WO2021045483A1 - Method for manufacturing aerogel blanket - Google Patents

Method for manufacturing aerogel blanket Download PDF

Info

Publication number
WO2021045483A1
WO2021045483A1 PCT/KR2020/011709 KR2020011709W WO2021045483A1 WO 2021045483 A1 WO2021045483 A1 WO 2021045483A1 KR 2020011709 W KR2020011709 W KR 2020011709W WO 2021045483 A1 WO2021045483 A1 WO 2021045483A1
Authority
WO
WIPO (PCT)
Prior art keywords
blanket
sol
substrate
airgel
catalyzed
Prior art date
Application number
PCT/KR2020/011709
Other languages
French (fr)
Korean (ko)
Inventor
오명은
김미리
강태경
백세원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200084762A external-priority patent/KR102581268B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080012559.XA priority Critical patent/CN113423676B/en
Priority to US17/425,906 priority patent/US20220204350A1/en
Priority to JP2021543248A priority patent/JP7209852B2/en
Priority to EP20860338.1A priority patent/EP3901093B1/en
Publication of WO2021045483A1 publication Critical patent/WO2021045483A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/155Preparation of hydroorganogels or organogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/159Coating or hydrophobisation

Definitions

  • the present invention is based on Korean Patent Application No. 10-2019-0109158 filed on September 3, 2019, Korean Patent Application No. 10-2019-0121147 filed on September 30, 2019, and July 9, 2020. It claims the benefit of priority based on the applied Korean patent application No. 10-2020-0084762, and all contents disclosed in the documents of the Korean patent application are included as part of this specification.
  • the present invention relates to a method for manufacturing an airgel blanket, and without performing a surface modification step requiring excessive use of an expensive surface modifier, the hydrophobicity of the produced airgel blanket can be secured, and further, an airgel blanket capable of normal pressure drying. It relates to a manufacturing method.
  • Aerogel is an ultra-porous, high specific surface area ( ⁇ 500 m 2 /g) material with a porosity of about 90 to 99.9% and a pore size in the range of 1 to 100 nm. Since it is a material having an airgel material, as well as research on the development of aerogel material, application research as a transparent insulation material and environment-friendly high-temperature insulation material, ultra-low dielectric thin film for highly integrated devices, catalyst and catalyst carrier, electrode for super capacitor, and electrode material for seawater desalination are also actively progressing. .
  • airgel is super-insulation, which has a thermal conductivity of 0.300 W/m ⁇ K or less, which is lower than that of organic insulation materials such as conventional styrofoam, and that it prevents fire vulnerability, which is a fatal weakness of organic insulation materials, and harmful gas generation in case of fire. Is that it can be solved.
  • airgels are manufactured by preparing a hydrogel from silica precursors such as water glass and alkoxysilane series (TEOS, TMOS, MTMS, etc.), and removing liquid components inside the hydrogel without destroying the microstructure.
  • silica precursors such as water glass and alkoxysilane series (TEOS, TMOS, MTMS, etc.
  • a hydrophobic silica airgel blanket in which a hydrophobic silica aerogel is formed in a fiber is widely used in construction or industrial sites as a functional insulating material that prevents corrosion by moisture, and such a hydrophobic silica airgel blanket is generally used in the steps of preparing a silica sol solution, It is produced through a gelling step, a aging step, a surface modification step, and a drying step.
  • the surface modification step in the conventional manufacturing method as described above uses a large amount of organic solvent and an expensive surface modifier, and the process is complicated and requires a long process time, so economical efficiency and productivity are not good.
  • the ammonia generated when the surface of the airgel is reformed reacts with carbon dioxide used in the supercritical stage to form ammonium carbonate salts, causing problems such as blocking the piping of the supercritical drying equipment, thereby hindering the efficiency of the process.
  • a large amount of ammonia was present in the waste solution generated after drying, it was impossible to immediately reuse the waste solution. In order to reuse the waste solution, it took a long time in the purification process and the purification cost was increased.
  • the drying step is performed by supercritical drying, which corresponds to an expensive process, and it is not easy to secure safety because it is performed under high pressure conditions, and only batch production is possible. As a result, it can be a cause of lowering productivity.
  • a normal pressure drying method has been proposed to replace supercritical drying, but since the surface modification reaction by the surface modification step starts from the outermost part of the airgel, it is difficult to introduce a sufficient amount of surface modifier to the inside of the airgel.
  • the airgel blanket may be manufactured using a gel casting method and a method in which airgel powder or granules are prepared and then immersed in a substrate for a blanket using a binder.
  • a gel casting method using a roll-to-roll method is known.
  • a conveyor belt must be included in the equipment so that the catalyst can be cast and gelled completely, and the conveyor belt must be connected until the gelation is completed. Therefore, there is a problem that the scale of the equipment becomes enormous in the mass production stage.
  • the length of the airgel blanket to be produced increases, the length of the conveyor belt becomes longer and the overall manufacturing time becomes longer due to the longer gelation time.
  • Patent Document 1 KR10-2012-0070948A
  • the present invention was conceived to solve the above conventional problems, and in manufacturing an airgel blanket, a large amount of organic solvent and an expensive surface modifier are used, and the process is complicated and requires a long process time, thereby improving economic efficiency and productivity. It is an object of the present invention to provide a method of manufacturing an airgel blanket that can omit the inhibiting surface modification step.
  • an object of the present invention is to provide a method for manufacturing a silica airgel blanket that can reduce energy consumption by omitting the surface modification step, and use a simplified manufacturing facility since the surface modification supply facility is not required by omitting the above step. .
  • the manufacturing time can be greatly reduced, and It is an object of the present invention to provide an airgel blanket manufacturing method capable of simplifying manufacturing equipment and preventing thickness and length from affecting manufacturing time.
  • the present invention further improves the uniformity of the aerogel formed in the blanket substrate by allowing the airgel to be formed uniformly in the blanket substrate by rotating the substrate for blanket impregnated with the catalytic sol.
  • An object of the present invention is to provide a method of manufacturing an airgel blanket in which thermal conductivity may be uniformly displayed throughout the airgel blanket and the thermal conductivity of the airgel blanket may be improved.
  • the present invention includes: 1) introducing the catalyzed sol and a blanket substrate into a reaction vessel, and impregnating the catalyst with the blanket substrate with the catalyzed sol; And 2) rotating and gelling a substrate for a blanket impregnated with the catalyzed sol, wherein the catalyzed sol includes a silica precursor composition, and the silica precursor composition includes a silicate and tetrahydrophobic group. It includes an alkyl silicate, and the molar ratio of the silicate including the hydrophobic group and the tetraalkyl silicate is 60:40 to 98:2 provides a method for producing an airgel blanket.
  • the manufacturing time can be greatly reduced, and the thickness of the airgel blanket And the length does not affect the manufacturing time, it is possible to simplify the manufacturing equipment.
  • the thickness of the blanket substrate is thin and the length is long (thin grade)
  • the above-described effect is further maximized, and in this case, there is an advantage in that productivity can be greatly increased.
  • the airgel blanket manufacturing method according to the present invention by rotating the blanket substrate impregnated with the catalyzed sol, the airgel can be uniformly formed in the blanket substrate, thereby forming in the blanket substrate.
  • the uniformity of the airgel can be further improved.
  • FIG. 1 is a perspective view showing an airgel blanket manufacturing apparatus according to an embodiment of the present invention.
  • the present invention provides a method for manufacturing an airgel blanket.
  • a method for manufacturing an airgel blanket comprises the steps of: 1) introducing the catalyzed sol and a blanket substrate into a reaction vessel, and impregnating the catalyst with the blanket substrate with the catalyzed sol; And 2) rotating and gelling a substrate for a blanket impregnated with the catalyzed sol, wherein the catalyzed sol includes a silica precursor composition, and the silica precursor composition includes a silicate and tetrahydrophobic group.
  • the molar ratio of the silicate including the hydrophobic group and the tetraalkyl silicate may be from 60:40 to 98:2.
  • the step 1) is a step of preparing to form an airgel blanket, by impregnating the catalyzed sol into a substrate for the blanket, thereby preparing a catalyzed sol and preparing the prepared catalyzed sol. And impregnating the sol catalyzed into the blanket substrate by introducing the blanket substrate into the reaction vessel.
  • the term "impregnation" as used in the present invention may be achieved by introducing a catalyzed sol having fluidity into the substrate for blanket, and may refer to the penetration of the catalyzed sol into pores inside the substrate for blanket.
  • the step 1) is to add the blanket substrate and the catalyzed sol to the reaction vessel
  • the order of the addition is not particularly limited.
  • the step 1) is a method of introducing a substrate for blanket into a reaction vessel and then introducing a catalyzed sol, a method of introducing a substrate for blanket after introducing the catalyzed sol into a reaction vessel, and catalyzing a catalyst into the reaction vessel. It may be introduced in any one of the methods of injecting the substrate for the blanket while injecting the sol. Among these, it may be more preferable to introduce the catalyst sol after the blanket substrate is added in view of more uniform impregnation. Specifically, when the blanket substrate is first introduced, a more uniform impregnation may be induced because the blanket substrate can be rotated when the catalyzed sol is introduced.
  • the impregnation in step 1) may be performed while the blanket substrate is rotated as described above.
  • the sol catalyzed uniformly contacts all surfaces of the blanket substrate to induce uniform impregnation, which is more preferable.
  • the catalyzed sol may be prepared by mixing a sol and a base catalyst, and the base catalyst serves to promote gelation in step 2) by increasing the pH of the sol.
  • the sol is not limited as long as it is a material capable of forming a porous gel through a sol-gel reaction, and specifically, may include an inorganic sol, an organic sol, or a combination thereof.
  • Inorganic sols may include zirconia, yttrium oxide, hafnia, alumina, titania, ceria, silica, magnesium oxide, calcium oxide, magnesium fluoride, calcium fluoride, and combinations thereof
  • the organic sol is polyacrylate, Polyolefin, polystyrene, polyacrylonitrile, polyurethane, polyimide, polyfurfural alcohol, phenol furfuryl alcohol, melamine formaldehyde, resorcinol formaldehyde, cresol formaldehyde, phenol formaldehyde, polyvinyl alcohol dialdehyde, polycylate Anurates, polyacrylamides, various epoxies, agar, agarose, and combinations thereof.
  • the sol according to an embodiment of the present invention includes a sol precursor, water, and an organic solvent, and may be prepared by mixing a sol precursor, water, and an organic solvent.
  • the catalyzed sol according to an embodiment of the present invention is a catalyzed silica sol
  • the silica sol catalyzed in step 1) may be prepared by mixing a silica sol and a base catalyst, wherein the silica sol Silver may be prepared by mixing a silica precursor composition, water, and an organic solvent.
  • the silica sol may be hydrolyzed at a low pH to facilitate gelation, and in this case, an acid catalyst may be used to lower the pH.
  • the silica precursor composition usable for preparing the silica sol may include a silicon-containing alkoxide-based compound, and specifically may include a silicate containing a hydrophobic group and a tetraalkyl silicate.
  • the silicate containing the hydrophobic group is for imparting hydrophobicity to the airgel without a surface modification step during the manufacture of the airgel, methyltriethoxysilane (MTES), trimethylethoxysilane (TMES), It may be one or more selected from the group consisting of trimethylsilanol (TMS), methyltrimethoxysilane (MTMS), dimethyldiethoxysilane (DMDEOS), ethyltriethoxysilane (ETES), and phenyltriethoxysilane (PTES).
  • TMS trimethylsilanol
  • MTMS methyltrimethoxysilane
  • DMDEOS dimethyldiethoxysilane
  • ETES ethyltriethoxysilane
  • PTES phenyltriethoxysilane
  • the tetraalkyl silicate is for reinforcing the strength of the airgel and securing thermal insulation performance, and includes tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate; TEOS), tetrapropyl orthosilicate, tetraisopropyl orthosilicate, tetrabutyl orthosilicate, tetra secondary butyl orthosilicate, tetrater Tetra-tertiary butyl orthosilicate, tetrahexyl orthosilicate, tetracyclohexyl orthosilicate, tetradodecyl orthosilicate, etc.
  • TMOS tetramethyl orthosilicate
  • TEOS tetraethyl orthosilicate
  • TEOS tetrapropyl orthosilicate
  • TEOS tetrabutyl orthosilicate
  • tetra secondary butyl orthosilicate
  • the molar ratio of the silicate containing the hydrophobic group and the tetraalkyl silicate in the silica precursor composition may be 60:40 to 98:2, and the strength of the aerogel during supercritical drying within this range And it is possible to maximize the thermal insulation performance.
  • the molar ratio of the silicate containing the hydrophobic group and the tetraalkyl silicate in the silica precursor composition may be 85:15 to 98:2, or 90:10 to 98:2, and this range While securing the strength and heat insulation performance of the airgel inside with high efficiency, it is possible to prevent the occurrence of shrinkage during normal pressure drying, thereby preventing the heat insulation performance from deteriorating.
  • the silica precursor composition may be used in an amount such that the content of silica (SiO 2 ) contained in the silica sol is 3% by weight to 30% by weight, 5% by weight to 20% by weight, or 6% by weight to 12% by weight. . Within this range, the content of the silica airgel in the final manufactured blanket can be sufficiently secured, so that the desired level of thermal insulation effect can be expected, and the formation of excessive silica aerogels prevents the mechanical properties of the blanket, especially the flexibility, from deteriorating. Can be prevented.
  • the organic solvent that can be used for the preparation of the sol of the present invention can be used without limitation as long as it has excellent compatibility with a sol precursor and water, and specifically, a polar organic solvent may be used, and more specifically, alcohol is used. It may be to use.
  • the alcohol is specifically a monohydric alcohol such as methanol, ethanol, isopropanol, butanol, and the like;
  • it may be a polyhydric alcohol such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and sorbitol, and any one or a mixture of two or more of them may be used.
  • the organic solvent as described above may be used in an appropriate amount in consideration of the content of the finally produced airgel.
  • the silica sol according to an embodiment of the present invention may contain a silica precursor composition and water in a molar ratio of 1:10 to 1:1.
  • the silica precursor composition and the organic solvent may be included in a weight ratio of 1:2 to 1:9, and preferably may be included in a weight ratio of 1:2 to 1:6.
  • the yield of airgel production may be further increased, and thus there is an improvement effect in terms of thermal insulation performance.
  • the acid catalyst that may be further included in the sol according to an embodiment of the present invention can be used without limitation as long as the acid catalyst has a pH of 3 or less, and hydrochloric acid, nitric acid, or sulfuric acid may be used as an example.
  • the acid catalyst may be added in an amount such that the pH of the sol is 3 or less, and may be added in the form of an aqueous solution dissolved in an aqueous medium.
  • the base catalyst usable in the catalyzed sol according to an embodiment of the present invention includes inorganic bases such as sodium hydroxide and potassium hydroxide; Or an organic base such as ammonium hydroxide.
  • inorganic bases such as sodium hydroxide and potassium hydroxide; Or an organic base such as ammonium hydroxide.
  • the base catalyst may be included in an amount such that the pH of the sol is 7 to 11. If the pH of the sol is out of the above range, gelation in step 2) to be described later is not easy, or the gelation rate is too slow, and thus fairness may be lowered.
  • the base since the base may be precipitated when introduced into a solid phase, it may be preferably added in the form of an aqueous medium or a solution diluted with the above-described organic solvent. In this case, the dilution ratio of the base catalyst and the organic solvent, specifically alcohol, may be 1:4 to 1:100 on a volume basis.
  • additives may be further added to the catalyzed sol as needed, and in this case, all known additives that may be added when preparing an aerogel may be applied, for example, an opacifying agent. And additives such as flame retardants may be used.
  • the blanket substrate may be introduced in a suitable shape that is easy to input according to the shape of the reaction vessel, and specifically, a blanket substrate wound in a roll shape on a bobbin to facilitate rotation in step 2) to be described later It may be added to the reaction vessel.
  • the bobbin may be a shaft capable of rotating the blanket substrate, and any one that can wind the blanket substrate may be applied without limitation.
  • it may be to use a polygonal cylindrical column, preferably a cylindrical column having a size that can fit inside the reaction vessel.
  • the bobbin may include a winding rod capable of winding a blanket substrate in a roll form, and a support plate supporting a side portion so that the blanket substrate wound around the winding rod does not separate during rotation.
  • a winding rod capable of winding a blanket substrate in a roll form
  • a support plate supporting a side portion so that the blanket substrate wound around the winding rod does not separate during rotation.
  • the support plate may use a mesh type or may include a plurality of hollows so that the sol catalyzed to the side of the blanket substrate can flow.
  • the material of the bobbin may be any material having sufficient strength to support the blanket, and specifically stainless steel, PE, PP, Teflon, etc. may be used.
  • the bobbin After winding the substrate for a blanket on the bobbin, it may be placed in a reaction vessel and fixed.
  • the bobbin can be fixed at any position of the reaction vessel, but a lot of the blanket substrate is added in the reaction vessel of the same volume, and thus, in terms of increasing production efficiency, the bobbin is preferably fixed to the center of the reaction vessel. Can be.
  • it may be to position the bobbin so that the long axis of the bobbin and the long axis of the reaction vessel are parallel to each other.
  • the substrate for a blanket according to an embodiment of the present invention may be specifically a porous substrate in terms of improving the thermal insulation properties of the airgel blanket.
  • a porous blanket substrate When a porous blanket substrate is used, the catalyzed sol easily penetrates into the substrate, and thus the airgel blanket formed uniformly forms the airgel inside the blanket substrate, so that the manufactured airgel blanket can have excellent thermal insulation properties.
  • the blanket substrate that can be used according to an embodiment of the present invention may be a film, sheet, net, fiber, foam, nonwoven fabric, or a laminate of two or more layers thereof.
  • the surface roughness may be formed or patterned on the surface.
  • the blanket substrate may be a fiber capable of further improving thermal insulation performance by including spaces or voids in which the airgel can be easily inserted into the blanket substrate.
  • the blanket substrate is polyamide, polybenzimidazole, polyaramid, acrylic resin, phenolic resin, polyester, polyetheretherketone (PEEK), polyolefin (e.g., polyethylene, polypropylene or a copolymer thereof Etc.), cellulose, carbon, cotton, wool, hemp, non-woven fabric, glass fiber or ceramic wool, etc.
  • the substrate for the blanket may be glass fiber (glass felt, glass fiber).
  • the reaction vessel may be a reaction vessel for performing gelation, and if a vessel forming a space so that the blanket substrate impregnated with the catalyzed sol can rotate, a polygonal cylinder, a cylindrical shape, etc. Any shape of the container can be used, but it is preferable to have a cylindrical shape in terms of facilitating the introduction of the blanket substrate wound in a roll form, and the rotation of the blanket substrate impregnated with the catalyzed sol during the gelation reaction.
  • a reaction vessel can be used.
  • the blanket base material When the sol catalyzed in step 1) is added, the blanket base material may be lightly pressed so as to be sufficiently impregnated in order to improve the bonding between the blanket base material and the catalyzed sol. After that, by pressing the substrate for the blanket to a predetermined thickness with a constant pressure to remove excess sol, it is also possible to reduce the drying time.
  • the blanket substrate when the catalyst is added to the reaction vessel, the blanket substrate is sufficiently impregnated and the remaining sol may be recovered when the liquid level in the reaction vessel is no longer changed. Silver may be recovered by opening a drain valve connected to the reaction vessel.
  • the catalyzed sol and the substrate for the blanket may each be added in an amount of 1 to 100% of the volume of the reaction vessel, specifically, the inner volume of the reaction vessel, shortening the gelation time in step 3) and the inside of the blanket substrate.
  • an amount of preferably 1 to 60% of the volume of the reaction vessel, more preferably 10 to 60%, and even more preferably 30 to 60% of the volume of the reaction vessel is respectively added. I can.
  • the catalyzed sol may be added in an amount of 80 to 120%, preferably 90 to 110%, based on the volume of the blanket substrate.
  • the amount of the blanket substrate and the catalyzed sol may be one that satisfies the above-mentioned ratio of each other under the condition of satisfying the amount of injection compared to the reaction vessel.
  • the aerogel blanket produced by impregnating the catalyst sol more evenly into the blanket substrate may have more uniform physical properties, and the catalyzed sol Since all of this blanket substrate can be impregnated, loss of raw materials can be prevented and the problem of gelation of the catalyzed sol alone can be prevented.
  • Step 2) is for preparing a wet gel blanket composite (wet gel blanket), and may be performed by rotating and gelling a blanket substrate impregnated with a catalyzed sol.
  • any method and apparatus can be used as long as the catalyst for the blanket substrate impregnated with the catalyzed sol is rotated while gelling in the reaction vessel.
  • the blanket substrate is wound around a bobbin in step 1).
  • the substrate for blanket impregnated with the catalyzed sol exists in the reaction vessel while being wound around the bobbin, so that the substrate for blanket impregnated with the catalyzed sol is rotated by rotating the bobbin. I can.
  • the gelation may be the formation of a network structure from a catalyzed sol, and the network structure is a specific polygon having one or more kinds of atomic arrangement. It may represent a structure in the form of a flat net or a structure that forms a three-dimensional skeleton structure by sharing the vertices, edges, and faces of a specific polyhedron.
  • the gelling reaction may be performed after sealing a reaction vessel in which the catalyzed sol and a substrate for a blanket are added.
  • the long axis may be disposed in a transverse direction, that is, in a horizontal direction to rotate. If the reaction vessel (body) is a cylindrical reaction vessel, the cylindrical reaction vessel may be laid down and rotated. That is, the rotation axis of the reaction vessel of the present invention may be in a horizontal direction, but is not limited thereto.
  • the type is not limited.
  • any known device may be used as long as it is a device capable of rotating.
  • any known device may be used as long as the position of the bobbin can be fixed to the reaction vessel and the position of the bobbin is rotated.
  • An example of an apparatus for manufacturing an airgel blanket applicable in the present invention will be described later.
  • step 2) may be initiated to sequentially perform step 1) and step 2).
  • the step 2) may be initiated and performed before step 1) is completed.
  • the catalyst may be all injected into the reaction vessel until the gelation is completed.
  • the rotational speed in step 2) is applicable without limitation in terms of rotational speed that enables uniform formation of the airgel in the blanket, and for example, 1 rpm to 300 rpm, preferably 5 It may be to perform gelation while rotating at a rotation speed of rpm to 150 rpm, 5 rpm to 100 rpm, more preferably 10 rpm to 30 rpm.
  • the sol in the blanket substrate may be evenly impregnated, so that the aerogel is formed more evenly during gelation, and thus, very uniform thermal conductivity can be secured throughout the airgel blanket and the reaction
  • the reaction vessel satisfies the above range of rotational speed
  • the sol in the blanket substrate may be evenly impregnated, so that the aerogel is formed more evenly during gelation, and thus, very uniform thermal conductivity can be secured throughout the airgel blanket and the reaction
  • an aerogel blanket is manufactured by putting both the catalytic sol and the blanket substrate in the reaction vessel and gelling it, unlike the conventional roll-to-roll method, a moving element such as a conveyor belt is not separately required.
  • a moving element such as a conveyor belt
  • gelation is performed simultaneously on the entire blanket substrate.
  • the longer the blanket substrate is the more pronounced the problem of lengthening the gelling process time in order to achieve sufficient gelation throughout the blanket substrate.
  • gelation of the sol is simultaneously performed in the entire blanket substrate. Because of this, the manufacturing time can be remarkably reduced, and since the length and thickness of the blanket substrate do not affect the gelation time, even if a long blanket substrate is used, the manufacturing time can be significantly reduced, thereby maximizing process efficiency.
  • the reaction vessel since centrifugal force and centripetal force act by performing gelation while rotating the reaction vessel, the reaction vessel is not rotated, or the airgel is more uniformly dispersed compared to the roll-to-roll method of gelling on a moving element. Since the airgel blanket can be manufactured, the thickness of the airgel blanket to be manufactured is the same as or extremely similar to the thickness of the substrate for the blanket, and there is an effect of excellent thermal insulation properties.
  • the wet gel blanket composite is left at an appropriate temperature to complete the chemical change, and the aging step may be performed, and the aging step further enhances the formed network structure. Since it can be formed firmly, the mechanical stability of the airgel blanket of the present invention can be enhanced.
  • the aging step of the present invention may be carried out by leaving the wet gel blanket complex itself at an appropriate temperature, and as another example, in the presence of the wet gel blanket complex, sodium hydroxide (NaOH), potassium hydroxide (KOH), and ammonium hydroxide (NH 4 OH), triethylamine, pyridine, etc. can be carried out by adding a solution obtained by diluting a basic catalyst such as 1 to 10% concentration in an organic solvent.
  • a basic catalyst such as 1 to 10% concentration in an organic solvent.
  • the organic solvent may be the aforementioned alcohol (polar organic solvent), and specifically, may include ethanol.
  • the aging step should be carried out at an appropriate temperature range for reinforcing the optimal pore structure.
  • the aging step of the present invention is performed by allowing it to stand at a temperature of 30 to 70° C. for 1 to 20 hours, regardless of whether or not a basic catalyst is added. Can be. If the aging temperature is less than 30 °C, there may be a problem that the aging time is too long, leading to an increase in the overall process time, resulting in a decrease in productivity. If the aging temperature is more than 70 °C, it is out of the boiling point of ethanol, so the solvent by evaporation There may be a problem of increasing the loss of raw materials and increasing the cost of raw materials.
  • the aging step may be performed in a separate reaction vessel after recovering the gelled silica wet gel blanket, or may be performed inside the reaction vessel in which gelation was performed, In terms of process efficiency and simplification of equipment, the aging step may be preferably performed in the reaction vessel in which gelation has been performed.
  • the wet gel blanket composite prepared in step 3 may be rotated, and when aging is performed while rotating, the aging solvent may penetrate better. And, since the dispersion can be made better in the wet gel blanket composite after penetration, there is an advantage that the aging efficiency is greatly improved.
  • the manufacturing method according to an embodiment of the present invention may perform a solvent replacement step prior to the drying step for manufacturing an airgel blanket from the wet gel blanket composite.
  • the wet gel of the wet gel blanket composite has pores filled with a solvent including water and/or an organic solvent, and when the solvent is removed by performing the step of drying the wet gel blanket composite, the liquid solvent vaporizes into a gas phase. Shrinkage and cracking of the pore structure occur due to the surface tension of the solvent at the gas/liquid interface. As a result, a decrease in specific surface area and a change in pore structure in the final produced silica airgel occur. Therefore, in order to maintain the pore structure of the wet gel, it is necessary to minimize the surface tension of the solvent, and for this, it is necessary to replace water having high surface tension with a solvent having low surface tension.
  • a solvent that can be mixed with silica gel after gelation may be a hydrophilic polar organic solvent, and a specific example may be an alcohol.
  • the alcohol is a monohydric alcohol such as methanol, ethanol, isopropanol, butanol;
  • it may be a polyhydric alcohol such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and sorbitol, and any one or a mixture of two or more of them may be used.
  • it in consideration of miscibility with water and a hydrophobic airgel, it may be a monohydric alcohol having 1 to 6 carbon atoms such as methanol, ethanol, isopropanol, butanol, and the like.
  • the manufacturing method according to an embodiment of the present invention may perform a step of drying to manufacture an airgel blanket from the wet gel blanket composite.
  • the drying step according to an embodiment of the present invention may be performed through a process of removing the solvent while maintaining the pore structure of the aged gel, and the drying step may be performed by a supercritical drying process or an atmospheric drying process. .
  • the supercritical drying process may be performed using supercritical carbon dioxide.
  • Carbon dioxide (CO 2 ) is in a gaseous state at room temperature and pressure, but when it exceeds the limit of a certain temperature and high pressure called the supercritical point, the evaporation process does not occur, and it becomes a critical state in which gas and liquid cannot be distinguished.
  • Carbon dioxide in the state is called supercritical carbon dioxide.
  • supercritical carbon dioxide has a molecular density close to that of a liquid, its viscosity is low, it has a property close to that of a gas, has a fast diffusion, high thermal conductivity, high drying efficiency, and can shorten a drying process time.
  • a wet gel blanket that has been aged in a supercritical drying reactor is placed, and then a liquid CO 2 is filled and the alcohol solvent in the wet gel is replaced with CO 2.
  • a pressure equal to or higher than the pressure at which carbon dioxide becomes a supercritical state, specifically 100 bar to 150 bar
  • carbon dioxide becomes supercritical at a temperature of 31 °C and a pressure of 73.8 bar.
  • Carbon dioxide is maintained at a constant temperature and pressure at a supercritical state for 2 to 12 hours, more specifically for 2 to 6 hours, and then the pressure is gradually removed to complete the supercritical drying process to manufacture an airgel blanket. I can.
  • the normal pressure drying process it may be performed according to conventional methods such as hot air drying and IR drying under a temperature of 70 to 200° C. and atmospheric pressure (1 ⁇ 0.3 atm).
  • the silica airgel according to an embodiment of the present invention has excellent physical properties with high hydrophobicity, particularly low density and high porosity, and the silica airgel-containing blanket including the same has low thermal conductivity and excellent mechanical flexibility.
  • a pressing process to adjust the thickness before or after the drying process and to make the internal structure and surface shape of the blanket uniform, a molding process to have an appropriate shape or morphology according to the use, or a lamination process of laminating a separate functional layer And the like may be further performed.
  • the present invention provides an airgel blanket manufacturing apparatus for carrying out the above airgel blanket manufacturing method.
  • the airgel blanket manufacturing apparatus is provided with a bobbin 100 on which a blanket is wound, and a gelation tank 210 accommodating the bobbin 100, as shown in FIG. 1.
  • the main body 200 a driving member 300 for rotating the bobbin 100 accommodated in the gelling tank 210, and a catalyzed sol supply member 400 for injecting the catalyzed sol into the gelling tank 210 ,
  • An aging member (not shown) for injecting an aging solution into the gelling tank 210
  • a drying member (not shown) for drying the blanket by increasing the temperature of the gelling tank 210.
  • the blanket may mean a blanket substrate before the catalyzed sol is introduced, a blanket substrate impregnated with the catalyzed sol, and/or a wet gel blanket after gelation. It can be interpreted appropriately according to.
  • the bobbin is for winding the blanket in a roll-shape, and includes a winding rod on which the blanket is wound in a roll shape, and a support plate coupled to both ends of the winding rod and supporting the sides of the blanket wound on the winding rod.
  • the winding rod has a cylindrical shape in which a hollow penetrated in the longitudinal direction is formed, and a blanket in the form of a long sheet is wound in a roll shape on an outer circumferential surface.
  • the outside of the blanket wound on the winding rod can be quickly impregnated with the catalyzed sol, so that the catalyst can be stably gelled, but the inside of the blanket has a problem that it takes a lot of time to impregnate the catalyst.
  • the outer circumferential surface of the winding rod includes a plurality of connection holes connected to the hollow.
  • the winding rod has a hollow inside so as to introduce the catalyzed sol injected into the gelation tank, and the catalyzed sol introduced into the hollow flows out of the winding rod and impregnates the inside of the blanket wound on the winding rod.
  • a plurality of connection holes so as to be formed are formed. Accordingly, the outer and inner sides of the blanket can be gelled by simultaneously impregnating the catalyzed sol, and as a result, the time required for gelling of the blanket can be greatly shortened, and as a result, the entire blanket can be uniformly gelled. .
  • the plurality of connection holes have a diameter of 3 to 5 mm, and are formed at regular intervals on the outer circumferential surface of the winding rod. Accordingly, the sol catalyzed uniformly can be supplied to the entire blanket wound on the outer circumferential surface of the winding rod, and accordingly, the entire inner side of the blanket can be uniformly gelled.
  • the support plate supports the blanket wound around the winding rod so that it is not wound irregularly, has a disk shape, is coupled to both ends of the winding rod, and supports side portions of the blanket wound around the winding rod.
  • the support plate includes a fastening groove to which an end of the winding rod is coupled, and a fastening hole formed on a bottom surface of the fastening groove. That is, the support plate may be coupled to the end of the winding rod through the fastening groove.
  • the support plate has a plurality of open holes, and the plurality of open holes can introduce the catalyzed sol to the side of the blanket wound on the winding rod, thereby stably gelling the side of the blanket.
  • the bobbin includes a winding rod and a support plate, and accordingly, the blanket can be wound in a roll form.
  • the body is provided with a gelling tank accommodating a bobbin, and includes a gelling tank and a first installation member 220 on which the gelling tank is installed.
  • the gelling tank is for gelling the blanket contained in the bobbin, and includes a gelling chamber provided inside and accommodating the bobbin, an outlet provided at the outer lower end and connected to the gelling chamber, and an inlet provided at the outer upper end and connected to the gelling chamber do.
  • the gelation chamber of the gelation tank has a'U'-shaped cross-sectional shape with a curvature corresponding to that of the blanket wound on the winding rod and the upper part of the gelation chamber opened by the cover. Accordingly, when silica sol flows into the gelation chamber, The contact force between the blanket and the blanket can be increased, and as a result, the gelation of the blanket can be increased.
  • the gelation tank is provided on both walls of the gelation chamber, and is coupled to both ends of the bobbin and includes a rotating member for rotatably installing the bobbin in the gelation chamber.
  • the rotating member is rotatably installed in through-holes formed on both walls of the gelling chamber, and ends of the bobbin accommodated in the gelling chamber are installed to transmit power.
  • a straight coupling protrusion is formed on one surface of the rotating member, and a straight coupling groove to which the coupling protrusion is coupled is formed at an end of the bobbin. That is, the bobbin can be rotated in the same direction when the rotating member is rotated through the coupling of the coupling protrusion and the coupling groove. As a result, the bobbin can be installed rotatably inside the gelation tank.
  • the main body further includes a second installation member 230 in which a catalyzed sol supply member is installed, and the second installation member is installed on the bottom piece 231 and on the top of the bottom piece to supply the catalyzed sol.
  • It includes an installation table 232 installed so that the member is positioned higher than the gelation tank, and a staircase 233 installed at one end of the bottom piece.
  • the gelation tank includes a rotation handle that rotates the bobbin while being coupled with the other rotation member provided in the gelation tank, and the rotation handle may manually rotate the bobbin from the outside.
  • a maturing member and a drying member are further installed on the mounting table of the second mounting member.
  • the driving member is for rotating the bobbin accommodated in the gelling tank, and is connected to the other rotating member provided in the gelling tank so as to transmit power. That is, when the driving member rotates the rotating member, the bobbin accommodated in the gelling tank can be rotated in conjunction with the rotating member.
  • the catalyzed sol supply member is for gelling the blanket by impregnating the blanket wound on the bobbin by injecting silica sol into the gelation tank.It is installed on the mounting table, and the catalyzed sol is gelled through the inlet of the gelling tank. Supply to the Japanese style room.
  • the aging member is for aging the blanket wound on the bobbin by injecting the aging solution into the gelation tank, and is installed on the mounting table, and supplies the aging solution to the gelation chamber through the inlet of the gelation tank.
  • the drying member is for drying the blanket wound on the bobbin by supplying high-temperature hot air to the gelling tank, and is installed on the mounting table and drying the blanket accommodated in the gelling tank by increasing the temperature of the gelling tank.
  • the airgel blanket manufacturing apparatus can greatly shorten the manufacturing time of the airgel blanket, greatly increase the productivity of the airgel blanket, and as a result, mass-produce the airgel blanket.
  • the airgel blanket manufacturing apparatus can induce stable gelation regardless of the thickness and length of the blanket by rotating the blanket, and since the bobbin rotates, the entire blanket wound around the bobbin is uniformly Gelation is possible, and the shape of the gelation tank is not limited because only the bobbin rotates without rotating the gelation tank.
  • the gelation chamber of the gelation tank is formed in a'U' cross-sectional shape, the blanket wound around the bobbin can be gelled more effectively.
  • the airgel blanket manufacturing apparatus includes a bobbin on which a blanket is wound, and the bobbin may include a winding rod and a support plate.
  • the outer circumferential surface of the winding rod may include a fixing clip that is inserted and fixed at the winding point of the blanket.
  • the fixing clip has a pin shape having an elastic restoring force, one end is fixed to the outer circumferential surface of the winding rod and the other end is elastically supported on the outer circumferential surface of the winding rod. Accordingly, when the starting point of the blanket is inserted between the other end of the fixing clip and the winding rod, the blanket can be fixed to the starting point of the winding rod by the elastic force of the fixing clip, and as a result, the blanket can be easily wound on the outer circumferential surface of the winding rod.
  • the present invention provides an airgel blanket manufactured from the method for manufacturing an airgel blanket.
  • the airgel blanket has low thermal conductivity and low moisture impregnation rate.
  • the airgel blanket is characterized in that the thermal conductivity in the blanket is 21.0 mW/mK or less.
  • the airgel blanket may have a moisture impregnation rate of 2.0% by weight or less or 1.5% by weight or less in the blanket.
  • the thermal conductivity is a characteristic that can appear all in an arbitrarily cut airgel blanket, specifically, it may be a thermal conductivity value measured in an area of 0.01 m 2 to 10.0 m 2 , and more specifically, an area of 0.36 m 2 to 5.0 m 2. .
  • the thermal conductivity of the airgel blanket may be obtained by obtaining a sample having a certain size in the airgel blanket, and measuring the thermal conductivity at room temperature (23 ⁇ 5°C) for each sample using the HFM 436 Lambda equipment of NETZSCH have.
  • the airgel blanket includes an airgel and a substrate for a blanket, and specifically, the airgel may be formed inside and on the surface of the blanket substrate, for example, on the inside and the surface of the blanket substrate. It may be that a large amount of airgel particles are formed evenly.
  • the airgel blanket of the present invention can be usefully used as a thermal insulation material, a thermal insulation material, or a non-combustible material, such as an aircraft, ship, automobile, building structure, as well as a plant facility for thermal insulation such as pipes or industrial furnaces of various industrial facilities.
  • a silica precursor composition was prepared by mixing methyltetraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) at a molar ratio of 95:5.
  • MTES methyltetraethoxysilane
  • TEOS tetraethylorthosilicate
  • the silica precursor composition and water were mixed at a molar ratio of 1:10, and a silica precursor composition and ethanol having a weight ratio of 1:2 were added to prepare a silica sol.
  • Hydrochloric acid was added so that the silica sol had a pH of 3 or less to accelerate hydrolysis.
  • a silica sol was prepared by mixing 0.2 parts by weight of TiO 2 as an opacifying agent and 0.2 parts by weight of a flame retardant Ultracarb (LKAB) based on 100 parts by weight of the silica sol and stirring for 30 minutes. Separately, a 1 vol% ammonia ethanol solution (base catalyst solution) was prepared. The silica sol and the base catalyst solution were mixed in a volume ratio of 9:1 to prepare a catalyzed sol.
  • LKAB flame retardant Ultracarb
  • a bobbin wound with 10T (10 mm) glass fiber was fixed to the reaction vessel.
  • the prepared catalyzed sol was put into a reaction vessel, and the bobbin wound around the glass fiber was rotated to perform gelation.
  • the rate of addition of the catalyzed sol was adjusted so that all of the catalyzed sol could be added before the gelation was completed.
  • the remaining sol was recovered by opening the drain valve coupled to the reaction vessel.
  • gelation was completed, and aged at a temperature of 60° C. for 20 hours.
  • ethanol was added to the reaction vessel at a temperature of 60° C. to replace the solvent.
  • wet gel blanket was placed in a convection oven, and then dried at 150° C. for 2 to 5 hours under normal pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket.
  • Example 1 in the preparation of the catalyzed sol, except that the silica precursor composition was prepared by mixing methyltetraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) at a molar ratio of 90:10. It was carried out in the same manner as in Example 1.
  • MTES methyltetraethoxysilane
  • TEOS tetraethylorthosilicate
  • Example 1 except for preparing a silica precursor composition by mixing methyltetraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) at a molar ratio of 98:2 when preparing the catalyzed sol. It was carried out in the same manner as in Example 1.
  • MTES methyltetraethoxysilane
  • TEOS tetraethylorthosilicate
  • Example 1 during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50 °C over 1 hour, and supercritical drying was performed at 50 °C and 100 bar. Thereafter, the same as in Example 1, except that the hydrophobic silica airgel blanket having been completed supercritical drying was dried in an oven at 200° C. for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
  • Example 2 during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50 °C over 1 hour, and supercritical drying was performed at 50 °C and 100 bar. Thereafter, the same as in Example 2, except that the hydrophobic silica airgel blanket having been completed supercritical drying was dried in an oven at 200° C. for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
  • Example 3 during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50° C. over 1 hour, and supercritical drying was performed at 50° C. and 100 bar. Thereafter, the same as in Example 3, except that the hydrophobic silica airgel blanket having supercritical drying was completed in an oven at 200° C. for 2 hours under normal pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
  • Example 1 when preparing the catalyzed sol, methylmethraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) were mixed at a molar ratio of 60:40 instead of 95:5 to prepare a silica precursor composition.
  • MTES methylmethraethoxysilane
  • TEOS tetraethylorthosilicate
  • the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50° C. over 1 hour, and supercritical drying was performed at 50° C. and 100 bar, followed by supercritical drying.
  • a silica sol was prepared by mixing tetraethylorthosilicate (TEOS) and water at a molar ratio of 1:10, and adding TEOS and ethanol having a weight ratio of 1:2. Hydrochloric acid was added so that the silica sol had a pH of 3 or less to accelerate hydrolysis.
  • a silica sol was prepared by mixing 0.2 parts by weight of TiO 2 as an opacifying agent and 0.2 parts by weight of Ultracarb (LKAB) as a flame retardant based on 100 parts by weight of the silica sol and stirring for 30 minutes to prepare a silica sol.
  • Base catalyst solution was prepared. The silica sol and the base catalyst solution were mixed in a volume ratio of 9:1 to prepare a catalyzed sol.
  • a bobbin wound with 10T (10 mm) glass fiber was fixed to the reaction vessel.
  • the prepared catalyzed sol was put into a reaction vessel, and the bobbin wound around the glass fiber was rotated to perform gelation.
  • the rate of addition of the catalyzed sol was adjusted so that all of the catalyzed sol could be added before the gelation was completed.
  • the remaining sol was recovered by opening the drain valve coupled to the reaction vessel.
  • the aging solution was added to the reaction vessel, and the bobbin was rotated to proceed with aging.
  • the aging solution was a 5 vol% ammonia ethanol diluted solution, and was aged for 20 hours at a temperature of 60°C.
  • the drain valve was opened to recover the aging solution.
  • the surface modification solution was added to the reaction vessel to perform surface modification while rotating the bobbin, and after completion, the surface modification solution was recovered.
  • the surface modification solution was a 10 vol% of hexamethyldisilazane (HMDS) ethanol diluted solution, and an amount having the same volume ratio as that of the wet gel blanket composite was added.
  • HMDS hexamethyldisilazane
  • wet gel blanket was placed in a convection oven, and then dried at 150° C. for 2 to 5 hours under normal pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket.
  • Example 1 when preparing the catalyzed sol, methyltetraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) were not mixed, except that methyltetraethoxysilane (MTES) was used alone. was carried out in the same manner as in Example 1.
  • MTES methyltetraethoxysilane
  • TEOS tetraethylorthosilicate
  • Example 1 when preparing the catalyzed sol, methyltetraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) were not mixed, except that tetraethylorthosilicate (TEOS) was used alone. was carried out in the same manner as in Example 1.
  • MTES methyltetraethoxysilane
  • TEOS tetraethylorthosilicate
  • Comparative Example 1 during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50° C. over 1 hour, and supercritical drying was performed at 50° C. and 100 bar. Thereafter, the same as in Comparative Example 1, except that the hydrophobic silica airgel blanket having been completed supercritical drying was dried in an oven at 200° C. for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
  • Comparative Example 2 during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50° C. over 1 hour, and supercritical drying was performed at 50° C. and 100 bar. Thereafter, the same as in Comparative Example 2, except that the hydrophobic silica airgel blanket having supercritical drying was completed in an oven at 200° C. for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
  • Comparative Example 3 during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50° C. over 1 hour, and supercritical drying was performed at 50° C. and 100 bar. Thereafter, the same as in Comparative Example 3, except that the hydrophobic silica airgel blanket having been completed supercritical drying was dried in an oven at 200° C. for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
  • Example 1 when manufacturing the wet gel blanket, it was carried out in the same manner as in Example 1, except that the following was carried out.
  • the prepared catalyzed sol was cast and impregnated into 10T (10 mm) glass fiber, and gelation was performed. After the gelation was completed, it was aged for 20 hours at a temperature of 60°C. When the aging was completed, ethanol was added to the reaction vessel at a temperature of 60° C. to replace the solvent.
  • Example 2 when manufacturing the wet gel blanket, it was carried out in the same manner as in Example 2, except that the following was carried out.
  • the prepared catalyzed sol was cast and impregnated into 10T (10 mm) glass fiber, and gelation was performed. After the gelation was completed, it was aged for 20 hours at a temperature of 60°C. When the aging was completed, ethanol was added to the reaction vessel at a temperature of 60° C. to replace the solvent.
  • Example 3 when manufacturing the wet gel blanket, it was carried out in the same manner as in Example 3, except that it was carried out as follows.
  • the prepared catalyzed sol was cast and impregnated into 10T (10 mm) glass fiber, and gelation was performed. After the gelation was completed, it was aged for 20 hours at a temperature of 60°C. When the aging was completed, ethanol was added to the reaction vessel at a temperature of 60° C. to replace the solvent.
  • thermal conductivity and moisture impregnation rate were measured as follows, and are shown in Tables 1 and 2, respectively.
  • a silica precursor composition containing MTES, a silicate containing a hydrophobic group, and TEOS, a tetraalkyl silicate, in a specific molar ratio in the catalyzed sol, while rotating the bobbin on which the blanket substrate is wound It was confirmed that the gelation of Examples 1 to 7 was excellent in both the thermal conductivity and the moisture impregnation rate regardless of the drying conditions.
  • Examples 1 to 7 showed a very small deviation of the maximum and minimum values of thermal conductivity from the innermost to the outermost of the airgel blanket roll, 1.5 mW/mK or less, so that the aerogel in the blanket substrate was uniformly formed. there was.
  • Examples 1 to 3 show the same level of thermal conductivity and moisture impregnation rate compared to Examples 4 to 7 by supercritical drying while drying at atmospheric pressure when manufacturing an airgel blanket by drying the wet gel blanket. I could confirm.
  • Comparative Example 4 additionally performing the surface modification step was performed through supercritical drying. Although the thermal conductivity was similar to that of the Example, it was confirmed that the moisture impregnation rate was increased. In addition, it was confirmed that the thermal conductivity was poor and the moisture impregnation rate was increased in Comparative Example 1, which was dried under normal pressure by only different from Comparative Example 4 and drying conditions.
  • the length of the airgel blanket to be produced increases, the length of the conveyor belt becomes longer and the overall manufacturing time becomes longer due to the longer gelation time.
  • the airgel in the blanket is uniformly formed to have excellent thermal conductivity, and the physical properties for each position within the airgel blanket It was confirmed that the quality could be improved because this did not change significantly.

