WO2021046677A1 - 一种pim自消方法和装置 - Google Patents

一种pim自消方法和装置 Download PDF

Info

Publication number
WO2021046677A1
WO2021046677A1 PCT/CN2019/104892 CN2019104892W WO2021046677A1 WO 2021046677 A1 WO2021046677 A1 WO 2021046677A1 CN 2019104892 W CN2019104892 W CN 2019104892W WO 2021046677 A1 WO2021046677 A1 WO 2021046677A1
Authority
WO
WIPO (PCT)
Prior art keywords
pim
self
cancellation
signals
signal
Prior art date
Application number
PCT/CN2019/104892
Other languages
English (en)
French (fr)
Inventor
王昊
钟俭平
王磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19944867.1A priority Critical patent/EP4024717B1/en
Priority to PCT/CN2019/104892 priority patent/WO2021046677A1/zh
Priority to CN201980099914.9A priority patent/CN114342271B/zh
Publication of WO2021046677A1 publication Critical patent/WO2021046677A1/zh
Priority to US17/653,980 priority patent/US20220209803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B2001/1045Adjacent-channel interference

Definitions

  • This application relates to the field of communications, and in particular to a PIM self-cancellation method and device.
  • the antenna feed system will cause passive intermodulation due to bad parts, loose screws, vibration, etc. (Passive intermodulation, PIM) signal.
  • PIM Passive intermodulation
  • FIG. 1 it is a schematic diagram of the principle of PIM signal self-cancellation.
  • the frequency band where the transmit (transport, TX) signal is located is represented as the TX frequency band
  • the frequency band where the receive (receive, RX) signal is located is represented as the RX frequency band.
  • the PIM signal can be mathematically modeled based on the transmitted signal, and then adaptively fitted The PIM signal is output, and then the PIM signal is removed from the received signal to obtain a signal without PIM signal interference in the RX frequency band, thereby eliminating the influence of the PIM signal on the receiving sensitivity.
  • a PIM canceller is designed to eliminate the adverse effects of PIM failure.
  • the multi-channel transmission signal is shown as the line with the upward arrow in Figure 2. If there are metal objects outside the antenna feeder system, or the base station hardware has broken parts or loose screws , Vibration, etc., the transmitted signals of multiple channels may be mixed in space and form a PIM. This PIM is called a radiation PIM. At this time, the received signal includes the radiation PIM, as shown in Figure 2. The line of the down arrow is shown.
  • the characteristic of radiant PIM is that there is correlation between the transmitted signals of multiple channels, and its generation mechanism and behavior characteristics are difficult to simulate in real life, and it will affect multiple receiving channels at the same time, which also makes multi-channel PIM self-cancel It is difficult to model the algorithm, which increases the difficulty in the realization of multi-channel PIM signal cancellation.
  • the embodiments of the present application provide a PIM self-cancellation method and device, and there is no need to establish a PIM analog unit for each receiving channel, thereby reducing the occupation of chip resources when the PIM signal is self-cancelling.
  • the first aspect of the embodiments of this application provides a passive intermodulation PIM self-cancellation device.
  • the PIM self-cancellation device provided in this application includes a first acquisition unit, a second acquisition unit, a PIM simulation unit, and a cancellation unit.
  • the first acquisition unit is used to acquire the digital signals of N transmission channels, where N is an integer greater than 1.
  • the second acquiring unit is used to acquire received signals of N receiving channels, where the received signals include PIM signals, which are generated by digital signals of N transmitting channels.
  • the PIM analog unit is connected to the first acquisition unit.
  • a PIM analog unit is integrated on the chip to obtain N PIM self-cancellation signals based on the digital signals of the N transmission channels.
  • the PIM self-cancellation signal is used to eliminate the received signal.
  • the PIM analog unit includes a first linear module, a non-linear module, and a second linear module connected in series.
  • the first linear module is used to perform first filtering and first linear superposition on the digital signals of N transmission channels to obtain the first linear superposition result ;
  • the nonlinear module is used to perform nonlinear processing on the first linear superposition result to obtain the nonlinear processing result;
  • the second linear module includes N filters, and the filter coefficient of each filter corresponds to a receiving channel, and each filter is used for Perform linear processing on the nonlinear processing result to determine a PIM self-cancellation signal, so that N PIM self-cancellation signals are obtained through the second linear module.
  • the cancellation unit connected to the second acquisition unit and the PIM simulation unit can obtain N self-cancellation result signals according to the received signal and the N PIM self-cancellation signals.
  • the device can accurately simulate the PIM self-cancellation signal in the MIMO communication system, and realize the self-cancellation of the PIM signal.
  • N receiving channels are multiplexed with the same second linear module, the PIM self-cancellation signal corresponding to each receiving channel can be obtained through one second linear module. There is no need to establish a PIM analog unit for each receiving channel. Thereby reducing the occupation of chip resources when the PIM signal is self-cancelled.
  • the PIM self-cancellation device includes a PIM simulation unit.
  • a PIM simulation unit can be used to simulate the PIM signal formed by a PIM failure point, when the radiation PIM in the multi-channel MIMO communication system is
  • the PIM self-cancellation device may include M parallel PIM simulation units.
  • the PIM self-cancellation device also includes a combining unit.
  • the cancellation unit is connected to each PIM analog unit through the combining unit.
  • the combining unit can combine the PIM self-cancellation signals obtained by the M PIM analog units corresponding to the same receiving channel. Perform the summation to obtain N PIM self-cancellation signals.
  • the PIM self-cancellation device since the locations of multiple PIM failure points may be different, the time for different PIM failure points to form the digital signal (TX signal) of the transmission channel is different, but
  • the PIM self-cancellation device has the same time for PIM self-cancellation.
  • the PIM self-cancellation device also includes M delay configuration units, PIM
  • the analog unit is connected to the first acquisition unit through a delay configuration unit.
  • Each delay configuration unit is used to configure delay values for the digital signals of the N transmission channels.
  • the delay values configured by different delay configuration units are different. At this time, what the first acquiring unit acquires is a digital signal configured with a delay value.
  • the PIM self-cancellation device further includes a third linear module and a fourth linear module .
  • the third linear module is connected to each delay configuration unit, and is used to perform second filtering on the digital signals of the N transmission channels to obtain filtered digital signals.
  • the delay configuration unit may configure delay values for the filtered digital signals of the N transmission channels.
  • the fourth linear module is connected to the combining unit and is used to perform third filtering on the N PIM self-cancellation signals.
  • the cancellation unit can obtain N self-cancellation result signals according to the received signal and the N PIM self-cancellation signals after the third filtering.
  • the demand for chip resources can be reduced.
  • the first linear module includes a filter and a first linear adder, the filter coefficient of each filter corresponds to one transmission channel, and each filter is used to The digital signal of the transmitting channel is subjected to first filtering to obtain a first filtering result, and the first linear adder is used to perform first linear superposition on the N first filtering results to obtain a first linear superimposing result.
  • the MIMO communication system includes multiple chips, and signal transmission channels are established between the multiple chips, so that each chip processes the digital signals of N transmission channels and N transmission channels.
  • the receiving signal of the receiving channel makes each chip process the NTNR signal.
  • the position of the PIM self-cancellation device in the MIMO communication system is flexible and can be set in different positions in the MIMO communication system.
  • the PIM self-cancellation device is set at the position of the intermediate radio frequency digital front end.
  • the digital signal is a channel-level signal.
  • the PIM self-cancellation device is set at the baseband position.
  • the digital signal is a carrier-level signal.
  • the second aspect of the embodiments of the present application provides a passive intermodulation PIM self-cancellation method, the method includes:
  • Acquire received signals of N receiving channels where the received signals include PIM signals, and the PIM signals are generated by the digital signals of N transmitting channels;
  • N PIM self-cancellation signals according to the digital signals of N transmission channels, where the PIM self-cancellation signal is used to eliminate the PIM signal in the received signal; obtain N PIM self-cancellation signals from the digital signals of the N transmission channels, including: Perform the first filtering and the first linear superposition on the digital signals of the N transmitting channels to obtain the first linear superposition result; perform the nonlinear processing on the first linear superimposition result to obtain the non-linear processing result; pass each filter to the nonlinear processing The result is linear processing to determine a PIM self-cancellation signal, the filter coefficient of each filter corresponds to a receiving channel, and then N PIM self-cancellation signals are obtained;
  • N self-cancellation result signals are obtained.
  • N PIM self-portraits are obtained based on the digital signals of the N transmission channels.
  • the step of canceling the signal is performed by a PIM simulation unit.
  • the radiation PIM of the multiple-input multiple-output MIMO communication system is formed by M PIM failure points, N PIMs are obtained based on the digital signals of the N transmission channels
  • the step of self-cancelling signal is executed by M parallel PIM analog units.
  • the method further includes:
  • the PIM self-cancellation signals corresponding to the same receiving channel are added to obtain N PIM self-cancellation signals.
  • the method further includes:
  • the method further includes:
  • Configure the delay values for the digital signals of the N transmit channels including:
  • performing the first filtering and the first linear superposition on the digital signals of the N transmission channels to obtain the first linear superposition result includes:
  • the MIMO communication system includes multiple chips, and signal transmission channels are established between the multiple chips, so that each chip processes the digital signals of N transmission channels and N transmission channels.
  • the receiving signal of the receiving channel is the MIMO communication system.
  • the digital signal is a channel-level signal.
  • the digital signal is a carrier-level signal.
  • a third aspect of the embodiments of the present application provides a device, which includes: a processor and a memory; the processor and the memory communicate with each other;
  • the memory is used to store instructions
  • the processor is used to execute instructions in the memory, and execute any PIM self-cancellation method as in the second aspect.
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any PIM self-cancellation method as in the second aspect.
  • the fifth aspect of the embodiments of the present application provides a computer program product, including instructions, which when run on a computer, cause the computer to execute any PIM self-cancellation method as in the second aspect.
  • Figure 1 is a schematic diagram of the principle of self-cancellation of PIM signals
  • Figure 2 is an architecture diagram of signal transmission in a MIMO communication system
  • FIG. 3 is a structural diagram of a PIM self-elimination device provided by an embodiment of the application.
  • FIG. 4 is a structural diagram of a cross-slice joint architecture provided by an embodiment of this application.
  • FIG. 5 is a structural diagram of a PIM self-elimination device provided by an embodiment of the application.
