WO2021045026A1 - Air supply device - Google Patents

Air supply device Download PDF

Info

Publication number
WO2021045026A1
WO2021045026A1 PCT/JP2020/032984 JP2020032984W WO2021045026A1 WO 2021045026 A1 WO2021045026 A1 WO 2021045026A1 JP 2020032984 W JP2020032984 W JP 2020032984W WO 2021045026 A1 WO2021045026 A1 WO 2021045026A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air supply
compressor
air volume
control unit
Prior art date
Application number
PCT/JP2020/032984
Other languages
French (fr)
Japanese (ja)
Inventor
明徳 奥村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021543765A priority Critical patent/JPWO2021045026A1/ja
Publication of WO2021045026A1 publication Critical patent/WO2021045026A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/029Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by the layout or mutual arrangement of components, e.g. of compressors or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/10Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with air supply, or exhaust, through perforated wall, floor or ceiling

Definitions

  • the present invention relates to an air supply device that supplies outdoor air into a room.
  • a ventilation device in which a refrigeration cycle composed of an evaporator, a condenser, and a compressor is provided to exhaust indoor air, and dehumidify the circulating air during air circulation and supply it into the room is known. ..
  • the ventilation device 100 when performing a dehumidifying operation, moist air is directly drawn from the room without passing through a duct, dehumidified by cooling, and then dry air is blown into the room again without passing through a duct. Met. That is, although the duct is connected to the ventilation device 100, the circulation air passage is used during the dehumidifying operation, and it is irrelevant to the length of the duct.
  • the ventilation device 100 is used for exhaust gas in the first place, it is assumed here that the ventilation device 100 is used for supplying air to a building or a house.
  • the length of the duct connected to the ventilation device 100 varies depending on the construction state of the house.
  • the load on the fan motor may increase and the air volume may be lower than the predetermined air volume.
  • the compressor 102 cannot be cooled properly, the performance of the refrigeration cycle of the ventilation device is lowered, and there is a possibility that the dehumidification amount is lowered.
  • an object of the present invention is to provide an air supply device capable of efficiently dehumidifying supply air regardless of the construction state of a house.
  • the air supply device includes a housing having an outdoor suction port and an indoor air outlet, and an air supply air passage communicating the outdoor suction port and the indoor air outlet.
  • An air supply fan motor that guides air from the outdoor suction port to the indoor air outlet, a dehumidifying part that dehumidifies the air flowing through the air supply air passage by a refrigerant cycle using a compressor, and a duct that guides the outside air to the outdoor suction port.
  • the air supply device is provided with a constant air volume control unit that controls the air volume to a predetermined constant air volume, and the compressor is provided in the air supply air passage and is cooled by the air maintained at a constant air volume by the constant air volume control unit. ..
  • the compressor can be effectively cooled, so that the dehumidifying air can be stably supplied to the room.
  • FIG. 1 is a schematic view of an air supply device according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing fan motor output control executed by the constant air volume control unit.
  • FIG. 3 is a schematic view of an air supply device according to a second embodiment of the present invention.
  • FIG. 4 is a flowchart showing control in the dehumidification priority mode when a temperature sensor is used for the compressor.
  • FIG. 5 is a schematic cross-sectional view showing a conventional ventilation device.
  • FIG. 1 is a schematic view schematically showing an air supply device 1.
  • the air supply device 1 has an outdoor suction port 3 on the side surface of the main body 2 which is a box-shaped housing, and an indoor air outlet 4 on the side surface facing the side surface.
  • the main body 2 is provided, for example, in the attic, under the floor, or inside the wall of a house.
  • the outdoor suction port 3 is connected to the outside via an external duct, and outdoor air is guided into the main body 2 via the external duct.
  • the indoor air outlet 4 is connected to the room via an internal duct, and guides the air in the main body 2 into the room.
  • the air supply device 1 includes an air supply air passage 7, an air supply fan motor 10, and a dehumidifying unit 12.
  • the air supply air passage 7 communicates the outdoor suction port 3 and the indoor air outlet 4 inside the main body 2.
  • the air supply fan motor 10 guides air from the outdoor suction port 3 to the indoor air outlet 4 by the rotation of the fan, and as a result, sends air from the outdoor to the indoor.
