WO2021045234A1 - Novel esterase for decomposing trans fatty acid-containing ester - Google Patents

Novel esterase for decomposing trans fatty acid-containing ester Download PDF

Info

Publication number
WO2021045234A1
WO2021045234A1 PCT/JP2020/033834 JP2020033834W WO2021045234A1 WO 2021045234 A1 WO2021045234 A1 WO 2021045234A1 JP 2020033834 W JP2020033834 W JP 2020033834W WO 2021045234 A1 WO2021045234 A1 WO 2021045234A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
amino acid
esterase
seq
Prior art date
Application number
PCT/JP2020/033834
Other languages
French (fr)
Japanese (ja)
Inventor
克敏 堀
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2021544076A priority Critical patent/JPWO2021045234A1/ja
Publication of WO2021045234A1 publication Critical patent/WO2021045234A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • the present disclosure relates to a novel esterase that decomposes a trans fatty acid-containing ester and its application (for example, wastewater treatment, oil treatment).
  • the present disclosure relates to novel esterases and their applications that degrade esters at low and / or high temperatures.
  • Oil stains are a typical example of stains generated in general households, the food service industry, industrial equipment, etc. Oil stains are difficult-to-clean stains that occur in kitchens, sinks, kitchens, pipes, drains, ventilation fans, laundry, and the like. Since oil stains are a source of foul odors and pests and can also cause environmental pollution, the establishment of epoch-making technology in oil treatment is eagerly desired from both public health and environmental aspects.
  • Grease traps which are treatment facilities that remove oil contained in kitchen wastewater from the food service industry by solid-liquid separation, are a source of foul odors and pests, and maintenance such as recovery, transportation, and cleaning of separated oil is laborious and costly. Considering this, the establishment of an epoch-making technology for extinguishing the oil in the grease trap is eagerly desired by the industry centered on the food service industry.
  • the present inventors have found an esterase that decomposes a trans fatty acid-containing ester. It was also found that this esterase has an ability to decompose an ester even at low temperature and / or high temperature, and is also excellent in thermal stability.
  • the present disclosure also relates to applications of the esterases of the present disclosure, such as oil treatment.
  • the present disclosure provides: (1) (A) A polypeptide containing the amino acid sequence shown in SEQ ID NO: 2, 8, 12 or 16; (B) A polypeptide having biological activity, which comprises an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof in the amino acid sequence of (a); (C) A polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in (a) or (b) and having biological activity; (D) A polypeptide containing an amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1, 7, 11 or 15; (E) In the base sequence shown in (d), a polypeptide having biological activity encoded by a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof; (F) A polypeptide having biological activity encoded by a base sequence having at least 70% or more sequence identity with the base sequence shown in (d) or (e); (G) Biological activity encoded by a nucleotide sequence that hybrid
  • Polypeptide with (H) A polypeptide having biological activity encoded by an allelic variant of any one of the base sequences of (d) to (g); or the amino acid sequence shown in (i) (a) to (h). Polypeptide, including fragments of Is a polypeptide.
  • (2A) The polypeptide according to any one of the above items, wherein the polypeptide is a lipase.
  • (2B) The polypeptide according to any one of the above items, wherein the esterase is a lipase.
  • the polypeptide according to any one of the above items which is an esterase having an ability to decompose an ester at 15 ° C.
  • (A) (a) 75 ° C, (B) 65 ° C, (C) 67 ° C or (d) 70 ° C Has thermal stability in and / or (B) (a) 60 ° C., (B) 40 ° C or (c) 65 ° C And / or (C) (a) pH 8-9, or (b) pH 9 Have pH stability in and / or (D) Has the optimum pH at pH 9, The polypeptide according to any of the above items.
  • the polypeptide according to any one of the above items which is a polypeptide derived from Yarrowia lipolytica.
  • C A polynucleotide comprising a base sequence having at least 70% or more sequence identity with the base sequence shown in (A) or (B) and encoding a polypeptide having biological activity;
  • a polynucleotide encoding a polypeptide having (E) A polynucleotide that is an allelic variant of the base sequence of any one of (A) to (D) and encodes a polypeptide having biological activity; (F) A polynucleotide encoding a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2, 8, 12 or 16; (G) In the amino acid sequence of (F), a polynucleotide encoding a polypeptide having biological activity, which comprises an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof; (H) A polynucleotide encoding a polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in (F) or (G) and having biological activity; or (I) (F) to A polynucleotide containing a fragment of the nucleotide sequence shown in (H), Is a polynucleotide.
  • polypeptide is an esterase.
  • polypeptide is a lipase.
  • esterase is a lipase.
  • biological activity includes an ability related to assimilation of a trans fatty acid-containing ester or an ability to decompose a trans fatty acid-containing ester.
  • polypeptide is an esterase, and the target of its substrate specificity is a short- to long-chain fatty acid-containing ester containing fats and oils.
  • polypeptide is a lipase.
  • biological activity includes an ability associated with assimilation of a trans fatty acid-containing ester or an ability to decompose a trans fatty acid-containing ester.
  • a polypeptide having the ability to assimilate an ester or decompose a trans fatty acid-containing ester (if necessary, the polypeptide is not a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 22).
  • the base sequence encoding the polypeptide described in the above item or (A) In the base sequence shown in SEQ ID NO: 21, a polynucleotide comprising a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof and encoding a polypeptide having biological activity; (B) A polynucleotide comprising a base sequence having at least 70% or more sequence identity with the base sequence shown in SEQ ID NO: 21 and encoding a polypeptide having biological activity; (C) A polynucleotide encoding a polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 21 or a complementary sequence thereof and a nucleotide sequence that hybridizes under stringent conditions and has biological activity.
  • E A polynucleotide encoding a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 22;
  • F A polynucleotide encoding a bioactive polypeptide containing an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof in the amino acid sequence shown in SEQ ID NO: 22;
  • G A polynucleotide encoding a polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 22 and having biological activity; or (H) (E) to (G).
  • a polynucleotide which contains a fragment of the nucleotide sequence shown.
  • a polynucleotide, wherein the biological activity comprises the ability to assimilate a trans-fatty acid-containing ester, or to degrade a trans-fatty acid-containing ester, the polynucleotide (optionally said above).
  • the polynucleotide is not a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 21).
  • polypeptide according to any one of the above items the polypeptide containing the amino acid sequence set forth in SEQ ID NO: 22, the polynucleotide set forth in any of the above items, or the base encoding the amino acid sequence set forth in SEQ ID NO: 22.
  • An oleolytic agent comprising a cell or cell-free expression system comprising a polynucleotide containing the sequence or the nucleotide sequence set forth in SEQ ID NO: 21, or a cell or cell-free expression system according to any one of the above items.
  • a method for decomposing and removing oil which comprises allowing an agent to act on an object to be treated.
  • a detergent comprising a cell or cell-free expression system containing the polypeptide according to any one of the above items or the polynucleotide according to any one of the above items.
  • the polypeptide according to any one of the above items the polypeptide containing the amino acid sequence set forth in SEQ ID NO: 22, the polynucleotide set forth in any one of the above items, or SEQ ID NO: 22.
  • the novel esterases (eg, lipases) of the present disclosure include detergents, leather industry, food industry, purification of environmental pollution by fats and oils, food waste treatment, composting treatment, waste treatment such as wastewater treatment, composting, and digestive agents. It is useful in technical fields such as pharmaceuticals such as, and cosmetics for oily skin.
  • FIG. 1 shows the gene numbers, estimated functions, and signal peptides (SP) of the genes encoding the first, second, third, fourth, and fifth esterases of the Yarrowia lipolytica KH-2 strain. The presence or absence and the estimated molecular weight of the gene product are shown.
  • FIG. 2 shows the expression of five types of esterases (typical sequences of the first, second, third, fourth and fifth esterases) when the KH-2 strain was cultured at 15 ° C. by a fermenter. It is a graph which shows a level. The expression level is indicated by a relative value normalized by the expression level of the alg9 (1,2-mannosyltransferase) gene.
  • FIG. 3-1 shows the optimum temperature, thermal stability, optimum pH and pH stability of the recombinant protein of the representative sequence of the first and second esterases derived from the KH-2 strain.
  • the upper rows (A) to (D) show the results of the representative sequence of the first esterase, and the lower rows (E) to (H) show the results of the representative sequence of the second esterase.
  • (A) and (E) indicate the optimum temperature of esterase
  • (B) and (F) indicate the thermal stability of esterase
  • (C) and (G) indicate the optimum pH of esterase
  • (D). ) And (H) indicate the pH stability of esterase.
  • the vertical axis of (A) to (H) shows the esterase activity relative to the activity when the esterase activity is maximized
  • the horizontal axes of (A), (B), (E) and (F) are temperatures.
  • the horizontal axes of (C), (D), (G) and (H) indicate pH.
  • FIG. 4 shows a comparison between Novozymes lipase (Novozyme® 51032) and the esterases of the present disclosure.
  • FIG. 5-1 shows the decomposition activity of the ester by the first, second and fifth esterases of the present disclosure.
  • A Buffer alone, purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the fifth esterase (fifth esterase), representative sequence of the first esterase.
  • Purified esterase obtained from an Escherichia coli strain expressing the recombinant protein of the above, or purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the second esterase.
  • (Second esterase) was incubated with 0.7 g of shortening at 28 ° C. for 24 hours. An image of fats and oils after incubation is shown.
  • B Buffer alone, purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the fifth esterase (fifth esterase), representative sequence of the first esterase.
  • Purified esterase obtained from an Escherichia coli strain expressing the recombinant protein of the above, or purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the second esterase.
  • (Second esterase) was incubated with 0.5 g of lard at 28 ° C. for 24 hours. An image of fats and oils after incubation is shown.
  • C Buffer alone, purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the fifth esterase (fifth esterase), representative sequence of the first esterase.
  • Purified esterase obtained from an Escherichia coli strain expressing the recombinant protein of the above, or purified esterase obtained from an Esterase strain expressing the recombinant protein of a representative sequence of the second esterase.
  • (Second esterase) is incubated with triolein (Tole), triellaidin (TED), shortening or lard, respectively, then separated by thin layer chromatography and detected by molybtriic acid n-hydrate. From left to right, the ones incubated with triolein, trioleidin, shortening and lard are shown.
  • FIG. 5-2 shows the decomposition activity of the ester by the third and fourth esterases of the present disclosure.
  • Purified esterase (fourth esterase) obtained from an E. coli strain expressing the recombinant protein of the sequence was incubated with 0.7 g of shorting at 28 ° C. for 24 hours. An image of fats and oils after incubation is shown.
  • FIG. 6 shows the substrate specificity of representatives of the first, second, third, fourth and fifth esterases.
  • the substrates used are shown on the left side of the table, and 4-nitrophenyl ester (pNP-ester) lipids having acetate (C2), butyrate (C4), octanoate (C8), laurate (C12) and palmitate (C16) are shown in order from the top.
  • pNP-ester 4-nitrophenyl ester
  • FIG. 7 is from a purified esterase obtained from an E. coli strain expressing a recombinant protein of a serially diluted representative sequence of the first, second, third, fourth and fifth esterases of the present disclosure. Decomposition of trans fatty acid-containing ester is shown. The data show the results with esterase serially diluted to 0.01u / ml, 0.001u / ml, and 0.0001u / ml from left to right, and each data is from left to right, first, second, second.
  • FIG. 8 shows a trans fatty acid-containing ester at low temperature by a purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the first, second, third and fourth esterases of the present disclosure. Indicates decomposition of the body. From left to right, each band corresponds to a representative sequence of buffer, first, second, third and fourth esterases, with the arrow at the bottom indicating the hydrolyzate (free fatty acid). Corresponds to the band of.
  • FIG. 8 shows a trans fatty acid-containing ester at low temperature by a purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the first, second, third and fourth esterases of the present disclosure. Indicates decomposition of the body. From left to right, each band corresponds to a representative sequence of buffer, first, second, third and fourth esterases, with the arrow at the bottom indicating the hydrolyzate
  • FIG. 9 shows the modification of triolein by a purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the first, second, third and fourth esterases of the present disclosure.
  • Each band in order from the left, has a representative sequence of the first, second, third and fourth esterases, or a buffer that has been mixed with methanol and triolein and reacted, and olein.
  • the results of analysis of the methyl acid acid grade by thin layer chromatography analysis are shown.
  • Each signal corresponds to oleic acid methyl ester, triolein, oleic acid and diacylglycerol in order from the top.
  • FIG. 10 shows the modification of trans fatty acids by a purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the first, second, third and fourth esterases of the present disclosure.
  • A Representative sequences of the first, second, third and fourth esterases, or buffers that have been mixed with methanol and palmitelydic acid and reacted, and palmiteraidin. The results of analysis of the methyl acid acid grade by thin layer chromatography analysis are shown. Each signal corresponds to palmitelysinic acid methyl ester and palmitelysinic acid in order from the top.
  • FIG. 11 shows the modification of trans fatty acids by a purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the second and fifth esterases of the present disclosure.
  • a strain name such as KH-2 strain may be abbreviated as "stock” in some cases, but those skilled in the art will appropriately understand that the term “stock” is used depending on the context. ..
  • esterase refers to a hydrolase that decomposes an ester into an acid and an alcohol by a chemical reaction with water.
  • the esterases of the present disclosure are classified as esterases because they have an activity of hydrolyzing esters such as fatty acid esters.
  • the esterase activity of an esterase can be measured by the method described in "Ability to Decompose Esters" herein.
  • lipase is a kind of esterase, and refers to an enzyme that reversibly catalyzes the reaction of hydrolyzing neutral fat (glycerol ester) and decomposing it into fatty acid and glycerol.
  • the esterase of the present disclosure can be said to be a "lipase” because it has the activity of an enzyme classified into triglycerol lipase, which is classified into EC3.1.1.3 by the enzyme number (EC number). Also referred to as disclosed lipase.
  • fat and oil refers to an oily substance, and the fat and oil includes an ester group-containing compound formed by dehydration condensation of a compound containing a hydroxyl group and a fatty acid.
  • the compound containing this hydroxyl group is glycerin, but other examples include polyglycerin and the like.
  • ester group-containing compounds formed by dehydration condensation of glycerin and fatty acids are referred to herein as "glycerides”.
  • the compound containing a hydroxyl group has a plurality of hydroxyl groups, if at least one of the hydroxyl groups is dehydrated and condensed with a fatty acid to form an ester, the compound corresponds to the ester group-containing compound in the present specification. ..
  • the lipase activity refers to an activity of hydrolyzing an ester produced by dehydration condensation of glycerol and a fatty acid into glycerol and a free fatty acid, and such a lipase activity is also referred to as a triglyceride lipase activity in the present specification. Will be done. For example, whether or not it has lipase activity depends on the decrease of esters (animal and vegetable oil such as canola oil, triolein, trioleidin, etc.) contained in the solution to which lipase is added, and the detection of hydrolyzate. You can check.
  • esters animal and vegetable oil such as canola oil, triolein, trioleidin, etc.
  • the ability to decompose and consume the ester and fatty acid can be measured by analyzing the ester remaining in the medium and the free fatty acid produced by hydrolysis by thin layer chromatography.
  • an ester and a fatty acid are extracted by adding an equal amount of chloroform to the culture supernatant. 5 ⁇ l of this extract is developed on a silica gel coated plate using a developing solvent containing chloroform, acetone and methanol in a volume ratio of 96: 4: 1 respectively. The ratio of the developing solvent and the like can be changed as appropriate.
  • the plate is treated with molybdate n-hydrate to develop an ester color.
  • fat modification / fat production capacity refers to changing the structure of fatty acids to change the properties of oil.
  • fat modification / fat production capacity typically includes an activity of catalyzing the transesterification of fatty acids.
  • the fat modification / fat production capacity can be measured by analyzing the fatty acid methyl ester produced by the transesterification reaction between fatty acid and methanol by thin layer chromatography. To show a specific quantification procedure, first, the esterase, fatty acid and methanol of the present disclosure are mixed to produce a fatty acid methyl ester. The ester and fatty acid are extracted by adding chloroform to the mixed solution of fatty acid methyl ester.
  • 10 ⁇ l of this extract is developed on a silica gel coated plate using a developing solvent containing hexane, diethyl ether and acetic acid in a volume ratio of 80:20: 1, respectively.
  • the ratio of the developing solvent and the like can be changed as appropriate.
  • the plate is treated with molybdate n-hydrate to develop an ester color.
  • trans fatty acid-containing ester refers to an ester containing a trans fatty acid.
  • Trans fatty acid is used in the sense commonly used in the art and means an unsaturated fatty acid having a trans-type double bond.
  • Trans fatty acids are naturally present in trace amounts as conjugated linoleic acid and vaccenic acid, but in the oil and fat industry, they are produced in large quantities when producing saturated fatty acids by hydrogenation of unsaturated fatty acids, and are used in foods such as margarine and shortening. Is also included.
  • the trans fatty acid includes elaidic acid, palmiteraidic acid (palmitoelaidic acid), vaccenic acid and the like, but the type of trans fatty acid is not particularly limited as used herein.
  • the ratio of the trans fatty acid present in the trans fatty acid-containing ester is not particularly limited. None of the conventionally known Yarrowia lipases have the activity of degrading trans fatty acid-containing esters.
  • short-chain to long-chain fatty acid-containing ester refers to an ester of a fatty acid containing one or more of a short-chain fatty acid, a medium-chain fatty acid, or a long-chain fatty acid.
  • Short-chain fatty acids “medium-chain fatty acids,” and “long-chain fatty acids” are used in the sense commonly used in the art and have 2-6, 7-12, and 13 or more carbon atoms, respectively.
  • Short-chain fatty acids include acetic acid (2 carbon atoms), butyric acid (4 carbon atoms), caproic acid (6 carbon atoms) and the like.
  • Medium-chain fatty acids include caprylic acid (8 carbon atoms), capric acid (10 carbon atoms), lauric acid (12 carbon atoms) and the like.
  • Long-chain fatty acids include myristic acid (14 carbons), palmitic acid (16 carbons), stearic acid (18 carbons), oleic acid (18 carbons), linoleic acid (18 carbons), and linolenic acid (carbons). The number 18) and the like are included.
  • the "medium chain fatty acid-containing ester” refers to an ester containing a medium chain fatty acid.
  • “Medium chain fatty acid” is used in the sense commonly used in the art and means a fatty acid having 7 to 12 carbon atoms.
  • Medium-chain fatty acids are naturally found in foods such as dairy products, palm kernel oil and coconut oil.
  • the medium-chain fatty acid includes caprylic acid (8 carbon atoms), capric acid (10 carbon atoms), lauric acid (12 carbon atoms) and the like, and when referred to herein, the type of medium chain fatty acid.
  • the ratio of the medium-chain fatty acid present in the medium-chain fatty acid-containing ester is not particularly limited.
  • the ability related to the assimilation of a trans fatty acid-containing ester or "the ability related to the assimilation of a short- to long-chain fatty acid-containing ester” means a trans fatty acid-containing ester or a trans fatty acid-containing ester by a microorganism. Refers to the activity for bringing about the assimilation of short- to long-chain fatty acid-containing esters.
  • “assimilating a trans fatty acid-containing ester” or “assimilating a short- to long-chain fatty acid-containing ester” is used in the meaning commonly used in the art, and a microorganism is used.
  • trans fatty acid-containing ester or a short- to long-chain fatty acid-containing ester is taken in as a nutrient source such as a carbon source.
  • assimilation it includes hydrolysis to alcohols and free fatty acids, as well as conversion to some of other substances.
  • the ability to decompose a trans-fatty acid-containing ester or "the ability to decompose a short- to long-chain fatty acid-containing ester” means a trans-fatty acid-containing ester or a short to long-chain fatty acid-containing ester.
  • a trans-fatty acid-containing ester or a short to long-chain fatty acid-containing ester refers to the activity of hydrolyzing an ester into glycerol or other alcohols (such as 4-nitrophenol) and free fatty acids.
  • the "ability to decompose an ester (at each temperature)” refers to the activity of hydrolyzing an ester into alcohols and free fatty acids at each temperature.
  • the “ability to decompose an ester” (at each temperature) is measured as follows. That is, esterase is purified by the method described in the present specification, and esterase substrate and esterase of 4-nitrophenol and fatty acid (for example, palmitic acid, butyric acid (butyrate)) are used at a constant temperature at a temperature setting to be measured. Can be mixed and the amount of 4-nitrophenol produced by the hydrolysis reaction can be measured by measuring the absorbance at 410 nm.
  • the "optimal temperature" of the ability to decompose an ester is used in the sense commonly used in the art, and the activity of decomposing an ester is above a certain level desired (eg, the enzyme thereof). Refers to a temperature range in which 80% or more of the activity of the maximum level is maintained, but in another embodiment, it refers to a temperature range in which the maximum level is maintained.
  • the first esterase of the present disclosure has a peak activity of decomposing an ester at about 60 ° C., and retains an activity of 80% or more of the peak in the range of about 55 to 65 ° C.
  • the second esterase of the present disclosure has a peak activity of decomposing an ester at about 40 ° C., and retains an activity of 80% or more of the peak in the range of about 35 to 50 ° C.
  • the third esterase of the present disclosure has a peak activity of decomposing an ester at about 65 ° C., and retains an activity of 80% or more of the peak in the range of about 53 to 68 ° C.
  • the fourth esterase of the present disclosure has a peak activity of decomposing an ester at about 65 ° C., and retains an activity of 80% or more of the peak in the range of about 55 to 68 ° C.
  • the fifth esterase of the present disclosure has a peak activity of decomposing an ester at about 40 ° C., and retains an activity of 80% or more of the peak in the range of about 33 to 47 ° C.
  • the optimum temperature of the first esterase of the present disclosure is about 55-65 ° C, preferably about 57-63 ° C, more preferably about 60 ° C. Intended.
  • the optimum temperature of the second esterase of the present disclosure is intended to be about 35 to 50 ° C., preferably about 35 to 45 ° C., more preferably about 40 ° C.
  • the optimum temperature of the third esterase of the present disclosure is intended to be about 53-68 ° C, preferably about 60-67 ° C, more preferably about 65 ° C.
  • the optimum temperature of the fourth esterase of the present disclosure is intended to be about 55-68 ° C, preferably about 60-67 ° C, more preferably about 65 ° C.
  • the optimum temperature of the fifth esterase of the present disclosure is intended to be about 33-47 ° C, preferably about 37-45 ° C, more preferably about 40 ° C.
  • thermal stability has the same meaning as terms such as “temperature stability” and “heat resistance”, and is used in the meaning commonly used in the art, and the enzyme is at a low temperature. And / or means to retain activity at high temperatures.
  • an enzyme is inactivated at a temperature of about 50 ° C. due to factors such as a change in molecular structure.
  • the relative enzyme activity when the enzyme activity after treatment at 30 ° C. for 30 minutes is 100% is at a temperature of about 10 to about 60 ° C.
  • the relative enzyme activity when the enzyme activity after 30 minutes of treatment at 45 ° C. is 100% is about 15 to about. It retains 80% or more after 30 minutes of treatment in the temperature range of 60 ° C.
  • the relative enzyme activity when the enzyme activity after 30 minutes treatment at 30 ° C. is 100% is 80 after 30 minutes treatment in the temperature range of about 30 to about 65 ° C. Hold% or more.
  • the relative enzyme activity when the enzyme activity after 30 minutes treatment at 30 ° C. is 100% is 80 after 30 minutes treatment in the temperature range of about 30 to about 45 ° C.
  • the relative enzyme activity when the enzyme activity after 30 minutes treatment at 40 ° C. is 100% is 80 after 30 minutes treatment in the temperature range of about 20 to about 45 ° C. Hold% or more.
  • the same expression as "maintaining thermal stability" is about 30 ° C. in the case of the first esterase, about 45 ° C. in the case of the second esterase, and in the case of the third esterase.
  • the relative enzyme activity is approximately 100% when the enzyme activity after 30 minutes of treatment at 30 ° C., 30 ° C. for the fourth esterase, and 40 ° C. for the fifth esterase is 100%. It means that it is retained at 50% or more.
  • the "optimal pH" of the ability to decompose an ester is used in the sense commonly used in the art, and the activity of decomposing an ester is above a certain level (for example, the enzyme has). It refers to the pH range in which 80% or more of the activity of the maximum level is maintained, but in another embodiment, it refers to the pH at the time of the maximum level).
  • the first, second, third and fourth esterases of the present disclosure all have a peak activity of decomposing an ester having a peak of about pH 9, and 80% or more of the peak in the range of about pH 8.5 to pH 9.5. Retains the activity of.
  • the fifth esterase has a peak activity of decomposing an ester at about pH 8, and retains an activity of 80% or more of the peak in the range of about pH 7.5 to pH 8.5.
  • the optimum pH of the esterases (all of the first, second, third and fourth) of the present disclosure is pH 8. It is intended to be 5.5 to pH 9.5, preferably pH 8.8 to pH 9.3, more preferably pH 9.
  • the optimum pH of the fifth esterase of the present disclosure is pH 7.5 to pH 8.5, preferably pH 7.8 to pH 8.3, more preferably pH 8. Intended to be.
  • pH stability of the ability to decompose an ester has the same meaning as terms such as "pH resistance”, “acid resistance” and “alkali resistance”, and is commonly used in the art. It is used in the sense that it is used, and refers to the pH range in which the activity of decomposing an ester is above a certain level.
  • the relative enzyme activity after 30 minutes incubation treatment in a buffer solution of pH 9 is about pH 7.5 to 9.5 when the enzyme activity is 100%.
  • the relative enzyme activity when the enzyme activity after 30 minutes incubation treatment in a buffer solution of pH 8 is 100% is about pH 7.5.
  • the relative enzyme activity when the enzyme activity after incubation treatment in a buffer solution of pH 9 for 30 minutes is 100% is about pH 8.5 to 9.2. Hold 80% or more.
  • the relative enzyme activity when the enzyme activity after incubation treatment in a buffer solution of pH 9 for 30 minutes is 100% is about pH 7.8 to 9.2. Hold 80% or more.
  • the relative enzyme activity when the enzyme activity after incubation treatment in a buffer solution of pH 8 for 15 hours is 100% is 80% in the treatment of about pH 4 to 8.5. Hold the above.
  • the same expressions as "maintaining pH stability" include pH 9 in the case of the first esterase, pH 8 in the case of the second esterase, and pH 9 in the case of the third esterase.
  • the relative enzyme activity at pH 9 and in the case of the fifth esterase at pH 8 after incubating for a certain period of time or longer is 100%, and the relative enzyme activity is the same time at the test pH. It means that it is retained at about 50% or more when incubated.
  • Yarrowia lipolytica means a species of the genus Yarrowia in terms of biotaxonomy.
  • Yarrowia lipolytica is a type of alkane assimilating yeast, and has been identified as having a high ability to assimilate hydrophobic hydrocarbon chains such as n-alkane and fat.
  • the Yarrowia lipolytica KH-2 strain (microorganism strain specified by accession number NITE BP-02732) in the present specification is a representative sequence of at least five types of esterases (that is, the "first esterase" of the present disclosure, "No. 1".
  • esterases of the present disclosure have characteristics not found in conventionally known esterases. These salient features are detailed elsewhere herein.
  • the esterases of the present disclosure include, but are not limited to, those produced by the KH-2 strain belonging to Yarrowia lipolytica.
  • the term "cell-free expression system” is used in the sense commonly used in the art, and uses a transcriptional translation mechanism of a biomolecule extracted from a cell to in vitro the desired recombination. Refers to a system that produces proteins.
  • the cell-free expression system for producing the esterase of the present disclosure is not particularly limited, but a cell-free expression system derived from a prokaryote such as Escherichia coli can be used.
  • the "oil treatment component” means a component that assists the assimilation and decomposition of the ester. Specifically, in addition to components that promote the dispersion of esters such as surfants, components that decompose esters into fatty acids and alcohols, those that decompose fatty acids, those that decompose alcohols, and oils. Includes those that are adsorbed and removed from the object to be treated.
  • oil-degrading agent refers to the Yarrowia lipolytica KH-2 strain of the present disclosure or the first, second, third, fourth or fifth esterase of the present disclosure produced by this microbial strain. It refers to a preparation that can decompose the ester form as an ingredient.
  • the oil decomposing agent may be used in combination with an oil treatment component. In this case, the timing of the combined use of the oil decomposing agent and the oil treatment component may be the simultaneous use or one of them may be used first.
  • the oil decomposing agent includes a microbial strain to be used or a component that enhances the activity of an esterase derived from the microbial strain (for example, a carbon source or a nitrogen source), a surfactant, a desiccant protective agent, a component for maintaining the microorganism for a long period of time, Preservatives, excipients, fortifiers, antioxidants and the like may be further contained.
  • a microbial strain to be used or a component that enhances the activity of an esterase derived from the microbial strain for example, a carbon source or a nitrogen source
  • a surfactant for example, a carbon source or a nitrogen source
  • a desiccant protective agent for maintaining the microorganism for a long period of time
  • Preservatives, excipients, fortifiers, antioxidants and the like may be further contained.
  • the oil degrading agent provided in the present disclosure is provided in a liquid or solid or dry state.
  • the liquid form includes a culture solution of microorganisms (which may be concentrated or diluted if necessary), a substance in which an enzyme component derived from the culture solution is adsorbed on a support, and a buffer solution obtained by separating and purifying the enzyme from the culture solution. Examples thereof include those dissolved in a solvent.
  • the oil degrading agent is provided in liquid form, powder, granule form and may be provided as a detergent or contained with other ingredients as a component of the detergent.
  • derivatives are preferably, but not intended to be limiting, substantially to the protein of interest (eg, esterases).
  • Such molecules include, in various embodiments, sequences that are aligned over amino acid sequences of the same size or by computer homology programs known in the art. Nucleic acids that are at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% identical when compared, or encode such molecules (highly) ) It is possible to hybridize to a sequence encoding a component protein under stringent, moderately stringent, or non-stringent conditions.
  • it means a protein having the same or higher biological activity.
  • functionally active or “having functional activity” is used herein to include biological activity, etc., according to the embodiments in which the polypeptides of the present disclosure, ie fragments or derivatives, are associated. Refers to having a structural function, a regulatory function, or a biochemical function of a protein.
  • an esterase fragment is a polypeptide containing an arbitrary region of esterase, as long as it functions as the object of the present disclosure (for example, decomposition of a trans fatty acid-containing ester or decomposition of a medium chain fatty acid ester). It does not necessarily have all of the biological functions of natural esterases.
  • protein protein
  • polypeptide oligopeptide
  • peptide refers to a polymer of amino acids of any length.
  • the polymer may be linear, branched or cyclic.
  • the amino acid may be natural or non-natural, or may be a modified amino acid.
  • the term may also include those assembled into a complex of multiple polypeptide chains.
  • the term also includes naturally or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation or any other manipulation or modification (eg, conjugation with a labeling component).
  • amino acid is a general term for organic compounds having an amino group and a carboxyl group.
  • amino acid sequence may be chemically modified.
  • any amino acid in the amino acid sequence may form a salt or a solvate.
  • any amino acid in the amino acid sequence may be L-type or D-type.
  • the protein according to the embodiment of the present disclosure contains the above-mentioned "specific amino acid sequence”.
  • Chemical modifications that amino acids contained in proteins undergo in vivo include, for example, N-terminal modification (eg, acetylation, myristoylation, etc.), C-terminal modification (eg, amidation, glycosylphosphatidylinositol addition, etc.), or side chain. Modifications (eg, phosphorylation, glycosylation, etc.) are known. Amino acids may be natural or non-natural as long as they meet the purposes of the present disclosure.
  • polynucleotide In the present specification, "polynucleotide”, “oligonucleotide” and “nucleic acid” are used interchangeably in the present specification and refer to a polymer of nucleotides of arbitrary length. The term also includes “oligonucleotide derivatives” or “polynucleotide derivatives”. "Nucleobase sequence” or “nucleic acid sequence” means the sequence of successive nucleic acid bases in “polynucleotide”, “oligonucleotide” or “nucleic acid”.
  • oligonucleotide derivative refers to an oligonucleotide or polynucleotide containing a derivative of a nucleotide or having an unusual bond between nucleotides, and is used interchangeably.
  • an oligonucleotide includes, for example, 2'-O-methyl-ribonucleotide, an oligonucleotide derivative in which a phosphate diester bond in an oligonucleotide is converted into a phosphorothioate bond, and a phosphate diester bond in an oligonucleotide.
  • oligonucleotide derivatives converted to N3'-P5'phosphoroamidate bond an oligonucleotide derivative in which ribose and phosphate diester bond in the oligonucleotide are converted into peptide nucleic acid bond, and uracil in the oligonucleotide is C- 5 Oligonucleotide derivatives substituted with propynyl uracil, oligonucleotide derivatives in which uracil in the oligonucleotide is replaced with C-5 thiazole uracil, oligonucleotide derivatives in which cytosine in the oligonucleotide is replaced with C-5 propynyl cytosine, oligonucleotides Oligonucleotide derivatives in which cytosine in nucleotides is replaced with phenoxazine-modified cytosine, oligonucleotide derivatives in which
  • a particular base sequence is also a conservatively modified variant (eg, a degenerate codon substitution) and a complementary sequence, as well as the explicitly indicated sequence. Is intended to be included.
  • the degenerate codon substituent creates a sequence in which the third position of one or more selected (or all) codons is replaced with a mixed base and / or deoxyinosin residue. It can be achieved by (Batzer et al., Nucleic Acid Res. 19: 5081 (1991); Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985); Rossolini et al., Mol. Cell. .Probes 8: 91-98 (1994)).
  • nucleic acid is also used interchangeably with genes, cDNAs, mRNAs, oligonucleotides, and polynucleotides.
  • nucleotide may be natural or non-natural.
  • the "gene” refers to a factor that defines a genetic trait, and the “gene” may refer to a "polynucleotide", an “oligonucleotide”, and a “nucleic acid”.
  • homology of a gene means the degree of identity of two or more gene sequences to each other, and generally, having “homology” means a high degree of identity or similarity. Say. Therefore, the higher the homology of two genes, the higher the identity or similarity of their sequences. Whether or not the two genes are homologous can be examined by direct sequence comparison or, in the case of nucleic acids, hybridization under stringent conditions. When comparing two gene sequences directly, the DNA sequences are typically at least 50% identical, preferably at least 70% identical, and more preferably at least 80%, 90%. , 95%, 96%, 97%, 98% or 99% if they are identical, the genes are homologous.
  • a “homologous” or “homologous gene product” is another species, preferably a microorganism, more preferably, which exerts the same biological functions as the protein components of the complex further described herein. Means protein in yeast. Such homologues are also sometimes referred to as “ortholog gene products.” It is understood that such homologues, homologous gene products, ortholog gene products and the like can also be used as long as they meet the purposes of the present disclosure.
  • the term “similarity" of a gene or base sequence refers to the degree of similarity between two or more gene sequences to each other, and the high degree of similarity of other sequences of identity.
  • Similarity is a numerical value that takes into account similar bases in addition to identity.
  • Amino acids may be referred to herein by either their generally known three-letter symbols or the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides can also be referred to by the generally accepted one-letter code.
  • comparison of amino acid sequence and base sequence similarity, identity and homology is calculated using default parameters using BLAST, which is a tool for sequence analysis.
  • the identity search can be performed using, for example, NCBI's BLAST 2.7.1 (issued October 19, 2017).
  • the value of "identity" in the present specification usually refers to the value when the above BLAST is used and aligned under the default conditions. However, if a higher value is obtained by changing the parameter, the highest value is set as the identity value. When identity is evaluated in multiple regions, the highest value among them is set as the identity value.
  • Similarity is a numerical value that takes into account similar amino acids in addition to identity.
  • the "several pieces” may be, for example, 10, 8, 6, 5, 4, 3, or two pieces, or may be less than or equal to any one of them. It is known that a polypeptide that has been deleted, added, inserted, or replaced by another amino acid with one or several amino acid residues maintains its biological activity (Mark et al., Proc). Natl Acad Sci USA.1984 Sep; 81 (18): 5662-5666., Zoller et al., Nucleic Acids Res. 1982 Oct 25; 10 (20): 6487-6500., Wang et al., Science. 1984 Jun 29; 224 (4656): 1431-1433.).
  • the deleted protein can be produced, for example, by a site-specific mutagenesis method, a random mutagenesis method, biopanning using a protein phage library, or the like.
  • a site-specific mutagenesis method for example, KOD-Plus-Mutagenesis Kit (TOYOBO CO., LTD.) Can be used. It is possible to select a protein having the same activity as the wild type from the mutant protein into which the deletion or the like has been introduced by performing various characterizations such as FACS analysis and ELISA.
  • identity is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more. , 97% or more, 98% or more, 99% or more, or 100% or more, and may be within the range of any two of the numerical values that are the starting points thereof.
  • identity is calculated by calculating the ratio of the number of amino acids homologous in an amino acid sequence between two or a plurality of amino acids according to a known method as described above.
  • polynucleotide that hybridizes under stringent conditions refers to well-known conditions commonly used in the art.
  • a polynucleotide can be obtained by using a polynucleotide selected from the polynucleotides of the present disclosure as a probe and using a colony hybridization method, a plaque hybridization method, a Southern blot hybridization method, or the like. Specifically, using a filter on which DNA derived from colonies or plaques is immobilized, hybridization is performed at 65 ° C. in the presence of 0.7 to 1.0 M NaCl, and then the concentration is 0.1 to 2 times higher.
  • polynucleotide that can be identified by washing the filter under 65 ° C. conditions using an SSC (saline-sodium citrate) solution (the composition of the 1-fold SSC solution is 150 mM sodium chloride and 15 mM sodium citrate). ..
  • SSC saline-sodium citrate
  • the composition of the 1-fold SSC solution is 150 mM sodium chloride and 15 mM sodium citrate.
  • stringent condition for example, the following conditions can be adopted.
  • a denaturant such as formamide (eg, at 42 ° C., 50% (v / v) formamide and 0.1% bovine serum albumin / 0.1% ficol / 0.1% polyvinylpyrrolidone / 50 mM sodium chloride buffer, pH 6.5, And 750 mM sodium chloride, 75 mM sodium citrate), or (3) 20% formamide, 5 x SSC, 50 mM sodium phosphate (pH 7.6), 5 x denhard solution, 10% dextran sulfate, and 20 mg / ml denaturation.
  • formamide eg, at 42 ° C., 50% (v / v) formamide and 0.1% bovine serum albumin / 0.1% ficol / 0.1% polyvinylpyrrolidone / 50 mM sodium chloride buffer, pH 6.5, And 750 mM sodium chloride, 75 mM sodium citrate
  • 20% formamide 5 x SSC, 50 mM sodium phosphate (pH 7.6),
  • polypeptides used in the present disclosure are encoded by nucleic acid molecules that hybridize under highly or moderately stringent conditions to the nucleic acid molecules encoding the polypeptides specifically described herein. Polypeptides are also included.
  • the esterases of the present disclosure can preferably be “purified” or “isolated”.
  • a “purified” substance or biological factor eg, nucleic acid or protein
  • the purity of the biological factor in the purified biological factor is usually higher (ie, enriched) than in the state in which the biological factor is normally present.
  • the term "purified” as used herein is preferably at least 75% by weight, more preferably at least 85% by weight, even more preferably at least 95% by weight, and most preferably at least 98% by weight. It means that the same type of biological factor is present.
  • the substance or biological factor used in the present disclosure is preferably a "purified” substance.
  • an "isolated” substance or biological factor eg, nucleic acid or protein
  • isolated varies depending on its purpose and therefore does not necessarily have to be expressed in purity, but if necessary, preferably at least 75% by weight, more preferably. Means that there is at least 85% by weight, even more preferably at least 95% by weight, and most preferably at least 98% by weight of the same type of biological factor.
  • the substance used in the present disclosure is preferably an "isolated" substance or biological factor.
  • fragment refers to a polypeptide or polynucleotide having a sequence length of 1 to n-1 with respect to a full-length polypeptide or polynucleotide (length n).
  • the length of the fragment can be appropriately changed according to its purpose.
  • the lower limit of the length is 3, 4, 5, 6, 7, 8, 9, 10, Amino acids such as 15, 20, 25, 30, 40, 50 and above are mentioned, and lengths represented by integers not specifically listed here (eg, 11) are also suitable as lower limits. obtain.
  • a length represented by a non-integer can also be a suitable lower bound.
  • such a fragment is within the scope of the present disclosure, for example, when a full-length one functions as an ester-degrading molecule, as long as the fragment itself also functions as an ester-degrading molecule. Is understood.
  • biological function refers to a specific function that the gene, nucleic acid molecule or polypeptide may have in vivo or in vitro. That is, for example, decomposition of an ester (for example, decomposition of a trans fatty acid-containing ester) and the like can be mentioned, but the present invention is not limited thereto.
  • biological activity refers to the activity that a certain factor (for example, polynucleotide, protein, etc.) can have, and has various functions (for example, decomposition activity of a trans fatty acid-containing ester). Activities that exert the above are included.
  • the "biological activity” may be an activity exerted in vivo or an activity exerted in vitro by secretion or the like. For example, if a factor is an enzyme, its biological activity comprises that enzymatic activity. Such biological activity can be measured by techniques well known in the art. Thus, “activity” indicates or reveals binding (either direct or indirect); affects the response (ie, has a measurable effect in response to some exposure or stimulus). Various measurable indicators, such as the affinity of a compound that binds directly to a polypeptide or polynucleotide of the present disclosure, or, for example, the amount of upstream or downstream protein or other after some stimulation or event. Scales of similar function may also be included.
  • expression of a gene, polynucleotide, polypeptide or the like means that the gene or the like undergoes a certain action in vivo and becomes another form.
  • a gene, polynucleotide, or the like is transcribed and translated into the form of a polypeptide, but transcribing to produce mRNA is also an aspect of expression.
  • an "expression product” includes such a polypeptide or protein, or mRNA. More preferably, the form of such a polypeptide can be post-translationally processed. For example, the expression level of esterase can be determined by any method.
  • the expression level of esterase can be known by evaluating the amount of esterase mRNA, the amount of esterase protein, and the biological activity of esterase protein.
  • the amount of esterase mRNA or protein can be determined by methods as detailed elsewhere herein or by other methods known in the art.
  • the "functional equivalent” means an arbitrary entity having the same target function but a different structure with respect to the target entity. Therefore, the functional equivalent of the "esterase” of the present disclosure is not the esterase itself of the present disclosure, but a variant or a variant thereof (for example, an amino acid sequence variant), and the biological equivalent of the esterase. Those having an action and those capable of being transformed into a variant or a variant having a biological action of the esterase at the time of action (for example, a nucleic acid encoding the variant or the variant, and a nucleic acid thereof). It is understood that vectors containing nucleic acids, including cells, etc.) are included.
  • esterases can be used in the same manner as esterases, without special mention. Functional equivalents can be found by searching databases and the like.
  • search refers to finding another nucleobase sequence having a specific function and / or property by utilizing one nucleobase sequence electronically, biologically, or by some other method.
  • Electronic searches include BLAST (Altschul et al., J.Mol.Biol.
  • Bio searches include stringent hybridization, macroarrays in which genomic DNA is attached to a nylon membrane or the like, or microarrays (microarray assays) in which genomic DNA is attached to a glass plate, PCR and in situ hybridization, and the like. Not limited to. As used herein, it is intended that the genes used in the present disclosure should also include corresponding genes identified by such electronic and biological searches.
  • one or more amino acids inserted, substituted or deleted, or added to one or both ends of the amino acid sequence can be used.
  • "insertion, substitution or deletion of one or more amino acids in an amino acid sequence, or addition to one or both ends” is a well-known technical technique such as a site-specific mutagenesis method. It means that the modification has been made by a method or by a natural mutation, such as by substituting a plurality of amino acids that can occur naturally.
  • the modified amino acid sequence includes, for example, 1 to 30, preferably 1 to 20, more preferably 1 to 9, still more preferably 1 to 5, and particularly preferably 1 to 2 amino acids inserted, substituted, or missing. It can be lost, or added to one or both ends.
  • the modified amino acid sequence preferably has one or more (preferably one or more) amino acid sequences in the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22.
  • conservative substitution means substituting one or more amino acid residues with another chemically similar amino acid residue so as not to substantially alter the function of the protein. For example, there is a case where one hydrophobic residue is replaced with another hydrophobic residue, a case where one polar residue is replaced with another polar residue having the same charge, and the like. Functionally similar amino acids capable of making such substitutions are known in the art for each amino acid.
  • non-polar (hydrophobic) amino acids such as alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine.
  • polar (neutral) amino acids include glycine, serine, threonine, tyrosine, glutamine, asparagine, and cysteine.
  • positively charged (basic) amino acids include arginine, histidine, and lysine.
  • negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
  • the "kit” usually refers to a unit in which parts to be provided (for example, an enzyme, a fat-decomposing agent, a buffer solution, an instruction manual, etc.) are provided by dividing into two or more sections.
  • the form of this kit is preferred when the purpose is to provide a composition that should not be mixed and provided for stability and the like, but is preferably mixed and used immediately before use.
  • Such a kit preferably describes how to use the provided portion (eg, enzyme or oil degrading agent) or how to treat the reagent or waste liquid after use. Or it is advantageous to have instructions.
  • the kit When the kit is used as a reagent kit in the present specification, the kit usually includes an instruction sheet or the like describing how to use an enzyme, a fat-decomposing agent, or the like.
  • the "instruction” describes the method for using the present disclosure to the user.
  • This instruction sheet contains words indicating how to use the polypeptides, polynucleotides, cells, etc. of the present disclosure.
  • this instruction may be provided by the regulatory agency of the country in which this disclosure is implemented (eg, Ministry of Health, Labor and Welfare or Ministry of Agriculture, Forestry and Fisheries in Japan, Food and Drug Administration (FDA), Department of Agriculture (USDA) in the United States. ) Etc.), and it is clearly stated that it has been approved by the regulatory agency. Instructions may be provided in paper media, but are not limited to, and may also be provided in the form of, for example, electronic media (eg, homepages provided on the Internet, email).
  • the present disclosure provides a novel polypeptide and a nucleic acid encoding it.
  • This polypeptide typically has esterase activity.
  • This polypeptide has lipase activity in one embodiment.
  • the polypeptides of the present disclosure have prominent properties that differ from conventionally known enzymes.
  • the present disclosure typically describes a representative sequence of a first esterase, a representative sequence of a second esterase, a third esterase, typically obtained from a KH-2 strain of the genus Yarrowia lipolytica.
  • a representative sequence typically obtained from a KH-2 strain of the genus Yarrowia lipolytica.
  • a representative sequence typically obtained from a KH-2 strain of the genus Yarrowia lipolytica.
  • a representative sequence, a representative sequence of a fourth esterase, and a representative sequence of a fifth esterase and derivatives thereof typically describes a representative sequence of a first esterase, a representative sequence of a second esterase, a third esterase, typically obtained from a KH-2 strain of the genus Yarrowia lipolytica.
  • the polypeptides of the present disclosure are the first to fourth esterases, i.e.
  • A A polypeptide containing the amino acid sequence shown in SEQ ID NO: 2, 8, 12 or 16
  • B A polypeptide having biological activity, which comprises an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof in the amino acid sequence of (a);
  • C A polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in (a) or (b) and having biological activity;
  • D A polypeptide containing an amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1, 7, 11 or 15;
  • E In the base sequence shown in (d), a polypeptide having biological activity encoded by a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof;
  • F A polypeptide having biological activity encoded by a base sequence having at least 70% or more sequence identity with the base sequence shown in (d) or (e);
  • Polypeptide with (H) A polypeptide having biological activity encoded by an allelic variant of any one of the base sequences of (d) to (g); or the amino acid sequence shown in (i) (a) to (h). Polypeptide, including fragments of Is a polypeptide.
  • polypeptides of the present disclosure are a fifth esterase, ie.
  • A In the amino acid sequence shown in SEQ ID NO: 22, a polypeptide containing an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof;
  • B A polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in the amino acid sequence shown in SEQ ID NO: 22;
  • C In the base sequence shown in SEQ ID NO: 21, a polypeptide encoded by a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof;
  • D A polypeptide encoded by a base sequence having at least 70% or more sequence identity with the base sequence shown in SEQ ID NO: 21;
  • E A polypeptide encoded by a nucleotide sequence containing the nucleotide sequence shown in SEQ ID NO: 21 or a complementary sequence thereof and a nucleotide sequence that hybridizes under stringent conditions;
  • F A polypeptide encoded by
  • the present disclosure provides a base sequence encoding a novel polypeptide.
  • the polynucleotides of the present disclosure are polynucleotides encoding first to fourth esterases, ie (A) A polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 1, 7, 11 or 15; (B) In the base sequence shown in (A), a polynucleotide comprising a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof and encoding a polypeptide having biological activity; (C) A polynucleotide comprising a base sequence having at least 70% or more sequence identity with the base sequence shown in (A) or (B) and encoding a polypeptide having biological activity; (D) A polynucleotide containing the base sequence shown in any one of (A) to (C) or a complementary sequence thereof, and a base sequence that hybridizes under stringent conditions, and has biological activity.
  • a polynucleotide encoding a polypeptide having (E) A polynucleotide that is an allelic variant of the base sequence of any one of (A) to (D) and encodes a polypeptide having biological activity; (F) A polynucleotide encoding a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2, 8, 12 or 16; (G) In the amino acid sequence of (F), a polynucleotide encoding a polypeptide having biological activity, which comprises an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof; (H) A polynucleotide encoding a polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in (F) or (G) and having biological activity; or (I) (F) to A polynucleotide containing a fragment of the nucleotide sequence shown in (H), Can be a polynucleotide.
  • the present disclosure provides a base sequence encoding a novel polypeptide.
  • the polynucleotides of the present disclosure are those encoding a fifth esterase, ie
  • A In the base sequence shown in SEQ ID NO: 21, a polynucleotide containing a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof;
  • B A polynucleotide comprising a base sequence having at least 70% or more sequence identity with the base sequence shown in SEQ ID NO: 21 and encoding a polypeptide having biological activity;
  • C A polynucleotide encoding a polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 21 or a complementary sequence thereof and a nucleotide sequence that hybridizes under stringent conditions and has biological activity.
  • E A polynucleotide encoding a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 22;
  • F A polynucleotide encoding a bioactive polypeptide containing an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof in the amino acid sequence shown in SEQ ID NO: 22;
  • G A polynucleotide encoding a polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 22 and having biological activity; or (H) (E) to (G).
  • polynucleotide which contains a fragment of the nucleotide sequence shown. Is.
  • the polynucleotides of the present disclosure are not polynucleotides consisting of the nucleotide sequence set forth in SEQ ID NO: 21.
  • the biological activity includes the ability associated with the assimilation of trans fatty acid-containing esters, or the ability to degrade trans fatty acid-containing esters.
  • the biological activity of the polypeptide of the present disclosure is at least one of any properties possessed by the first, second, third or fourth, or fifth esterase of the present disclosure. It may include, for example, the ability associated with the assimilation of trans fatty acid-containing esters, and / or the ability to decompose trans fatty acid-containing esters.
  • conventionally known Yarrowia-derived esterases have not been observed to be active against trans fatty acid-containing esters, and at least in that sense, the esterases of the present disclosure have distinctive features. ..
  • the polypeptide of the present disclosure or the polynucleotide encoded by the polynucleotide has the ability to relate to the assimilation of the trans fatty acid-containing ester, and / or to degrade the trans fatty acid-containing ester. Can have.
  • the biological activity of the polypeptides of the present disclosure includes, for example, the ability associated with the assimilation of short- to long-chain fatty acid-containing esters, or short- to long-chain fatty acid-containing esters. It may also include the ability to break down the body or both.
  • the polypeptides or polynucleotides encoded by the disclosures are capable of relating to the assimilation of medium-chain fatty acid-containing esters, or degrading medium-chain fatty acid-containing esters, or the ability thereof. You can have both.
  • the polypeptide of the present disclosure or the polypeptide encoded by the polynucleotide has the ability to degrade the ester at 15 ° C or 10 ° C.
  • the temperature range in which the activity of the conventionally known Yarrowia-derived esterase is observed is relatively high, and it was unexpected that remarkable activity at low temperature is observed.
  • the polypeptide or polynucleotide encoded by the first esterase of the present disclosure is capable of degrading an ester at 55-65 ° C, preferably 57-63, or 60 ° C. It is the optimum temperature of.
  • the second esterase of the present disclosure a polypeptide or a polypeptide encoded by a polynucleotide, has an optimum temperature of 35 to 50 ° C., preferably 35 to 45 ° C., more preferably 40 ° C., for its ability to decompose an ester. Is.
  • the third esterase of the present disclosure a polypeptide or a polypeptide encoded by a polynucleotide, has an optimum temperature of 53 to 68 ° C., preferably 60 to 67 ° C., most preferably 65 ° C., for its ability to decompose an ester.
  • the fourth esterase of the present disclosure a polypeptide or a polypeptide encoded by a polynucleotide, has an optimum temperature of 55 to 68 ° C., preferably 60 to 67 ° C., most preferably 65 ° C. for the ability to decompose an ester. Is.
  • the polypeptide or polypeptide encoded by the polynucleotide which is the fifth esterase of the present disclosure, is typically an ester, preferably at 33 to 47 ° C, more preferably at 37 to 45 ° C, and most preferably at 40 ° C. Is the optimum temperature for the ability to decompose.
  • the polypeptide or polynucleotide encoded by the first esterase of the present disclosure is 50 ° C. or higher, 55 ° C. or higher, 60 ° C. or higher, 65 ° C. or higher, 70 ° C. or higher, or 75 ° C. or higher. It can be stable even at ° C. or higher, and can be stable up to 50 ° C. or lower, 55 ° C. or lower, 60 ° C. or lower, 65 ° C. or lower, 70 ° C. or lower, 75 ° C. or lower, or 80 ° C. or lower.
  • the first esterase of the present disclosure can preferably be stable above 50 ° C. and below 70 ° C.
  • the second esterase of the present disclosure, a polypeptide or a polypeptide encoded by a polynucleotide can be stable at 45 ° C. or higher, 50 ° C. or higher, 55 ° C. or higher, or 60 ° C. or higher, and can be stable at 50 ° C. or higher, 55 ° C. or higher. Below, it can be stable up to 60 ° C. or lower, 65 ° C. or lower, or 70 ° C. or lower.
  • the polypeptide or polynucleotide-encoded polypeptide which is the second esterase derived from the KH-2 strain of the present disclosure, can preferably be stable above 45 ° C. and below 60 ° C.
  • the third esterase of the present disclosure, a polypeptide or a polypeptide encoded by a polynucleotide can be stable at 30 ° C. or higher, 40 ° C. or higher, 45 ° C. or higher, 50 ° C. or higher, or 60 ° C. or higher, and can be 60 ° C. or higher. Below, it can be stable up to 65 ° C. or lower, 70 ° C. or lower, or 75 ° C. or lower.
  • the polypeptide or polynucleotide-encoded polypeptide which is the third esterase derived from the KH-2 strain of the present disclosure, can preferably be stable above 45 ° C. and below 65 ° C.
  • the fourth esterase of the present disclosure a polypeptide or a polypeptide encoded by a polynucleotide, can be stable at 45 ° C. or higher, 50 ° C. or higher, 55 ° C. or higher, or 60 ° C. or higher, and can be stable at 50 ° C. or higher, 55 ° C. or higher. Below, it can be stable up to 60 ° C. or lower, 65 ° C. or lower, or 70 ° C. or lower.
  • the polypeptide or polynucleotide-encoded polypeptide which is the fourth esterase derived from the KH-2 strain of the present disclosure, can preferably be stable above 45 ° C. and below 50 ° C.
  • the polypeptide or polynucleotide-encoded polypeptide, which is the fifth esterase from the KH-2 strain of the present disclosure can preferably be stable above 40 ° C and stable below 20 ° C. ..
  • “stable" means that the activity after treatment at each temperature for 30 minutes is maintained at about 80% or more as compared with the case of treatment at about 30 ° C.
  • the polypeptide of the present disclosure or the polypeptide encoded by the polynucleotide may be derived from, but is not limited to, Yarrowia lipolytica.
  • the enzyme may be derived from the Yarrowia lipolytica KH-2 strain, but is not limited thereto.
  • the present disclosure provides an oil degrading agent comprising a cell or cell-free expression system containing any of the above polypeptides or polynucleotides.
  • the cells of the present disclosure contain a polypeptide of the first, second, third, fourth or fifth esterase of the present disclosure, or the first, second, third, fourth or fifth of the present disclosure.
  • a polynucleotide encoding an esterase polypeptide is expressively incorporated.
  • a polynucleotide encoding a polypeptide of the first, second, third, fourth or fifth esterase of the present disclosure is provided so as to be expressible, and the polypeptide is expressed by an appropriate mechanism. Demonstrates an oil decomposition effect.
  • the oil decomposing agent comprises an additional oil treatment component.
  • the oil treatment component include, but are not limited to, other enzymes (eg, esterase, etc.) or microorganisms.
  • the present disclosure comprises a polypeptide of the present disclosure, or a cell-free or cell-free expression system of the present disclosure, or an oil-degrading agent, and a kit for oil-decomposing agent or oil-fat treatment, comprising an additional oil-treating component.
  • oil degrading agents and oil treatment components included in the kits of the present disclosure may be of any kind as described elsewhere herein in any combination.
  • the present disclosure provides a method for removing oil decomposition, which comprises allowing the polypeptide of the present disclosure, or the cell- or cell-free expression system of the present disclosure, or the oil-degrading agent of the present disclosure to act on a treatment subject.
  • the treatment target preferably includes, but is not limited to, a trans fatty acid-containing ester. It is shown herein that even a subject that does not contain a trans fatty acid-containing ester can perform oil decomposition very efficiently when the esterase of the present disclosure is used.
  • the disclosure provides a detergent comprising the polypeptides of the present disclosure, the cell or cell-free expression system of the present disclosure, or the oil degrading agents of the present disclosure.
  • an application in a fat modification / fat production technique using the polypeptide of the present disclosure, the cell-free or cell-free expression system of the present disclosure, or the oil-decomposing agent of the present disclosure is provided.
  • fat modification / fat production techniques include reactions that produce esters such as methyl esters and ethyl esters, substitution reactions of fat-containing fatty acids, and production of diacylglycerols and monoacylglycerols.
  • esterase production In one embodiment, the esterases of the present disclosure are produced by a secretory production system that uses microorganisms.
  • esterases of the present disclosure are: (A) Nucleic acid molecules encoding the full-length sequences of the first, second, third, fourth or fifth esterases of the present disclosure (eg, SEQ ID NOs: 5, 9, 13, 17, 19 or modified sequences thereof). Steps of gene transfer into a pEZZ18 plasmid (GE Healthcare) and expression in Escherichia coli HB101 strain as protein A fusion recombinant protein, and (b) IgG Sepharose 6 Fast Flow or Butyl Sepharose 6 It can be produced by a method that includes a step of purifying with Fast Flow.
  • the nucleotide sequences encoding the first, fourth and fifth esterases of the present disclosure are inserted into the XbaI and KpnI sites within the pEZZ18 vector, and the nucleotide sequences encoding the second esterase are PstI and The nucleotide sequence inserted into the KpnI site and encoding the third esterase is inserted into the EcoRI and XbaI sites.
  • the esterase recombinant protein of the present disclosure uses a CORYNEX® system (Ajinomoto) using Corynebacterium glutamicum, a Pichia pastoris expression system (ThermoFisher), and insect cells. It can be produced by an expression system such as a baculovirus expression system (ThermoFisher) or a protein secretion expression system using Aspergillus oryzae (Ozeki).
  • esterase of the present disclosure can be expressed by using various expression systems such as an intracellular expression system and a cell-free expression system in addition to the secretory production system of microorganisms.
  • esterases of the present disclosure are: (A) Mutations are introduced into the nucleotide sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 or other basic nucleotide sequences, and SEQ ID NOs: 1, 3, 3, A step of obtaining a modified sequence of the base sequence shown in 5, 7, 9, 11, 13, 15, 17, 19 or 21 or another basic base sequence. (B) A suitable host as a recombinant protein (if necessary, fused with a tag sequence (for example, protein A tag) that facilitates purification) by introducing the above-mentioned modified sequence into a plasmid as appropriate.
  • a suitable host as a recombinant protein (if necessary, fused with a tag sequence (for example, protein A tag) that facilitates purification) by introducing the above-mentioned modified sequence into a plasmid as appropriate.
  • the step of expressing in Escherichia coli HB101 strain) and (c) the protein produced in the host are purified by an appropriate separation method (for example, chromatography such as IgG Sepharose 6 Fast Flow or Butyl Sepharose 6 Fast Flow). It can be produced by a method involving steps.
  • an appropriate separation method for example, chromatography such as IgG Sepharose 6 Fast Flow or Butyl Sepharose 6 Fast Flow. It can be produced by a method involving steps.
  • the variants of the nucleotide sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 of the present disclosure are the above-mentioned restriction enzyme sites in the pEZZ18 vector. Is inserted into.
  • the step of introducing a mutation into the base sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 is a commonly used partial-specific mutagenesis method, mutagenesis method. Alternatively, it is appropriately carried out by using a molecular evolution method using error prone PCR or a commercially available kit.
  • the esterases of the present disclosure can be purified, for example, from the Yarrowia lipolytica KH-2 strain.
  • the esterases of the present disclosure are: (A) A step of culturing the KH-2 strain in a medium containing 1% (v / v) canola oil at 28 ° C. for 24 hours. (B) The culture supernatant of (a) is sterilized with a 0.45 ⁇ m pore filter and buffered with 20 mM Tris-HCl (pH 7.0) containing 0.5 M NaCl and 2 mM CaCl 2 in an amount about 10 times the column volume.
  • Tris buffer a solution
  • the column of (b) is washed with a Tris buffer solution having an amount of about 10 times the column volume, and then washed three times with a Tris buffer solution containing no NaCl in an amount of about 1 times the column volume, and is weak against the column carrier.
  • the step of eluting the bound protein and the columns of (d) and (c) were washed 3 times with Tris buffer containing 1% Triton® X-100, which is about 1 times the volume of the column, and the columns. It can be purified by a method including a step of eluting a protein strongly bound to.
  • the method for purifying the enzyme detailed conditions such as culture conditions for the KH-2 strain and column chromatography conditions are appropriately adjusted by those skilled in the art.
  • the esterases of the present disclosure are useful in the treatment of fats and oils, and can be used in the treatment of wastewater containing fats and oils, waste liquids and the like. In certain embodiments, the esterases of the present disclosure are used in wastewater treatment. When used for wastewater treatment, the esterases of the present disclosure can be used in applications such as factory wastewater, kitchen wastewater, and residential wastewater.
  • esterase of the present disclosure is used as a detergent.
  • the esterases of the present disclosure can be used in applications such as laundry detergents, kitchen detergents, cleaning detergents, and industrial detergents.
  • the detergents containing esterases of the present disclosure are particularly useful for drain cleaners such as pipe cleaners.
  • esterases of the present disclosure are used in fat modification and fat production techniques.
  • the esterases of the present disclosure can be used in applications such as food, industrial, and fuel.
  • the esterases of the present disclosure can be used as an environmental pollution control measure.
  • the esterases of the present disclosure can be used to remove pollutants in soil pollution, groundwater pollution, marine pollution, etc. by oil.
  • the esterases of the present disclosure are used in waste treatment and composting.
  • the esterases of the present disclosure include food waste treatment including annihilation type, composting, feed conversion of agricultural products and food waste, oily sludge from pressurized levitation separators and grease traps. It can be used in applications such as volume reduction.
  • esterases of the present disclosure are used as pharmaceuticals.
  • the esterases of the present disclosure can be used in applications such as digestive agents and lipolysis promoters.
  • esterases of the present disclosure are used as cosmetics.
  • the esterases of the present disclosure can be used in applications such as cosmetics for improving, preventing or treating oily skin.
  • esterase of the present disclosure When used for various purposes, it may be used as a component containing an isolated enzyme or as a component containing the microorganism itself, and those skilled in the art will appropriately use the present invention in an appropriate form.
  • the disclosed esterases can be used.
  • Example 1 Summary of gene and amino acid sequence encoding esterase derived from KH-2 strain
  • This example provides a summary of the genes and amino acid sequences encoding the esterases of the present disclosure.
  • the first, second, third, fourth and fifth esterases found in Example 1 are cholesterol esterase activity, triglycerol lipase activity, patatin and phospholipase activity, patatin and phospholipase activity, and triglycerol lipase, respectively. It was presumed to have activity.
  • the first, second, third, fourth and fifth esterases are all presumed to have a signal peptide (SP) sequence, and their molecular weights are 63.5 kDa, 61 kDa, 62.9 kDa, 69. It was estimated to be 6 kDa and 36.7 kDa.
  • SP signal peptide
  • Example 2 Expression analysis of esterase gene in KH-2 strain
  • Example 1 Expression analysis of esterase gene in KH-2 strain
  • the KH-2 strain was cultured overnight in LB medium, and the culture was washed twice with TBS buffer (137 mM NaCl, 2.68 mM KCl, 25 mM Tris, pH 7.4) to remove the LB medium.
  • Total RNA was extracted from the cultures 24 hours, 48 hours and 72 hours after culture using the Hypure RNA Isolation Kit.
  • PowerUp TM SYBR® Green Master Mix Thermo Fisher Scientific
  • the PCR reaction was carried out by a program in which one cycle of denaturation at 95 ° C. for 20 seconds was followed by a cycle of 95 ° C. for 1 second and 60 ° C. for 20 seconds repeated 40 times.
  • the expression level was normalized by the expression level of 1,2-manosyltransphase (arg9).
  • the data were analyzed by the comparative Ct method ( ⁇ Ct method) after confirming that the melting curve had a single peak.
  • Genes encoding the first, second, third, fourth and fifth esterases when the expression level of each esterase gene expressed when cultured in LB medium containing no fat was set to 1 as a control.
  • the expression level was calculated as a relative expression level.
  • the pEZZ18 Protein A Gene Fusion Vector System (GE) is used to express recombinant proteins of representative sequences of the first, second, third, fourth and fifth esterases in E. coli cells. Healthcare) was used.
  • the nucleotide sequences of the genes encoding the representative sequences of the first, second, third, fourth and fifth esterases are amplified by PrimestarMax, respectively, and the amplified transgenes are XbaI and KpnI in the pEZZ18 vector. It was inserted into sites (first, fourth and fifth esterases), PstI and KpnI sites (second esterases), EcoRI and XbaI sites (third esterases). The E.
  • coli strain containing the transgene was cultured in 200 ml of LB medium containing ampicillin at 37 ° C. for 48 hours and then at 42 ° C. for 3 hours. The cells were removed by centrifugation and the recombinant protein was adsorbed on an equilibrated Butyl Sepharose6 Fast Flow column. The recombinant protein was then eluted with 20 mM Tris-HCl (pH 7.0) elution buffer containing 2 mM CaCl 2 and 0.5% Triton® X-100.
  • Example 4 Measurement of optimum temperature, thermal stability, optimum pH and pH stability
  • the optimum temperature, thermal stability, optimum pH and pH stability of the representative sequences of the first, second, third and fourth esterases produced by recombinant Escherichia coli and crudely purified Is shown.
  • Escherichia coli expressing representative sequences of the first, second, third and fourth recombinant esterases was cultured in 1500 ml of LB medium using a fermenter for 48 hours. An equal amount of acetone was added to the culture supernatant, and the mixture was allowed to stand at 4 ° C. for 24 hours. Centrifugation is then performed to obtain pellets, which are suspended in 1 ml buffer (20 mM Tris-HCl (pH 7.4), 0.5% Triton® X-100 in 2 mM CaCl 2). The crude esterase obtained in the above was used as an analysis target. The optimum temperature was examined by mixing (A and E) crude esterase with a buffer solution adjusted to each temperature between 0 ° C.
  • esterase activity was measured to examine the thermal stability.
  • C and G crudely purified esterase was used in acetate buffer (pH 3.0 to 5.0), sodium phosphate buffer (pH 5.0 to 7.0), and Tris-HCl buffer (pH 7.0 to 9.). Optimal pH was determined by mixing with 0) or CAPS buffer (pH 9.0 to 11.0) and measuring esterase activity.
  • the optimum temperature of the representative sequence of the first esterase was about 60 ° C., and showed thermal stability in the temperature range between about 10 ° C. and about 60 ° C.
  • the optimum pH of the representative sequence of the first esterase was pH 9.0, and showed pH stability in the pH range of about pH 7.5 to about pH 9.5.
  • the optimum temperature of the representative sequence of the second esterase was about 40 ° C., and showed thermal stability in the temperature range between about 10 ° C. and about 50 ° C.
  • the optimum pH of the representative sequence of the second esterase was pH 9.0, and showed pH stability in the pH range of about pH 7.5 to about pH 9.2.
  • the optimum temperature of the representative sequence of the third esterase was about 65 ° C., and showed thermal stability in the temperature range between about 30 ° C. and about 65 ° C.
  • the optimum pH of the representative sequence of the third esterase was pH 9.0, and showed pH stability in the pH range of about pH 8 to about pH 9.5.
  • the optimum temperature of the representative sequence of the fourth esterase was about 65 ° C., and showed thermal stability in the temperature range between about 30 ° C. and about 70 ° C.
  • the optimum pH of the representative sequence of the fourth esterase was pH 9.0, and showed pH stability in the pH range of about pH 7 to about pH 9.5.
  • Example 5 Cleaning effect of first, second, third, fourth and fifth esterase and N-51032 enzyme on ventilation fan filter oil stain
  • the oil of the ventilation fan filter of the representative sequences of the first, second, third, fourth and fifth esterases of the present disclosure derived from the KH-2 strain and Novozymes 51032 lipase (Novozymes). The cleaning effect of dirt was measured.
  • the concentration of the enzyme solution was adjusted based on the enzyme activity in which the amount of 4-nitrophenol produced by the hydrolysis of the ester by esterase or lipase was quantified by the absorbance at 410 nm using the ester (pNP-ester) as a substrate.
  • a ventilation fan filter on which oil stains were deposited was cut into 2 cm squares and placed in a plate, a solution of each esterase or lipase was added to each plate, and the mixture was immersed for 30 minutes.
  • Example 6 Decomposition of fats and oils by recombinant proteins of the first, second, third, fourth and fifth esterases of the present disclosure
  • Example 6 Decomposition of fats and oils by recombinant proteins of the first, second, third, fourth and fifth esterases of the present disclosure
  • Example 3 (A: Decomposition of shorting by first, second, third, fourth and fifth esterases) Each purified recombinant esterase produced by the step of Example 3 was prepared so as to have a final concentration of 0.2 u / ml. 2 ml of each esterase solution of the present disclosure was placed in a plate and 0.7 g of shortening was added thereto. Incubation was carried out at 28 ° C. for 24 hours with appropriate stirring and blending with the solution. The one treated with only the above-mentioned elution buffer was used as a control.
  • Each purified recombinant esterase produced by the step of Example 3 was prepared so as to have a final concentration of 0.2 u / ml. 2 ml of each esterase solution of the present disclosure was placed in a plate and 0.5 g of lard was added thereto. Incubation was carried out at 28 ° C. for 24 hours with appropriate stirring and blending with the solution. The one treated with only the above-mentioned elution buffer was used as a control.
  • Each purified recombinant esterase produced by the step of Example 3 was mixed with lard, shortening, triolein and trioleidin, respectively, and treated at 37 ° C. for 48 hours.
  • the treatment was carried out by placing 0.1 ml of each purified recombinant esterase and 1 ml of elution buffer in a tube and shaking the mixture at 130 rpm.
  • the treated sample was applied to a silica gel plate and developed with a chloroform: acetone: methanol (96: 4: 2) solution. After development, detection was carried out by developing a color with molybtriic acid n-hydrate (2.4 g / 60 ml EtOH).
  • the recombinant proteins of the representative sequences of the first, second, third and fourth esterases of the present disclosure are both triolein, which is a cis triglyceride, and trioleidin, which is a trans triglyceride. It was revealed that it has an activity of hydrolyzing. Furthermore, it was shown that the decomposition activity for shortening was remarkably high. Furthermore, it was shown that the recombinant protein of the representative sequence of the fifth esterase also has the degrading activity of these fats and oils, although it is inferior to the degrading activity of these esterases.
  • Example 7 Comparison of substrate specificity of first, second, third, fourth and fifth esterases
  • the degrading activity of each substrate by the first, second, third, fourth and fifth esterases of the present disclosure was compared.
  • Example 3 Representative sequences of the first, second, third, fourth and fifth esterases of the present disclosure were obtained according to the method described in Example 3.
  • the esterase activity was measured using 4-nitrophenyl ester (pNP-ester) of five fatty acids (acetate (C2), butyrate (C4), octanoate (C8), laurate (C12) and palmitate (C16)) as substrates.
  • the amount of 4-nitrophenol produced by the hydrolysis of the ester by esterase was measured by quantifying the absorbance at 410 nm.
  • each substrate solution 0.05 mol of each substrate was mixed with 12 ml of a 3% (v / v) Triton® X-100 aqueous solution and melted at 70 ° C. was used.
  • Each substrate solution was mixed with 150 mM GTA buffer (pH 7.0) and 60 ⁇ l of each sample, and the absorbance at 410 nm immediately after mixing and the absorbance at 410 nm 30 minutes after mixing were measured. Then, the esterase activity was calculated by subtracting the absorbance at 410 nm immediately after mixing from the absorbance at 410 nm 30 minutes after mixing, mixing the buffer solution alone with the substrate, and further subtracting the value measured under the same conditions.
  • esterase activity was calculated by measuring the absorbance at 410 nm for 1 minute after mixing the substrate solution and the sample solution containing the fifth esterase.
  • esterase activity the amount of enzyme that liberates 1 ⁇ M 4-nitrophenol is defined as 1 unit, the number of units per 1 ml of sample is calculated, and the relative activity is 100% with the one showing the maximum activity in each substrate as 100%.
  • Example 7 The results of Example 7 are shown in FIG.
  • the first esterase had the highest esterase activity for lipids having an octanoate (C8) carbon chain, and also showed high esterase activity for laurate (C12) carbon chains.
  • the second esterase had the highest esterase activity on lipids having a butyrate (C4) carbon chain, and also showed high esterase activity on octanoate (C8).
  • the third esterase had the highest esterase activity on lipids having a butyrate (C4) carbon chain.
  • the fourth esterase had the highest esterase activity on lipids having a butyrate (C4) carbon chain, and also showed high esterase activity on acetate (C2) and octanoate (C8).
  • the fifth esterase had the highest esterase activity for lipids having a butyrate (C4) carbon chain, and also showed high esterase activity for acetate (C2).
  • Example 8 Comparison of decomposition activity of trans fatty acid-containing ester by first, second, third, fourth and fifth esterases by serial dilution
  • the degrading activity of trans fatty acid-containing esters by the first, second, third, fourth and fifth esterases of the present disclosure was compared by serial dilution.
  • Example 3 Representative sequences of the first, second, third, fourth and fifth esterases of the present disclosure were obtained according to the method described in Example 3.
  • 0.01u / u / of the representative sequences of the first, second, third, fourth and fifth esterases using triellaidin as the ester 0.01u / u / of the representative sequences of the first, second, third, fourth and fifth esterases using triellaidin as the ester. It was serially diluted to ml, 0.001u / ml, and 0.0001u / ml and analyzed by thin layer chromatography according to the following experimental conditions.
  • Triellaidin-Reaction solution 20 mM Tris-HCl (pH 7.0), 2 mM CaCl 2 , 0.5% Triton® X100 ⁇ Ester final concentration: 0.2% -Treatment method: Put 100 ⁇ l of enzyme solution in an Eppendorf tube and put it in. 1/10 amount of each 10x ester stock was added. (0.02u / ml: NP-butyrate as substrate) ⁇ Processing temperature: 37 °C -Treatment time: 48 hours-Oil extraction: Extraction was performed with half the amount of chloroform, and 10 ⁇ l was applied to perform thin layer chromatography.
  • the representative sequence of the fifth esterase of the present disclosure was found to be active when treated at a concentration of 0.01 u / ml for 48 hours, but when treated at a concentration of 0.001 u / ml for 48 hours. , Almost completely lost activity.
  • the representative sequences of the first, second, third and fourth esterases were found to be active even when diluted to 0.001 u / ml. From this, the representative sequence of the fifth esterase has about 1/10 of the trans fatty acid degrading activity of the representative sequences of the first, second, third and fourth esterases. Was presumed.
  • Example 9 Decomposition of trans fatty acid-containing ester at low temperature
  • the degrading activity of the trans fatty acid-containing ester by the first, second, third and fourth esterases of the present disclosure at 15 ° C. was compared.
  • Example 3 Representative sequences of the first, second, third and fourth esterases of the present disclosure were obtained according to the method described in Example 3.
  • the decomposition activity of the trans fatty acid-containing ester was measured by thin layer chromatography at a treatment temperature of 15 ° C. using trielaidic acid as the ester according to the following experimental conditions.
  • -Type of ester Triellaidin-Reaction solution: 20 mM Tris-HCl (pH 7.0), 2 mM CaCl 2 , 0.5% Triton® X100 ⁇ Ester final concentration: 0.2%
  • -Treatment method Put 100 ⁇ l of enzyme solution in an Eppendorf tube and put it in. 1/10 amount of each 10x ester stock was added.
  • triolein was modified (methyl esterified) with the first, second, third and fourth esterases of the present disclosure.
  • Example 3 Representative sequences of the first, second, third and fourth esterases of the present disclosure were obtained according to the method described in Example 3. Each esterase solution was adjusted to 0.1 u / ml, to which triolein and methanol were added. Treatment without addition of esterase solution was also performed at the same time to prepare a control group. Then, 100 ⁇ l of each solution was dispensed into a tube with a screw cap and allowed to stand in an incubator at 37 ° C. for 96 hours. Then 100 ⁇ l of water and 50 ⁇ l of chloroform were added, stirred well with a vortex mixer, and then centrifuged at 12,000 g for 5 minutes. A thin layer chromatographic analysis was performed by loading 10 ⁇ l of the lower chloroform layer and using hexane-diethyl ether-acetic acid (80: 20: 1) as the developing solvent.
  • Example 10 The results of Example 10 are shown in FIG. Any of the representative sequences of the first, second, third and fourth esterases catalyzed the transesterification reaction of triolein, which is a cis triglyceride, to produce oleic acid methyl ester.
  • Example 11 Modification of trans fatty acid
  • the trans fatty acid was modified (methyl esterified) by the first, second, third and fourth esterases of the present disclosure.
  • Example 3 Representative sequences of the first, second, third and fourth esterases of the present disclosure were obtained according to the method described in Example 3. Each esterase solution was adjusted to 0.1 u / ml, and a stock solution was prepared in which the monomer of (A) palmiterazic acid or (B) vaccenic acid was dissolved in methanol so as to be 0.5%. 30 ⁇ l of each trans fatty acid stock solution and 70 ⁇ l of the enzyme solution were dispensed into a tube with a screw cap and allowed to stand in an incubator at 37 ° C. for 72 hours. Treatment using Buffer instead of esterase solution was performed at the same time to prepare a control group.
  • Example 11 The results of Example 11 are shown in FIG. Any esterase of the representative sequences of the first, second, third and fourth esterases catalyzes the transesterification reactions of the trans fatty acids palmiteraidic acid and baxenoic acid, respectively. And produced a methyl ester of baxenoic acid.
  • Example 12 Comparison with the second and fifth esterases in the modification of trans fatty acids
  • the trans fatty acid was modified (methyl esterified) using the second and fifth esterases of the present disclosure.
  • Example 12 The results of Example 12 are shown in FIG.
  • the representative sequence of the fifth esterase is different from that of the representative sequence of the second esterase of the present disclosure showing the methyl esterification catalytic activity of palmiterazic acid, and is different from that of the transesterification reaction of palmiterazic acid. No catalytic activity was observed.
  • the representative sequence of the fifth esterase has a lower catalytic activity for the transesterification reaction than that of the representative sequence of the second esterase of the present disclosure. , The catalytic activity of the transesterification reaction was confirmed.
  • Example 13 Preparation of modified esterase
  • a variant of the esterase of the present disclosure is prepared.
  • Method and material In the base sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21, one or more bases are inserted, substituted or deleted, or one or both ends thereof. Make a construct containing the added one. The construction is designed using the same method as in the above embodiment, or by using experimental methods or commercially available kits commonly used in the art known to those skilled in the art.
  • an oligonucleotide encoding a polypeptide in which the amino acid of the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22 is substituted is artificially synthesized.
  • the decomposing activity of the fats and oils or esters of these various variants is analyzed by the same method as in the above-mentioned examples.
  • the expression vector is prepared according to the method described in Example 3 above. That is, an expression vector containing mutants having various base sequences containing mutations is prepared by the above-mentioned method of inserting mutations.
  • Thermal stability, optimum temperature, optimum pH and pH stability According to Example 4, the thermal stability, optimum temperature, optimum pH and pH stability of the prepared mutants are measured.
  • Tests are carried out according to Examples 5 and 6, respectively, and their degrading activity is measured.
  • the test is carried out according to Example 7 to measure the substrate specificity.
  • the activity found in the present disclosure eg, eg
  • a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22. It can be seen that a mutant strain having an ability related to assimilation of a trans fatty acid-containing fat or oil, or an ability to decompose a trans fatty acid-containing fat or oil) can be obtained.
  • the present disclosure has usefulness in the treatment of trans fatty acid-containing wastewater, which is a problem in food factories and the like, in decomposing trans fatty acid-containing esters.
  • SEQ ID NO: 1 Mature sequence number of the representative base sequence of the first esterase of the present disclosure
  • SEQ ID NO: 2 Mature sequence number of the representative amino acid sequence of the first esterase of the present disclosure
  • SEQ ID NO: 3 Representative base of the first esterase of the present disclosure
  • SEQ ID NO: 4 Amino acid sequence number containing a pre-sequence in the representative amino acid sequence of the first esterase of the present disclosure 5
  • the representative base sequence of the first esterase of the present disclosure Full-length
  • SEQ ID NO: 6 Full-length sequence of the representative amino acid sequence of the first esterase of the present disclosure
  • SEQ ID NO: 7 Mature sequence of the representative base sequence of the second esterase of the present disclosure
  • SEQ ID NO: 8 Representative of the second esterase of the present disclosure
  • Mature Nucleotide Sequence SEQ ID NO: 9 Full-length Nucleotide Sequ

Abstract

The present disclosure provides a novel polypeptide for decomposing a trans fatty acid-containing ester. A novel esterase discovered by the inventors of the present invention exhibits activity for decomposing a trans fatty acid-containing ester. This esterase comprises a polypeptide comprising an amino acid sequence represented by SEQ ID NOS. 2, 8, 12, 16 or 22, or a polypeptide coded by a base sequence represented by SEQ ID NOS. 1, 7, 11, 15 or 21, or a polypeptide having a sequence homology of at least 70% with these sequences. This esterase was found to have the ability to decompose an ester at a low temperature and/or a high temperature, and to exhibit excellent thermal stability for ester decomposition at 65ºC. This esterase is useful in, for example, oil treatments such as waste water treatment, detergents, and techniques for modifying fats or for producing oils and fats.

