WO2021046754A1 - Conditional wlan-wwan handover - Google Patents

Conditional wlan-wwan handover Download PDF

Info

Publication number
WO2021046754A1
WO2021046754A1 PCT/CN2019/105372 CN2019105372W WO2021046754A1 WO 2021046754 A1 WO2021046754 A1 WO 2021046754A1 CN 2019105372 W CN2019105372 W CN 2019105372W WO 2021046754 A1 WO2021046754 A1 WO 2021046754A1
Authority
WO
WIPO (PCT)
Prior art keywords
status
wlan
handover
communications
wwan
Prior art date
Application number
PCT/CN2019/105372
Other languages
French (fr)
Inventor
Tom Chin
Ajith Tom Payyappilly
Xipeng Zhu
Huichun LIU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/105372 priority Critical patent/WO2021046754A1/en
Publication of WO2021046754A1 publication Critical patent/WO2021046754A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1446Reselecting a network or an air interface over a different radio air interface technology wherein at least one of the networks is unlicensed

Definitions

  • the following relates generally to wireless communications, and more specifically to handover between wireless local area networks (WLAN) and wireless wide area networks (WWAN) .
  • WLAN wireless local area networks
  • WWAN wireless wide area networks
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • the described techniques relate to improved methods, systems, devices, and apparatuses that WLAN-WWAN handover.
  • the described techniques provide for determining when and how a handover procedure is to be performed based on metrics available to a modem and/or operating system of the UE. For example, a transition from WWAN to WLAN may be done soon or delayed depending on one or more of an operating status, a data throughput, or a battery level of the UE. Similarly, a handover from the WLAN to a WWAN may also be conditioned on one or more of an operating status, a data throughput, or a battery level of the UE.
  • a method for wireless communications by a user equipment includes communicating over a WWAN; determining that a WLAN is available; determining a status the UE; and handing over communications from the WWAN to a WLAN, where in the handover is done quickly or slowly responsive to the determined status of the user interface.
  • a UE in another aspect of the disclosure includes a first transceiver for communicating with a WLAN; a second transceiver for communicating with a WWAN; a processor coupled to the transceiver; and a memory coupled to the processor, and configured with instruction which when executed by the processor cause the apparatus to communicate over the WWAN; determine that the WLAN is available; determine a status the UE; and handover communications from the WWAN to the WLAN, where in the handover is done quickly or slowly responsive to the determined status of the user interface.
  • a UE in another aspect of the disclosure includes first means for communicating with a WLAN; second means for communicating with a WWAN; processor means coupled to the first and second means for communicating; and memory means, coupled to the processor means, and configured with instruction which when executed by the processor means causes the apparatus to communicate over the WWAN; determine that the WLAN is available; determine a status the UE; and handover communications from the WWAN to the WLAN, where in the handover is done quickly or slowly responsive to the determined status of the user interface.
  • a computer readable media comprising instructions which when executed by a processor in a wireless device cause the device to apparatus to communicate over the WWAN; determine that the WLAN is available; determine a status the UE; and handover communications from the WWAN to the WLAN, where in the handover is done quickly or slowly responsive to the determined status of the user interface
  • FIG. 1 illustrates examples of a system for wireless communications that supports handover in accordance with aspects of the present disclosure.
  • FIG. 2 shows a block diagram of a device that support handover in accordance with aspects of the present disclosure.
  • FIG. 3 shows a flowchart illustrating methods that support handover in accordance with aspects of the present disclosure.
  • the techniques provide for a UE communicating with a WWAN and transitioning so that the UE communications with a WLAN.
  • the techniques also provide for transitioning so that the UE is communicating with the WWAN.
  • WWAN connections such as over 5G provide large bandwidth, they are also require relatively more power than a WLAN connection. Therefore, switching from WWAN to WLAN sooner, as well as delaying a transition back to the WWAN may save battery power.
  • switching between WWANs and WLANs may require actions that may disrupt data being communicated. For example a TCP connection may need to be reset. Depending on circumstances, this may be disruptive to the end user. For example, a disruption may not matter if the UE is downloading email while a user is carrying the device in their pocket, whereas it may matter a great deal if the user is watching a live stream of their favorite sporting event.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are then illustrated and described with reference to process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to handover.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports handover in accordance with aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, one or more WLAN access points 140, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation Node B or giga-nodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • Wireless communications system 100 may utilize one or more WWAN base stations 105 and one or more WLAN access points 140.
  • core network 130 may wirelessly communicate with UEs 115 via one or more of base stations 105 and/or WLAN access points 140.