  • the dehumidifying unit 12 is provided in the air supply air passage 7 and dehumidifies the outdoor air passing through the air supply air passage 7. More specifically, the dehumidifying unit 12 utilizes a refrigeration cycle to dehumidify the outdoor air via an evaporator, and heat the dehumidified air cooled by the dehumidification via a condenser. The heated dehumidified air is blown into the room after cooling the compressor 13 that has generated heat due to the action of the refrigeration cycle.
  • the outdoor air introduced from the outdoor suction port 3 passes through the dehumidifying section 12 and is supplied to the indoor air outlet 4, so that the outdoor air can be introduced and dehumidified.
  • the air supply device 1 includes a constant air volume control unit 11 that controls the air flow of the air supply fan motor 10 to a predetermined air volume.
  • FIG. 2 is a flowchart showing a process of constant air volume control.
  • S an acronym.
  • S1 and the like refer to a processing step.
  • the magnitude of the numerical value indicating the processing step and the processing order are irrelevant.
  • the constant air volume control unit 11 When the constant air volume control is executed, the constant air volume control unit 11 first determines the target air volume (S1). For example, the target air volume may be set to 200 m 3 / h and stored in the air volume constant control unit 11 of the air supply device 1, or an input unit may be provided in the air supply device 1 to input the air volume.
  • the target air volume may be set to 200 m 3 / h and stored in the air volume constant control unit 11 of the air supply device 1, or an input unit may be provided in the air supply device 1 to input the air volume.
  • the constant air volume control unit 11 applies a speed indicator voltage (hereinafter referred to as Vsp) at startup according to the target air volume to the air supply fan motor 10 (S2).
  • Vsp speed indicator voltage
  • the Vsp at startup may be, for example, 2.5 V, and may be an output capable of producing the torque required to start the movement of the DC motor.
  • the constant air volume control unit 11 detects the current and the rotation speed of the air supply fan motor 10 every T seconds for a predetermined time (S3).
  • a Hall IC is provided inside the DC motor, which is an example of the air supply fan motor 10.
  • the Hall IC outputs a pulse signal each time the DC motor rotates by a certain angle.
  • the microcomputer of the air volume constant control unit 11 detects the pulse signal, and derives the rotation speed of the air supply fan motor 10 from the number of pulse signals in a fixed time.
  • a low resistance shunt resistor is connected to the motor drive circuit, and the voltage between the shunt resistors is detected by a microcomputer.
  • the constant air volume control unit 11 derives a current from the voltage and shunt resistance detected by the microcomputer.
  • the predetermined time T seconds for the air volume constant control unit 11 to detect the current of the air supply fan motor 10 and the rotation speed is, for example, 1 second, and the current / rotation speed of the air supply fan motor 10 measured every 100 ms. By setting the moving average value of the value of 1 to 1 second, it may be less affected by noise.
  • the constant air volume control unit 11 refers to the current / rotation speed table (S4).
  • the current and the target rotation speed for the current which are experimentally determined in advance, are stored in association with each other. That is, the target rotation speed can be obtained by referring to the current / rotation speed table based on the current.
  • the constant air volume control unit 11 compares the current rotation speed of the air supply fan motor 10 with the target rotation speed (S5).
  • the current rotation speed of the air supply fan motor 10 and the target rotation speed are different, the current rotation speed of the air supply fan motor 10 and the target rotation speed obtained through the current / rotation speed table are different.
  • the Vsp of the air supply fan motor 10 is determined based on the difference.
  • the Vsp to be determined from the difference between the current rotation speed and the target rotation speed is also stored as a table in which the rotation speed difference and the Vsp to be applied to the rotation speed difference, which are experimentally determined in advance, are associated with each other.
  • the Vsp is determined by referring to the table.
  • the output of the air supply fan motor 10 is changed so that the target air volume is obtained (S5No ⁇ S6). After that, the process proceeds to S3.
  • the air volume is controlled to be constant by repeating the processes of S3 to S7.
  • the air supply device 1 can prevent the air supply air volume from decreasing due to the length of the connected external duct, and can supply a constant air volume to the room. Further, since the ventilation device can be installed regardless of the length of the external duct, the workability of the installer is improved.
  • the temperature of the compressor 13 rises and the dehumidification efficiency decreases when the air volume decreases.
  • the compressor 13 is always cooled constantly, and dehumidification can be performed without lowering the dehumidification efficiency.
  • the air volume is maintained at a predetermined level regardless of the construction state of the house, and the compressor 13 is cooled so that the air can be efficiently supplied and dehumidified in the room.