Description

トランス脂肪酸含有エステル体を分解する新規エステラーゼA novel esterase that decomposes trans fatty acid-containing esters
 本開示は、トランス脂肪酸含有エステル体を分解する新規エステラーゼ、およびその応用(例えば、排水処理、油処理)に関する。別の局面では、本開示は、低温および/または高温でもエステル体を分解する新規エステラーゼおよびその応用に関する。 The present disclosure relates to a novel esterase that decomposes a trans fatty acid-containing ester and its application (for example, wastewater treatment, oil treatment). In another aspect, the present disclosure relates to novel esterases and their applications that degrade esters at low and / or high temperatures.
 一般家庭、外食産業、工業用設備などで発生する汚れの代表的なものとして、油汚れが挙げられる。油汚れは、台所、流し、厨房、パイプ、排水溝、換気扇、洗濯などといった場面で生じる洗浄が困難な汚れである。油汚れは、悪臭や害虫の発生源となり、環境汚染も生じさせ得るものであるため、油処理における画期的な技術の確立が、公衆衛生面および環境面の両面から切望されている。 Oil stains are a typical example of stains generated in general households, the food service industry, industrial equipment, etc. Oil stains are difficult-to-clean stains that occur in kitchens, sinks, kitchens, pipes, drains, ventilation fans, laundry, and the like. Since oil stains are a source of foul odors and pests and can also cause environmental pollution, the establishment of epoch-making technology in oil treatment is eagerly desired from both public health and environmental aspects.
 外食産業の厨房排水に含まれる油分を固液分離により除く処理設備であるグリーストラップは、悪臭や害虫の発生源であること、分離した油の回収や運搬、清掃等のメンテナンスに労苦やコストがかかることなどを考慮すると、グリーストラップ内の油を消滅させるような画期的な技術の確立が、外食産業を中心とする産業界から切望されている。 Grease traps, which are treatment facilities that remove oil contained in kitchen wastewater from the food service industry by solid-liquid separation, are a source of foul odors and pests, and maintenance such as recovery, transportation, and cleaning of separated oil is laborious and costly. Considering this, the establishment of an epoch-making technology for extinguishing the oil in the grease trap is eagerly desired by the industry centered on the food service industry.
 本発明者らは、鋭意研究した結果、トランス脂肪酸含有エステル体を分解するエステラーゼを見出した。このエステラーゼは、低温および/または高温でもエステル体を分解する能力を有し、さらに熱安定性に優れている局面も見いだされた。本開示は、本開示のエステラーゼの応用、例えば油処理等にも関する。 As a result of diligent research, the present inventors have found an esterase that decomposes a trans fatty acid-containing ester. It was also found that this esterase has an ability to decompose an ester even at low temperature and / or high temperature, and is also excellent in thermal stability. The present disclosure also relates to applications of the esterases of the present disclosure, such as oil treatment.
 したがって、本開示は、以下を提供する。
(1)
(a)配列番号2、8、12または16に示すアミノ酸配列を含むポリペプチド;
(b)(a)のアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含み、生物学的活性を有するポリペプチド;
(c)(a)または(b)に示すアミノ酸配列と少なくとも70%以上の配列同一性を有し、生物学的活性を有するポリペプチド;
(d)配列番号1、7、11または15に示す塩基配列によってコードされるアミノ酸配列を含むポリペプチド;
(e)(d)に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列によってコードされ、生物学的活性を有するポリペプチド;
(f)(d)または(e)に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列によってコードされ、生物学的活性を有するポリペプチド;
(g)(d)~(f)のいずれか1つに示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列によってコードされ、かつ生物学的活性を有するポリペプチド;
(h)(d)~(g)のいずれか1つの塩基配列の対立遺伝子変異体によってコードされ、生物学的活性を有するポリペプチド;または
(i)(a)~(h)に示すアミノ酸配列の断片を含む、ポリペプチド、
である、ポリペプチド。
(2)前記ポリペプチドはエステラーゼである、上記項目のいずれかに記載のポリペプチド。
(2A)前記ポリペプチドはリパーゼである、上記項目のいずれかに記載のポリペプチド。
(2B)前記エステラーゼはリパーゼである、上記項目のいずれかに記載のポリペプチド。
(3)前記生物学的活性は、トランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力を含む、上記項目のいずれかに記載のポリペプチド。
(3A)前記生物学的活性は、中鎖脂肪酸含有エステル体の資化に関連する能力、または中鎖脂肪酸含有エステル体を分解する能力を含む、上記項目のいずれかに記載のポリペプチド。
(4)前記ポリペプチドはエステラーゼであり、その基質特異性の対象が油脂を含む短鎖~長鎖の脂肪酸含有エステル体である、上記項目のいずれかに記載のポリペプチド。
(5)15℃においてエステル体を分解する能力を有するエステラーゼである、上記項目のいずれかに記載のポリペプチド。
(6)
(A)(a)75℃、
   (b)65℃、
   (c)67℃、または
   (d)70℃
において熱安定性を有する、および/または
(B)(a)60℃、
   (b)40℃、または
   (c)65℃
において至適温度を有する、および/または
(C)(a)pH8~9、または
   (b)pH9
においてpH安定性を有する、および/または、
(D)pH9において至適pHを有する、
上記項目のいずれかに記載のポリペプチド。
(7)ヤロウィア リポリティカ(Yarrowia lipolytica)に由来するポリペプチドである、上記項目のいずれかに記載のポリペプチド。
(8)
(A)配列番号1、7、11または15に示す塩基配列を含むポリヌクレオチド;
(B)(A)に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(C)(A)または(B)に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(D)(A)~(C)のいずれか1つに示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列を含み、かつ生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(E)(A)~(D)のいずれか1つの塩基配列の対立遺伝子変異体であって、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(F)配列番号2、8、12または16に示すアミノ酸配列を含むポリペプチドをコードする、ポリヌクレオチド;
(G)(F)のアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含み、生物学的活性を有するポリペプチドをコードするポリヌクレオチド;
(H)(F)または(G)に示すアミノ酸配列と少なくとも70%以上の配列同一性を有し、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;または
(I)(F)~(H)に示す塩基配列の断片を含む、ポリヌクレオチド、
である、ポリヌクレオチド。
(9)前記ポリペプチドはエステラーゼである、上記項目のいずれかに記載のポリヌクレオチド。
(9A)前記ポリペプチドはリパーゼである、上記項目のいずれかに記載のポリヌクレオチド。
(9B)前記エステラーゼはリパーゼである、上記項目のいずれかに記載のポリヌクレオチド。
(10)前記生物学的活性は、トランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力を含む、上記項目のいずれかに記載のポリヌクレオチド。
(11)前記ポリペプチドはエステラーゼであり、その基質特異性の対象が油脂を含む短鎖~長鎖の脂肪酸含有エステル体である、上記項目のいずれかに記載のポリヌクレオチド。
(11A)前記ポリペプチドはリパーゼである、上記項目のいずれかに記載のポリヌクレオチド。
(11B)前記生物学的活性は、トランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力を含む、上記項目のいずれかに記載のポリヌクレオチド。
(11C)前記生物学的活性は、中鎖脂肪酸含有エステル体の資化に関連する能力、または中鎖脂肪酸含有エステル体を分解する能力を含む、上記項目のいずれかに記載のポリヌクレオチド。
(11D)前記ポリヌクレオチドは、15℃においてエステル体を分解する能力を有するポリペプチドをコードする、上記項目のいずれかに記載のポリヌクレオチド。
(11E)
(A)
(a)75℃、
(b)65℃、
(c)67℃、または
(d)70℃
において熱安定性を有する、および/または
(B)
(a)60℃、
(b)40℃、または
(c)65℃
において至適温度を有する、および/または
(C)
(a)pH8~9、または
(b)pH9
においてpH安定性を有する、および/または、
(D)
pH9において至適pHを有するポリペプチドをコードする、
上記項目のいずれかに記載のポリヌクレオチド。
(11F)ヤロウィア リポリティカ(Yarrowia lipolytica)に由来するポリヌクレオチドである、上記項目のいずれかに記載のポリヌクレオチド。
(12)
(a)配列番号22に示すアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含むポリペプチド;
(b)配列番号22に示すアミノ酸配列に示すアミノ酸配列と少なくとも70%以上の配列同一性を有するポリペプチド;
(c)配列番号21に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列によってコードされるポリペプチド;
(d)配列番号21に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列によってコードされるポリペプチド;
(e)配列番号21に示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列によってコードされるポリペプチド;
(f)配列番号21に示す塩基配列の対立遺伝子変異体によってコードされるポリペプチド;または
(g)(a)~(f)に示すアミノ酸配列の断片を含むポリペプチド
であって、トランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力を有するポリペプチド(必要に応じて、上記ポリペプチドは、配列番号22に示すアミノ酸配列からなるポリペプチドではない)。
(12A)さらに、中鎖脂肪酸含有エステル体の資化に関連する能力、または中鎖脂肪酸含有エステル体を分解する能力を含む、上記項目のいずれかに記載のポリペプチド。
(12B)基質特異性の対象が、短鎖~長鎖の脂肪酸を含むエステル体およびトリグリセリドを含む、上記項目のいずれかに記載のポリペプチド。
(13)上記項目に記載のポリペプチドをコードする塩基配列、または、
(A)配列番号21に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(B)配列番号21に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(C)配列番号21に示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列を含み、かつ生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(D)配列番号21に示す塩基配列の対立遺伝子変異体であって、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(E)配列番号22に示すアミノ酸配列を含むポリペプチドをコードする、ポリヌクレオチド;
(F)配列番号22に示すアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含み、生物学的活性を有するポリペプチドをコードするポリヌクレオチド;
(G)配列番号22に示すアミノ酸配列と少なくとも70%以上の配列同一性を有し、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;または
(H)(E)~(G)に示す塩基配列の断片を含む、ポリヌクレオチド、
であって、該生物学的活性はトランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力を含む、ポリヌクレオチド
である、ポリヌクレオチド(必要に応じて、上記ポリヌクレオチドは、配列番号21に示す塩基配列からなるポリヌクレオチドではない)。
(14)上記項目のいずれかに記載のポリヌクレオチドを含む細胞または無細胞発現系。
(15)上記項目のいずれかに記載のポリペプチド、配列番号22に記載のアミノ酸配列を含むポリペプチド、上記項目のいずれかに記載のポリヌクレオチドもしくは配列番号22に記載のアミノ酸配列をコードする塩基配列かまたは配列番号21に記載の塩基配列を含むポリヌクレオチドを含む細胞もしくは無細胞発現系、または上記項目のいずれかに記載の細胞もしくは無細胞発現系を含む油分解剤。
(16)前記油は、トランス脂肪酸含有エステル体を含む、上記項目のいずれかに記載の油分解剤。
(16A)前記油は、中鎖脂肪酸含有エステル体を含む、上記項目のいずれかに記載の油分解剤。
(17)さらなる油処理成分を含む、上記項目のいずれかに記載の油分解剤。
(18)上記項目のいずれかに記載のポリペプチド、配列番号22に記載のアミノ酸配列を含むポリペプチド、上記項目のいずれかに記載のポリヌクレオチドもしくは配列番号22に記載のアミノ酸配列をコードする塩基配列かまたは配列番号21に記載の塩基配列を含むポリヌクレオチドを含む細胞もしくは無細胞発現系、上記項目のいずれかに記載の細胞もしくは無細胞発現系、または上記項目のいずれかに記載の油分解剤と、さらなる油処理成分とを備える、油分解用のためのキット。
(19)上記項目のいずれかに記載のポリペプチド、配列番号22に記載のアミノ酸配列を含むポリペプチド、上記項目のいずれかに記載のポリヌクレオチドもしくは配列番号22に記載のアミノ酸配列をコードする塩基配列かまたは配列番号21に記載の塩基配列を含むポリヌクレオチドを含む細胞もしくは無細胞発現系、上記項目のいずれかに記載の細胞もしくは無細胞発現系、または上記項目のいずれかに記載の油分解剤を処理対象に作用させることを包含する、油分解除去方法。
(20)前記処理対象はトランス脂肪酸またはトランス脂肪酸含有エステル体を含む、上記項目のいずれかに記載の方法。
(21)上記項目のいずれかに記載のポリペプチド、または上記項目のいずれかに記載のポリヌクレオチドを含む細胞または無細胞発現系を含む、洗剤。
(22)脂肪改変・油脂生産技術における、上記項目のいずれかに記載のポリペプチド、配列番号22に記載のアミノ酸配列を含むポリペプチド、上記項目のいずれかに記載のポリヌクレオチドもしくは配列番号22に記載のアミノ酸配列をコードする塩基配列かまたは配列番号21に記載の塩基配列を含むポリヌクレオチドを含む細胞もしくは無細胞発現系、または上記項目のいずれかに記載の細胞もしくは無細胞発現系、または上記項目のいずれかに記載の油分解剤の使用。
Accordingly, the present disclosure provides:
(1)
(A) A polypeptide containing the amino acid sequence shown in SEQ ID NO: 2, 8, 12 or 16;
(B) A polypeptide having biological activity, which comprises an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof in the amino acid sequence of (a);
(C) A polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in (a) or (b) and having biological activity;
(D) A polypeptide containing an amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1, 7, 11 or 15;
(E) In the base sequence shown in (d), a polypeptide having biological activity encoded by a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof;
(F) A polypeptide having biological activity encoded by a base sequence having at least 70% or more sequence identity with the base sequence shown in (d) or (e);
(G) Biological activity encoded by a nucleotide sequence that hybridizes under stringent conditions with a polynucleotide containing the nucleotide sequence shown in any one of (d) to (f) or a complementary sequence thereof. Polypeptide with
(H) A polypeptide having biological activity encoded by an allelic variant of any one of the base sequences of (d) to (g); or the amino acid sequence shown in (i) (a) to (h). Polypeptide, including fragments of
Is a polypeptide.
(2) The polypeptide according to any one of the above items, wherein the polypeptide is an esterase.
(2A) The polypeptide according to any one of the above items, wherein the polypeptide is a lipase.
(2B) The polypeptide according to any one of the above items, wherein the esterase is a lipase.
(3) The polypeptide according to any one of the above items, wherein the biological activity includes an ability related to assimilation of a trans fatty acid-containing ester or an ability to decompose a trans fatty acid-containing ester.
(3A) The polypeptide according to any one of the above items, wherein the biological activity includes an ability related to assimilation of a medium-chain fatty acid-containing ester or an ability to decompose a medium-chain fatty acid-containing ester.
(4) The polypeptide according to any one of the above items, wherein the polypeptide is an esterase, and the target of its substrate specificity is a short- to long-chain fatty acid-containing ester containing fats and oils.
(5) The polypeptide according to any one of the above items, which is an esterase having an ability to decompose an ester at 15 ° C.
(6)
(A) (a) 75 ° C,
(B) 65 ° C,
(C) 67 ° C or (d) 70 ° C
Has thermal stability in and / or (B) (a) 60 ° C.,
(B) 40 ° C or (c) 65 ° C
And / or (C) (a) pH 8-9, or (b) pH 9
Have pH stability in and / or
(D) Has the optimum pH at pH 9,
The polypeptide according to any of the above items.
(7) The polypeptide according to any one of the above items, which is a polypeptide derived from Yarrowia lipolytica.
(8)
(A) A polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 1, 7, 11 or 15;
(B) In the base sequence shown in (A), a polynucleotide comprising a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof and encoding a polypeptide having biological activity;
(C) A polynucleotide comprising a base sequence having at least 70% or more sequence identity with the base sequence shown in (A) or (B) and encoding a polypeptide having biological activity;
(D) A polynucleotide containing the base sequence shown in any one of (A) to (C) or a complementary sequence thereof, and a base sequence that hybridizes under stringent conditions, and has biological activity. A polynucleotide encoding a polypeptide having
(E) A polynucleotide that is an allelic variant of the base sequence of any one of (A) to (D) and encodes a polypeptide having biological activity;
(F) A polynucleotide encoding a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2, 8, 12 or 16;
(G) In the amino acid sequence of (F), a polynucleotide encoding a polypeptide having biological activity, which comprises an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof;
(H) A polynucleotide encoding a polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in (F) or (G) and having biological activity; or (I) (F) to A polynucleotide containing a fragment of the nucleotide sequence shown in (H),
Is a polynucleotide.
(9) The polynucleotide according to any one of the above items, wherein the polypeptide is an esterase.
(9A) The polynucleotide according to any one of the above items, wherein the polypeptide is a lipase.
(9B) The polynucleotide according to any one of the above items, wherein the esterase is a lipase.
(10) The polynucleotide according to any one of the above items, wherein the biological activity includes an ability related to assimilation of a trans fatty acid-containing ester or an ability to decompose a trans fatty acid-containing ester.
(11) The polynucleotide according to any one of the above items, wherein the polypeptide is an esterase, and the target of its substrate specificity is a short- to long-chain fatty acid-containing ester containing fats and oils.
(11A) The polynucleotide according to any one of the above items, wherein the polypeptide is a lipase.
(11B) The polynucleotide according to any one of the above items, wherein the biological activity includes an ability associated with assimilation of a trans fatty acid-containing ester or an ability to decompose a trans fatty acid-containing ester.
(11C) The polynucleotide according to any one of the above items, wherein the biological activity includes an ability related to assimilation of a medium-chain fatty acid-containing ester or an ability to decompose a medium-chain fatty acid-containing ester.
(11D) The polynucleotide according to any one of the above items, wherein the polynucleotide encodes a polypeptide having an ability to decompose an ester at 15 ° C.
(11E)
(A)
(A) 75 ° C,
(B) 65 ° C,
(C) 67 ° C or (d) 70 ° C
Has thermal stability in and / or (B)
(A) 60 ° C,
(B) 40 ° C or (c) 65 ° C
Has the optimum temperature in and / or (C)
(A) pH 8-9, or (b) pH 9
Have pH stability in and / or
(D)
Encoding a polypeptide having an optimum pH at pH 9,
The polynucleotide according to any of the above items.
(11F) The polynucleotide according to any one of the above items, which is a polynucleotide derived from Yarrowia lipolytica.
(12)
(A) In the amino acid sequence shown in SEQ ID NO: 22, a polypeptide containing an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof;
(B) A polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in the amino acid sequence shown in SEQ ID NO: 22;
(C) In the base sequence shown in SEQ ID NO: 21, a polypeptide encoded by a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof;
(D) A polypeptide encoded by a base sequence having at least 70% or more sequence identity with the base sequence shown in SEQ ID NO: 21;
(E) A polypeptide encoded by a nucleotide sequence containing the nucleotide sequence shown in SEQ ID NO: 21 or a complementary sequence thereof and a nucleotide sequence that hybridizes under stringent conditions;
(F) A polypeptide encoded by an allelic variant of the nucleotide sequence shown in SEQ ID NO: 21; or a polypeptide containing a fragment of the amino acid sequence shown in (g) (a) to (f) and containing a trans fatty acid. A polypeptide having the ability to assimilate an ester or decompose a trans fatty acid-containing ester (if necessary, the polypeptide is not a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 22).
(12A) The polypeptide according to any one of the above items, further comprising an ability related to assimilation of a medium chain fatty acid-containing ester or an ability to decompose a medium chain fatty acid-containing ester.
(12B) The polypeptide according to any one of the above items, wherein the subject of substrate specificity includes an ester containing a short-chain to long-chain fatty acid and a triglyceride.
(13) The base sequence encoding the polypeptide described in the above item, or
(A) In the base sequence shown in SEQ ID NO: 21, a polynucleotide comprising a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof and encoding a polypeptide having biological activity;
(B) A polynucleotide comprising a base sequence having at least 70% or more sequence identity with the base sequence shown in SEQ ID NO: 21 and encoding a polypeptide having biological activity;
(C) A polynucleotide encoding a polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 21 or a complementary sequence thereof and a nucleotide sequence that hybridizes under stringent conditions and has biological activity. ;
(D) A polynucleotide that is an allelic variant of the nucleotide sequence shown in SEQ ID NO: 21 and encodes a polypeptide having biological activity;
(E) A polynucleotide encoding a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 22;
(F) A polynucleotide encoding a bioactive polypeptide containing an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof in the amino acid sequence shown in SEQ ID NO: 22;
(G) A polynucleotide encoding a polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 22 and having biological activity; or (H) (E) to (G). A polynucleotide, which contains a fragment of the nucleotide sequence shown.
A polynucleotide, wherein the biological activity comprises the ability to assimilate a trans-fatty acid-containing ester, or to degrade a trans-fatty acid-containing ester, the polynucleotide (optionally said above). The polynucleotide is not a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 21).
(14) A cell- or cell-free expression system containing the polynucleotide according to any one of the above items.
(15) The polypeptide according to any one of the above items, the polypeptide containing the amino acid sequence set forth in SEQ ID NO: 22, the polynucleotide set forth in any of the above items, or the base encoding the amino acid sequence set forth in SEQ ID NO: 22. An oleolytic agent comprising a cell or cell-free expression system comprising a polynucleotide containing the sequence or the nucleotide sequence set forth in SEQ ID NO: 21, or a cell or cell-free expression system according to any one of the above items.
(16) The oil decomposing agent according to any one of the above items, wherein the oil contains a trans fatty acid-containing ester.
(16A) The oil decomposing agent according to any one of the above items, wherein the oil contains a medium-chain fatty acid-containing ester.
(17) The oil decomposing agent according to any one of the above items, which comprises an additional oil treatment component.
(18) The polypeptide according to any one of the above items, the polypeptide containing the amino acid sequence set forth in SEQ ID NO: 22, the polynucleotide set forth in any of the above items, or the base encoding the amino acid sequence set forth in SEQ ID NO: 22. The cell or cell-free expression system containing the polynucleotide containing the nucleotide sequence or the nucleotide sequence of SEQ ID NO: 21, the cell or cell-free expression system according to any one of the above items, or the oil decomposition according to any one of the above items. A kit for oil decomposition, which includes an agent and additional oil treatment components.
(19) The polypeptide according to any one of the above items, the polypeptide containing the amino acid sequence set forth in SEQ ID NO: 22, the polynucleotide set forth in any of the above items, or the base encoding the amino acid sequence set forth in SEQ ID NO: 22. The cell or cell-free expression system containing the polynucleotide containing the nucleotide sequence or the nucleotide sequence of SEQ ID NO: 21, the cell or cell-free expression system according to any one of the above items, or the oil decomposition according to any one of the above items. A method for decomposing and removing oil, which comprises allowing an agent to act on an object to be treated.
(20) The method according to any one of the above items, wherein the treatment target contains a trans fatty acid or a trans fatty acid-containing ester.
(21) A detergent comprising a cell or cell-free expression system containing the polypeptide according to any one of the above items or the polynucleotide according to any one of the above items.
(22) In the fat modification / fat production technique, the polypeptide according to any one of the above items, the polypeptide containing the amino acid sequence set forth in SEQ ID NO: 22, the polynucleotide set forth in any one of the above items, or SEQ ID NO: 22. A cell or cell-free expression system containing a nucleotide sequence encoding the amino acid sequence described or a polynucleotide containing the nucleotide sequence set forth in SEQ ID NO: 21, or a cell or cell-free expression system according to any one of the above items, or the above. Use of the oil decomposing agent described in any of the items.
 本開示において、上記1または複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供されうることが意図される。本開示のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。 In the present disclosure, it is intended that the above one or more features may be provided in a further combination in addition to the specified combinations. Further embodiments and advantages of the present disclosure will be appreciated by those skilled in the art upon reading and understanding the following detailed description as necessary.
 本開示を使用して、従来除去が困難であったトランス脂肪酸含有油脂の処理が容易になった。また、従来の微生物や酵素では使用が難しかった高温環境下や低温環境下でも油脂除去や油処理ができるようになった。したがって、本開示の新規エステラーゼ(例えば、リパーゼ)は、洗剤、皮革工業、食品工業、油脂による環境汚染の浄化、生ごみ処理、コンポスト化処理、排水処理などの廃棄物処理および堆肥化、消化剤などの医薬品、脂性肌のための化粧品などの技術分野に有用である。 Using this disclosure, the treatment of trans fatty acid-containing fats and oils, which was difficult to remove in the past, has become easier. In addition, it has become possible to remove fats and oils and treat oils even in a high temperature environment or a low temperature environment, which was difficult to use with conventional microorganisms and enzymes. Therefore, the novel esterases (eg, lipases) of the present disclosure include detergents, leather industry, food industry, purification of environmental pollution by fats and oils, food waste treatment, composting treatment, waste treatment such as wastewater treatment, composting, and digestive agents. It is useful in technical fields such as pharmaceuticals such as, and cosmetics for oily skin.
図1は、ヤロウィア リポリティカ(Yarrowia lipolytica)KH-2株の第1、第2、第3、第4および第5のエステラーゼをコードする遺伝子の遺伝子番号、推定された機能、シグナルペプチド(SP)の有無、遺伝子産物の推定分子量を示す。FIG. 1 shows the gene numbers, estimated functions, and signal peptides (SP) of the genes encoding the first, second, third, fourth, and fifth esterases of the Yarrowia lipolytica KH-2 strain. The presence or absence and the estimated molecular weight of the gene product are shown. 図2は、KH-2株を15℃でファーメンターにより培養したときの、5種類のエステラーゼ(第1、第2、第3、第4および第5のエステラーゼの代表的配列のもの)の発現レベルを示すグラフである。発現レベルは、alg9 (1,2-mannosyltransferase)遺伝子の発現量により正規化された相対的な値により示される。グラフの横軸は、左から順に、24時間、48時間および72時間培養後の培養物に対応する。グラフの縦軸は、相対的な発現レベルを示す。FIG. 2 shows the expression of five types of esterases (typical sequences of the first, second, third, fourth and fifth esterases) when the KH-2 strain was cultured at 15 ° C. by a fermenter. It is a graph which shows a level. The expression level is indicated by a relative value normalized by the expression level of the alg9 (1,2-mannosyltransferase) gene. The horizontal axis of the graph corresponds to the culture after culturing for 24 hours, 48 hours and 72 hours in order from the left. The vertical axis of the graph shows the relative expression level. 図3-1は、KH-2株由来の第1および第2のエステラーゼの代表的配列のものの組換えタンパク質の至適温度、熱安定性、至適pHおよびpH安定性を示す。上段の(A)~(D)は第1のエステラーゼの代表的配列のものの結果を示し、下段の(E)~(H)は第2のエステラーゼの代表的配列のものの結果を示す。(A)および(E)はエステラーゼの至適温度を示し、(B)および(F)はエステラーゼの熱安定性を示し、(C)および(G)はエステラーゼの至適pHを示し、(D)および(H)はエステラーゼのpH安定性を示す。(A)~(H)の縦軸は、エステラーゼ活性が最大になるときの活性に対する相対的なエステラーゼ活性を示し、(A)、(B)、(E)および(F)の横軸は温度を示し、(C)、(D)、(G)および(H)の横軸はpHを示す。FIG. 3-1 shows the optimum temperature, thermal stability, optimum pH and pH stability of the recombinant protein of the representative sequence of the first and second esterases derived from the KH-2 strain. The upper rows (A) to (D) show the results of the representative sequence of the first esterase, and the lower rows (E) to (H) show the results of the representative sequence of the second esterase. (A) and (E) indicate the optimum temperature of esterase, (B) and (F) indicate the thermal stability of esterase, (C) and (G) indicate the optimum pH of esterase, and (D). ) And (H) indicate the pH stability of esterase. The vertical axis of (A) to (H) shows the esterase activity relative to the activity when the esterase activity is maximized, and the horizontal axes of (A), (B), (E) and (F) are temperatures. , And the horizontal axes of (C), (D), (G) and (H) indicate pH. 図3-2は、KH-2株由来の第3および第4のエステラーゼの代表的配列のものの組換えタンパク質の至適温度、熱安定性、至適pHおよびpH安定性を示す。上段の(A)~(D)は第3のエステラーゼの代表的配列のものの結果を示し、下段の(E)~(H)は第4のエステラーゼの代表的配列のものの結果を示す。(A)および(E)はエステラーゼの至適温度を示し、(B)および(F)はエステラーゼの熱安定性を示し、(C)および(G)はエステラーゼの至適pHを示し、(D)および(H)はエステラーゼのpH安定性を示す。(A)~(H)の縦軸は、エステラーゼ活性が最大になるときの活性に対する相対的なエステラーゼ活性を示し、(A)、(B)、(E)および(F)の横軸は温度を示し、(C)、(D)、(G)および(H)の横軸はpHを示す。FIG. 3-2 shows the optimum temperature, thermal stability, optimum pH and pH stability of the recombinant protein of the representative sequences of the third and fourth esterases derived from the KH-2 strain. The upper rows (A) to (D) show the results of the representative sequence of the third esterase, and the lower rows (E) to (H) show the results of the representative sequence of the fourth esterase. (A) and (E) indicate the optimum temperature of esterase, (B) and (F) indicate the thermal stability of esterase, (C) and (G) indicate the optimum pH of esterase, and (D). ) And (H) indicate the pH stability of esterase. The vertical axis of (A) to (H) shows the esterase activity relative to the activity when the esterase activity is maximized, and the horizontal axes of (A), (B), (E) and (F) are temperatures. , And the horizontal axes of (C), (D), (G) and (H) indicate pH. 図4は、ノボザイム社リパーゼ(Novozym(登録商標)51032)と本開示のエステラーゼとの比較を示す。油汚れのついた換気扇フィルターを、Novozym51032(N-51032)、本開示の第1、第2、第3、第4および第5のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼで漬け置き洗いをした写真である。AはNovozym51032、Bは第1のエステラーゼ、Cは第2のエステラーゼ、Dは第3のエステラーゼ、Eは第4のエステラーゼ、Fは第5のエステラーゼで、それぞれ漬け置き洗いをした後のエステラーゼ溶液および換気扇フィルターの写真を示す。FIG. 4 shows a comparison between Novozymes lipase (Novozyme® 51032) and the esterases of the present disclosure. An E. coli strain expressing an oil-stained ventilation fan filter with a recombinant protein of Novozym 51032 (N-51032), a representative sequence of the first, second, third, fourth and fifth esterases of the present disclosure. It is a photograph which was soaked and washed with the purified esterase obtained from. A is Novozym 51032, B is the first esterase, C is the second esterase, D is the third esterase, E is the fourth esterase, and F is the fifth esterase. And a photograph of the ventilation fan filter is shown. 図5-1は、本開示の第1、第2および第5のエステラーゼによるエステル体の分解活性を示す。(A)緩衝液単独(Buffer)、第5のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第5のエステラーゼ)、第1のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第1のエステラーゼ)、または第2のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第2のエステラーゼ)を、0.7gのショートニングと、28℃で24時間インキュベートした。インキュベートした後の油脂の画像を示す。(B)緩衝液単独(Buffer)、第5のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第5のエステラーゼ)、第1のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第1のエステラーゼ)、または第2のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第2のエステラーゼ)を、0.5gのラードと、28℃で24時間インキュベートした。インキュベートした後の油脂の画像を示す。(C)緩衝液単独(Buffer)、第5のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第5のエステラーゼ)、第1のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第1のエステラーゼ)、または第2のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第2のエステラーゼ)を、それぞれトリオレイン(Tole)、トリエライジン(TED)、ショートニングまたはラードとインキュベートし、次いで薄層クロマトグラフィーによって分離し、モリブトリン酸n水和物により検出した結果を示す。左から順に、トリオレイン、トリエライジン、ショートニングおよびラードとインキュベートしたものを示す。FIG. 5-1 shows the decomposition activity of the ester by the first, second and fifth esterases of the present disclosure. (A) Buffer alone, purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the fifth esterase (fifth esterase), representative sequence of the first esterase. Purified esterase (first esterase) obtained from an Escherichia coli strain expressing the recombinant protein of the above, or purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the second esterase. (Second esterase) was incubated with 0.7 g of shortening at 28 ° C. for 24 hours. An image of fats and oils after incubation is shown. (B) Buffer alone, purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the fifth esterase (fifth esterase), representative sequence of the first esterase. Purified esterase (first esterase) obtained from an Escherichia coli strain expressing the recombinant protein of the above, or purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the second esterase. (Second esterase) was incubated with 0.5 g of lard at 28 ° C. for 24 hours. An image of fats and oils after incubation is shown. (C) Buffer alone, purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the fifth esterase (fifth esterase), representative sequence of the first esterase. Purified esterase (first esterase) obtained from an Escherichia coli strain expressing the recombinant protein of the above, or purified esterase obtained from an Esterase strain expressing the recombinant protein of a representative sequence of the second esterase. (Second esterase) is incubated with triolein (Tole), triellaidin (TED), shortening or lard, respectively, then separated by thin layer chromatography and detected by molybtriic acid n-hydrate. From left to right, the ones incubated with triolein, trioleidin, shortening and lard are shown. 図5-2は、本開示の第3および第4のエステラーゼによるエステル体の分解活性を示す。(A)緩衝液単独(Buffer)、第3のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第3のエステラーゼ)、または第4のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第4のエステラーゼ)を、0.7gのショートニングと、28℃で24時間インキュベートした。インキュベートした後の油脂の画像を示す。(B)緩衝液単独(Buffer)、第3のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第3のエステラーゼ)、または第4のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第4のエステラーゼ)を、0.5gのラードと、28℃で24時間インキュベートした。インキュベートした後の油脂の画像を示す。(C)緩衝液単独(Buffer)、第3のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第3のエステラーゼ)、または第4のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼ(第4のエステラーゼ)を、それぞれトリオレイン(Tole)、トリエライジン(TED)、ショートニングまたはラードとインキュベートし、次いで薄層クロマトグラフィーによって分離し、モリブトリン酸n水和物により検出した結果を示す。左から順に、トリオレイン、トリエライジン、ショートニングおよびラードとインキュベートしたものを示す。FIG. 5-2 shows the decomposition activity of the ester by the third and fourth esterases of the present disclosure. (A) Buffer alone, purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the third esterase (third esterase), or representative of the fourth esterase. Purified esterase (fourth esterase) obtained from an E. coli strain expressing the recombinant protein of the sequence was incubated with 0.7 g of shorting at 28 ° C. for 24 hours. An image of fats and oils after incubation is shown. (B) Buffer alone, purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the third esterase (third esterase), or representative of the fourth esterase. Purified esterase (fourth esterase) obtained from an E. coli strain expressing the recombinant protein of the sequence was incubated with 0.5 g of lard for 24 hours at 28 ° C. An image of fats and oils after incubation is shown. (C) Buffer alone, purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the third esterase (third esterase), or representative of the fourth esterase. Purified esterases (fourth esterases) from Escherichia coli strains expressing recombinant proteins of the sequence are incubated with triolein (Tole), triellaidin (TED), shortening or lard, respectively, followed by thin layer chromatography. The results of separation by chromatography and detection by molybtriic acid n-hydrate are shown. From left to right, the ones incubated with triolein, trioleidin, shortening and lard are shown. 図6は、第1、第2、第3、第4および第5のエステラーゼの代表的なものの基質特異性を示す。表の左側に使用した基質を示し、上から順にアセテート(C2)、ブチレート(C4)、オクタノエート(C8)、ラウレート(C12)およびパルミテート(C16)を有する4-ニトロフェニルエステル(pNP-ester)脂質に対応する。表の右側は、第1、第2、第3、第4および第5のエステラーゼのエステラーゼ活性であり、各基質中最大の活性を示したものを100%としたときの相対的な活性で示される。FIG. 6 shows the substrate specificity of representatives of the first, second, third, fourth and fifth esterases. The substrates used are shown on the left side of the table, and 4-nitrophenyl ester (pNP-ester) lipids having acetate (C2), butyrate (C4), octanoate (C8), laurate (C12) and palmitate (C16) are shown in order from the top. Corresponds to. The right side of the table shows the esterase activity of the first, second, third, fourth and fifth esterases, and the relative activity when the maximum activity among each substrate is taken as 100%. Is done. 図7は、段階希釈を行った本開示の第1、第2、第3、第4および第5のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼによるトランス脂肪酸含有エステル体の分解を示す。データは左から順に、0.01u/ml、0.001u/ml、および0.0001u/mlに段階希釈したエステラーゼでの結果を示し、各データは、左から順に、第1、第2、第3、第4および第5のエステラーゼの代表的配列のものでの結果に対応する。FIG. 7 is from a purified esterase obtained from an E. coli strain expressing a recombinant protein of a serially diluted representative sequence of the first, second, third, fourth and fifth esterases of the present disclosure. Decomposition of trans fatty acid-containing ester is shown. The data show the results with esterase serially diluted to 0.01u / ml, 0.001u / ml, and 0.0001u / ml from left to right, and each data is from left to right, first, second, second. Corresponds to the results with representative sequences of the third, fourth and fifth esterases. 図8は、本開示の第1、第2、第3および第4のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼによる、低温でのトランス脂肪酸含有エステル体の分解を示す。各バンドは、左から順に、緩衝液単独(Buffer)、第1、第2、第3および第4のエステラーゼの代表的配列のものに対応し、下部の矢印は、加水分解産物(遊離脂肪酸)のバンドに対応する。FIG. 8 shows a trans fatty acid-containing ester at low temperature by a purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the first, second, third and fourth esterases of the present disclosure. Indicates decomposition of the body. From left to right, each band corresponds to a representative sequence of buffer, first, second, third and fourth esterases, with the arrow at the bottom indicating the hydrolyzate (free fatty acid). Corresponds to the band of. 図9は、本開示の第1、第2、第3および第4のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼによる、トリオレインの改変を示す。各バンドは、左から順に、第1、第2、第3および第4のエステラーゼの代表的配列のもの、または緩衝液(Buffer)をメタノールおよびトリオレインと混合して反応させたもの、ならびにオレイン酸メチル評品を薄層クロマトグラフィー分析により解析した結果を示す。各シグナルは、上から順に、オレイン酸メチルエステル、トリオレイン、オレイン酸およびジアシルグリセロールに対応する。FIG. 9 shows the modification of triolein by a purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the first, second, third and fourth esterases of the present disclosure. Each band, in order from the left, has a representative sequence of the first, second, third and fourth esterases, or a buffer that has been mixed with methanol and triolein and reacted, and olein. The results of analysis of the methyl acid acid grade by thin layer chromatography analysis are shown. Each signal corresponds to oleic acid methyl ester, triolein, oleic acid and diacylglycerol in order from the top. 図10は、本開示の第1、第2、第3および第4のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼによる、トランス脂肪酸の改変を示す。(A)第1、第2、第3および第4のエステラーゼの代表的配列のもの、または緩衝液単独(Buffer)をメタノールおよびパルミテライジン酸と混合して反応させたもの、ならびにパルミテライジン酸メチル評品を薄層クロマトグラフィー分析により解析した結果を示す。各シグナルは、上から順に、パルミテライジン酸メチルエステルおよびパルミテライジン酸に対応する。(B)第1、第2、第3および第4のエステラーゼの代表的配列のもの、または緩衝液単独(Buffer)をメタノールおよびバクセン酸と混合して反応させたもの、ならびにバクセン酸メチル評品を薄層クロマトグラフィー分析により解析した結果を示す。各シグナルは、上から順に、バクセン酸メチルエステルおよびバクセン酸に対応する。FIG. 10 shows the modification of trans fatty acids by a purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the first, second, third and fourth esterases of the present disclosure. (A) Representative sequences of the first, second, third and fourth esterases, or buffers that have been mixed with methanol and palmitelydic acid and reacted, and palmiteraidin. The results of analysis of the methyl acid acid grade by thin layer chromatography analysis are shown. Each signal corresponds to palmitelysinic acid methyl ester and palmitelysinic acid in order from the top. (B) Representative sequences of the first, second, third and fourth esterases, or buffers that have been mixed with methanol and vaccenic acid and reacted, and methyl vaccenate evaluations. Is shown by thin layer chromatography analysis. Each signal corresponds to vaccenic acid methyl ester and vaccenic acid in order from the top. 図11は、本開示の第2および第5のエステラーゼの代表的配列のものの組換えタンパク質を発現させた大腸菌株から得られた精製エステラーゼによる、トランス脂肪酸の改変を示す。(A)第2および第5のエステラーゼの代表的配列のもの、または緩衝液単独(Buffer)をメタノールおよびパルミテライジン酸と混合して反応させたもの、ならびにパルミテライジン酸メチル評品を薄層クロマトグラフィー分析により解析した結果を示す。各シグナルは、上から順に、パルミテライジン酸メチルエステルおよびパルミテライジン酸に対応する。(B)第2および第5のエステラーゼの代表的配列のもの、または緩衝液単独(Buffer)をメタノールおよびバクセン酸と混合して反応させたもの、ならびにバクセン酸メチル評品を薄層クロマトグラフィー分析により解析した結果を示す。各シグナルは、上から順に、バクセン酸メチルエステルおよびバクセン酸に対応する。FIG. 11 shows the modification of trans fatty acids by a purified esterase obtained from an Escherichia coli strain expressing a recombinant protein of a representative sequence of the second and fifth esterases of the present disclosure. (A) Representative sequences of the second and fifth esterases, or buffers obtained by mixing and reacting with methanol and palmiterazic acid, and methyl palmiterazate grades are diluted. The result of analysis by layer chromatography analysis is shown. Each signal corresponds to palmitelysinic acid methyl ester and palmitelysinic acid in order from the top. (B) Thin-layer chromatographic analysis of representative sequences of the second and fifth esterases, or buffers obtained by mixing and reacting with methanol and buxenoic acid, and methyl buccinate grades. The result of the analysis is shown. Each signal corresponds to vaccenic acid methyl ester and vaccenic acid in order from the top.