Abstract

The present invention relates to a method for manufacturing an aerogel blanket, the method comprising the steps of: 1) introducing a catalyzed sol and a substrate for a blanket into a reaction container to impregnate the substrate for a blanket with the catalyzed sol; and 2) gelling the substrate for a blanket, impregnated with the catalyzed sol, by rotation, wherein the catalyzed sol comprises a silica precursor composition, the silica precursor composition comprising: a silicate containing a hydrophobic group; and a tetraalkyl silicate, and wherein the molar ratio of the silicate containing a hydrophobic group and the tetraalkyl silicate is 60:40 to 98:2.

Description

에어로겔 블랭킷 제조방법Airgel blanket manufacturing method
[관련출원과의 상호인용][Mutual citation with related application]
본 발명은 2019년 9월 3일에 출원된 한국 특허 출원 제10-2019-0109158호, 2019년 9월 30일에 출원된 한국 특허 출원 제10-2019-0121147호 및 2020년 7월 9일에 출원된 한국 특허 출원 제10-2020-0084762호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.The present invention is based on Korean Patent Application No. 10-2019-0109158 filed on September 3, 2019, Korean Patent Application No. 10-2019-0121147 filed on September 30, 2019, and July 9, 2020. It claims the benefit of priority based on the applied Korean patent application No. 10-2020-0084762, and all contents disclosed in the documents of the Korean patent application are included as part of this specification.
[기술분야][Technical field]
본 발명은 에어로겔 블랭킷 제조방법에 관한 것으로, 고가의 표면개질제의 과량 사용이 필요로 되는 표면개질 단계를 수행하지 않으면서도, 제조된 에어로겔 블랭킷의 소수성을 확보할 수 있고, 나아가 상압 건조가 가능한 에어로겔 블랭킷 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an airgel blanket, and without performing a surface modification step requiring excessive use of an expensive surface modifier, the hydrophobicity of the produced airgel blanket can be secured, and further, an airgel blanket capable of normal pressure drying. It relates to a manufacturing method.
에어로겔(aerogel)은 90~99.9% 정도의 기공율과 1~100 nm 범위의 기공크기를 갖는 초다공성의 고비표면적(≥500 m2/g) 물질로서, 뛰어난 초경량/초단열/초저유전 등의 특성을 갖는 재료이기 때문에 에어로겔 소재 개발연구는 물론 투명단열재 및 환경 친화적 고온형 단열재, 고집적 소자용 극저유전 박막, 촉매 및 촉매 담체, 슈퍼 커패시터용 전극, 해수 담수화용 전극 재료로서의 응용연구도 활발히 진행되고 있다. Aerogel is an ultra-porous, high specific surface area (≥500 m 2 /g) material with a porosity of about 90 to 99.9% and a pore size in the range of 1 to 100 nm. Since it is a material having an airgel material, as well as research on the development of aerogel material, application research as a transparent insulation material and environment-friendly high-temperature insulation material, ultra-low dielectric thin film for highly integrated devices, catalyst and catalyst carrier, electrode for super capacitor, and electrode material for seawater desalination are also actively progressing. .
에어로겔의 가장 큰 장점은 종래 스티로폼 등의 유기 단열재보다 낮은 0.300 W/m·K 이하의 열전도율을 보이는 슈퍼단열성(super-insulation)인 점과 유기 단열재의 치명적인 약점인 화재 취약성과 화재시 유해가스 발생을 해결할 수 있다는 점이다.The biggest advantage of airgel is that it is super-insulation, which has a thermal conductivity of 0.300 W/m·K or less, which is lower than that of organic insulation materials such as conventional styrofoam, and that it prevents fire vulnerability, which is a fatal weakness of organic insulation materials, and harmful gas generation in case of fire. Is that it can be solved.
일반적으로 에어로겔은 물유리, 알콕시실란(alkoxysilane) 계열(TEOS, TMOS, MTMS 등) 등의 실리카 전구체로부터 하이드로겔을 제조하고, 하이드로겔 내부의 액체성분을 미세구조 파괴 없이 제거하여 제조되고 있다.In general, airgels are manufactured by preparing a hydrogel from silica precursors such as water glass and alkoxysilane series (TEOS, TMOS, MTMS, etc.), and removing liquid components inside the hydrogel without destroying the microstructure.
특히 섬유에 소수성의 실리카 에어로겔을 형성한 소수성 실리카 에어로겔 블랭킷은 수분에 의한 부식을 막아주는 기능성 단열 소재로서 건설 또는 산업 현장에서 광범위하게 사용되고 있으며, 이러한 소수성 실리카 에어로겔 블랭킷은 일반적으로 실리카 졸 용액 제조 단계, 겔화 단계, 숙성 단계, 표면개질 단계 및 건조 단계를 통해 제조되고 있다.In particular, a hydrophobic silica airgel blanket in which a hydrophobic silica aerogel is formed in a fiber is widely used in construction or industrial sites as a functional insulating material that prevents corrosion by moisture, and such a hydrophobic silica airgel blanket is generally used in the steps of preparing a silica sol solution, It is produced through a gelling step, a aging step, a surface modification step, and a drying step.
그러나, 상기와 같은 종래의 제조방법 중 표면개질 단계는 다량의 유기용매와 고가의 표면개질제를 사용하고, 공정이 복잡하고 긴 공정시간을 필요로 하여 경제성 및 생산성이 좋지 않고, 표면개질제에 의해 실리카 에어로겔의 표면이 개질되면서 발생하는 암모니아는 초임계 단계에서 사용하는 이산화탄소와 반응해 탄산암모늄 염을 형성하여 초임계 건조 장비의 배관을 막는 등의 문제를 일으켜 공정의 효율을 저해하는 문제가 있었다. 또한, 건조 이후 발생하는 폐액에도 암모니아가 다량 존재하여 폐액을 바로 재사용하는 것이 불가능하였고, 폐액을 재사용하기 위해서는 정제 공정에서 장 시간이 소요되고, 정제 비용이 증가하는 문제가 있었다.However, the surface modification step in the conventional manufacturing method as described above uses a large amount of organic solvent and an expensive surface modifier, and the process is complicated and requires a long process time, so economical efficiency and productivity are not good. The ammonia generated when the surface of the airgel is reformed reacts with carbon dioxide used in the supercritical stage to form ammonium carbonate salts, causing problems such as blocking the piping of the supercritical drying equipment, thereby hindering the efficiency of the process. In addition, since a large amount of ammonia was present in the waste solution generated after drying, it was impossible to immediately reuse the waste solution. In order to reuse the waste solution, it took a long time in the purification process and the purification cost was increased.
또한, 상기와 같은 종래의 제조방법 중 건조 단계는 초임계 건조로 실시되는데, 이는 고가의 공정에 해당하고, 고압 조건에서 실시되기 때문에 안전성 확보가 용이하지 못하며, 배치(batch)식 생산만이 가능하여 생산성을 저하시키는 원인이 될 수 있다. 이에, 초임계 건조를 대체하기 위하여 상압 건조 방식이 제안되고 있으나, 상기 표면개질 단계에 의한 표면개질 반응은 에어로겔의 최외곽부터 시작되므로, 에어로겔의 내부까지 충분한 양의 표면개질제가 도입되기 어려운 문제가 있어, 상압 건조 방식에 의하는 경우, 에어로겔 내부의 표면에 존재하는 히드록시기와 용매 중의 수분과의 수소 결합에 의한 수분 흡착이 일어나 초임계 건조 방식에 의하는 것과 동일한 물성을 확보하기 어려운 문제가 있다.In addition, among the conventional manufacturing methods as described above, the drying step is performed by supercritical drying, which corresponds to an expensive process, and it is not easy to secure safety because it is performed under high pressure conditions, and only batch production is possible. As a result, it can be a cause of lowering productivity. Thus, a normal pressure drying method has been proposed to replace supercritical drying, but since the surface modification reaction by the surface modification step starts from the outermost part of the airgel, it is difficult to introduce a sufficient amount of surface modifier to the inside of the airgel. Therefore, in the case of the atmospheric drying method, there is a problem that it is difficult to secure the same physical properties as that of the supercritical drying method due to the adsorption of moisture due to hydrogen bonding between the hydroxyl group present on the surface inside the airgel and the moisture in the solvent.
한편, 상기 에어로겔 블랭킷은 겔 캐스팅(Gel casting) 방법과 에어로겔 파우더나 과립을 제조한 뒤 바인더를 이용하여 블랭킷용 기재에 침적시키는 방법을 이용하여 제조될 수 있다. 현재 상용화된 기술로는 롤투롤(roll-to-roll) 공법을 이용한 겔 캐스팅 방법이 알려져 있다. 그러나, 롤투롤 공법으로 에어로겔 블랭킷을 제조하기 위해서는 기재에 촉매화된 졸 등을 캐스팅하고 겔화가 완전하게 이루어질 수 있도록 하는 컨베이어 벨트가 반드시 장비에 포함되어야 하고, 컨베이어 벨트는 겔화가 완전히 이루어질 때까지 이어져야 하므로 대량 생산 단계에서는 장비 규모가 거대화되는 문제가 있다. 또한, 생산하고자 하는 에어로겔 블랭킷의 길이가 길어질수록 컨베이어 벨트의 길이가 길어지고 겔화 시간이 오래 걸려 전체적인 제조시간이 길어지는 문제가 있으며, 특히 에어로겔 블랭킷의 두께를 얇게 할수록 길이가 길어지므로 이에 따라 제조시간이 길어지므로 블랭킷의 두께 및 길이에 제조시간이 영향을 받는 문제가 있다.Meanwhile, the airgel blanket may be manufactured using a gel casting method and a method in which airgel powder or granules are prepared and then immersed in a substrate for a blanket using a binder. As a commercially available technology, a gel casting method using a roll-to-roll method is known. However, in order to manufacture an airgel blanket by the roll-to-roll method, a conveyor belt must be included in the equipment so that the catalyst can be cast and gelled completely, and the conveyor belt must be connected until the gelation is completed. Therefore, there is a problem that the scale of the equipment becomes enormous in the mass production stage. In addition, as the length of the airgel blanket to be produced increases, the length of the conveyor belt becomes longer and the overall manufacturing time becomes longer due to the longer gelation time.In particular, the thinner the airgel blanket is, the longer the length is. Since this becomes longer, there is a problem that the manufacturing time is affected by the thickness and length of the blanket.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
(특허문헌 1) KR10-2012-0070948A(Patent Document 1) KR10-2012-0070948A
본 발명은 상기 종래의 문제점을 해결하기 위해 안출된 것으로, 에어로겔 블랭킷을 제조함에 있어서, 다량의 유기용매와 고가의 표면개질제를 사용하고, 공정이 복잡하고 긴 공정시간을 필요로 하여 경제성 및 생산성을 저해하는 표면개질 단계를 생략할 수 있는 에어로겔 블랭킷 제조방법을 제공하는 것을 목적으로 한다.The present invention was conceived to solve the above conventional problems, and in manufacturing an airgel blanket, a large amount of organic solvent and an expensive surface modifier are used, and the process is complicated and requires a long process time, thereby improving economic efficiency and productivity. It is an object of the present invention to provide a method of manufacturing an airgel blanket that can omit the inhibiting surface modification step.
또한, 본 발명은 표면개질 단계를 생략하여 에너지 소비량을 절감할 수 있고, 상기 단계 생략으로 표면개질 공급 설비가 필요치 않아 간소화된 제조 설비를 이용할 수 있는 실리카 에어로겔 블랭킷 제조방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for manufacturing a silica airgel blanket that can reduce energy consumption by omitting the surface modification step, and use a simplified manufacturing facility since the surface modification supply facility is not required by omitting the above step. .
또한, 본 발명은 에어로겔 블랭킷 제조 시, 초임계 건조는 물론 상압 건조 방식으로 건조가 가능한 에어로겔 블랭킷 제조방법을 제공하는 것을 목적으로 한다.In addition, it is an object of the present invention to provide a method of manufacturing an airgel blanket capable of drying in a normal pressure drying method as well as supercritical drying when manufacturing an airgel blanket.
또한, 본 발명은 겔 캐스팅 방법으로 에어로겔 블랭킷을 제조함에 있어서, 겔화 공정에서 촉매화된 졸이 함침된 블랭킷용 기재를 회전시키면서 겔화를 수행함으로써, 제조 시간을 크게 감소시킬 수 있고, 또한 에어로겔 블랭킷의 두께 및 길이가 제조 시간에 영향을 미치지 않도록 하며, 제조 장비를 간소화시킬 수 있는 에어로겔 블랭킷 제조방법을 제공하는 것을 목적으로 한다.In addition, in the present invention, in manufacturing an airgel blanket by the gel casting method, by performing gelation while rotating the substrate for blanket impregnated with the sol catalyzed in the gelling process, the manufacturing time can be greatly reduced, and It is an object of the present invention to provide an airgel blanket manufacturing method capable of simplifying manufacturing equipment and preventing thickness and length from affecting manufacturing time.
또한, 본 발명은 촉매화된 졸이 함침된 블랭킷용 기재를 회전시킴에 따라, 블랭킷용 기재 내 균일하게 에어로겔이 형성될 수 있도록 하여 블랭킷용 기재 내 형성되는 에어로겔의 균일도를 더욱 향상시키고, 이에 따라 에어로겔 블랭킷 전체적으로 열전도도가 균일하게 나타날 수 있고, 에어로겔 블랭킷의 열전도도가 개선될 수 있는 에어로겔 블랭킷 제조방법을 제공하는 것을 목적으로 한다.In addition, the present invention further improves the uniformity of the aerogel formed in the blanket substrate by allowing the airgel to be formed uniformly in the blanket substrate by rotating the substrate for blanket impregnated with the catalytic sol. An object of the present invention is to provide a method of manufacturing an airgel blanket in which thermal conductivity may be uniformly displayed throughout the airgel blanket and the thermal conductivity of the airgel blanket may be improved.
본 발명은 상기와 같은 과제를 해결하기 위한 것으로서, 1) 반응 용기에 촉매화된 졸 및 블랭킷용 기재를 투입하여, 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계; 및 2) 상기 촉매화된 졸이 함침된 블랭킷용 기재를 회전하여 겔화시키는 단계를 포함하고, 상기 촉매화된 졸은 실리카 전구체 조성물을 포함하며, 상기 실리카 전구체 조성물은 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트를 포함하고, 상기 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트의 몰비는 60:40 내지 98:2인 에어로겔 블랭킷 제조방법을 제공한다.In order to solve the above problems, the present invention includes: 1) introducing the catalyzed sol and a blanket substrate into a reaction vessel, and impregnating the catalyst with the blanket substrate with the catalyzed sol; And 2) rotating and gelling a substrate for a blanket impregnated with the catalyzed sol, wherein the catalyzed sol includes a silica precursor composition, and the silica precursor composition includes a silicate and tetrahydrophobic group. It includes an alkyl silicate, and the molar ratio of the silicate including the hydrophobic group and the tetraalkyl silicate is 60:40 to 98:2 provides a method for producing an airgel blanket.
본 발명에 따른 에어로겔 블랭킷 제조방법에 의하는 경우, 다량의 유기용매와 고가의 표면개질제를 사용하고, 공정이 복잡하고 긴 공정시간을 필요로 하여 경제성 및 생산성을 저해하는 표면개질 단계를 생략할 수 있고, 이에 따라 에너지 소비량을 절감할 수 있고, 상기 단계 생략으로 표면개질 공급 설비가 필요치 않아 간소화된 제조 설비를 이용할 수 있다.In the case of the airgel blanket manufacturing method according to the present invention, a large amount of organic solvent and an expensive surface modifier are used, and the process is complicated and requires a long process time, so that the surface modification step that hinders economy and productivity can be omitted. In addition, accordingly, energy consumption can be reduced, and since the above step is omitted, a surface modification supply facility is not required, and thus a simplified manufacturing facility can be used.
또한, 본 발명에 따른 에어로겔 블랭킷 제조방법에 의하는 경우, 초임계 건조는 물론 상압 건조 방식으로 건조가 가능하다.In addition, in the case of the method of manufacturing an airgel blanket according to the present invention, it is possible to dry in a normal pressure drying method as well as supercritical drying.
또한, 본 발명에 따른 에어로겔 블랭킷 제조방법에 의하는 경우, 겔화 공정에서 촉매화된 졸이 함침된 블랭킷용 기재를 회전하여 겔화를 수행함으로써, 제조 시간을 크게 감소시킬 수 있고, 또한 에어로겔 블랭킷의 두께 및 길이가 제조 시간에 영향을 미치지 않도록 하며, 제조 장비를 간소화시킬 수 있다. 특히, 본 발명은 블랭킷용 기재의 두께가 얇고 길이기 긴 경우(thin grade)에 전술한 효과가 더욱 극대화되며, 이 경우 특히 생산성을 크게 높일 수 있는 것에 이점이 있다.In addition, in the case of the method for manufacturing an airgel blanket according to the present invention, by rotating the substrate for blanket impregnated with the sol catalyzed in the gelling process to perform gelation, the manufacturing time can be greatly reduced, and the thickness of the airgel blanket And the length does not affect the manufacturing time, it is possible to simplify the manufacturing equipment. In particular, in the present invention, when the thickness of the blanket substrate is thin and the length is long (thin grade), the above-described effect is further maximized, and in this case, there is an advantage in that productivity can be greatly increased.
또한, 본 발명에 따른 에어로겔 블랭킷 제조방법에 의하는 경우, 촉매화된 졸이 함침된 블랭킷용 기재를 회전시킴에 따라, 블랭킷용 기재 내 균일하게 에어로겔이 형성될 수 있도록 하여 블랭킷용 기재 내 형성되는 에어로겔의 균일도를 더욱 향상시킬 수 있다.In addition, in the case of the airgel blanket manufacturing method according to the present invention, by rotating the blanket substrate impregnated with the catalyzed sol, the airgel can be uniformly formed in the blanket substrate, thereby forming in the blanket substrate. The uniformity of the airgel can be further improved.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings attached to the present specification illustrate preferred embodiments of the present invention, and serve to further understand the technical idea of the present invention together with the contents of the present invention, so that the present invention is limited to the matters described in such drawings. It is limited and should not be interpreted.
도 1은 본 발명의 일 실시예에 따른 에어로겔 블랭킷 제조장치를 도시한 사시도이다.1 is a perspective view showing an airgel blanket manufacturing apparatus according to an embodiment of the present invention.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid understanding of the present invention.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Terms and words used in the description and claims of the present invention should not be construed as being limited to their usual or dictionary meanings, and the inventors appropriately explain the concept of terms in order to explain their own invention in the best way. Based on the principle that it can be defined, it should be interpreted as a meaning and concept consistent with the technical idea of the present invention.
본 발명은 에어로겔 블랭킷 제조방법을 제공한다.The present invention provides a method for manufacturing an airgel blanket.
본 발명의 일 실시예에 따른 에어로겔 블랭킷 제조방법은 1) 반응 용기에 촉매화된 졸 및 블랭킷용 기재를 투입하여, 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계; 및 2) 상기 촉매화된 졸이 함침된 블랭킷용 기재를 회전하여 겔화시키는 단계를 포함하고, 상기 촉매화된 졸은 실리카 전구체 조성물을 포함하며, 상기 실리카 전구체 조성물은 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트를 포함하고, 상기 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트의 몰비는 60:40 내지 98:2인 것일 수 있다.A method for manufacturing an airgel blanket according to an embodiment of the present invention comprises the steps of: 1) introducing the catalyzed sol and a blanket substrate into a reaction vessel, and impregnating the catalyst with the blanket substrate with the catalyzed sol; And 2) rotating and gelling a substrate for a blanket impregnated with the catalyzed sol, wherein the catalyzed sol includes a silica precursor composition, and the silica precursor composition includes a silicate and tetrahydrophobic group. Including an alkyl silicate, the molar ratio of the silicate including the hydrophobic group and the tetraalkyl silicate may be from 60:40 to 98:2.
이하 상기 본 발명의 에어로겔 블랭킷 제조방법을 각 단계별로 상세히 설명한다.Hereinafter, the method of manufacturing the airgel blanket of the present invention will be described in detail for each step.
본 발명의 일 실시예에 따른 상기 단계 1)은 에어로겔 블랭킷을 형성하기 위해 준비하는 단계로서, 블랭킷용 기재에 촉매화된 졸을 함침시키는 것으로, 촉매화된 졸을 제조하고 제조된 촉매화된 졸 및 블랭킷용 기재를 반응 용기에 투입하는 것을 통해 블랭킷용 기재에 촉매화된 졸을 함침시키는 것일 수 있다.The step 1) according to an embodiment of the present invention is a step of preparing to form an airgel blanket, by impregnating the catalyzed sol into a substrate for the blanket, thereby preparing a catalyzed sol and preparing the prepared catalyzed sol. And impregnating the sol catalyzed into the blanket substrate by introducing the blanket substrate into the reaction vessel.
본 발명에서 사용되는 용어 "함침"은 블랭킷용 기재에 유동성이 있는 촉매화된 졸을 투입함으로써 이루어질 수 있는 것으로, 블랭킷용 기재 내부 기공에 촉매화된 졸이 침투하는 것을 나타내는 것일 수 있다.The term "impregnation" as used in the present invention may be achieved by introducing a catalyzed sol having fluidity into the substrate for blanket, and may refer to the penetration of the catalyzed sol into pores inside the substrate for blanket.
또한, 본 발명의 일 실시예에 따른 상기 단계 1)은 반응 용기에 블랭킷용 기재와 촉매화된 졸을 투입하는 것이면, 그 투입 순서를 특별히 제한하지는 않는다. 구체적으로 상기 단계 1)은 반응 용기에 블랭킷용 기재를 투입한 후 촉매화된 졸을 투입하는 방법, 반응 용기에 촉매화된 졸을 투입한 후 블랭킷용 기재를 투입하는 방법 및 반응 용기에 촉매화된 졸을 투입하면서 블랭킷용 기재를 투입하는 방법 중 어느 하나의 방법으로 투입되는 것일 수 있다. 이 중에서도 더욱 균일한 함침을 하도록 하는 측면에서 블랭킷용 기재를 투입한 후 촉매화된 졸을 투입하는 방법이 더욱 바람직할 수 있다. 구체적으로 블랭킷용 기재를 먼저 투입하는 경우에는 촉매화된 졸을 투입할 때 블랭킷용 기재를 회전시킬 수 있기 때문에 더욱 균일한 함침이 유도될 수 있다.In addition, if the step 1) according to an embodiment of the present invention is to add the blanket substrate and the catalyzed sol to the reaction vessel, the order of the addition is not particularly limited. Specifically, the step 1) is a method of introducing a substrate for blanket into a reaction vessel and then introducing a catalyzed sol, a method of introducing a substrate for blanket after introducing the catalyzed sol into a reaction vessel, and catalyzing a catalyst into the reaction vessel. It may be introduced in any one of the methods of injecting the substrate for the blanket while injecting the sol. Among these, it may be more preferable to introduce the catalyst sol after the blanket substrate is added in view of more uniform impregnation. Specifically, when the blanket substrate is first introduced, a more uniform impregnation may be induced because the blanket substrate can be rotated when the catalyzed sol is introduced.
본 발명의 일 실시예에 따르면 단계 1)에서 상기 함침은, 전술한 것과 같이 상기 블랭킷용 기재가 회전하면서 수행되는 것일 수 있다. 블랭킷용 기재를 회전하면서 함침을 수행하는 경우 블랭킷용 기재의 모든 면에 균일하게 촉매화된 졸이 접촉하여 균일한 함침을 유도할 수 있어 더욱 바람직하다.According to an embodiment of the present invention, the impregnation in step 1) may be performed while the blanket substrate is rotated as described above. When impregnation is performed while rotating the blanket substrate, the sol catalyzed uniformly contacts all surfaces of the blanket substrate to induce uniform impregnation, which is more preferable.
본 발명에서 상기 촉매화된 졸은 졸과 염기 촉매를 혼합하여 제조하는 것일 수 있고, 염기 촉매는 졸의 pH를 증가시켜 단계 2)에서의 겔화를 촉진하는 역할을 한다.In the present invention, the catalyzed sol may be prepared by mixing a sol and a base catalyst, and the base catalyst serves to promote gelation in step 2) by increasing the pH of the sol.
이 때 졸은 졸-겔 반응으로 다공성의 겔을 형성할 수 있는 물질이라면 제한하지 않으며, 구체적으로 무기 졸, 유기 졸 또는 이들의 조합을 포함할 수 있다. 무기 졸은 지르코니아, 산화이트륨, 하프니아, 알루미나, 티타니아, 세리아, 실리카, 산화 마그네슘, 산화칼슘, 플루오르화 마그네슘, 플루오르화 칼슘 및 이들의 조합물을 포함할 수 있고, 유기 졸은 폴리아크릴레이트, 폴리올레핀, 폴리스틸렌, 폴리아크릴로니트릴, 폴리우레탄, 폴리이미드, 폴리푸르푸랄 알콜, 페놀 푸르푸릴 알콜, 멜라민 포름알데히드, 레조르시놀 포름알데히드, 크레졸 포름알데히드, 페놀 포름알데히드, 폴리비닐 알콜 디알데히드, 폴리시아누레이트, 폴리아크릴아미드, 다양한 에폭시, 한천, 아가로스 및 이들의 조합물을 포함할 수 있다. 또한, 블랭킷용 기재와의 우수한 혼화성을 확보하고, 겔로 형성 시 다공성을 더욱 개선할 수 있으며, 낮은 열전도도를 가지는 에어로겔 블랭킷을 제조하는 측면에서 바람직하게는 상기 졸이 실리카 졸인 것일 수 있다.In this case, the sol is not limited as long as it is a material capable of forming a porous gel through a sol-gel reaction, and specifically, may include an inorganic sol, an organic sol, or a combination thereof. Inorganic sols may include zirconia, yttrium oxide, hafnia, alumina, titania, ceria, silica, magnesium oxide, calcium oxide, magnesium fluoride, calcium fluoride, and combinations thereof, and the organic sol is polyacrylate, Polyolefin, polystyrene, polyacrylonitrile, polyurethane, polyimide, polyfurfural alcohol, phenol furfuryl alcohol, melamine formaldehyde, resorcinol formaldehyde, cresol formaldehyde, phenol formaldehyde, polyvinyl alcohol dialdehyde, polycylate Anurates, polyacrylamides, various epoxies, agar, agarose, and combinations thereof. In addition, in terms of securing excellent miscibility with the substrate for a blanket, further improving porosity when formed into a gel, and manufacturing an aerogel blanket having low thermal conductivity, preferably the sol may be a silica sol.