  • the second embodiment is control when the compressor temperature sensor 14 is used for the compressor 13.
  • the air supply device 1 of the second embodiment will be described focusing on the differences from the air supply device 1 of the first embodiment.
  • the same components as those of the air supply device 1 of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 3 is a schematic view schematically showing the air supply device 1 according to the second embodiment.
  • the air supply device 1 according to the second embodiment includes a compressor temperature sensor 14 and a control unit 15.
  • the compressor temperature sensor 14 detects the temperature of the compressor 13.
  • the control unit 15 controls to select between a dehumidification priority mode that prioritizes dehumidification of air and an air volume priority mode that prioritizes constant air volume control.
  • the air volume priority mode is a mode in which the air flow of the air supply fan motor 10 is controlled to a predetermined air volume.
  • the air volume constant control unit 11 performs the air volume constant control shown in the first embodiment.
  • the dehumidification priority mode is a mode in which the compressor 13 is appropriately cooled by increasing a predetermined air volume when the temperature of the compressor 13 is rising, and the heat generation of the compressor 13 is suppressed. As a result, the dehumidifying capacity via the compressor 13 is maintained within an appropriate range, so that the room can be efficiently dehumidified. Further, when the temperature of the compressor 13 is lowered, the predetermined air volume may be reduced. As a result, the compressor 13 can be cooled with an appropriate air volume, and the energy consumption of the air supply fan motor 10 can be reduced.
  • FIG. 4 is a flowchart showing a process of controlling the dehumidification priority mode.
  • S11 to S12 is the same as that of S1 to S2 in the flowchart of FIG. 2 described above, and thus the description thereof will be omitted.
  • the constant air volume control unit 11 acquires the temperature of the compressor 13 from the compressor temperature sensor 14 (S13).
  • the constant air volume control unit 11 changes the target air volume based on the temperature of the compressor 13 (S14).
  • a method of changing the target air volume will be described. For example, an experiment is conducted in advance to determine a target temperature of the compressor 13 capable of efficiently dehumidifying.
  • the constant air volume control unit 11 raises the target air volume in order to lower the temperature of the compressor 13.
  • the constant air volume control unit 11 lowers the target air volume because the compressor 13 is cooled more than necessary.
  • S15 to S19 is the same as that of S3 to S7 in the flowchart of FIG. 2 described above, and thus the description thereof will be omitted.
  • the target air volume can be changed according to the temperature of the compressor 13.
  • the compressor when the temperature of the compressor 13 is rising, the compressor can be appropriately cooled by increasing the predetermined air volume, and the heat generation of the compressor 13 can be suppressed. That is, the air supply device 1 can suppress the heat generation of the compressor 13 and efficiently dehumidify. Further, when the temperature of the compressor is lowered, the compressor can be cooled with an appropriate air volume by reducing the predetermined air volume, and the energy consumption of the air supply fan motor 10 can be reduced. ..
  • the present invention has been described above based on the embodiments, the present invention is not limited to the above embodiments, and it is easy to make various improvements and modifications within a range that does not deviate from the gist of the present invention. It can be inferred. Further, the numerical values given in each of the above embodiments are examples, and it is naturally possible to adopt other numerical values.
  • the air supply device includes a housing having an outdoor suction port and an indoor air outlet, an air supply air passage communicating the outdoor air inlet and the indoor air outlet, and an outdoor air inlet to the indoor side.
  • An air supply fan motor that guides air to the air outlet, a dehumidifying section that dehumidifies the air flowing through the air supply air passage by a refrigerant cycle using a compressor, and an external duct or casing that is a duct that guides the outside air to the outdoor suction port.
  • Controls at least one of the internal duct which is a duct that guides the dehumidified air in the body from the indoor outlet to the room, and the air volume that is blown through the air supply fan motor regardless of the length of the duct to a predetermined constant air volume.
  • the compressor is provided in the air supply air passage, and is cooled by the air maintained at a constant air volume by the air volume constant control unit.
  • the control unit detects the current and rotation speed of the air supply fan motor and controls the output of the air supply fan motor so that the air volume becomes a predetermined value.
  • the control unit detects the current and rotation speed of the air supply fan motor and controls the output of the air supply fan motor so that the air volume becomes a predetermined value.
  • the air supply device of the present invention may include a compressor temperature sensor that detects the temperature of the compressor.