 以下、本開示を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 Hereinafter, the present disclosure will be described while showing the best form. Throughout the specification, it should be understood that the singular representation also includes its plural concept, unless otherwise stated. Therefore, it should be understood that singular articles (eg, "a", "an", "the", etc. in English) also include their plural concept, unless otherwise noted. It should also be understood that the terms used herein are used in the meaning commonly used in the art unless otherwise noted. Thus, unless otherwise defined, all terminology and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, this specification (including definitions) takes precedence.
 以下に本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。本明細書では、KH-2株などの株名は、場合により「株」との表示を省略することがあるが、当業者は文脈に応じて、株との表示があると適切に理解する。 The definitions and / or basic technical contents of terms particularly used in the present specification will be described below as appropriate. In the present specification, a strain name such as KH-2 strain may be abbreviated as "stock" in some cases, but those skilled in the art will appropriately understand that the term "stock" is used depending on the context. ..
 (用語の定義)
 本明細書において、「エステラーゼ」とは、エステルを水との化学反応で酸とアルコールに分解する加水分解酵素のことをいう。本開示のエステラーゼは、脂肪酸エステル等のエステルを加水分解する活性を有するため、エステラーゼに分類される。エステラーゼが有するエステラーゼ活性は、本明細書の「エステル体を分解する能力」に記載の方法によって測定され得る。
(Definition of terms)
As used herein, the term "esterase" refers to a hydrolase that decomposes an ester into an acid and an alcohol by a chemical reaction with water. The esterases of the present disclosure are classified as esterases because they have an activity of hydrolyzing esters such as fatty acid esters. The esterase activity of an esterase can be measured by the method described in "Ability to Decompose Esters" herein.
 本明細書において「リパーゼ」とは、エステラーゼの一種であり、中性脂肪(グリセロールエステル)を加水分解して、脂肪酸とグリセロールに分解する反応を可逆的に触媒する酵素をいう。本開示のエステラーゼは、酵素番号(EC番号)でEC3.1.1.3に分類される、トリグリセロールリパーゼに分類される酵素の活性を有するため、「リパーゼ」であるということもでき、その場合本開示のリパーゼともいう。 In the present specification, "lipase" is a kind of esterase, and refers to an enzyme that reversibly catalyzes the reaction of hydrolyzing neutral fat (glycerol ester) and decomposing it into fatty acid and glycerol. The esterase of the present disclosure can be said to be a "lipase" because it has the activity of an enzyme classified into triglycerol lipase, which is classified into EC3.1.1.3 by the enzyme number (EC number). Also referred to as disclosed lipase.
 本明細書において、「油脂」とは、オイル状の物質を指し、油脂には、ヒドロキシル基を含有する化合物と脂肪酸とが脱水縮合して形成されるエステル基含有化合物が含まれる。代表的には、このヒドロキシル基を含有する化合物はグリセリンであるが、その他にも、ポリグリセリンなどが挙げられる。本技術分野において通常使用される意味と同様に、本明細書において、グリセリンと脂肪酸とが脱水縮合して形成されるエステル基含有化合物を「グリセリド」と呼ぶ。このヒドロキシル基を含有する化合物が複数のヒドロキシル基を有する場合、そのヒドロキシル基のうちの少なくとも1つが脂肪酸と脱水縮合してエステルを形成していれば、本明細書におけるエステル基含有化合物に該当する。 In the present specification, "fat and oil" refers to an oily substance, and the fat and oil includes an ester group-containing compound formed by dehydration condensation of a compound containing a hydroxyl group and a fatty acid. Typically, the compound containing this hydroxyl group is glycerin, but other examples include polyglycerin and the like. Similar to what is commonly used in the art, ester group-containing compounds formed by dehydration condensation of glycerin and fatty acids are referred to herein as "glycerides". When the compound containing a hydroxyl group has a plurality of hydroxyl groups, if at least one of the hydroxyl groups is dehydrated and condensed with a fatty acid to form an ester, the compound corresponds to the ester group-containing compound in the present specification. ..
 本明細書において、リパーゼ活性は、グリセロールと脂肪酸との脱水縮合で生じたエステル体をグリセロールと遊離脂肪酸とに加水分解する活性を指し、このようなリパーゼ活性は本明細書においてトリグリセリドリパーゼ活性とも称される。例えば、リパーゼ活性を有するかどうかは、リパーゼを添加した溶液中に含まれるエステル体(キャノーラ油などの動植物油、トリオレイン、トリエライジンなど)が減少することや加水分解産物が検出されることで確認することができる。 In the present specification, the lipase activity refers to an activity of hydrolyzing an ester produced by dehydration condensation of glycerol and a fatty acid into glycerol and a free fatty acid, and such a lipase activity is also referred to as a triglyceride lipase activity in the present specification. Will be done. For example, whether or not it has lipase activity depends on the decrease of esters (animal and vegetable oil such as canola oil, triolein, trioleidin, etc.) contained in the solution to which lipase is added, and the detection of hydrolyzate. You can check.
 エステル体と脂肪酸の分解・消費能力は、培地中に残存するエステル体および加水分解により生じた遊離脂肪酸を薄層クロマトグラフィーにより解析することで測定することができる。具体的な定量手順を示すと、まず、培養上清に等量のクロロホルムを加えことによって、エステル体と脂肪酸を抽出する。この抽出物5μlを、クロロホルム、アセトンおよびメタノールを、体積比でそれぞれ96:4:1の比率で含む展開溶媒を使用し、シリカゲルコートプレート上に展開する。展開溶媒の比率などについては適宜変更することができる。プレートをモリブデン酸n水和物により処理し、エステル体を発色させる。 The ability to decompose and consume the ester and fatty acid can be measured by analyzing the ester remaining in the medium and the free fatty acid produced by hydrolysis by thin layer chromatography. To show a specific quantification procedure, first, an ester and a fatty acid are extracted by adding an equal amount of chloroform to the culture supernatant. 5 μl of this extract is developed on a silica gel coated plate using a developing solvent containing chloroform, acetone and methanol in a volume ratio of 96: 4: 1 respectively. The ratio of the developing solvent and the like can be changed as appropriate. The plate is treated with molybdate n-hydrate to develop an ester color.
 本明細書において、「脂肪改変・油脂生産能力」とは、脂肪酸の構造を変化させて、油の性質を変化させることを指す。本明細書において、「脂肪改変・油脂生産能力」は、代表的に、脂肪酸のエステル交換を触媒する活性を含む。脂肪改変・油脂生産能力は、脂肪酸とメタノールとのエステル交換反応によって生じた脂肪酸メチルエステルを、薄層クロマトグラフィーにより解析することで測定することができる。具体的な定量手順を示すと、まず、本開示のエステラーゼ、脂肪酸およびメタノールを混合して、脂肪酸メチルエステルを生成する。脂肪酸メチルエステルの混合液に、クロロホルムを加えことによって、エステル体と脂肪酸を抽出する。この抽出物10μlを、ヘキサン、ジエチルエーテルおよび酢酸を、体積比でそれぞれ80:20:1の比率で含む展開溶媒を使用し、シリカゲルコートプレート上に展開する。展開溶媒の比率などについては適宜変更することができる。プレートをモリブデン酸n水和物により処理し、エステル体を発色させる。 In the present specification, "fat modification / fat production capacity" refers to changing the structure of fatty acids to change the properties of oil. In the present specification, "fat modification / fat production capacity" typically includes an activity of catalyzing the transesterification of fatty acids. The fat modification / fat production capacity can be measured by analyzing the fatty acid methyl ester produced by the transesterification reaction between fatty acid and methanol by thin layer chromatography. To show a specific quantification procedure, first, the esterase, fatty acid and methanol of the present disclosure are mixed to produce a fatty acid methyl ester. The ester and fatty acid are extracted by adding chloroform to the mixed solution of fatty acid methyl ester. 10 μl of this extract is developed on a silica gel coated plate using a developing solvent containing hexane, diethyl ether and acetic acid in a volume ratio of 80:20: 1, respectively. The ratio of the developing solvent and the like can be changed as appropriate. The plate is treated with molybdate n-hydrate to develop an ester color.
 本明細書において、「トランス脂肪酸含有エステル体」とは、トランス脂肪酸を含有するエステル体を指す。「トランス脂肪酸」は、本技術分野において通常使用される意味で使用され、トランス型の二重結合を有する不飽和脂肪酸を意味する。トランス脂肪酸は、天然には共役リノール酸やバクセン酸として微量が存在するが、油脂工業においては不飽和脂肪酸の水素化によって飽和脂肪酸を製造する際に多量に生産され、マーガリンおよびショートニングなどの食品にも含まれる。トランス脂肪酸には、エライジン酸、パルミテライジン酸(パルミトエライジン酸)、バクセン酸などが包含されるが、本明細書中で言及する場合、トランス脂肪酸の種類に特に制限はない。トランス脂肪酸含有エステル体中に存在するトランス脂肪酸の比率は、特に限定されない。従来知られるYarrowiaリパーゼにおいて、トランス脂肪酸含有エステル体を分解する活性があるものは知られていない。 In the present specification, the "trans fatty acid-containing ester" refers to an ester containing a trans fatty acid. "Trans fatty acid" is used in the sense commonly used in the art and means an unsaturated fatty acid having a trans-type double bond. Trans fatty acids are naturally present in trace amounts as conjugated linoleic acid and vaccenic acid, but in the oil and fat industry, they are produced in large quantities when producing saturated fatty acids by hydrogenation of unsaturated fatty acids, and are used in foods such as margarine and shortening. Is also included. The trans fatty acid includes elaidic acid, palmiteraidic acid (palmitoelaidic acid), vaccenic acid and the like, but the type of trans fatty acid is not particularly limited as used herein. The ratio of the trans fatty acid present in the trans fatty acid-containing ester is not particularly limited. None of the conventionally known Yarrowia lipases have the activity of degrading trans fatty acid-containing esters.
 本明細書において、「短鎖~長鎖の脂肪酸含有エステル体」とは、短鎖脂肪酸、中鎖脂肪酸または長鎖脂肪酸のうちの1つ以上を含む脂肪酸のエステル体を指す。「短鎖脂肪酸」、「中鎖脂肪酸」および「長鎖脂肪酸」は、本技術分野において通常使用される意味で使用され、それぞれ炭素数が2~6個、7~12個および13個以上の脂肪酸を意味する。短鎖脂肪酸には、酢酸(炭素数2)、酪酸(炭素数4)、カプロン酸(炭素数6)などが包含される。中鎖脂肪酸には、カプリル酸(炭素数8)、カプリン酸(炭素数10)、ラウリン酸(炭素数12)などが包含される。長鎖脂肪酸には、ミリスチン酸(炭素数14)、パルミチン酸(炭素数16)、ステアリン酸(炭素数18)、オレイン酸(炭素数18)、リノール酸(炭素数18)、リノレン酸(炭素数18)などが包含される。 In the present specification, the "short-chain to long-chain fatty acid-containing ester" refers to an ester of a fatty acid containing one or more of a short-chain fatty acid, a medium-chain fatty acid, or a long-chain fatty acid. "Short-chain fatty acids," "medium-chain fatty acids," and "long-chain fatty acids" are used in the sense commonly used in the art and have 2-6, 7-12, and 13 or more carbon atoms, respectively. Means fatty acid. Short-chain fatty acids include acetic acid (2 carbon atoms), butyric acid (4 carbon atoms), caproic acid (6 carbon atoms) and the like. Medium-chain fatty acids include caprylic acid (8 carbon atoms), capric acid (10 carbon atoms), lauric acid (12 carbon atoms) and the like. Long-chain fatty acids include myristic acid (14 carbons), palmitic acid (16 carbons), stearic acid (18 carbons), oleic acid (18 carbons), linoleic acid (18 carbons), and linolenic acid (carbons). The number 18) and the like are included.
 本明細書において、「中鎖脂肪酸含有エステル体」とは、中鎖脂肪酸を含有するエステル体を指す。「中鎖脂肪酸」は、本技術分野において通常使用される意味で使用され、炭素数が7~12個の脂肪酸を意味する。中鎖脂肪酸は、天然には、乳製品、パーム核油、ヤシ油などの食品中に含まれる。中鎖脂肪酸には、カプリル酸(炭素数8)、カプリン酸(炭素数10)、ラウリン酸(炭素数12)などが包含されるが、本明細書中で言及する場合、中鎖脂肪酸の種類に特に制限はない。中鎖脂肪酸含有エステル体中に存在する中鎖脂肪酸の比率は、特に限定されない。 In the present specification, the "medium chain fatty acid-containing ester" refers to an ester containing a medium chain fatty acid. "Medium chain fatty acid" is used in the sense commonly used in the art and means a fatty acid having 7 to 12 carbon atoms. Medium-chain fatty acids are naturally found in foods such as dairy products, palm kernel oil and coconut oil. The medium-chain fatty acid includes caprylic acid (8 carbon atoms), capric acid (10 carbon atoms), lauric acid (12 carbon atoms) and the like, and when referred to herein, the type of medium chain fatty acid. There are no particular restrictions on. The ratio of the medium-chain fatty acid present in the medium-chain fatty acid-containing ester is not particularly limited.
 本明細書において、「トランス脂肪酸含有エステル体の資化に関連する能力」または「短鎖~長鎖の脂肪酸含有エステル体の資化に関連する能力」とは、微生物によるトランス脂肪酸含有エステル体または短鎖~長鎖の脂肪酸含有エステル体の資化をもたらすための活性を指す。本明細書において、「トランス脂肪酸含有エステル体を資化する」または「短鎖~長鎖の脂肪酸含有エステル体を資化する」は、本技術分野において通常使用される意味で使用され、微生物がトランス脂肪酸含有エステル体または短鎖~長鎖の脂肪酸含有エステル体を炭素源などの栄養源として取り込むことを意味する。「資化」する場合、アルコール類と遊離脂肪酸とに加水分解することのほか、他の物質の一部に変化することも含まれる。 In the present specification, "the ability related to the assimilation of a trans fatty acid-containing ester" or "the ability related to the assimilation of a short- to long-chain fatty acid-containing ester" means a trans fatty acid-containing ester or a trans fatty acid-containing ester by a microorganism. Refers to the activity for bringing about the assimilation of short- to long-chain fatty acid-containing esters. In the present specification, "assimilating a trans fatty acid-containing ester" or "assimilating a short- to long-chain fatty acid-containing ester" is used in the meaning commonly used in the art, and a microorganism is used. It means that a trans fatty acid-containing ester or a short- to long-chain fatty acid-containing ester is taken in as a nutrient source such as a carbon source. In the case of "assimilation", it includes hydrolysis to alcohols and free fatty acids, as well as conversion to some of other substances.
 本明細書において、「トランス脂肪酸含有エステル体を分解する能力」または「短鎖~長鎖の脂肪酸含有エステル体を分解する能力」とは、トランス脂肪酸含有エステル体または短鎖~長鎖の脂肪酸含有エステル体を、グリセロールまたは他のアルコール類(4-ニトロフェノール等)と遊離脂肪酸とに加水分解する活性を指す。 In the present specification, "the ability to decompose a trans-fatty acid-containing ester" or "the ability to decompose a short- to long-chain fatty acid-containing ester" means a trans-fatty acid-containing ester or a short to long-chain fatty acid-containing ester. Refers to the activity of hydrolyzing an ester into glycerol or other alcohols (such as 4-nitrophenol) and free fatty acids.
 本明細書において、(各温度での)「エステル体を分解する能力」とは、各温度においてエステル体を、アルコール類と遊離脂肪酸とに加水分解する活性を指す。本明細書において、(各温度での)「エステル体を分解する能力」は、以下のように測定する。すなわち、本明細書中に記載の方法によりエステラーゼを精製し、測定すべき温度設定での恒温下で4-ニトロフェノールと脂肪酸(例えばパルミチン酸、酪酸(ブチレート))とのエステル体基質とエステラーゼとを混合し、加水分解反応により生じる4-ニトロフェノールの量を410nmにおける吸光度を計測することによって測定することができる。 As used herein, the "ability to decompose an ester (at each temperature)" refers to the activity of hydrolyzing an ester into alcohols and free fatty acids at each temperature. In the present specification, the "ability to decompose an ester" (at each temperature) is measured as follows. That is, esterase is purified by the method described in the present specification, and esterase substrate and esterase of 4-nitrophenol and fatty acid (for example, palmitic acid, butyric acid (butyrate)) are used at a constant temperature at a temperature setting to be measured. Can be mixed and the amount of 4-nitrophenol produced by the hydrolysis reaction can be measured by measuring the absorbance at 410 nm.
 本明細書において、エステル体を分解する能力の「至適温度」とは、本技術分野において通常使用される意味で使用され、エステル体を分解する活性が一定レベルの所望以上(例えば、その酵素がもつ最大レベルの80%以上の活性が保持される温度範囲を言うが、別の実施形態では、最大のレベルをさすこともある。)にある温度範囲を指す。具体的には、本開示の第1のエステラーゼは、エステル体を分解する活性のピークが約60℃であり、約55~65℃の範囲でピークの80%以上の活性を保持する。本開示の第2のエステラーゼは、エステル体を分解する活性のピークが約40℃であり、約35~50℃の範囲でピークの80%以上の活性を保持する。本開示の第3のエステラーゼは、エステル体を分解する活性のピークが約65℃であり、約53~68℃の範囲でピークの80%以上の活性を保持する。本開示の第4のエステラーゼは、エステル体を分解する活性のピークが約65℃であり、約55~68℃の範囲でピークの80%以上の活性を保持する。本開示の第5のエステラーゼは、エステル体を分解する活性のピークが約40℃であり、約33~47℃の範囲でピークの80%以上の活性を保持する。本開示のエステラーゼの至適温度について言及する文脈において、本開示の第1のエステラーゼの至適温度は、約55~65℃、好ましくは約57~63℃、より好ましくは約60℃であることを意図する。本開示の第2のエステラーゼの至適温度については、約35~50℃、好ましくは約35~45℃、より好ましくは約40℃であることを意図する。本開示の第3のエステラーゼの至適温度については、約53~68℃、好ましくは約60~67℃、より好ましくは約65℃であることを意図する。本開示の第4のエステラーゼの至適温度については、約55~68℃、好ましくは約60~67℃、より好ましくは約65℃であることを意図する。本開示の第5のエステラーゼの至適温度については、約33~47℃、好ましくは約37~45℃、より好ましくは約40℃であることを意図する。 As used herein, the "optimal temperature" of the ability to decompose an ester is used in the sense commonly used in the art, and the activity of decomposing an ester is above a certain level desired (eg, the enzyme thereof). Refers to a temperature range in which 80% or more of the activity of the maximum level is maintained, but in another embodiment, it refers to a temperature range in which the maximum level is maintained. Specifically, the first esterase of the present disclosure has a peak activity of decomposing an ester at about 60 ° C., and retains an activity of 80% or more of the peak in the range of about 55 to 65 ° C. The second esterase of the present disclosure has a peak activity of decomposing an ester at about 40 ° C., and retains an activity of 80% or more of the peak in the range of about 35 to 50 ° C. The third esterase of the present disclosure has a peak activity of decomposing an ester at about 65 ° C., and retains an activity of 80% or more of the peak in the range of about 53 to 68 ° C. The fourth esterase of the present disclosure has a peak activity of decomposing an ester at about 65 ° C., and retains an activity of 80% or more of the peak in the range of about 55 to 68 ° C. The fifth esterase of the present disclosure has a peak activity of decomposing an ester at about 40 ° C., and retains an activity of 80% or more of the peak in the range of about 33 to 47 ° C. In the context of referring to the optimum temperature of the esterase of the present disclosure, the optimum temperature of the first esterase of the present disclosure is about 55-65 ° C, preferably about 57-63 ° C, more preferably about 60 ° C. Intended. The optimum temperature of the second esterase of the present disclosure is intended to be about 35 to 50 ° C., preferably about 35 to 45 ° C., more preferably about 40 ° C. The optimum temperature of the third esterase of the present disclosure is intended to be about 53-68 ° C, preferably about 60-67 ° C, more preferably about 65 ° C. The optimum temperature of the fourth esterase of the present disclosure is intended to be about 55-68 ° C, preferably about 60-67 ° C, more preferably about 65 ° C. The optimum temperature of the fifth esterase of the present disclosure is intended to be about 33-47 ° C, preferably about 37-45 ° C, more preferably about 40 ° C.
 本明細書において、「熱安定性」とは、「温度安定性」、「耐熱性」などの用語と同様の意味を有し、本技術分野において通常使用される意味で使用され、酵素が低温および/または高温で活性を保持することを意味する。一般に、酵素は、50℃程度の温度で分子構造の変化などの要因により、失活することが知られている。これとは対照的に、本開示の第1のエステラーゼの場合、30℃で30分処理後の酵素活性を100%とした場合の相対的な酵素活性は、約10~約60℃の温度の範囲で30分処理後に80%以上保持し、本開示の第2のエステラーゼの場合、45℃で30分処理後の酵素活性を100%とした場合の相対的な酵素活性は、約15~約60℃の温度の範囲で30分処理後に80%以上を保持する。本開示の第3のエステラーゼの場合、30℃で30分処理後の酵素活性を100%とした場合の相対的な酵素活性は、約30~約65℃の温度の範囲で30分処理後に80%以上を保持する。本開示の第4のエステラーゼの場合、30℃で30分処理後の酵素活性を100%とした場合の相対的な酵素活性は、約30~約45℃の温度の範囲で30分処理後に80%以上を保持する。本開示の第5のエステラーゼの場合、40℃で30分処理後の酵素活性を100%とした場合の相対的な酵素活性は、約20~約45℃の温度の範囲で30分処理後に80%以上を保持する。本明細書において、「熱安定性を保持する」などと同様の表現は、第1のエステラーゼの場合には30℃程度、第2のエステラーゼの場合には45℃程度、第3のエステラーゼの場合には30℃、第4のエステラーゼの場合には30℃、第5のエステラーゼの場合には40℃での30分処理後の酵素活性を100%とした場合の相対的な酵素活性が、概ね50%以上保持されることを意味する。 In the present specification, "thermal stability" has the same meaning as terms such as "temperature stability" and "heat resistance", and is used in the meaning commonly used in the art, and the enzyme is at a low temperature. And / or means to retain activity at high temperatures. Generally, it is known that an enzyme is inactivated at a temperature of about 50 ° C. due to factors such as a change in molecular structure. In contrast, in the case of the first esterase of the present disclosure, the relative enzyme activity when the enzyme activity after treatment at 30 ° C. for 30 minutes is 100% is at a temperature of about 10 to about 60 ° C. In the case of the second esterase of the present disclosure, which retains 80% or more after 30 minutes of treatment in the range, the relative enzyme activity when the enzyme activity after 30 minutes of treatment at 45 ° C. is 100% is about 15 to about. It retains 80% or more after 30 minutes of treatment in the temperature range of 60 ° C. In the case of the third esterase of the present disclosure, the relative enzyme activity when the enzyme activity after 30 minutes treatment at 30 ° C. is 100% is 80 after 30 minutes treatment in the temperature range of about 30 to about 65 ° C. Hold% or more. In the case of the fourth esterase of the present disclosure, the relative enzyme activity when the enzyme activity after 30 minutes treatment at 30 ° C. is 100% is 80 after 30 minutes treatment in the temperature range of about 30 to about 45 ° C. Hold% or more. In the case of the fifth esterase of the present disclosure, the relative enzyme activity when the enzyme activity after 30 minutes treatment at 40 ° C. is 100% is 80 after 30 minutes treatment in the temperature range of about 20 to about 45 ° C. Hold% or more. In the present specification, the same expression as "maintaining thermal stability" is about 30 ° C. in the case of the first esterase, about 45 ° C. in the case of the second esterase, and in the case of the third esterase. The relative enzyme activity is approximately 100% when the enzyme activity after 30 minutes of treatment at 30 ° C., 30 ° C. for the fourth esterase, and 40 ° C. for the fifth esterase is 100%. It means that it is retained at 50% or more.
 本明細書において、エステル体を分解する能力の「至適pH」とは、本技術分野において通常使用される意味で使用され、エステル体を分解する活性が一定レベル以上(例えば、その酵素がもつ最大レベルの80%以上の活性が保持されるpH範囲を言うが、別の実施形態では、最大のレベルをさすこともある。)のときのpHを指す。本開示の第1、第2、第3および第4のエステラーゼは、いずれもエステル体を分解する活性のピークが約pH9であり、約pH8.5~pH9.5の範囲でピークの80%以上の活性を保持する。第5のエステラーゼは、エステル体を分解する活性のピークが約pH8であり、約pH7.5~pH8.5の範囲でピークの80%以上の活性を保持する。第1、第2、第3および第4のエステラーゼの至適pHについて言及する文脈において、本開示の(第1、第2、第3および第4のいずれも)エステラーゼの至適pHは、pH8.5~pH9.5、好ましくはpH8.8~pH9.3、より好ましくはpH9であることを意図する。第5のエステラーゼの至適pHについて言及する文脈において、本開示の第5のエステラーゼの至適pHは、pH7.5~pH8.5、好ましくはpH7.8~pH8.3、より好ましくはpH8であることを意図する。 As used herein, the "optimal pH" of the ability to decompose an ester is used in the sense commonly used in the art, and the activity of decomposing an ester is above a certain level (for example, the enzyme has). It refers to the pH range in which 80% or more of the activity of the maximum level is maintained, but in another embodiment, it refers to the pH at the time of the maximum level). The first, second, third and fourth esterases of the present disclosure all have a peak activity of decomposing an ester having a peak of about pH 9, and 80% or more of the peak in the range of about pH 8.5 to pH 9.5. Retains the activity of. The fifth esterase has a peak activity of decomposing an ester at about pH 8, and retains an activity of 80% or more of the peak in the range of about pH 7.5 to pH 8.5. In the context of referring to the optimum pH of the first, second, third and fourth esterases, the optimum pH of the esterases (all of the first, second, third and fourth) of the present disclosure is pH 8. It is intended to be 5.5 to pH 9.5, preferably pH 8.8 to pH 9.3, more preferably pH 9. In the context of referring to the optimum pH of the fifth esterase, the optimum pH of the fifth esterase of the present disclosure is pH 7.5 to pH 8.5, preferably pH 7.8 to pH 8.3, more preferably pH 8. Intended to be.
 本明細書において、エステル体を分解する能力の「pH安定性」とは、「pH耐性」、「耐酸性」および「耐アルカリ性」などの用語と同様の意味を有し、本技術分野において通常使用される意味で使用され、エステル体を分解する活性が一定レベル以上となるpH範囲を指す。本開示の第1のエステラーゼの場合、pH9の緩衝液中で30分インキュベーション処理した後の酵素活性を100%とした場合の相対的な酵素活性は、約pH7.5~9.5の処理で80%以上を保持し、本開示の第2のエステラーゼの場合、pH8の緩衝液中で30分インキュベーション処理した後の酵素活性を100%とした場合の相対的な酵素活性は、約pH7.5~9.5の処理で80%以上を保持する。本開示の第3のエステラーゼの場合、pH9の緩衝液中で30分インキュベーション処理した後の酵素活性を100%とした場合の相対的な酵素活性は、約pH8.5~9.2の処理で80%以上を保持する。本開示の第4のエステラーゼの場合、pH9の緩衝液中で30分インキュベーション処理した後の酵素活性を100%とした場合の相対的な酵素活性は、約pH7.8~9.2の処理で80%以上を保持する。本開示の第5のエステラーゼの場合、pH8の緩衝液中で15時間インキュベーション処理した後の酵素活性を100%とした場合の相対的な酵素活性は、約pH4~8.5の処理で80%以上を保持する。本明細書において、「pH安定性を保持する」などと同様の表現は、第1のエステラーゼの場合にはpH9、第2のエステラーゼの場合にはpH8、第3のエステラーゼの場合にはpH9、第4のエステラーゼの場合にはpH9、第5のエステラーゼの場合にはpH8でそれぞれ一定時間以上インキュベートした後の酵素活性を100%とした場合の相対的な酵素活性が、試験pHでそれぞれ同じ時間インキュベートした場合に概ね50%以上保持されることを意味する。 In the present specification, "pH stability" of the ability to decompose an ester has the same meaning as terms such as "pH resistance", "acid resistance" and "alkali resistance", and is commonly used in the art. It is used in the sense that it is used, and refers to the pH range in which the activity of decomposing an ester is above a certain level. In the case of the first esterase of the present disclosure, the relative enzyme activity after 30 minutes incubation treatment in a buffer solution of pH 9 is about pH 7.5 to 9.5 when the enzyme activity is 100%. In the case of the second esterase of the present disclosure, which retains 80% or more, the relative enzyme activity when the enzyme activity after 30 minutes incubation treatment in a buffer solution of pH 8 is 100% is about pH 7.5. Retains 80% or more in the process of ~ 9.5. In the case of the third esterase of the present disclosure, the relative enzyme activity when the enzyme activity after incubation treatment in a buffer solution of pH 9 for 30 minutes is 100% is about pH 8.5 to 9.2. Hold 80% or more. In the case of the fourth esterase of the present disclosure, the relative enzyme activity when the enzyme activity after incubation treatment in a buffer solution of pH 9 for 30 minutes is 100% is about pH 7.8 to 9.2. Hold 80% or more. In the case of the fifth esterase of the present disclosure, the relative enzyme activity when the enzyme activity after incubation treatment in a buffer solution of pH 8 for 15 hours is 100% is 80% in the treatment of about pH 4 to 8.5. Hold the above. In the present specification, the same expressions as "maintaining pH stability" include pH 9 in the case of the first esterase, pH 8 in the case of the second esterase, and pH 9 in the case of the third esterase. In the case of the fourth esterase, the relative enzyme activity at pH 9 and in the case of the fifth esterase at pH 8 after incubating for a certain period of time or longer is 100%, and the relative enzyme activity is the same time at the test pH. It means that it is retained at about 50% or more when incubated.
 本明細書において、「ヤロウィア リポリティカ(Yarrowia lipolytica)」とは、生物分類学上のヤロウィア属リポリティカ種を意味する。ヤロウィア リポリティカは、アルカン資化性酵母の1種であり、n-アルカンおよび脂肪などの疎水性炭化水素鎖を資化する高い能力を特徴として同定された。本明細書におけるヤロウィア リポリティカ属KH-2株(受託番号NITE BP-02732で特定される微生物株)は、少なくとも5種類のエステラーゼ(すなわち本開示の「第1のエステラーゼ」の代表的配列、「第2のエステラーゼ」の代表的配列、「第3のエステラーゼ」の代表的配列、「第4のエステラーゼ」の代表的配列および「第5のエステラーゼ」の代表的配列)をコードする遺伝子を有する。これらの代表的な本開示のエステラーゼは、従来知られるエステラーゼにはない特徴を有することが本開示において見出された。これらの顕著な特徴は、本明細書の他の箇所において詳述される。本開示のエステラーゼは、ヤロウィア リポリティカに属するKH-2株によって生産されるものを包含するが、これに限定されない。 In the present specification, "Yarrowia lipolytica" means a species of the genus Yarrowia in terms of biotaxonomy. Yarrowia lipolytica is a type of alkane assimilating yeast, and has been identified as having a high ability to assimilate hydrophobic hydrocarbon chains such as n-alkane and fat. The Yarrowia lipolytica KH-2 strain (microorganism strain specified by accession number NITE BP-02732) in the present specification is a representative sequence of at least five types of esterases (that is, the "first esterase" of the present disclosure, "No. 1". It has a gene encoding a representative sequence of "2 esterase", a representative sequence of "third esterase", a representative sequence of "fourth esterase", and a representative sequence of "fifth esterase"). It has been found in the present disclosure that these representative esterases of the present disclosure have characteristics not found in conventionally known esterases. These salient features are detailed elsewhere herein. The esterases of the present disclosure include, but are not limited to, those produced by the KH-2 strain belonging to Yarrowia lipolytica.
 本明細書において、「無細胞発現系」とは、本技術分野において通常使用される意味で使用され、細胞から抽出される生体分子の転写翻訳機構を使用して、in vitroで目的の組換えタンパク質を生産する系を指す。本開示のエステラーゼを生産するための無細胞発現系としては、特に限定されないが、大腸菌などの原核生物由来の無細胞発現系を利用することができる。 As used herein, the term "cell-free expression system" is used in the sense commonly used in the art, and uses a transcriptional translation mechanism of a biomolecule extracted from a cell to in vitro the desired recombination. Refers to a system that produces proteins. The cell-free expression system for producing the esterase of the present disclosure is not particularly limited, but a cell-free expression system derived from a prokaryote such as Escherichia coli can be used.
 本明細書において、「油処理成分」とは、エステル体の資化および分解を補助する成分を意味する。具体的には、サーファクタントなどの、エステル体の分散化を促進する成分、エステル体を脂肪酸とアルコール類とに分解する成分のほか、脂肪酸を分解するもの、アルコール類を分解するもののほか、油を吸着して処理の対象物から除去するものなどを包含する。 In the present specification, the "oil treatment component" means a component that assists the assimilation and decomposition of the ester. Specifically, in addition to components that promote the dispersion of esters such as surfants, components that decompose esters into fatty acids and alcohols, those that decompose fatty acids, those that decompose alcohols, and oils. Includes those that are adsorbed and removed from the object to be treated.
 本明細書において「油分解剤」とは、本開示のヤロウィア リポリティカKH-2株またはこの微生物株によって産生される本開示の第1、第2、第3、第4または第5のエステラーゼを有効成分とする、エステル体の分解が可能な製剤を指す。本開示において、油分解剤は、油処理成分と併用して使用されてもよい。この場合の油分解剤と油処理成分との併用使用のタイミングは、同時に使用しても、いずれか片方を先に使用することにしてもよい。さらに、油分解剤には、使用する微生物株または微生物株由来のエステラーゼの活性を高める成分(例えば炭素源、窒素源)、界面活性剤、乾燥保護剤、微生物を長期間維持するための成分、防腐剤、賦形剤、強化剤、酸化防止剤等を更に含有させてもよい。 As used herein, the term "oil-degrading agent" refers to the Yarrowia lipolytica KH-2 strain of the present disclosure or the first, second, third, fourth or fifth esterase of the present disclosure produced by this microbial strain. It refers to a preparation that can decompose the ester form as an ingredient. In the present disclosure, the oil decomposing agent may be used in combination with an oil treatment component. In this case, the timing of the combined use of the oil decomposing agent and the oil treatment component may be the simultaneous use or one of them may be used first. Further, the oil decomposing agent includes a microbial strain to be used or a component that enhances the activity of an esterase derived from the microbial strain (for example, a carbon source or a nitrogen source), a surfactant, a desiccant protective agent, a component for maintaining the microorganism for a long period of time, Preservatives, excipients, fortifiers, antioxidants and the like may be further contained.
 本開示で提供される油分解剤は液体又は固体ないし乾燥体の状態で提供される。液体形状としては、微生物の培養液(必要に応じて濃縮又は希釈してもよい)、培養液由来の酵素成分を支持体に吸着させたもの、培養液から酵素を分離精製して緩衝液や溶媒に溶解させたものなどを例示できる。また、固体については、グリセロールなどの保護剤を含む溶媒に懸濁または溶解し凍結させたもの、担体に固定化させたもの(担体に共有結合、静電相互作用・疎水性相互作用などにより吸着させたもの、担体に分子架橋させたものなど)、遠心分離やプレス圧縮等により脱水したもの、さらには乾燥した乾燥体などを例示できる。好ましい実施形態では、油分解剤は、液体形状、粉末、顆粒の形状で提供され、洗剤としてまたは洗剤の成分として他の成分とともに含有されて提供され得る。 The oil degrading agent provided in the present disclosure is provided in a liquid or solid or dry state. The liquid form includes a culture solution of microorganisms (which may be concentrated or diluted if necessary), a substance in which an enzyme component derived from the culture solution is adsorbed on a support, and a buffer solution obtained by separating and purifying the enzyme from the culture solution. Examples thereof include those dissolved in a solvent. For solids, those suspended or dissolved in a solvent containing a protective agent such as glycerol and frozen, and those immobilized on a carrier (covalent bond to the carrier, adsorbed by electrostatic interaction / hydrophobic interaction, etc.) Examples thereof include those which have been subjected to molecular cross-linking on a carrier, those which have been dehydrated by centrifugation, press compression, etc., and those which have been dried and dried. In a preferred embodiment, the oil degrading agent is provided in liquid form, powder, granule form and may be provided as a detergent or contained with other ingredients as a component of the detergent.
 本明細書で使用される(エステラーゼ等の)「誘導体」、「類似体」または「変異体」は、好ましくは、限定を意図するものではないが、対象となるタンパク質(例えば、エステラーゼ)に実質的に相同な領域を含む分子を含み、このような分子は、種々の実施形態において、同一サイズのアミノ酸配列にわたり、または当該分野で公知のコンピュータ相同性プログラムによってアラインメントを行ってアラインされる配列と比較した際、少なくとも30%、40%、50%、60%、70%、80%、90%、95%または99%同一であるか、あるいはこのような分子をコードする核酸は、(高度に)ストリンジェントな条件、中程度にストリンジェントな条件、またはストリンジェントでない条件下で、構成要素タンパク質をコードする配列にハイブリダイズ可能である。これは、それぞれ、アミノ酸置換、欠失および付加によって、タンパク質を改変した産物であり、その誘導体がなお元のタンパク質の生物学的機能を、必ずしも同じ度合いでなくてもよいが示すタンパク質であり、好ましくは同程度以上の生物学的活性を有するタンパク質を意味する。例えば、本明細書において記載されあるいは当該分野で公知の適切で利用可能なin vitroアッセイによって、このようなタンパク質の生物学的機能を調べることも可能である。本明細書で使用される「機能的に活性な」または「機能的活性を有する」は、本明細書において、本開示のポリペプチド、すなわちフラグメントまたは誘導体が関連する態様に従って、生物学的活性などの、タンパク質の構造的機能、制御機能、または生化学的機能を有することを指す。 The "derivatives", "similars" or "variants" used herein (such as esterases) are preferably, but not intended to be limiting, substantially to the protein of interest (eg, esterases). Such molecules include, in various embodiments, sequences that are aligned over amino acid sequences of the same size or by computer homology programs known in the art. Nucleic acids that are at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% identical when compared, or encode such molecules (highly) ) It is possible to hybridize to a sequence encoding a component protein under stringent, moderately stringent, or non-stringent conditions. This is the product of modifying a protein by amino acid substitution, deletion and addition, respectively, and the derivative of which still exhibits the biological function of the original protein, though not necessarily to the same extent. Preferably, it means a protein having the same or higher biological activity. For example, it is also possible to investigate the biological function of such proteins by appropriate and available in vitro assays described herein or known in the art. As used herein, "functionally active" or "having functional activity" is used herein to include biological activity, etc., according to the embodiments in which the polypeptides of the present disclosure, ie fragments or derivatives, are associated. Refers to having a structural function, a regulatory function, or a biochemical function of a protein.
 本開示において、エステラーゼのフラグメントとは、エステラーゼの任意の領域を含むポリペプチドであり、本開示の目的(例えば、トランス脂肪酸含有エステル体の分解、または中鎖脂肪エステルの分解)として機能する限り、必ずしも天然のエステラーゼの生物学的機能のすべてを有していなくてもよい。 In the present disclosure, an esterase fragment is a polypeptide containing an arbitrary region of esterase, as long as it functions as the object of the present disclosure (for example, decomposition of a trans fatty acid-containing ester or decomposition of a medium chain fatty acid ester). It does not necessarily have all of the biological functions of natural esterases.
 本明細書において「タンパク質」、「ポリペプチド」、「オリゴペプチド」および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸のポリマーをいう。このポリマーは、直鎖であっても分岐していてもよく、環状であってもよい。アミノ酸は、天然のものであっても非天然のものであってもよく、改変されたアミノ酸であってもよい。この用語はまた、複数のポリペプチド鎖の複合体へとアセンブルされたものを包含し得る。この用語はまた、天然または人工的に改変されたアミノ酸ポリマーも包含する。そのような改変としては、例えば、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化または任意の他の操作もしくは改変(例えば、標識成分との結合体化)が包含される。この定義にはまた、例えば、アミノ酸の1または2以上のアナログを含むポリペプチド(例えば、非天然アミノ酸などを含む)、ペプチド様化合物(例えば、ペプトイド)および当該分野において公知の他の改変が包含される。本明細書において、「アミノ酸」は、アミノ基とカルボキシル基を持つ有機化合物の総称である。本開示の実施形態に係るタンパク質または酵素が「特定のアミノ酸配列」を含むとき、そのアミノ酸配列中のいずれかのアミノ酸が化学修飾を受けていてもよい。また、そのアミノ酸配列中のいずれかのアミノ酸が塩、または溶媒和物を形成していてもよい。また、そのアミノ酸配列中のいずれかのアミノ酸がL型、またはD型であってもよい。それらのような場合でも、本開示の実施形態に係る蛋白質は、上記「特定のアミノ酸配列」を含むといえる。蛋白質に含まれるアミノ酸が生体内で受ける化学修飾としては、例えば、N末端修飾(例えば、アセチル化、ミリストイル化等)、C末端修飾(例えば、アミド化、グリコシルホスファチジルイノシトール付加等)、または側鎖修飾(例えば、リン酸化、糖鎖付加等)等が知られている。アミノ酸は、本開示の目的を満たす限り、天然のものでも非天然のものでもよい。 In the present specification, "protein", "polypeptide", "oligopeptide" and "peptide" are used interchangeably in the present specification and refer to a polymer of amino acids of any length. The polymer may be linear, branched or cyclic. The amino acid may be natural or non-natural, or may be a modified amino acid. The term may also include those assembled into a complex of multiple polypeptide chains. The term also includes naturally or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation or any other manipulation or modification (eg, conjugation with a labeling component). This definition also includes, for example, polypeptides containing one or more analogs of amino acids (including, for example, unnatural amino acids), peptide-like compounds (eg, peptoids) and other modifications known in the art. Will be done. In the present specification, "amino acid" is a general term for organic compounds having an amino group and a carboxyl group. When the protein or enzyme according to the embodiment of the present disclosure contains a "specific amino acid sequence", any amino acid in the amino acid sequence may be chemically modified. Moreover, any amino acid in the amino acid sequence may form a salt or a solvate. Further, any amino acid in the amino acid sequence may be L-type or D-type. Even in such cases, it can be said that the protein according to the embodiment of the present disclosure contains the above-mentioned "specific amino acid sequence". Chemical modifications that amino acids contained in proteins undergo in vivo include, for example, N-terminal modification (eg, acetylation, myristoylation, etc.), C-terminal modification (eg, amidation, glycosylphosphatidylinositol addition, etc.), or side chain. Modifications (eg, phosphorylation, glycosylation, etc.) are known. Amino acids may be natural or non-natural as long as they meet the purposes of the present disclosure.