  • FIG. 6 is a structural diagram of a PIM self-elimination device provided by an embodiment of the application.
  • FIG. 7 is a structural diagram of a PIM self-elimination device provided by an embodiment of the application.
  • FIG. 8 is a structural diagram of a third linear module provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a PIM self-cancellation device provided in an embodiment of the application arranged at a position of a mid-radio frequency digital front end;
  • FIG. 10 is a schematic diagram of a PIM self-cancellation device provided in an embodiment of the application being set at a baseband position;
  • FIG. 11 is a flowchart of a PIM self-cancellation method provided by an embodiment of this application.
  • the number of transmit and receive channels is as many as 32, 64 or even 128 channels.
  • the characteristic of PIM is that there is correlation with the transmit signals of multiple channels, and it will affect multiple channels at the same time. It is difficult to simulate the PIM signal with two receiving channels, which increases the difficulty of PIM signal elimination.
  • the embodiments of the present application provide a passive intermodulation PIM self-cancellation method and device, which can accurately simulate the PIM self-cancellation signal in a MIMO communication system, and realize the self-cancellation of the PIM signal.
  • the PIM self-cancellation signal corresponding to each receiving channel can be obtained through one second linear module. There is no need to establish a PIM analog unit for each receiving channel. Thereby reducing the occupation of chip resources when the PIM signal is self-cancelled.
  • the passive intermodulation PIM self-cancellation method and device provided in the embodiments of the application can be applied to a multi-carrier base station communication system of FDD standard.
  • the different communication protocol adopted by the communication system for example, the fourth generation (4th generation) , 4G) communication protocol, fifth generation (5th generation, 5G) communication protocol, etc.
  • the PIM self-cancellation device may refer to a base station, an eNB, a gNB, etc., which is not limited in this application.
  • the PIM self-elimination device 300 includes a first acquisition unit 301, a second acquisition unit 302, a PIM simulation unit 303, and an elimination unit 304:
  • the first acquiring unit 301 is configured to acquire digital signals of N transmission channels.
  • the second acquiring unit 302 is configured to acquire received signals of N receiving channels, where the received signals include PIM signals, and the PIM signals are generated by digital signals of N transmitting channels.
  • N is an integer greater than 1.
  • N can be 32, 64, 128, and so on.
  • N-channel signal processing usually multiple chips, such as H chips, are jointly completed, and there is no signal transmission between the chips.
  • the PIM self-cancellation device provided by the embodiment of this application can not only process the digital signals of N transmit channels at the same time, but also multiplex the same second linear module with N receive channels.
  • each chip needs to process NTNR signals, so , Signal transmission channels can be established between multiple chips, so that different chips share TX signals and RX signals with each other. In this way, each chip can process the digital signals of N transmit channels and the receive signals of N receive channels.
  • the cross-chip joint architecture obtained after signal transmission channels can be established between multiple chips can be seen in Figure 4.
  • chip 1 chip 2, ..., chip H, design the signal transmission of N channel TX and N channel RX.
  • chip 1 can obtain TX signals and RX signals of other chips, and can also send TX signals and RX signals to other chips, so that each chip can process NTNR signals.
  • the PIM simulation unit 303 is connected to the first acquisition unit 301.
  • a PIM simulation unit is integrated on the chip.
  • the PIM simulation unit 303 obtains N PIM self-cancellation signals according to the digital signals of the N transmission channels, where the PIM self-cancellation signal is used To eliminate the PIM signal in the received signal.
  • the PIM simulation unit 303 may include a first linear module 3031, a nonlinear module 3032, and a second linear module 3033 connected in series.
  • the first linear module 3031 is used to perform first filtering and first linear superposition on the digital signals of the N transmission channels to obtain the first linear superposition result;
  • the non-linear module 3032 is used to perform non-linear processing on the first linear superposition result to obtain Non-linear processing result;
  • the second linear module 3033 includes N filters, the filter coefficient of each filter corresponds to a receiving channel, and each filter is used to perform linear processing on the non-linear processing result to determine a PIM self-cancellation signal so as to pass
  • the second linear module obtains N PIM self-cancellation signals.
  • the cancellation unit 304 is connected to the second acquisition unit 302 and the PIM simulation unit 303, and is configured to obtain N self-cancellation result signals according to the received signal and the N PIM self-cancellation signals, so as to realize the cancellation of the PIM signal in the MIMO communication system.
  • the flow chart of the PIM self-cancellation architecture can be shown in FIG. 5.
  • the MIMO communication system includes N transmitting channels and N receiving channels.
  • the digital signal of the transmitting channel can be represented by TX
  • the digital signal of the N transmitting channels can be represented by TX1, TX2, ..., TXN.
  • the received signal can be represented by RX
  • the received signals of the N receiving channels can be represented by RX1, RX2, ..., RXN, respectively.
  • the first linear module 3031 in the PIM simulation unit 303 After acquiring the digital signals TX1, TX2,..., TXN of the N transmission channels by the first acquisition unit 301, the first linear module 3031 in the PIM simulation unit 303 performs the first filtering and the first filtering on the digital signals of the N transmission channels.
  • a linear superposition, the first linear superimposition result is obtained, and the first linear superimposition result can be denoted by U1.
  • the non-linear module 3032 performs non-linear processing on the first linear superposition result U1 to obtain a non-linear processing result.
  • the non-linear processing result can be represented by V1.
  • Each filter in the second linear module 3033 performs linear processing on the nonlinear processing result to determine a PIM self-cancellation signal, and the PIM self-cancellation signal determined by each filter corresponds to a receiving channel to eliminate the received signal of the receiving channel PIM signal in. Therefore, N PIM self-cancellation signals are obtained through the second linear module 3033, which can be expressed as OUT1, OUT2,..., OUTN, respectively.
  • the cancellation unit 304 can obtain N self-cancellation result signals according to the received signal and the N PIM self-cancellation signals.
  • the received signal of each receiving channel can be subtracted from the corresponding PIM signal, that is, RX1 and OUT1 can be Subtraction processing, RX2 and OUT2 are subtracted, ..., RXN and OUTN are subtracted, and N self-cancellation result signals are obtained, thereby realizing the elimination of PIM signals in the MIMO communication system.
  • the first linear module 3031 includes a filter and a first linear adder, the filter coefficient of each filter corresponds to a transmission channel, and each filter is used to perform first filtering on the digital signal of a transmission channel.
  • a first filtering result the first linear adder is used to perform the first linear superposition on the N first filtering results to obtain a first linear superposition result.
  • each filter in the first linear module 3031 performs the first filtering on the digital signals of the N transmission channels in a manner that each TX signal is convolved with the corresponding filter coefficient, and the TX signal is convolved with the TX signal.
  • the filter coefficient of can be represented by TW, and the filter coefficients corresponding to the N TX signals TX1, TX2, ..., TXN are TW1, TW2, ..., TWN, respectively.
  • the digital signal of the MIMO communication system includes dual frequencies, the digital signals of the N transmission channels are digital signals belonging to the same frequency.
  • Each filter in the second linear module 3032 performs linear processing on the non-linear processing result to determine a PIM self-cancellation signal.
  • the method can be that the non-linear processing result is convolved with the filter coefficient corresponding to each receiving channel, and the non-linear processing is performed.
  • the filter coefficient for the convolution operation can be represented by RW, and the filter coefficients corresponding to the N receiving channels are RW1, RW2, ..., RWN, respectively.
  • the PIM self-elimination device includes a first acquisition unit, a second acquisition unit, a PIM simulation unit, and an elimination unit.
  • the first acquisition unit is used to acquire the digital signals of N transmission channels, where N is an integer greater than 1.
  • the second acquiring unit is used to acquire received signals of N receiving channels, where the received signals include PIM signals, and the PIM signals are generated by digital signals of N transmitting channels.
  • the PIM analog unit is connected to the first acquisition unit.
  • a PIM analog unit is integrated on the chip to obtain N PIM self-cancellation signals based on the digital signals of the N transmission channels. Among them, the PIM self-cancellation signal is used to eliminate the received signal. PIM signal.
  • the PIM analog unit includes a first linear module, a non-linear module, and a second linear module connected in series.
  • the first linear module is used to perform first filtering and first linear superposition on the digital signals of N transmission channels to obtain the first linear superposition result ;
  • the nonlinear module is used to perform nonlinear processing on the first linear superposition result to obtain the nonlinear processing result;
  • the second linear module includes N filters, and the filter coefficient of each filter corresponds to a receiving channel, and each filter is used for Perform linear processing on the nonlinear processing result to determine a PIM self-cancellation signal, so that N PIM self-cancellation signals are obtained through the second linear module.
  • the cancellation unit connected to the second acquisition unit and the PIM simulation unit can obtain N self-cancellation result signals according to the received signal and the N PIM self-cancellation signals.
  • the device can accurately simulate the PIM self-cancellation signal in the MIMO communication system, and realize the self-cancellation of the PIM signal.
  • N receiving channels are multiplexed with the same second linear module, the PIM self-cancellation signal corresponding to each receiving channel can be obtained through one second linear module. There is no need to establish a PIM analog unit for each receiving channel. Thereby reducing the occupation of chip resources when the PIM signal is self-cancelled.
  • the multi-channel MIMO communication system may have broken parts, loose screws, vibration and other problems in more than one place, that is, the multi-channel MIMO communication system may have one or more PIM failure points.
  • the PIM self-cancellation device 300 includes a PIM simulation unit 303, and the PIM simulation unit 303 can simulate the PIM self-cancellation signal to eliminate each receiving channel The PIM signal generated by the PIM fault point in the received signal.
  • each fault point can generate a corresponding PIM signal, and the PIM signals formed by the M PIM fault points collectively affect the received signal received by the receiving channel.
  • a PIM simulation unit can be used to simulate the PIM signal formed by a PIM failure point.
  • the PIM self-cancellation device 300 It can include M parallel PIM analog units, as shown in Figure 6. In this way, the PIM self-cancellation signal formed by the M PIM fault points in each receiving channel can be obtained through the M parallel PIM simulation units.
  • the PIM self-cancellation device 300 may further include a combining unit 305, and the canceling unit 304 is connected to each of the PIM simulation units 303 through the combining unit 305, and the combining unit 305 is used to connect the M The PIM self-cancellation signals corresponding to the same receiving channel obtained by the PIM simulation units are added to obtain the N PIM self-cancellation signals.