  • the effect of appropriately cooling the compressor and suppressing the heat generation of the compressor can be obtained by increasing the predetermined air volume. Further, when the temperature of the compressor is lowered, the predetermined air volume may be reduced. As a result, the compressor can be cooled with an appropriate air volume, and the effect of reducing the energy consumption of the air supply fan motor can be obtained.
  • the housing of the present invention may be provided in the attic, under the floor, or in the wall. This makes it possible to obtain the effect that the housing can be installed in various places.
  • the air supply device according to the present invention is effective as an air supply device that supplies outdoor air into the room and dehumidifies the room.
  • Air supply device 2 Main body 3 Outdoor suction port 4 Indoor air outlet 7, 101 Air supply air passage 10 Air supply fan motor 11 Constant air volume control unit 12 Dehumidifying unit 13, 102 Compressor 14 Compressor temperature sensor 15 Control unit

Abstract

This air supply device comprises: a housing that has an outdoor-side suction port (3) and an indoor-side blowout port (4); an air supply passage (7) that causes the outdoor-side suction port and the indoor-side blowout port to communicate with each other; an air supply fan motor (10) that guides air from the outdoor-side suction port to the indoor-side blowout port; a dehumidification part (12) provided in the air supply passage; and a control unit (11) that controls the air volume of the air supply fan motor to a predetermined air volume. The control unit detects the current and the rotational speed of the air supply fan motor, and controls the output of the air supply fan motor such that the air volume becomes a predetermined value. Thus, cooling is performed by a compressor (13) regardless of the state of construction of a house, so that the indoor space is efficiently ventilated and dehumidified.

Description

給気装置Air supply device
 本発明は、室外空気を室内へ供給する給気装置に関する。 The present invention relates to an air supply device that supplies outdoor air into a room.
 従来、換気装置として、蒸発器、凝縮器、圧縮機から構成される冷凍サイクルを設け、室内空気を排気し、また空気循環時には循環空気を除湿して室内へ供給する換気装置が知られている。 Conventionally, as a ventilation device, a ventilation device in which a refrigeration cycle composed of an evaporator, a condenser, and a compressor is provided to exhaust indoor air, and dehumidify the circulating air during air circulation and supply it into the room is known. ..
 例えば、図5に示す特許文献1の換気装置100では、圧縮機102を給気風路101上に配置することにより、除湿運転時に発熱した圧縮機を、給気風路101を通過する送風により冷却する。これにより、圧縮機102を介した冷却の効率を高め、効率的に室内の除湿を行うことができる。 For example, in the ventilation device 100 of Patent Document 1 shown in FIG. 5, by arranging the compressor 102 on the air supply air passage 101, the compressor generated during the dehumidifying operation is cooled by the air blown through the air supply air passage 101. .. As a result, the efficiency of cooling via the compressor 102 can be increased, and the room can be efficiently dehumidified.
特開2003-343892号公報Japanese Unexamined Patent Publication No. 2003-343892
 換気装置100において、除湿運転を行う場合には、室内からダクトを介することなく直接湿った空気を引き込み、冷却による除湿をしてから再度、ダクトを介することなく乾燥空気を室内に送風するというものであった。つまり、換気装置100にはダクトが接続されてはいるものの、除湿運転時には循環風路が利用され、ダクトの長さとは無関係である。 In the ventilation device 100, when performing a dehumidifying operation, moist air is directly drawn from the room without passing through a duct, dehumidified by cooling, and then dry air is blown into the room again without passing through a duct. Met. That is, although the duct is connected to the ventilation device 100, the circulation air passage is used during the dehumidifying operation, and it is irrelevant to the length of the duct.
 そもそも換気装置100は排気に利用されるものではあるが、ここで換気装置100を建物や住宅への給気に利用したと仮定する。この場合、換気装置100に接続されるダクトの長さは住宅の施工状態により異なる。そして、ダクトの長い住宅の場合はファンモータへの負荷が増大し所定の風量より風量が低下するおそれがある。これにより、圧縮機102を適切に冷却できず、換気装置の冷凍サイクルの性能が低下し、除湿量が低下するという課題が生じる可能性がある。 Although the ventilation device 100 is used for exhaust gas in the first place, it is assumed here that the ventilation device 100 is used for supplying air to a building or a house. In this case, the length of the duct connected to the ventilation device 100 varies depending on the construction state of the house. In the case of a house with a long duct, the load on the fan motor may increase and the air volume may be lower than the predetermined air volume. As a result, the compressor 102 cannot be cooled properly, the performance of the refrigeration cycle of the ventilation device is lowered, and there is a possibility that the dehumidification amount is lowered.