 本明細書において「ポリヌクレオチド」、「オリゴヌクレオチド」および「核酸」は、本明細書において同じ意味で使用され、任意の長さのヌクレオチドのポリマーをいう。この用語はまた、「オリゴヌクレオチド誘導体」または「ポリヌクレオチド誘導体」を含む。「塩基配列」または「核酸配列」は、「ポリヌクレオチド」、「オリゴヌクレオチド」または「核酸」において、連続する核酸塩基の順序を意味する。「オリゴヌクレオチド誘導体」または「ポリヌクレオチド誘導体」とは、ヌクレオチドの誘導体を含むか、またはヌクレオチド間の結合が通常とは異なるオリゴヌクレオチドまたはポリヌクレオチドをいい、互換的に使用される。そのようなオリゴヌクレオチドとして具体的には、例えば、2’-O-メチル-リボヌクレオチド、オリゴヌクレオチド中のリン酸ジエステル結合がホスホロチオエート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリン酸ジエステル結合がN3’-P5’ホスホロアミデート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリボースとリン酸ジエステル結合とがペプチド核酸結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のウラシルがC-5プロピニルウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のウラシルがC-5チアゾールウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のシトシンがC-5プロピニルシトシンで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のシトシンがフェノキサジン修飾シトシン(phenoxazine-modified cytosine)で置換されたオリゴヌクレオチド誘導体、DNA中のリボースが2’-O-プロピルリボースで置換されたオリゴヌクレオチド誘導体およびオリゴヌクレオチド中のリボースが2’-メトキシエトキシリボースで置換されたオリゴヌクレオチド誘導体などが例示される。他にそうではないと示されなければ、特定の塩基配列はまた、明示的に示された配列と同様に、その保存的に改変された改変体(例えば、縮重コドン置換体)および相補配列を包含することが企図される。具体的には、縮重コドン置換体は、1またはそれ以上の選択された(または、すべての)コドンの3番目の位置が混合塩基および/またはデオキシイノシン残基で置換された配列を作成することにより達成され得る(Batzer et al., Nucleic Acid Res.19:5081(1991);Ohtsuka et al., J. Biol. Chem. 260: 2605-2608(1985);Rossolini et al., Mol.Cell.Probes 8:91-98(1994))。本明細書において「核酸」はまた、遺伝子、cDNA、mRNA、オリゴヌクレオチド、およびポリヌクレオチドと互換可能に使用される。本明細書において「ヌクレオチド」は、天然のものでも非天然のものでもよい。 In the present specification, "polynucleotide", "oligonucleotide" and "nucleic acid" are used interchangeably in the present specification and refer to a polymer of nucleotides of arbitrary length. The term also includes "oligonucleotide derivatives" or "polynucleotide derivatives". "Nucleobase sequence" or "nucleic acid sequence" means the sequence of successive nucleic acid bases in "polynucleotide", "oligonucleotide" or "nucleic acid". The "oligonucleotide derivative" or "polynucleotide derivative" refers to an oligonucleotide or polynucleotide containing a derivative of a nucleotide or having an unusual bond between nucleotides, and is used interchangeably. Specifically, such an oligonucleotide includes, for example, 2'-O-methyl-ribonucleotide, an oligonucleotide derivative in which a phosphate diester bond in an oligonucleotide is converted into a phosphorothioate bond, and a phosphate diester bond in an oligonucleotide. Is an oligonucleotide derivative converted to N3'-P5'phosphoroamidate bond, an oligonucleotide derivative in which ribose and phosphate diester bond in the oligonucleotide are converted into peptide nucleic acid bond, and uracil in the oligonucleotide is C- 5 Oligonucleotide derivatives substituted with propynyl uracil, oligonucleotide derivatives in which uracil in the oligonucleotide is replaced with C-5 thiazole uracil, oligonucleotide derivatives in which cytosine in the oligonucleotide is replaced with C-5 propynyl cytosine, oligonucleotides Oligonucleotide derivatives in which cytosine in nucleotides is replaced with phenoxazine-modified cytosine, oligonucleotide derivatives in which ribose in DNA is replaced with 2'-O-propylribose, and ribose in oligonucleotides are 2 Examples thereof include oligonucleotide derivatives substituted with'-methoxyethoxyribose. Unless otherwise indicated, a particular base sequence is also a conservatively modified variant (eg, a degenerate codon substitution) and a complementary sequence, as well as the explicitly indicated sequence. Is intended to be included. Specifically, the degenerate codon substituent creates a sequence in which the third position of one or more selected (or all) codons is replaced with a mixed base and / or deoxyinosin residue. It can be achieved by (Batzer et al., Nucleic Acid Res. 19: 5081 (1991); Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985); Rossolini et al., Mol. Cell. .Probes 8: 91-98 (1994)). As used herein, "nucleic acid" is also used interchangeably with genes, cDNAs, mRNAs, oligonucleotides, and polynucleotides. As used herein, the "nucleotide" may be natural or non-natural.
 本明細書において「遺伝子」とは、遺伝形質を規定する因子をいい、「遺伝子」は、「ポリヌクレオチド」、「オリゴヌクレオチド」および「核酸」をさすことがある。 In the present specification, the "gene" refers to a factor that defines a genetic trait, and the "gene" may refer to a "polynucleotide", an "oligonucleotide", and a "nucleic acid".
 本明細書において遺伝子の「相同性」とは、2以上の遺伝子配列の、互いに対する同一性の程度をいい、一般に「相同性」を有するとは、同一性または類似性の程度が高いことをいう。従って、ある2つの遺伝子の相同性が高いほど、それらの配列の同一性または類似性は高い。2種類の遺伝子が相同性を有するか否かは、配列の直接の比較、または核酸の場合ストリンジェントな条件下でのハイブリダイゼーション法によって調べられ得る。2つの遺伝子配列を直接比較する場合、その遺伝子配列間でDNA配列が、代表的には少なくとも50%同一である場合、好ましくは少なくとも70%同一である場合、より好ましくは少なくとも80%、90%、95%、96%、97%、98%または99%同一である場合、それらの遺伝子は相同性を有する。従って本明細書において「相同体」または「相同遺伝子産物」は、本明細書にさらに記載する複合体のタンパク質構成要素と同じ生物学的機能を発揮する、別の種、好ましくは微生物、より好ましくは酵母におけるタンパク質を意味する。こうような相同体はまた、「オルソログ遺伝子産物」とも称されることもある。本開示の目的に合致する限り、このような相同体、相同遺伝子産物、オルソログ遺伝子産物等も用いることができることが理解される。本明細書において遺伝子または塩基配列の「類似性」は、2以上の遺伝子配列の、互いに対する類似性の程度をいい、同一性の他配列の類似の程度が高いことをいう。「類似性」は、同一性に加え、類似の塩基についても計算に入れた数値であり、ここで類似の塩基とは、混合塩基(例えば、R=A+G、M=A+C、W=A+T、S=C+G、Y=C+T、K=G+T、H=A+T+C、B=G+T+C、D=G+A+T、V=A+C+G、N=A+C+G+T)において、一部が一致する場合をいう。 In the present specification, "homology" of a gene means the degree of identity of two or more gene sequences to each other, and generally, having "homology" means a high degree of identity or similarity. Say. Therefore, the higher the homology of two genes, the higher the identity or similarity of their sequences. Whether or not the two genes are homologous can be examined by direct sequence comparison or, in the case of nucleic acids, hybridization under stringent conditions. When comparing two gene sequences directly, the DNA sequences are typically at least 50% identical, preferably at least 70% identical, and more preferably at least 80%, 90%. , 95%, 96%, 97%, 98% or 99% if they are identical, the genes are homologous. Thus, as used herein, a "homologous" or "homologous gene product" is another species, preferably a microorganism, more preferably, which exerts the same biological functions as the protein components of the complex further described herein. Means protein in yeast. Such homologues are also sometimes referred to as "ortholog gene products." It is understood that such homologues, homologous gene products, ortholog gene products and the like can also be used as long as they meet the purposes of the present disclosure. As used herein, the term "similarity" of a gene or base sequence refers to the degree of similarity between two or more gene sequences to each other, and the high degree of similarity of other sequences of identity. "Similarity" is a numerical value that takes into account similar bases in addition to identity. Here, similar bases are mixed bases (for example, R = A + G, M = A + C, W = A + T, S). = C + G, Y = C + T, K = G + T, H = A + T + C, B = G + T + C, D = G + A + T, V = A + C + G, N = A + C + G + T).
 アミノ酸は、その一般に公知の3文字記号か、またはIUPAC-IUB Biochemical Nomenclature Commissionにより推奨される1文字記号のいずれかにより、本明細書中で言及され得る。ヌクレオチドも同様に、一般に認知された1文字コードにより言及され得る。本明細書では、アミノ酸配列および塩基配列の類似性、同一性および相同性の比較は、配列分析用ツールであるBLASTを用いてデフォルトパラメータを用いて算出される。同一性の検索は例えば、NCBIのBLAST2.7.1(2017.10.19発行)を用いて行うことができる。本明細書における「同一性」の値は通常は上記BLASTを用い、デフォルトの条件でアラインした際の値をいう。ただし、パラメータの変更により、より高い値が出る場合は、最も高い値を同一性の値とする。複数の領域で同一性が評価される場合はそのうちの最も高い値を同一性の値とする。「類似性」は、同一性に加え、類似のアミノ酸についても計算に入れた数値である。 Amino acids may be referred to herein by either their generally known three-letter symbols or the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides can also be referred to by the generally accepted one-letter code. In the present specification, comparison of amino acid sequence and base sequence similarity, identity and homology is calculated using default parameters using BLAST, which is a tool for sequence analysis. The identity search can be performed using, for example, NCBI's BLAST 2.7.1 (issued October 19, 2017). The value of "identity" in the present specification usually refers to the value when the above BLAST is used and aligned under the default conditions. However, if a higher value is obtained by changing the parameter, the highest value is set as the identity value. When identity is evaluated in multiple regions, the highest value among them is set as the identity value. "Similarity" is a numerical value that takes into account similar amino acids in addition to identity.
 本開示の一実施形態において「数個」は、例えば、10、8、6、5、4、3、または2個であってもよく、それらいずれかの値以下であってもよい。1または数個のアミノ酸残基の欠失、付加、挿入、または他のアミノ酸による置換を受けたポリペプチドが、その生物学的活性を維持することは知られている(Mark et al., Proc Natl Acad Sci USA.1984 Sep;81(18): 5662-5666.、Zoller et al.,Nucleic Acids Res. 1982 Oct 25;10(20):6487-6500.、Wang et al., Science. 1984 Jun 29;224(4656):1431-1433.)。欠失等がなされたタンパク質は、例えば、部位特異的変異導入法、ランダム変異導入法、またはタンパク質ファージライブラリを用いたバイオパニング等によって作製できる。部位特異的変異導入法としては、例えばKOD-Plus- Mutagenesis Kit (TOYOBO CO., LTD.)を使用できる。欠失等を導入した変異型タンパク質から、野生型と同様の活性のあるタンパク質を選択することは、FACS解析やELISA等の各種キャラクタリゼーションを行うことで可能である。 In one embodiment of the present disclosure, the "several pieces" may be, for example, 10, 8, 6, 5, 4, 3, or two pieces, or may be less than or equal to any one of them. It is known that a polypeptide that has been deleted, added, inserted, or replaced by another amino acid with one or several amino acid residues maintains its biological activity (Mark et al., Proc). Natl Acad Sci USA.1984 Sep; 81 (18): 5662-5666., Zoller et al., Nucleic Acids Res. 1982 Oct 25; 10 (20): 6487-6500., Wang et al., Science. 1984 Jun 29; 224 (4656): 1431-1433.). The deleted protein can be produced, for example, by a site-specific mutagenesis method, a random mutagenesis method, biopanning using a protein phage library, or the like. As a site-specific mutagenesis method, for example, KOD-Plus-Mutagenesis Kit (TOYOBO CO., LTD.) Can be used. It is possible to select a protein having the same activity as the wild type from the mutant protein into which the deletion or the like has been introduced by performing various characterizations such as FACS analysis and ELISA.
 本開示の一実施形態において同一性等の数値である「70%以上」は、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上、または100%以上であってもよく、それら起点となる数値のいずれか2つの値の範囲内であってもよい。上記「同一性」は、2つもしくは複数間のアミノ酸配列において相同なアミノ酸数の割合を、上述したような公知の方法に従って算定される。具体的に説明すると、割合を算定する前には、比較するアミノ酸配列群のアミノ酸配列を整列させ、同一アミノ酸の割合を最大にするために必要である場合はアミノ酸配列の一部に間隙を導入する。整列のための方法、割合の算定方法、比較方法、およびそれらに関連するコンピュータプログラムは、当該分野で従来からよく知られている(例えば、上述したBLAST等)。本明細書において「同一性」および「類似性」は、特に断りのない限りNCBIのBLASTによって測定された値で表すことができる。BLASTでアミノ酸配列を比較するときのアルゴリズムには、Blastpをデフォルト設定で使用できる。測定結果はPositivesまたはIdentitiesとして数値化される。この場合、「同一性」に代えて「類似性」という場合は、本明細書に記載される「類似」する「アミノ酸」または「塩基」の定義に該当するものも考慮した数値である。 In one embodiment of the present disclosure, "70% or more", which is a numerical value such as identity, is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more. , 97% or more, 98% or more, 99% or more, or 100% or more, and may be within the range of any two of the numerical values that are the starting points thereof. The above "identity" is calculated by calculating the ratio of the number of amino acids homologous in an amino acid sequence between two or a plurality of amino acids according to a known method as described above. Specifically, before calculating the proportion, align the amino acid sequences of the amino acid sequences to be compared and introduce a gap in a part of the amino acid sequence if necessary to maximize the proportion of the same amino acid. To do. Methods for alignment, method of calculating proportions, methods of comparison, and related computer programs are well known in the art (eg, BLAST, described above). As used herein, "identity" and "similarity" can be expressed as values measured by NCBI's BLAST unless otherwise specified. Blastp can be used by default for algorithms when comparing amino acid sequences with BLAST. The measurement results are quantified as Positives or Identities. In this case, the term "similarity" instead of "identity" is a numerical value that also considers those that fall under the definition of "similar" "amino acid" or "base" described in the present specification.
 本明細書において「ストリンジェント(な)条件でハイブリダイズするポリヌクレオチド」とは、当該分野で慣用される周知の条件をいう。本開示のポリヌクレオチド中から選択されたポリヌクレオチドをプローブとして、コロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法あるいはサザンブロットハイブリダイゼーション法などを用いることにより、そのようなポリヌクレオチドを得ることができる。具体的には、コロニーあるいはプラーク由来のDNAを固定化したフィルターを用いて、0.7~1.0MのNaCl存在下、65℃でハイブリダイゼーションを行った後、0.1~2倍濃度のSSC(saline-sodiumcitrate)溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウムである)を用い、65℃条件下でフィルターを洗浄することにより同定できるポリヌクレオチドを意味する。「ストリンジェントな条件」は、例えば、以下の条件を採用することができる。(1)洗浄のために低イオン強度および高温度を用いる(例えば、50℃で、0.015Mの塩化ナトリウム/0.0015Mのクエン酸ナトリウム/0.1%のドデシル硫酸ナトリウム)、(2)ハイブリダイゼーション中にホルムアミド等の変性剤を用いる(例えば、42℃で、50%(v/v)ホルムアミドと0.1%ウシ血清アルブミン/0.1%フィコール/0.1%のポリビニルピロリドン/50mMのpH6.5のリン酸ナトリウムバッファー、および750mMの塩化ナトリウム、75mMクエン酸ナトリウム)、または(3)20%ホルムアミド、5×SSC、50mMリン酸ナトリウム(pH7.6)、5×デンハード液、10%硫酸デキストラン、および20mg/mlの変性剪断サケ精子DNAを含む溶液中で、37℃で一晩インキュベーションし、次に約37-50℃で1×SSCでフィルターを洗浄する。なお、ホルムアミド濃度は50%またはそれ以上であってもよい。洗浄時間は、5、15、30、60、もしくは120分、またはそれら以上であってもよい。ハイブリダイゼーション反応のストリンジェンシーに影響する要素としては温度、塩濃度など複数の要素が考えられ、詳細はAusubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers,(1995)を参照することができる。「高度にストリンジェントな条件」の例は、0.0015M塩化ナトリウム、0.0015Mクエン酸ナトリウム、65~68℃、または0.015M塩化ナトリウム、0.0015Mクエン酸ナトリウム、および50%ホルムアミド、42℃である。ハイブリダイゼーション、Molecular Cloning 2nd ed.,Current Protocols in Molecular Biology, Supplement 1-38, DNA Cloning 1:Core Techniques, A Practical Approach, Second Edition, Oxford University Press(1995)などの実験書に記載されている方法に準じて行うことができる。ここで、ストリンジェントな条件下でハイブリダイズする配列からは、好ましくは、A配列のみまたはT配列のみを含む配列が除外される。中程度のストリンジェントな条件は、例えば、DNAの長さに基づき、当業者によって、容易に決定することができ、Sambrookら、Molecular Cloning:ALaboratory Manual、第3番、Vol.1、7.42-7.45 Cold Spring Harbor Laboratory Press,2001に示され、そしてニトロセルロースフィルターに関し、5×SSC、0.5% SDS、1.0mM EDTA(pH8.0)の前洗浄溶液、約40-50℃での、約50%ホルムアミド、2×SSC-6×SSC(または約42℃での約50%ホルムアミド中の、スターク溶液(Stark’s solution)などの他の同様のハイブリダイゼーション溶液)のハイブリダイゼーション条件、および約60℃、0.5×SSC、0.1% SDSの洗浄条件の使用が含まれる。従って、本開示において使用されるポリペプチドには、本開示で特に記載されたポリペプチドをコードする核酸分子に対して、高度または中程度でストリンジェントな条件下でハイブリダイズする核酸分子によってコードされるポリペプチドも包含される。 As used herein, the term "polynucleotide that hybridizes under stringent conditions" refers to well-known conditions commonly used in the art. Such a polynucleotide can be obtained by using a polynucleotide selected from the polynucleotides of the present disclosure as a probe and using a colony hybridization method, a plaque hybridization method, a Southern blot hybridization method, or the like. Specifically, using a filter on which DNA derived from colonies or plaques is immobilized, hybridization is performed at 65 ° C. in the presence of 0.7 to 1.0 M NaCl, and then the concentration is 0.1 to 2 times higher. It means a polynucleotide that can be identified by washing the filter under 65 ° C. conditions using an SSC (saline-sodium citrate) solution (the composition of the 1-fold SSC solution is 150 mM sodium chloride and 15 mM sodium citrate). .. For the "stringent condition", for example, the following conditions can be adopted. (1) use low ion intensity and high temperature for washing (eg, at 50 ° C., 0.015 M sodium chloride / 0.0015 M sodium citrate / 0.1% sodium dodecyl sulphate), (2) during hybridization Use a denaturant such as formamide (eg, at 42 ° C., 50% (v / v) formamide and 0.1% bovine serum albumin / 0.1% ficol / 0.1% polyvinylpyrrolidone / 50 mM sodium chloride buffer, pH 6.5, And 750 mM sodium chloride, 75 mM sodium citrate), or (3) 20% formamide, 5 x SSC, 50 mM sodium phosphate (pH 7.6), 5 x denhard solution, 10% dextran sulfate, and 20 mg / ml denaturation. Incubate overnight at 37 ° C. in a solution containing sheared salmon sperm DNA, then wash the filter with 1 × SSC at about 37-50 ° C. The formamide concentration may be 50% or more. The wash time may be 5, 15, 30, 60, or 120 minutes, or longer. Multiple factors such as temperature and salt concentration can be considered as factors that affect the stringency of the hybridization reaction. For details, refer to Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995). .. Examples of "highly stringent conditions" are 0.0015M sodium chloride, 0.0015M sodium citrate, 65-68 ° C, or 0.015M sodium chloride, 0.0015M sodium citrate, and 50% formamide, 42. ℃. Hybridization, Molecular Cloning 2nd ed., Current Protocols in Molecular Biology, Supplement 1-38, DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995), etc. It can be performed according to. Here, sequences containing only the A sequence or only the T sequence are preferably excluded from the sequences that hybridize under stringent conditions. Moderate stringent conditions can be easily determined by those skilled in the art, eg, based on DNA length, Sambrook et al., Molecular Cloning: A Laboratory Manual, No. 3, Vol. 1, 7.42-7.45 Cold Spring Harbor Laboratory Press, 2001, and for nitrocellulose filters, 5 x SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0) prewash solution, Other similar hybridizations such as Stark's solution in about 50% formamide at about 40-50 ° C., 2xSSC-6xSSC (or about 50% formamide at about 42 ° C.). Includes the use of solution) hybridization conditions and washing conditions of about 60 ° C., 0.5 × SSC, 0.1% SDS. Accordingly, the polypeptides used in the present disclosure are encoded by nucleic acid molecules that hybridize under highly or moderately stringent conditions to the nucleic acid molecules encoding the polypeptides specifically described herein. Polypeptides are also included.
 本開示のエステラーゼは、好ましくは「精製された」または「単離された」ものであり得る。本明細書において「精製された」物質または生物学的因子(例えば、核酸またはタンパク質など)とは、その物質または生物学的因子に天然に随伴する因子の少なくとも一部が除去されたものをいう。従って、通常、精製された生物学的因子におけるその生物学的因子の純度は、その生物学的因子が通常存在する状態よりも高い(すなわち濃縮されている)。本明細書中で使用される用語「精製された」は、好ましくは少なくとも75重量%、より好ましくは少なくとも85重量%、よりさらに好ましくは少なくとも95重量%、そして最も好ましくは少なくとも98重量%の、同型の生物学的因子が存在することを意味する。本開示で用いられる物質または生物学的因子は、好ましくは「精製された」物質である。本明細書で使用される「単離された」物質または生物学的因子(例えば、核酸またはタンパク質など)とは、その物質または生物学的因子に天然に随伴する因子が実質的に除去されたものをいう。本明細書中で使用される用語「単離された」は、その目的に応じて変動するため、必ずしも純度で表示される必要はないが、必要な場合、好ましくは少なくとも75重量%、より好ましくは少なくとも85重量%、よりさらに好ましくは少なくとも95重量%、そして最も好ましくは少なくとも98重量%の、同型の生物学的因子が存在することを意味する。本開示で用いられる物質は、好ましくは「単離された」物質または生物学的因子である。 The esterases of the present disclosure can preferably be "purified" or "isolated". As used herein, a "purified" substance or biological factor (eg, nucleic acid or protein) is one in which at least some of the factors naturally associated with the substance or biological factor have been removed. .. Therefore, the purity of the biological factor in the purified biological factor is usually higher (ie, enriched) than in the state in which the biological factor is normally present. The term "purified" as used herein is preferably at least 75% by weight, more preferably at least 85% by weight, even more preferably at least 95% by weight, and most preferably at least 98% by weight. It means that the same type of biological factor is present. The substance or biological factor used in the present disclosure is preferably a "purified" substance. As used herein, an "isolated" substance or biological factor (eg, nucleic acid or protein) is substantially depleted of a factor naturally associated with that substance or biological factor. Say something. The term "isolated" as used herein varies depending on its purpose and therefore does not necessarily have to be expressed in purity, but if necessary, preferably at least 75% by weight, more preferably. Means that there is at least 85% by weight, even more preferably at least 95% by weight, and most preferably at least 98% by weight of the same type of biological factor. The substance used in the present disclosure is preferably an "isolated" substance or biological factor.
 本明細書において「フラグメント」とは、全長のポリペプチドまたはポリヌクレオチド(長さがn)に対して、1~n-1までの配列長さを有するポリペプチドまたはポリヌクレオチドをいう。フラグメントの長さは、その目的に応じて、適宜変更することができ、例えば、その長さの下限としては、ポリペプチドの場合、3、4、5、6、7、8、9、10、15、20、25、30、40、50およびそれ以上のアミノ酸が挙げられ、ここの具体的に列挙していない整数で表される長さ(例えば、11など)もまた、下限として適切であり得る。また、ポリヌクレオチドの場合、5、6、7、8、9、10、15、20、25、30、40、50、75、100およびそれ以上のヌクレオチドが挙げられ、ここの具体的に列挙していない整数で表される長さ(例えば、11など)もまた、下限として適切であり得る。本明細書において、このようなフラグメントは、例えば、全長のものがエステル体分解分子として機能する場合、そのフラグメント自体もまたエステル体分解分子としての機能を有する限り、本開示の範囲内に入ることが理解される。 As used herein, the term "fragment" refers to a polypeptide or polynucleotide having a sequence length of 1 to n-1 with respect to a full-length polypeptide or polynucleotide (length n). The length of the fragment can be appropriately changed according to its purpose. For example, in the case of a polypeptide, the lower limit of the length is 3, 4, 5, 6, 7, 8, 9, 10, Amino acids such as 15, 20, 25, 30, 40, 50 and above are mentioned, and lengths represented by integers not specifically listed here (eg, 11) are also suitable as lower limits. obtain. In the case of polynucleotides, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, 100 and more nucleotides are mentioned, and are specifically listed here. A length represented by a non-integer (eg, 11) can also be a suitable lower bound. In the present specification, such a fragment is within the scope of the present disclosure, for example, when a full-length one functions as an ester-degrading molecule, as long as the fragment itself also functions as an ester-degrading molecule. Is understood.
 本明細書において「生物学的機能」とは、ある遺伝子またはそれに関する核酸分子もしくはポリペプチドについて言及するとき、その遺伝子、核酸分子またはポリペプチドが生体内または生体外において有し得る特定の機能をいい、これには、例えば、エステル体の分解(例えば、トランス脂肪酸含有エステル体の分解)等を挙げることができるがそれらに限定されない。本開示においては、例えば、トランス脂肪酸含有エステル体の分解のほか、中鎖脂肪酸含有エステル体の分解、シス脂肪酸含有エステル体の分解、二重結合を含まない飽和脂肪酸含有エステル体の分解などを挙げることができるがそれらに限定されない。本明細書において、生物学的機能は、対応する「生物学的活性」によって発揮され得る。本明細書において「生物学的活性」とは、ある因子(例えば、ポリヌクレオチド、タンパク質など)が、有し得る活性のことをいい、種々の機能(例えば、トランス脂肪酸含有エステル体の分解活性)を発揮する活性が包含される。「生物学的活性」は、生体内で発揮される活性であっても、分泌などによって生体外で発揮される活性であってもよい。例えば、ある因子が酵素である場合、その生物学的活性は、その酵素活性を包含する。そのような生物学的活性は、当該分野において周知の技術によって測定することができる。従って、「活性」は、結合(直接的または間接的のいずれか)を示すかまたは明らかにするか;応答に影響する(すなわち、いくらかの曝露または刺激に応答する測定可能な影響を有する)、種々の測定可能な指標をいい、例えば、本開示のポリペプチドまたはポリヌクレオチドに直接結合する化合物の親和性、または例えば、いくつかの刺激後または事象後の上流または下流のタンパク質の量あるいは他の類似の機能の尺度も含まれ得る。 As used herein, when referring to a gene or a nucleic acid molecule or polypeptide related thereto, the term "biological function" refers to a specific function that the gene, nucleic acid molecule or polypeptide may have in vivo or in vitro. That is, for example, decomposition of an ester (for example, decomposition of a trans fatty acid-containing ester) and the like can be mentioned, but the present invention is not limited thereto. In the present disclosure, for example, in addition to decomposition of trans fatty acid-containing ester, decomposition of medium-chain fatty acid-containing ester, decomposition of cis fatty acid-containing ester, decomposition of saturated fatty acid-containing ester containing no double bond, and the like are mentioned. Can, but is not limited to them. As used herein, a biological function can be exerted by a corresponding "biological activity". As used herein, the term "biological activity" refers to the activity that a certain factor (for example, polynucleotide, protein, etc.) can have, and has various functions (for example, decomposition activity of a trans fatty acid-containing ester). Activities that exert the above are included. The "biological activity" may be an activity exerted in vivo or an activity exerted in vitro by secretion or the like. For example, if a factor is an enzyme, its biological activity comprises that enzymatic activity. Such biological activity can be measured by techniques well known in the art. Thus, "activity" indicates or reveals binding (either direct or indirect); affects the response (ie, has a measurable effect in response to some exposure or stimulus). Various measurable indicators, such as the affinity of a compound that binds directly to a polypeptide or polynucleotide of the present disclosure, or, for example, the amount of upstream or downstream protein or other after some stimulation or event. Scales of similar function may also be included.
 本明細書において遺伝子、ポリヌクレオチド、ポリペプチドなどの「発現」とは、その遺伝子などがインビボで一定の作用を受けて、別の形態になることをいう。好ましくは、遺伝子、ポリヌクレオチドなどが、転写および翻訳されて、ポリペプチドの形態になることをいうが、転写されてmRNAが作製されることもまた発現の一態様である。したがって、本明細書において「発現産物」とは、このようなポリペプチドもしくはタンパク質、またはmRNAを含む。より好ましくは、そのようなポリペプチドの形態は、翻訳後プロセシングを受けたものであり得る。例えば、エステラーゼの発現レベルは、任意の方法によって決定することができる。具体的には、エステラーゼのmRNAの量、エステラーゼタンパク質の量、そしてエステラーゼタンパク質の生物学的な活性を評価することによって、エステラーゼの発現レベルを知ることができる。エステラーゼのmRNAやタンパク質の量は、本明細書の他の箇所に詳述したような方法あるいは他の当該分野において公知の方法によって決定することができる。 In the present specification, "expression" of a gene, polynucleotide, polypeptide or the like means that the gene or the like undergoes a certain action in vivo and becomes another form. Preferably, a gene, polynucleotide, or the like is transcribed and translated into the form of a polypeptide, but transcribing to produce mRNA is also an aspect of expression. Thus, as used herein, an "expression product" includes such a polypeptide or protein, or mRNA. More preferably, the form of such a polypeptide can be post-translationally processed. For example, the expression level of esterase can be determined by any method. Specifically, the expression level of esterase can be known by evaluating the amount of esterase mRNA, the amount of esterase protein, and the biological activity of esterase protein. The amount of esterase mRNA or protein can be determined by methods as detailed elsewhere herein or by other methods known in the art.
 本明細書において「機能的等価物」とは、対象となるもとの実体に対して、目的となる機能が同じであるが構造が異なる任意のものをいう。従って、本開示の「エステラーゼ」の機能的等価物は、本開示のエステラーゼ自体ではないが、その変異体または改変体(例えば、アミノ酸配列改変体等)であって、そのエステラーゼの持つ生物学的作用を有するもの、ならびに、作用する時点において、そのエステラーゼの持つ生物学的作用を持つ変異体もしくは改変体に変化することができるもの(例えば、その変異体もしくは改変体をコードする核酸、およびその核酸を含むベクター、細胞等を含む)が包含されることが理解される。本開示において、エステラーゼの機能的等価物は、格別に言及していなくても、エステラーゼと同様に用いられうることが理解される。機能的等価物は、データベース等を検索することによって、見出すことができる。本明細書において「検索」とは、電子的にまたは生物学的あるいは他の方法により、ある核酸塩基配列を利用して、特定の機能および/または性質を有する他の核酸塩基配列を見出すことをいう。電子的な検索としては、BLAST(Altschul et al.,J.Mol.Biol.215:403-410(1990))、FASTA(Pearson & Lipman, Proc.Natl.Acad.Sci.,USA 85:2444-2448(1988))、Smith and Waterman法(Smith and Waterman,J.Mol.Biol.147:195-197(1981))、およびNeedleman and Wunsch法(Needleman and Wunsch,J.Mol.Biol.48:443-453(1970))などが挙げられるがそれらに限定されない。生物学的な検索としては、ストリンジェントハイブリダイゼーション、ゲノムDNAをナイロンメンブレン等に貼り付けたマクロアレイまたはガラス板に貼り付けたマイクロアレイ(マイクロアレイアッセイ)、PCRおよびin situハイブリダイゼーションなどが挙げられるがそれらに限定されない。本明細書において、本開示において使用される遺伝子には、このような電子的検索、生物学的検索によって同定された対応遺伝子も含まれるべきであることが意図される。 In the present specification, the "functional equivalent" means an arbitrary entity having the same target function but a different structure with respect to the target entity. Therefore, the functional equivalent of the "esterase" of the present disclosure is not the esterase itself of the present disclosure, but a variant or a variant thereof (for example, an amino acid sequence variant), and the biological equivalent of the esterase. Those having an action and those capable of being transformed into a variant or a variant having a biological action of the esterase at the time of action (for example, a nucleic acid encoding the variant or the variant, and a nucleic acid thereof). It is understood that vectors containing nucleic acids, including cells, etc.) are included. It is understood that in the present disclosure, functional equivalents of esterases can be used in the same manner as esterases, without special mention. Functional equivalents can be found by searching databases and the like. As used herein, the term "search" refers to finding another nucleobase sequence having a specific function and / or property by utilizing one nucleobase sequence electronically, biologically, or by some other method. Say. Electronic searches include BLAST (Altschul et al., J.Mol.Biol. 215: 403-410 (1990)), FASTA (Pearson & Lipman, Proc.Natl.Acad.Sci., USA 85: 2444- 2448 (1988)), Smith and Waterman method (Smith and Waterman, J.Mol.Biol.147: 195-197 (1981)), and Needleman and Wunsch method (Needleman and Wunsch, J.Mol.Biol.48: 443). -453 (1970)), but not limited to them. Biological searches include stringent hybridization, macroarrays in which genomic DNA is attached to a nylon membrane or the like, or microarrays (microarray assays) in which genomic DNA is attached to a glass plate, PCR and in situ hybridization, and the like. Not limited to. As used herein, it is intended that the genes used in the present disclosure should also include corresponding genes identified by such electronic and biological searches.
 本開示の機能的等価物としては、アミノ酸配列において、1もしくは複数個のアミノ酸の挿入、置換もしくは欠失、またはその一方もしくは両末端への付加されたものを用いることができる。本明細書において、「アミノ酸配列において、1もしくは複数個のアミノ酸の挿入、置換もしくは欠失、またはその一方もしくは両末端への付加」とは、部位特異的突然変異誘発法等の周知の技術的方法により、あるいは天然の変異により、天然に生じ得る程度の複数個の数のアミノ酸の置換等により改変がなされていることを意味する。改変アミノ酸配列は、例えば1~30個、好ましくは1~20個、より好ましくは1~9個、さらに好ましくは1~5個、特に好ましくは1~2個のアミノ酸の挿入、置換、もしくは欠失、またはその一方もしくは両末端への付加がなされたものであることができる。改変アミノ酸配列は、好ましくは、そのアミノ酸配列が、配列番号2、4、6、8、10、12、14、16、18、20または22のアミノ酸配列において1または複数個(好ましくは1もしくは複数個または1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19もしくは20個)の保存的置換を有するアミノ酸配列であってもよい。ここで「保存的置換」とは、タンパク質の機能を実質的に改変しないように、1または複数個のアミノ酸残基を、別の化学的に類似したアミノ酸残基で置換えることを意味する。例えば、ある疎水性残基を別の疎水性残基によって置換する場合、ある極性残基を同じ電荷を有する別の極性残基によって置換する場合などが挙げられる。このような置換を行うことができる機能的に類似のアミノ酸は、アミノ酸毎に当該分野において公知である。具体例を挙げると、非極性(疎水性)アミノ酸としては、アラニン、バリン、イソロイシン、ロイシン、プロリン、トリプトファン、フェニルアラニン、メチオニンなどが挙げられる。極性(中性)アミノ酸としては、グリシン、セリン、スレオニン、チロシン、グルタミン、アスパラギン、システインなどが挙げられる。陽電荷をもつ(塩基性)アミノ酸としては、アルギニン、ヒスチジン、リジンなどが挙げられる。また、負電荷をもつ(酸性)アミノ酸としては、アスパラギン酸、グルタミン酸などが挙げられる。 As the functional equivalent of the present disclosure, one or more amino acids inserted, substituted or deleted, or added to one or both ends of the amino acid sequence can be used. In the present specification, "insertion, substitution or deletion of one or more amino acids in an amino acid sequence, or addition to one or both ends" is a well-known technical technique such as a site-specific mutagenesis method. It means that the modification has been made by a method or by a natural mutation, such as by substituting a plurality of amino acids that can occur naturally. The modified amino acid sequence includes, for example, 1 to 30, preferably 1 to 20, more preferably 1 to 9, still more preferably 1 to 5, and particularly preferably 1 to 2 amino acids inserted, substituted, or missing. It can be lost, or added to one or both ends. The modified amino acid sequence preferably has one or more (preferably one or more) amino acid sequences in the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22. Amino acids with conservative substitutions of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20) It may be an array. As used herein, "conservative substitution" means substituting one or more amino acid residues with another chemically similar amino acid residue so as not to substantially alter the function of the protein. For example, there is a case where one hydrophobic residue is replaced with another hydrophobic residue, a case where one polar residue is replaced with another polar residue having the same charge, and the like. Functionally similar amino acids capable of making such substitutions are known in the art for each amino acid. Specific examples include non-polar (hydrophobic) amino acids such as alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine. Examples of polar (neutral) amino acids include glycine, serine, threonine, tyrosine, glutamine, asparagine, and cysteine. Examples of positively charged (basic) amino acids include arginine, histidine, and lysine. Examples of negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
 本明細書において「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、酵素や油脂分解剤、緩衝液、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましくは、提供される部分(例えば、酵素や油脂分解剤)をどのように使用するか、あるいは、試薬あるいは使用後の廃液をどのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書においてキットが試薬キットとして使用される場合、キットには、通常、酵素や油脂分解剤等の使い方などを記載した指示書などが含まれる。 In the present specification, the "kit" usually refers to a unit in which parts to be provided (for example, an enzyme, a fat-decomposing agent, a buffer solution, an instruction manual, etc.) are provided by dividing into two or more sections. The form of this kit is preferred when the purpose is to provide a composition that should not be mixed and provided for stability and the like, but is preferably mixed and used immediately before use. Such a kit preferably describes how to use the provided portion (eg, enzyme or oil degrading agent) or how to treat the reagent or waste liquid after use. Or it is advantageous to have instructions. When the kit is used as a reagent kit in the present specification, the kit usually includes an instruction sheet or the like describing how to use an enzyme, a fat-decomposing agent, or the like.
 本明細書において「指示書」は、本開示を使用する方法を使用者に対する説明を記載したものである。この指示書は、本開示のポリペプチドやポリヌクレオチド、細胞等の使用方法を指示する文言が記載されている。この指示書は、必要な場合は、本開示が実施される国の監督官庁(例えば、日本であれば厚生労働省または農林水産省等、米国であれば食品医薬品局(FDA)、農務省(USDA)など)が規定した様式に従って作成され、その監督官庁により承認を受けた旨が明記される。指示書は、紙媒体で提供され得るが、それに限定されず、例えば、電子媒体(例えば、インターネットで提供されるホームページ、電子メール)のような形態でも提供され得る。 In the present specification, the "instruction" describes the method for using the present disclosure to the user. This instruction sheet contains words indicating how to use the polypeptides, polynucleotides, cells, etc. of the present disclosure. If necessary, this instruction may be provided by the regulatory agency of the country in which this disclosure is implemented (eg, Ministry of Health, Labor and Welfare or Ministry of Agriculture, Forestry and Fisheries in Japan, Food and Drug Administration (FDA), Department of Agriculture (USDA) in the United States. ) Etc.), and it is clearly stated that it has been approved by the regulatory agency. Instructions may be provided in paper media, but are not limited to, and may also be provided in the form of, for example, electronic media (eg, homepages provided on the Internet, email).
 (好ましい実施形態)
 以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、本開示の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
(Preferable embodiment)
The preferred embodiments of the present disclosure will be described below. It is understood that the embodiments provided below are provided for a better understanding of the present disclosure and that the scope of the present disclosure should not be limited to the following description. Therefore, it is clear that a person skilled in the art can make appropriate modifications within the scope of the present disclosure in consideration of the description in the present specification. It is also understood that the following embodiments of the present disclosure may be used alone or in combination.
 (酵素)
 1つの局面において、本開示は、新規のポリペプチドおよびこれをコードする核酸を提供する。このポリペプチドは、代表的にエステラーゼ活性を有する。このポリペプチドは、一つの実施形態において、リパーゼ活性を有する。本開示のポリペプチドは、従来知られる酵素とは異なる顕著な特性を有する。
(enzyme)
In one aspect, the present disclosure provides a novel polypeptide and a nucleic acid encoding it. This polypeptide typically has esterase activity. This polypeptide has lipase activity in one embodiment. The polypeptides of the present disclosure have prominent properties that differ from conventionally known enzymes.
 ある実施形態において、本開示は、代表的に、ヤロウィア リポリティカ(Yarrowia lipolytica)属KH-2株から得られる第1のエステラーゼの代表的配列、第2のエステラーゼの代表的配列、第3のエステラーゼの代表的配列、第4のエステラーゼの代表的配列、および第5のエステラーゼの代表的配列ならびにそれらの誘導体を提供する。 In certain embodiments, the present disclosure typically describes a representative sequence of a first esterase, a representative sequence of a second esterase, a third esterase, typically obtained from a KH-2 strain of the genus Yarrowia lipolytica. Provided are a representative sequence, a representative sequence of a fourth esterase, and a representative sequence of a fifth esterase and derivatives thereof.
 1つの局面において、本開示のポリペプチドは、第1~第4のエステラーゼ、すなわち、
(a)配列番号2、8、12または16に示すアミノ酸配列を含むポリペプチド;
(b)(a)のアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含み、生物学的活性を有するポリペプチド;
(c)(a)または(b)に示すアミノ酸配列と少なくとも70%以上の配列同一性を有し、生物学的活性を有するポリペプチド;
(d)配列番号1、7、11または15に示す塩基配列によってコードされるアミノ酸配列を含むポリペプチド;
(e)(d)に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列によってコードされ、生物学的活性を有するポリペプチド;
(f)(d)または(e)に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列によってコードされ、生物学的活性を有するポリペプチド;
(g)(d)~(f)のいずれか1つに示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列によってコードされ、かつ生物学的活性を有するポリペプチド;
(h)(d)~(g)のいずれか1つの塩基配列の対立遺伝子変異体によってコードされ、生物学的活性を有するポリペプチド;または
(i)(a)~(h)に示すアミノ酸配列の断片を含む、ポリペプチド、
である、ポリペプチドである。
In one aspect, the polypeptides of the present disclosure are the first to fourth esterases, i.e.
(A) A polypeptide containing the amino acid sequence shown in SEQ ID NO: 2, 8, 12 or 16;
(B) A polypeptide having biological activity, which comprises an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof in the amino acid sequence of (a);
(C) A polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in (a) or (b) and having biological activity;
(D) A polypeptide containing an amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1, 7, 11 or 15;
(E) In the base sequence shown in (d), a polypeptide having biological activity encoded by a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof;
(F) A polypeptide having biological activity encoded by a base sequence having at least 70% or more sequence identity with the base sequence shown in (d) or (e);
(G) Biological activity encoded by a nucleotide sequence that hybridizes under stringent conditions with a polynucleotide containing the nucleotide sequence shown in any one of (d) to (f) or a complementary sequence thereof. Polypeptide with
(H) A polypeptide having biological activity encoded by an allelic variant of any one of the base sequences of (d) to (g); or the amino acid sequence shown in (i) (a) to (h). Polypeptide, including fragments of
Is a polypeptide.
 代替的な局面において、本開示のポリペプチドは、第5のエステラーゼすなわち、
(a)配列番号22に示すアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含むポリペプチド;
(b)配列番号22に示すアミノ酸配列に示すアミノ酸配列と少なくとも70%以上の配列同一性を有するポリペプチド;
(c)配列番号21に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列によってコードされるポリペプチド;
(d)配列番号21に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列によってコードされるポリペプチド;
(e)配列番号21に示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列によってコードされるポリペプチド;
(f)配列番号21に示す塩基配列の対立遺伝子変異体によってコードされるポリペプチド;または
(g)(a)~(f)に示すアミノ酸配列の断片を含むポリペプチド
である。1つの実施形態では、本開示のポリペプチドは、配列番号22に示すアミノ酸配列からなるポリペプチドではない。1つの実施形態では、本開示のポリペプチドは、生物学的活性を有するポリペプチドである。
In an alternative aspect, the polypeptides of the present disclosure are a fifth esterase, ie.
(A) In the amino acid sequence shown in SEQ ID NO: 22, a polypeptide containing an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof;
(B) A polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in the amino acid sequence shown in SEQ ID NO: 22;
(C) In the base sequence shown in SEQ ID NO: 21, a polypeptide encoded by a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof;
(D) A polypeptide encoded by a base sequence having at least 70% or more sequence identity with the base sequence shown in SEQ ID NO: 21;
(E) A polypeptide encoded by a nucleotide sequence containing the nucleotide sequence shown in SEQ ID NO: 21 or a complementary sequence thereof and a nucleotide sequence that hybridizes under stringent conditions;
(F) A polypeptide encoded by an allelic variant of the nucleotide sequence shown in SEQ ID NO: 21; or a polypeptide containing a fragment of the amino acid sequence shown in (g) (a) to (f). In one embodiment, the polypeptide of the present disclosure is not a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 22. In one embodiment, the polypeptide of the present disclosure is a polypeptide having biological activity.
 別の局面では、本開示は、新規のポリペプチドをコードする塩基配列を提供する。本開示のポリヌクレオチドは、第1~第4のエステラーゼをコードするポリヌクレオチド、すなわち、
(A)配列番号1、7、11または15に示す塩基配列を含むポリヌクレオチド;