  • the WLAN access points 140 may relay communications between core network 130 and UEs 115, or in some cases comprise or otherwise perform functions ascribed herein to base stations 105.
  • WLAN access point 140 are typically associated with a small area 145 in which communications with various UEs 115 is supported. In some cases, area 145 may comprise a building or part thereof (e.g., a room or floor) .
  • WLAN access point 140 may provide communication coverage for a area 145 via communication links 125, and communication links 125 between a WLAN access point 120 and a UE 115 may utilize one or more carriers.
  • Communication links 125 shown in wireless communications system 100 may include upstream transmissions from a UE 115 to a WLAN access point 140 or to a base station 105, or downstream transmissions to a UE 115 from a WLAN access point 140 or from a base station 105.
  • uplink transmissions transmissions from UE 115 to a WLAN access point 140 or base station 105
  • downlink transmissions transmissions from a WLAN access point 140 or base station 105 to UE 115 may be referred to as downlink transmissions.
  • Downstream transmissions may also be called forward link transmissions while upstream transmissions may also be called reverse link transmissions.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base
  • Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) . Base stations 105 may communicate with WLAN access points 140 wirelessly over backhaul links 134 (e.g., via an X2 or other interface) .
  • backhaul links 132 e.g., via an S1, N2, N3, or other interface
  • backhaul links 134 e.g., via an X2, Xn, or other interface
  • Base stations 105 may communicate with WLAN access points 140 wirelessly over backhaul links 134 (e.g., via an X2 or other interface) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (7E) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • EPC evolved packet core
  • the 7E may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
  • Core network services may be provided to UE 115 via either base stations 105 and/or WLAN access points 140. Some services may be restricted to base stations 105 and others may be restricted to WLAN access points 140.
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 MHz to 300 GHz.
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that can tolerate interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a CA configuration in conjunction with CCs operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105, WLAN access point 140, or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105, a WLAN access point 140) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving devices are equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a WLAN access point 140, a base station 105, or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a WLAN access point 140 or a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g. synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105, a WLAN access point 140, or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 or WLAN access point 140 may be located in diverse geographic locations.
  • a base station 105 or a WLAN access point 140 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 or the WLAN access point 140 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may in some cases perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Media Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • PHY Physical
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 923.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105 or between a UE 115 and a WLAN access point 140.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an E-UTRA absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA absolute radio frequency channel number E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or DFT-s-OFDM) .
  • MCM multi-carrier modulation
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR, etc. ) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a carrier may be subdivided into portions, each portion having a smaller bandwidth than the carrier bandwidth (e.g., 100 MHz) , and such portions may be referred to as bandwidth parts or BWPs.
  • some devices e.g., some UEs 115
  • a UE 115 may establish communications with a base station 105 or WLAN access point 140 using a first BWP, which may be referred to as an initial BWP, and the UE 115 may thereafter switch to a different BWP.
  • BWPs may be paired or otherwise grouped.
  • a UE 115 may communicate using paired or grouped uplink and downlink BWPs (e.g., in an FDD implementation) . Further, in some cases a UE 115 that switches to a different BWP may switch (e.g., concurrently or simultaneously or as part of a single BWP-switching operation) from a first pair or other group of BWPs to a second pair or other group BWPs.
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that can support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation (CA) or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink CCs and one or more uplink CCs according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other CCs, which may include use of a reduced symbol duration as compared with symbol durations of the other CCs.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115, base station 105, or WLAN access point 140 utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications systems such as an NR system may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • communications between a core network 130 and a UE 115 may occur via base station 105 and/or WLAN access point 140. Because of an operating condition of a UE it may be preferable for the communications to be mainly or entirely via one of the WWAN or the WLAN. For example, communication via WWAN is likely to require more power and therefor drain a batter of a UE faster than communication over a WLAN. Therefore, handing over to a WLAN whenever possible and as soon as possible may conserve power. However, handover may degrade throughput and/or may cause packet delay or loss, negatively impacting user experience.