 そこで本発明は、上記課題を解決するためになされたものであり、住宅の施工状態に関わらず効率的に給気空気の除湿を行うことができる給気装置を提供することを目的とする。 Therefore, the present invention has been made to solve the above problems, and an object of the present invention is to provide an air supply device capable of efficiently dehumidifying supply air regardless of the construction state of a house.
 この目的を達成するために、本発明に係る給気装置は、室外側吸込口と室内側吹出口とを有する筐体と、室外側吸込口と室内側吹出口とを連通する給気風路と、室外側吸込口から室内側吹出口へ空気を導く給気ファンモータと、圧縮機を用いた冷媒サイクルによって給気風路を流れる空気を除湿する除湿部と、外気を室外側吸込口に導くダクトである外部ダクト、または筐体内で除湿された空気を室内側吹出口から室内へ導くダクトである内部ダクト、の少なくとも一方と、ダクトの長さに関わらず給気ファンモータを介して送風する風量を所定の一定風量に制御する風量一定制御部と、を備え、圧縮機は、給気風路に設けられ、風量一定制御部によって一定風量に保たれた空気により冷却される、給気装置とする。 In order to achieve this object, the air supply device according to the present invention includes a housing having an outdoor suction port and an indoor air outlet, and an air supply air passage communicating the outdoor suction port and the indoor air outlet. , An air supply fan motor that guides air from the outdoor suction port to the indoor air outlet, a dehumidifying part that dehumidifies the air flowing through the air supply air passage by a refrigerant cycle using a compressor, and a duct that guides the outside air to the outdoor suction port. The amount of air blown through the air supply fan motor regardless of the length of the duct and at least one of the external duct, which is the external duct, or the internal duct, which is the duct that guides the dehumidified air inside the housing from the indoor air outlet to the room. The air supply device is provided with a constant air volume control unit that controls the air volume to a predetermined constant air volume, and the compressor is provided in the air supply air passage and is cooled by the air maintained at a constant air volume by the constant air volume control unit. ..
 本発明の給気装置によれば、圧縮機の冷却を効果的に行うことができるため、除湿風の室内への供給を安定して行うことができる。 According to the air supply device of the present invention, the compressor can be effectively cooled, so that the dehumidifying air can be stably supplied to the room.
図1は、本発明の第1実施形態に係る給気装置の概略図である。FIG. 1 is a schematic view of an air supply device according to a first embodiment of the present invention. 図2は、風量一定制御部にて実行されるファンモータ出力制御を示すフローチャートである。FIG. 2 is a flowchart showing fan motor output control executed by the constant air volume control unit. 図3は、本発明の第2実施形態に係る給気装置の概略図である。FIG. 3 is a schematic view of an air supply device according to a second embodiment of the present invention. 図4は、圧縮機に温度センサを用いた場合の除湿優先モードにおける制御を示すフローチャートである。FIG. 4 is a flowchart showing control in the dehumidification priority mode when a temperature sensor is used for the compressor. 図5は、従来の換気装置を示した概略断面図である。FIG. 5 is a schematic cross-sectional view showing a conventional ventilation device.
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して二度目以降の説明を省略または簡略化している。さらに、各図面において、本発明に直接には関係しない各部の詳細については説明を省略している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are examples that embody the present invention, and do not limit the technical scope of the present invention. In addition, throughout the drawings, the same parts are designated by the same reference numerals, and the second and subsequent explanations are omitted or simplified. Further, in each drawing, description of each part not directly related to the present invention is omitted.
 (第1実施形態)
 図1を参照して、本発明の第1実施形態に係る給気装置1について説明する。図1は、給気装置1を概略的に示す概略図である。
(First Embodiment)
The air supply device 1 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view schematically showing an air supply device 1.
 給気装置1は、箱形の筐体である本体2の側面に室外側吸込口3を有し、この側面に対向した側面に室内側吹出口4を備えている。本体2は、例えば住宅の屋根裏、床下、または壁内のいずれかに設けられる。 The air supply device 1 has an outdoor suction port 3 on the side surface of the main body 2 which is a box-shaped housing, and an indoor air outlet 4 on the side surface facing the side surface. The main body 2 is provided, for example, in the attic, under the floor, or inside the wall of a house.
