gearbox 300 with a connection assembly 100.
  • connection assembly 100 comprises a sealing housing 101 and an intermediated member 102.
  • the sealing housing 101 can form a cavity 1011 with the gearbox 300 when being coupled to the gearbox 300.
  • the cavity 1011 is used to receive lubricant for lubricating the input 301 of the gearbox 300.
  • the cavity 1011 for receiving the lubricant is formed by the sealing housing 101 and the gearbox 300, without the motor 200.
  • This arrangement allows that the motor 200 can be disassembled or reassembled without releasing or refilling the lubricant, which will be discussed further below, thereby improving the maintenance efficiency.
  • the intermediate member 102 of the connection assembly 100 acts as a transmission part to transmit torque and movement from the output 201 of the motor 200 to the input 301 of the gearbox 300.
  • the intermediate member 102 is arranged to at least partially pass through the gearbox 300 or the sealing housing 101 to connect the output 201 of the motor 200 to the input 301 of the gearbox 300 for the transmission.
  • the input 201 of the motor 200 is completely isolated from the lubricant.
  • the lubricant would not leak into the motor, thus improving the stability and service life of the motor 200 and even the robot.
  • the cavity 1011 for receiving the lubricant is formed by the sealing housing 101 and the gearbox 300 without the motor 200.
  • the motor 200 can be removed from the gearbox 300 in an easier way, for example, merely by decoupling the motor 200 from the intermediate member 102 without the need to release and refill the lubricant.
  • the maintenance efficiency may be improved with reduced maintenance costs.
  • the intermediate member 102 may comprise an internal spline part 1021 and a gear shaft 1022.
  • the internal spline part 1021 is used to be coupled to the output 201 of the motor 200 to rotate with the output 201.
  • the internal spline part 102 may comprise an internal spline that can be engaged with an external spline arranged on the output 201 coaxially. In this way, when the motor 200 needs to be removed from the gearbox 300, the user only needs to pull out the motor 200 without performing other operations, which significantly improves maintenance efficiency and reduces maintenance costs.
  • the above embodiments where the internal spline part 1021 is coupled to the output 201 of the motor 200 coaxially are merely for illustration, without suggesting any limitation as to the scope of the present application. Any suitable structures or arrangements are possible.
  • the axes of internal spline part 1021 and the output 201 of the motor 200 may also be parallel to each other but not coincident.
  • the internal spline part 1021 may have external teeth that can be engaged with the output 201 of the motor 200.
  • a distal end of the internal spline part 102 away from the output 201 is fixed to the gear shaft 1022, as shown in FIGS. 3 and 4.
  • the distal end of the internal spline part 102 may be coupled to the gear shaft 1022 with splines.
  • the distal end of the internal spline part 102 may have an internal spline arranged therein.
  • one end of the gear shaft 1022 may comprise an external spline that can be engaged with the internal spline arranged on the distal end of the internal spline part 102. This arrangement allows the intermediate member to be assembled more easily.
  • the distal end may also be coupled to the gear shaft 1022 by interference fit, adhesion, welding or the like.
  • the internal spline part 1021 and the gear shaft 1022 may also be integrally formed.
  • a coupling end of the gear shaft 1022 away from the internal spline part 102 may have teeth.
  • the teeth can be engaged with the input 301 of the gearbox 300. In this way, the movement and torque can be transmitted from the output 201 of the motor 200 to the input 301 of the gearbox 300.
  • the intermediate member 102 at least partially passes through the gearbox 300 or the sealing housing 101 to connect an output 201 of the motor 200 to the input 301 of the gearbox 300.
  • This arrangement allows the gearbox 300 to be coupled to the motor in two different ways.