(B)(A)に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(C)(A)または(B)に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(D)(A)~(C)のいずれか1つに示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列を含み、かつ生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(E)(A)~(D)のいずれか1つの塩基配列の対立遺伝子変異体であって、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(F)配列番号2、8、12または16に示すアミノ酸配列を含むポリペプチドをコードする、ポリヌクレオチド;
(G)(F)のアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含み、生物学的活性を有するポリペプチドをコードするポリヌクレオチド;
(H)(F)または(G)に示すアミノ酸配列と少なくとも70%以上の配列同一性を有し、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;または
(I)(F)~(H)に示す塩基配列の断片を含む、ポリヌクレオチド、
である、ポリヌクレオチドであり得る。
In another aspect, the present disclosure provides a base sequence encoding a novel polypeptide. The polynucleotides of the present disclosure are polynucleotides encoding first to fourth esterases, ie
(A) A polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 1, 7, 11 or 15;
(B) In the base sequence shown in (A), a polynucleotide comprising a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof and encoding a polypeptide having biological activity;
(C) A polynucleotide comprising a base sequence having at least 70% or more sequence identity with the base sequence shown in (A) or (B) and encoding a polypeptide having biological activity;
(D) A polynucleotide containing the base sequence shown in any one of (A) to (C) or a complementary sequence thereof, and a base sequence that hybridizes under stringent conditions, and has biological activity. A polynucleotide encoding a polypeptide having
(E) A polynucleotide that is an allelic variant of the base sequence of any one of (A) to (D) and encodes a polypeptide having biological activity;
(F) A polynucleotide encoding a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2, 8, 12 or 16;
(G) In the amino acid sequence of (F), a polynucleotide encoding a polypeptide having biological activity, which comprises an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof;
(H) A polynucleotide encoding a polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in (F) or (G) and having biological activity; or (I) (F) to A polynucleotide containing a fragment of the nucleotide sequence shown in (H),
Can be a polynucleotide.
 別の局面では、本開示は、新規のポリペプチドをコードする塩基配列を提供する。本開示のポリヌクレオチドは、第5のエステラーゼをコードするポリヌクレオチド、すなわち、
(A)配列番号21に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列を含むポリヌクレオチド;
(B)配列番号21に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(C)配列番号21に示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列を含み、かつ生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(D)配列番号21に示す塩基配列の対立遺伝子変異体であって、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
(E)配列番号22に示すアミノ酸配列を含むポリペプチドをコードする、ポリヌクレオチド;
(F)配列番号22に示すアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含み、生物学的活性を有するポリペプチドをコードするポリヌクレオチド;
(G)配列番号22に示すアミノ酸配列と少なくとも70%以上の配列同一性を有し、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;または
(H)(E)~(G)に示す塩基配列の断片を含む、ポリヌクレオチド、
である。1つの実施形態では、本開示のポリヌクレオチドは、配列番号21に示す塩基配列からなるポリヌクレオチドではない。該生物学的活性はトランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力を含む。
In another aspect, the present disclosure provides a base sequence encoding a novel polypeptide. The polynucleotides of the present disclosure are those encoding a fifth esterase, ie
(A) In the base sequence shown in SEQ ID NO: 21, a polynucleotide containing a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof;
(B) A polynucleotide comprising a base sequence having at least 70% or more sequence identity with the base sequence shown in SEQ ID NO: 21 and encoding a polypeptide having biological activity;
(C) A polynucleotide encoding a polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 21 or a complementary sequence thereof and a nucleotide sequence that hybridizes under stringent conditions and has biological activity. ;
(D) A polynucleotide that is an allelic variant of the nucleotide sequence shown in SEQ ID NO: 21 and encodes a polypeptide having biological activity;
(E) A polynucleotide encoding a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 22;
(F) A polynucleotide encoding a bioactive polypeptide containing an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof in the amino acid sequence shown in SEQ ID NO: 22;
(G) A polynucleotide encoding a polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 22 and having biological activity; or (H) (E) to (G). A polynucleotide, which contains a fragment of the nucleotide sequence shown.
Is. In one embodiment, the polynucleotides of the present disclosure are not polynucleotides consisting of the nucleotide sequence set forth in SEQ ID NO: 21. The biological activity includes the ability associated with the assimilation of trans fatty acid-containing esters, or the ability to degrade trans fatty acid-containing esters.
 一つの実施形態では、本開示のポリペプチドが有する生物学的活性は、本開示の第1、第2、第3または第4、あるいは第5のエステラーゼが有する任意の特性の少なくとも1つであり得るが、例えば、トランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力またはその両方を包含し得る。理論に束縛されることを望まないが、従来知られるYarrowia由来のエステラーゼは、トランス脂肪酸含有エステル体に対する活性は観察されておらず、少なくともその意味で、本開示のエステラーゼは、顕著な特徴を有する。 In one embodiment, the biological activity of the polypeptide of the present disclosure is at least one of any properties possessed by the first, second, third or fourth, or fifth esterase of the present disclosure. It may include, for example, the ability associated with the assimilation of trans fatty acid-containing esters, and / or the ability to decompose trans fatty acid-containing esters. Although not bound by theory, conventionally known Yarrowia-derived esterases have not been observed to be active against trans fatty acid-containing esters, and at least in that sense, the esterases of the present disclosure have distinctive features. ..
 したがって、1つの実施形態では、本開示のポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、トランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力またはその両方を有し得る。 Thus, in one embodiment, the polypeptide of the present disclosure or the polynucleotide encoded by the polynucleotide has the ability to relate to the assimilation of the trans fatty acid-containing ester, and / or to degrade the trans fatty acid-containing ester. Can have.
 他の実施形態では、本開示のポリペプチドが有する生物学的活性としては、例えば、短鎖~長鎖の脂肪酸含有エステル体の資化に関連する能力、または短鎖~長鎖の脂肪酸含有エステル体を分解する能力またはその両方も包含し得る。 In other embodiments, the biological activity of the polypeptides of the present disclosure includes, for example, the ability associated with the assimilation of short- to long-chain fatty acid-containing esters, or short- to long-chain fatty acid-containing esters. It may also include the ability to break down the body or both.
 したがって、1つの実施形態では、本開示のポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、中鎖脂肪酸含有エステル体の資化に関連する能力、または中鎖脂肪酸含有エステル体を分解する能力またはその両方を有し得る。 Thus, in one embodiment, the polypeptides or polynucleotides encoded by the disclosures are capable of relating to the assimilation of medium-chain fatty acid-containing esters, or degrading medium-chain fatty acid-containing esters, or the ability thereof. You can have both.
 1つの好ましい実施形態では、本開示のポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、15℃、あるいは10℃においてエステル体を分解する能力を有する。従来知られるYarrowia由来エステラーゼの活性が観察される温度帯は比較的高温が多く、低温での顕著な活性が観察されることは予想外であった。 In one preferred embodiment, the polypeptide of the present disclosure or the polypeptide encoded by the polynucleotide has the ability to degrade the ester at 15 ° C or 10 ° C. The temperature range in which the activity of the conventionally known Yarrowia-derived esterase is observed is relatively high, and it was unexpected that remarkable activity at low temperature is observed.
 別の好ましい実施形態では、本開示の第1のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、55~65℃、好ましくは57~63、あるいは60℃がエステル体を分解する能力の至適温度である。本開示の第2のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、35~50℃、好ましくは35~45℃、より好ましくは40℃がエステル体を分解する能力の至適温度である。本開示の第3のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、53~68℃、好ましくは60~67℃、最も好ましくは65℃がエステル体を分解する能力の至適温度である。本開示の第4のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、55~68℃、好ましくは60~67℃、最も好ましくは65℃がエステル体を分解する能力の至適温度である。本開示の第5のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、代表的には、好ましくは33~47℃、より好ましくは37~45℃、最も好ましくは40℃がエステル体を分解する能力の至適温度である。 In another preferred embodiment, the polypeptide or polynucleotide encoded by the first esterase of the present disclosure is capable of degrading an ester at 55-65 ° C, preferably 57-63, or 60 ° C. It is the optimum temperature of. The second esterase of the present disclosure, a polypeptide or a polypeptide encoded by a polynucleotide, has an optimum temperature of 35 to 50 ° C., preferably 35 to 45 ° C., more preferably 40 ° C., for its ability to decompose an ester. Is. The third esterase of the present disclosure, a polypeptide or a polypeptide encoded by a polynucleotide, has an optimum temperature of 53 to 68 ° C., preferably 60 to 67 ° C., most preferably 65 ° C., for its ability to decompose an ester. Is. The fourth esterase of the present disclosure, a polypeptide or a polypeptide encoded by a polynucleotide, has an optimum temperature of 55 to 68 ° C., preferably 60 to 67 ° C., most preferably 65 ° C. for the ability to decompose an ester. Is. The polypeptide or polypeptide encoded by the polynucleotide, which is the fifth esterase of the present disclosure, is typically an ester, preferably at 33 to 47 ° C, more preferably at 37 to 45 ° C, and most preferably at 40 ° C. Is the optimum temperature for the ability to decompose.
 1つの実施形態では、本開示の第1のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、50℃以上、55℃以上、60℃以上、65℃以上、70℃以上、あるいは75℃以上でも安定であり得、50℃以下、55℃以下、60℃以下、65℃以下、70℃以下、75℃以下、あるいは80℃以下まで安定であり得る。本開示の第1のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、好ましくは、50℃以上でも安定であり得、70℃以下まで安定であり得る。本開示の第2のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、45℃以上、50℃以上、55℃以上、あるいは60℃以上でも安定であり得、50℃以下、55℃以下、60℃以下、65℃以下、あるいは70℃以下まで安定であり得る。本開示のKH-2株由来の第2のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、好ましくは、45℃以上でも安定であり得、60℃以下まで安定であり得る。本開示の第3のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、30℃以上、40℃以上、45℃以上、50℃以上、あるいは60℃以上でも安定であり得、60℃以下、65℃以下、70℃以下、あるいは75℃以下まで安定であり得る。本開示のKH-2株由来の第3のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、好ましくは、45℃以上でも安定であり得、65℃以下まで安定であり得る。本開示の第4のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、45℃以上、50℃以上、55℃以上、あるいは60℃以上でも安定であり得、50℃以下、55℃以下、60℃以下、65℃以下、あるいは70℃以下まで安定であり得る。本開示のKH-2株由来の第4のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、好ましくは、45℃以上でも安定であり得、50℃以下まで安定であり得る。本開示のKH-2株由来の第5のエステラーゼである、ポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、好ましくは、40℃以上でも安定であり得、20℃またはそれ以下まで安定であり得る。ただし、安定とは、各温度で30分処理した後の活性が、30℃程度で処理した時と比較して、80%程度以上の活性が維持されることを言う。 In one embodiment, the polypeptide or polynucleotide encoded by the first esterase of the present disclosure is 50 ° C. or higher, 55 ° C. or higher, 60 ° C. or higher, 65 ° C. or higher, 70 ° C. or higher, or 75 ° C. or higher. It can be stable even at ° C. or higher, and can be stable up to 50 ° C. or lower, 55 ° C. or lower, 60 ° C. or lower, 65 ° C. or lower, 70 ° C. or lower, 75 ° C. or lower, or 80 ° C. or lower. The first esterase of the present disclosure, a polypeptide or a polypeptide encoded by a polynucleotide, can preferably be stable above 50 ° C. and below 70 ° C. The second esterase of the present disclosure, a polypeptide or a polypeptide encoded by a polynucleotide, can be stable at 45 ° C. or higher, 50 ° C. or higher, 55 ° C. or higher, or 60 ° C. or higher, and can be stable at 50 ° C. or higher, 55 ° C. or higher. Below, it can be stable up to 60 ° C. or lower, 65 ° C. or lower, or 70 ° C. or lower. The polypeptide or polynucleotide-encoded polypeptide, which is the second esterase derived from the KH-2 strain of the present disclosure, can preferably be stable above 45 ° C. and below 60 ° C. The third esterase of the present disclosure, a polypeptide or a polypeptide encoded by a polynucleotide, can be stable at 30 ° C. or higher, 40 ° C. or higher, 45 ° C. or higher, 50 ° C. or higher, or 60 ° C. or higher, and can be 60 ° C. or higher. Below, it can be stable up to 65 ° C. or lower, 70 ° C. or lower, or 75 ° C. or lower. The polypeptide or polynucleotide-encoded polypeptide, which is the third esterase derived from the KH-2 strain of the present disclosure, can preferably be stable above 45 ° C. and below 65 ° C. The fourth esterase of the present disclosure, a polypeptide or a polypeptide encoded by a polynucleotide, can be stable at 45 ° C. or higher, 50 ° C. or higher, 55 ° C. or higher, or 60 ° C. or higher, and can be stable at 50 ° C. or higher, 55 ° C. or higher. Below, it can be stable up to 60 ° C. or lower, 65 ° C. or lower, or 70 ° C. or lower. The polypeptide or polynucleotide-encoded polypeptide, which is the fourth esterase derived from the KH-2 strain of the present disclosure, can preferably be stable above 45 ° C. and below 50 ° C. The polypeptide or polynucleotide-encoded polypeptide, which is the fifth esterase from the KH-2 strain of the present disclosure, can preferably be stable above 40 ° C and stable below 20 ° C. .. However, "stable" means that the activity after treatment at each temperature for 30 minutes is maintained at about 80% or more as compared with the case of treatment at about 30 ° C.
 1つの具体的な実施形態では、本開示のポリペプチドまたはポリヌクレオチドがコードするポリペプチドは、ヤロウィア リポリティカ(Yarrowia lipolytica)に由来するものであってもよいが、これに限定されない。好ましい実施形態では、Yarrowia lipolytica KH-2株に由来する酵素であってもよいがこれに限定されない。 In one specific embodiment, the polypeptide of the present disclosure or the polypeptide encoded by the polynucleotide may be derived from, but is not limited to, Yarrowia lipolytica. In a preferred embodiment, the enzyme may be derived from the Yarrowia lipolytica KH-2 strain, but is not limited thereto.
 さらなる局面において、本開示は、上記のいずれかのポリペプチドまたはポリヌクレオチドを含む細胞または無細胞発現系を含む、油分解剤を提供する。 In a further aspect, the present disclosure provides an oil degrading agent comprising a cell or cell-free expression system containing any of the above polypeptides or polynucleotides.
 本開示の細胞は、本開示の第1、第2、第3、第4または第5のエステラーゼのポリペプチドを含むか、本開示の第1、第2、第3、第4または第5のエステラーゼのポリペプチドをコードするポリヌクレオチドが発現可能に組み込まれているものである。無細胞発現系は、本開示の第1、第2、第3、第4または第5のエステラーゼのポリペプチドをコードするポリヌクレオチドが発現可能に提供され、適宜の仕組みによりポリペプチドが発現し、油分解効果を発揮する。 The cells of the present disclosure contain a polypeptide of the first, second, third, fourth or fifth esterase of the present disclosure, or the first, second, third, fourth or fifth of the present disclosure. A polynucleotide encoding an esterase polypeptide is expressively incorporated. In the cell-free expression system, a polynucleotide encoding a polypeptide of the first, second, third, fourth or fifth esterase of the present disclosure is provided so as to be expressible, and the polypeptide is expressed by an appropriate mechanism. Demonstrates an oil decomposition effect.
 1つの実施形態では、上記油分解剤は、さらなる油処理成分を含む。油処理成分としては、例えば、他の酵素(例えば、エステラーゼ等)あるいは微生物を挙げることができるがこれらに限定されない。 In one embodiment, the oil decomposing agent comprises an additional oil treatment component. Examples of the oil treatment component include, but are not limited to, other enzymes (eg, esterase, etc.) or microorganisms.
 別の局面では、本開示は、本開示のポリペプチド、または本開示の細胞もしくは無細胞発現系、または油分解剤と、さらなる油処理成分とを備える、油分解剤または油脂処理のためのキットを提供する。本開示のキットに含まれる油分解剤および油処理成分は、本明細書において他の箇所に説明される任意の種類のものを任意の組合せで用いることができることが理解される。 In another aspect, the present disclosure comprises a polypeptide of the present disclosure, or a cell-free or cell-free expression system of the present disclosure, or an oil-degrading agent, and a kit for oil-decomposing agent or oil-fat treatment, comprising an additional oil-treating component. I will provide a. It is understood that the oil degrading agents and oil treatment components included in the kits of the present disclosure may be of any kind as described elsewhere herein in any combination.
 別の局面では、本開示は、本開示のポリペプチド、または本開示の細胞もしくは無細胞発現系、または本開示の油分解剤を処理対象に作用させることを包含する、油分解除去方法を提供する。本開示の油分解除去方法において、前記処理対象は、トランス脂肪酸含有エステル体を含むことが好ましいが、これに限定されない。トランス脂肪酸含有エステル体を含まない対象であっても、本開示のエステラーゼを用いる場合、非常に効率よく油分解を行うことができることが本明細書において示されている。 In another aspect, the present disclosure provides a method for removing oil decomposition, which comprises allowing the polypeptide of the present disclosure, or the cell- or cell-free expression system of the present disclosure, or the oil-degrading agent of the present disclosure to act on a treatment subject. To do. In the oil decomposition removal method of the present disclosure, the treatment target preferably includes, but is not limited to, a trans fatty acid-containing ester. It is shown herein that even a subject that does not contain a trans fatty acid-containing ester can perform oil decomposition very efficiently when the esterase of the present disclosure is used.
 別の局面では、本開示は、本開示のポリペプチド、本開示の細胞もしくは無細胞発現系、または本開示の油分解剤を含む、洗剤を提供する。 In another aspect, the disclosure provides a detergent comprising the polypeptides of the present disclosure, the cell or cell-free expression system of the present disclosure, or the oil degrading agents of the present disclosure.
 さらに別の局面では、本開示のポリペプチド、本開示の細胞もしくは無細胞発現系、または本開示の油分解剤を使用した、脂肪改変・油脂生産技術(エステル交換等)における応用を提供する。脂肪改変・油脂生産技術(エステル交換等)としては、エステル体、例えばメチルエステルやエチルエステルを生じる反応、油脂含有脂肪酸の置換反応、ジアシルグリセロールやモノアシルグリセロールの生産などが挙げられる。 In yet another aspect, an application in a fat modification / fat production technique (transesterification, etc.) using the polypeptide of the present disclosure, the cell-free or cell-free expression system of the present disclosure, or the oil-decomposing agent of the present disclosure is provided. Examples of fat modification / fat production techniques (transesterification, etc.) include reactions that produce esters such as methyl esters and ethyl esters, substitution reactions of fat-containing fatty acids, and production of diacylglycerols and monoacylglycerols.
 (酵素の生産)
 一つの実施形態では、本開示のエステラーゼは、微生物を使用する分泌生産系によって生産される。
(Enzyme production)
In one embodiment, the esterases of the present disclosure are produced by a secretory production system that uses microorganisms.
 具体的には、本開示のエステラーゼは、
(a)本開示の第1、第2、第3、第4または第5のエステラーゼの全長配列をコードする核酸分子(例えば、配列番号5、9、13、17、19またはその改変配列)をpEZZ18プラスミド(GEヘルスケア)内に遺伝子導入し、プロテインA融合組換えタンパク質として大腸菌HB101株内で発現させる工程、および
(b)大腸菌HB101株から分泌されたタンパク質をIgG Sepharose 6 Fast FlowまたはButyl Sepharose6 Fast Flowにより精製する工程
を含む方法によって生産することができる。例示的には、本開示の第1、第4および第5のエステラーゼをコードする塩基配列は、pEZZ18ベクター内のXbaIおよびKpnIサイトに挿入され、第2のエステラーゼをコードする塩基配列は、PstIおよびKpnIサイトに挿入され、第3のエステラーゼをコードする塩基配列は、EcoRIおよびXbaIサイトに挿入される。上記の大腸菌を使用した分泌生産系の他にも、本開示のエステラーゼ組換えタンパク質は、Corynebacterium glutamicumを使用するCORYNEX(登録商標)システム(味の素)、Pichia pastoris発現系(ThermoFisher)、昆虫細胞を使用するバキュロウイルス発現系(ThermoFisher)、麹菌を使用するタンパク質分泌発現系(大関)などの発現系によって生産することができる。この微生物を使用するエステラーゼの生産方法において、エステラーゼを発現させる方法、エステラーゼを発現させる宿主、宿主から分泌されたエステラーゼの精製方法等の詳細な条件は、当業者によって適宜調整される。さらに、本開示のエステラーゼは、微生物の分泌生産系以外にも、菌体内発現系、無細胞発現系等の種々の発現系を使用して発現させることもできる。
Specifically, the esterases of the present disclosure are:
(A) Nucleic acid molecules encoding the full-length sequences of the first, second, third, fourth or fifth esterases of the present disclosure (eg, SEQ ID NOs: 5, 9, 13, 17, 19 or modified sequences thereof). Steps of gene transfer into a pEZZ18 plasmid (GE Healthcare) and expression in Escherichia coli HB101 strain as protein A fusion recombinant protein, and (b) IgG Sepharose 6 Fast Flow or Butyl Sepharose 6 It can be produced by a method that includes a step of purifying with Fast Flow. Illustratively, the nucleotide sequences encoding the first, fourth and fifth esterases of the present disclosure are inserted into the XbaI and KpnI sites within the pEZZ18 vector, and the nucleotide sequences encoding the second esterase are PstI and The nucleotide sequence inserted into the KpnI site and encoding the third esterase is inserted into the EcoRI and XbaI sites. In addition to the above-mentioned secretory production system using Escherichia coli, the esterase recombinant protein of the present disclosure uses a CORYNEX® system (Ajinomoto) using Corynebacterium glutamicum, a Pichia pastoris expression system (ThermoFisher), and insect cells. It can be produced by an expression system such as a baculovirus expression system (ThermoFisher) or a protein secretion expression system using Aspergillus oryzae (Ozeki). In the method for producing esterase using this microorganism, detailed conditions such as a method for expressing esterase, a host for expressing esterase, and a method for purifying esterase secreted from the host are appropriately adjusted by those skilled in the art. Further, the esterase of the present disclosure can be expressed by using various expression systems such as an intracellular expression system and a cell-free expression system in addition to the secretory production system of microorganisms.
 代替的に、本開示のエステラーゼは、
(a)配列番号1、3、5、7、9、11、13、15、17、19または21に示す塩基配列または他の基本となる塩基配列に変異を導入し、配列番号1、3、5、7、9、11、13、15、17、19または21に示す塩基配列または他の基本となる塩基配列の改変配列を得る工程、
(b)上記改変配列を適宜、プラスミド内に遺伝子導入し、(必要に応じて、精製を容易にするタグ配列(例えば、プロテインAタグ)等と融合した)組換えタンパク質として、適切な宿主(例えば、大腸菌HB101株)内で発現させる工程、および
(c)宿主において生成されたタンパク質を、適切な分離手法(例えば、IgG Sepharose 6 Fast FlowまたはButyl Sepharose6 Fast Flowなどのクロマトグラフィー等)により精製する工程
を含む方法によって生産することができる。例示的には、本開示の配列番号1、3、5、7、9、11、13、15、17、19または21に示す塩基配列の改変体は、pEZZ18ベクター内の前出の制限酵素部位に挿入される。配列番号1、3、5、7、9、11、13、15、17、19または21に示す塩基配列に変異を導入する工程は、慣用される部分特異的変異導入法、突然変異誘発法、もしくはエラープローンPCRを用いた分子進化的手法等、または市販のキットを使用して、適宜実施される。
Alternatively, the esterases of the present disclosure are:
(A) Mutations are introduced into the nucleotide sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 or other basic nucleotide sequences, and SEQ ID NOs: 1, 3, 3, A step of obtaining a modified sequence of the base sequence shown in 5, 7, 9, 11, 13, 15, 17, 19 or 21 or another basic base sequence.
(B) A suitable host as a recombinant protein (if necessary, fused with a tag sequence (for example, protein A tag) that facilitates purification) by introducing the above-mentioned modified sequence into a plasmid as appropriate. For example, the step of expressing in Escherichia coli HB101 strain) and (c) the protein produced in the host are purified by an appropriate separation method (for example, chromatography such as IgG Sepharose 6 Fast Flow or Butyl Sepharose 6 Fast Flow). It can be produced by a method involving steps. Illustratively, the variants of the nucleotide sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 of the present disclosure are the above-mentioned restriction enzyme sites in the pEZZ18 vector. Is inserted into. The step of introducing a mutation into the base sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 is a commonly used partial-specific mutagenesis method, mutagenesis method. Alternatively, it is appropriately carried out by using a molecular evolution method using error prone PCR or a commercially available kit.
 代替的には、本開示のエステラーゼは、一例として、ヤロウィア リポリティカ(Yarrowia lipolytica)KH-2株から精製することができる。具体的には、本開示のエステラーゼは、
(a)KH-2株を1%(v/v)キャノーラ油を含む培地中で28℃で24時間培養する工程、
(b)(a)の培養上清を、0.45μm孔のフィルターによって滅菌し、カラム体積の約10倍量の0.5M NaClおよび2mM CaClを含む20mM Tris-HCl(pH7.0)緩衝液(以後、Tris緩衝液と記載する)によりあらかじめ平衡化させたButyl Sepharose 6 Fast Flow(GEヘルスケア)にアプライし、約1時間静置して疎水性タンパク質をカラムに吸着させる工程、
(c)(b)のカラムをカラム体積の約10倍量のTris緩衝液で洗浄し、その後カラム体積の約1倍量のNaClを含まないTris緩衝液で3回洗浄し、カラム担体に弱く結合したタンパク質を溶出させる工程、および
(d)(c)のカラムを、カラム体積の約1倍量の1%のTriton(登録商標) X-100を含むTris緩衝液で3回洗浄し、カラムに強く結合したタンパク質を溶出させる工程
を含む方法によって精製することができる。酵素の精製方法において、KH-2株の培養条件、カラムクロマトグラフィーの条件等の詳細な条件は、当業者によって適宜調整される。
Alternatively, the esterases of the present disclosure can be purified, for example, from the Yarrowia lipolytica KH-2 strain. Specifically, the esterases of the present disclosure are:
(A) A step of culturing the KH-2 strain in a medium containing 1% (v / v) canola oil at 28 ° C. for 24 hours.
(B) The culture supernatant of (a) is sterilized with a 0.45 μm pore filter and buffered with 20 mM Tris-HCl (pH 7.0) containing 0.5 M NaCl and 2 mM CaCl 2 in an amount about 10 times the column volume. A step of applying to Butyl Sepharose 6 Fast Flow (GE Healthcare) pre-equilibrium with a solution (hereinafter referred to as Tris buffer) and allowing it to stand for about 1 hour to adsorb hydrophobic proteins on a column.
(C) The column of (b) is washed with a Tris buffer solution having an amount of about 10 times the column volume, and then washed three times with a Tris buffer solution containing no NaCl in an amount of about 1 times the column volume, and is weak against the column carrier. The step of eluting the bound protein and the columns of (d) and (c) were washed 3 times with Tris buffer containing 1% Triton® X-100, which is about 1 times the volume of the column, and the columns. It can be purified by a method including a step of eluting a protein strongly bound to. In the method for purifying the enzyme, detailed conditions such as culture conditions for the KH-2 strain and column chromatography conditions are appropriately adjusted by those skilled in the art.
 (酵素の使用)
 一つの局面において、本開示のエステラーゼは、油脂の処理に有用であり、油脂を含む排水や廃液などの処理に使用することができる。ある実施形態では、本開示のエステラーゼは、排水処理において使用される。本開示のエステラーゼは、排水処理用に使用される場合、工場排水、厨房排水、住宅排水などの用途において使用され得る。
(Use of enzyme)
In one aspect, the esterases of the present disclosure are useful in the treatment of fats and oils, and can be used in the treatment of wastewater containing fats and oils, waste liquids and the like. In certain embodiments, the esterases of the present disclosure are used in wastewater treatment. When used for wastewater treatment, the esterases of the present disclosure can be used in applications such as factory wastewater, kitchen wastewater, and residential wastewater.
 この他の局面としては、本開示のエステラーゼは、洗剤として使用される。本開示のエステラーゼは、洗剤として使用される場合、洗濯用洗剤、台所用洗剤、掃除用洗剤、工業用洗剤などの用途において使用され得る。本開示のエステラーゼを含む洗剤は、パイプクリーナーなどの排水溝洗剤に特に有用である。 In another aspect, the esterase of the present disclosure is used as a detergent. When used as a detergent, the esterases of the present disclosure can be used in applications such as laundry detergents, kitchen detergents, cleaning detergents, and industrial detergents. The detergents containing esterases of the present disclosure are particularly useful for drain cleaners such as pipe cleaners.
 他の局面では、本開示のエステラーゼは、脂肪改変・油脂生産技術において使用される。本開示のエステラーゼは、脂肪改変・油脂生産技術において使用される場合、食品用、工業用、燃料用などの用途において使用され得る。 In other aspects, the esterases of the present disclosure are used in fat modification and fat production techniques. When used in fat modification / fat production technology, the esterases of the present disclosure can be used in applications such as food, industrial, and fuel.
 他の局面では、本開示のエステラーゼは、環境汚染対策として使用され得る。本開示のエステラーゼは、環境汚染対策において使用される場合、油による土壌汚染、地下水汚染、海洋汚染などでの汚染物質の除去に使用され得る。 In other aspects, the esterases of the present disclosure can be used as an environmental pollution control measure. When used in environmental pollution control, the esterases of the present disclosure can be used to remove pollutants in soil pollution, groundwater pollution, marine pollution, etc. by oil.
 他の局面では、本開示のエステラーゼは、廃棄物処理および堆肥化において使用される。本開示のエステラーゼは、廃棄物処理および堆肥化において使用される場合、消滅型を含む生ごみ処理、コンポスト化、農産物・食品廃棄物の飼料化、加圧浮上分離装置やグリーストラップから出る油性汚泥の減容化などの用途において使用され得る。 In other aspects, the esterases of the present disclosure are used in waste treatment and composting. When used in waste treatment and composting, the esterases of the present disclosure include food waste treatment including annihilation type, composting, feed conversion of agricultural products and food waste, oily sludge from pressurized levitation separators and grease traps. It can be used in applications such as volume reduction.
 他の局面では、本開示のエステラーゼは、医薬品として使用される。本開示のエステラーゼは、医薬品として使用される場合、消化剤、脂肪分解促進剤などの用途において使用され得る。 In other aspects, the esterases of the present disclosure are used as pharmaceuticals. When used as a pharmaceutical product, the esterases of the present disclosure can be used in applications such as digestive agents and lipolysis promoters.
 他の局面では、本開示のエステラーゼは、化粧品として使用される。本開示のエステラーゼは、化粧品として使用される場合、脂性肌を改善、予防または処置するための化粧品などの用途において使用され得る。 In other aspects, the esterases of the present disclosure are used as cosmetics. When used as cosmetics, the esterases of the present disclosure can be used in applications such as cosmetics for improving, preventing or treating oily skin.
 本開示のエステラーゼが各種用途で使用される場合、単離された酵素を含む成分として使用してもよく、微生物自体を含む成分として使用してもよく、当業者は適宜、適切な形態で本開示のエステラーゼを使用することができる。 When the esterase of the present disclosure is used for various purposes, it may be used as a component containing an isolated enzyme or as a component containing the microorganism itself, and those skilled in the art will appropriately use the present invention in an appropriate form. The disclosed esterases can be used.
 (一般技術)
 本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Savli,H., Karadenizli,A., Kolayli,F., Gundes,S., Ozbek,U., Vahaboglu,H. 2003. Expression stability of six housekeeping genes:A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J.Med.Microbiol. 52:403-408.、Marie-Ange Teste, Manon Duquenne, Jean M Francois and Jean-Luc Parrou 2009. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Molecular Biology 10:99、石井誠治、奥村弘、松原チヨ、二宮扶実、吉岡浩、2004年、「熱感応性ポリマーを用いた水中油分の簡易測定方法」Vol 46、No.12、「用水と排水」などに記載されており、これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
(General technology)
The molecular biological, biochemical, and microbiological methods used herein are well known and commonly used in the art, eg, Savli, H., Karadenizli, A., Kolayli, F., Gundes, S., Ozbek, U., Vahaboglu, H. 2003. Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J.Med.Microbiol 52: 403-408., Marie-Ange Teste, Manon Duquenne, Jean M Francois and Jean-Luc Parrou 2009. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Molecular Biology 10: 99, Seiji Ishii, Hiroshi Okumura, Chiyo Matsubara, Fumi Ninomiya, Hiroshi Yoshioka, 2004, "Simple measurement method of oil in water using heat-sensitive polymer" Vol 46, No.12, "Water and drainage", etc. These have been incorporated herein by reference in their relevant parts (which may be all).
 (注記)
 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値の範囲内」と明記した場合、その範囲には2つの値自体も含む。
(Note)
As used herein, "or" is used when "at least one" of the matters listed in the text can be adopted. The same applies to "or". When the specification "within the range of two values" is specified in the present specification, the range also includes the two values themselves.
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 References such as scientific literature, patents, and patent applications cited herein are incorporated herein by reference in their entirety to the same extent as they are specifically described.
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。 The present disclosure has been described above by showing preferred embodiments for ease of understanding. Hereinafter, the present disclosure will be described based on examples, but the above description and the following examples are provided for purposes of illustration only and not for the purpose of limiting the present invention. Therefore, the scope of the present invention is not limited to the embodiments and examples specifically described in the present specification, but is limited only by the claims.
 以下に実施例を記載する。以下の実施例で用いる生物の取り扱いは、必要な場合、名古屋大学や監督官庁およびカルタヘナ法において規定される基準を遵守した。試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma-Aldrich、富士フイルム和光純薬、ナカライテスク、R&DSystems、USCN Life Science INC、Thermo Fisher Scientific、関東化学、フナコシ、東京化成、Merck等)の同等品でも代用可能である。また、特に記述がない限り、各種油脂や脂肪酸等の培地への添加濃度は、培地中での該物質の最終濃度を指し、パーセント表記については、油脂や脂肪酸が液体の性状のものは容量/容量(v/v%)で、固体の性状のものは重量/容量(w/v%)のことを表している。 Examples are described below. The handling of organisms used in the following examples complied with the standards stipulated by Nagoya University, regulatory agencies and the Cartagena Law, if necessary. Specifically, the reagents described in the examples were used, but other manufacturers (Sigma-Aldrich, Fujifilm Wako Pure Chemical Industries, Inc., Nacalai Tesque, R & D Systems, USCN Life Science INC, Thermo Fisher Scientific, Funakoshi , Tokyo Kasei, Merck, etc.) can be substituted. Unless otherwise specified, the concentration of various fats and fatty acids added to the medium refers to the final concentration of the substance in the medium, and the percentage notation indicates the volume / volume of the liquid fats and fatty acids. In terms of volume (v / v%), solid properties represent weight / volume (w / v%).
 (実施例1:KH-2株由来のエステラーゼをコードする遺伝子およびアミノ酸配列の要約)
 本実施例では、本開示のエステラーゼをコードする遺伝子およびアミノ酸配列の要約を示す。
(Example 1: Summary of gene and amino acid sequence encoding esterase derived from KH-2 strain)
This example provides a summary of the genes and amino acid sequences encoding the esterases of the present disclosure.
 (実験手法)
 KH-2株の全ゲノムシーケンスを行った。第1のエステラーゼをコードする遺伝子(遺伝子番号G4021)、第2のエステラーゼをコードする遺伝子(遺伝子番号G2944)、第3のエステラーゼをコードする遺伝子(遺伝子番号G2601)、第4のエステラーゼをコードする遺伝子(遺伝子番号G5971)および第5のエステラーゼをコードする遺伝子(遺伝子番号G3702)の推定された機能、シグナルペプチド(SP)の有無、および遺伝子産物の推定分子量を示す(図1)。
(Experimental method)
The whole genome sequence of the KH-2 strain was performed. The gene encoding the first esterase (gene number G4021), the gene encoding the second esterase (gene number G2944), the gene encoding the third esterase (gene number G2601), the gene encoding the fourth esterase The estimated function of (gene number G5791) and the gene encoding the fifth esterase (gene number G3702), the presence or absence of the signal peptide (SP), and the estimated molecular weight of the gene product are shown (FIG. 1).
 (結果)
 実施例1において見出された第1、第2、第3、第4および第5のエステラーゼは、それぞれコレステロールエステラーゼ活性、トリグリセロールリパーゼ活性、パタチンおよびホスホリパーゼ活性、パタチンおよびホスホリパーゼ活性、ならびにトリグリセロールリパーゼ活性を有することが推定された。第1、第2、第3、第4および第5のエステラーゼは、いずれもシグナルペプチド(SP)配列を有することが推定され、それぞれの分子量は、63.5kDa、61kDa、62.9kDa、69.6kDa、および36.7kDaであると推定された。
(result)
The first, second, third, fourth and fifth esterases found in Example 1 are cholesterol esterase activity, triglycerol lipase activity, patatin and phospholipase activity, patatin and phospholipase activity, and triglycerol lipase, respectively. It was presumed to have activity. The first, second, third, fourth and fifth esterases are all presumed to have a signal peptide (SP) sequence, and their molecular weights are 63.5 kDa, 61 kDa, 62.9 kDa, 69. It was estimated to be 6 kDa and 36.7 kDa.
 (実施例2:KH-2株におけるエステラーゼ遺伝子の発現解析)
 本実施例では、実施例1において同定された5種類のエステラーゼ遺伝子の発現を解析した。
(Example 2: Expression analysis of esterase gene in KH-2 strain)
In this example, the expression of the five esterase genes identified in Example 1 was analyzed.
 (実験手法)
 KH-2株をLB培地中で一晩培養し、培養物をTBS緩衝液(137mM NaCl, 2.68mM KCl, 25mM Tris、pH7.4)で2回洗浄し、LB培地を除去した。洗浄したKH-2株を、BS培地3L中に体積比1%のキャノーラ油を添加し、終濃度OD660=0.05となるように植菌し、15℃でファーメンター培養を行った。培養後24時間、48時間および72時間の培養物から、ハイピュアRNAアイソレーションキットを使用して全RNAを抽出した。
 200ngの全RNAを鋳型とし、PrimeScriptTM RT reagent Kit with gDNA Eraser Perfect Real Time(タカラバイオ社)を使用して、ゲノムDNAを除去し、cDNAを合成した。cDNAは、2倍量の純水を添加し、希釈して使用した。各エステラーゼをコードする遺伝子に特異的な合成プライマーを使用して、Applied Biosystems(登録商標) StepOnePlusTM (Applied Biosystems)により、定量リアルタイムRT-PCRを行った。PCR反応は、PowerUpTM SYBR(登録商標)Green Master Mix(Thermo Fisher Scientific)(10μl)、各プライマー(終濃度0.5μM)、cDNA(1μl)を含む20μl溶液中で実施した。PCR反応は、95℃で20秒間の変性を1サイクル行った後、95℃で1秒間、60℃で20秒間のサイクルを40回反復するプログラムで行った。発現レベルは、1,2-mannosyltransferase(alg9)の発現レベルで正規化した。データは、溶融曲線が単一のピークを有することを確認した後、比較Ct法(ΔΔCt法)により解析した。油脂を含まないLB培地で培養した場合に発現した各エステラーゼ遺伝子の発現レベルを対照として1に設定したときの、第1、第2、第3、第4および第5のエステラーゼをコードする遺伝子の発現レベルを、相対的な発現レベルを算出した。
(Experimental method)
The KH-2 strain was cultured overnight in LB medium, and the culture was washed twice with TBS buffer (137 mM NaCl, 2.68 mM KCl, 25 mM Tris, pH 7.4) to remove the LB medium. The washed KH-2 strain was inoculated into 3 L of BS medium by adding canola oil having a volume ratio of 1% to a final concentration of OD 660 = 0.05, and subjected to fermenter culture at 15 ° C. Total RNA was extracted from the cultures 24 hours, 48 hours and 72 hours after culture using the Hypure RNA Isolation Kit.
Using 200 ng of total RNA as a template, genomic DNA was removed and cDNA was synthesized using PrimeScript TM RT reagent Kit with gDNA Laser Perfect Real Time (Takara Bio Inc.). The cDNA was used by adding twice the amount of pure water and diluting it. Quantitative real-time RT-PCR was performed by Applied Biosystems® StepOnePlus TM (Applied Biosystems) using synthetic primers specific for each esterase-encoding gene. The PCR reaction was performed in a 20 μl solution containing PowerUp TM SYBR® Green Master Mix (Thermo Fisher Scientific) (10 μl), each primer (final concentration 0.5 μM), and cDNA (1 μl). The PCR reaction was carried out by a program in which one cycle of denaturation at 95 ° C. for 20 seconds was followed by a cycle of 95 ° C. for 1 second and 60 ° C. for 20 seconds repeated 40 times. The expression level was normalized by the expression level of 1,2-manosyltransphase (arg9). The data were analyzed by the comparative Ct method (ΔΔCt method) after confirming that the melting curve had a single peak. Genes encoding the first, second, third, fourth and fifth esterases when the expression level of each esterase gene expressed when cultured in LB medium containing no fat was set to 1 as a control. The expression level was calculated as a relative expression level.
 (結果)
 KH-2株に炭素源として油脂を与えることによって、24時間の時点で4種類のエステラーゼ(第1のエステラーゼの代表的配列のもの、第2のエステラーゼの代表的配列のもの、第3のエステラーゼの代表的配列のものおよび第4のエステラーゼの代表的配列のもの)をコードする遺伝子の発現誘導が認められた。これらのエステラーゼは、培養後72時間においても、発現誘導が認められた。これに対し、第5のエステラーゼをコードする遺伝子は、発現量はLB培地での培養と同等であり、この遺伝子は炭素源によらずに恒常発現していることが示唆された。
(result)
By feeding the KH-2 strain with fat and oil as a carbon source, four types of esterases (a representative sequence of the first esterase, a representative sequence of the second esterase, and a third esterase) at 24 hours. Induction of expression of the gene encoding the representative sequence of the above and the representative sequence of the fourth esterase) was observed. Expression induction of these esterases was observed even 72 hours after culturing. On the other hand, the expression level of the gene encoding the fifth esterase was equivalent to that obtained by culturing in LB medium, suggesting that this gene is constitutively expressed regardless of the carbon source.