본 발명의 일 실시예에 따른 졸은 졸 전구체, 물 및 유기용매를 포함하는 것으로, 졸 전구체, 물 및 유기용매를 혼합하여 제조한 것일 수 있다. 본 발명의 일 실시예에 따른 촉매화된 졸이 촉매화된 실리카 졸인 경우, 상기 단계 1)에서 촉매화된 실리카 졸은 실리카 졸과 염기 촉매를 혼합하여 제조하는 것일 수 있고, 여기에서 상기 실리카 졸은 실리카 전구체 조성물과 물, 유기용매를 혼합하여 제조 되는 것일 수 있다. 또한, 실리카 졸은 겔화를 용이하게 하기 위해 낮은 pH에서 가수분해를 진행할 수 있으며, 이 때 pH를 낮추기 위해 산 촉매를 사용하는 것일 수 있다. The sol according to an embodiment of the present invention includes a sol precursor, water, and an organic solvent, and may be prepared by mixing a sol precursor, water, and an organic solvent. When the catalyzed sol according to an embodiment of the present invention is a catalyzed silica sol, the silica sol catalyzed in step 1) may be prepared by mixing a silica sol and a base catalyst, wherein the silica sol Silver may be prepared by mixing a silica precursor composition, water, and an organic solvent. In addition, the silica sol may be hydrolyzed at a low pH to facilitate gelation, and in this case, an acid catalyst may be used to lower the pH.
상기의 실리카 졸의 제조에 사용 가능한 실리카 전구체 조성물은 실리콘 함유 알콕사이드계 화합물을 포함하는 것일 수 있으며, 구체적으로 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트를 포함하는 것일 수 있다.The silica precursor composition usable for preparing the silica sol may include a silicon-containing alkoxide-based compound, and specifically may include a silicate containing a hydrophobic group and a tetraalkyl silicate.
본 발명의 일 실시예에 따르면, 상기 소수화기를 포함하는 실리케이트는 에어로겔 제조 시 표면개질 단계 없이도 에어로겔에 소수성을 부여하기 위한 것으로, 메틸트리에톡시실란(MTES), 트리메틸에톡시실란(TMES), 트리메틸실라놀(TMS), 메틸트리메톡시실란(MTMS), 디메틸디에톡시실란(DMDEOS), 에틸트리에톡시실란(ETES) 및 페닐트리에톡시실란(PTES)로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 이와 같이 실리카 전구체 조성물에 소수화기를 포함하는 실리케이트를 포함하는 경우, 표면개질 단계를 생략하는 것이 가능하고, 이에 따라 용매 재활용 시 재생과정이 불필요하며, 소수성기가 에어로겔의 내부에서부터 외부까지 고르게 도입될 수 있어, 소수성이 극대화되고, 이로 인해 표면 장력이 큰 물을 쉽게 밀어낼 수 있기 때문에, 이후 건조단계에서 상압 건조를 가능하게 한다.According to an embodiment of the present invention, the silicate containing the hydrophobic group is for imparting hydrophobicity to the airgel without a surface modification step during the manufacture of the airgel, methyltriethoxysilane (MTES), trimethylethoxysilane (TMES), It may be one or more selected from the group consisting of trimethylsilanol (TMS), methyltrimethoxysilane (MTMS), dimethyldiethoxysilane (DMDEOS), ethyltriethoxysilane (ETES), and phenyltriethoxysilane (PTES). have. In the case of including a silicate containing a hydrophobic group in the silica precursor composition as described above, it is possible to omit the surface modification step, and accordingly, a regeneration process is unnecessary when the solvent is recycled, and the hydrophobic group can be evenly introduced from the inside to the outside of the aerogel. Therefore, hydrophobicity is maximized, and because of this, water having a large surface tension can be easily pushed out, allowing normal pressure drying in the subsequent drying step.
본 발명의 일 실시예에 따르면, 상기 테트라알킬 실리케이트는 에어로겔의 강도를 보강하고, 단열 성능을 확보하기 위한 것으로, 테트라메틸 오르소실리케이트(tetramethyl orthosilicate; TMOS), 테트라에틸 오르소실리케이트(tetraethyl orthosilicate; TEOS), 테트라프로필 오르소실리케이트(tetrapropyl orthosilicate), 테트라이소프로필 오르소실리케이트(tetraisopropyl orthosilicate), 테트라부틸 오르소실리케이트 (tetrabutyl orthosilicate), 테트라세컨드리부틸 오르소실리케이트(tetra secondary butyl orthosilicate), 테트라터셔리부틸 오르소실리케이트 (tetra tertiary butyl orthosilicate), 테트라헥실오르소실리케이트(tetrahexyl orthosilicate), 테트라시클로헥실 오르소실리케이트(tetracyclohexyl orthosilicate), 테트라도데실 오르소실리케이트(tetradodecyl orthosilicate) 등과 같은 테트라알킬 실리케이트일 수 있다. 이 중에서도 보다 구체적으로 본 발명의 일 실시예에 따른 상기 실리카 전구체는 테트라에틸 오르소실리케이트(TEOS)일 수 있다.According to an embodiment of the present invention, the tetraalkyl silicate is for reinforcing the strength of the airgel and securing thermal insulation performance, and includes tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate; TEOS), tetrapropyl orthosilicate, tetraisopropyl orthosilicate, tetrabutyl orthosilicate, tetra secondary butyl orthosilicate, tetrater Tetra-tertiary butyl orthosilicate, tetrahexyl orthosilicate, tetracyclohexyl orthosilicate, tetradodecyl orthosilicate, etc. have. Among these, more specifically, the silica precursor according to an embodiment of the present invention may be tetraethyl orthosilicate (TEOS).
본 발명의 일 실시예에 따르면, 실리카 전구체 조성물 내에서 상기 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트의 몰비는 60:40 내지 98:2일 수 있고, 이 범위 내에서 초임계 건조 시 에어로겔의 강도 및 단열 성능을 극대화할 수 있다. 또한, 상압 건조에 의하는 경우, 실리카 전구체 조성물 내에서 상기 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트의 몰비는 85:15 내지 98:2, 또는 90:10 내지 98:2일 수 있고, 이 범위 내에서 에어로겔의 강도 및 단열 성능을 높은 효율로 확보하면서도, 상압 건조 시 수축 발생을 방지하여 단열 성능이 저하되는 것을 방지할 수 있다.According to an embodiment of the present invention, the molar ratio of the silicate containing the hydrophobic group and the tetraalkyl silicate in the silica precursor composition may be 60:40 to 98:2, and the strength of the aerogel during supercritical drying within this range And it is possible to maximize the thermal insulation performance. In addition, in the case of drying under atmospheric pressure, the molar ratio of the silicate containing the hydrophobic group and the tetraalkyl silicate in the silica precursor composition may be 85:15 to 98:2, or 90:10 to 98:2, and this range While securing the strength and heat insulation performance of the airgel inside with high efficiency, it is possible to prevent the occurrence of shrinkage during normal pressure drying, thereby preventing the heat insulation performance from deteriorating.
상기 실리카 전구체 조성물은 실리카 졸 내 포함되는 실리카(SiO2)의 함량이 3 중량% 내지 30 중량%, 5 중량% 내지 20 중량%, 또는 6 중량% 내지 12 중량%가 되도록 하는 양으로 사용될 수 있다. 이 범위 내에서 최종 제조되는 블랭킷에서의 실리카 에어로겔의 함량을 충분히 확보할 수 있어 목적하는 수준의 단열 효과를 기대할 수 있고, 과도한 실리카 에어로겔의 형성을 방지하여 블랭킷의 기계적 물성, 특히 유연성이 저하되는 것을 방지할 수 있다. The silica precursor composition may be used in an amount such that the content of silica (SiO 2 ) contained in the silica sol is 3% by weight to 30% by weight, 5% by weight to 20% by weight, or 6% by weight to 12% by weight. . Within this range, the content of the silica airgel in the final manufactured blanket can be sufficiently secured, so that the desired level of thermal insulation effect can be expected, and the formation of excessive silica aerogels prevents the mechanical properties of the blanket, especially the flexibility, from deteriorating. Can be prevented.
또한, 본 발명의 졸의 제조에 사용 가능한 유기용매는 졸 전구체 및 물과의 상용성이 우수한 것이라면 제한 없이 사용 가능하며, 구체적으로는 극성 유기용매를 사용하는 것일 수 있으며, 더욱 구체적으로는 알코올을 사용하는 것일 수 있다. 여기에서 알코올은 구체적으로 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 1가 알코올; 또는 글리세롤, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 및 솔비톨 등과 같은 다가 알코올일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이 중에서도 물 및 향후 제조되는 에어로겔과의 혼화성을 고려할 때 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 탄소수 1 내지 6의 1가 알코올일 수 있다. 상기와 같은 유기용매는 최종 제조되는 에어로겔의 함량을 고려하여 적절한 함량으로 사용될 수 있다.In addition, the organic solvent that can be used for the preparation of the sol of the present invention can be used without limitation as long as it has excellent compatibility with a sol precursor and water, and specifically, a polar organic solvent may be used, and more specifically, alcohol is used. It may be to use. Here, the alcohol is specifically a monohydric alcohol such as methanol, ethanol, isopropanol, butanol, and the like; Alternatively, it may be a polyhydric alcohol such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and sorbitol, and any one or a mixture of two or more of them may be used. Among these, in consideration of miscibility with water and an airgel to be produced in the future, it may be a monohydric alcohol having 1 to 6 carbon atoms such as methanol, ethanol, isopropanol, butanol, and the like. The organic solvent as described above may be used in an appropriate amount in consideration of the content of the finally produced airgel.
본 발명의 일 실시예에 따른 실리카 졸은 실리카 전구체 조성물과 물이 1:10 내지 1:1의 몰비로 포함될 수 있다. 또한, 실리카 전구체 조성물과 유기용매가 1:2 내지 1:9의 중량비로 포함되는 것일 수 있으며, 바람직하게는 1:2 내지 1:6의 중량비로 포함되는 것일 수 있다. 실리카 전구체 조성물이 물 및 유기용매와 상기 몰비 또는 중량비를 충족하는 경우 에어로겔 생산 수율이 더욱 높아질 수 있으므로 단열 성능의 측면에서 개선 효과가 있다.The silica sol according to an embodiment of the present invention may contain a silica precursor composition and water in a molar ratio of 1:10 to 1:1. In addition, the silica precursor composition and the organic solvent may be included in a weight ratio of 1:2 to 1:9, and preferably may be included in a weight ratio of 1:2 to 1:6. When the silica precursor composition satisfies the molar ratio or weight ratio of water and organic solvents, the yield of airgel production may be further increased, and thus there is an improvement effect in terms of thermal insulation performance.
또한, 본 발명의 일 실시예에 따른 졸에서 더 포함될 수 있는 산 촉매는 pH를 3 이하가 되도록 하는 산 촉매라면 제한 없이 사용 가능하며 일례로 염산, 질산 또는 황산을 사용하는 것일 수 있다. 이 때 산 촉매는 졸의 pH가 3이하가 되도록 하는 양을 첨가하는 것일 수 있으며, 수용매에 용해시킨 수용액 상태로 첨가하는 것일 수 있다.In addition, the acid catalyst that may be further included in the sol according to an embodiment of the present invention can be used without limitation as long as the acid catalyst has a pH of 3 or less, and hydrochloric acid, nitric acid, or sulfuric acid may be used as an example. In this case, the acid catalyst may be added in an amount such that the pH of the sol is 3 or less, and may be added in the form of an aqueous solution dissolved in an aqueous medium.
또한, 본 발명의 일 실시예에 따른 촉매화된 졸에서 사용 가능한 염기 촉매로는 수산화나트륨, 수산화칼륨 등의 무기 염기; 또는 수산화암모늄과 같은 유기 염기일 수 있다. 구체적으로 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화칼슘(Ca(OH)2), 암모니아(NH3), 수산화암모늄(NH4OH; 암모니아수), 테트라메틸암모늄 히드록시드(TMAH), 테트라에틸암모늄 히드록시드(TEAH), 테트라프로필암모늄 히드록시드(TPAH), 테트라부틸암모늄 히드록시드(TBAH), 메틸아민, 에틸아민, 이소프로필아민, 모노이소프로필아민, 디에틸아민, 디이소프로필아민, 디부틸아민, 트리메틸아민, 트리에틸아민, 트리이소프로필아민, 트리부틸아민, 콜린, 모노에탄올아민, 디에탄올아민, 2-아미노에탄올, 2-(에틸 아미노)에탄올, 2-(메틸 아미노)에탄올, N-메틸 디에탄올아민, 디메틸아미노에탄올, 디에틸아미노에탄올, 니트릴로트리에탄올, 2-(2-아미노에톡시)에탄올, 1-아미노-2-프로판올, 트리에탄올아민, 모노프로판올아민, 디부탄올아민 및 피리딘으로 이루어진 군으로부터 선택되는 1 종 이상일 수 있으며, 바람직하게는 수산화나트륨, 암모니아, 수산화암모늄 또는 이들의 혼합물일 수 있다.In addition, the base catalyst usable in the catalyzed sol according to an embodiment of the present invention includes inorganic bases such as sodium hydroxide and potassium hydroxide; Or an organic base such as ammonium hydroxide. Specifically, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca(OH) 2 ), ammonia (NH 3 ), ammonium hydroxide (NH 4 OH; aqueous ammonia), tetramethylammonium hydroxide (TMAH), tetra Ethyl ammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), methylamine, ethylamine, isopropylamine, monoisopropylamine, diethylamine, diiso Propylamine, dibutylamine, trimethylamine, triethylamine, triisopropylamine, tributylamine, choline, monoethanolamine, diethanolamine, 2-aminoethanol, 2-(ethylamino)ethanol, 2-(methyl Amino) ethanol, N-methyl diethanolamine, dimethylaminoethanol, diethylaminoethanol, nitrilotriethanol, 2-(2-aminoethoxy)ethanol, 1-amino-2-propanol, triethanolamine, monopropanolamine, It may be one or more selected from the group consisting of dibutanolamine and pyridine, preferably sodium hydroxide, ammonia, ammonium hydroxide, or a mixture thereof.
상기 염기 촉매는 졸의 pH가 7 내지 11 이 되도록 하는 양으로 포함될 수 있다. 상기 졸의 pH가 상기 범위를 벗어날 경우 후술하는 단계 2)의 겔화가 용이하지 않거나, 겔화 속도가 지나치게 느려져 공정성이 저하될 우려가 있다. 또한, 상기 염기는 고체상으로 투입 시 석출될 우려가 있으므로, 수용매 또는 상기한 유기용매에 의해 희석된 용액상으로 첨가되는 것이 바람직할 수 있다. 이 때 상기 염기 촉매 및 유기용매, 구체적으로 알코올의 희석 비율은 부피 기준으로 1:4 내지 1:100일 수 있다.The base catalyst may be included in an amount such that the pH of the sol is 7 to 11. If the pH of the sol is out of the above range, gelation in step 2) to be described later is not easy, or the gelation rate is too slow, and thus fairness may be lowered. In addition, since the base may be precipitated when introduced into a solid phase, it may be preferably added in the form of an aqueous medium or a solution diluted with the above-described organic solvent. In this case, the dilution ratio of the base catalyst and the organic solvent, specifically alcohol, may be 1:4 to 1:100 on a volume basis.
본 발명의 일 실시예에 따르면, 상기 촉매화된 졸은 필요에 따라 첨가제를 더 첨가할 수 있으며 이 때 첨가제는 에어로겔을 제조할 때 첨가될 수 있는 공지의 첨가제가 모두 적용될 수 있고, 예컨대 불투명화제, 난연제 등의 첨가제를 사용할 수 있다.According to an embodiment of the present invention, additives may be further added to the catalyzed sol as needed, and in this case, all known additives that may be added when preparing an aerogel may be applied, for example, an opacifying agent. And additives such as flame retardants may be used.
상기 블랭킷용 기재는 반응 용기의 형상에 따라 투입하기 용이한 적절한 형태로 투입하는 것일 수 있으며, 구체적으로는 후술하는 단계 2)에서 회전이 용이하도록 보빈에 롤(roll) 형태로 감은 블랭킷용 기재를 반응 용기에 투입하는 것일 수 있다. 이 때 보빈은 블랭킷용 기재를 회전시킬 수 있는 축이 될 수 있고, 블랭킷용 기재를 감을 수 있는 것이라면 어떤 것도 제한 없이 적용 가능하다. 일례로, 반응 용기 내부에 들어갈 수 있는 크기의 다각통형 기둥, 바람직하게는 원통형 기둥을 사용하는 것일 수 있다. 또한, 본 발명의 일 실시예에 따르면, 상기 보빈은 블랭킷용 기재를 롤 형태로 감을 수 있는 권취봉과, 권취봉에 감긴 블랭킷용 기재가 회전 시 이탈하지 않도록 측부를 지지하는 지지판을 포함할 수 있다. 이 때 촉매화된 졸이 블랭킷용 기재의 내측에도 함침되기 쉽도록 권취봉에 다수의 중공이 있는 것이 바람직하다. 한편, 블랭킷용 기재의 측부로 촉매화된 졸이 유입할 수 있도록 지지판은 메쉬 타입을 사용하거나 다수의 중공을 포함할 수 있다. 보빈의 재질은 블랭킷을 지지할 수 있는 충분한 강도를 갖는 어떤 재질이라도 사용이 가능하며 구체적으로 스테인리스 스틸, PE, PP, 테플론 등이 사용될 수 있다.The blanket substrate may be introduced in a suitable shape that is easy to input according to the shape of the reaction vessel, and specifically, a blanket substrate wound in a roll shape on a bobbin to facilitate rotation in step 2) to be described later It may be added to the reaction vessel. In this case, the bobbin may be a shaft capable of rotating the blanket substrate, and any one that can wind the blanket substrate may be applied without limitation. As an example, it may be to use a polygonal cylindrical column, preferably a cylindrical column having a size that can fit inside the reaction vessel. In addition, according to an embodiment of the present invention, the bobbin may include a winding rod capable of winding a blanket substrate in a roll form, and a support plate supporting a side portion so that the blanket substrate wound around the winding rod does not separate during rotation. . At this time, it is preferable that there are a number of hollows in the winding rod so that the catalyzed sol is easily impregnated inside the blanket substrate. On the other hand, the support plate may use a mesh type or may include a plurality of hollows so that the sol catalyzed to the side of the blanket substrate can flow. The material of the bobbin may be any material having sufficient strength to support the blanket, and specifically stainless steel, PE, PP, Teflon, etc. may be used.
상기 보빈에 블랭킷용 기재를 감은 후 반응 용기에 이를 넣고 고정하는 것일 있다. 여기에서, 상기 보빈은 반응 용기의 어떤 위치에서도 고정이 가능하나, 동일한 부피의 반응 용기 내에서 블랭킷용 기재를 많이 투입하고, 이로 인한 생산 효율을 높이는 측면에서 바람직하게는 반응 용기의 중심부에 고정하는 것일 수 있다. 또한, 상기 보빈의 장축과 반응 용기의 장축이 서로 평행되도록 보빈을 위치시키는 것일 수 있다.After winding the substrate for a blanket on the bobbin, it may be placed in a reaction vessel and fixed. Here, the bobbin can be fixed at any position of the reaction vessel, but a lot of the blanket substrate is added in the reaction vessel of the same volume, and thus, in terms of increasing production efficiency, the bobbin is preferably fixed to the center of the reaction vessel. Can be. In addition, it may be to position the bobbin so that the long axis of the bobbin and the long axis of the reaction vessel are parallel to each other.
또한, 본 발명의 일 실시예에 따른 블랭킷용 기재는 에어로겔 블랭킷의 단열성을 개선하는 측면에서 구체적으로는 다공질(porous) 기재인 것일 수 있다. 다공질의 블랭킷용 기재를 사용하면 촉매화된 졸이 기재 내부로 침투가 용이하여 블랭킷용 기재 내부에서 균일하게 에어로겔을 형성함에 따라 제조된 에어로겔 블랭킷이 우수한 단열성을 가질 수 있다.In addition, the substrate for a blanket according to an embodiment of the present invention may be specifically a porous substrate in terms of improving the thermal insulation properties of the airgel blanket. When a porous blanket substrate is used, the catalyzed sol easily penetrates into the substrate, and thus the airgel blanket formed uniformly forms the airgel inside the blanket substrate, so that the manufactured airgel blanket can have excellent thermal insulation properties.
본 발명의 일 실시예에 따라 사용할 수 있는 블랭킷용 기재는 필름, 시트, 네트, 섬유, 발포체, 부직포체 또는 이들의 2층 이상의 적층체일 수 있다. 또한, 용도에 따라 그 표면에 표면조도가 형성되거나 패턴화된 것일 수도 있다. 보다 구체적으로는 상기 블랭킷용 기재는 블랭킷용 기재 내로 에어로겔의 삽입이 용이한 공간 또는 공극을 포함함으로써 단열 성능을 보다 향상시킬 수 있는 섬유일 수 있다. 또, 상기 블랭킷용 기재는 낮은 열전도도를 갖는 것이 바람직할 수 있다.The blanket substrate that can be used according to an embodiment of the present invention may be a film, sheet, net, fiber, foam, nonwoven fabric, or a laminate of two or more layers thereof. In addition, depending on the use, the surface roughness may be formed or patterned on the surface. More specifically, the blanket substrate may be a fiber capable of further improving thermal insulation performance by including spaces or voids in which the airgel can be easily inserted into the blanket substrate. In addition, it may be desirable that the blanket substrate has a low thermal conductivity.
구체적으로 상기 블랭킷용 기재는 폴리아미드, 폴리벤즈이미다졸, 폴리아라미드, 아크릴수지, 페놀수지, 폴리에스테르, 폴리에테르에테르케톤(PEEK), 폴리올레핀(예를 들면, 폴리에틸렌, 폴리프로필렌 또는 이들의 공중합체 등), 셀룰로오스, 카본, 면, 모, 마, 부직포, 유리 섬유 또는 세라믹 울 등일 수 있으며, 보다 구체적으로 본 발명에 있어서 상기 블랭킷용 기재는 유리 섬유(glass felt, glass fiber)일 수 있다.Specifically, the blanket substrate is polyamide, polybenzimidazole, polyaramid, acrylic resin, phenolic resin, polyester, polyetheretherketone (PEEK), polyolefin (e.g., polyethylene, polypropylene or a copolymer thereof Etc.), cellulose, carbon, cotton, wool, hemp, non-woven fabric, glass fiber or ceramic wool, etc., and more specifically, in the present invention, the substrate for the blanket may be glass fiber (glass felt, glass fiber).
본 발명의 일 실시예에 따르면, 상기 반응 용기는 겔화를 수행하기 위한 반응 용기일 수 있으며, 촉매화된 졸이 함침된 블랭킷용 기재가 회전할 수 있도록 공간을 형성하는 용기라면 다각통형, 원통형 등 어떤 형상의 용기라도 사용이 가능하나, 롤 형태로 감긴 블랭킷용 기재의 투입도 용이하게 하고, 겔화 반응 시 촉매화된 졸이 함침된 블랭킷용 기재의 회전이 용이하게 이루어지는 측면에서 바람직하게는 원통형의 반응 용기를 사용할 수 있다.According to an embodiment of the present invention, the reaction vessel may be a reaction vessel for performing gelation, and if a vessel forming a space so that the blanket substrate impregnated with the catalyzed sol can rotate, a polygonal cylinder, a cylindrical shape, etc. Any shape of the container can be used, but it is preferable to have a cylindrical shape in terms of facilitating the introduction of the blanket substrate wound in a roll form, and the rotation of the blanket substrate impregnated with the catalyzed sol during the gelation reaction. A reaction vessel can be used.
상기 단계 1)에서 촉매화된 졸을 투입할 때, 블랭킷용 기재와 촉매화된 졸의 결합을 좋게 하기 위해 블랭킷용 기재를 가볍게 눌러 충분히 함침되도록 할 수 있다. 이후 일정한 압력으로 블랭킷용 기재를 일정 두께로 가압하여 잉여의 졸을 제거하여 건조 시간을 줄일 수도 있다. 또 다른 일 실시예에서, 반응 용기에 촉매화된 졸을 투입할 때 블랭킷용 기재가 충분히 함침되어 더 이상 반응 용기 내 액위가 변하지 않을 때 남아있는 졸은 회수하는 것일 수 있고, 이 때 남아있는 졸은 반응 용기에 연결된 드레인 밸브(drain valve)를 열어 회수하는 것일 수 있다.When the sol catalyzed in step 1) is added, the blanket base material may be lightly pressed so as to be sufficiently impregnated in order to improve the bonding between the blanket base material and the catalyzed sol. After that, by pressing the substrate for the blanket to a predetermined thickness with a constant pressure to remove excess sol, it is also possible to reduce the drying time. In another embodiment, when the catalyst is added to the reaction vessel, the blanket substrate is sufficiently impregnated and the remaining sol may be recovered when the liquid level in the reaction vessel is no longer changed. Silver may be recovered by opening a drain valve connected to the reaction vessel.
또한, 상기 촉매화된 졸 및 블랭킷용 기재는 반응 용기 부피, 구체적으로 반응 용기 내부 부피의 1 내지 100 %가 되는 양을 각각 투입할 수 있으며, 단계 3)에서 겔화 시간을 단축하고 블랭킷용 기재 내부에 균일하게 에어로겔을 형성하는 측면에서 바람직하게는 반응 용기 부피의 1 내지 60 %가 되는 양, 더욱 바람직하게는 10 내지 60 %, 보다 더 바람직하게는 30 내지 60%가 되는 양을 각각 투입하는 것일 수 있다.In addition, the catalyzed sol and the substrate for the blanket may each be added in an amount of 1 to 100% of the volume of the reaction vessel, specifically, the inner volume of the reaction vessel, shortening the gelation time in step 3) and the inside of the blanket substrate. In terms of uniformly forming the airgel in the reaction vessel, an amount of preferably 1 to 60% of the volume of the reaction vessel, more preferably 10 to 60%, and even more preferably 30 to 60% of the volume of the reaction vessel is respectively added. I can.
본 발명의 일 실시예에 따르면, 블랭킷용 기재 부피 기준으로 촉매화된 졸을 80 내지 120 %, 바람직하게는 90 내지 110 %가 되는 비율의 양으로 투입할 수 있다. 또한, 바람직하게는 상기 블랭킷용 기재 및 촉매화된 졸의 투입량은 상기의 반응 용기 대비 투입량을 만족하는 조건 하에서 상기의 상호 간의 투입 비율을 만족하는 것일 수 있다. 촉매화된 졸이 블랭킷용 기재 부피 대비 투입 비율(투입량)을 만족하는 경우 촉매화된 졸이 블랭킷용 기재에 더욱 고르게 함침되어 제조되는 에어로겔 블랭킷이 더욱 균일한 물성을 가질 수 있으며, 촉매화된 졸이 블랭킷용 기재에 모두 함침될 수 있으므로 원재료의 손실을 막고 촉매화된 졸이 단독으로 겔화되는 문제를 방지할 수 있다.According to an embodiment of the present invention, the catalyzed sol may be added in an amount of 80 to 120%, preferably 90 to 110%, based on the volume of the blanket substrate. In addition, preferably, the amount of the blanket substrate and the catalyzed sol may be one that satisfies the above-mentioned ratio of each other under the condition of satisfying the amount of injection compared to the reaction vessel. When the catalyzed sol satisfies the input ratio (input amount) to the volume of the blanket substrate, the aerogel blanket produced by impregnating the catalyst sol more evenly into the blanket substrate may have more uniform physical properties, and the catalyzed sol Since all of this blanket substrate can be impregnated, loss of raw materials can be prevented and the problem of gelation of the catalyzed sol alone can be prevented.