  • the input 301 of the gearbox 300 may be arranged away from the motor 200.
  • the gearbox 300 may be of a hollow structure and the internal spline part 1021 is arranged adjacent to an end of the gearbox 300 away from the input 301 of the gearbox 300.
  • the hollow structure of the gearbox 300 allows the intermediated member 102 to at least partially pass through the gearbox 300. In this way, the coupling end of the intermediate member 102 away from the internal spline part can be coupled to the input 301 of the gearbox 300.
  • a rotary sealing member 103 may be placed between the components that are relatively rotatable, for example, between the intermediate member 102 and the gearbox 300, as shown in FIG. 4.
  • the rotary sealing member 103 which typically has a deformable structure, is a kind of dynamic sealing member that can withstand the alternating pressure on both sides when the components are relatively rotating.
  • a common seal such as O-ring may be placed therebetween.
  • the O-ring may be placed between the sealing housing 101 and the gearbox 300 to enhance the seal therebetween.
  • a flange 104 may be arranged between the motor 200 and the gearbox 300 to facilitate the arrangement of the motor and the gearbox 300.
  • the flange 104 allows a more strengthen the connection between the motor 200 and the gearbox 300.
  • the flange 104 may be omitted.
  • the output 301 of the gearbox 300 is away from the motor 200.
  • the output 301 of the gearbox 300 may also be adjacent to the motor 200.
  • the internal spline part 1021 is arranged adjacent to the input 301 of the gearbox 300.
  • the intermediate member 102 at least partially passes through the sealing housing 101 with the coupling end being coupled to the input 301.
  • This arrangement allows a more easy assembly of the motor 200 and the gearbox 300. There is no need to modify the motor 200 and gearbox 300, but only the sealing housing 101 is coupled to the gearbox 300. In those embodiments, different from the example as shown in FIG. 4, a through hole may be formed on the sealing housing 101. The intermediate member 102 may be inserted into the cavity 1011 via the through hole with the coupling end being coupled to the input 301.
  • a rotary sealing member may be placed between the components that are relatively rotatable, i.e., between the intermediate member 102 and the sealing housing 101.
  • the rotary sealing member may be arranged in the through hole or around the perimeter of the through hole.
  • connection assembly 100 as described above can be used in a robot.
  • Embodiments of the present disclosure further provide a robot comprising a joint, a connection assembly 100 as mentioned above and a robot arm link.
  • the robot arm link is coupled to the joint and driven to rotate by the motor 200 via the connection assembly 100.
  • the connection assembly 100 With the connection assembly 100, the maintenance efficiency for the robot may be significantly improved.
  • the sealing housing 101 of the connection assembly 100 may be a part of the robot arm link or the joint. That is, the sealing housing 101 may be integrated in the joint or the robot arm link. This can further improve the integration of the robot, reduce the size of the robot, and facilitate the miniaturization of the robot.
  • FIG. 6 shows a flowchart 600 illustrating an assembly method of a connection assembly 100.
  • a sealing housing 101 is provided.
  • the sealing housing is coupled to the gearbox 300 to form a cavity for receiving a lubricating medium to lubricate an input 301 of the gearbox 300.
  • an intermediate member 102 is arranged to pass through the gearbox 300 or the sealing housing 101 to couple an output 201 of the motor 200 to the input 301 of the gearbox 300 for transmission.
  • the sealing housing to form a cavity and the intermediate member for connecting the output of the motor to the input of the gearbox, the lubricant would not leak into the motor, thus improving the stability and service life of the motor and even the robot.
  • the motor and/or the gearbox can be removed from or installed on each other in an easier way, for example, merely by decoupling the motor from the intermediate member without the need to dump and refill the lubricant.