 (実施例3:第1、第2、第3、第4および第5のエステラーゼの組換え大腸菌による生産) (Example 3: Production of first, second, third, fourth and fifth esterases by recombinant Escherichia coli)
 (実験手法)
 本実施例では、第1、第2、第3、第4および第5のエステラーゼの代表的配列のものの組換えタンパク質を大腸菌の菌体内で発現させるために、pEZZ18 Protein A Gene Fusion Vectorシステム(GEヘルスケア)を使用した。第1、第2、第3、第4および第5のエステラーゼの代表的配列のものをコードする遺伝子の塩基配列を、それぞれPrimestarMaxにより増幅し、増幅された導入遺伝子をpEZZ18ベクター内のXbaIおよびKpnIサイト(第1、第4および第5のエステラーゼ)、PstIおよびKpnIサイト(第2のエステラーゼ)、EcoRIおよびXbaIサイト(第3のエステラーゼ)に挿入した。導入遺伝子を含む大腸菌株を、アンピシリンを含むLB培地200ml中で、37℃で48時間培養し、その後42℃で3時間培養した。遠心分離によって菌体を除去し、組換えタンパク質を平衡化したButyl Sepharose6 Fast Flowカラムに吸着させた。その後組換えタンパク質を、2mM CaClおよび0.5% Triton(登録商標) X-100を含む20mM Tris-HCl(pH7.0)溶出緩衝液により溶出した。
(Experimental method)
In this example, the pEZZ18 Protein A Gene Fusion Vector System (GE) is used to express recombinant proteins of representative sequences of the first, second, third, fourth and fifth esterases in E. coli cells. Healthcare) was used. The nucleotide sequences of the genes encoding the representative sequences of the first, second, third, fourth and fifth esterases are amplified by PrimestarMax, respectively, and the amplified transgenes are XbaI and KpnI in the pEZZ18 vector. It was inserted into sites (first, fourth and fifth esterases), PstI and KpnI sites (second esterases), EcoRI and XbaI sites (third esterases). The E. coli strain containing the transgene was cultured in 200 ml of LB medium containing ampicillin at 37 ° C. for 48 hours and then at 42 ° C. for 3 hours. The cells were removed by centrifugation and the recombinant protein was adsorbed on an equilibrated Butyl Sepharose6 Fast Flow column. The recombinant protein was then eluted with 20 mM Tris-HCl (pH 7.0) elution buffer containing 2 mM CaCl 2 and 0.5% Triton® X-100.
 (実施例4:至適温度、熱安定性、至適pHおよびpH安定性の測定)
 本実施例では、組換え大腸菌に生産させ、粗精製された第1、第2、第3および第4のエステラーゼの代表的配列のものの至適温度、熱安定性、至適pHおよびpH安定性を示す。
(Example 4: Measurement of optimum temperature, thermal stability, optimum pH and pH stability)
In this example, the optimum temperature, thermal stability, optimum pH and pH stability of the representative sequences of the first, second, third and fourth esterases produced by recombinant Escherichia coli and crudely purified. Is shown.
 第1、第2、第3および第4の組換えエステラーゼの代表的配列のものを発現する大腸菌を、ファーメンターを使用して1500mlのLB培地中で48時間培養した。培養上清に等量のアセトンを添加し、4℃で24時間静置した。その後、遠心分離を行いペレットを得て、ペレットを1mlの緩衝液(20 mM Tris-HCl (pH7.4), 2mM CaCl2 に0.5%のTriton(登録商標) X-100)に懸濁することによって得られた粗精製エステラーゼを解析対象とした。(AおよびE)粗精製エステラーゼを、0℃~100℃の間の各温度に調整した緩衝液と混合し、エステラーゼ活性を測定することによって、至適温度を調べた。(BおよびF)粗精製エステラーゼを、0℃~100℃の間の各温度に調整した緩衝液と混合して30分間インキュベートした後、エステラーゼ活性を測定することによって、熱安定性を調べた。(CおよびG)粗精製エステラーゼを、酢酸緩衝液(pH3.0~5.0)、リン酸ナトリウム緩衝液(pH5.0~7.0)、Tris-HCl緩衝液(pH7.0~9.0)またはCAPS緩衝液(pH9.0~11.0)と混合し、エステラーゼ活性を測定することによって、至適pHを調べた。(DおよびH)粗精製エステラーゼを、酢酸緩衝液(pH3.0~5.0)、リン酸ナトリウム緩衝液(pH5.0~7.0)、Tris-HCl緩衝液(pH7.0~9.0)またはCAPS緩衝液(pH9.0~11.0)と混合して30分間インキュベートした後、エステラーゼ活性を測定することによって、pH安定性を調べた。 Escherichia coli expressing representative sequences of the first, second, third and fourth recombinant esterases was cultured in 1500 ml of LB medium using a fermenter for 48 hours. An equal amount of acetone was added to the culture supernatant, and the mixture was allowed to stand at 4 ° C. for 24 hours. Centrifugation is then performed to obtain pellets, which are suspended in 1 ml buffer (20 mM Tris-HCl (pH 7.4), 0.5% Triton® X-100 in 2 mM CaCl 2). The crude esterase obtained in the above was used as an analysis target. The optimum temperature was examined by mixing (A and E) crude esterase with a buffer solution adjusted to each temperature between 0 ° C. and 100 ° C. and measuring the esterase activity. The crude esterase (B and F) was mixed with a buffer adjusted to each temperature between 0 ° C. and 100 ° C. and incubated for 30 minutes, and then the esterase activity was measured to examine the thermal stability. (C and G) crudely purified esterase was used in acetate buffer (pH 3.0 to 5.0), sodium phosphate buffer (pH 5.0 to 7.0), and Tris-HCl buffer (pH 7.0 to 9.). Optimal pH was determined by mixing with 0) or CAPS buffer (pH 9.0 to 11.0) and measuring esterase activity. (D and H) crudely purified esterase was used in acetate buffer (pH 3.0 to 5.0), sodium phosphate buffer (pH 5.0 to 7.0), and Tris-HCl buffer (pH 7.0 to 9.). After mixing with 0) or CAPS buffer (pH 9.0 to 11.0) and incubating for 30 minutes, pH stability was examined by measuring esterase activity.
 (結果)
 第1のエステラーゼの代表的配列のものの至適温度は約60℃であり、約10℃~約60℃の間の温度範囲で熱安定性を示した。第1のエステラーゼの代表的配列のものの至適pHは、pH9.0であり、約pH7.5~約pH9.5のpH範囲でpH安定性を示した。第2のエステラーゼの代表的配列のものの至適温度は約40℃であり、約10℃~約50℃の間の温度範囲で熱安定性を示した。第2のエステラーゼの代表的配列のものの至適pHは、pH9.0であり、約pH7.5~約pH9.2のpH範囲でpH安定性を示した。第3のエステラーゼの代表的配列のものの至適温度は約65℃であり、約30℃~約65℃の間の温度範囲で熱安定性を示した。第3のエステラーゼの代表的配列のものの至適pHは、pH9.0であり、約pH8~約pH9.5のpH範囲でpH安定性を示した。第4のエステラーゼの代表的配列のものの至適温度は約65℃であり、約30℃~約70℃の間の温度範囲で熱安定性を示した。第4のエステラーゼの代表的配列のものの至適pHは、pH9.0であり、約pH7~約pH9.5のpH範囲でpH安定性を示した。
(result)
The optimum temperature of the representative sequence of the first esterase was about 60 ° C., and showed thermal stability in the temperature range between about 10 ° C. and about 60 ° C. The optimum pH of the representative sequence of the first esterase was pH 9.0, and showed pH stability in the pH range of about pH 7.5 to about pH 9.5. The optimum temperature of the representative sequence of the second esterase was about 40 ° C., and showed thermal stability in the temperature range between about 10 ° C. and about 50 ° C. The optimum pH of the representative sequence of the second esterase was pH 9.0, and showed pH stability in the pH range of about pH 7.5 to about pH 9.2. The optimum temperature of the representative sequence of the third esterase was about 65 ° C., and showed thermal stability in the temperature range between about 30 ° C. and about 65 ° C. The optimum pH of the representative sequence of the third esterase was pH 9.0, and showed pH stability in the pH range of about pH 8 to about pH 9.5. The optimum temperature of the representative sequence of the fourth esterase was about 65 ° C., and showed thermal stability in the temperature range between about 30 ° C. and about 70 ° C. The optimum pH of the representative sequence of the fourth esterase was pH 9.0, and showed pH stability in the pH range of about pH 7 to about pH 9.5.
 (実施例5:第1、第2、第3、第4および第5のエステラーゼとN-51032酵素の換気扇フィルター油汚れの洗浄効果)
 本実施例では、KH-2株由来の本開示の第1、第2、第3、第4および第5のエステラーゼの代表的配列のものと、Novozym51032リパーゼ(Novozymes)との、換気扇フィルターの油汚れの洗浄効果を測定した。
(Example 5: Cleaning effect of first, second, third, fourth and fifth esterase and N-51032 enzyme on ventilation fan filter oil stain)
In this example, the oil of the ventilation fan filter of the representative sequences of the first, second, third, fourth and fifth esterases of the present disclosure derived from the KH-2 strain and Novozymes 51032 lipase (Novozymes). The cleaning effect of dirt was measured.
 (実験手法)
 KH-2株由来の本開示の第1、第2、第3、第4および第5のエステラーゼの代表的配列のものは、実施例3に記載の方法に従って得た。Novozym51032リパーゼ(N-51032)は、Novozymes社から購入した。各エステラーゼまたはリパーゼを、0.25% Triton(登録商標) X-100を含む20mM Tris-HCl、2mM CaCl緩衝液(pH7.4)に溶解し、Novozym51032リパーゼについては15U/mlの濃度に、第1のエステラーゼおよび第2のエステラーゼの代表的配列のものについては0.5U/mlの濃度に、第3、第4および第5のエステラーゼの代表的配列のものについては0.1U/mlの濃度に調整した。その際、第1と第2のエステラーゼの代表的配列のものについてはパルミテート(C16)、第3、第4および第5のエステラーゼの代表的配列のものについてはブチレート(C4)の4-ニトロフェニルエステル(pNP-ester)を基質として、エステラーゼまたはリパーゼによるエステルの加水分解により生じる4-ニトロフェノールの量を410nmにおける吸光度で定量した酵素活性に基づき、酵素溶液の濃度を調整した。油汚れが沈着した換気扇フィルターを2cm角に切りプレートに入れ、各プレートに各エステラーゼまたはリパーゼの溶液を添加し、30分間浸漬させた。
(Experimental method)
Representative sequences of the first, second, third, fourth and fifth esterases of the present disclosure derived from the KH-2 strain were obtained according to the method described in Example 3. Novozyme 51032 lipase (N-51032) was purchased from Novozymes. Each esterase or lipase was dissolved in 20 mM Tris-HCl, 2 mM CaCl 2 buffer (pH 7.4) containing 0.25% Triton® X-100 to a concentration of 15 U / ml for Novozym 51032 lipase. A concentration of 0.5 U / ml for the representative sequences of the first esterase and the second esterase, and 0.1 U / ml for the representative sequences of the third, fourth and fifth esterases. Adjusted to concentration. At that time, palmitate (C16) for the representative sequences of the first and second esterases, and butyrate (C4) 4-nitrophenyl for the representative sequences of the third, fourth and fifth esterases. The concentration of the enzyme solution was adjusted based on the enzyme activity in which the amount of 4-nitrophenol produced by the hydrolysis of the ester by esterase or lipase was quantified by the absorbance at 410 nm using the ester (pNP-ester) as a substrate. A ventilation fan filter on which oil stains were deposited was cut into 2 cm squares and placed in a plate, a solution of each esterase or lipase was added to each plate, and the mixture was immersed for 30 minutes.
 (結果)
 エステラーゼまたはリパーゼ溶液に浸漬させた後の換気扇フィルターおよび浸漬させた後のエステラーゼまたはリパーゼ溶液を図4に示す。本開示の第1、第2、第3および第4のエステラーゼの代表的配列のものに浸漬させた換気扇フィルターはいずれも、Novozym51032リパーゼよりも油汚れが顕著に分解されており、第5のエステラーゼにおいても、ある程度油汚れの分解が改善されていることが分かった。
(result)
The ventilation fan filter after immersion in the esterase or lipase solution and the esterase or lipase solution after immersion are shown in FIG. All of the ventilation fan filters immersed in the representative sequences of the first, second, third and fourth esterases of the present disclosure have significantly more oil stains than Novozym 51032 lipase, and the fifth esterase. It was also found that the decomposition of oil stains was improved to some extent.
 (実施例6:本開示の第1、第2、第3、第4および第5のエステラーゼの組換えタンパク質による油脂の分解)
 本実施例では、本開示の第1、第2、第3、第4および第5のエステラーゼの組換えタンパク質によるラード、ショートニング、トリオレインおよびトリエライジンの分解を示す。
(Example 6: Decomposition of fats and oils by recombinant proteins of the first, second, third, fourth and fifth esterases of the present disclosure)
In this example, the degradation of lard, shortening, triolein and trioleidin by recombinant proteins of the first, second, third, fourth and fifth esterases of the present disclosure is shown.
 (実験手法)
 (A:第1、第2、第3、第4および第5のエステラーゼによるショートングの分解)
 実施例3の工程によって産生された各精製組換えエステラーゼを、終濃度が0.2u/mlとなるように調製した。2mlの本開示の各エステラーゼの溶液をプレートに入れ、ここに0.7gのショートニングを添加した。適宜攪拌し溶液となじませながら、28℃で24時間インキュベートした。前出の溶出緩衝液のみで処理したものを対照とした。
(Experimental method)
(A: Decomposition of shorting by first, second, third, fourth and fifth esterases)
Each purified recombinant esterase produced by the step of Example 3 was prepared so as to have a final concentration of 0.2 u / ml. 2 ml of each esterase solution of the present disclosure was placed in a plate and 0.7 g of shortening was added thereto. Incubation was carried out at 28 ° C. for 24 hours with appropriate stirring and blending with the solution. The one treated with only the above-mentioned elution buffer was used as a control.
 (B:第1、第2、第3、第4および第5のエステラーゼによるラードの分解)
 実施例3の工程によって産生された各精製組換えエステラーゼを、終濃度が0.2u/mlとなるように調製した。2mlの本開示の各エステラーゼの溶液をプレートに入れ、ここに0.5gのラードを添加した。適宜攪拌し溶液となじませながら、28℃で24時間インキュベートした。前出の溶出緩衝液のみで処理したものを対照とした。
(B: Decomposition of lard by first, second, third, fourth and fifth esterases)
Each purified recombinant esterase produced by the step of Example 3 was prepared so as to have a final concentration of 0.2 u / ml. 2 ml of each esterase solution of the present disclosure was placed in a plate and 0.5 g of lard was added thereto. Incubation was carried out at 28 ° C. for 24 hours with appropriate stirring and blending with the solution. The one treated with only the above-mentioned elution buffer was used as a control.
 (C:第1、第2、第3、第4および第5のエステラーゼによるラード、ショートニング、トリオレインおよびトリエライジンの分解)
 実施例3の工程によって産生された各精製組換えエステラーゼを、それぞれラード、ショートニング、トリオレインおよびトリエライジンと混合し、37℃で48時間処理した。処理は、各精製組換えエステラーゼ0.1mlと溶出緩衝液1mlとをチューブに入れて130rpmで振盪処理を行うことによって実施した。処理後のサンプルをシリカゲルプレートにアプライし、クロロホルム:アセトン:メタノール(96:4:2)溶液で展開した。展開後、モリブトリン酸n水和物(2.4g/60ml EtOH)により発色させることによって検出を行った。
(C: Degradation of lard, shortening, triolein and trioleidin by first, second, third, fourth and fifth esterases)
Each purified recombinant esterase produced by the step of Example 3 was mixed with lard, shortening, triolein and trioleidin, respectively, and treated at 37 ° C. for 48 hours. The treatment was carried out by placing 0.1 ml of each purified recombinant esterase and 1 ml of elution buffer in a tube and shaking the mixture at 130 rpm. The treated sample was applied to a silica gel plate and developed with a chloroform: acetone: methanol (96: 4: 2) solution. After development, detection was carried out by developing a color with molybtriic acid n-hydrate (2.4 g / 60 ml EtOH).
 (結果)
 第1、第2および第5の組換えエステラーゼの結果を図5-1に、第3および第4の組換えエステラーゼの結果を図5-2にそれぞれ示す。(A)~(C)の結果から、本開示の第1、第2、第3および第4のエステラーゼの代表的配列のものの組換えタンパク質はいずれも、ラード、ショートニング、トリオレインおよびトリエライジンの全ての油脂を分解する活性を有することが示された。したがって、本開示の第1、第2、第3および第4のエステラーゼの代表的配列のものの組換えタンパク質は、シス体のトリグリセリドであるトリオレインと、トランス体のトリグリセリドであるトリエライジンとの両方を加水分解する活性を有することが明らかとなった。さらに、ショートニングに対する分解活性が顕著に高いことが示された。さらに、これらエステラーゼの分解活性と比べると劣るものの、第5のエステラーゼの代表的配列のものの組換えタンパク質も、これらの油脂の分解活性を有することが示された。
(result)
The results of the first, second and fifth recombinant esterases are shown in FIG. 5-1 and the results of the third and fourth recombinant esterases are shown in FIG. 5-2, respectively. From the results of (A) to (C), the recombinant proteins of the representative sequences of the first, second, third and fourth esterases of the present disclosure are all of lard, shortening, triolein and trioleidin. It has been shown to have the activity of decomposing all fats and oils. Therefore, the recombinant proteins of the representative sequences of the first, second, third and fourth esterases of the present disclosure are both triolein, which is a cis triglyceride, and trioleidin, which is a trans triglyceride. It was revealed that it has an activity of hydrolyzing. Furthermore, it was shown that the decomposition activity for shortening was remarkably high. Furthermore, it was shown that the recombinant protein of the representative sequence of the fifth esterase also has the degrading activity of these fats and oils, although it is inferior to the degrading activity of these esterases.
 (実施例7:第1、第2、第3、第4および第5のエステラーゼの基質特異性の比較)
 本実施例では、本開示の第1、第2、第3、第4および第5のエステラーゼによる各基質の分解活性を比較した。
(Example 7: Comparison of substrate specificity of first, second, third, fourth and fifth esterases)
In this example, the degrading activity of each substrate by the first, second, third, fourth and fifth esterases of the present disclosure was compared.
 (実験手法)
 本開示の第1、第2、第3、第4および第5のエステラーゼの代表的配列のものは、実施例3に記載の方法に従って得た。エステラーゼ活性の測定は、5種類の脂肪酸(アセテート(C2)、ブチレート(C4)、オクタノエート(C8)、ラウレート(C12)およびパルミテート(C16))の4-ニトロフェニルエステル(pNP-ester)を基質として、エステラーゼによるエステルの加水分解により生じる4-ニトロフェノールの量を410nmにおける吸光度で定量することによって測定した。基質溶液として、0.05molの各基質と12mlの3%(v/v)Triton(登録商標) X-100水溶液を混合し、70℃で融解したものを使用した。各基質溶液と150mMのGTA緩衝液(pH7.0)および各サンプルを60μlずつ混合し、混合直後の410nmの吸光度、および混合の30分後の410nmの吸光度を測定した。そして、混合の30分後の410nmの吸光度から混合直後の410nmの吸光度を減算し、緩衝液単独を基質と混合して同条件で測定した値をさらに減算することによって、エステラーゼ活性を算出した。第5のエステラーゼの活性については、基質溶液と第5のエステラーゼとを含むサンプル溶液との混合後の410nmにおける吸光度を1分間測定することによって、エステラーゼ活性を算出した。エステラーゼ活性は、1μMの4-ニトロフェノールを遊離する酵素量を1ユニットと定義してサンプル1ml当たりのユニット数を算出し、各基質中最大の活性を示したものを100%として相対的な活性を算出した。
(Experimental method)
Representative sequences of the first, second, third, fourth and fifth esterases of the present disclosure were obtained according to the method described in Example 3. The esterase activity was measured using 4-nitrophenyl ester (pNP-ester) of five fatty acids (acetate (C2), butyrate (C4), octanoate (C8), laurate (C12) and palmitate (C16)) as substrates. , The amount of 4-nitrophenol produced by the hydrolysis of the ester by esterase was measured by quantifying the absorbance at 410 nm. As the substrate solution, 0.05 mol of each substrate was mixed with 12 ml of a 3% (v / v) Triton® X-100 aqueous solution and melted at 70 ° C. was used. Each substrate solution was mixed with 150 mM GTA buffer (pH 7.0) and 60 μl of each sample, and the absorbance at 410 nm immediately after mixing and the absorbance at 410 nm 30 minutes after mixing were measured. Then, the esterase activity was calculated by subtracting the absorbance at 410 nm immediately after mixing from the absorbance at 410 nm 30 minutes after mixing, mixing the buffer solution alone with the substrate, and further subtracting the value measured under the same conditions. Regarding the activity of the fifth esterase, the esterase activity was calculated by measuring the absorbance at 410 nm for 1 minute after mixing the substrate solution and the sample solution containing the fifth esterase. For esterase activity, the amount of enzyme that liberates 1 μM 4-nitrophenol is defined as 1 unit, the number of units per 1 ml of sample is calculated, and the relative activity is 100% with the one showing the maximum activity in each substrate as 100%. Was calculated.
 (結果)
 実施例7の結果を図6に示す。第1のエステラーゼは、オクタノエート(C8)炭素鎖を有する脂質に対するエステラーゼ活性が最も高く、ラウレート(C12)炭素鎖に対しても高いエステラーゼ活性を示した。第2のエステラーゼは、ブチレート(C4)炭素鎖を有する脂質に対するエステラーゼ活性が最も高く、オクタノエート(C8)に対しても高いエステラーゼ活性を示した。第3のエステラーゼは、ブチレート(C4)炭素鎖を有する脂質に対するエステラーゼ活性が最も高かった。第4のエステラーゼは、ブチレート(C4)炭素鎖を有する脂質に対するエステラーゼ活性が最も高く、アセテート(C2)およびオクタノエート(C8)に対しても高いエステラーゼ活性を示した。第5のエステラーゼは、ブチレート(C4)炭素鎖を有する脂質に対するエステラーゼ活性が最も高く、アセテート(C2)に対しても高いエステラーゼ活性を示した。
(result)
The results of Example 7 are shown in FIG. The first esterase had the highest esterase activity for lipids having an octanoate (C8) carbon chain, and also showed high esterase activity for laurate (C12) carbon chains. The second esterase had the highest esterase activity on lipids having a butyrate (C4) carbon chain, and also showed high esterase activity on octanoate (C8). The third esterase had the highest esterase activity on lipids having a butyrate (C4) carbon chain. The fourth esterase had the highest esterase activity on lipids having a butyrate (C4) carbon chain, and also showed high esterase activity on acetate (C2) and octanoate (C8). The fifth esterase had the highest esterase activity for lipids having a butyrate (C4) carbon chain, and also showed high esterase activity for acetate (C2).
 (実施例8:段階希釈による第1、第2、第3、第4および第5のエステラーゼによるトランス脂肪酸含有エステル体の分解活性の比較)
 本実施例では、段階希釈を行うことにより、本開示の第1、第2、第3、第4および第5のエステラーゼによるトランス脂肪酸含有エステル体の分解活性を比較した。
(Example 8: Comparison of decomposition activity of trans fatty acid-containing ester by first, second, third, fourth and fifth esterases by serial dilution)
In this example, the degrading activity of trans fatty acid-containing esters by the first, second, third, fourth and fifth esterases of the present disclosure was compared by serial dilution.
 (実験手法)
 本開示の第1、第2、第3、第4および第5のエステラーゼの代表的配列のものは、実施例3に記載の方法に従って得た。トランス脂肪酸含有エステル体の分解活性の測定は、エステル体としてトリエライジンを使用して、第1、第2、第3、第4および第5のエステラーゼの代表的配列のものを、0.01u/ml、0.001u/ml、および0.0001u/mlに段階希釈して、以下の実験条件にしたがって、薄層クロマトグラフィーによって解析した。
・エステル体の種類:トリエライジン
・反応液:20 mM Tris-HCl (pH7.0), 2mM CaCl2, 0.5% Triton(登録商標) X100
・エステル体終濃度:0.2% 
・処理方法:エッペンドルフチューブに100μlの酵素溶液を入れ、
 10x各エステル体ストックを1/10量添加した。 (0.02u/ml: NP-ブチレートを基質)
・処理温度:37℃
・処理時間:48時間
・油分抽出:半量のクロロホルムで抽出し10μlをアプライして薄層クロマトグラフィーを行った。
・展開プレート:シリカゲルコートプレート
・展開溶剤:chloroform:acetone:methanol=96:4:2
・検出:モリブトリン酸n水和物による発色 (2.4 g/60 ml EtOH)
(Experimental method)
Representative sequences of the first, second, third, fourth and fifth esterases of the present disclosure were obtained according to the method described in Example 3. For the measurement of the degrading activity of the trans fatty acid-containing ester, 0.01u / u / of the representative sequences of the first, second, third, fourth and fifth esterases using triellaidin as the ester. It was serially diluted to ml, 0.001u / ml, and 0.0001u / ml and analyzed by thin layer chromatography according to the following experimental conditions.
-Type of ester: Triellaidin-Reaction solution: 20 mM Tris-HCl (pH 7.0), 2 mM CaCl 2 , 0.5% Triton® X100
・ Ester final concentration: 0.2%
-Treatment method: Put 100 μl of enzyme solution in an Eppendorf tube and put it in.
1/10 amount of each 10x ester stock was added. (0.02u / ml: NP-butyrate as substrate)
・ Processing temperature: 37 ℃
-Treatment time: 48 hours-Oil extraction: Extraction was performed with half the amount of chloroform, and 10 μl was applied to perform thin layer chromatography.
-Development plate: Silica gel coat plate-Development solvent: chloroform: acetone: methanol = 96: 4: 2
-Detection: Color development by molybtriic acid n-hydrate (2.4 g / 60 ml EtOH)
 (結果)
 本開示の第5のエステラーゼの代表的配列のものは、0.01u/mlの濃度で48時間処理した場合は活性が認められたが、0.001u/mlの濃度で48時間処理した場合に、ほとんど完全に活性が消失した。第1、第2、第3および第4のエステラーゼの代表的配列のものは、0.001u/mlに希釈しても活性が認められた。このことから、第5のエステラーゼの代表的配列のものは、第1、第2、第3および第4のエステラーゼの代表的配列のものに対して、約1/10のトランス脂肪酸分解活性を有することが推定された。
(result)
The representative sequence of the fifth esterase of the present disclosure was found to be active when treated at a concentration of 0.01 u / ml for 48 hours, but when treated at a concentration of 0.001 u / ml for 48 hours. , Almost completely lost activity. The representative sequences of the first, second, third and fourth esterases were found to be active even when diluted to 0.001 u / ml. From this, the representative sequence of the fifth esterase has about 1/10 of the trans fatty acid degrading activity of the representative sequences of the first, second, third and fourth esterases. Was presumed.
 (実施例9:低温でのトランス脂肪酸含有エステル体の分解)
 本実施例では、本開示の第1、第2、第3および第4のエステラーゼによる、15℃でのトランス脂肪酸含有エステル体の分解活性を比較した。
(Example 9: Decomposition of trans fatty acid-containing ester at low temperature)
In this example, the degrading activity of the trans fatty acid-containing ester by the first, second, third and fourth esterases of the present disclosure at 15 ° C. was compared.
 (実験手法)
 本開示の第1、第2、第3および第4のエステラーゼの代表的配列のものは、実施例3に記載の方法に従って得た。トランス脂肪酸含有エステル体の分解活性の測定は、15℃の処理温度で、エステル体としてトリエライジンを使用して、以下の実験条件にしたがって、薄層クロマトグラフィーによって解析した。
・エステル体の種類:トリエライジン
・反応液:20 mM Tris-HCl (pH7.0), 2mM CaCl2, 0.5% Triton(登録商標) X100
・エステル体終濃度:0.2% 
・処理方法:エッペンドルフチューブに100μlの酵素溶液を入れ、
 10x各エステル体ストックを1/10量添加した。 (0.02u/ml: NP-ブチレートを基質)
・処理温度:15℃
・処理時間:72時間
・油分抽出:半量のクロロホルムで抽出し10μlをアプライして薄層クロマトグラフィーを行った。
・展開プレート:シリカゲルコートプレート
・展開溶剤:chloroform:acetone:methanol=96:4:2
・検出:モリブトリン酸n水和物による発色 (2.4 g/60 ml EtOH)
(Experimental method)
Representative sequences of the first, second, third and fourth esterases of the present disclosure were obtained according to the method described in Example 3. The decomposition activity of the trans fatty acid-containing ester was measured by thin layer chromatography at a treatment temperature of 15 ° C. using trielaidic acid as the ester according to the following experimental conditions.
-Type of ester: Triellaidin-Reaction solution: 20 mM Tris-HCl (pH 7.0), 2 mM CaCl 2 , 0.5% Triton® X100
・ Ester final concentration: 0.2%
-Treatment method: Put 100 μl of enzyme solution in an Eppendorf tube and put it in.
1/10 amount of each 10x ester stock was added. (0.02u / ml: NP-butyrate as substrate)
・ Processing temperature: 15 ℃
-Treatment time: 72 hours-Oil extraction: Extraction was performed with half the amount of chloroform, and 10 μl was applied to perform thin layer chromatography.
-Development plate: Silica gel coat plate-Development solvent: chloroform: acetone: methanol = 96: 4: 2
-Detection: Color development by molybtriic acid n-hydrate (2.4 g / 60 ml EtOH)
 (結果)
 本開示の第1、第2、第3および第4のエステラーゼの代表的配列のもののいずれのエステラーゼも、15℃でトランス脂肪酸含有エステル体を分解する活性を示した。
(result)
All of the esterases of the representative sequences of the first, second, third and fourth esterases of the present disclosure showed an activity of degrading trans fatty acid-containing esters at 15 ° C.
 (実施例10:トリオレインの改変)
 本実施例では、本開示の第1、第2、第3および第4のエステラーゼによる、トリオレインの改変(メチルエステル化)を行った。
(Example 10: Modification of triolein)
In this example, triolein was modified (methyl esterified) with the first, second, third and fourth esterases of the present disclosure.
 (実験手法)
 本開示の第1、第2、第3および第4のエステラーゼの代表的配列のものは、実施例3に記載の方法に従って得た。各エステラーゼ溶液を0.1u/mlに調整し、そこにトリオレインおよびメタノールを添加した。エステラーゼ溶液を添加していない処理も同時に行って、対照区とした。その後、各溶液を100μlずつスクリューキャップ付きチューブに分注し、37℃のインキュベーターで96時間静置した。次いで、100μlの水および50μlのクロロホルムを添加し、ボルテックスミキサーでよく攪拌した後、12,000gで5分間遠心分離した。下層のクロロホルム層を10μlロードして、展開溶媒としてヘキサン-ジエチルエーテル-酢酸(80:20:1)を使用して、薄層クロマトグラフィー解析を行った。
(Experimental method)
Representative sequences of the first, second, third and fourth esterases of the present disclosure were obtained according to the method described in Example 3. Each esterase solution was adjusted to 0.1 u / ml, to which triolein and methanol were added. Treatment without addition of esterase solution was also performed at the same time to prepare a control group. Then, 100 μl of each solution was dispensed into a tube with a screw cap and allowed to stand in an incubator at 37 ° C. for 96 hours. Then 100 μl of water and 50 μl of chloroform were added, stirred well with a vortex mixer, and then centrifuged at 12,000 g for 5 minutes. A thin layer chromatographic analysis was performed by loading 10 μl of the lower chloroform layer and using hexane-diethyl ether-acetic acid (80: 20: 1) as the developing solvent.
 (結果)
 実施例10の結果を図9に示す。第1、第2、第3および第4のエステラーゼの代表的配列のもののいずれのエステラーゼも、シス体のトリグリセリドであるトリオレインのエステル交換反応を触媒し、オレイン酸メチルエステルを生成した。
(result)
The results of Example 10 are shown in FIG. Any of the representative sequences of the first, second, third and fourth esterases catalyzed the transesterification reaction of triolein, which is a cis triglyceride, to produce oleic acid methyl ester.
 (実施例11:トランス脂肪酸の改変)
 本実施例では、本開示の第1、第2、第3および第4のエステラーゼによる、トランス脂肪酸の改変(メチルエステル化)を行った。
(Example 11: Modification of trans fatty acid)
In this example, the trans fatty acid was modified (methyl esterified) by the first, second, third and fourth esterases of the present disclosure.
 (実験手法)
 本開示の第1、第2、第3および第4のエステラーゼの代表的配列のものは、実施例3に記載の方法に従って得た。各エステラーゼ溶液は、0.1 u/mlに調整し、(A)パルミテライジン酸または(B)バクセン酸のモノマーは、0.5%となるようメタノールに溶解したストック溶液を作成した。各トランス脂肪酸ストック溶液30μlと酵素溶液70μlとをスクリューキャップ付きチューブに分注し、37℃のインキュベーターで72時間静置した。エステラーゼ溶液の代わりにBufferを使用した処理を同時に行い、対照区とした。その後、100μlの水と50μlのクロロホルムを添加し、ボルテックスミキサーでよく攪拌した後、12,000gで5分間遠心分離した。下層のクロロホルム層を5μlロードして、展開溶媒としてヘキサン-ジエチルエーテル-酢酸(80:20:1)を使用して、薄層クロマトグラフィー解析を行った。
(Experimental method)
Representative sequences of the first, second, third and fourth esterases of the present disclosure were obtained according to the method described in Example 3. Each esterase solution was adjusted to 0.1 u / ml, and a stock solution was prepared in which the monomer of (A) palmiterazic acid or (B) vaccenic acid was dissolved in methanol so as to be 0.5%. 30 μl of each trans fatty acid stock solution and 70 μl of the enzyme solution were dispensed into a tube with a screw cap and allowed to stand in an incubator at 37 ° C. for 72 hours. Treatment using Buffer instead of esterase solution was performed at the same time to prepare a control group. Then, 100 μl of water and 50 μl of chloroform were added, and the mixture was stirred well with a vortex mixer and then centrifuged at 12,000 g for 5 minutes. A thin layer chromatography analysis was performed by loading 5 μl of the lower chloroform layer and using hexane-diethyl ether-acetic acid (80: 20: 1) as the developing solvent.
 (結果)
 実施例11の結果を図10に示す。第1、第2、第3および第4のエステラーゼの代表的配列のもののいずれのエステラーゼも、トランス脂肪酸であるパルミテライジン酸およびバクセン酸のエステル交換反応を触媒し、それぞれパルミテライジン酸メチルエステルおよびバクセン酸メチルエステルを生成した。
(result)
The results of Example 11 are shown in FIG. Any esterase of the representative sequences of the first, second, third and fourth esterases catalyzes the transesterification reactions of the trans fatty acids palmiteraidic acid and baxenoic acid, respectively. And produced a methyl ester of baxenoic acid.
 (実施例12:トランス脂肪酸の改変における、第2および第5のエステラーゼとの比較)
 本実施例では、本開示の第2および第5のエステラーゼとを使用して、トランス脂肪酸の改変(メチルエステル化)を行った。
(Example 12: Comparison with the second and fifth esterases in the modification of trans fatty acids)
In this example, the trans fatty acid was modified (methyl esterified) using the second and fifth esterases of the present disclosure.
 (実験手法)
 本開示の第2および第5のエステラーゼの代表的配列のものは、実施例3に記載の方法に従って得た。各エステラーゼ溶液は、0.1 u/mlに調整し、(A)パルミテライジン酸または(B)バクセン酸のモノマーは、0.5%となるようメタノールに溶解したストック溶液を作成した。各トランス脂肪酸ストック溶液30μlと酵素溶液70μlとをスクリューキャップ付きチューブに分注し、37℃のインキュベーターで72時間静置した。エステラーゼ溶液の代わりにBufferを使用した処理を同時に行い、対照区とした。その後、100μlの水と50μlのクロロホルムを添加し、ボルテックスミキサーでよく攪拌した後、12,000gで5分間遠心分離した。下層のクロロホルム層を5μlロードして、展開溶媒としてヘキサン-ジエチルエーテル-酢酸(80:20:1)を使用して、薄層クロマトグラフィー解析を行った。
(Experimental method)
Representative sequences of the second and fifth esterases of the present disclosure were obtained according to the method described in Example 3. Each esterase solution was adjusted to 0.1 u / ml, and a stock solution was prepared in which the monomer of (A) palmiterazic acid or (B) vaccenic acid was dissolved in methanol so as to be 0.5%. 30 μl of each trans fatty acid stock solution and 70 μl of the enzyme solution were dispensed into a tube with a screw cap and allowed to stand in an incubator at 37 ° C. for 72 hours. Treatment using Buffer instead of esterase solution was performed at the same time to prepare a control group. Then, 100 μl of water and 50 μl of chloroform were added, and the mixture was stirred well with a vortex mixer and then centrifuged at 12,000 g for 5 minutes. A thin layer chromatography analysis was performed by loading 5 μl of the lower chloroform layer and using hexane-diethyl ether-acetic acid (80: 20: 1) as the developing solvent.
 (結果)
 実施例12の結果を図11に示す。第5のエステラーゼの代表的配列のものは、パルミテライジン酸のメチルエステル化触媒活性を示した本開示の第2のエステラーゼの代表的配列のものと異なり、パルミテライジン酸のエステル交換反応の触媒活性は認められなかった。トランス脂肪酸としてバクセン酸を使用した場合には、第5のエステラーゼの代表的配列のものは、本開示の第2のエステラーゼの代表的配列のものと比較すると、エステル交換反応の触媒活性が低いものの、エステル交換反応の触媒活性が認められた。
(result)
The results of Example 12 are shown in FIG. The representative sequence of the fifth esterase is different from that of the representative sequence of the second esterase of the present disclosure showing the methyl esterification catalytic activity of palmiterazic acid, and is different from that of the transesterification reaction of palmiterazic acid. No catalytic activity was observed. When vaccenic acid is used as the trans fatty acid, the representative sequence of the fifth esterase has a lower catalytic activity for the transesterification reaction than that of the representative sequence of the second esterase of the present disclosure. , The catalytic activity of the transesterification reaction was confirmed.
 (実施例13:エステラーゼの改変体の作製)
 本実施例では、本開示のエステラーゼの改変体を作製する。
 (方法と材料)
 配列番号1、3、5、7、9、11、13、15、17、19または21に示す塩基配列において、1もしくは複数個の塩基の挿入、置換もしくは欠失、またはその一方もしくは両末端へ付加されたものを含むコンストラクトを作製する。コンストラクトの設計は、上述の実施例と同様の方法、または当業者に公知の本技術分野で慣用的に行われる実験手法または市販のキットを使用して行う。あるいは、配列番号2、4、6、8、10、12、14、16、18、20または22に示すアミノ酸配列のアミノ酸を置換したポリペプチドをコードするオリゴヌクレオチドを人工合成する。上述の実施例と同様の方法によって、これらの各種改変体の油脂またはエステル体の分解活性の解析を行う。
 (発現ベクターの作製)
 発現ベクターは、上記実施例3に記載の手法に準じて作出する。
 すなわち、上記変異を入れる手法によって変異の入った各種塩基配列を有する変異体を含む発現ベクターを作製する。
 (熱安定性、至適温度、至適pHおよびpH安定性)
 実施例4に従って、作製した変異体の熱安定性、至適温度、至適pHおよびpH安定性を測定する。
 (換気扇フィルター汚れ洗浄効果およびエステル体の分解)
 それぞれ実施例5および6に準じて試験を行い、その分解活性を測定する。
 (基質特異性)
 実施例7に準じ試験を行い、基質特異性を測定する。
 (結果)
 上記試験の結果、配列番号2、4、6、8、10、12、14、16、18、20または22に示すアミノ酸配列を含むポリペプチドが有する、本開示において見出された活性(例えば、トランス脂肪酸含有油脂の資化に関連する能力、またはトランス脂肪酸含有油脂を分解する能力など)を有する変異体株を得ることができることが分かる。
(Example 13: Preparation of modified esterase)
In this example, a variant of the esterase of the present disclosure is prepared.
(Method and material)
In the base sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21, one or more bases are inserted, substituted or deleted, or one or both ends thereof. Make a construct containing the added one. The construction is designed using the same method as in the above embodiment, or by using experimental methods or commercially available kits commonly used in the art known to those skilled in the art. Alternatively, an oligonucleotide encoding a polypeptide in which the amino acid of the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22 is substituted is artificially synthesized. The decomposing activity of the fats and oils or esters of these various variants is analyzed by the same method as in the above-mentioned examples.
(Preparation of expression vector)
The expression vector is prepared according to the method described in Example 3 above.
That is, an expression vector containing mutants having various base sequences containing mutations is prepared by the above-mentioned method of inserting mutations.
(Thermal stability, optimum temperature, optimum pH and pH stability)
According to Example 4, the thermal stability, optimum temperature, optimum pH and pH stability of the prepared mutants are measured.
(Ventilation fan filter dirt cleaning effect and decomposition of ester)
Tests are carried out according to Examples 5 and 6, respectively, and their degrading activity is measured.
(Substrate specificity)
The test is carried out according to Example 7 to measure the substrate specificity.
(result)
As a result of the above tests, the activity found in the present disclosure (eg, eg) of a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22. It can be seen that a mutant strain having an ability related to assimilation of a trans fatty acid-containing fat or oil, or an ability to decompose a trans fatty acid-containing fat or oil) can be obtained.
 (注記)
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願及び他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本願は日本国特許庁に2019年9月6日に提出された特願2019-163343に対して優先権主張を伴うものであり、その内容はすべて本明細書に対する参考として援用されるべきであることが理解される。
(Note)
As described above, the present invention has been illustrated using the preferred embodiments of the present invention, but it is understood that the scope of the present invention should be interpreted only by the scope of claims. The patents, patent applications and other documents cited herein should be incorporated herein by reference in their content as they are specifically described herein. Is understood. This application is accompanied by a priority claim for Japanese Patent Application No. 2019-163343 submitted to the Japan Patent Office on September 6, 2019, the contents of which are all incorporated by reference in this specification. Is understood.
 本開示は、トランス脂肪酸含有エステル体を分解することにおいて、食品工場などで問題となっているトランス脂肪酸含有排水の処理などにおいて、有用性を有する。 The present disclosure has usefulness in the treatment of trans fatty acid-containing wastewater, which is a problem in food factories and the like, in decomposing trans fatty acid-containing esters.
 NITE BP-02732 NITE BP-02732
配列番号1 本開示の第1のエステラーゼの代表的塩基配列の成熟配列
配列番号2 本開示の第1のエステラーゼの代表的アミノ酸配列の成熟配列
配列番号3 本開示の第1のエステラーゼの代表的塩基配列においてプレ配列をコードするヌクレオチドを含む塩基配列
配列番号4 本開示の第1のエステラーゼの代表的アミノ酸配列においてプレ配列を含むアミノ酸配列
配列番号5 本開示の第1のエステラーゼの代表的塩基配列の全長配列
配列番号6 本開示の第1のエステラーゼの代表的アミノ酸配列の全長配列
配列番号7 本開示の第2のエステラーゼの代表的塩基配列の成熟配列
配列番号8 本開示の第2のエステラーゼの代表的アミノ酸配列の成熟配列
配列番号9 本開示の第2のエステラーゼの代表的塩基配列の全長配列
配列番号10 本開示の第2のエステラーゼの代表的アミノ酸配列の全長配列
配列番号11 本開示の第3のエステラーゼの代表的塩基配列の成熟配列
配列番号12 本開示の第3のエステラーゼの代表的アミノ酸配列の成熟配列
配列番号13 本開示の第3のエステラーゼの代表的塩基配列の全長配列
配列番号14 本開示の第3のエステラーゼの代表的アミノ酸配列の全長配列
配列番号15 本開示の第4のエステラーゼの代表的塩基配列の成熟配列
配列番号16 本開示の第4のエステラーゼの代表的アミノ酸配列の成熟配列
配列番号17 本開示の第4のエステラーゼの代表的塩基配列の全長配列
配列番号18 本開示の第4のエステラーゼの代表的アミノ酸配列の全長配列
配列番号19 本開示の第5のエステラーゼの代表的塩基配列の全長配列
配列番号20 本開示の第5のエステラーゼの代表的アミノ酸配列の全長配列
配列番号21 本開示の第5のエステラーゼの代表的塩基配列の成熟配列
配列番号22 本開示の第5のエステラーゼの代表的アミノ酸配列の成熟配列
SEQ ID NO: 1 Mature sequence number of the representative base sequence of the first esterase of the present disclosure SEQ ID NO: 2 Mature sequence number of the representative amino acid sequence of the first esterase of the present disclosure SEQ ID NO: 3 Representative base of the first esterase of the present disclosure Nucleotide sequence containing a nucleotide encoding a pre-sequence in the sequence SEQ ID NO: 4 Amino acid sequence number containing a pre-sequence in the representative amino acid sequence of the first esterase of the present disclosure 5 The representative base sequence of the first esterase of the present disclosure Full-length SEQ ID NO: 6 Full-length sequence of the representative amino acid sequence of the first esterase of the present disclosure SEQ ID NO: 7 Mature sequence of the representative base sequence of the second esterase of the present disclosure SEQ ID NO: 8 Representative of the second esterase of the present disclosure Mature Nucleotide Sequence SEQ ID NO: 9 Full-length Nucleotide Sequence of the Representative Nucleotide Sequence of the Second Esterase of the Present Disclosure SEQ ID NO: 10 Full-length Nucleotide Sequence of the Representative Nucleotide Sequence of the Second Esterase of the Disclosure 11 Mature Nucleotide Sequence No. 12 of the Representative Nucleotide Sequence of Esterase of No. 12 Mature Nucleotide Sequence No. 12 of the Representative Nucleotide Sequence of the Third Esterase of the present Disclosure. Full-length sequence of the representative amino acid sequence of the third esterase of the disclosure SEQ ID NO: 15 Mature sequence of the representative nucleotide sequence of the fourth esterase of the present disclosure SEQ ID NO: 16 Mature sequence of the representative amino acid sequence of the fourth esterase of the present disclosure SEQ ID NO: 17 Full-length sequence number of the representative base sequence of the fourth esterase of the present disclosure SEQ ID NO: 18 Full-length sequence number of the representative amino acid sequence of the fourth esterase of the present disclosure SEQ ID NO: 19 Representative base of the fifth esterase of the present disclosure Full-length sequence of the sequence SEQ ID NO: 20 Full-length sequence of the representative amino acid sequence of the fifth esterase of the present disclosure SEQ ID NO: 21 Mature sequence of the representative base sequence of the fifth esterase of the present disclosure SEQ ID NO: 22 The fifth esterase of the present disclosure Mature sequence of typical amino acid sequence of