  • the corresponding digital signal of the transmitting channel 1 is TX1
  • the receiving signal is RX1
  • the M PIM self-cancellation signals obtained by the M PIM analog units according to TX1 are OUT1-1.
  • OUT1-2,...OUT1-M, OUT1-1, OUT1-2,...OUT1-M all affect the received signal RX1. Therefore, as an example to eliminate the influence of PIM signal, it is necessary to connect OUT1-1, OUT1- 2.
  • ... OUT1-M is added to get OUT1, thereby eliminating OUT1 from RX1.
  • the PIM self-cancellation signals OUT2,..., OUTN corresponding to the other receiving channels can be obtained.
  • the apparatus 300 may further include M delay configuration units 306.
  • the PIM analog unit is connected to the first acquisition unit 301 through the delay configuration unit 306, and each delay configuration unit 306 is used to configure the delay values for the digital signals of the N transmission channels.
  • each delay configuration unit can configure a delay value for a digital signal corresponding to a PIM failure point, generally, the delay values configured by different delay configuration units are different.
  • the first obtaining unit 301 can obtain a digital signal configured with a delay value.
  • the same delay configuration unit 306 may configure a delay value for the digital signal corresponding to the same PIM failure point, and the same delay configuration unit 306 configures the same delay value for the digital signal corresponding to each transmission channel.
  • the delay value configured by the delay configuration unit 306 can be marked with D1, and for the second PIM failure point, the delay value configured by the delay configuration unit 306 can be D2. Mark,..., for the M-th PIM failure point, the delay value configured by the delay configuration unit 306 may be marked with DM.
  • the first linear module 3031 and the second linear module 3033 in each PIM simulation unit 303 can be reduced.
  • the number of taps of the filter implements the functions required by the first linear module 3031 and the second linear module 3033 through the linear module on the outer layer of the PIM simulation unit 303.
  • the PIM self-cancellation device 300 may further include a third linear module 307 and a fourth linear module 308.
  • the third linear module 307 is connected to each delay configuration unit 306, and is configured to perform the second filtering on the digital signals of the N transmission channels (such as TX1, TX2,..., TXN) to obtain the filtered digital signals. signal.
  • the delay configuration unit 306 can configure the delay values for the filtered digital signals of the N transmission channels. It is connected to the combining unit 305 and is used to perform the third filtering on the N PIM self-cancellation signals.
  • the cancellation unit 304 can obtain N self-cancellation result signals according to the received signal and the N PIM self-cancellation signals after the third filtering.
  • the number of taps of the filters in the first linear module and the second linear module is smaller than the number of taps of the filters in the third linear module and the fourth linear module.
  • the filter used in this embodiment may be a finite impulse response (Finite Impulse Response, FIR) filter or an infinite impulse response (infinite impulse response filter, IIR) filter.
  • the third linear module 307 performs linear convolution (for example, FIR linear convolution) processing on the TX signals of the N transmission channels. If the filter in the third linear module 307 is an FIR filter, the third linear module 307 can refer to the figure 8 shown.
  • the third linear module 307 performs second filtering on the digital signals of the N transmission channels (such as TX1, TX2,..., TXN) to obtain filtered digital signals, and the filtered digital signals can be represented as TX1_TM, TX2_TM,... ..., TXN_TM.
  • the fourth linear module 308 has the same architecture as the third linear module 307, except that the input signal becomes a PIM self-cancellation signal accordingly.
  • the third linear module 307 and the fourth linear module 307 and the fourth linear module 307 are constructed by reducing the number of taps of the filters in the first linear module 3031 and the second linear module 3033.
  • the linear module 308 ensures that the number of taps of the filters in the first linear module 3031 and the second linear module 3033 is smaller than the number of taps of the filters in the third linear module 307 and the fourth linear module 308, which reduces the occupation of chip resources.
  • the filter is an FIR filter
  • the number of taps of the FIR filter in the third linear module 307 and the fourth linear module 308 is F1
  • the number of taps of the FIR filter in the first linear module 3031 and the second linear module 3033 is F2( F1>F2)
  • the demand for chip resources is F2*M*S/F1.
  • the position of the PIM self-cancellation device in the MIMO communication system is flexible and can be set in different positions of the MIMO communication system.
  • the MIMO communication system includes an up-rate frequency shift module, which can up-rate and shift the baseband signals of N transmission channels to obtain digital signals (usually digital intermediate frequency signals) of N transmission channels.
  • an up-rate frequency shift module which can up-rate and shift the baseband signals of N transmission channels to obtain digital signals (usually digital intermediate frequency signals) of N transmission channels.
  • a possible implementation manner of the embodiment of the present application is to set the PIM self-cancellation device at the position of the intermediate radio frequency digital front end.
  • a memory for example, double data rate (DDR) memory, random access memory (RAM), etc.
  • a baseband unit building baseband unit, BBU
  • the baseband signal undergoes rate-up and frequency shift to obtain a digital intermediate frequency signal, passes through a digital-to-analog converter (DAC), enters the analog transmission channel, and is filtered by a transmission filter and then transmitted to the space through an antenna.
  • a multi-antenna radiating PIM signal is formed in the space, and then it is received by the analog receiving channel through the receiving filter, and the PIM signal in the received signal is eliminated by the PIM self-cancellation device.
  • the rate frequency shift module performs rate up and frequency shift on the baseband signals of the N transmission channels, and the digital signal obtained by the PIM self-cancellation device through the first obtaining unit 301 is a channel-level signal, a digital signal (for example, TX1) Including multiple carriers.
  • the embodiment of the present application also provides another possible implementation manner:
  • the PIM self-cancellation device is set at the baseband position. As shown in FIG. 10, the entire process of the transmission signal entering the transmitting channel and the receiving signal entering the receiving channel is similar to the corresponding process in FIG. 9, and will not be repeated here.
  • the PIM self-cancellation device when used to eliminate the PIM signal in the received signal, the digital signal acquired by the PIM self-cancellation device through the first acquisition unit 301 has not been up-rate and frequency-shifted by the rate frequency shifting module, then the PIM self-cancellation device
  • the digital signal obtained by the first obtaining unit 301 is a carrier-level signal, and one digital signal (for example, TX1) includes one carrier.
  • this embodiment also provides a PIM self-elimination method.
  • the method includes:
  • N is an integer greater than 1.
  • the received signal includes a PIM signal
  • the PIM signal is generated by the digital signals of the N transmission channels.
  • the PIM self-cancellation signal is used to eliminate the PIM signal in the received signal;
  • the obtaining the N PIM self-cancellation signals according to the digital signals of the N transmission channels includes: The signal is subjected to first filtering and first linear superposition to obtain a first linear superposition result; non-linear processing is performed on the first linear superposition result to obtain a non-linear processing result; the non-linear processing result is performed through each filter Linear processing determines a PIM self-cancellation signal, and the filter coefficient of each filter corresponds to a receiving channel, and then N PIM self-cancellation signals are obtained.
  • the N PIM self-cancellation signals are obtained from the digital signals of the N transmission channels.
  • the steps are performed by a PIM simulation unit.
  • the N PIM self-cancellation signals are obtained according to the digital signals of the N transmission channels The steps are performed by M parallel PIM simulation units.
  • the method further includes:
  • the PIM self-cancellation signals corresponding to the same receiving channel are added to obtain the N PIM self-cancellation signals.
  • the method further includes:
  • the acquiring the digital signals of N transmission channels includes:
  • the method further includes:
  • the respective configuration of delay values for the digital signals of the N transmission channels includes:
  • performing first filtering and first linear superposition on the digital signals of the N transmission channels to obtain the first linear superposition result includes:
  • the MIMO communication system includes multiple chips, and signal transmission channels are established between the multiple chips, so that each chip processes the digital signals of N transmitting channels and the receiving signals of N receiving channels.
  • the digital signal is a channel-level signal.
  • the digital signal is a carrier-level signal.
  • An embodiment of the present application also provides a device, including: a processor and a memory, which communicate with each other; the memory is used to store instructions; the processor is used to execute instructions in the memory, and perform the related method in FIG. 11 .
  • the embodiment of the present application also provides a computer storage medium storing one or more programs, and the computer program is stored thereon, and when the computer program runs on the computer, the computer executes the related method in FIG. 11.
  • the embodiment of the present application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the related method in FIG. 11.
  • the embodiment of the present application provides a chip system, which includes a processor, and is used for a PIM self-cancellation device to execute the related method in FIG. 11. For example, acquiring the digital signals of N transmitting channels, where N is an integer greater than 1, and acquiring the receiving signals of N receiving channels, where the received signals include PIM signals, and the PIM signals are generated by the N transmitting channels.
  • N PIM self-cancellation signals are obtained, wherein the PIM self-cancellation signals are used to eliminate PIM signals in the received signal;
  • Obtaining N PIM self-cancellation signals from the digital signals of the transmission channels includes: performing first filtering and first linear superposition on the digital signals of the N transmission channels to obtain a first linear superposition result; Non-linear processing is performed to obtain a non-linear processing result; each filter performs linear processing on the non-linear processing result to determine a PIM self-cancellation signal, and the filter coefficient of each filter corresponds to a receiving channel, thereby obtaining N PIM self-cancellation signals.
  • Cancellation signal Obtain N self-cancellation result signals according to the received signal and the N PIM self-cancellation signals.
  • the chip system further includes a memory for storing necessary program instructions and data for the terminal device.
  • the chip system may include a chip, an integrated circuit, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the PIM self-elimination device, computer storage medium, computer program product, or chip system provided in this application are all used to execute the PIM self-elimination method described above. Therefore, the beneficial effects that can be achieved can refer to the above-provided beneficial effects. The beneficial effects in the implementation manner of, will not be repeated here.
  • Specific electronic hardware may include dedicated or general-purpose chips, field programmable gate arrays, discrete devices, application specific integrated circuits (ASICs), such as analog integrated circuits (ICs), Digital integrated circuits, analog/digital hybrid integrated circuits, etc. This application does not limit the specific implementation form.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