Abstract

A connection assembly for connecting a motor to a gearbox is provided. The connection assembly comprises a sealing housing coupled to the gearbox to form a cavity for receiving a lubricant to lubricate an input of the gearbox; and an intermediate member arranged to at least partially pass through the gearbox or the sealing housing to connect an output of the motor to the input of the gearbox for transmission. With the sealing housing to from a cavity and the intermediate member for connecting the output of the motor to the input of the gearbox, the lubricant would not leak into the motor, thus improving the stability and service life of the motor and even the robot. Furthermore, the motor and/or the gearbox can be removed from or installed on each other in an easier way, for example, merely by decoupling the motor from the intermediate member without the need to dump and refill the lubricant.

Description

ROBOT, CONNECTION ASSEMBLY AND ASSEMBLY METHOD THEREOF FIELD
Embodiments of the present disclosure generally relate to a robot as well as a connection assembly for connecting a motor to a gearbox of the robot.
BACKGROUND
Robots are now widely used automation mechanisms that increase operational efficiency and accuracy. A robot typically comprises robot arm links and joints. The robot arm link can be driven to rotate or move by a motor arranged in the joint or a base. To meet the requirements of the reduction ratio, a gearbox is needed to be arranged between the motor and the robot arm links to be driven. The gearbox is a device that uses gears and gear trains to provide speed and torque conversions from a rotating power source to another device.
Usually, as a precision component by external suppliers with different material and processing, the gearbox is separated from robot structure manufacturing, which is further connected on the robot structure in the following assembly process. Such separated gearbox and structure designs require connection interfaces and occupy space. Furthermore, for some gearboxes, such as rotary vector (RV) gearbox, at least one gear as an input of the RV gearbox is located outside of the gearbox, and needs to be lubricated during operation to meet its transmission performance and extend service life. In this event, at least a part, such as an output of the motor coupled to the input of gearbox needs to be immersed in the lubricant for lubricating the input of gearbox. As a result, the lubricant may leak into the motor and cause damage to the motor.
SUMMARY
To address or at least partially address the above and other potential problems, embodiments of the present disclosure provide a connection assembly for connecting a motor to a gearbox of the robot.
In a first aspect, a connection assembly for connecting a motor to a gearbox is  provided. The connection assembly comprises a sealing housing coupled to the gearbox and defining a cavity for receiving a lubricant to lubricate an input of the gearbox; and an intermediate member at least partially passing through the gearbox or the sealing housing to connect an output of the motor to the input of the gearbox for transmission.
With the sealing housing to from a cavity and the intermediate member for connecting the output of the motor to the input of the gearbox, the lubricant would not leak into the motor, thus improving the stability and service life of the motor and even the robot. Furthermore, the motor and/or the gearbox can be removed from or installed on each other in an easier way, for example, merely by decoupling the motor from the intermediate member without the need to dump and refill the lubricant.
In some embodiments, the intermediate member comprises an internal spline part adapted to be coupled to the output of the motor to rotate with the output; and a gear shaft coupled to the internal spline part and the input of the gearbox for transmission. In this way, the assembly difficulty and cost may be further reduced.
In some embodiments, the internal spline part is arranged adjacent to an end of the gearbox away from the input of the gearbox, and the intermediate member at least partially passes through the gearbox and a coupling end of the intermediate member away from the internal spline part is coupled to the input. With this arrangement, the connection assembly can be more compact.
In some embodiments, the connection assembly further comprises a rotary sealing member arranged between the intermediate member and the gearbox. As a result, the sealing effect may be further improved.
In some embodiments, the internal spline part is arranged adjacent to the input, and the intermediate member at least partially passes through the sealing housing and a coupling end of the intermediate member away from the internal spline part is coupled to the input. With this arrangement, the connection assembly may be achieved in an easier way and can be applied on the conventional motor or gearbox to reduce the maintenance cost.
In some embodiments, the connection assembly further comprises a rotary sealing member arranged between the sealing housing and the intermediate member. As a result, the sealing effect may be further improved.