Claims (22)

  1. (a)配列番号2、8、12または16に示すアミノ酸配列を含むポリペプチド;
    (b)(a)のアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含み、生物学的活性を有するポリペプチド;
    (c)(a)または(b)に示すアミノ酸配列と少なくとも70%以上の配列同一性を有し、生物学的活性を有するポリペプチド;
    (d)配列番号1、7、11または15に示す塩基配列によってコードされるアミノ酸配列を含むポリペプチド;
    (e)(d)に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列によってコードされ、生物学的活性を有するポリペプチド;
    (f)(d)または(e)に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列によってコードされ、生物学的活性を有するポリペプチド;
    (g)(d)~(f)のいずれか1つに示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列によってコードされ、かつ生物学的活性を有するポリペプチド;
    (h)(d)~(g)のいずれか1つの塩基配列の対立遺伝子変異体によってコードされ、生物学的活性を有するポリペプチド;または
    (i)(a)~(h)に示すアミノ酸配列の断片を含む、ポリペプチド、
    である、ポリペプチド。
    (A) A polypeptide containing the amino acid sequence shown in SEQ ID NO: 2, 8, 12 or 16;
    (B) A polypeptide having biological activity, which comprises an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof in the amino acid sequence of (a);
    (C) A polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in (a) or (b) and having biological activity;
    (D) A polypeptide containing an amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1, 7, 11 or 15;
    (E) In the base sequence shown in (d), a polypeptide having biological activity encoded by a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof;
    (F) A polypeptide having biological activity encoded by a base sequence having at least 70% or more sequence identity with the base sequence shown in (d) or (e);
    (G) Biological activity encoded by a nucleotide sequence that hybridizes under stringent conditions with a polynucleotide containing the nucleotide sequence shown in any one of (d) to (f) or a complementary sequence thereof. Polypeptide with
    (H) A polypeptide having biological activity encoded by an allelic variant of any one of the base sequences of (d) to (g); or the amino acid sequence shown in (i) (a) to (h). Polypeptide, including fragments of
    Is a polypeptide.
  2. 前記ポリペプチドはエステラーゼである、請求項1に記載のポリペプチド。 The polypeptide according to claim 1, wherein the polypeptide is an esterase.
  3. 前記生物学的活性は、トランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力を含む、請求項1または2に記載のポリペプチド。 The polypeptide according to claim 1 or 2, wherein the biological activity includes an ability associated with assimilation of a trans fatty acid-containing ester or an ability to decompose a trans fatty acid-containing ester.
  4. 前記ポリペプチドはエステラーゼであり、その基質特異性の対象が油脂を含む短鎖~長鎖の脂肪酸含有エステル体である、請求項1~3のいずれか一項に記載のポリペプチド。 The polypeptide according to any one of claims 1 to 3, wherein the polypeptide is an esterase, and the target of its substrate specificity is a short- to long-chain fatty acid-containing ester containing fats and oils.
  5. 15℃においてエステル体を分解する能力を有するエステラーゼである、請求項1~4のいずれか一項に記載のポリペプチド。 The polypeptide according to any one of claims 1 to 4, which is an esterase having an ability to decompose an ester at 15 ° C.
  6. (A)
    (a)75℃、
    (b)65℃、
    (c)67℃、または
    (d)70℃
    において熱安定性を有する、および/または
    (B)
    (a)60℃、
    (b)40℃、または
    (c)65℃
    において至適温度を有する、および/または
    (C)
    (a)pH8~9、または
    (b)pH9
    においてpH安定性を有する、および/または、
    (D)
    pH9において至適pHを有する、
    請求項1~5のいずれか一項に記載のポリペプチド。
    (A)
    (A) 75 ° C,
    (B) 65 ° C,
    (C) 67 ° C or (d) 70 ° C
    Has thermal stability in and / or (B)
    (A) 60 ° C,
    (B) 40 ° C or (c) 65 ° C
    Has the optimum temperature in and / or (C)
    (A) pH 8-9, or (b) pH 9
    Have pH stability in and / or
    (D)
    Has optimal pH at pH 9,
    The polypeptide according to any one of claims 1 to 5.
  7. ヤロウィア リポリティカ(Yarrowia lipolytica)に由来するポリペプチドである、請求項1~6のいずれか一項に記載のポリペプチド。 The polypeptide according to any one of claims 1 to 6, which is a polypeptide derived from Yarrowia lipolytica.
  8. (A)配列番号1、7、11または15に示す塩基配列を含むポリヌクレオチド;
    (B)(A)に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
    (C)(A)または(B)に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
    (D)(A)~(C)のいずれか1つに示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列を含み、かつ生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
    (E)(A)~(D)のいずれか1つの塩基配列の対立遺伝子変異体であって、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
    (F)配列番号2、8、12または16に示すアミノ酸配列を含むポリペプチドをコードする、ポリヌクレオチド;
    (G)(F)のアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含み、生物学的活性を有するポリペプチドをコードするポリヌクレオチド;
    (H)(F)または(G)に示すアミノ酸配列と少なくとも70%以上の配列同一性を有し、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;または
    (I)(F)~(H)に示す塩基配列の断片を含む、ポリヌクレオチド、
    である、ポリヌクレオチド。
    (A) A polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 1, 7, 11 or 15;
    (B) In the base sequence shown in (A), a polynucleotide comprising a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof and encoding a polypeptide having biological activity;
    (C) A polynucleotide comprising a base sequence having at least 70% or more sequence identity with the base sequence shown in (A) or (B) and encoding a polypeptide having biological activity;
    (D) A polynucleotide containing the base sequence shown in any one of (A) to (C) or a complementary sequence thereof, and a base sequence that hybridizes under stringent conditions, and has biological activity. A polynucleotide encoding a polypeptide having
    (E) A polynucleotide that is an allelic variant of the base sequence of any one of (A) to (D) and encodes a polypeptide having biological activity;
    (F) A polynucleotide encoding a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2, 8, 12 or 16;
    (G) In the amino acid sequence of (F), a polynucleotide encoding a polypeptide having biological activity, which comprises an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof;
    (H) A polynucleotide encoding a polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in (F) or (G) and having biological activity; or (I) (F) to A polynucleotide containing a fragment of the nucleotide sequence shown in (H),
    Is a polynucleotide.
  9. 前記ポリペプチドはエステラーゼである、請求項8に記載のポリヌクレオチド。 The polynucleotide according to claim 8, wherein the polypeptide is an esterase.
  10. 前記生物学的活性は、トランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力を含む、請求項8または9に記載のポリヌクレオチド。 The polynucleotide according to claim 8 or 9, wherein the biological activity includes an ability associated with assimilation of a trans fatty acid-containing ester or an ability to decompose a trans fatty acid-containing ester.
  11. 前記ポリペプチドはエステラーゼであり、その基質特異性の対象が油脂を含む短鎖~長鎖の脂肪酸含有エステル体である、請求項8~10のいずれか一項に記載のポリヌクレオチド。 The polynucleotide according to any one of claims 8 to 10, wherein the polynucleotide is an esterase, and the target of the substrate specificity is a short- to long-chain fatty acid-containing ester containing fats and oils.
  12. (a)配列番号22に示すアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含むポリペプチド;
    (b)配列番号22に示すアミノ酸配列に示すアミノ酸配列と少なくとも70%以上の配列同一性を有するポリペプチド;
    (c)配列番号21に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列によってコードされるポリペプチド;
    (d)配列番号21に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列によってコードされるポリペプチド;
    (e)配列番号21に示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列によってコードされるポリペプチド;
    (f)配列番号21に示す塩基配列の対立遺伝子変異体によってコードされるポリペプチド;または
    (g)(a)~(f)に示すアミノ酸配列の断片を含むポリペプチド
    であって、トランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力を有するポリペプチド。
    (A) In the amino acid sequence shown in SEQ ID NO: 22, a polypeptide containing an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof;
    (B) A polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in the amino acid sequence shown in SEQ ID NO: 22;
    (C) In the base sequence shown in SEQ ID NO: 21, a polypeptide encoded by a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof;
    (D) A polypeptide encoded by a base sequence having at least 70% or more sequence identity with the base sequence shown in SEQ ID NO: 21;
    (E) A polypeptide encoded by a nucleotide sequence containing the nucleotide sequence shown in SEQ ID NO: 21 or a complementary sequence thereof and a nucleotide sequence that hybridizes under stringent conditions;
    (F) A polypeptide encoded by an allelic variant of the nucleotide sequence shown in SEQ ID NO: 21; or a polypeptide containing a fragment of the amino acid sequence shown in (g) (a) to (f) and containing a trans fatty acid. A polypeptide having the ability to assimilate an ester or decompose a trans-amino acid-containing ester.
  13. 請求項12に記載のポリペプチドをコードする塩基配列、または、
    (A)配列番号21に示す塩基配列において、1ヌクレオチド以上の置換、付加、欠失またはそれらの組合せを含む塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
    (B)配列番号21に示す塩基配列と少なくとも70%以上の配列同一性を有する塩基配列を含み、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
    (C)配列番号21に示す塩基配列またはその相補的配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズする塩基配列を含み、かつ生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
    (D)配列番号21に示す塩基配列の対立遺伝子変異体であって、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;
    (E)配列番号22に示すアミノ酸配列を含むポリペプチドをコードする、ポリヌクレオチド;
    (F)配列番号22に示すアミノ酸配列において、1アミノ酸以上の置換、付加、欠失またはそれらの組合せを含むアミノ酸配列を含み、生物学的活性を有するポリペプチドをコードするポリヌクレオチド;
    (G)配列番号22に示すアミノ酸配列と少なくとも70%以上の配列同一性を有し、生物学的活性を有するポリペプチドをコードする、ポリヌクレオチド;または
    (H)(E)~(G)に示す塩基配列の断片を含む、ポリヌクレオチド、
    であって、該生物学的活性はトランス脂肪酸含有エステル体の資化に関連する能力、またはトランス脂肪酸含有エステル体を分解する能力を含む、ポリヌクレオチド、
    である、ポリヌクレオチド。
    The base sequence encoding the polypeptide according to claim 12, or
    (A) In the base sequence shown in SEQ ID NO: 21, a polynucleotide comprising a base sequence containing one or more nucleotides of substitution, addition, deletion or a combination thereof and encoding a polypeptide having biological activity;
    (B) A polynucleotide comprising a base sequence having at least 70% or more sequence identity with the base sequence shown in SEQ ID NO: 21 and encoding a polypeptide having biological activity;
    (C) A polynucleotide encoding a polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 21 or a complementary sequence thereof and a nucleotide sequence that hybridizes under stringent conditions and has biological activity. ;
    (D) A polynucleotide that is an allelic variant of the nucleotide sequence shown in SEQ ID NO: 21 and encodes a polypeptide having biological activity;
    (E) A polynucleotide encoding a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 22;
    (F) A polynucleotide encoding a bioactive polypeptide containing an amino acid sequence containing one or more amino acid substitutions, additions, deletions or combinations thereof in the amino acid sequence shown in SEQ ID NO: 22;
    (G) A polynucleotide encoding a polypeptide having at least 70% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 22 and having biological activity; or (H) (E) to (G). A polynucleotide, which contains a fragment of the nucleotide sequence shown.
    A polynucleotide, wherein the biological activity comprises the ability to assimilate a trans fatty acid-containing ester, or to degrade a trans fatty acid-containing ester.
    Is a polynucleotide.
  14. 請求項8~11または13のいずれか一項に記載のポリヌクレオチドを含む細胞または無細胞発現系。 A cell- or cell-free expression system comprising the polynucleotide according to any one of claims 8-11 or 13.
  15. 請求項1~7または12のいずれか一項に記載のポリペプチド、配列番号22に記載のアミノ酸配列を含むポリペプチド、請求項8~11または13のいずれか一項に記載のポリヌクレオチドもしくは配列番号22に記載のアミノ酸配列をコードする塩基配列かまたは配列番号21に記載の塩基配列を含むポリヌクレオチドを含む細胞もしくは無細胞発現系、または請求項14に記載の細胞もしくは無細胞発現系を含む油分解剤。 The polynucleotide according to any one of claims 1 to 7 or 12, the polypeptide containing the amino acid sequence according to SEQ ID NO: 22, the polynucleotide or sequence according to any one of claims 8 to 11 or 13. Includes a cell or cell-free expression system comprising a nucleotide sequence encoding the amino acid sequence of No. 22 or a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 21, or the cell or cell-free expression system of claim 14. Oil decomposing agent.
  16. 前記油は、トランス脂肪酸含有エステル体を含む、請求項15に記載の油分解剤。 The oil decomposing agent according to claim 15, wherein the oil contains a trans fatty acid-containing ester.
  17. さらなる油処理成分を含む、請求項15または16に記載の油分解剤。 The oil decomposing agent according to claim 15 or 16, further comprising an oil treatment component.
  18. 請求項1~7または12のいずれか一項に記載のポリペプチド、配列番号22に記載のアミノ酸配列を含むポリペプチド、請求項8~11または13のいずれか一項に記載のポリヌクレオチドもしくは配列番号22に記載のアミノ酸配列をコードする塩基配列かまたは配列番号21に記載の塩基配列を含むポリヌクレオチドを含む細胞もしくは無細胞発現系、請求項14に記載の細胞もしくは無細胞発現系、または請求項15~17のいずれか一項に記載の油分解剤と、さらなる油処理成分とを備える、油分解用のためのキット。 The polynucleotide according to any one of claims 1 to 7 or 12, the polypeptide containing the amino acid sequence according to SEQ ID NO: 22, the polynucleotide or sequence according to any one of claims 8 to 11 or 13. A cell or cell-free expression system comprising a nucleotide sequence encoding the amino acid sequence set forth in No. 22 or a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 21, a cell or cell-free expression system according to claim 14, or a claim. A kit for oil decomposition, comprising the oil decomposing agent according to any one of Items 15 to 17 and an additional oil treatment component.
  19. 請求項1~7または12のいずれか一項に記載のポリペプチド、配列番号22に記載のアミノ酸配列を含むポリペプチド、請求項8~11または13のいずれか一項に記載のポリヌクレオチドもしくは配列番号22に記載のアミノ酸配列をコードする塩基配列かまたは配列番号21に記載の塩基配列を含むポリヌクレオチドを含む細胞もしくは無細胞発現系、請求項14に記載の細胞もしくは無細胞発現系、または請求項15~17のいずれか一項に記載の油分解剤を処理対象に作用させることを包含する、油分解除去方法。 The polynucleotide according to any one of claims 1 to 7 or 12, the polypeptide containing the amino acid sequence according to SEQ ID NO: 22, the polynucleotide or sequence according to any one of claims 8 to 11 or 13. A cell or cell-free expression system comprising a nucleotide sequence encoding the amino acid sequence set forth in No. 22 or a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 21, a cell or cell-free expression system according to claim 14, or a claim. A method for removing oil decomposition, which comprises allowing the oil decomposing agent according to any one of Items 15 to 17 to act on a treatment target.
  20. 前記処理対象はトランス脂肪酸またはトランス脂肪酸含有エステル体を含む、請求項19に記載の方法。 The method according to claim 19, wherein the treatment target contains a trans fatty acid or a trans fatty acid-containing ester.
  21. 請求項1~7または12のいずれか一項に記載のポリペプチド、配列番号22に記載のアミノ酸配列を含むポリペプチド、あるいは請求項8~11または13のいずれか一項に記載のポリヌクレオチドもしくは配列番号22に記載のアミノ酸配列をコードする塩基配列かまたは配列番号21に記載の塩基配列を含むポリヌクレオチドを含む細胞または無細胞発現系を含む、洗剤。 The polypeptide according to any one of claims 1 to 7 or 12, the polypeptide containing the amino acid sequence of SEQ ID NO: 22, or the polynucleotide according to any one of claims 8 to 11 or 13. A detergent comprising a cell or cell-free expression system comprising a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 22 or a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 21.
  22. 脂肪改変・油脂生産技術における、請求項1~7または12のいずれか一項に記載のポリペプチド、配列番号22に記載のアミノ酸配列を含むポリペプチド、請求項8~11または13のいずれか一項に記載のポリヌクレオチドもしくは配列番号22に記載のアミノ酸配列をコードする塩基配列かまたは配列番号21に記載の塩基配列を含むポリヌクレオチドを含む細胞もしくは無細胞発現系、請求項14に記載の細胞もしくは無細胞発現系、または請求項15~17のいずれか一項に記載の油分解剤の使用。 The polypeptide according to any one of claims 1 to 7 or 12, the polypeptide containing the amino acid sequence according to SEQ ID NO: 22, or any one of claims 8 to 11 or 13 in the fat modification / fat production technique. A cell or cell-free expression system containing the polynucleotide according to the item or the nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 22 or the polynucleotide containing the nucleotide sequence set forth in SEQ ID NO: 21, the cell according to claim 14. Alternatively, the cell-free expression system, or the use of the oil degrading agent according to any one of claims 15 to 17.
PCT/JP2020/033834 2019-09-06 2020-09-07 Novel esterase for decomposing trans fatty acid-containing ester WO2021045234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021544076A JPWO2021045234A1 (en) 2019-09-06 2020-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-163343 2019-09-06
JP2019163343 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021045234A1 true WO2021045234A1 (en) 2021-03-11