  • FIG. 2 shows a block diagram 200 of a device 205 that supports handover in accordance with aspects of the present disclosure.
  • the device 205 may be an example of aspects of a UE 115 as described herein.
  • the device 205 may include a communications manager 210 and transceivers 220 and 225.
  • the device 205 may also include a processor 240 and a memory 230 storing code 235.
  • I/O controller 215 may provide a user interface for operating UE 115. Each of these components may be in communication with one another (e.g., via one or more buses 245) .
  • the transceiver 220 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to handover, etc. ) . Information may be passed on to other components of the device 205.
  • the transceiver 220 may be a transceiver for communicating over a cellular system such as a 4G or 5G network.
  • the transceiver 220 may utilize a single antenna or a set of antennas 223.
  • An antenna may be an antenna array suitable for beam forming.
  • Transceiver 225 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to handover, etc. ) . Information may be passed on to other components of the device 205.
  • the transceiver 225 may be a transceiver for communicating over a WLAN such as a WiFi network.
  • the transceiver 225 may utilize a single antenna or a set of antennas 228.
  • An antenna may be an antenna array suitable for beam forming.
  • the communications manager 210 may control device 205 so that it communicates data over a WWAN and/or over the WLAN.
  • the communications manager 210 may further receive an indication as to an operationing status of device 205 and may transition between communicating via the WLAN or WWAN based on the operating status.
  • the operating status may be one or more of a status of a UI, a data throughput, or a batter of the device 205.
  • the communications manager may cause a handover between the WWAN and WLAN based on the operating status. For example, communications manager 210 may initiate handover to a WLAN sooner when a screen of the UE is off, when data throughput is relatively low, when MAC layer data throughput estimation is low, or when batter level is low.
  • communication manager may delay handover to the WLAN when the screen is on, when data throughput is relatively high, when MAC layer data throughput estimation is high, or when battery level is high. Opposite considerations may apply to handovers from the WLAN to the WWAN.
  • the communications manager 210 may be implemented in hardware, code 235 (e.g., software or firmware) executed by a processor 240, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 210, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) , or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code 235 e.g., software or firmware
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 210 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 210, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 210, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • FIG. 3 shows a flowchart illustrating a method 300 that supports handover in accordance with aspects of the present disclosure.
  • the operations of method 300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 300 may be performed by a communications manager as described with reference to FIG. 2.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may communicate over a first one of a WLAN or a WWAN.
  • the UE may determine a status of the UE.
  • the status may include one or more of a UI status, a screen status, a device orientation, data throughput, MAC layer data throughput estimation, power source, battery level, and the like.
  • the UE may receive an indication to transition to the second beam.
  • the UE may transition to the other one of the WLAN and WWAN based on the status. For example, the UE may handover sooner (i.e., handover quickly) or may delay handover (i.e., handover slowly) based on the status.
  • the operations of steps 305 through 340 shown in FIG. 3 may be performed according to the methods described herein. In some examples, aspects of the operations of these steps may be performed by a communications manager communication component as described with reference to FIG. 2.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-256 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-256 (TIA-256) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 202.11 (Wi-Fi) , IEEE 202.16 (WiMAX) , IEEE 202.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • IEEE 202.16 WiMAX
  • IEEE 202.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 115 with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs 115 with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs 115 having an association with the femto cell (e.g., UEs 115 in a closed subscriber group (CSG) , UEs 115 for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications system 100 or systems described herein may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timing, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timing, and transmissions from different base stations 105 may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable logic device
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable read only memory (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that can be used to carry or store desired program code means in the form
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described that support techniques for handover between WLANs and WWANs. The described techniques provide for using cross-layer information to enhance the handovers.