In some embodiments, the internal spline part and the gear shaft are coaxial. In this way, the volume occupied by the connection assembly may be further reduced with a further improved transmission performance.
In some embodiments, the coupling end comprises external teeth for coupling with at least one gear as the input of the gearbox. In this way, the connection assembly can be applied to a gearbox, such as a rotary vector gearbox with at least one gear as the input, to improve the transmission performance while reducing maintenance costs.
In second aspect, a robot is provided. The robot comprises a joint, a connection assembly as mentioned in the first aspect and a robot arm link coupled to the joint and driven to rotate via the connection assembly.
In some embodiments, a sealing housing of the connection assembly is integrated in the joint or the robot arm link.
In third aspect, an assembly method of a connection assembly is provided. The assembly method comprises providing a sealing housing coupled to the gearbox to form a cavity for receiving a lubricating medium to lubricate an input of the gearbox; and arranging an intermediate member to pass through the gearbox or the sealing housing to couple an output of the motor to the input of the gearbox for transmission.
It is to be understood that the Summary is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the description below.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objectives, features and advantages of the present disclosure will become more apparent through more detailed depiction of example embodiments of the present disclosure in conjunction with the accompanying drawings, wherein in the example embodiments of the present disclosure, same reference numerals usually represent same components.
FIG. 1 shows a sectional side view and a perspective view of a traditional gearbox;
FIG. 2 shows a sectional side view of a traditional power unit comprising a motor  connected with a gearbox;
FIG. 3 shows a sectional side view of a gearbox with a connection assembly according to embodiments of the present disclosure;
FIG. 4 shows a sectional side view of a power unit comprising a motor connected to a gearbox via a connection assembly according to embodiments of the present disclosure;
FIG. 5 shows a perspective view of a gearbox with a connection assembly according to embodiments of the present disclosure; and
FIG. 6 shows a flowchart illustrating an assembly method of a connection assembly according to embodiments of the present disclosure.
Throughout the drawings, the same or similar reference symbols are used to indicate the same or similar elements.
DETAILED DESCRIPTION
The present disclosure will now be discussed with reference to several example embodiments. It is to be understood these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the subject matter.
As used herein, the term “comprises” and its variants are to be read as open terms that mean “comprises, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be comprised below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
For some gearboxes, such as rotary vector (RV) gearboxes 300’ , at least one gear as an input 301’ is located outside of the gearbox, which needs to be lubricated during operation to meet its transmission performance and extend service life, as shown in FIG. 1. In this event, at least a part, such as an output 201’ of a motor 200’ coupled to the input 301’  of the gearbox 300’ needs to be immersed in the lubricant for lubricating the input 301’ of gearbox 300’ , as shown in FIG. 2. With the operation of the motor, sealing means arranged in the motor may be worn out. As a result, the lubricant may leak into the motor and cause damage to the motor 200’ .
Furthermore, in the conventional connection assembly, as shown in FIG. 2, the space for receiving the lubricant is formed by parts of motor 200’ and gearbox 300’ with a cylindered housing 101’a rranged therebetween. In this event, when the motor needs to be disassembled from or assembled to the gearbox, for example, during the maintenance of the power unit of a robot, the lubricant in the space needs to be released first. When the motor is reassembled to the gearbox, the lubricant needs to be refilled.
It can be seen that the conventional power unit is time-consuming and labor-intensive in maintenance, and also causes a large amount of lubricant waste, resulting in a significant increase in maintenance costs.
In order to solve or at least partly solve the above problems, embodiments of the present disclosure provide a connection assembly 100 for connecting an output 201 of a motor 200 to an input 301 of a gearbox 300. Now some example embodiments will be described with reference to FIGS. 3-5.
FIG. 3 shows a sectional side view of a gearbox 300 with a connection assembly 100; FIG. 4 shows a sectional side view of a power unit comprising a motor 200 connected to a gearbox 300 via a connection assembly 100; and FIG. 5 shows a perspective view of a gearbox 300 with a connection assembly 100.