본 발명의 일 실시예에 따른 단계 2)는 습윤겔 블랭킷 복합체(습윤겔 블랭킷)을 제조하기 위한 것으로서, 촉매화된 졸이 함침된 블랭킷용 기재를 회전하여 겔화시킴으로써 수행되는 것일 수 있다.Step 2) according to an embodiment of the present invention is for preparing a wet gel blanket composite (wet gel blanket), and may be performed by rotating and gelling a blanket substrate impregnated with a catalyzed sol.
상기 촉매화된 졸이 함침된 블랭킷용 기재의 회전은 반응 용기 내에서 겔화하는 동안 회전하도록 하는 방법이라면 어떠한 방법 및 장치도 사용이 가능하며, 구체적으로 상기 단계 1)에서 블랭킷용 기재를 보빈에 감은 상태로 투입하고 고정시키는 경우 상기 촉매화된 졸이 함침된 블랭킷용 기재가 보빈에 감긴 상태로 반응 용기에 존재하기 때문에, 보빈을 회전함으로써 촉매화된 졸이 함침된 블랭킷용 기재가 회전되도록 하는 것일 수 있다.Any method and apparatus can be used as long as the catalyst for the blanket substrate impregnated with the catalyzed sol is rotated while gelling in the reaction vessel. Specifically, the blanket substrate is wound around a bobbin in step 1). In the case of input and fixation, the substrate for blanket impregnated with the catalyzed sol exists in the reaction vessel while being wound around the bobbin, so that the substrate for blanket impregnated with the catalyzed sol is rotated by rotating the bobbin. I can.
본 발명에 있어서, 상기 겔화(gelation)란 촉매화된 졸로부터 망상 구조를 형성시키는 것일 수 있으며, 상기 망상 구조(network structure)는 원자 배열이 1 종 혹은 그 이상의 종류로 되어 있는 어떤 특정한 다각형이 이어진 평면 그물 모양의 구조 또는 특정 다면체의 정점, 모서리, 면 등을 공유하여 3 차원 골격구조를 형성하고 있는 구조를 나타내는 것일 수 있다.In the present invention, the gelation may be the formation of a network structure from a catalyzed sol, and the network structure is a specific polygon having one or more kinds of atomic arrangement. It may represent a structure in the form of a flat net or a structure that forms a three-dimensional skeleton structure by sharing the vertices, edges, and faces of a specific polyhedron.
본 발명의 일 실시예에 따르면, 촉매화된 졸 및 블랭킷용 기재를 투입한 반응 용기를 밀봉한 후 겔화반응을 진행하는 것일 수 있다. 또한, 본 발명의 일 실시예에 따르면 장축을 횡방향 즉, 수평방향으로 배치하여 회전시키는 것일 수 있다. 만약, 반응 용기(본체)가 원통형의 반응 용기인 경우 원통형의 반응 용기를 눕혀서 회전시키는 것일 수 있다. 즉, 본 발명의 반응 용기의 회전축은 수평 방향일 수 있으나 이에 제한되지 않는다.According to an embodiment of the present invention, after sealing a reaction vessel in which the catalyzed sol and a substrate for a blanket are added, the gelling reaction may be performed. In addition, according to an embodiment of the present invention, the long axis may be disposed in a transverse direction, that is, in a horizontal direction to rotate. If the reaction vessel (body) is a cylindrical reaction vessel, the cylindrical reaction vessel may be laid down and rotated. That is, the rotation axis of the reaction vessel of the present invention may be in a horizontal direction, but is not limited thereto.
본 발명의 일 실시예에 따르면 상기 반응 용기(본체)를 포함하고, 상기 반응 용기에 존재하는 촉매화된 졸이 함침된 블랭킷용 기재를 회전시킬 수 있는 에어로겔 블랭킷의 제조장치라면 그 종류가 제한되지 않고, 회전시킬 수 있는 장치라면 공지된 어떤 장치라도 사용할 수 있다. 구체적으로, 반응 용기에 보빈의 위치를 고정시킬 수 있고, 위치가 고정된 보빈을 회전하도록 하는 장치라면 공지된 어떤 장치라도 사용할 수 있다. 본 발명에서 적용 가능한 에어로겔 블랭킷의 제조장치의 일 예시는 후술한다.According to an embodiment of the present invention, if it is an apparatus for manufacturing an airgel blanket including the reaction vessel (body) and capable of rotating the blanket substrate impregnated with the catalyzed sol present in the reaction vessel, the type is not limited. However, any known device may be used as long as it is a device capable of rotating. Specifically, any known device may be used as long as the position of the bobbin can be fixed to the reaction vessel and the position of the bobbin is rotated. An example of an apparatus for manufacturing an airgel blanket applicable in the present invention will be described later.
또한, 본 발명의 일 실시예에 따르면 상기 단계 1)을 완료한 이후에 상기 단계 2)를 개시하여, 상기 단계 1) 및 상기 단계 2)를 순차적으로 수행하는 것일 수 있다.In addition, according to an embodiment of the present invention, after completing step 1), step 2) may be initiated to sequentially perform step 1) and step 2).
본 발명의 또다른 일 실시예에 따르면, 상기 단계 1)이 완료되기 이전에 상기 단계 2)를 개시하여 수행하는 것일 수 있으며, 이처럼 상기 단계 1)의 완료 이전에 단계 2)를 수행하는 경우에는 겔화가 완료될 때까지, 구체적으로는 겔화가 완료되기 전까지 촉매화된 졸을 반응 용기에 전부 투입하는 것일 수 있다.According to another embodiment of the present invention, the step 2) may be initiated and performed before step 1) is completed. In this way, when step 2) is performed before step 1) is completed, Until the gelation is completed, specifically, the catalyst may be all injected into the reaction vessel until the gelation is completed.
본 발명의 일 실시예에 따르면 상기 단계 2)에서의 회전 속도는, 블랭킷 내 에어로겔이 균일하게 형성될 수 있도록 하는 회전 속도면 제한 없이 적용 가능하며, 일례로 1 rpm 내지 300 rpm, 바람직하게는 5 rpm 내지 150 rpm, 5 rpm 내지 100rpm, 보다 바람직하게는 10 rpm 내지 30 rpm의 회전 속도로 회전시키면서 겔화를 실시하는 것일 수 있다. 반응 용기가 상기 범위의 회전속도를 충족하는 경우 블랭킷용 기재 내 졸이 고르게 함침될 수 있으므로 겔화 시 에어로겔이 더욱 균일하게 형성되며, 이에 따라 에어로겔 블랭킷 전체에서 매우 균일한 열전도도를 확보할 수 있고 반응 용기 및 이를 회전시키는 장치의 안정성을 높여 에어로겔 블랭킷 제조 공정의 안전성을 높이는 이점이 있다.According to an embodiment of the present invention, the rotational speed in step 2) is applicable without limitation in terms of rotational speed that enables uniform formation of the airgel in the blanket, and for example, 1 rpm to 300 rpm, preferably 5 It may be to perform gelation while rotating at a rotation speed of rpm to 150 rpm, 5 rpm to 100 rpm, more preferably 10 rpm to 30 rpm. If the reaction vessel satisfies the above range of rotational speed, the sol in the blanket substrate may be evenly impregnated, so that the aerogel is formed more evenly during gelation, and thus, very uniform thermal conductivity can be secured throughout the airgel blanket and the reaction There is an advantage of increasing the safety of the airgel blanket manufacturing process by increasing the stability of the container and the device that rotates it.
본 발명에서는 반응 용기에 촉매화된 졸과 블랭킷용 기재를 모두 넣고 겔화시켜 에어로겔 블랭킷을 제조함에 따라, 종래 적용되던 롤투롤 공법과는 달리 컨베이어 벨트와 같은 이동 요소가 별도로 필요하지 않아 제조 시 사용 공간을 크게 절약할 수 있는 이점이 있다. 또한, 롤투롤 공법에서와 같이 이동 요소에 블랭킷용 기재를 배치하고 상기 블랭킷용 기재에 촉매화된 졸을 도포하여 이동 요소를 계속하여 이동시키면서 겔화시키는 경우, 블랭킷용 기재 전체에서 동시에 겔화가 이루어지는 것이 아니고 연속적으로 블랭킷용 기재 및 촉매화된 졸을 공급하면서, 시간적 흐름에 따라 순차적으로 겔화가 이루어질 수 밖에 없기 때문에 동일한 두께 및 길이를 가지는 블랭킷용 기재를 사용하더라도 본 발명의 일 실시예에 따른 겔화 공정보다 시간이 현저하게 오래 걸리는 문제가 발생한다. 특히, 블랭킷용 기재가 길어질수록 블랭킷용 기재 전체적으로 충분한 겔화가 이루어지기 위해서는 겔화 공정 시간이 길어지는 문제가 더욱 두드러지게 나타나는데, 본 발명의 일 실시예에 따르면 블랭킷용 기재 전체에서 졸의 겔화가 동시에 이루어지기 때문에 제조시간을 현저하게 줄일 수 있고, 또한 블랭킷용 기재의 길이 및 두께가 겔화 시간에 영향을 미치지 않으므로 길이가 긴 블랭킷용 기재를 사용하더라도 제조시간을 현저하게 낮춰 공정 효율을 극대화 할 수 있다.In the present invention, as an aerogel blanket is manufactured by putting both the catalytic sol and the blanket substrate in the reaction vessel and gelling it, unlike the conventional roll-to-roll method, a moving element such as a conveyor belt is not separately required. There is an advantage that can save a lot of money. In addition, as in the roll-to-roll method, when a blanket substrate is placed on a moving element and a catalyzed sol is applied to the blanket substrate to gel while continuing to move the moving element, gelation is performed simultaneously on the entire blanket substrate. The gelling process according to an embodiment of the present invention, even if a blanket substrate having the same thickness and length is used because gelling is inevitable sequentially according to the passage of time while continuously supplying the blanket substrate and the catalyzed sol. A problem occurs that takes significantly longer than that. In particular, the longer the blanket substrate is, the more pronounced the problem of lengthening the gelling process time in order to achieve sufficient gelation throughout the blanket substrate.According to an embodiment of the present invention, gelation of the sol is simultaneously performed in the entire blanket substrate. Because of this, the manufacturing time can be remarkably reduced, and since the length and thickness of the blanket substrate do not affect the gelation time, even if a long blanket substrate is used, the manufacturing time can be significantly reduced, thereby maximizing process efficiency.
또한, 본 발명의 일 실시예에 따르면 반응 용기를 회전시키면서 겔화를 수행하여 원심력과 구심력이 작용하기 때문에 반응 용기를 회전시키지 않거나, 이동 요소 상에서 겔화시키는 롤투롤 공법에 비해 에어로겔이 더욱 균일하게 분산된 에어로겔 블랭킷을 제조할 수 있어, 제조되는 에어로겔 블랭킷의 두께가 블랭킷용 기재의 두께와 동일 또는 극히 유사한 수준이며, 단열성이 우수한 효과가 있다.In addition, according to an embodiment of the present invention, since centrifugal force and centripetal force act by performing gelation while rotating the reaction vessel, the reaction vessel is not rotated, or the airgel is more uniformly dispersed compared to the roll-to-roll method of gelling on a moving element. Since the airgel blanket can be manufactured, the thickness of the airgel blanket to be manufactured is the same as or extremely similar to the thickness of the substrate for the blanket, and there is an effect of excellent thermal insulation properties.
추가적으로, 본 발명의 일 실시예에 따른 제조방법은 상기 습윤겔 블랭킷 복합체를 적당한 온도에서 방치하여 화학적 변화가 완전히 이루어지도록 위한 공정으로 숙성 단계를 수행할 수 있으며, 숙성 단계는 상기 형성된 망상구조를 더 견고하게 형성시킬 수 있어, 본 발명의 에어로겔 블랭킷의 기계적 안정성을 강화시킬 수 있다.Additionally, in the manufacturing method according to an embodiment of the present invention, the wet gel blanket composite is left at an appropriate temperature to complete the chemical change, and the aging step may be performed, and the aging step further enhances the formed network structure. Since it can be formed firmly, the mechanical stability of the airgel blanket of the present invention can be enhanced.
본 발명의 숙성 단계는 상기 습윤겔 블랭킷 복합체를 그 자체로 적당한 온도에서 방치하여 실시될 수 있고, 다른 예로 상기 습윤겔 블랭킷 복합체의 존재 하에, 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화암모늄(NH4OH), 트리에틸아민, 피리딘 등의 염기성 촉매를 유기용매에 1 내지 10 % 농도로 희석시킨 용액을 첨가하여 실시될 수 있다. 이러한 경우, 에어로겔 내에 Si-O-Si bonding 을 최대한으로 유도하여 실리카겔의 망상 구조를 더욱 견고하게 만들어 이후 수행될 빠른 건조 공정에서 기공 구조의 유지를 더욱 용이하게 하는 효과가 있다. 이 때 유기용매는 전술한 알코올(극성 유기용매)일 수 있으며, 구체적으로는 에탄올을 포함할 수 있다.The aging step of the present invention may be carried out by leaving the wet gel blanket complex itself at an appropriate temperature, and as another example, in the presence of the wet gel blanket complex, sodium hydroxide (NaOH), potassium hydroxide (KOH), and ammonium hydroxide (NH 4 OH), triethylamine, pyridine, etc. can be carried out by adding a solution obtained by diluting a basic catalyst such as 1 to 10% concentration in an organic solvent. In this case, by inducing Si-O-Si bonding in the airgel to the maximum, the network structure of the silica gel is made more solid, and thus the maintenance of the pore structure in the fast drying process to be performed later is more easily effective. In this case, the organic solvent may be the aforementioned alcohol (polar organic solvent), and specifically, may include ethanol.
또한, 상기 숙성 단계는 최적의 기공 구조 강화를 위하여 적절한 온도 범위에서 수행되어야 하는데 본 발명의 숙성 단계는 염기성 촉매의 투입 여부에 관계 없이, 30 내지 70 ℃ 온도에서 1 내지 20 시간 동안 방치시켜 수행하는 것일 수 있다. 숙성 온도가 30 ℃ 미만인 경우, 숙성 시간이 지나치게 길어져 전체 공정 시간의 증가로 이어져 생산성이 감소하는 문제가 있을 수 있으며, 숙성 온도가 70 ℃ 초과인 경우, 에탄올의 끓는점을 벗어나므로, 증발에 의한 용매의 손실이 커져, 원재료 비용이 증가하는 문제가 있을 수 있다.In addition, the aging step should be carried out at an appropriate temperature range for reinforcing the optimal pore structure. The aging step of the present invention is performed by allowing it to stand at a temperature of 30 to 70° C. for 1 to 20 hours, regardless of whether or not a basic catalyst is added. Can be. If the aging temperature is less than 30 ℃, there may be a problem that the aging time is too long, leading to an increase in the overall process time, resulting in a decrease in productivity. If the aging temperature is more than 70 ℃, it is out of the boiling point of ethanol, so the solvent by evaporation There may be a problem of increasing the loss of raw materials and increasing the cost of raw materials.
또한, 본 발명의 일 실시예에 따르면, 상기 숙성 단계는 겔화가 완료된 실리카 습윤겔 블랭킷을 회수한 후 별도의 반응 용기에서 수행할 수도 있고, 또는 겔화가 수행된 반응 용기 내부에서 수행될 수 있으며, 공정의 효율 및 장비의 간소화 측면에서 바람직하게는 겔화가 수행된 상기의 반응 용기에서 숙성 단계를 수행할 수 있다. 또한 겔화가 수행된 상기의 반응 용기에서 숙성 단계를 수행할 때, 상기 단계 3)에서 제조된 습윤겔 블랭킷 복합체는 회전하는 것일 수 있고, 회전하면서 숙성을 수행하는 경우 숙성 용매가 더욱 잘 침투될 수 있고, 침투된 이후 습윤겔 블랭킷 복합체 내에서 분산이 더욱 잘 이루어질 수 있으므로 숙성 효율이 크게 개선되는 이점이 있다.In addition, according to an embodiment of the present invention, the aging step may be performed in a separate reaction vessel after recovering the gelled silica wet gel blanket, or may be performed inside the reaction vessel in which gelation was performed, In terms of process efficiency and simplification of equipment, the aging step may be preferably performed in the reaction vessel in which gelation has been performed. In addition, when performing the aging step in the reaction vessel in which gelation has been performed, the wet gel blanket composite prepared in step 3) may be rotated, and when aging is performed while rotating, the aging solvent may penetrate better. And, since the dispersion can be made better in the wet gel blanket composite after penetration, there is an advantage that the aging efficiency is greatly improved.
또한, 본 발명의 일 실시예에 따른 제조방법은 습윤겔 블랭킷 복합체로부터 에어로겔 블랭킷을 제조하기 위한 건조 단계에 앞서 용매 치환 단계를 수행할 수 있다. 상기 습윤겔 블랭킷 복합체의 습윤겔은 기공이 물 및/또는 유기용매를 포함하는 용매로 채워져 있는데, 습윤겔 블랭킷 복합체를 건조하는 단계를 수행하여 상기 용매를 제거하게 되면 액상의 용매가 기상으로 기화하면서 기/액 계면에서의 용매의 표면장력으로 인하여 기공구조의 수축 및 균열이 발생하게 된다. 그 결과, 최종 제조되는 실리카 에어로겔에서의 비표면적 감소 및 기공구조의 변화가 일어나게 된다. 따라서, 상기 습윤겔의 기공구조를 유지하기 위해서는 용매의 표면장력을 최소화하는 것이 필요하며, 이를 위해서는 표면장력이 큰 물을 표면장력이 낮은 용매로 치환하는 과정이 필요하다.In addition, the manufacturing method according to an embodiment of the present invention may perform a solvent replacement step prior to the drying step for manufacturing an airgel blanket from the wet gel blanket composite. The wet gel of the wet gel blanket composite has pores filled with a solvent including water and/or an organic solvent, and when the solvent is removed by performing the step of drying the wet gel blanket composite, the liquid solvent vaporizes into a gas phase. Shrinkage and cracking of the pore structure occur due to the surface tension of the solvent at the gas/liquid interface. As a result, a decrease in specific surface area and a change in pore structure in the final produced silica airgel occur. Therefore, in order to maintain the pore structure of the wet gel, it is necessary to minimize the surface tension of the solvent, and for this, it is necessary to replace water having high surface tension with a solvent having low surface tension.
상기 치환되는 용매로서 겔화 후 실리카 겔과 혼합 가능한 용매는 친수성의 극성 유기용매일 수 있고, 구체적인 예로 알코올일 수 있다. 상기 알코올은 구체적으로 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 1가 알코올; 또는 글리세롤, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 및 솔비톨 등과 같은 다가 알코올일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이 중에서도 물 및 소수성 에어로겔과의 혼화성을 고려할 때 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 탄소수 1 내지 6의 1가 알코올일 수 있다.As the substituted solvent, a solvent that can be mixed with silica gel after gelation may be a hydrophilic polar organic solvent, and a specific example may be an alcohol. Specifically, the alcohol is a monohydric alcohol such as methanol, ethanol, isopropanol, butanol; Alternatively, it may be a polyhydric alcohol such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and sorbitol, and any one or a mixture of two or more of them may be used. Among these, in consideration of miscibility with water and a hydrophobic airgel, it may be a monohydric alcohol having 1 to 6 carbon atoms such as methanol, ethanol, isopropanol, butanol, and the like.
본 발명의 일 실시예에 따른 제조방법은 상기 습윤겔 블랭킷 복합체로부터 에어로겔 블랭킷을 제조하기 위해 건조하는 단계를 수행할 수 있다.The manufacturing method according to an embodiment of the present invention may perform a step of drying to manufacture an airgel blanket from the wet gel blanket composite.
본 발명의 일 실시예에 따른 상기 건조 단계는 숙성된 겔의 기공구조를 그대로 유지하면서 용매를 제거하는 공정을 통해 수행될 수 있으며, 상기 건조 단계는 초임계 건조 또는 상압 건조 공정에 의할 수 있다.The drying step according to an embodiment of the present invention may be performed through a process of removing the solvent while maintaining the pore structure of the aged gel, and the drying step may be performed by a supercritical drying process or an atmospheric drying process. .
상기 초임계 건조 공정은 초임계 이산화탄소를 이용하여 수행될 수 있다. 이산화탄소(CO2)는 상온 및 상압에서는 기체 상태이지만 임계점(supercritical point)이라고 불리는 일정한 온도 및 고압의 한계를 넘으면 증발 과정이 일어나지 않아서 기체와 액체의 구별을 할 수 없는, 임계 상태가 되며, 이 임계 상태에 있는 이산화탄소를 초임계 이산화탄소라고 한다. 초임계 이산화탄소는 분자의 밀도는 액체에 가깝지만, 점성도는 낮아 기체에 가까운 성질을 가지며, 확산이 빠르고 열전도성이 높아 건조 효율이 높고, 건조 공정 시간을 단축시킬 수 있다.The supercritical drying process may be performed using supercritical carbon dioxide. Carbon dioxide (CO 2 ) is in a gaseous state at room temperature and pressure, but when it exceeds the limit of a certain temperature and high pressure called the supercritical point, the evaporation process does not occur, and it becomes a critical state in which gas and liquid cannot be distinguished. Carbon dioxide in the state is called supercritical carbon dioxide. Although supercritical carbon dioxide has a molecular density close to that of a liquid, its viscosity is low, it has a property close to that of a gas, has a fast diffusion, high thermal conductivity, high drying efficiency, and can shorten a drying process time.
구체적으로, 상기 초임계 건조 공정은 초임계 건조 반응기 안에 숙성된 습윤겔 블랭킷을 넣은 다음, 액체 상태의 CO2를 채우고 습윤겔 내부의 알코올 용매를 CO2로 치환하는 용매치환 공정을 수행한다. 그 후에 일정 승온 속도, 구체적으로는 0.1 ℃/min 내지 1 ℃/min의 속도로, 40 내지 70 ℃로 승온시킨 후, 이산화탄소가 초임계 상태가 되는 압력 이상의 압력, 구체적으로는 100 bar 내지 150 bar의 압력을 유지하여 이산화탄소의 초임계 상태에서 일정 시간, 구체적으로는 20 분 내지 1 시간 동안 유지한다. 일반적으로 이산화탄소는 31 ℃의 온도, 73.8 bar의 압력에서 초임계 상태가 된다. 이산화탄소가 초임계 상태가 되는 일정 온도 및 일정 압력에서 2 시간 내지 12 시간, 보다 구체적으로는 2 시간 내지 6 시간 동안 유지한 다음, 서서히 압력을 제거하여 초임계 건조 공정을 완료하여 에어로겔 블랭킷을 제조할 수 있다.Specifically, in the supercritical drying process, a wet gel blanket that has been aged in a supercritical drying reactor is placed, and then a liquid CO 2 is filled and the alcohol solvent in the wet gel is replaced with CO 2. After that, after raising the temperature to 40 to 70° C. at a rate of constant temperature increase, specifically, 0.1° C./min to 1° C./min, a pressure equal to or higher than the pressure at which carbon dioxide becomes a supercritical state, specifically 100 bar to 150 bar By maintaining the pressure of carbon dioxide in a supercritical state, it is maintained for a certain period of time, specifically 20 minutes to 1 hour. In general, carbon dioxide becomes supercritical at a temperature of 31 °C and a pressure of 73.8 bar. Carbon dioxide is maintained at a constant temperature and pressure at a supercritical state for 2 to 12 hours, more specifically for 2 to 6 hours, and then the pressure is gradually removed to complete the supercritical drying process to manufacture an airgel blanket. I can.
또한, 상압 건조 공정의 경우, 70 내지 200 ℃ 온도 및 상압(1±0.3 atm) 하에서 열풍건조, IR drying 등의 통상의 방법에 따라 수행될 수 있다.In addition, in the case of the normal pressure drying process, it may be performed according to conventional methods such as hot air drying and IR drying under a temperature of 70 to 200° C. and atmospheric pressure (1±0.3 atm).
상기와 같은 건조 공정의 결과로, 나노 크기의 기공을 갖는 다공성 에어로겔을 포함하는 블랭킷이 제조될 수 있다. 특히, 본 발명의 일 실시예에 따른 실리카 에어로겔은 높은 소수화도와 함께 우수한 물성적 특성, 특히 낮은 밀도와 높은 기공율을 가지며, 이를 포함하는 실리카 에어로겔 함유 블랭킷은 낮은 열전도도와 함께 우수한 기계적 유연성을 갖는다.As a result of the drying process as described above, a blanket including a porous airgel having nano-sized pores may be manufactured. In particular, the silica airgel according to an embodiment of the present invention has excellent physical properties with high hydrophobicity, particularly low density and high porosity, and the silica airgel-containing blanket including the same has low thermal conductivity and excellent mechanical flexibility.
또한, 상기 건조 공정 전 또는 후에 두께 조절 및 블랭킷의 내부조직과 표면형상을 균일하게 하기 위한 압착 공정, 용도에 따라 적절한 형태 또는 모폴로지를 갖도록 하기 위한 성형 공정, 또는 별도의 기능층을 적층하는 적층 공정 등이 더 수행될 수도 있다.In addition, a pressing process to adjust the thickness before or after the drying process and to make the internal structure and surface shape of the blanket uniform, a molding process to have an appropriate shape or morphology according to the use, or a lamination process of laminating a separate functional layer And the like may be further performed.
본 발명은 상기 에어로겔 블랭킷 제조방법을 실시하기 위한 에어로겔 블랭킷 제조장치를 제공한다.The present invention provides an airgel blanket manufacturing apparatus for carrying out the above airgel blanket manufacturing method.
본 발명의 일 실시예에 따른 에어로겔 블랭킷 제조장치는 도 1에 도시되어 있는 것과 같이, 블랭킷(blanket)이 권취되는 보빈(100), 상기 보빈(100)을 수용하는 겔화탱크(210)가 구비된 본체(200), 상기 겔화탱크(210)에 수용된 보빈(100)을 회전시키는 구동부재(300), 및 상기 겔화탱크(210)에 촉매화된 졸을 주입하는 촉매화된 졸 공급부재(400), 상기 겔화탱크(210)에 숙성용액을 주입하는 숙성부재(도시하지 않음), 및 상기 겔화탱크(210)의 온도를 상승시켜서 블랭킷을 건조하는 건조부재(도시하지 않음)를 포함한다.The airgel blanket manufacturing apparatus according to an embodiment of the present invention is provided with a bobbin 100 on which a blanket is wound, and a gelation tank 210 accommodating the bobbin 100, as shown in FIG. 1. The main body 200, a driving member 300 for rotating the bobbin 100 accommodated in the gelling tank 210, and a catalyzed sol supply member 400 for injecting the catalyzed sol into the gelling tank 210 , An aging member (not shown) for injecting an aging solution into the gelling tank 210, and a drying member (not shown) for drying the blanket by increasing the temperature of the gelling tank 210.
여기에서 블랭킷은 촉매화된 졸이 투입되기 전인 블랭킷용 기재, 촉매화된 졸이 함침된 블랭킷용 기재 및/또는 겔화 이후 습윤겔 블랭킷을 의미하는 것일 수 있고, 각 단계 별로 블랭킷용 기재의 상태에 따라 적절하게 해석될 수 있다.Here, the blanket may mean a blanket substrate before the catalyzed sol is introduced, a blanket substrate impregnated with the catalyzed sol, and/or a wet gel blanket after gelation. It can be interpreted appropriately according to.