Family

ID=74853342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033834 WO2021045234A1 (en) 2019-09-06 2020-09-07 Novel esterase for decomposing trans fatty acid-containing ester

Country Status (2)

Country Link
JP (1) JPWO2021045234A1 (en)
WO (1) WO2021045234A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524538A (en) * 2009-04-24 2012-10-18 ダニスコ アクティーゼルスカブ Feed supplements
JP2014509869A (en) * 2011-03-23 2014-04-24 ビュータマックス・アドバンスド・バイオフューエルズ・エルエルシー In situ expression of lipase for enzymatic production of alcohol esters in fermentation
CN106047838A (en) * 2016-06-07 2016-10-26 华南农业大学 Heatproof mutation lipase with high catalytic activity as well as preparation method and application of heatproof mutation lipase
WO2019196791A1 (en) * 2018-04-09 2019-10-17 中国科学院青岛生物能源与过程研究所 Recombinant yeast strain for producing nervonic acids and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524538A (en) * 2009-04-24 2012-10-18 ダニスコ アクティーゼルスカブ Feed supplements
JP2014509869A (en) * 2011-03-23 2014-04-24 ビュータマックス・アドバンスド・バイオフューエルズ・エルエルシー In situ expression of lipase for enzymatic production of alcohol esters in fermentation
CN106047838A (en) * 2016-06-07 2016-10-26 华南农业大学 Heatproof mutation lipase with high catalytic activity as well as preparation method and application of heatproof mutation lipase
WO2019196791A1 (en) * 2018-04-09 2019-10-17 中国科学院青岛生物能源与过程研究所 Recombinant yeast strain for producing nervonic acids and application thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE PROTEIN 10 August 2018 (2018-08-10), ANONYMOUS: "Alpha/Beta hydrolase protein [Yarrowia lipolytica]", XP055798712, retrieved from NCBI Database accession no. RDW24695 *
DATABASE PROTEIN 10 August 2018 (2018-08-10), ANONYMOUS: "Lysophospholipase [Yarrowia lipolytica]", XP055798723, retrieved from NCBI Database accession no. RDW25798 *
DATABASE PROTEIN 10 August 2018 (2018-08-10), ANONYMOUS: "Lysophospholipase catalytic domain-domain-containing protein [Yarrowia lipolytica]", XP055798726, retrieved from NCBI Database accession no. RDW28031 *
DATABASE PROTEIN 10 August 2018 (2018-08-10), ANONYMOUS: "Putative lipase ATG15 [Yarrowia lipolytica]", XP055798713, retrieved from NCBI Database accession no. RDW24490 *
KUMARI ARTI, VERMA VED VRAT, GUPTA RANI: "Comparative biochemical characterization and in silico analysis of novel lipases Lip11 and Lip12 with Lip2 from Yarrowia lipolytica", WORLD JOURNAL OF MICROBIOLOGY BIOTECHNOLOGY, vol. 28, no. 11, 31 August 2012 (2012-08-31), pages 3103 - 3111, XP035121981 *

Also Published As

Publication number Publication date
JPWO2021045234A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
Malekabadi et al. Biochemical characterization of a novel cold-active, halophilic and organic solvent-tolerant lipase from B. licheniformis KM12 with potential application for biodiesel production
Bussamara et al. Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation
JP5850342B2 (en) A novel esterase derived from twig leaf compost
Kanmani et al. Utilization of coconut oil mill waste as a substrate for optimized lipase production, oil biodegradation and enzyme purification studies in Staphylococcus pasteuri
Kim et al. Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180
Sivaramakrishnan et al. Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil
Lanser et al. Regioselectivity of new bacterial lipases determined by hydrolysis of triolein
Sharma et al. Characterization of a thermostable lipase showing loss of secondary structure at ambient temperature
Ko et al. Identification and characterization of a novel cold-adapted esterase from a metagenomic library of mountain soil
De Almeida et al. Agroindustrial wastes as alternative for lipase production by Candida viswanathii under solid-state cultivation: purification, biochemical properties, and its potential for poultry fat hydrolysis
Zheng et al. Characterisation of a thermo-alkali-stable lipase from oil-contaminated soil using a metagenomic approach
Duan et al. Biochemical characterization of a novel lipase from Malbranchea cinnamomea suitable for production of lipolyzed milkfat flavor and biodegradation of phthalate esters
Guo et al. Cloning, expression and characterization of a novel cold-active and organic solvent-tolerant esterase from Monascus ruber M7
Whangsuk et al. Gene cloning and characterization of a novel highly organic solvent tolerant lipase from Proteus sp. SW1 and its application for biodiesel production
JP7084656B2 (en) A novel lipase that decomposes trans fatty acid-containing fats and oils
Gudiukaitė et al. Influence of N-and/or C-terminal regions on activity, expression, characteristics and structure of lipase from Geobacillus sp. 95
Zhang et al. Characterization of EstB, a novel cold-active and organic solvent-tolerant esterase from marine microorganism Alcanivorax dieselolei B-5 (T)
Ariaeenejad et al. Efficiency of an alkaline, thermostable, detergent compatible, and organic solvent tolerant lipase with hydrolytic potential in biotreatment of wastewater
Tong et al. Characterization of a new sn‐1, 3‐regioselective triacylglycerol lipase from Malbranchea cinnamomea
CN103805617B (en) 1,3- specific lipases, its coding gene sequence and application thereof
WO2021045234A1 (en) Novel esterase for decomposing trans fatty acid-containing ester
WO2023032952A1 (en) Enzymatic agent for transesterification containing lipase as active ingredient
Joseph et al. Production and biotechnological application of extracellular alkalophilic lipase from marine macroalga-associated Shewanella algae to produce enriched c 20-22 n-3 polyunsaturated fatty acid concentrate
Bhardwaj et al. Influence of culture conditions on the production of extracellular esterase from Bacillus licheniformis and its characterization
Borda-Molina et al. Mining lipolytic enzymes in community DNA from high Andean soils using a targeted approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544076

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860320

Country of ref document: EP

Kind code of ref document: A1