As shown, the connection assembly 100 according to embodiments of the present disclosure comprises a sealing housing 101 and an intermediated member 102. The sealing housing 101 can form a cavity 1011 with the gearbox 300 when being coupled to the gearbox 300. The cavity 1011 is used to receive lubricant for lubricating the input 301 of the gearbox 300.
That is, contrast to the conventional solutions, the cavity 1011 for receiving the lubricant is formed by the sealing housing 101 and the gearbox 300, without the motor 200. This arrangement allows that the motor 200 can be disassembled or reassembled without releasing or refilling the lubricant, which will be discussed further below, thereby improving the maintenance efficiency.
The intermediate member 102 of the connection assembly 100 acts as a transmission part to transmit torque and movement from the output 201 of the motor 200 to the input 301 of the gearbox 300. Specifically, the intermediate member 102 is arranged to at least partially pass through the gearbox 300 or the sealing housing 101 to connect the output 201 of the motor 200 to the input 301 of the gearbox 300 for the transmission.
With the sealing housing to form a cavity and the intermediate member for connecting the output of the motor to the input of the gearbox, on the one hand, the input 201 of the motor 200 is completely isolated from the lubricant. As a result, the lubricant would not leak into the motor, thus improving the stability and service life of the motor 200 and even the robot.
On the other hand, as mentioned above, the cavity 1011 for receiving the lubricant is formed by the sealing housing 101 and the gearbox 300 without the motor 200. In this way, the motor 200 can be removed from the gearbox 300 in an easier way, for example, merely by decoupling the motor 200 from the intermediate member 102 without the need to release and refill the lubricant. As a result, the maintenance efficiency may be improved with reduced maintenance costs.
In some embodiments, the intermediate member 102 may comprise an internal spline part 1021 and a gear shaft 1022. The internal spline part 1021 is used to be coupled to the output 201 of the motor 200 to rotate with the output 201. For example, the internal spline part 102 may comprise an internal spline that can be engaged with an external spline arranged on the output 201 coaxially. In this way, when the motor 200 needs to be removed from the gearbox 300, the user only needs to pull out the motor 200 without performing other operations, which significantly improves maintenance efficiency and reduces maintenance costs.
It should be understood that the above embodiments where the internal spline part 1021 is coupled to the output 201 of the motor 200 coaxially are merely for illustration, without suggesting any limitation as to the scope of the present application. Any suitable structures or arrangements are possible. In some alternative embodiments, the axes of internal spline part 1021 and the output 201 of the motor 200 may also be parallel to each other but not coincident. For example, the internal spline part 1021 may have external teeth that can be engaged with the output 201 of the motor 200.
A distal end of the internal spline part 102 away from the output 201 is fixed to the  gear shaft 1022, as shown in FIGS. 3 and 4. Specifically, in some embodiments, the distal end of the internal spline part 102 may be coupled to the gear shaft 1022 with splines. For example, the distal end of the internal spline part 102 may have an internal spline arranged therein. In the meantime, one end of the gear shaft 1022 may comprise an external spline that can be engaged with the internal spline arranged on the distal end of the internal spline part 102. This arrangement allows the intermediate member to be assembled more easily.
It should be understood that the above embodiments are merely for illustration, without suggesting any limitation as to the scope of the present application. Any suitable structures or arrangements are possible. For example, in some alternative embodiments, the distal end may also be coupled to the gear shaft 1022 by interference fit, adhesion, welding or the like. In some further alternative embodiments, the internal spline part 1021 and the gear shaft 1022 may also be integrally formed.
In some embodiments, a coupling end of the gear shaft 1022 away from the internal spline part 102 may have teeth. The teeth can be engaged with the input 301 of the gearbox 300. In this way, the movement and torque can be transmitted from the output 201 of the motor 200 to the input 301 of the gearbox 300.
As mentioned above, the intermediate member 102 at least partially passes through the gearbox 300 or the sealing housing 101 to connect an output 201 of the motor 200 to the input 301 of the gearbox 300. This arrangement allows the gearbox 300 to be coupled to the motor in two different ways.
Specifically, in some embodiments, as shown in FIG. 4, the input 301 of the gearbox 300 may be arranged away from the motor 200. In those embodiments, the gearbox 300 may be of a hollow structure and the internal spline part 1021 is arranged adjacent to an end of the gearbox 300 away from the input 301 of the gearbox 300. The hollow structure of the gearbox 300 allows the intermediated member 102 to at least partially pass through the gearbox 300. In this way, the coupling end of the intermediate member 102 away from the internal spline part can be coupled to the input 301 of the gearbox 300.