一种PIM自消装置(300),包括:第一获取单元(301)获取N个发射通道的数字信号,N为大于1的整数。第二获取单元(302)获取N个接收通道的接收信号。PIM模拟单元(303)根据N个发射通道的数字信号得到N个PIM自消信号。PIM模拟单元(303)包括串联的第一线性模块(3031)、非线性模块(3032)和第二线性模块(3033),第一线性模块(3031)对N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果;非线性模块(3032)对第一线性叠加结果进行非线性处理,得到非线性处理结果;第二线性模块(3033)中每个滤波器对分别对应的非线性处理结果进行线性处理确定一个PIM自消信号,从而得到N个PIM自消信号。消除单元(304)根据接收信号和N个PIM自消信号得到N个自消结果信号。

Description

一种PIM自消方法和装置 技术领域
本申请涉及通信领域,尤其涉及一种PIM自消方法和装置。
背景技术
在频分双工(frequency division duplexing,FDD)制式的多载波基站通信系统中,在多载波、大发射带宽场景下,天馈系统会因为坏件、螺钉松动、震动等原因产生无源互调(passive inter modulation,PIM)信号,当PIM信号落入接收信号的频段时,会与接收信号的频谱重合,影响接收通道的灵敏度,进而影响上行吞吐率。
如图1所示,是PIM信号自消原理的示意图。其中,发射(transport,TX)信号所在频段表示为TX频段,接收(receive,RX)信号所在频段表示为RX频段。当PIM信号落入RX频段,则PIM信号与接收信号重合,为了消除PIM信号,通过研究PIM信号的产生机制和行为特征,可以基于发射信号对PIM信号进行数学建模、然后自适应的拟合出该PIM信号,接着在接收信号中将该PIM信号进行剔除,得到RX频段无PIM信号干扰的信号,从而消除PIM信号对接收灵敏度的影响。基于图1所示的PIM自消算法,设计出PIM抵消器,以消除PIM故障的不良影响。
但是随着通信技术的发展,发射通道和接收通道数逐渐增多,多入多出技术(multiple input multiple output,MIMO)的基站成为主流。在MIMO通信系统中,参见图2所示,多通道的发射信号如图2中带有方向向上箭头的线条所示,如果天馈系统的外部存在金属物、或者基站硬件出现坏件、螺钉松动、震动等问题时,则多通道的发射信号可能在空间中混合、并且形成PIM,该PIM称为辐射类PIM,此时,接收信号中包括该辐射类PIM,如图2中带有方向向下箭头的线条所示。辐射类PIM的特征是与多个通道的发射信号之间都存在相关性,并且其产生机制和行为特征很难进行真实模拟、而且会同时影响多个接收通道,这也使得多通道PIM自消算法的建模存在困难、加大了多通道PIM信号消除的实现难度。
目前,针对MIMO场景,并没有完善的PIM自消方法。
发明内容
本申请实施例提供了一种PIM自消方法和装置,无需针对每个以接收通道建立一个PIM模拟单元,从而缩减PIM信号自消时芯片资源的占用。
为解决上述技术问题,本申请实施例提供以下技术方案:
本申请实施例第一方面提供了一种无源互调PIM自消装置,本申请提供的PIM自消装置包括第一获取单元、第二获取单元、PIM模拟单元和消除单元。第一获取单元用于获取N个发射通道的数字信号,其中,N为大于1的整数。第二获取单元用于获取N个接收通 道的接收信号,其中,接收信号包含PIM信号,该PIM信号由N个发射通道的数字信号产生。PIM模拟单元与第一获取单元相连接,一个PIM模拟单元集成在芯片上,用于根据N个发射通道的数字信号得到N个PIM自消信号,其中,PIM自消信号用于消除接收信号中的PIM信号。PIM模拟单元包括串联的第一线性模块、非线性模块和第二线性模块,第一线性模块用于对N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果;非线性模块用于对第一线性叠加结果进行非线性处理,得到非线性处理结果;第二线性模块包括N个滤波器,每个滤波器的滤波系数对应一个接收通道,每个滤波器用于对非线性处理结果进行线性处理确定一个PIM自消信号,使得通过第二线性模块得到N个PIM自消信号。与第二获取单元以及PIM模拟单元相连接的消除单元可以根据接收信号和N个PIM自消信号得到N个自消结果信号。通过该装置可以准确的模拟出MIMO通信系统中PIM自消信号,实现PIM信号自消。另外,由于N个接收通道复用同一个第二线性模块,通过一个第二线性模块便可以得到每个接收通道分别对应的PIM自消信号,无需针对每个以接收通道建立一个PIM模拟单元,从而缩减PIM信号自消时芯片资源的占用。
在本申请实施例第一方面的第一种实现方式中,若多入多出MIMO通信系统的辐射类PIM是由一个PIM故障点形成的,PIM自消装置包括一个PIM模拟单元。
在本申请实施例第一方面的第二种实现方式中,由于通常情况下,一个PIM模拟单元可以用于模拟一个PIM故障点形成的PIM信号,当多通道MIMO通信系统中的辐射类PIM是由多个(M个)PIM故障点形成的情况下,PIM自消装置中可以包括M个并联的PIM模拟单元。
进一步地,在本申请实施例第一方面的第三种实现方式中,由于每个PIM故障点形成的PIM信号都会对接收通道对应的接收信号造成影响,因此,为了消除接收信号中的PIM信号,则需要得到M个PIM故障点形成的综合PIM信号,以便消除M个PIM故障点形成的PIM信号对接收信号的影响。故,,PIM自消装置还包括合路单元,消除单元通过合路单元与每个PIM模拟单元连接,该合路单元可以将M个PIM模拟单元得到的对应于同一接收通道的PIM自消信号进行加和得到N个PIM自消信号。
在本申请实施例第一方面的第四种实现方式中,由于多个PIM故障点所处的位置可能有所不同,不同PIM故障点形成发射通道的数字信号(TX信号)的时间不同,但是PIM自消装置进行PIM自消的时间却是相同的,为了弥补不同PIM故障点形成的TX信号在时间上的差异,在一些情况下,PIM自消装置还包括M个时延配置单元,PIM模拟单元通过时延配置单元与第一获取单元连接,每个时延配置单元,用于对N个发射通道的数字信号分别配置时延值,不同时延配置单元所配置的时延值不同。此时,第一获取单元获取的是配置有时延值的数字信号。
在本申请实施例第一方面的第五种实现方式中,若缩减第一线性模块和第二线性模块中滤波器的抽头数,,PIM自消装置还包括第三线性模块和第四线性模块。其中,第三线性模块与每个时延配置单元连接,用于分别对N个发射通道的数字信号进行第二滤波得到滤波后的数字信号。此时,时延配置单元可以对N个发射通道滤波后的数字信号分别配置时延值。而第四线性模块与合路单元连接,用于对N个PIM自消信号进行第三滤波。其中, 第一线性模块和第二线性模块中滤波器的抽头数小于第三线性模块和第四线性模块中滤波器的抽头数。故,消除单元可以根据接收信号和经过第三滤波后的N个PIM自消信号得到N个自消结果信号。当其应用于MIMO通信系统中的辐射类PIM是由多个PIM故障点形成的情况下时,可以降低芯片资源的需求量。
在本申请实施例第一方面的第六种实现方式中,第一线性模块中包括滤波器和第一线性叠加器,每个滤波器的滤波系数对应一个发射通道,每个滤波器用于对一个发射通道的数字信号进行第一滤波得到一个第一滤波结果,第一线性叠加器用于对N个第一滤波结果进行第一线性叠加,得到一个第一线性叠加结果。
在本申请实施例第一方面的第七种实现方式中,MIMO通信系统中包括多个芯片,多个芯片之间建立信号传输通道,使得每个芯片处理N个发射通道的数字信号和N个接收通道的接收信号,使得每个芯片都处理NTNR信号。
PIM自消装置在MIMO通信系统中的位置是灵活多变的,可以设置在MIMO通信系统的不同位置。在本申请实施例第一方面的第八种实现方式中,PIM自消装置设置在中射频数字前端位置,此时,数字信号为通道级信号。
为了进一步缩减芯片资源的需求量,在本申请实施例第一方面的第九种实现方式中,PIM自消装置设置在基带位置,此时,数字信号为载波级信号。
本申请实施例第二方面提供了一种无源互调PIM自消方法,方法包括:
获取N个发射通道的数字信号,其中,N为大于1的整数;
获取N个接收通道的接收信号,其中,接收信号包含PIM信号,PIM信号由N个发射通道的数字信号产生;
根据N个发射通道的数字信号得到N个PIM自消信号,其中,PIM自消信号用于消除接收信号中的PIM信号;根据N个发射通道的数字信号得到N个PIM自消信号包括:对N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果;对第一线性叠加结果进行非线性处理,得到非线性处理结果;通过每个滤波器对非线性处理结果进行线性处理确定一个PIM自消信号,每个滤波器的滤波系数对应一个接收通道,进而得到N个PIM自消信号;
根据接收信号和N个PIM自消信号得到N个自消结果信号。
在本申请实施例第二方面的第一种实现方式中,若多入多出MIMO通信系统的辐射类PIM是由一个PIM故障点形成的,根据N个发射通道的数字信号得到N个PIM自消信号的步骤由一个PIM模拟单元执行。
在本申请实施例第二方面的第二种实现方式中,若多入多出MIMO通信系统的辐射类PIM是由M个PIM故障点形成的,根据N个发射通道的数字信号得到N个PIM自消信号的步骤由M个并联的PIM模拟单元执行。
在本申请实施例第二方面的第三种实现方式中,方法还包括:
将对应于同一接收通道的PIM自消信号进行加和得到N个PIM自消信号。
在本申请实施例第二方面的第四种实现方式中,方法还包括:
对N个发射通道的数字信号分别配置时延值,不同时延配置单元所配置的时延值不同;
获取N个发射通道的数字信号,包括:
获取配置有时延值的数字信号。
在本申请实施例第二方面的第五种实现方式中,方法还包括:
对N个发射通道的数字信号进行第二滤波得到滤波后的数字信号;
对N个发射通道的数字信号分别配置时延值,包括:
对N个发射通道滤波后的数字信号分别配置时延值;
对N个PIM自消信号进行第三滤波;
根据接收信号和经过第三滤波后的N个PIM自消信号得到N个自消结果信号。
在本申请实施例第二方面的第六种实现方式中,对N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果,包括:
对一个发射通道的数字信号进行第一滤波得到一个第一滤波结果,对N个第一滤波结果进行第一线性叠加,得到一个第一线性叠加结果。
在本申请实施例第二方面的第七种实现方式中,MIMO通信系统中包括多个芯片,多个芯片之间建立信号传输通道,使得每个芯片处理N个发射通道的数字信号和N个接收通道的接收信号。
在本申请实施例第二方面的第八种实现方式中,数字信号为通道级信号。
在本申请实施例第二方面的第九种实现方式中,数字信号为载波级信号。
本申请实施例第三方面提供了一种设备,该设备包括:处理器,存储器;处理器和存储器之间进行相互的通信;
存储器用于存储指令;
处理器用于执行存储器中的指令,执行如第二方面中任一项PIM自消方法。