보빈은 블랭킷을 롤-형태로 권취하기 위한 것으로, 블랭킷이 롤 형태로 권취되는 권취봉과, 상기 권취봉의 양쪽 단부에 각각 결합되고 상기 권취봉에 권취된 블랭킷의 측부를 지지하는 지지판을 포함한다.The bobbin is for winding the blanket in a roll-shape, and includes a winding rod on which the blanket is wound in a roll shape, and a support plate coupled to both ends of the winding rod and supporting the sides of the blanket wound on the winding rod.
상기 권취봉은 길이방향으로 관통되는 중공이 형성된 원통 형태를 가지며, 외주면에 긴 시트 형태의 블랭킷이 롤 형태로 권취된다.The winding rod has a cylindrical shape in which a hollow penetrated in the longitudinal direction is formed, and a blanket in the form of a long sheet is wound in a roll shape on an outer circumferential surface.
한편, 권취봉에 권취된 블랭킷의 외측은 촉매화된 졸을 빠르게 함침시킬 수 있어 안정적으로 겔화시킬 수 있지만, 블랭킷의 내측은 촉매화된 졸이 함침되는데 많은 시간이 소요되는 문제점이 있다. 이를 방지하기 위해 권취봉의 외주면에는 중공과 연결되는 복수개의 연결구멍을 포함한다. On the other hand, the outside of the blanket wound on the winding rod can be quickly impregnated with the catalyzed sol, so that the catalyst can be stably gelled, but the inside of the blanket has a problem that it takes a lot of time to impregnate the catalyst. To prevent this, the outer circumferential surface of the winding rod includes a plurality of connection holes connected to the hollow.
즉, 상기 권취봉은 상기 겔화탱크에 주입된 촉매화된 졸을 유입하도록 내부에 중공이 형성되고, 상기 중공에 유입된 촉매화된 졸이 권취봉 밖으로 유출되어 권취봉에 권취된 블랭킷의 내측에 함침되도록 하는 복수개의 연결구멍이 형성된다. 이에 따라 블랭킷의 외측과 내측을 동시에 촉매화된 졸을 함침시킴에 따라 겔화시킬 수 있으며, 그 결과 블랭킷의 겔화시키는데 소요되는 시간을 크게 단축할 수 있고, 그 결과 블랭킷 전체를 균일하게 겔화시킬 수 있다.That is, the winding rod has a hollow inside so as to introduce the catalyzed sol injected into the gelation tank, and the catalyzed sol introduced into the hollow flows out of the winding rod and impregnates the inside of the blanket wound on the winding rod. A plurality of connection holes so as to be formed are formed. Accordingly, the outer and inner sides of the blanket can be gelled by simultaneously impregnating the catalyzed sol, and as a result, the time required for gelling of the blanket can be greatly shortened, and as a result, the entire blanket can be uniformly gelled. .
한편, 상기 복수개의 연결구멍의 직경은 3~5mm를 가지며, 권취봉의 외주면에 규칙적인 간격으로 형성된다. 이에 따라 권취봉의 외주면에 권취된 블랭킷 전체에 균일하게 촉매화된 졸을 공급할 수 있고, 그에 따라 블랭킷 내측 전체를 균일하게 겔화시킬 수 있다.Meanwhile, the plurality of connection holes have a diameter of 3 to 5 mm, and are formed at regular intervals on the outer circumferential surface of the winding rod. Accordingly, the sol catalyzed uniformly can be supplied to the entire blanket wound on the outer circumferential surface of the winding rod, and accordingly, the entire inner side of the blanket can be uniformly gelled.
상기 지지판는 권취봉에 권취된 블랭킷이 불규칙하게 권취되지 않도록 지지하는 것으로, 원판 형태를 가지며, 상기 권취봉의 양쪽 단부에 각각 결합되고 상기 권취봉에 권취된 블랭킷의 측부를 지지한다.The support plate supports the blanket wound around the winding rod so that it is not wound irregularly, has a disk shape, is coupled to both ends of the winding rod, and supports side portions of the blanket wound around the winding rod.
한편, 지지판은 상기 권취봉의 단부가 결합되는 체결홈과, 상기 체결홈의 바닥면에 형성되는 체결구멍을 포함한다. 즉, 지지판은 체결홈을 통해 권취봉의 단부에 결합할 수 있다.Meanwhile, the support plate includes a fastening groove to which an end of the winding rod is coupled, and a fastening hole formed on a bottom surface of the fastening groove. That is, the support plate may be coupled to the end of the winding rod through the fastening groove.
한편, 지지판은 복수개의 개방구멍이 형성되며, 복수개의 개방구멍은 권취봉에 권취된 블랭킷의 측부로 촉매화된 졸을 유입할 수 있고, 이에 따라 블랭킷 측부를 안정적으로 겔화시킬 수 있다.On the other hand, the support plate has a plurality of open holes, and the plurality of open holes can introduce the catalyzed sol to the side of the blanket wound on the winding rod, thereby stably gelling the side of the blanket.
따라서 상기 보빈은 권취봉과 지지판을 포함하며, 이에 따라 블랭킷을 롤형태로 권취할 수 있다.Therefore, the bobbin includes a winding rod and a support plate, and accordingly, the blanket can be wound in a roll form.
본체는 보빈을 수용하는 겔화탱크가 설치되는 것으로, 겔화탱크, 및 상기 겔화탱크가 설치되는 제1 설치부재(220)를 포함한다. The body is provided with a gelling tank accommodating a bobbin, and includes a gelling tank and a first installation member 220 on which the gelling tank is installed.
상기 겔화탱크는 보빈에 수용된 블랭킷을 겔화시키기 위한 것으로, 내부에 구비되고 상기 보빈을 수용하는 겔화실, 외부 하단에 구비되고 겔화실과 연결되는 배출부, 외부 상단에 구비되고 겔화실과 연결되는 유입부를 포함한다.The gelling tank is for gelling the blanket contained in the bobbin, and includes a gelling chamber provided inside and accommodating the bobbin, an outlet provided at the outer lower end and connected to the gelling chamber, and an inlet provided at the outer upper end and connected to the gelling chamber do.
특히 겔화탱크의 겔화실은 상부가 덮개에 의해 개방되고, 하부가 권취봉에 권취된 블랭킷과 대응하는 곡률을 가진 'U'자 단면 형상을 가지며, 이에 따라 겔화실에 실리카졸이 유입될 경우 실리카졸과 블랭킷의 접촉력을 높일 수 있고, 그 결과 블랭킷의 겔화를 높일 수 있다.In particular, the gelation chamber of the gelation tank has a'U'-shaped cross-sectional shape with a curvature corresponding to that of the blanket wound on the winding rod and the upper part of the gelation chamber opened by the cover. Accordingly, when silica sol flows into the gelation chamber, The contact force between the blanket and the blanket can be increased, and as a result, the gelation of the blanket can be increased.
한편, 상기 겔화탱크는 상기 겔화실의 양쪽 벽면에 구비되고, 상기 보빈의 양쪽 끝단에 결합되면서 상기 보빈을 상기 겔화실에 회전 가능하게 설치하는 회전부재를 포함한다.On the other hand, the gelation tank is provided on both walls of the gelation chamber, and is coupled to both ends of the bobbin and includes a rotating member for rotatably installing the bobbin in the gelation chamber.
상기 회전부재는 상기 겔화실의 양쪽 벽면에 형성된 관통홀에 회전 가능하게 설치되고, 겔화실에 수용된 보빈의 단부가 동력 전달 가능하게 설치된다.The rotating member is rotatably installed in through-holes formed on both walls of the gelling chamber, and ends of the bobbin accommodated in the gelling chamber are installed to transmit power.
일례로, 회전부재의 일면에 일자 형태의 결합돌기가 형성되고, 보빈의 단부에 상기 결합돌기가 결합되는 일자 형태의 결합홈이 형성된다. 즉, 결합돌기와 결합홈의 결합을 통해 회전부재 회전시 보빈을 동일 방향으로 회전시킬 수 있다. 그 결과 겔화탱크 내부에 보빈을 회전 가능하게 설치할 수 있다.For example, a straight coupling protrusion is formed on one surface of the rotating member, and a straight coupling groove to which the coupling protrusion is coupled is formed at an end of the bobbin. That is, the bobbin can be rotated in the same direction when the rotating member is rotated through the coupling of the coupling protrusion and the coupling groove. As a result, the bobbin can be installed rotatably inside the gelation tank.
한편, 본체는 촉매화된 졸 공급부재가 설치되는 제2 설치부재(230)가 더 포함되며, 상기 제2 설치부재는 바닥편(231)과, 상기 바닥편의 상부에 설치되고 촉매화된 졸 공급부재가 겔화탱크 보다 높게 위치하도록 설치되는 설치대(232), 및 상기 바닥편의 일측 단부에 설치되는 계단(233)을 포함한다.On the other hand, the main body further includes a second installation member 230 in which a catalyzed sol supply member is installed, and the second installation member is installed on the bottom piece 231 and on the top of the bottom piece to supply the catalyzed sol. It includes an installation table 232 installed so that the member is positioned higher than the gelation tank, and a staircase 233 installed at one end of the bottom piece.
한편, 상기 겔화탱크는 상기 겔화탱크에 구비된 나머지 하나의 회전부재와 결합되면서 상기 보빈을 회전시키는 회전핸들을 포함하며, 회전핸들은 외부에서 보빈을 수동으로 회전시킬 수 있다.Meanwhile, the gelation tank includes a rotation handle that rotates the bobbin while being coupled with the other rotation member provided in the gelation tank, and the rotation handle may manually rotate the bobbin from the outside.
한편, 상기 제2 설치부재의 설치대에는 숙성부재 및 건조부재가 더 설치된다.Meanwhile, a maturing member and a drying member are further installed on the mounting table of the second mounting member.
구동부재는 상기 겔화탱크에 수용된 보빈을 회전시키기 위한 것으로, 상기 겔화탱크에 구비된 다른 하나의 회전부재와 동력 전달 가능하게 연결된다. 즉, 구동부재는 회전부재를 회전시키면, 회전부재와 연동하여 겔화탱크에 수용된 보빈을 회전시킬 수 있다.The driving member is for rotating the bobbin accommodated in the gelling tank, and is connected to the other rotating member provided in the gelling tank so as to transmit power. That is, when the driving member rotates the rotating member, the bobbin accommodated in the gelling tank can be rotated in conjunction with the rotating member.
촉매화된 졸 공급부재는 겔화탱크에 실리카졸을 주입하여 보빈에 권취된 블랭킷을 함침시킴에 따라 블랭킷을 겔화시키기 위한 것으로, 상기 설치대에 설치되고, 촉매화된 졸을 겔화탱크의 유입부를 통해 겔화실에 공급한다.The catalyzed sol supply member is for gelling the blanket by impregnating the blanket wound on the bobbin by injecting silica sol into the gelation tank.It is installed on the mounting table, and the catalyzed sol is gelled through the inlet of the gelling tank. Supply to the Japanese style room.
숙성부재는 겔화탱크에 숙성용액을 주입하여 보빈에 권취된 블랭킷을 숙성하기 위한 것으로, 상기 설치대에 설치되고, 숙성용액을 겔화탱크의 유입부를 통해 겔화실에 공급한다.The aging member is for aging the blanket wound on the bobbin by injecting the aging solution into the gelation tank, and is installed on the mounting table, and supplies the aging solution to the gelation chamber through the inlet of the gelation tank.
건조부재는 겔화탱크에 고온의 열풍을 공급하여 보빈에 권취된 블랭킷을 건조하기 위한 것으로, 상기 설치대에 설치되고 겔화탱크의 온도를 상승시켜서 겔화탱크에 수용된 블랭킷을 건조한다The drying member is for drying the blanket wound on the bobbin by supplying high-temperature hot air to the gelling tank, and is installed on the mounting table and drying the blanket accommodated in the gelling tank by increasing the temperature of the gelling tank.
따라서 본 발명의 일 실시예에 따른 에어로겔 블랭킷 제조장치는 에어로겔 블랭킷의 제조시간을 크게 단축시킬 수 있고, 에어로겔 블랭킷의 생산성을 크게 높일 수 있으며, 그 결과 에어로겔 블랭킷을 대량생산할 수 있다.Therefore, the airgel blanket manufacturing apparatus according to an embodiment of the present invention can greatly shorten the manufacturing time of the airgel blanket, greatly increase the productivity of the airgel blanket, and as a result, mass-produce the airgel blanket.
특히 본 발명의 일 실시예에 따른 에어로겔 블랭킷 제조장치는 블랭킷을 회전시킴에 따라 블랭킷의 두께 및 길이에 상관없이 안정적인 겔화를 유도할 수 있고, 보빈이 회전하기 때문에 보빈에 권취된 블랭킷 전체를 균일하게 겔화시킬 수 있으며, 겔화탱크를 회전하지 않고 보빈만 회전하기 때문에 겔화탱크의 형태가 제한되지 않는다. 또한, 겔화탱크의 겔화실을 'U'자 단면형태로 형성함에 따라 보빈에 권취된 블랭킷을 보다 효과적으로 겔화시킬 수 있다.In particular, the airgel blanket manufacturing apparatus according to an embodiment of the present invention can induce stable gelation regardless of the thickness and length of the blanket by rotating the blanket, and since the bobbin rotates, the entire blanket wound around the bobbin is uniformly Gelation is possible, and the shape of the gelation tank is not limited because only the bobbin rotates without rotating the gelation tank. In addition, as the gelation chamber of the gelation tank is formed in a'U' cross-sectional shape, the blanket wound around the bobbin can be gelled more effectively.
또한, 본 발명의 일 실시예에 따르면, 상기 에어로겔 블랭킷 제조장치는 블랭킷(blanket) 이 권취되는 보빈을 포함하되, 상기 보빈은 권취봉과 지지판을 포함할 수 있다. 여기서 상기 권취봉의 외주면에는 블랭킷의 권취 시잠점이 끼워져 고정되는 고정클립을 포함할 수 있다.In addition, according to an embodiment of the present invention, the airgel blanket manufacturing apparatus includes a bobbin on which a blanket is wound, and the bobbin may include a winding rod and a support plate. Here, the outer circumferential surface of the winding rod may include a fixing clip that is inserted and fixed at the winding point of the blanket.
즉, 고정클립은 탄성복원력을 가진 핀 형태를 가지고, 일단이 권취봉의 외주면에 고정되고 타단이 권취봉의 외주면에 탄력적으로 지지된다. 이에 따라 고정클립의 타단과 권취봉 사이에 블랭킷의 시작점을 삽입하면 고정클립의 탄성력에 의해 블랭킷을 권취봉의 시작점을 고정할 수 있고, 그 결과 권취봉의 외주면에 블랭킷을 간편하게 권취할 수 있다.That is, the fixing clip has a pin shape having an elastic restoring force, one end is fixed to the outer circumferential surface of the winding rod and the other end is elastically supported on the outer circumferential surface of the winding rod. Accordingly, when the starting point of the blanket is inserted between the other end of the fixing clip and the winding rod, the blanket can be fixed to the starting point of the winding rod by the elastic force of the fixing clip, and as a result, the blanket can be easily wound on the outer circumferential surface of the winding rod.
본 발명은 상기 에어로겔 블랭킷 제조방법으로부터 제조된 에어로겔 블랭킷을 제공한다. 상기 에어로겔 블랭킷은 열전도도 및 수분 함침률이 낮은 것이다. 이 때, 상기 에어로겔 블랭킷은 블랭킷 내 열전도도가 21.0 mW/mK 이하인 것을 특징으로 한다. 또한, 상기 에어로겔 블랭킷은 블랭킷 내 수분 함침률이 2.0 중량% 이하 또는 1.5 중량% 이하인 것일 수 있다. 상기 열전도도는 임의로 재단한 에어로겔 블랭킷에서 모두 나타날 수 있는 특징이고, 구체적으로는 0.01 m2 내지 10.0 m2의 면적, 보다 구체적으로 0.36 m2 내지 5.0 m2의 면적에서 측정한 열전도도 값일 수 있다.The present invention provides an airgel blanket manufactured from the method for manufacturing an airgel blanket. The airgel blanket has low thermal conductivity and low moisture impregnation rate. In this case, the airgel blanket is characterized in that the thermal conductivity in the blanket is 21.0 mW/mK or less. In addition, the airgel blanket may have a moisture impregnation rate of 2.0% by weight or less or 1.5% by weight or less in the blanket. The thermal conductivity is a characteristic that can appear all in an arbitrarily cut airgel blanket, specifically, it may be a thermal conductivity value measured in an area of 0.01 m 2 to 10.0 m 2 , and more specifically, an area of 0.36 m 2 to 5.0 m 2. .
일례로, 상기 에어로겔 블랭킷의 열전도도는 에어로겔 블랭킷 내 일정한 크기를 가지는 샘플을 수득하여, 각 샘플에 대해 NETZSCH社의 HFM 436 Lambda장비를 이용하여 상온(23±5 ℃) 열전도도를 측정한 것일 수 있다.For example, the thermal conductivity of the airgel blanket may be obtained by obtaining a sample having a certain size in the airgel blanket, and measuring the thermal conductivity at room temperature (23±5°C) for each sample using the HFM 436 Lambda equipment of NETZSCH have.
또한, 본 발명의 일 실시예에 따르면, 상기 에어로겔 블랭킷은 에어로겔 및 블랭킷용 기재를 포함하는 것이며, 구체적으로 블랭킷용 기재 내부 및 표면에 에어로겔이 형성된 것일 수 있고, 일례로 블랭킷용 기재 내부 및 표면에 다량의 에어로겔 입자가 고루 형성된 것일 수 있다.In addition, according to an embodiment of the present invention, the airgel blanket includes an airgel and a substrate for a blanket, and specifically, the airgel may be formed inside and on the surface of the blanket substrate, for example, on the inside and the surface of the blanket substrate. It may be that a large amount of airgel particles are formed evenly.
이에 따라, 본 발명의 에어로겔 블랭킷은 각종 산업용 설비의 배관이나 공업용 로와 같은 보온보냉용 플랜트 시설은 물론, 항공기, 선박, 자동차, 건축 구조물 등의 단열재, 보온재, 또는 불연재로서 유용하게 사용될 수 있다.Accordingly, the airgel blanket of the present invention can be usefully used as a thermal insulation material, a thermal insulation material, or a non-combustible material, such as an aircraft, ship, automobile, building structure, as well as a plant facility for thermal insulation such as pipes or industrial furnaces of various industrial facilities.
실시예Example
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein.
실시예 1Example 1
<촉매화된 졸 제조><Production of catalyzed sol>
메틸테트라에톡시실란(MTES)과 테트라에틸오르소실리케이트(TEOS)를 95:5의 몰비로 혼합하여 실리카 전구체 조성물을 제조하였다. 상기 실리카 전구체 조성물과 물을 1:10의 몰비로 혼합하고 실리카 전구체 조성물과 1:2의 중량비를 갖는 에탄올을 첨가하여 실리카 졸을 제조하였다. 가수분해를 촉진하기 위해 실리카 졸의 pH가 3 이하가 되도록 염산을 첨가하였다. 실리카 졸 100 중량부 대비 0.2 중량부의 불투명화제인 TiO2와 0.2 중량부의 난연제인 Ultracarb (LKAB 社)를 혼합하고 30분 간 교반하여 실리카 졸을 제조하였다. 이와는 별개로 1 부피%의 암모니아 에탄올 용액(염기 촉매 용액)을 제조하였다. 상기 실리카 졸과 염기 촉매 용액을 9:1의 부피비로 혼합하여 촉매화된 졸을 제조하였다.A silica precursor composition was prepared by mixing methyltetraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) at a molar ratio of 95:5. The silica precursor composition and water were mixed at a molar ratio of 1:10, and a silica precursor composition and ethanol having a weight ratio of 1:2 were added to prepare a silica sol. Hydrochloric acid was added so that the silica sol had a pH of 3 or less to accelerate hydrolysis. A silica sol was prepared by mixing 0.2 parts by weight of TiO 2 as an opacifying agent and 0.2 parts by weight of a flame retardant Ultracarb (LKAB) based on 100 parts by weight of the silica sol and stirring for 30 minutes. Separately, a 1 vol% ammonia ethanol solution (base catalyst solution) was prepared. The silica sol and the base catalyst solution were mixed in a volume ratio of 9:1 to prepare a catalyzed sol.
<습윤겔 블랭킷 제조><Manufacture of wet gel blanket>
반응 용기에 10T(10 mm) 유리 섬유(Glass fiber)가 감긴 보빈을 고정하였다. 상기 제조된 촉매화된 졸을 반응 용기에 투입하고 유리 섬유가 감긴 보빈을 회전시키며 겔화를 진행하였다. 이 때 촉매화된 졸의 투입 속도를 조절하여 겔화가 완료되기 전에 촉매화된 졸이 모두 투입될 수 있도록 하였다. 섬유가 충분히 함침되어 더 이상 반응 용기 내 액위가 변하지 않았을 때, 남아 있는 졸은 반응 용기에 결합된 드래인 밸브를 열어 회수하였다. 60 분 후, 겔화가 완료되고, 60 ℃의 온도에서 20 시간 동안 숙성시켰다. 숙성이 완료되고, 반응 용기에 60 ℃의 온도에서 에탄올을 투입하여 용매를 치환하였다.A bobbin wound with 10T (10 mm) glass fiber was fixed to the reaction vessel. The prepared catalyzed sol was put into a reaction vessel, and the bobbin wound around the glass fiber was rotated to perform gelation. At this time, the rate of addition of the catalyzed sol was adjusted so that all of the catalyzed sol could be added before the gelation was completed. When the fiber was sufficiently impregnated and the liquid level in the reaction vessel no longer changed, the remaining sol was recovered by opening the drain valve coupled to the reaction vessel. After 60 minutes, gelation was completed, and aged at a temperature of 60° C. for 20 hours. When the aging was completed, ethanol was added to the reaction vessel at a temperature of 60° C. to replace the solvent.
<건조 공정><Drying process>
이 후 습윤겔 블랭킷을 컨벡션 오븐에 넣고, 150 ℃에서 2 시간 내지 5 시간 동안 상압 건조를 진행하여 용매와 수분을 완전히 제거하여 소수성의 실리카 에어로겔 블랭킷을 제조하였다.Thereafter, the wet gel blanket was placed in a convection oven, and then dried at 150° C. for 2 to 5 hours under normal pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket.
실시예 2Example 2
상기 실시예 1에서, 촉매화된 졸 제조 시, 메틸테트라에톡시실란(MTES)과 테트라에틸오르소실리케이트(TEOS)를 90:10의 몰비로 혼합하여 실리카 전구체 조성물을 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, in the preparation of the catalyzed sol, except that the silica precursor composition was prepared by mixing methyltetraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) at a molar ratio of 90:10. It was carried out in the same manner as in Example 1.
실시예 3Example 3
상기 실시예 1에서, 촉매화된 졸 제조 시, 메틸테트라에톡시실란(MTES)과 테트라에틸오르소실리케이트(TEOS)를 98:2의 몰비로 혼합하여 실리카 전구체 조성물을 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, except for preparing a silica precursor composition by mixing methyltetraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) at a molar ratio of 98:2 when preparing the catalyzed sol. It was carried out in the same manner as in Example 1.
실시예 4Example 4
상기 실시예 1에서, 건조 공정 시, 습윤겔 블랭킷을 초임계 추출기에 넣고 CO2를 주입하고, 추출기 내의 온도를 1 시간에 걸쳐 50 ℃로 승온하고, 50 ℃, 100 bar에서 초임계 건조를 실시한 후, 초임계 건조가 완료된 소수성 실리카 에어로겔 블랭킷을 200 ℃의 오븐에서 2시간 동안 상압 건조를 진행하여 용매와 수분을 완전히 제거하여 소수성의 실리카 에어로겔 블랭킷을 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50 °C over 1 hour, and supercritical drying was performed at 50 °C and 100 bar. Thereafter, the same as in Example 1, except that the hydrophobic silica airgel blanket having been completed supercritical drying was dried in an oven at 200° C. for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
실시예 5Example 5
상기 실시예 2에서, 건조 공정 시, 습윤겔 블랭킷을 초임계 추출기에 넣고 CO2를 주입하고, 추출기 내의 온도를 1 시간에 걸쳐 50 ℃로 승온하고, 50 ℃, 100 bar에서 초임계 건조를 실시한 후, 초임계 건조가 완료된 소수성 실리카 에어로겔 블랭킷을 200 ℃의 오븐에서 2시간 동안 상압 건조를 진행하여 용매와 수분을 완전히 제거하여 소수성의 실리카 에어로겔 블랭킷을 제조한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 실시하였다.In Example 2, during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50 °C over 1 hour, and supercritical drying was performed at 50 °C and 100 bar. Thereafter, the same as in Example 2, except that the hydrophobic silica airgel blanket having been completed supercritical drying was dried in an oven at 200° C. for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
실시예 6Example 6
상기 실시예 3에서, 건조 공정 시, 습윤겔 블랭킷을 초임계 추출기에 넣고 CO2를 주입하고, 추출기 내의 온도를 1 시간에 걸쳐 50 ℃로 승온하고, 50 ℃, 100 bar에서 초임계 건조를 실시한 후, 초임계 건조가 완료된 소수성 실리카 에어로겔 블랭킷을 200 ℃의 오븐에서 2시간 동안 상압 건조를 진행하여 용매와 수분을 완전히 제거하여 소수성의 실리카 에어로겔 블랭킷을 제조한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 실시하였다.In Example 3, during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50° C. over 1 hour, and supercritical drying was performed at 50° C. and 100 bar. Thereafter, the same as in Example 3, except that the hydrophobic silica airgel blanket having supercritical drying was completed in an oven at 200° C. for 2 hours under normal pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
실시예 7Example 7
상기 실시예 1에서, 촉매화된 졸 제조 시, 메틸메트라에톡시실란(MTES)과 테트라에틸오르소실리케이트(TEOS)를 95:5의 몰비 대신 60:40의 몰비로 혼합하여 실리카 전구체 조성물을 제조하고, 건조 공정 시, 습윤겔 블랭킷을 초임계 추출기에 넣고 CO2를 주입하고, 추출기 내의 온도를 1 시간에 걸쳐 50 ℃로 승온하고, 50 ℃, 100 bar에서 초임계 건조를 실시한 후, 초임계 건조가 완료된 소수성 실리카 에어로겔 블랭킷을 200 ℃의 오븐에서 2시간 동안 상압 건조를 진행하여 용매와 수분을 완전히 제거하여 소수성의 실리카 에어로겔 블랭킷을 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, when preparing the catalyzed sol, methylmethraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) were mixed at a molar ratio of 60:40 instead of 95:5 to prepare a silica precursor composition. In the manufacturing and drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50° C. over 1 hour, and supercritical drying was performed at 50° C. and 100 bar, followed by supercritical drying. It was carried out in the same manner as in Example 1, except that the hydrophobic silica airgel blanket having completed critical drying was dried in an oven at 200°C for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. I did.
비교예 1Comparative Example 1
<촉매화된 졸 제조><Production of catalyzed sol>
테트라에틸오르소실리케이트(TEOS)와 물을 1:10의 몰비로 혼합하고 TEOS와 1:2의 중량비를 갖는 에탄올을 첨가하여 실리카 졸을 제조하였다. 가수분해를 촉진하기 위해 실리카 졸의 pH가 3 이하가 되도록 염산을 첨가하였다. 실리카 졸 100 중량부 대비 0.2 중량부의 불투명화제인 TiO2와 0.2 중량부의 난연제인 Ultracarb (LKAB 社)를 혼합하고 30분 간 교반하여 실리카 졸을 제조하고, 이와는 별개로 1 부피%의 암모니아 에탄올 용액(염기 촉매 용액)을 제조하였다. 상기 실리카 졸과 염기 촉매 용액을 9:1의 부피비로 혼합하여 촉매화된 졸을 제조하였다.A silica sol was prepared by mixing tetraethylorthosilicate (TEOS) and water at a molar ratio of 1:10, and adding TEOS and ethanol having a weight ratio of 1:2. Hydrochloric acid was added so that the silica sol had a pH of 3 or less to accelerate hydrolysis. A silica sol was prepared by mixing 0.2 parts by weight of TiO 2 as an opacifying agent and 0.2 parts by weight of Ultracarb (LKAB) as a flame retardant based on 100 parts by weight of the silica sol and stirring for 30 minutes to prepare a silica sol. Base catalyst solution) was prepared. The silica sol and the base catalyst solution were mixed in a volume ratio of 9:1 to prepare a catalyzed sol.