With this arrangement, the combination of the motor 200 and the gearbox 300 may be more compact. In this event, to enhance the seal, a rotary sealing member 103 may be placed between the components that are relatively rotatable, for example, between the intermediate member 102 and the gearbox 300, as shown in FIG. 4. The rotary sealing  member 103, which typically has a deformable structure, is a kind of dynamic sealing member that can withstand the alternating pressure on both sides when the components are relatively rotating.
In some embodiments, as for the components that have no relative motion, a common seal, such as O-ring may be placed therebetween. For example, the O-ring may be placed between the sealing housing 101 and the gearbox 300 to enhance the seal therebetween.
In some embodiments, a flange 104 may be arranged between the motor 200 and the gearbox 300 to facilitate the arrangement of the motor and the gearbox 300. The flange 104 allows a more strengthen the connection between the motor 200 and the gearbox 300. In the case where the motor 200 has a structure that can be assembled well with the gearbox 300, the flange 104 may be omitted.
The above describes the case where the output 301 of the gearbox 300 is away from the motor 200. In some embodiments, the output 301 of the gearbox 300 may also be adjacent to the motor 200. In those embodiments, the internal spline part 1021 is arranged adjacent to the input 301 of the gearbox 300. In the meantime, the intermediate member 102 at least partially passes through the sealing housing 101 with the coupling end being coupled to the input 301.
This arrangement allows a more easy assembly of the motor 200 and the gearbox 300. There is no need to modify the motor 200 and gearbox 300, but only the sealing housing 101 is coupled to the gearbox 300. In those embodiments, different from the example as shown in FIG. 4, a through hole may be formed on the sealing housing 101. The intermediate member 102 may be inserted into the cavity 1011 via the through hole with the coupling end being coupled to the input 301.
Similar to the embodiments as shown in FIG. 4, to enhance the seal, a rotary sealing member may be placed between the components that are relatively rotatable, i.e., between the intermediate member 102 and the sealing housing 101. For example, the rotary sealing member may be arranged in the through hole or around the perimeter of the through hole.
The connection assembly 100 as described above can be used in a robot. Embodiments of the present disclosure further provide a robot comprising a joint, a  connection assembly 100 as mentioned above and a robot arm link. The robot arm link is coupled to the joint and driven to rotate by the motor 200 via the connection assembly 100. With the connection assembly 100, the maintenance efficiency for the robot may be significantly improved.
In some embodiments, the sealing housing 101 of the connection assembly 100 may be a part of the robot arm link or the joint. That is, the sealing housing 101 may be integrated in the joint or the robot arm link. This can further improve the integration of the robot, reduce the size of the robot, and facilitate the miniaturization of the robot.
Embodiments of the present disclosure further provide an assembly method of the above mentioned connection assembly 100. FIG. 6 shows a flowchart 600 illustrating an assembly method of a connection assembly 100. As shown, in block 610, a sealing housing 101 is provided. The sealing housing is coupled to the gearbox 300 to form a cavity for receiving a lubricating medium to lubricate an input 301 of the gearbox 300.
In block 620, an intermediate member 102 is arranged to pass through the gearbox 300 or the sealing housing 101 to couple an output 201 of the motor 200 to the input 301 of the gearbox 300 for transmission. With the sealing housing to form a cavity and the intermediate member for connecting the output of the motor to the input of the gearbox, the lubricant would not leak into the motor, thus improving the stability and service life of the motor and even the robot. Furthermore, the motor and/or the gearbox can be removed from or installed on each other in an easier way, for example, merely by decoupling the motor from the intermediate member without the need to dump and refill the lubricant.
It should be appreciated that the above detailed embodiments of the present disclosure are only to exemplify or explain principles of the present disclosure and not to limit the present disclosure. Therefore, any modifications, equivalent alternatives and improvement, etc. without departing from the spirit and scope of the present disclosure shall be comprised in the scope of protection of the present disclosure. Meanwhile, appended claims of the present disclosure aim to cover all the variations and modifications falling under the scope and boundary of the claims or equivalents of the scope and boundary.