 室外側吸込口3は、外部ダクトを介して室外と接続されており、室外空気が外部ダクトを介して本体2内に導かれる。 The outdoor suction port 3 is connected to the outside via an external duct, and outdoor air is guided into the main body 2 via the external duct.
 室内側吹出口4は、内部ダクトを介して室内と接続されており、本体2内の空気を室内に導く。 The indoor air outlet 4 is connected to the room via an internal duct, and guides the air in the main body 2 into the room.
 また、給気装置1は、給気風路7と、給気ファンモータ10と、除湿部12とを備える。 Further, the air supply device 1 includes an air supply air passage 7, an air supply fan motor 10, and a dehumidifying unit 12.
 給気風路7は、本体2の内部で室外側吸込口3と室内側吹出口4とを連通する。 The air supply air passage 7 communicates the outdoor suction port 3 and the indoor air outlet 4 inside the main body 2.
 給気ファンモータ10は、ファンの回転により、室外側吸込口3から室内側吹出口4に空気を導き、結果的に室外から室内へと空気を送り込む。 The air supply fan motor 10 guides air from the outdoor suction port 3 to the indoor air outlet 4 by the rotation of the fan, and as a result, sends air from the outdoor to the indoor.
 除湿部12は、給気風路7内に設けられており、給気風路7を通過する室外空気を除湿する。さらに詳細には、除湿部12は、冷凍サイクルを利用しており、蒸発器を介して室外空気の除湿を行い、除湿により冷却された除湿空気を、凝縮器を介して加熱する。加熱された除湿空気は、冷凍サイクルの作用により発熱した圧縮機13を冷却した後に、室内に送風される。 The dehumidifying unit 12 is provided in the air supply air passage 7 and dehumidifies the outdoor air passing through the air supply air passage 7. More specifically, the dehumidifying unit 12 utilizes a refrigeration cycle to dehumidify the outdoor air via an evaporator, and heat the dehumidified air cooled by the dehumidification via a condenser. The heated dehumidified air is blown into the room after cooling the compressor 13 that has generated heat due to the action of the refrigeration cycle.
 この構成によって、室外側吸込口3から導入された室外空気が除湿部12を通過し、室内側吹出口4へ供給されることで、室外空気の導入及び除湿が実現する。 With this configuration, the outdoor air introduced from the outdoor suction port 3 passes through the dehumidifying section 12 and is supplied to the indoor air outlet 4, so that the outdoor air can be introduced and dehumidified.
 加えて、給気装置1は、給気ファンモータ10の送風を所定の風量に制御する風量一定制御部11を備える。 In addition, the air supply device 1 includes a constant air volume control unit 11 that controls the air flow of the air supply fan motor 10 to a predetermined air volume.
 次いで、図2を参照して、風量一定制御部11にて実行される風量一定制御について説明する。図2は、風量一定制御の処理を示すフローチャートである。ここで、フローチャートではSを頭文字にして番号を割り振った。例えばS1などは処理ステップを指す。但し、処理ステップを示す数値の大小と処理順序は関係しない。 Next, with reference to FIG. 2, the constant air volume control executed by the constant air volume control unit 11 will be described. FIG. 2 is a flowchart showing a process of constant air volume control. Here, in the flowchart, numbers are assigned with S as an acronym. For example, S1 and the like refer to a processing step. However, the magnitude of the numerical value indicating the processing step and the processing order are irrelevant.
 風量一定制御が実行されると、まず風量一定制御部11が目標風量を決定する(S1)。目標風量は例えば、200m/hとし、給気装置1の風量一定制御部11に記憶させても良いし、給気装置1に入力部を設け入力させても良い。 When the constant air volume control is executed, the constant air volume control unit 11 first determines the target air volume (S1). For example, the target air volume may be set to 200 m 3 / h and stored in the air volume constant control unit 11 of the air supply device 1, or an input unit may be provided in the air supply device 1 to input the air volume.
 そして、風量一定制御部11が目標風量に応じた起動時の速度指示電圧(以下Vspと記載する)を給気ファンモータ10に印加する(S2)。それにより、給気ファンモータ10は駆動する。起動時のVspは、例えば、2.5Vとし、DCモータの動き出しに必要なトルクを出せる出力としても良い。 Then, the constant air volume control unit 11 applies a speed indicator voltage (hereinafter referred to as Vsp) at startup according to the target air volume to the air supply fan motor 10 (S2). As a result, the air supply fan motor 10 is driven. The Vsp at startup may be, for example, 2.5 V, and may be an output capable of producing the torque required to start the movement of the DC motor.