<습윤겔 블랭킷 제조><Manufacture of wet gel blanket>
반응 용기에 10T(10 mm) 유리 섬유(Glass fiber)가 감긴 보빈을 고정하였다. 상기 제조된 촉매화된 졸을 반응 용기에 투입하고 유리 섬유가 감긴 보빈을 회전시키며 겔화를 진행하였다. 이 때 촉매화된 졸의 투입 속도를 조절 하여 겔화가 완료되기 전에 촉매화된 졸이 모두 투입될 수 있도록 하였다. 섬유가 충분히 함침되어 더 이상 반응 용기 내 액위가 변하지 않으면, 남아 있는 졸은 반응 용기에 결합된 드래인 밸브를 열어 회수하였다. 30 분 후, 겔화가 완료되면 반응 용기에 숙성 용액을 투입하여 보빈을 회전시키며 숙성을 진행하였다. 이 때 숙성 용액은 5 부피%의 암모니아 에탄올 희석액이고, 60 ℃의 온도에서 20 시간 동안 숙성시켰다. 숙성이 완료되고, 드래인 밸브를 열어 숙성 용액을 회수하였다. 이후 반응 용기에 표면개질 용액을 투입하여 보빈을 회전시키며 표면개질을 수행하고, 완료 후 표면개질 용액을 회수하였다. 이 때 표면개질 용액은 10 부피%의 헥사메틸디실라잔(HMDS) 에탄올 희석액이고, 습윤겔 블랭킷 복합체와 동일한 부피비를 가지는 양을 첨가하였다. 표면개질(소수화)은 상온에서 8시간 동안 수행하였다.A bobbin wound with 10T (10 mm) glass fiber was fixed to the reaction vessel. The prepared catalyzed sol was put into a reaction vessel, and the bobbin wound around the glass fiber was rotated to perform gelation. At this time, the rate of addition of the catalyzed sol was adjusted so that all of the catalyzed sol could be added before the gelation was completed. When the fiber was sufficiently impregnated and the liquid level in the reaction vessel no longer changed, the remaining sol was recovered by opening the drain valve coupled to the reaction vessel. After 30 minutes, when the gelation was completed, the aging solution was added to the reaction vessel, and the bobbin was rotated to proceed with aging. At this time, the aging solution was a 5 vol% ammonia ethanol diluted solution, and was aged for 20 hours at a temperature of 60°C. When the aging was completed, the drain valve was opened to recover the aging solution. Thereafter, the surface modification solution was added to the reaction vessel to perform surface modification while rotating the bobbin, and after completion, the surface modification solution was recovered. At this time, the surface modification solution was a 10 vol% of hexamethyldisilazane (HMDS) ethanol diluted solution, and an amount having the same volume ratio as that of the wet gel blanket composite was added. Surface modification (hydrophobicization) was performed at room temperature for 8 hours.
<건조 공정><Drying process>
이 후 습윤겔 블랭킷을 컨벡션 오븐에 넣고, 150 ℃에서 2 시간 내지 5 시간 동안 상압 건조를 진행하여 용매와 수분을 완전히 제거하여 소수성의 실리카 에어로겔 블랭킷을 제조하였다.Thereafter, the wet gel blanket was placed in a convection oven, and then dried at 150° C. for 2 to 5 hours under normal pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket.
비교예 2Comparative Example 2
상기 실시예 1에서, 촉매화된 졸 제조 시, 메틸테트라에톡시실란(MTES)과 테트라에틸오르소실리케이트(TEOS)를 혼합하지 않고, 메틸테트라에톡시실란(MTES)을 단독으로 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, when preparing the catalyzed sol, methyltetraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) were not mixed, except that methyltetraethoxysilane (MTES) was used alone. Was carried out in the same manner as in Example 1.
비교예 3Comparative Example 3
상기 실시예 1에서, 촉매화된 졸 제조 시, 메틸테트라에톡시실란(MTES)과 테트라에틸오르소실리케이트(TEOS)를 혼합하지 않고, 테트라에틸오르소실리케이트(TEOS)를 단독으로 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, when preparing the catalyzed sol, methyltetraethoxysilane (MTES) and tetraethylorthosilicate (TEOS) were not mixed, except that tetraethylorthosilicate (TEOS) was used alone. Was carried out in the same manner as in Example 1.
비교예 4Comparative Example 4
상기 비교예 1에서, 건조 공정 시, 습윤겔 블랭킷을 초임계 추출기에 넣고 CO2를 주입하고, 추출기 내의 온도를 1 시간에 걸쳐 50 ℃로 승온하고, 50 ℃, 100 bar에서 초임계 건조를 실시한 후, 초임계 건조가 완료된 소수성 실리카 에어로겔 블랭킷을 200 ℃의 오븐에서 2시간 동안 상압 건조를 진행하여 용매와 수분을 완전히 제거하여 소수성의 실리카 에어로겔 블랭킷을 제조한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 실시하였다.In Comparative Example 1, during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50° C. over 1 hour, and supercritical drying was performed at 50° C. and 100 bar. Thereafter, the same as in Comparative Example 1, except that the hydrophobic silica airgel blanket having been completed supercritical drying was dried in an oven at 200° C. for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
비교예 5Comparative Example 5
상기 비교예 2에서, 건조 공정 시, 습윤겔 블랭킷을 초임계 추출기에 넣고 CO2를 주입하고, 추출기 내의 온도를 1 시간에 걸쳐 50 ℃로 승온하고, 50 ℃, 100 bar에서 초임계 건조를 실시한 후, 초임계 건조가 완료된 소수성 실리카 에어로겔 블랭킷을 200 ℃의 오븐에서 2시간 동안 상압 건조를 진행하여 용매와 수분을 완전히 제거하여 소수성의 실리카 에어로겔 블랭킷을 제조한 것을 제외하고는 상기 비교예 2와 동일한 방법으로 실시하였다.In Comparative Example 2, during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50° C. over 1 hour, and supercritical drying was performed at 50° C. and 100 bar. Thereafter, the same as in Comparative Example 2, except that the hydrophobic silica airgel blanket having supercritical drying was completed in an oven at 200° C. for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
비교예 6Comparative Example 6
상기 비교예 3에서, 건조 공정 시, 습윤겔 블랭킷을 초임계 추출기에 넣고 CO2를 주입하고, 추출기 내의 온도를 1 시간에 걸쳐 50 ℃로 승온하고, 50 ℃, 100 bar에서 초임계 건조를 실시한 후, 초임계 건조가 완료된 소수성 실리카 에어로겔 블랭킷을 200 ℃의 오븐에서 2시간 동안 상압 건조를 진행하여 용매와 수분을 완전히 제거하여 소수성의 실리카 에어로겔 블랭킷을 제조한 것을 제외하고는 상기 비교예 3과 동일한 방법으로 실시하였다.In Comparative Example 3, during the drying process, the wet gel blanket was put into a supercritical extractor, CO 2 was injected, the temperature in the extractor was raised to 50° C. over 1 hour, and supercritical drying was performed at 50° C. and 100 bar. Thereafter, the same as in Comparative Example 3, except that the hydrophobic silica airgel blanket having been completed supercritical drying was dried in an oven at 200° C. for 2 hours at atmospheric pressure to completely remove the solvent and moisture to prepare a hydrophobic silica airgel blanket. It was carried out by the method.
비교예 7Comparative Example 7
상기 실시예 1에서, 습윤겔 블랭킷 제조 시, 아래와 같이 실시한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, when manufacturing the wet gel blanket, it was carried out in the same manner as in Example 1, except that the following was carried out.
<습윤겔 블랭킷 제조><Manufacture of wet gel blanket>
컨베이어 벨트가 구비된 롤투롤 장치를 이용하여 10T(10 mm) 유리 섬유(Glass fiber)에 상기 제조된 촉매화된 졸을 캐스팅하여 함침시키고, 겔화를 진행하였다. 겔화가 완료되고, 60 ℃의 온도에서 20 시간 동안 숙성시켰다. 숙성이 완료되고, 반응 용기에 60 ℃의 온도에서 에탄올을 투입하여 용매를 치환하였다.Using a roll-to-roll device equipped with a conveyor belt, the prepared catalyzed sol was cast and impregnated into 10T (10 mm) glass fiber, and gelation was performed. After the gelation was completed, it was aged for 20 hours at a temperature of 60°C. When the aging was completed, ethanol was added to the reaction vessel at a temperature of 60° C. to replace the solvent.
비교예 8Comparative Example 8
상기 실시예 2에서, 습윤겔 블랭킷 제조 시, 아래와 같이 실시한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 실시하였다.In Example 2, when manufacturing the wet gel blanket, it was carried out in the same manner as in Example 2, except that the following was carried out.
<습윤겔 블랭킷 제조><Manufacture of wet gel blanket>
컨베이어 벨트가 구비된 롤투롤 장치를 이용하여 10T(10 mm) 유리 섬유(Glass fiber)에 상기 제조된 촉매화된 졸을 캐스팅하여 함침시키고, 겔화를 진행하였다. 겔화가 완료되고, 60 ℃의 온도에서 20 시간 동안 숙성시켰다. 숙성이 완료되고, 반응 용기에 60 ℃의 온도에서 에탄올을 투입하여 용매를 치환하였다.Using a roll-to-roll device equipped with a conveyor belt, the prepared catalyzed sol was cast and impregnated into 10T (10 mm) glass fiber, and gelation was performed. After the gelation was completed, it was aged for 20 hours at a temperature of 60°C. When the aging was completed, ethanol was added to the reaction vessel at a temperature of 60° C. to replace the solvent.
비교예 9Comparative Example 9
상기 실시예 3에서, 습윤겔 블랭킷 제조 시, 아래와 같이 실시한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 실시하였다.In Example 3, when manufacturing the wet gel blanket, it was carried out in the same manner as in Example 3, except that it was carried out as follows.
<습윤겔 블랭킷 제조><Manufacture of wet gel blanket>
컨베이어 벨트가 구비된 롤투롤 장치를 이용하여 10T(10 mm) 유리 섬유(Glass fiber)에 상기 제조된 촉매화된 졸을 캐스팅하여 함침시키고, 겔화를 진행하였다. 겔화가 완료되고, 60 ℃의 온도에서 20 시간 동안 숙성시켰다. 숙성이 완료되고, 반응 용기에 60 ℃의 온도에서 에탄올을 투입하여 용매를 치환하였다.Using a roll-to-roll device equipped with a conveyor belt, the prepared catalyzed sol was cast and impregnated into 10T (10 mm) glass fiber, and gelation was performed. After the gelation was completed, it was aged for 20 hours at a temperature of 60°C. When the aging was completed, ethanol was added to the reaction vessel at a temperature of 60° C. to replace the solvent.
실험예Experimental example
상기 실시예 1 내지 6 및 비교예 1 내지 9에서 제조된 실리카 에어로겔 블랭킷에 대하여, 열전도도 및 수분 함침률을 아래와 같이 측정하여 표 1 및 2에 각각 나타내었다.For the silica airgel blankets prepared in Examples 1 to 6 and Comparative Examples 1 to 9, thermal conductivity and moisture impregnation rate were measured as follows, and are shown in Tables 1 and 2, respectively.
* 상온 열전도도(mW/mK): 각 실시예 및 비교예에서 제조한 실리카 에어로겔 블랭킷에서 30 cm X 30 cm 크기를 가지는 샘플을 각 블랭킷 당 5개씩 준비하고, 샘플에 대해 NETZSCH社의 HFM 436 Lambda장비를 이용하여 상온(23±5 ℃) 열전도도를 측정하였다. 이 때 5개의 샘플은 각 실시예 및 비교예에서 제조한 에어로겔 블랭킷 롤의 최내측부터 최외측까지 50 cm의 일정한 간격으로 재단하여 수득하였다. 5개의 샘플의 열전도도를 각각 측정한 후 그 값을 비교하여 열전도도의 최고값 및 최저값을 나타내었다.* Room temperature thermal conductivity (mW/mK): In the silica airgel blanket prepared in each Example and Comparative Example, 5 samples having a size of 30 cm X 30 cm were prepared for each blanket, and HFM 436 Lambda of NETZSCH company for the sample The thermal conductivity was measured at room temperature (23±5° C.) using the equipment. At this time, five samples were obtained by cutting at regular intervals of 50 cm from the innermost side to the outermost side of the airgel blanket rolls prepared in each of the Examples and Comparative Examples. After measuring the thermal conductivity of each of the five samples, the values were compared to show the highest and lowest values of the thermal conductivity.
* 수분 함침률(wt%): 각 실시예 및 비교예에서 제조한 실리카 에어로겔 블랭킷에 대하여, 21±2 ℃의 증류수 위에 100 mm x 100 mm 크기의 시편을 띄우고 시편 위에 6.4 mm 메쉬 스크린(mesh screen)을 올려 수면 아래 127 mm까지 가라앉혀 함침시켰다. 15 분 후 메쉬 스크린을 제거하고 시편이 떠오르면 클램프로 시편을 집어 수직으로 60 ± 5초 동안 매달아두었다. 이후 함침 전 후의 무게를 각각 측정하여 무게 증가율을 확인하여 수분 함침률로 나타낸다. 수분 함침률이 낮을수록 에어로겔 블랭킷의 소수화도가 높은 것을 나타낸다.* Moisture impregnation rate (wt%): For the silica airgel blanket prepared in each Example and Comparative Example, a 100 mm x 100 mm size specimen was floated on distilled water at 21±2 °C, and a 6.4 mm mesh screen was placed on the specimen. ) Was raised and soaked up to 127 mm below the water surface and impregnated. After 15 minutes, the mesh screen was removed, and when the specimen floated, the specimen was picked up with a clamp and suspended vertically for 60 ± 5 seconds. After that, the weight before and after impregnation is measured, and the weight increase rate is checked, and it is expressed as the moisture impregnation rate. The lower the moisture impregnation rate, the higher the degree of hydrophobicity of the airgel blanket.
구분division 실시예Example
1One 22 33 44 55 66 77
실리카 전구체 조성물Silica precursor composition (종류)(Kinds) MTES:TEOSMTES:TEOS MTES:TEOSMTES:TEOS MTES:TEOSMTES:TEOS MTES:TEOSMTES:TEOS MTES:TEOSMTES:TEOS MTES:TEOSMTES:TEOS MTES:TEOSMTES:TEOS
(몰비)(Molar ratio) 95:595:5 90:1090:10 98:298:2 95:595:5 90:1090:10 98:298:2 60:4060:40
겔화 단계Gelation step 회전rotation 회전rotation 회전rotation 회전rotation 회전rotation 회전rotation 회전rotation
표면개질 단계Surface modification step XX XX XX XX XX XX XX
건조 단계Drying step 상압Normal pressure 상압Normal pressure 상압Normal pressure 초임계Supercritical 초임계Supercritical 초임계Supercritical 초임계Supercritical
열전도도 최고값Thermal conductivity peak value (mW/mK)(mW/mK) 20.320.3 20.820.8 20.720.7 19.819.8 19.519.5 20.120.1 19.919.9
열전도도 최저값Lowest value of thermal conductivity (mW/mK)(mW/mK) 19.419.4 20.120.1 19.919.9 18.518.5 18.318.3 18.918.9 18.418.4
수분 함침률Moisture impregnation rate (wt%)(wt%) 1.21.2 1.41.4 0.90.9 1.11.1 1.41.4 0.80.8 1.51.5
구분division 비교예Comparative example
1One 22 33 44 55 66 77 88 99
실리카 전구체 조성물Silica precursor composition (종류)(Kinds) TEOSTEOS MTESMTES TEOSTEOS TEOSTEOS MTESMTES TEOSTEOS MTES:TEOSMTES:TEOS MTES:TEOSMTES:TEOS MTES:TEOSMTES:TEOS
(몰비)(Molar ratio) 100100 100100 100100 100100 100100 100100 95:595:5 90:1090:10 98:298:2
겔화 단계Gelation step 회전rotation 회전rotation 회전rotation 회전rotation 회전rotation 회전rotation 롤투롤Roll to roll 롤투롤Roll to roll 롤투롤Roll to roll
표면개질 단계Surface modification step OO XX XX OO XX XX XX XX XX
건조 단계Drying step 상압Normal pressure 상압Normal pressure 상압Normal pressure 초임계Supercritical 초임계Supercritical 초임계Supercritical 상압Normal pressure 상압Normal pressure 상압Normal pressure
열전도도 최고값Thermal conductivity peak value (mW/mK)(mW/mK) 30.330.3 23.823.8 36.036.0 19.619.6 21.121.1 23.023.0 25.625.6 28.228.2 26.126.1
열전도도 최저값Lowest value of thermal conductivity (mW/mK)(mW/mK) 28.528.5 22.522.5 34.834.8 18.018.0 20.020.0 22.322.3 19.519.5 20.020.0 20.220.2
수분 함침률Moisture impregnation rate (wt%)(wt%) 3.73.7 1.11.1 XX 2.32.3 0.90.9 XX 1.51.5 2.02.0 1.51.5
상기 표 1에 나타낸 바와 같이, 촉매화된 졸에 소수화기를 포함하는 실리케이트인 MTES 및 테트라알킬 실리케이트인 TEOS를 특정 몰비로 포함하는 실리카 전구체 조성물을 포함하고, 블랭킷용 기재가 권취된 보빈을 회전시키면서 겔화를 진행한 실시예 1 내지 7은 건조 조건에 관계 없이 열전도도와 수분 함침률이 모두 우수한 것을 확인할 수 있었다.As shown in Table 1, a silica precursor composition containing MTES, a silicate containing a hydrophobic group, and TEOS, a tetraalkyl silicate, in a specific molar ratio in the catalyzed sol, while rotating the bobbin on which the blanket substrate is wound It was confirmed that the gelation of Examples 1 to 7 was excellent in both the thermal conductivity and the moisture impregnation rate regardless of the drying conditions.
또한, 실시예 1 내지 7은 에어로겔 블랭킷 롤의 최내측부터 최외측까지 열전도도의 최고값 및 최저값의 편차가 1.5 mW/mK 이하로 매우 작게 나타나고 있어, 블랭킷 기재 내 에어로겔이 균일하게 형성된 것을 확인할 수 있었다.In addition, Examples 1 to 7 showed a very small deviation of the maximum and minimum values of thermal conductivity from the innermost to the outermost of the airgel blanket roll, 1.5 mW/mK or less, so that the aerogel in the blanket substrate was uniformly formed. there was.
특히, 실시예 1 내지 3은 습윤겔 블랭킷을 건조하여 에어로겔 블랭킷을 제조할 때 상압 건조에 의하면서도, 초임계 건조에 의한 실시예 4 내지 7 대비 동등 수준의 열전도도 및 수분 함침률을 나타내고 있는 것을 확인할 수 있었다.Particularly, Examples 1 to 3 show the same level of thermal conductivity and moisture impregnation rate compared to Examples 4 to 7 by supercritical drying while drying at atmospheric pressure when manufacturing an airgel blanket by drying the wet gel blanket. I could confirm.
그러나, 상기 표 2에 나타낸 바와 같이, 촉매화된 졸에 실리카 전구체로 TEOS만을 이용한 비교예 1, 3, 4 및 6의 경우에 있어서, 표면개질 단계를 추가적으로 실시한 비교예 4는 초임계 건조를 통해 실시예와 유사 수준의 열전도도를 나타내었으나, 수분 함침률이 증가한 것을 확인할 수 있었다. 또한, 비교예 4와 건조 조건만을 달리하여 상압 건조한 비교예 1은 열전도도가 열악하고, 수분 함침률이 증가한 것을 확인할 수 있었다. 이는, 표면개질 단계를 추가적으로 실시하더라도, 에어로겔의 내부까지 충분한 양의 표면개질제가 도입되지 않아, 에어로겔 내부의 표면에 존재하는 히드록시기와 용매 중의 수분과의 수소 결합에 의한 수분 흡착이 일어난 것으로부터 기인한 것으로 생각된다. 또한, 표면개질 단계를 추가적으로 실시하지 않은 비교예 3 및 6의 경우, 건조 조건과 관계 없이 열전도도가 열악하고, 실리카 에어로겔 블랭킷 자체가 친수성을 나타내어 수분 함침률을 측정할 수 없을 정도로 수분이 매우 과량으로 함침되었다. 특히, 표면개질 단계를 추가적으로 실시하지 않고, 상압 건조한 비교예 3의 경우 열전도도가 극히 열악하였다.However, as shown in Table 2, in the case of Comparative Examples 1, 3, 4 and 6 using only TEOS as a silica precursor in the catalyzed sol, Comparative Example 4 additionally performing the surface modification step was performed through supercritical drying. Although the thermal conductivity was similar to that of the Example, it was confirmed that the moisture impregnation rate was increased. In addition, it was confirmed that the thermal conductivity was poor and the moisture impregnation rate was increased in Comparative Example 1, which was dried under normal pressure by only different from Comparative Example 4 and drying conditions. This is due to the fact that even if the surface modification step is additionally performed, a sufficient amount of surface modifier is not introduced to the interior of the airgel, and moisture adsorption by hydrogen bonding between the hydroxy group present on the surface of the airgel and the moisture in the solvent occurs. I think it is. In addition, in the case of Comparative Examples 3 and 6, in which the surface modification step was not additionally performed, the thermal conductivity was poor regardless of the drying conditions, and the silica airgel blanket itself exhibited hydrophilicity, so that the moisture impregnation rate could not be measured. Impregnated with. In particular, in the case of Comparative Example 3 without additionally performing the surface modification step and drying at normal pressure, the thermal conductivity was extremely poor.
또한, 촉매화된 졸에 실리카 전구체로 소수화기를 포함하는 실리케이트인 MTES만을 이용한 비교예 2 및 5의 경우, 각각 동일한 건조 단계를 실시한 실시예 1 내지 3 및 실시예 4 내지 7 대비 열전도도가 저하되는 것을 확인할 수 있었다.In addition, in the case of Comparative Examples 2 and 5 using only MTES, which is a silicate containing a hydrophobic group as a silica precursor in the catalyzed sol, the thermal conductivity is lowered compared to Examples 1 to 3 and Examples 4 to 7 each performed the same drying step. I was able to confirm it.
또한, 촉매화된 졸에 소수화기를 포함하는 실리케이트인 MTES 및 테트라알킬 실리케이트인 TEOS를 특정 몰비로 포함하는 실리카 전구체 조성물을 포함하더라도, 블랭킷용 기재가 권취된 보빈을 회전시키면서 겔화를 진행하지 않고, 롤투롤 공법에 의해 겔화 단계를 실시한 비교예 7 내지 9의 경우, 동일한 건조 단계를 실시한 실시예 1 내지 3 대비 열전도도가 열악하고, 수분 함침률이 저하되었으며, 열전도도의 최고값 및 최저값의 편차가 5.9 mW/mK 이상으로 매우 크게 나타나고 있어, 블랭킷 기재 내 에어로겔이 불균일하게 형성된 것을 확인할 수 있었다. 이는, 겔화 시, 용매의 증발로 인한 것으로부터 기인한 것으로 생각된다. 또한, 비교예 7 내지 9의 경우 소수화기를 포함하는 실리케이트인 MTES로 인하여 겔화 시간이 길어졌고, 이에 따라 롤투롤 공법을 실시하기 위한 장치가 거대화되는 문제가 있었다. 구체적으로, 비교예 7 내지 9와 같이, 롤투롤 공법에 의하는 경우 기재에 촉매화된 졸 등을 캐스팅하고 겔화가 완전하게 이루어질 수 있도록 하는 컨베이어 벨트가 반드시 장비에 포함되어야 하고, 컨베이어 벨트는 겔화가 완전히 이루어질 때까지 이어져야 하므로 대량 생산 단계에서는 장비 규모가 거대화되는 문제가 있다. 또한, 생산하고자 하는 에어로겔 블랭킷의 길이가 길어질수록 컨베이어 벨트의 길이가 길어지고 겔화 시간이 오래 걸려 전체적인 제조시간이 길어지는 문제가 있으며, 특히 에어로겔 블랭킷의 두께를 얇게 할수록 길이가 길어지므로 이에 따라 제조시간이 길어지므로 블랭킷의 두께 및 길이에 제조시간이 영향을 받는 문제가 있다.In addition, even if a silica precursor composition containing MTES, a silicate containing a hydrophobic group, and TEOS, a tetraalkyl silicate, in a specific molar ratio in the catalyzed sol, the substrate for a blanket does not proceed with gelation while rotating the wound bobbin, In the case of Comparative Examples 7 to 9 in which the gelling step was performed by the roll-to-roll method, the thermal conductivity was poor compared to Examples 1 to 3 in which the same drying step was performed, the moisture impregnation rate was lowered, and the difference between the highest and lowest values of the thermal conductivity Was very large, 5.9 mW/mK or more, and it was confirmed that the airgel in the blanket substrate was formed unevenly. It is believed that this is due to the evaporation of the solvent upon gelation. In addition, in the case of Comparative Examples 7 to 9, the gelation time was lengthened due to MTES, which is a silicate containing a hydrophobic group, and accordingly, there was a problem that the apparatus for carrying out the roll-to-roll method was enlarged. Specifically, as in Comparative Examples 7 to 9, in the case of a roll-to-roll method, a conveyor belt for casting a catalytic sol or the like on a substrate and allowing gelation to occur completely must be included in the equipment, and the conveyor belt is gelled. There is a problem that the scale of the equipment becomes enormous in the mass production stage because it must be continued until it is completely achieved. In addition, as the length of the airgel blanket to be produced increases, the length of the conveyor belt becomes longer and the overall manufacturing time becomes longer due to the longer gelation time.In particular, the thinner the airgel blanket is, the longer the length is. Since this becomes longer, there is a problem that the manufacturing time is affected by the thickness and length of the blanket.
상기와 같은 실험 결과로부터, 에어로겔 블랭킷 제조 시, 실리카 전구체로 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트를 특정 몰비로 포함하는 실리카 전구체 조성물을 이용하는 경우, 다량의 유기용매와 고가의 표면개질제를 사용하고, 공정이 복잡하고 긴 공정시간을 필요로 하여 경제성 및 생산성을 저해하는 표면개질 단계를 생략할 수 있고, 상압 건조에서도 초임계 건조와 동등 수준의 물성을 나타내는 것을 확인할 수 있었다.From the above experimental results, in the case of using a silica precursor composition containing a silicate containing a hydrophobic group and a tetraalkyl silicate in a specific molar ratio as a silica precursor when preparing an airgel blanket, a large amount of an organic solvent and an expensive surface modifier were used. , As the process is complicated and requires a long process time, it was possible to omit the surface modification step that hinders economical efficiency and productivity, and it was confirmed that even normal pressure drying showed the same level of physical properties as supercritical drying.
또한, 에어로겔 블랭킷의 겔화 공정에서 촉매화된 졸이 함침된 블랭킷용 기재를 회전시키면서 겔화를 진행하는 경우, 블랭킷 내 에어로겔이 균일하게 형성되어 우수한 열전도도를 가질 수 있고, 또 에어로겔 블랭킷 내 위치별로 물성이 크게 달라지지 않으므로 품질이 개선될 수 있음을 확인할 수 있었다.In addition, in the case of gelation while rotating the blanket substrate impregnated with the sol that is catalyzed in the gelling process of the airgel blanket, the airgel in the blanket is uniformly formed to have excellent thermal conductivity, and the physical properties for each position within the airgel blanket It was confirmed that the quality could be improved because this did not change significantly.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The above description of the present invention is for illustrative purposes only, and those of ordinary skill in the art to which the present invention pertains will be able to understand that other specific forms can be easily modified without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative and non-limiting in all respects.