本申请实施例第四方面提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第二方面中任一项PIM自消方法。
本申请实施例第五方面提供了一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如第二方面中任一项PIM自消方法。
附图说明
图1为PIM信号自消原理的示意图;
图2为MIMO通信系统中信号传输的架构图;
图3为本申请实施例提供的一种PIM自消装置的结构图;
图4为本申请实施例提供的一种跨片联合架构的结构图;
图5为本申请实施例提供的一种PIM自消装置的结构图;
图6为本申请实施例提供的一种PIM自消装置的结构图;
图7为本申请实施例提供的一种PIM自消装置的结构图;
图8为本申请实施例提供的一种第三线性模块的结构图;
图9为本申请实施例提供的PIM自消装置设置在中射频数字前端位置的示意图;
图10为本申请实施例提供的PIM自消装置设置在基带位置的示意图;
图11为本申请实施例提供的一种PIM自消方法的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了本申请中图示或描述以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在MIMO通信系统中,发射通道和接收通道的数目多达32通道、64通道甚至128通道,此时,PIM的特征是与多个通道的发射信号之间都存在相关性,并且会同时影响多个接收通道,难以模拟出PIM信号,加大了PIM信号消除的实现难度。
由于MIMO通信系统中,当多通道发射信号合路形成PIM之后,落入不同接收通道的PIM信号属于同源,且多个接收通道中PIM的形成过程一致。因此,多个接收通道的PIM可以复用同一套PIM模拟单元。为此,本申请实施例提供一种无源互调PIM自消方法和装置,可以准确的模拟出MIMO通信系统中PIM自消信号,实现PIM信号自消。另外,由于N个接收通道复用同一个第二线性模块,通过一个第二线性模块便可以得到每个接收通道分别对应的PIM自消信号,无需针对每个以接收通道建立一个PIM模拟单元,从而缩减PIM信号自消时芯片资源的占用。
本申请实施例提供的一种无源互调PIM自消方法和装置可以应用于FDD制式的多载波基站通信系统中,根据该通信系统所采用的通信协议的不同,例如第四代(4th generation,4G)通信协议、第五代(5th generation,5G)通信协议等,该PIM自消装置可以指基站、eNB、gNB等,本申请不作限定。
接下来,将结合附图对本申请实施例提供的一种无源互调PIM自消装置进行介绍。参见图3所示,PIM自消装置300包括第一获取单元301、第二获取单元302、PIM模拟单元303和消除单元304:
第一获取单元301,用于获取N个发射通道的数字信号。
第二获取单元302,用于获取N个接收通道的接收信号,其中,接收信号包含PIM信号,PIM信号由N个发射通道的数字信号产生。
可以理解的是,在本实施例中,MIMO通信系统中发射通道与接收通道个数相同,都为N个。其中,N为大于1的整数。常用的MIMO通信系统中,N可以为32、64、128等。
需要说明的是,在MIMO通信系统中,对于N通道的信号处理,通常是由多个芯片例如H个芯片联合完成,并且芯片之间没有信号传输。一个典型用例为:N=32,H=4,每个芯片处理8个输入信号和8个输出信号,即8T8R信号。而本申请实施例所提供的PIM自 消装置,不仅可以同时处理N个发射通道的数字信号,N个接收通道也复用同一个第二线性模块,显然每个芯片都需要处理NTNR信号,因此,多个芯片之间可以建立信号传输通道,使得不同芯片之间互相共享TX信号及RX信号,这样,每个芯片可以处理N个发射通道的数字信号和N个接收通道的接收信号。
多个芯片之间可以建立信号传输通道后得到的跨片联合架构可以参见图4所示,在芯片1、芯片2、……、芯片H之间,设计N通道TX、N通道RX的信号传输通道,这样,以芯片1为例,芯片1可以获取其他芯片的TX信号和RX信号,也可以向其他芯片发送TX信号和RX信号,使得每个芯片都处理NTNR信号。
PIM模拟单元303,与第一获取单元301相连接,一个PIM模拟单元集成在芯片上,PIM模拟单元303根据N个发射通道的数字信号得到N个PIM自消信号,其中,PIM自消信号用于消除接收信号中的PIM信号。在本实施例中,为了可以通过PIM模拟单元303准确的模拟出PIM信号自消信号,PIM模拟单元303可以包括串联的第一线性模块3031、非线性模块3032和第二线性模块3033。第一线性模块3031用于对N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果;非线性模块3032用于对第一线性叠加结果进行非线性处理,得到非线性处理结果;第二线性模块3033包括N个滤波器,每个滤波器的滤波系数对应一个接收通道,每个滤波器用于对非线性处理结果进行线性处理确定一个PIM自消信号,使得通过第二线性模块得到N个PIM自消信号。
消除单元304,与第二获取单元302以及PIM模拟单元303相连接,用于根据接收信号和N个PIM自消信号得到N个自消结果信号,从而实现对MIMO通信系统中PIM信号的消除。
当利用图3对应实施例所提供的PIM自消装置消除MIMO通信系统中的PIM信号时,PIM自消的架构流程图可以参见图5所示。其中,MIMO通信系统包括N个发射通道和N个接收通道,发射通道的数字信号可以用TX表示,则N个发射通道的数字信号分别可以用TX1、TX2、……、TXN表示,接收通道的接收信号可以用RX表示,则N个接收通道的接收信号分别可以用RX1、RX2、……、RXN表示。在通过第一获取单元301获取N个发射通道的数字信号TX1、TX2、……、TXN后,PIM模拟单元303中的第一线性模块3031对N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果,第一线性叠加结果可以用U1表示。非线性模块3032对第一线性叠加结果U1进行非线性处理,得到非线性处理结果,非线性处理结果可以用V1表示。第二线性模块3033中每个滤波器对非线性处理结果进行线性处理确定一个PIM自消信号,每个滤波器确定出的PIM自消信号对应一个接收通道,用于消除该接收通道的接收信号中的PIM信号。故,通过第二线性模块3033得到N个PIM自消信号,分别可以表示为OUT1、OUT2、……、OUT N。之后,消除单元304可以根据接收信号和N个PIM自消信号得到N个自消结果信号,例如,可以将每个接收通道的接收信号与对应的PIM信号做相减处理,即RX1与OUT1做相减处理、RX2与OUT2做相减处理、……、RXN与OUTN做相减处理,得到N个自消结果信号,从而实现对MIMO通信系统中PIM信号的消除。
需要说明的是,第一线性模块3031中包括滤波器和第一线性叠加器,每个滤波器的滤 波系数对应一个发射通道,每个滤波器用于对一个发射通道的数字信号进行第一滤波得到一个第一滤波结果,第一线性叠加器用于对N个第一滤波结果进行第一线性叠加,得到一个第一线性叠加结果。
其中,第一线性模块3031中每个滤波器对N个发射通道的数字信号进行第一滤波的实现方式可以是每个TX信号与相应的滤波系数进行卷积运算,与TX信号进行卷积运算的滤波系数可以用TW表示,则N个TX信号TX1、TX2、……、TXN对应的滤波系数分别为TW1、TW2、……、TWN。在MIMO通信系统的数字信号包括双频时,N个发射通道的数字信号为属于同频的数字信号。
第二线性模块3032中每个滤波器对非线性处理结果进行线性处理确定一个PIM自消信号的方式可以是非线性处理结果与每个接收通道对应的滤波系数分别进行卷积运算,与非线性处理结果进行卷积运算的滤波系数可以用RW表示,则N个接收通道对应的滤波系数分别为RW1、RW2、……、RWN。
由上述技术方案可以看出,本申请提供的PIM自消装置包括第一获取单元、第二获取单元、PIM模拟单元和消除单元。第一获取单元用于获取N个发射通道的数字信号,其中,N为大于1的整数。第二获取单元用于获取N个接收通道的接收信号,其中,接收信号包含PIM信号,该PIM信号由N个发射通道的数字信号产生。PIM模拟单元与第一获取单元相连接,一个PIM模拟单元集成在芯片上,用于根据N个发射通道的数字信号得到N个PIM自消信号,其中,PIM自消信号用于消除接收信号中的PIM信号。PIM模拟单元包括串联的第一线性模块、非线性模块和第二线性模块,第一线性模块用于对N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果;非线性模块用于对第一线性叠加结果进行非线性处理,得到非线性处理结果;第二线性模块包括N个滤波器,每个滤波器的滤波系数对应一个接收通道,每个滤波器用于对非线性处理结果进行线性处理确定一个PIM自消信号,使得通过第二线性模块得到N个PIM自消信号。与第二获取单元以及PIM模拟单元相连接的消除单元可以根据接收信号和N个PIM自消信号得到N个自消结果信号。通过该装置可以准确的模拟出MIMO通信系统中PIM自消信号,实现PIM信号自消。另外,由于N个接收通道复用同一个第二线性模块,通过一个第二线性模块便可以得到每个接收通道分别对应的PIM自消信号,无需针对每个以接收通道建立一个PIM模拟单元,从而缩减PIM信号自消时芯片资源的占用。
可以理解的是,多通道MIMO通信系统中可能不止一处出现坏件、螺钉松动、震动等问题,即多通道MIMO通信系统可能存在一个或多个PIM故障点。当MIMO通信系统的辐射类PIM是由一个PIM故障点形成的,PIM自消装置300中包括一个PIM模拟单元303,利用该PIM模拟单元303便可以模拟出PIM自消信号,以消除各个接收通道的接收信号中该PIM故障点产生的PIM信号。假设一个PIM模拟单元303集成在S个芯片上,由于本申请实施例中N个接收通道复用同一PIM模拟单元303,故,无需针对每个接收通道构建一个PIM模拟单元303(此时可能使用N×S个芯片),通过本申请实施例提供的装置仅需S个芯片就可以实现PIM自消,进一步缩减了芯片资源的使用。
当MIMO通信系统的辐射类PIM是由M个PIM故障点形成的,每个故障点可以产生 对应的PIM信号,M个PIM故障点形成的PIM信号共同影响接收通道所接收的接收信号。由于通常情况下,一个PIM模拟单元可以用于模拟一个PIM故障点形成的PIM信号,当多通道MIMO通信系统中的辐射类PIM是由多个PIM故障点形成的情况下,PIM自消装置300中可以包括M个并联的PIM模拟单元,参见图6所示。这样,通过M个并联的PIM模拟单元可以得到M个PIM故障点在各个接收通道形成的PIM自消信号。
由于每个PIM故障点形成的PIM信号都会对接收通道对应的接收信号造成影响,因此,为了消除接收信号中的PIM信号,则需要得到M个PIM故障点形成的综合PIM信号,以便消除M个PIM故障点形成的PIM信号对接收信号的影响。因此,在本实施例中,PIM自消装置300还可以包括合路单元305,消除单元304通过该合路单元305与每个所述PIM模拟单元303连接,该合路单元305用于将M个PIM模拟单元得到的对应于同一接收通道的PIM自消信号进行加和得到所述N个PIM自消信号。