Description

CONDITIONAL WLAN-WWAN HANDOVER BACKGROUND
The following relates generally to wireless communications, and more specifically to handover between wireless local area networks (WLAN) and wireless wide area networks (WWAN) .
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform-spread-orthogonal-frequency-division-multiplexing (DFT-S-OFDM) , among other technologies. A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that WLAN-WWAN handover. The described techniques provide for determining when and how a handover procedure is to be performed based on metrics available to a modem and/or operating system of the UE. For example, a transition from WWAN to WLAN may be done soon or delayed depending on one or more of an operating status, a data throughput, or a battery level of the UE. Similarly, a handover from the WLAN to a WWAN may also be conditioned on one or more of an operating status, a data throughput, or a battery level of the UE.
In an aspect of the disclosure, a method for wireless communications by a user equipment includes communicating over a WWAN; determining that a WLAN is available; determining a status the UE; and handing over communications from the WWAN to a WLAN, where in the handover is done quickly or slowly responsive to the determined status of the user interface.
In another aspect of the disclosure a UE includes a first transceiver for communicating with a WLAN; a second transceiver for communicating with a WWAN; a processor coupled to the transceiver; and a memory coupled to the processor, and configured with instruction which when executed by the processor cause the apparatus to communicate over the WWAN; determine that the WLAN is available; determine a status the UE; and handover communications from the WWAN to the WLAN, where in the handover is done quickly or slowly responsive to the determined status of the user interface.
In another aspect of the disclosure a UE includes first means for communicating with a WLAN; second means for communicating with a WWAN; processor means coupled to the first and second means for communicating; and memory means, coupled to the processor means, and configured with instruction which when executed by the processor means causes the apparatus to communicate over the WWAN; determine that the WLAN is available; determine a status the UE; and handover communications from the WWAN to the WLAN, where in the handover is done quickly or slowly responsive to the determined status of the user interface.
In yet another aspect, a computer readable media is disclosed comprising instructions which when executed by a processor in a wireless device cause the device to apparatus to communicate over the WWAN; determine that the WLAN is available; determine a status the UE; and handover communications from the WWAN to the WLAN, where in the handover is done quickly or slowly responsive to the determined status of the user interface
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates examples of a system for wireless communications that supports handover in accordance with aspects of the present disclosure.
FIG. 2 shows a block diagram of a device that support handover in accordance with aspects of the present disclosure.
FIG. 3 shows a flowchart illustrating methods that support handover in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Various described techniques provide for handovers. For example, the techniques provide for a UE communicating with a WWAN and transitioning so that the UE communications with a WLAN. The techniques also provide for transitioning so that the UE is communicating with the WWAN. Although WWAN connections, such as over 5G provide large bandwidth, they are also require relatively more power than a WLAN connection. Therefore, switching from WWAN to WLAN sooner, as well as delaying a transition back to the WWAN may save battery power. But, switching between WWANs and WLANs may require actions that may disrupt data being communicated. For example a TCP connection may need to be reset. Depending on circumstances, this may be disruptive to the end user. For example, a disruption may not matter if the UE is downloading email while a user is carrying the device in their pocket, whereas it may matter a great deal if the user is watching a live stream of their favorite sporting event.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are then illustrated and described with reference to process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to handover.
FIG. 1 illustrates an example of a wireless communications system 100 that supports handover in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, one or more WLAN access points 140, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support  enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation Node B or giga-nodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
Wireless communications system 100 may utilize one or more WWAN base stations 105 and one or more WLAN access points 140. For example, core network 130 may wirelessly communicate with UEs 115 via one or more of base stations 105 and/or WLAN access points 140. The WLAN access points 140 may relay communications between core network 130 and UEs 115, or in some cases comprise or otherwise perform functions ascribed herein to base stations 105. WLAN access point 140 are typically associated with a small area 145 in which communications with various UEs 115 is supported. In some cases, area 145 may comprise a building or part thereof (e.g., a room or floor) . WLAN access point 140 may provide  communication coverage for a area 145 via communication links 125, and communication links 125 between a WLAN access point 120 and a UE 115 may utilize one or more carriers.
Communication links 125 shown in wireless communications system 100 may include upstream transmissions from a UE 115 to a WLAN access point 140 or to a base station 105, or downstream transmissions to a UE 115 from a WLAN access point 140 or from a base station 105. In some cases, transmissions from UE 115 to a WLAN access point 140 or base station 105 may be referred to as uplink transmissions and transmissions from a WLAN access point 140 or base station 105 to UE 115 may be referred to as downlink transmissions. Downstream transmissions may also be called forward link transmissions while upstream transmissions may also be called reverse link transmissions.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory  monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) . Base stations 105 may communicate with WLAN access points 140 wirelessly over backhaul links 134 (e.g., via an X2 or other interface) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (7E) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The 7E may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service. Core network services may be provided to UE 115 via either base stations 105 and/or WLAN access points 140. Some services may be restricted to base stations 105 and others may be restricted to WLAN access points 140.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 MHz to 300 GHz. Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g.,  less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that can tolerate interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a CA configuration in conjunction with CCs operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105, WLAN access point 140, or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit  diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105, a WLAN access point 140) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving devices are equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a WLAN access point 140, a base station 105, or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a WLAN access point 140 or a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105. Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device  may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105, a WLAN access point 140, or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 or WLAN access point 140 may be located in diverse geographic locations. A base station 105 or a WLAN access point 140 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 or the WLAN access point 140 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In some cases, wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may in some cases perform packet segmentation and reassembly to communicate over logical channels. A Media Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical (PHY) layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ  may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30,KK20,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307,200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 923. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105 or between a UE 115 and a WLAN access point 140.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an E-UTRA absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or DFT-s-OFDM) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR, etc. ) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system  bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In some cases, a carrier may be subdivided into portions, each portion having a smaller bandwidth than the carrier bandwidth (e.g., 100 MHz) , and such portions may be referred to as bandwidth parts or BWPs. For example, some devices (e.g., some UEs 115) may not support the full bandwidth of a carrier, and thus may communicate using one or more BWPs. In some cases, a UE 115 may establish communications with a base station 105 or WLAN access point 140 using a first BWP, which may be referred to as an initial BWP, and the UE 115 may thereafter switch to a different BWP. In some cases, BWPs may be paired or otherwise grouped. For example, a UE 115 may communicate using paired or grouped uplink and downlink BWPs (e.g., in an FDD implementation) . Further, in some cases a UE 115 that switches to a different BWP may switch (e.g., concurrently or simultaneously or as part of a single BWP-switching operation) from a first pair or other group of BWPs to a second pair or other group BWPs.
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier  bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that can support simultaneous communications via carriers associated with more than one different carrier bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation (CA) or multi-carrier operation. A UE 115 may be configured with multiple downlink CCs and one or more uplink CCs according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other CCs, which may include use of a reduced symbol duration as compared with symbol durations of the other CCs. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115, base station 105, or WLAN access point 140 utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications systems such as an NR system may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others. The flexibility of eCC symbol  duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
In some examples, communications between a core network 130 and a UE 115 may occur via base station 105 and/or WLAN access point 140. Because of an operating condition of a UE it may be preferable for the communications to be mainly or entirely via one of the WWAN or the WLAN. For example, communication via WWAN is likely to require more power and therefor drain a batter of a UE faster than communication over a WLAN. Therefore, handing over to a WLAN whenever possible and as soon as possible may conserve power. However, handover may degrade throughput and/or may cause packet delay or loss, negatively impacting user experience.
FIG. 2 shows a block diagram 200 of a device 205 that supports handover in accordance with aspects of the present disclosure. The device 205 may be an example of aspects of a UE 115 as described herein. The device 205 may include a communications manager 210 and  transceivers  220 and 225. The device 205 may also include a processor 240 and a memory 230 storing code 235. I/O controller 215 may provide a user interface for operating UE 115. Each of these components may be in communication with one another (e.g., via one or more buses 245) .
The transceiver 220 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to handover, etc. ) . Information may be passed on to other components of the device 205. The transceiver 220 may be a transceiver for communicating over a cellular system such as a 4G or 5G network. The transceiver 220 may utilize a single antenna or a set of antennas 223. An antenna may be an antenna array suitable for beam forming.
Transceiver 225 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to handover, etc. ) . Information may be passed on to other components of the device 205. The transceiver 225 may be a transceiver for communicating over a WLAN such  as a WiFi network. The transceiver 225 may utilize a single antenna or a set of antennas 228. An antenna may be an antenna array suitable for beam forming.
The communications manager 210 may control device 205 so that it communicates data over a WWAN and/or over the WLAN. The communications manager 210 may further receive an indication as to an operationing status of device 205 and may transition between communicating via the WLAN or WWAN based on the operating status. The operating status may be one or more of a status of a UI, a data throughput, or a batter of the device 205. The communications manager may cause a handover between the WWAN and WLAN based on the operating status. For example, communications manager 210 may initiate handover to a WLAN sooner when a screen of the UE is off, when data throughput is relatively low, when MAC layer data throughput estimation is low, or when batter level is low. Conversely, communication manager may delay handover to the WLAN when the screen is on, when data throughput is relatively high, when MAC layer data throughput estimation is high, or when battery level is high. Opposite considerations may apply to handovers from the WLAN to the WWAN.
The communications manager 210, or its sub-components, may be implemented in hardware, code 235 (e.g., software or firmware) executed by a processor 240, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 210, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) , or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 210, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 210, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 210, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a  transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
FIG. 3 shows a flowchart illustrating a method 300 that supports handover in accordance with aspects of the present disclosure. The operations of method 300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 300 may be performed by a communications manager as described with reference to FIG. 2. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 305, the UE may communicate over a first one of a WLAN or a WWAN. At 310, the UE may determine a status of the UE. The status may include one or more of a UI status, a screen status, a device orientation, data throughput, MAC layer data throughput estimation, power source, battery level, and the like. At 315 the UE may receive an indication to transition to the second beam. At 330, the UE may transition to the other one of the WLAN and WWAN based on the status. For example, the UE may handover sooner (i.e., handover quickly) or may delay handover (i.e., handover slowly) based on the status. The operations of steps 305 through 340 shown in FIG. 3 may be performed according to the methods described herein. In some examples, aspects of the operations of these steps may be performed by a communications manager communication component as described with reference to FIG. 2.
It should be noted that the methods described above describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial  Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-256 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-256 (TIA-256) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 202.11 (Wi-Fi) , IEEE 202.16 (WiMAX) , IEEE 202.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 115 with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs 115 with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs 115 having an association with the femto cell (e.g., UEs 115 in a closed subscriber group (CSG) , UEs 115 for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be  referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications system 100 or systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timing, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timing, and transmissions from different base stations 105 may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , an FPGA or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of  the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable read only memory (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (e.g., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B  without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (16)