Claims (11)

  1. A connection assembly (100) for connecting a motor (200) to a gearbox (300) , comprising:
    a sealing housing (101) coupled to the gearbox (300) and defining a cavity (1011) for receiving a lubricant to lubricate an input (301) of the gearbox (300) ; and
    an intermediate member (102) at least partially passing through the gearbox (300) or the sealing housing (101) to connect an output (201) of the motor (200) to the input (301) of the gearbox (300) for transmission.
  2. The connection assembly (100) of claim 1, wherein the intermediate member (102) comprises:
    an internal spline part (1021) adapted to be coupled to the output (201) of the motor (200) to rotate with the output (201) ; and
    a gear shaft (1022) coupled to the internal spline part (1021) and the input (301) of the gearbox (300) for transmission.
  3. The connection assembly (100) of claim 2, wherein the internal spline part (1021) is arranged adjacent to an end of the gearbox (300) away from the input (301) of the gearbox (300) , and
    the intermediate member (102) at least partially passes through the gearbox (300) , and a coupling end of the intermediate member (102) away from the internal spline part (1021) is coupled to the input (301) .
  4. The connection assembly (100) of claim 3, further comprising a rotating sealing member (103) arranged between the intermediate member (102) and the gearbox (300) .
  5. The connection assembly (100) of claim 2, wherein the internal spline part (1021) is arranged adjacent to the input (301) , and
    the intermediate member (102) at least partially passes through the sealing housing (101) , and a coupling end of the intermediate member (102) away from the internal spline part (1021) is coupled to the input (301) .
  6. The connection assembly (100) of claim 5, further comprising a rotating sealing member arranged between the sealing housing (101) and the intermediate member (102) .
  7. The connection assembly (100) of claim 2, wherein the internal spline part (1021) and the gear shaft (1022) are coaxial.
  8. The connection assembly (100) of claim 3 or 5, wherein the coupling end comprises external teeth for coupling with at least one gear as the input (301) of the gearbox (300) .
  9. A robot (400) , comprising:
    a joint;
    a connection assembly (100) of any of claims 1-8; and
    a robot arm link coupled to the joint and driven to rotate via the connection assembly (100) .
  10. The robot (400) of claim 9, wherein a sealing housing (101) of the connection assembly (100) is integrated in the joint or the robot arm link.
  11. An assembly method of a connection assembly (100) , comprising:
    providing a sealing housing (101) coupled to the gearbox (300) to form a cavity for receiving a lubricating medium to lubricate an input (301) of the gearbox (300) ; and
    arranging an intermediate member (102) to pass through the gearbox (300) or the sealing housing (101) to couple an output (201) of the motor (200) to the input (301) of the gearbox (300) for transmission.
PCT/CN2019/105607 2019-09-12 2019-09-12 Robot, connection assembly and assembly method thereof WO2021046795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105607 WO2021046795A1 (en) 2019-09-12 2019-09-12 Robot, connection assembly and assembly method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105607 WO2021046795A1 (en) 2019-09-12 2019-09-12 Robot, connection assembly and assembly method thereof

Publications (1)

Publication Number Publication Date
WO2021046795A1 true WO2021046795A1 (en) 2021-03-18

Family

ID=74866890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105607 WO2021046795A1 (en) 2019-09-12 2019-09-12 Robot, connection assembly and assembly method thereof

Country Status (1)