Claims (12)

1) 반응 용기에 촉매화된 졸 및 블랭킷용 기재를 투입하여, 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계; 및1) adding the catalyzed sol and the blanket substrate to the reaction vessel, and impregnating the catalyst with the blanket substrate with the catalyst; And
2) 상기 촉매화된 졸이 함침된 블랭킷용 기재를 회전하여 겔화시키는 단계를 포함하고,2) rotating the substrate for a blanket impregnated with the catalyzed sol to gel,
상기 촉매화된 졸은 실리카 전구체 조성물을 포함하며,The catalyzed sol comprises a silica precursor composition,
상기 실리카 전구체 조성물은 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트를 포함하고,The silica precursor composition comprises a silicate containing a hydrophobic group and a tetraalkyl silicate,
상기 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트의 몰비는 60:40 내지 98:2인 에어로겔 블랭킷 제조방법.The molar ratio of the silicate containing the hydrophobic group and the tetraalkyl silicate is 60:40 to 98:2.
제1항에 있어서,The method of claim 1,
상기 소수화기를 포함하는 실리케이트 및 테트라알킬 실리케이트의 몰비는 85:15 내지 98:2인 에어로겔 블랭킷 제조방법.The molar ratio of the silicate containing the hydrophobic group and the tetraalkyl silicate is 85:15 to 98:2.
제1항에 있어서,The method of claim 1,
상기 소수화기를 포함하는 실리케이트는 메틸트리에톡시실란(MTES), 트리메틸에톡시실란(TMES), 트리메틸실라놀(TMS), 메틸트리메톡시실란(MTMS), 디메틸디에톡시실란(DMDEOS), 에틸트리에톡시실란(ETES) 및 페닐트리에톡시실란(PTES)로 이루어진 군으로부터 선택된 1종 이상인 에어로겔 블랭킷 제조방법.The silicate containing the hydrophobic group is methyltriethoxysilane (MTES), trimethylethoxysilane (TMES), trimethylsilanol (TMS), methyltrimethoxysilane (MTMS), dimethyldiethoxysilane (DMDEOS), ethyl Triethoxysilane (ETES) and phenyl triethoxysilane (PTES) at least one selected from the group consisting of an airgel blanket manufacturing method.
제1항에 있어서,The method of claim 1,
상기 블랭킷용 기재는 보빈에 감은 상태로 반응 용기에 투입하는 것이며,The blanket substrate is put into a reaction vessel in a state wound on a bobbin,
상기 보빈을 회전하여 촉매화된 졸이 함침된 블랭킷용 기재가 회전되는 것인 에어로겔 블랭킷 제조방법.The method of manufacturing an airgel blanket by rotating the bobbin to rotate the substrate for blanket impregnated with the catalyzed sol.
제1항에 있어서,The method of claim 1,
상기 단계 1)의 촉매화된 졸 및 블랭킷용 기재를 투입하는 것은,Injecting the catalyzed sol and the blanket substrate of step 1),
반응 용기에 블랭킷용 기재를 투입한 후 촉매화된 졸을 투입하는 방법, 반응 용기에 촉매화된 졸을 투입한 후 블랭킷용 기재를 투입하는 방법 및 반응 용기에 촉매화된 졸을 투입하면서 블랭킷용 기재를 투입하는 방법 중 어느 하나의 방법으로 수행되는 것인 에어로겔 블랭킷 제조방법.A method of injecting the catalyzed sol after putting the substrate for a blanket into the reaction vessel, a method of introducing the catalyzed sol into the reaction vessel and then introducing the blanket substrate, and Airgel blanket manufacturing method that is performed by any one of the methods of introducing the substrate.
제1항에 있어서,The method of claim 1,
단계 1)에서 상기 함침은, 상기 블랭킷용 기재가 회전하면서 수행되는 것인 에어로겔 블랭킷 제조방법.In step 1), the impregnation is performed while the substrate for the blanket is rotated.
제1항에 있어서,The method of claim 1,
상기 단계 1)의 완료 이전에 상기 단계 2)를 수행하는 것이며,To perform step 2) before completion of step 1),
상기 단계 1)의 완료 이전에 상기 단계 2)를 수행하는 경우 겔화가 완료될 때까지 촉매화된 졸을 반응 용기에 전부 투입하는 것인 에어로겔 블랭킷 제조방법.In the case of performing step 2) before completion of step 1), all of the catalyzed sol is added to the reaction vessel until gelation is completed.
제1항에 있어서,The method of claim 1,
상기 촉매화된 졸이 함침된 블랭킷용 기재는 1 rpm 내지 300 rpm의 속도로 회전되는 것인 에어로겔 블랭킷 제조방법.The method of manufacturing an airgel blanket is rotated at a speed of 1 rpm to 300 rpm in the blanket substrate impregnated with the catalyzed sol.
제1항에 있어서,The method of claim 1,
상기 촉매화된 졸은 촉매화된 실리카 졸인 것인 에어로겔 블랭킷 제조방법.The method for producing an airgel blanket that the catalyzed sol is a catalyzed silica sol.
제1항에 있어서,The method of claim 1,
상기 촉매화된 졸은 실리카 졸 및 염기 촉매를 포함하는 것이며,The catalyzed sol comprises a silica sol and a base catalyst,
상기 실리카 졸은 실리카 전구체 조성물, 물 및 유기용매를 포함하는 것인 에어로겔 블랭킷 제조방법.The silica sol is a method of manufacturing an airgel blanket comprising a silica precursor composition, water and an organic solvent.
제10항에 있어서,The method of claim 10,
상기 실리카 졸은 산 촉매를 더 포함하는 것인 에어로겔 블랭킷 제조방법.The method of manufacturing an airgel blanket wherein the silica sol further comprises an acid catalyst.
제1항에 있어서,The method of claim 1,
단계 2) 이후 건조하는 단계를 더 포함하며,Further comprising the step of drying after step 2),
상기 건조는 초임계 건조, 또는 1±0.3 atm 압력 및 70 ℃ 내지 200 ℃의 온도에서의 상압 건조 공정에 의해 수행되는 것인 에어로겔 블랭킷 제조방법.The drying is performed by supercritical drying, or an atmospheric drying process at 1±0.3 atm pressure and a temperature of 70°C to 200°C.
PCT/KR2020/011709 2019-09-03 2020-09-01 Method for manufacturing aerogel blanket WO2021045483A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080012559.XA CN113423676B (en) 2019-09-03 2020-09-01 Method of making aerogel blankets
US17/425,906 US20220204350A1 (en) 2019-09-03 2020-09-01 Method for manufacturing aerogel blanket
JP2021543248A JP7209852B2 (en) 2019-09-03 2020-09-01 Airgel blanket manufacturing method
EP20860338.1A EP3901093B1 (en) 2019-09-03 2020-09-01 Method for manufacturing aerogel blanket