 次に、風量一定制御部11は、所定時間T秒毎に給気ファンモータ10の電流と回転数とを検出する(S3)。例えば、給気ファンモータ10の一例であるDCモータの内部にはホールICが備えられている。ホールICは、DCモータが一定角度回転するたびにパルス信号を出力する。そして、風量一定制御部11のマイクロコンピュータがパルス信号を検出し、一定時間におけるパルス信号の数から給気ファンモータ10の回転数を導く。また、給気ファンモータ10の電流の検出例についても説明する。例えば、モータ駆動回路に低抵抗のシャント抵抗を接続して、シャント抵抗間の電圧をマイクロコンピュータにより検出する。風量一定制御部11はマイクロコンピュータが検出した電圧とシャント抵抗から電流を導き出す。なお、風量一定制御部11が給気ファンモータ10の電流と、回転数とを検出する所定時間T秒は、例えば、1秒とし、100ms毎に測定した給気ファンモータ10の電流・回転数の値の1秒の移動平均値とすることでノイズの影響を受けにくくしても良い。 Next, the constant air volume control unit 11 detects the current and the rotation speed of the air supply fan motor 10 every T seconds for a predetermined time (S3). For example, a Hall IC is provided inside the DC motor, which is an example of the air supply fan motor 10. The Hall IC outputs a pulse signal each time the DC motor rotates by a certain angle. Then, the microcomputer of the air volume constant control unit 11 detects the pulse signal, and derives the rotation speed of the air supply fan motor 10 from the number of pulse signals in a fixed time. Further, an example of detecting the current of the air supply fan motor 10 will also be described. For example, a low resistance shunt resistor is connected to the motor drive circuit, and the voltage between the shunt resistors is detected by a microcomputer. The constant air volume control unit 11 derives a current from the voltage and shunt resistance detected by the microcomputer. The predetermined time T seconds for the air volume constant control unit 11 to detect the current of the air supply fan motor 10 and the rotation speed is, for example, 1 second, and the current / rotation speed of the air supply fan motor 10 measured every 100 ms. By setting the moving average value of the value of 1 to 1 second, it may be less affected by noise.
 次に、風量一定制御部11は、電流・回転数テーブルを参照する(S4)。電流・回転数テーブルには、事前に実験的に定められた、電流と当該電流に対して目標とする回転数とが対応付けて記憶されている。つまり、電流を基に電流・回転数テーブルを参照することで、目標回転数を取得することができる。 Next, the constant air volume control unit 11 refers to the current / rotation speed table (S4). In the current / rotation speed table, the current and the target rotation speed for the current, which are experimentally determined in advance, are stored in association with each other. That is, the target rotation speed can be obtained by referring to the current / rotation speed table based on the current.
 そして、風量一定制御部11は現在の給気ファンモータ10の回転数と目標回転数とを比較する(S5)。 Then, the constant air volume control unit 11 compares the current rotation speed of the air supply fan motor 10 with the target rotation speed (S5).
 比較した結果、給気ファンモータ10の現在の回転数と目標回転数が異なれば、給気ファンモータ10の現在の回転数と、電流・回転数テーブルを介して得られた目標回転数との差に基づいて給気ファンモータ10のVspを決定する。現在の回転数と目標回転数の差から決定すべきVspについても事前に実験的に定められた、回転数差と当該回転数差に対して印加すべきVspとが対応付けてテーブルとして記憶されており、テーブルを参照することで、Vspを決定する。決定されたVspを給気ファンモータ10に印加することで、目標風量となるように給気ファンモータ10の出力を変更する(S5No→S6)。その後、S3の処理へ移行する。 As a result of comparison, if the current rotation speed of the air supply fan motor 10 and the target rotation speed are different, the current rotation speed of the air supply fan motor 10 and the target rotation speed obtained through the current / rotation speed table are different. The Vsp of the air supply fan motor 10 is determined based on the difference. The Vsp to be determined from the difference between the current rotation speed and the target rotation speed is also stored as a table in which the rotation speed difference and the Vsp to be applied to the rotation speed difference, which are experimentally determined in advance, are associated with each other. The Vsp is determined by referring to the table. By applying the determined Vsp to the air supply fan motor 10, the output of the air supply fan motor 10 is changed so that the target air volume is obtained (S5No → S6). After that, the process proceeds to S3.