以N个接收通道中的接收通道1为例,其对应的发射通道1的数字信号为TX1,接收信号为RX1,M个PIM模拟单元根据TX1得到的M个PIM自消信号分别为OUT1-1、OUT1-2、……OUT1-M,OUT1-1、OUT1-2、……OUT1-M共同对接收信号RX1造成影响,故,为例消除PIM信号的影响,需要将OUT1-1、OUT1-2、……OUT1-M进行加和得到OUT1,从而从RX1中消除OUT1。采用同样的方法可以得到其余接收通道对应得PIM自消信号OUT2、……、OUTN。
可以理解的是,在MIMO通信系统中的辐射类PIM是由多个PIM故障点形成的情况下,由于多个PIM故障点所处的位置可能有所不同,不同PIM故障点形成发射通道的数字信号(TX信号)的时间不同,但是PIM自消装置进行PIM自消的时间却是相同的,为了弥补不同PIM故障点形成的TX信号在时间上的差异,在本实施例中,PIM自消装置300还可以包括M个时延配置单元306。其中,PIM模拟单元通过时延配置单元306与第一获取单元301连接,每个时延配置单元306用于对N个发射通道的数字信号分别配置时延值。由于每个时延配置单元可以为一个PIM故障点对应的数字信号配置时延值,通常情况下,不同时延配置单元所配置的时延值不同。此时,第一获取单元301,可以获取配置有时延值的数字信号。
另外,同一时延配置单元306可以为同一个PIM故障点对应的数字信号配置时延值,同一个时延配置单元306为每个发射通道对应的数字信号所配置的时延值是相同的。
参见图6所示,针对第一个PIM故障点,时延配置单元306配置的时延值可以用D1标记,针对第二个PIM故障点,时延配置单元306配置的时延值可以用D2标记,……,针对第M个PIM故障点,时延配置单元306配置的时延值可以用DM标记。
可以理解的是,若一个PIM模拟单元303集成在S个芯片上,那么,在MIMO通信系统中的辐射类PIM是由多个PIM故障点形成的情况下,由于需要构建M个PIM模拟单元303,则所占用的芯片资源为M×S。
在MIMO通信系统中的辐射类PIM是由多个PIM故障点形成的情况下,为了进一步缩减芯片资源的占用,可以缩减每个PIM模拟单元303中第一线性模块3031和第二线性模块3033中滤波器的抽头数,将第一线性模块3031和第二线性模块3033所需实现的功能 通过PIM模拟单元303外层的线性模块实现。此时,PIM自消装置300还可以包括第三线性模块307和第四线性模块308。
参见图7,第三线性模块307与每个时延配置单元306连接,用于分别对N个发射通道的数字信号(例如TX1、TX2、……、TXN)进行第二滤波得到滤波后的数字信号。这样,时延配置单元306可以对N个发射通道滤波后的数字信号分别配置时延值。与合路单元305连接,用于对N个PIM自消信号进行第三滤波,消除单元304可以根据接收信号和经过第三滤波后的N个PIM自消信号得到N个自消结果信号。其中,第一线性模块和第二线性模块中滤波器的抽头数小于第三线性模块和第四线性模块中滤波器的抽头数。其中,本实施例使用的滤波器可以是有限冲激响应(Finite Impulse Response,FIR)滤波器或无限冲激响应(infinite impulse response filter,IIR)滤波器。
第三线性模块307对N发射通道的TX信号分别进行线性卷积(例如FIR线性卷积)处理,若第三线性模块307中的滤波器是FIR滤波器,则第三线性模块307可以参见图8所示。第三线性模块307分别对N个发射通道的数字信号(例如TX1、TX2、……、TXN)进行第二滤波得到滤波后的数字信号,滤波后的数字信号可以分别表示为TX1_TM、TX2_TM、……、TXN_TM。第四线性模块308与第三线性模块307架构一致,只是输入信号相应的变为PIM自消信号。
在MIMO通信系统中的辐射类PIM是由多个PIM故障点形成的情况下,通过缩减第一线性模块3031和第二线性模块3033中滤波器的抽头数,构建第三线性模块307和第四线性模块308,并且保证第一线性模块3031和第二线性模块3033中滤波器的抽头数小于第三线性模块307和第四线性模块308中滤波器的抽头数,缩减了芯片资源的占用。
若滤波器为FIR滤波器,第三线性模块307和第四线性模块308中FIR滤波器的抽头数为F1,第一线性模块3031和第二线性模块3033中FIR滤波器的抽头数为F2(F1>F2),当其应用于MIMO通信系统中的辐射类PIM是由多个PIM故障点形成的情况下时,芯片资源的需求量为F2*M*S/F1。
以一组典型数值为例,若MIMO通信系统中N发射通道和N接收通道中的N=16,F2=3,F1=21,M=8。则基于本本实施例提供的装置,芯片资源需求总量为F2*M*S/F1=8*S/7,进一步缩减了芯片资源的需求量。
需要说明的是,在本实施例中,PIM自消装置在MIMO通信系统中的位置是灵活多变的,可以设置在MIMO通信系统的不同位置。
在一些情况下,MIMO通信系统中包括升速率移频模块,可以对N个发射通道的基带信号进行升速率和移频,得到N个发射通道的数字信号(通常为数字中频信号)。在这种情况下,本申请实施例的一种可能的实现方式为将PIM自消装置设置在中射频数字前端位置。参见图9所示,在发射通道中,通过存储器(例如,双倍速率(double data rate,DDR)存储器、随机存取存储器(random access memory,RAM)等)或基带单元(building base band unit,BBU)产生基带信号,基带信号经过升速率和移频得到数字中频信号,经过数字模拟转换器(Digital to analog converter,DAC)进入模拟发射通道,经过发射滤波器滤波后通过天线发射至空间中,在空间中形成多天线辐射式PIM信号,然后通过接收滤波器被模拟 接收通道接收,利用PIM自消装置消除接收信号中的PIM信号。此时,速率移频模块对N个发射通道的基带信号进行升速率和移频,则PIM自消装置通过第一获取单元301所获取的数字信号为通道级信号,一个数字信号(例如TX1)包括多个载波。
当然,由于MIMO通信系统中基带位置的芯片资源需求量小于中射频数字前端位置的芯片资源需求量,为了进一步缩减芯片资源的需求量,本申请实施例还提供另一种可能的实现方式为将PIM自消装置设置在基带位置。参见图10所示,发射信号进入发射通道,接收信号进入接收通道的整个过程与图9中对应过程类似,此处不再赘述。但是在利用PIM自消装置消除接收信号中的PIM信号时,PIM自消装置通过第一获取单元301所获取的数字信号并未被速率移频模块进行升速率和移频,则PIM自消装置通过第一获取单元301所获取的数字信号为载波级信号,一个数字信号(例如TX1)包括一个载波。
基于前述实施例提供的PIM自消装置,本实施例还提供一种PIM自消方法,参见图11,所述方法包括:
S1101、获取N个发射通道的数字信号。
其中,N为大于1的整数。
S1102、获取N个接收通道的接收信号。
其中,所述接收信号包含PIM信号,所述PIM信号由所述N个发射通道的数字信号产生。
S1103、根据所述N个发射通道的数字信号得到N个PIM自消信号。
其中,所述PIM自消信号用于消除所述接收信号中的PIM信号;所述根据所述N个发射通道的数字信号得到N个PIM自消信号包括:对所述N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果;对所述第一线性叠加结果进行非线性处理,得到非线性处理结果;通过每个滤波器对所述非线性处理结果进行线性处理确定一个PIM自消信号,每个滤波器的滤波系数对应一个接收通道,进而得到N个PIM自消信号。
S1104、根据所述接收信号和所述N个PIM自消信号得到N个自消结果信号。
在一种可能的实现方式中,若多入多出MIMO通信系统的辐射类PIM是由一个PIM故障点形成的,所述根据所述N个发射通道的数字信号得到N个PIM自消信号的步骤由一个PIM模拟单元执行。
在一种可能的实现方式中,若多入多出MIMO通信系统的辐射类PIM是由M个PIM故障点形成的,所述根据所述N个发射通道的数字信号得到N个PIM自消信号的步骤由M个并联的PIM模拟单元执行。
在一种可能的实现方式中,所述方法还包括:
将对应于同一接收通道的PIM自消信号进行加和得到所述N个PIM自消信号。
在一种可能的实现方式中,所述方法还包括:
对N个发射通道的数字信号分别配置时延值,不同时延配置单元所配置的时延值不同;
所述获取N个发射通道的数字信号,包括:
获取配置有时延值的数字信号。
在一种可能的实现方式中,所述方法还包括:
对所述N个发射通道的数字信号进行第二滤波得到滤波后的数字信号;
所述对N个发射通道的数字信号分别配置时延值,包括:
对N个发射通道滤波后的数字信号分别配置时延值;
对所述N个PIM自消信号进行第三滤波;
根据所述接收信号和经过所述第三滤波后的N个PIM自消信号得到N个自消结果信号。
在一种可能的实现方式中,对所述N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果,包括:
对一个发射通道的数字信号进行第一滤波得到一个第一滤波结果,对N个第一滤波结果进行第一线性叠加,得到所述一个第一线性叠加结果。
在一种可能的实现方式中,MIMO通信系统中包括多个芯片,多个芯片之间建立信号传输通道,使得每个芯片处理N个发射通道的数字信号和N个接收通道的接收信号。
在一种可能的实现方式中,所述数字信号为通道级信号。
在一种可能的实现方式中,所述数字信号为载波级信号。
本申请实施例还提供一种设备,包括:处理器和存储器,处理器和存储器之间进行相互的通信;存储器用于存储指令;处理器用于执行存储器中的指令,执行图11中的相关方法。
本申请实施例还提供一种存储一个或多个程序的计算机存储介质,其上存储有计算机程序,当其在计算机上运行时,使得计算机执行图11中的相关方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行图11中的相关方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于PIM自消装置执行图11中的相关方法。例如,获取N个发射通道的数字信号,其中,N为大于1的整数;获取N个接收通道的接收信号,其中,所述接收信号包含PIM信号,所述PIM信号由所述N个发射通道的数字信号产生;根据所述N个发射通道的数字信号得到N个PIM自消信号,其中,所述PIM自消信号用于消除所述接收信号中的PIM信号;所述根据所述N个发射通道的数字信号得到N个PIM自消信号包括:对所述N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果;对所述第一线性叠加结果进行非线性处理,得到非线性处理结果;通过每个滤波器对所述非线性处理结果进行线性处理确定一个PIM自消信号,每个滤波器的滤波系数对应一个接收通道,进而得到N个PIM自消信号;根据所述接收信号和所述N个PIM自消信号得到N个自消结果信号。