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20190109158 2019-09-03
KR10-2019-0109158 2019-09-03
KR10-2019-0121147 2019-09-30
KR20190121147 2019-09-30
KR1020200084762A KR102581268B1 (en) 2019-09-03 2020-07-09 Method for preparing aerogel blanket
KR10-2020-0084762 2020-07-09

Publications (1)

Publication Number Publication Date
WO2021045483A1 true WO2021045483A1 (en) 2021-03-11

Family

ID=74852512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011709 WO2021045483A1 (en) 2019-09-03 2020-09-01 Method for manufacturing aerogel blanket

Country Status (1)

Country Link
WO (1) WO2021045483A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546585A (en) * 2021-08-05 2021-10-26 内蒙古科技大学 Hydrophobic agarose-SiO2Composite aerogel microspheres and preparation method thereof
CN113896505A (en) * 2021-09-30 2022-01-07 巩义市泛锐熠辉复合材料有限公司 Method for discontinuously producing aerogel felt
EP3882214A4 (en) * 2019-09-03 2022-01-26 LG Chem, Ltd. Apparatus and method for manufacturing aerogel blanket
EP3901094A4 (en) * 2019-09-03 2022-02-23 LG Chem, Ltd. Aerogel blanket and manufacturing method therefor
CN114180582A (en) * 2021-12-27 2022-03-15 中国人民解放军海军工程大学 Hierarchical porous silica aerogel material and preparation method thereof
CN115583829A (en) * 2022-10-26 2023-01-10 中化学华陆新材料有限公司 Low-thermal-conductivity-coefficient fiber composite aerogel wet-process felt and preparation method thereof
CN115646380A (en) * 2022-12-26 2023-01-31 华陆(天津)新材料科技有限公司 Preparation process of nano-pore aerogel heat insulation coating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110126381A (en) * 2010-05-17 2011-11-23 주식회사 화인텍 Manufacturing method for hydrophobic silica aerogel composites
KR20120070948A (en) 2010-12-22 2012-07-02 주식회사 화인텍 Manufacturing method of hydropobic silica aerogel powder with insulating performance
JP2014173222A (en) * 2013-03-12 2014-09-22 Ykk Corp Dyeing machine
KR20140120721A (en) * 2013-04-04 2014-10-14 주식회사 아담스컴퍼니 Manufacturing method of silica aerogel powders
KR20180029235A (en) * 2015-07-15 2018-03-20 인터내셔날 애드밴스드 리서치 센터 폴 파우더 메탈러지 앤드 뉴 머테리얼스 (에이알씨아이) An improved process for producing silica aerogel thermal insulation product with increased efficiency
KR20180033064A (en) * 2016-09-23 2018-04-02 주식회사 엘지화학 Silica aerogel blanket for ultra-high temperature, method for preparing the same and method for constructing using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110126381A (en) * 2010-05-17 2011-11-23 주식회사 화인텍 Manufacturing method for hydrophobic silica aerogel composites
KR20120070948A (en) 2010-12-22 2012-07-02 주식회사 화인텍 Manufacturing method of hydropobic silica aerogel powder with insulating performance
JP2014173222A (en) * 2013-03-12 2014-09-22 Ykk Corp Dyeing machine
KR20140120721A (en) * 2013-04-04 2014-10-14 주식회사 아담스컴퍼니 Manufacturing method of silica aerogel powders
KR20180029235A (en) * 2015-07-15 2018-03-20 인터내셔날 애드밴스드 리서치 센터 폴 파우더 메탈러지 앤드 뉴 머테리얼스 (에이알씨아이) An improved process for producing silica aerogel thermal insulation product with increased efficiency
KR20180033064A (en) * 2016-09-23 2018-04-02 주식회사 엘지화학 Silica aerogel blanket for ultra-high temperature, method for preparing the same and method for constructing using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882214A4 (en) * 2019-09-03 2022-01-26 LG Chem, Ltd. Apparatus and method for manufacturing aerogel blanket
EP3901094A4 (en) * 2019-09-03 2022-02-23 LG Chem, Ltd. Aerogel blanket and manufacturing method therefor
CN113546585A (en) * 2021-08-05 2021-10-26 内蒙古科技大学 Hydrophobic agarose-SiO2Composite aerogel microspheres and preparation method thereof
CN113546585B (en) * 2021-08-05 2022-09-09 内蒙古科技大学 Hydrophobic agarose-SiO 2 Composite aerogel microspheres and preparation method thereof
CN113896505A (en) * 2021-09-30 2022-01-07 巩义市泛锐熠辉复合材料有限公司 Method for discontinuously producing aerogel felt
CN114180582A (en) * 2021-12-27 2022-03-15 中国人民解放军海军工程大学 Hierarchical porous silica aerogel material and preparation method thereof
CN114180582B (en) * 2021-12-27 2023-07-21 中国人民解放军海军工程大学 Hierarchical porous silica aerogel material and preparation method thereof
CN115583829A (en) * 2022-10-26 2023-01-10 中化学华陆新材料有限公司 Low-thermal-conductivity-coefficient fiber composite aerogel wet-process felt and preparation method thereof
CN115583829B (en) * 2022-10-26 2023-09-12 中化学华陆新材料有限公司 Low-thermal-conductivity fiber composite aerogel wet felt and preparation method thereof
CN115646380A (en) * 2022-12-26 2023-01-31 华陆(天津)新材料科技有限公司 Preparation process of nano-pore aerogel heat insulation coating

Similar Documents

Publication Publication Date Title
WO2021045483A1 (en) Method for manufacturing aerogel blanket
WO2021045514A1 (en) Aerogel blanket and manufacturing method therefor
WO2018070752A1 (en) Aerogel blanket for ultra-high temperatures, method for manufacturing same and construction method thereof
WO2019039841A1 (en) Manufacturing method for silica aerogel blanket and manufacturing apparatus therefor
WO2018056626A1 (en) Silica aerogel blanket for ultra-high temperature, manufacturing method thereof, and installation method thereof
WO2020111763A1 (en) Method for manufacturing aerogel blanket
WO2021054644A1 (en) Aerogel blanket and manufacturing method therefor
WO2015119430A1 (en) Production method for hydrophobic silica aerogel
WO2021045484A1 (en) Aerogel blanket
WO2018208005A1 (en) Production method for silica aerogel blanket and silica aerogel blanket produced thereby
WO2021045533A1 (en) Aerogel blanket
WO2020111765A1 (en) Method for synthesizing prehydrolyzed polysilicate
WO2019107706A1 (en) Composite heat insulation sheet including aerogel
WO2017142245A1 (en) Method and apparatus for manufacturing composite sheet comprising aerogel sheet
WO2022080721A1 (en) Method for manufacturing aerogel blanket and aerogel blanket prepared therefrom
WO2021029624A1 (en) Method for drying wet-gel blanket and method for manufacturing aerogel blanket by using same
WO2018074889A2 (en) Method for preparing graphite sheet
WO2017171217A1 (en) Method for manufacturing low-dust high-insulation aerogel blanket
WO2017142244A1 (en) Method and apparatus for manufacturing composite sheet comprising aerogel sheet
WO2020122664A1 (en) Method for supercritical drying of silica hydrogel blanket
WO2021066482A1 (en) Silica sol, silica aerogel blanket manufactured using same, and method for manufacturing same
KR102555087B1 (en) Aerogel blanket
WO2021045356A1 (en) Apparatus and method for manufacturing aerogel blanket
WO2024043616A1 (en) Method for producing silica aerogel blanket
WO2022211353A1 (en) Method for producing aerogel composite, and aerogel composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543248

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020860338

Country of ref document: EP

Effective date: 20210722

NENP Non-entry into the national phase

Ref country code: DE