  1. A method for wireless communications by a user equipment, comprising:
    communicating over one of a WWAN and a WLAN;
    determining a status the UE; and
    handing over communications from the WWAN to a WLAN, where in the handover is done quickly or slowly responsive to the determined status of the user interface.
  2. The method of claim 1, further comprising communicating UE status between a modem and an high level operating system of the UE.
  3. The method of claim 1 or 2, wherein determining a status of the UE comprises determining a status of a user interface.
  4. The method of claim 3, wherein determining a status of a user interface comprises determining whether a screen is off.
  5. The method of claim 4 wherein the handover is done quickly when the screen is off.
  6. The method of any of claims 4 to 5 wherein the handover is done slowly when the screen is off.
  7. The method of claim 4, wherein the status of the UE comprises at least one of high level operating system state or application statistics.
  8. The method of claims 1, 2 or 7, wherein the status of the UE comprises data throughput.
  9. The method of claim 8, wherein the handover is done quickly when data throughput is low and slowly when data throughput is high.
  10. The method of claim 9, wherein throughput is compared to one or more thresholds to determine whether data throughput is low or high.
  11. The method of any of claims 8 to 10, wherein the data throughput comprises MAC layer data throughput estimation.
  12. The method of claims 1, 2 or 7, wherein the status of the UE comprises estimated battery level.
  13. The method of claim 12, wherein the handover is done quickly when the estimated battery level is low.
  14. Apparatus for wireless communications, comprising:
    a first transceiver for communicating over a WLAN;
    a second transceiver for communicating over a WWAN;
    a processor coupled to the transceiver; and
    a memory coupled to the processor, and configured with instruction which when executed by the processor cause the apparatus to perform the method of any of claims 1 to 11.
  15. Apparatus for wireless communication comprising:
    a transceiver;
    a memory; and
    processing means for implementing the method of any of claims 1 to 11.
  16. A computer readable media comprising instructions which when executed by a processor in a wireless device cause the device to perform the method of any of claims 1 to 13.
PCT/CN2019/105372 2019-09-11 2019-09-11 Conditional wlan-wwan handover WO2021046754A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105372 WO2021046754A1 (en) 2019-09-11 2019-09-11 Conditional wlan-wwan handover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105372 WO2021046754A1 (en) 2019-09-11 2019-09-11 Conditional wlan-wwan handover