Country Link
WO (1) WO2021046795A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828092A2 (en) * 1996-09-10 1998-03-11 Staubli Faverges Method of assembling a planetary reduction gear and planetary reduction gear tide
WO2001011266A1 (en) * 1999-08-05 2001-02-15 Casarotto G. & C. S.R.L. Step-up reduction gearing
CN104847873A (en) * 2015-05-18 2015-08-19 南通振康焊接机电有限公司 Fully sealed integrated RV speed reducer
CN204628435U (en) * 2015-03-23 2015-09-09 南通振康焊接机电有限公司 The RV speed reducer of new structure
CN108253121A (en) * 2018-01-22 2018-07-06 重庆交通大学 Self-lubricating RV retarders
CN108533694A (en) * 2017-03-02 2018-09-14 欢颜自动化设备(上海)有限公司 A kind of improved structure of robot RV speed reducers
CN108716536A (en) * 2018-08-02 2018-10-30 南通振康焊接机电有限公司 A kind of RV speed reducers of output end of reducer sealing structure and its composition
CN109854687A (en) * 2019-04-01 2019-06-07 长安大学 A kind of retarder based on RV bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828092A2 (en) * 1996-09-10 1998-03-11 Staubli Faverges Method of assembling a planetary reduction gear and planetary reduction gear tide
WO2001011266A1 (en) * 1999-08-05 2001-02-15 Casarotto G. & C. S.R.L. Step-up reduction gearing
CN204628435U (en) * 2015-03-23 2015-09-09 南通振康焊接机电有限公司 The RV speed reducer of new structure
CN104847873A (en) * 2015-05-18 2015-08-19 南通振康焊接机电有限公司 Fully sealed integrated RV speed reducer
CN108533694A (en) * 2017-03-02 2018-09-14 欢颜自动化设备(上海)有限公司 A kind of improved structure of robot RV speed reducers
CN108253121A (en) * 2018-01-22 2018-07-06 重庆交通大学 Self-lubricating RV retarders
CN108716536A (en) * 2018-08-02 2018-10-30 南通振康焊接机电有限公司 A kind of RV speed reducers of output end of reducer sealing structure and its composition
CN109854687A (en) * 2019-04-01 2019-06-07 长安大学 A kind of retarder based on RV bearing

Similar Documents

Publication Publication Date Title
US11137060B2 (en) Electric drive unit cooling and lubrication system with bearing shims and rotor shaft channel
US7390277B2 (en) Reducer with internally meshing planetary gear mechanism and device incorporating the reducer
KR20060103844A (en) Axle assembly with threaded cover pan attachment and method of assembling the same
CN107257179B (en) Gear box motor integrated structure and pinion box motor integrated driving oil way structure
US9062753B2 (en) Connection structure between hollow output shaft and driven shaft, and speed reducer
CN1978950A (en) Structure of lubricating oil line for automatic transmission
WO2021046795A1 (en) Robot, connection assembly and assembly method thereof
EP4003672A1 (en) Robot and assembly method thereof
CN210526275U (en) Integrated electric drive assembly mechanism
US10309511B2 (en) Support structure for rotating member
JP4164549B2 (en) Eccentric shaft joint structure and uniaxial eccentric screw pump with the eccentric shaft joint structure
CN108843773A (en) A kind of engineering truck drive assembly
AU2018455574B2 (en) Drum gear
CN210397601U (en) Transmission device for household electrical appliance
WO2022193060A1 (en) Pressure relief component, gearbox and robot
CN106949138B (en) Telescopic transmission shaft
CN215683200U (en) Paddy field slurry stirring land leveler hydraulic pump mounting structure with built-in coupler
JP4873351B2 (en) pump
CN210423588U (en) Anti-channeling turbine worm speed reducer
CN212305011U (en) Synchronous gang double-shaft drive output speed reducing motor
CN219932775U (en) Half-coupling structure with sealing and positioning functions
US4642985A (en) Oil pump system in power train
CN219366759U (en) Input end sealing structure of speed reducer
EP3907319B1 (en) Transmission device for household electrical appliance
WO2022193061A1 (en) Sealing component, gearbox and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944700

Country of ref document: EP

Kind code of ref document: A1