在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的PIM自消装置、计算机存储介质、计算机程序产品或者芯片系统均用于执行上文所述的PIM自消方法,因此,其所能达到的有益效果可参考上文所提供的实施方式中的有益效果,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者计算机软件与电子硬件的结合来实现。这些功能究竟以何种方式来实现,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
具体的电子硬件可以包括专用或通用芯片、现场可编程门阵列(field programmable gate array)、分立器件、专用集成电路(application specific integrated circuit,ASIC),例如,模拟集成电路(integrated circuit,IC)、数字集成电路、模拟/数字混合集成电路等。本申请不作限定具体实现形式。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种无源互调PIM自消装置,其特征在于,所述PIM自消装置包括第一获取单元、第二获取单元、PIM模拟单元和消除单元:
    所述第一获取单元,用于获取N个发射通道的数字信号,其中,N为大于1的整数;
    所述第二获取单元,用于获取N个接收通道的接收信号,其中,所述接收信号包含PIM信号,所述PIM信号由所述N个发射通道的数字信号产生;
    所述PIM模拟单元,与所述第一获取单元相连接,一个所述PIM模拟单元集成在芯片上,用于根据所述N个发射通道的数字信号得到N个PIM自消信号,其中,所述PIM自消信号用于消除所述接收信号中的PIM信号;所述PIM模拟单元包括串联的第一线性模块、非线性模块和第二线性模块,所述第一线性模块用于对所述N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果;所述非线性模块用于对所述第一线性叠加结果进行非线性处理,得到非线性处理结果;所述第二线性模块包括N个滤波器,每个滤波器的滤波系数对应一个接收通道,每个滤波器用于对所述非线性处理结果进行线性处理确定一个PIM自消信号,使得通过所述第二线性模块得到N个PIM自消信号;
    所述消除单元,与所述第二获取单元以及所述PIM模拟单元相连接,用于根据所述接收信号和所述N个PIM自消信号得到N个自消结果信号。
  2. 根据权利要求1所述的装置,其特征在于,若多入多出MIMO通信系统的辐射类PIM是由一个PIM故障点形成的,所述PIM自消装置包括一个PIM模拟单元。
  3. 根据权利要求1所述的装置,其特征在于,若多入多出MIMO通信系统的辐射类PIM是由M个PIM故障点形成的,所述PIM自消装置包括M个并联的PIM模拟单元。
  4. 根据权利要求3所述的装置,其特征在于,所述装置还包括合路单元:
    所述消除单元通过所述合路单元与每个所述PIM模拟单元连接,所述合路单元,用于将M个PIM模拟单元得到的对应于同一接收通道的PIM自消信号进行加和得到所述N个PIM自消信号。
  5. 根据权利要求4所述的装置,其特征在于,所述装置还包括M个时延配置单元:
    所述PIM模拟单元通过所述时延配置单元与第一获取单元连接,每个所述时延配置单元,用于对N个发射通道的数字信号分别配置时延值,不同时延配置单元所配置的时延值不同;
    所述第一获取单元,用于获取N个发射通道的数字信号,包括:
    所述第一获取单元,用于获取配置有时延值的数字信号。
  6. 根据权利要求5所述的装置,其特征在于,若缩减所述第一线性模块和第二线性模块中滤波器的抽头数,所述装置还包括第三线性模块和第四线性模块:
    所述第三线性模块与每个所述时延配置单元连接,用于分别对所述N个发射通道的数字信号进行第二滤波得到滤波后的数字信号;
    所述时延配置单元,用于对N个发射通道的数字信号分别配置时延值,包括:
    所述时延配置单元,用于对N个发射通道滤波后的数字信号分别配置时延值;
    所述第四线性模块,与所述合路单元连接,用于对所述N个PIM自消信号进行第三滤波;其中,所述第一线性模块和所述第二线性模块中滤波器的抽头数小于所述第三线性模块和所述第四线性模块中滤波器的抽头数;
    所述消除单元,用于根据所述接收信号和经过所述第三滤波后的N个PIM自消信号得到N个自消结果信号。
  7. 根据权利要求1-6任一项所述的装置,其特征在于,所述第一线性模块中包括滤波器和第一线性叠加器,每个滤波器的滤波系数对应一个发射通道,每个滤波器用于对一个发射通道的数字信号进行第一滤波得到一个第一滤波结果,所述第一线性叠加器用于对所述N个第一滤波结果进行第一线性叠加,得到所述一个第一线性叠加结果。
  8. 根据权利要求1-6任一项所述的装置,其特征在于,MIMO通信系统中包括多个芯片,多个芯片之间建立信号传输通道,使得每个芯片处理N个发射通道的数字信号和N个接收通道的接收信号。
  9. 根据权利要1-6任一项所述的装置,其特征在于,所述数字信号为通道级信号。
  10. 根据权利要1-6任一项所述的装置,其特征在于,所述数字信号为载波级信号。
  11. 一种无源互调PIM自消方法,其特征在于,所述方法包括:
    获取N个发射通道的数字信号,其中,N为大于1的整数;
    获取N个接收通道的接收信号,其中,所述接收信号包含PIM信号,所述PIM信号由所述N个发射通道的数字信号产生;
    根据所述N个发射通道的数字信号得到N个PIM自消信号,其中,所述PIM自消信号用于消除所述接收信号中的PIM信号;所述根据所述N个发射通道的数字信号得到N个PIM自消信号包括:对所述N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果;对所述第一线性叠加结果进行非线性处理,得到非线性处理结果;通过每个滤波器对所述非线性处理结果进行线性处理确定一个PIM自消信号,每个滤波器的滤波系数对应一个接收通道,进而得到N个PIM自消信号;
    根据所述接收信号和所述N个PIM自消信号得到N个自消结果信号。
  12. 根据权利要求11所述的方法,其特征在于,若多入多出MIMO通信系统的辐射类PIM是由一个PIM故障点形成的,所述根据所述N个发射通道的数字信号得到N个PIM自消信号的步骤由一个PIM模拟单元执行。
  13. 根据权利要求11所述的方法,其特征在于,若多入多出MIMO通信系统的辐射类PIM是由M个PIM故障点形成的,所述根据所述N个发射通道的数字信号得到N个PIM自消信号的步骤由M个并联的PIM模拟单元执行。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    将对应于同一接收通道的PIM自消信号进行加和得到所述N个PIM自消信号。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    对N个发射通道的数字信号分别配置时延值,不同时延配置单元所配置的时延值不同;
    所述获取N个发射通道的数字信号,包括:
    获取配置有时延值的数字信号。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    对所述N个发射通道的数字信号进行第二滤波得到滤波后的数字信号;
    所述对N个发射通道的数字信号分别配置时延值,包括:
    对N个发射通道滤波后的数字信号分别配置时延值;
    对所述N个PIM自消信号进行第三滤波;
    根据所述接收信号和经过所述第三滤波后的N个PIM自消信号得到N个自消结果信号。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,对所述N个发射通道的数字信号进行第一滤波和第一线性叠加,得到第一线性叠加结果,包括:
    对一个发射通道的数字信号进行第一滤波得到一个第一滤波结果,对N个第一滤波结果进行第一线性叠加,得到所述一个第一线性叠加结果。
  18. 根据权利要求11-16任一项所述的方法,其特征在于,MIMO通信系统中包括多个芯片,多个芯片之间建立信号传输通道,使得每个芯片处理N个发射通道的数字信号和N个接收通道的接收信号。
  19. 根据权利要11-16任一项所述的方法,其特征在于,所述数字信号为通道级信号。
  20. 根据权利要11-16任一项所述的方法,其特征在于,所述数字信号为载波级信号。
  21. 一种设备,该设备包括:处理器,存储器;处理器和存储器之间进行相互的通信;
    存储器用于存储指令;
    处理器用于执行存储器中的指令,执行如权利要求11-20中任一项PIM自消方法。
  22. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求11-20中任一项PIM自消方法。
  23. 一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如权利要求11-20中任一项PIM自消方法。
PCT/CN2019/104892 2019-09-09 2019-09-09 一种pim自消方法和装置 WO2021046677A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19944867.1A EP4024717B1 (en) 2019-09-09 2019-09-09 Pim self-cancellation method and device
PCT/CN2019/104892 WO2021046677A1 (zh) 2019-09-09 2019-09-09 一种pim自消方法和装置
CN201980099914.9A CN114342271B (zh) 2019-09-09 2019-09-09 一种pim自消方法和装置
US17/653,980 US20220209803A1 (en) 2019-09-09 2022-03-08 PIM Cancellation Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104892 WO2021046677A1 (zh) 2019-09-09 2019-09-09 一种pim自消方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/653,980 Continuation US20220209803A1 (en) 2019-09-09 2022-03-08 PIM Cancellation Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021046677A1 true WO2021046677A1 (zh) 2021-03-18