Publications (1)

Publication Number Publication Date
WO2021046754A1 true WO2021046754A1 (en) 2021-03-18

Family

ID=74867154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105372 WO2021046754A1 (en) 2019-09-11 2019-09-11 Conditional wlan-wwan handover

Country Status (1)

Country Link
WO (1) WO2021046754A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070082671A1 (en) * 2003-09-19 2007-04-12 Koninklijke Philips Electronics N.V. Method and system for handover between wireless local area network and wireless wide area network
CN102802223A (en) * 2012-08-10 2012-11-28 迈普通信技术股份有限公司 Vertical switching method of wireless heterogeneous networks and user terminal
CN104853393A (en) * 2015-04-29 2015-08-19 努比亚技术有限公司 Network switching method and network switching device for mobile terminals
WO2015192600A1 (en) * 2014-06-20 2015-12-23 中兴通讯股份有限公司 Network reselection method and apparatus and wireless terminal
CN105392167A (en) * 2015-11-28 2016-03-09 广东欧珀移动通信有限公司 Network switching method, apparatus and communication terminal
CN105636138A (en) * 2015-12-31 2016-06-01 宇龙计算机通信科技(深圳)有限公司 Network switching method, network switching device and terminal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070082671A1 (en) * 2003-09-19 2007-04-12 Koninklijke Philips Electronics N.V. Method and system for handover between wireless local area network and wireless wide area network
CN102802223A (en) * 2012-08-10 2012-11-28 迈普通信技术股份有限公司 Vertical switching method of wireless heterogeneous networks and user terminal
WO2015192600A1 (en) * 2014-06-20 2015-12-23 中兴通讯股份有限公司 Network reselection method and apparatus and wireless terminal
CN104853393A (en) * 2015-04-29 2015-08-19 努比亚技术有限公司 Network switching method and network switching device for mobile terminals
CN105392167A (en) * 2015-11-28 2016-03-09 广东欧珀移动通信有限公司 Network switching method, apparatus and communication terminal
CN105636138A (en) * 2015-12-31 2016-06-01 宇龙计算机通信科技(深圳)有限公司 Network switching method, network switching device and terminal

Similar Documents

Publication Publication Date Title
US10904907B2 (en) Variable packet delay budgets for wireless communications
WO2020113367A1 (en) Fast recovery from link failure in dual-connectivity systems
US11349543B2 (en) Beam switch count in beamformed wireless communications
US10218471B1 (en) Selection of positioning reference signal occasions
US11418973B2 (en) Hierarchical beam search
US20210226750A1 (en) Measurement gap configuration and coordination
US11582000B2 (en) Front loaded sounding reference signal and physical random access channel signal
US11722181B2 (en) Default quasi co-location assumption for cross carrier reference signal triggering
US11470496B2 (en) Time domain behavior and QCL relation for SINR measurement
US20200374717A1 (en) Synchronization signal blocks for beam failure detection
US11265129B2 (en) Dynamic configuration and adaptation of physical downlink control channel candidates
US20220416984A1 (en) Priority-based feedback triggering
WO2021129594A1 (en) Determining whether an uplink switching gap is to be applied between changes in radio frequency status of a user equipment
US11272464B2 (en) Capability signaling and handling phase discontinuity
US11229021B2 (en) Techniques for switching control channel monitoring for multi-transmission/reception point
US11277831B2 (en) On demand system information triggering
US11706744B2 (en) Bandwidth part configuration switching for multiple transceiver nodes
US11617096B2 (en) Power saving for downlink control channel monitoring in unlicensed bands
WO2019109309A1 (en) User equipment-specified discontinuous reception value
WO2021046754A1 (en) Conditional wlan-wwan handover
US11375364B2 (en) Broadcast relay method in new radio
US11412419B2 (en) Communications during handover procedure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945194

Country of ref document: EP

Kind code of ref document: A1