Family

ID=74867141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104892 WO2021046677A1 (zh) 2019-09-09 2019-09-09 一种pim自消方法和装置

Country Status (4)

Country Link
US (1) US20220209803A1 (zh)
EP (1) EP4024717B1 (zh)
CN (1) CN114342271B (zh)
WO (1) WO2021046677A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116633465B (zh) * 2023-07-24 2023-10-13 四川恒湾科技有限公司 一种实时基于资源块为单位的无源交调检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986482A (zh) * 2014-05-27 2014-08-13 北京理工大学 一种基于自适应滤波的无源互调干扰抑制方法
CN104283580A (zh) * 2014-09-30 2015-01-14 上海华为技术有限公司 射频模块的无源互调pim干扰抵消方法及相关装置
CN107453782A (zh) * 2017-08-23 2017-12-08 北京银河信通科技有限公司 一种基于双时延估计的无源互调干扰对消系统及方法
US10038522B1 (en) * 2017-02-01 2018-07-31 Innertron, Inc. Modular PIM analyzer and method using the same
CN108777585A (zh) * 2018-02-09 2018-11-09 香港梵行科技有限公司 一种自适应抵消无线收发系统中无源互调信号的装置及方法
US20190052294A1 (en) * 2017-08-09 2019-02-14 Isco International, Llc Method and apparatus for detecting and analyzing passive intermodulation interference in a communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461697B2 (en) * 2014-02-27 2016-10-04 Scintera Networks Llc In-service monitoring and cancellation of passive intermodulation interferences
BR112019008610A2 (pt) * 2016-10-31 2019-09-17 Huawei Tech Co Ltd dispositivo de topo de torre e método de cancelamento de intermodulação passivo
EP3687074B1 (en) * 2017-10-27 2023-08-30 Huawei Technologies Co., Ltd. Multichannel passive intermodulation digital cancellation circuit
US20220182087A1 (en) * 2019-04-01 2022-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Network device and method therein for handling passive intermodulation signals in a wireless communications network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986482A (zh) * 2014-05-27 2014-08-13 北京理工大学 一种基于自适应滤波的无源互调干扰抑制方法
CN104283580A (zh) * 2014-09-30 2015-01-14 上海华为技术有限公司 射频模块的无源互调pim干扰抵消方法及相关装置
US10038522B1 (en) * 2017-02-01 2018-07-31 Innertron, Inc. Modular PIM analyzer and method using the same
US20190052294A1 (en) * 2017-08-09 2019-02-14 Isco International, Llc Method and apparatus for detecting and analyzing passive intermodulation interference in a communication system
CN107453782A (zh) * 2017-08-23 2017-12-08 北京银河信通科技有限公司 一种基于双时延估计的无源互调干扰对消系统及方法
CN108777585A (zh) * 2018-02-09 2018-11-09 香港梵行科技有限公司 一种自适应抵消无线收发系统中无源互调信号的装置及方法

Also Published As

Publication number Publication date
CN114342271A (zh) 2022-04-12
US20220209803A1 (en) 2022-06-30
EP4024717A4 (en) 2022-11-09
CN114342271B (zh) 2022-11-04
EP4024717A1 (en) 2022-07-06
EP4024717B1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
EP3687074B1 (en) Multichannel passive intermodulation digital cancellation circuit
US20210013974A1 (en) Mimo wideband receiver and transmitter, and method thereof
CN106797223B (zh) 用于全双工通信中自干扰的数字消除的系统和方法
JP6183939B2 (ja) 全二重中継装置
US8787488B2 (en) System, method and apparatus for crosstalk cancellation
EP3170265B1 (en) Cancelling crosstalk
CN110178315B (zh) 一种天线校正方法及装置
EP2884668A1 (en) Improvement of receiver sensitivity
WO2016023445A1 (en) Interference cancellation in mimo same channel full-duplex transceivers
JP6322174B2 (ja) モジュール
US10211908B2 (en) Multi-antenna relay device
CN111865361A (zh) 一种全双工自干扰消除方法和装置
US20190036217A1 (en) Selectable Filtering with Switching
WO2021046677A1 (zh) 一种pim自消方法和装置
CN114204962A (zh) 接收信号的方法和装置
Askar et al. Agile full-duplex transceiver: The concept and self-interference channel characteristics
US9319099B2 (en) Isolation requirement mitigation for IDU-ODU interconnections in microwave systems
CN117917012A (zh) 无源互调失真滤波
Lampu et al. Cancellation of air-induced passive intermodulation in FDD MIMO systems: Low-complexity cascade model and measurements
CN115734262A (zh) 一种测量信道信息的方法、网络设备、中继设备及终端
WO2020132893A1 (zh) Pim对消方法和装置
Chandran et al. Transmitter leakage analysis when operating USRP (N210) in duplex mode
US11272382B2 (en) Interference reduction for wireless communications devices
CN108011643B (zh) 回波反射或近端串扰的相消器与相消方法
WO2020001397A1 (zh) 信号处理方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019944867

Country of ref document: EP

Effective date: 20220328