 また、S5において現在の給気ファンモータ10の回転数と目標回転数が同じであれば、目標風量になったと判断される(S5Yes→S7)。S7では、Vspを維持することで風量が目標風量となるよう一定に保ち、S3の処理へ移行する。 Further, if the current rotation speed of the air supply fan motor 10 and the target rotation speed are the same in S5, it is determined that the target air volume has been reached (S5Yes → S7). In S7, by maintaining Vsp, the air volume is kept constant so as to be the target air volume, and the process proceeds to S3.
 S3~S7の処理を繰り返し行うことで風量が一定に制御される。 The air volume is controlled to be constant by repeating the processes of S3 to S7.
 よって、給気装置1は接続される外部ダクトの長さによって給気風量が低下することを防止し、室内に一定風量の給気を行うことができる。さらに、外部ダクトの長さに関係なく換気装置の設置が可能になるため、設置業者の施工性が向上する。 Therefore, the air supply device 1 can prevent the air supply air volume from decreasing due to the length of the connected external duct, and can supply a constant air volume to the room. Further, since the ventilation device can be installed regardless of the length of the external duct, the workability of the installer is improved.
 また、風量一定制御がない場合、風量が低下すると圧縮機13の温度が上昇し除湿効率が低下する。しかし、風量一定制御により風量が低下しないため圧縮機13が常に一定に冷却され、除湿効率を落とすことなく除湿を行うことができる。 Further, if there is no constant air volume control, the temperature of the compressor 13 rises and the dehumidification efficiency decreases when the air volume decreases. However, since the air volume does not decrease due to the constant air volume control, the compressor 13 is always cooled constantly, and dehumidification can be performed without lowering the dehumidification efficiency.
 つまり、住宅の施工状態に関わらず所定の風量に維持され、圧縮機13の冷却が行われることで効率的に室内の給気及び除湿を行うことができる。 That is, the air volume is maintained at a predetermined level regardless of the construction state of the house, and the compressor 13 is cooled so that the air can be efficiently supplied and dehumidified in the room.
 (第2実施形態)
 次いで、図3と図4を参照して、本発明の第2実施形態に係る給気装置1について説明する。第2実施形態は圧縮機13に圧縮機温度センサ14を用いた場合の制御である。
(Second Embodiment)
Next, the air supply device 1 according to the second embodiment of the present invention will be described with reference to FIGS. 3 and 4. The second embodiment is control when the compressor temperature sensor 14 is used for the compressor 13.
 以下第2実施形態の給気装置1について、第1実施形態の給気装置1と相違する点を中心に説明する。第1実施形態の給気装置1と同一の構成については、同一の符号を付し説明を省略する。 Hereinafter, the air supply device 1 of the second embodiment will be described focusing on the differences from the air supply device 1 of the first embodiment. The same components as those of the air supply device 1 of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 図3は、第2実施形態に係る給気装置1を概略的に示す概略図である。第2実施形態に係る給気装置1は、圧縮機温度センサ14と制御部15とを備える。 FIG. 3 is a schematic view schematically showing the air supply device 1 according to the second embodiment. The air supply device 1 according to the second embodiment includes a compressor temperature sensor 14 and a control unit 15.
 圧縮機温度センサ14は、圧縮機13の温度を検知する。 The compressor temperature sensor 14 detects the temperature of the compressor 13.
 制御部15は、空気の除湿を優先する除湿優先モードと、風量一定制御を優先する風量優先モードとを選択可能に制御する。 The control unit 15 controls to select between a dehumidification priority mode that prioritizes dehumidification of air and an air volume priority mode that prioritizes constant air volume control.
 風量優先モードとは、給気ファンモータ10の送風を所定の風量に制御するモードである。風量優先モードが選択された場合、風量一定制御部11によって第1実施形態に示した風量一定制御が行われる。 The air volume priority mode is a mode in which the air flow of the air supply fan motor 10 is controlled to a predetermined air volume. When the air volume priority mode is selected, the air volume constant control unit 11 performs the air volume constant control shown in the first embodiment.
 除湿優先モードとは、圧縮機13の温度が上昇している場合に、所定の風量を増加させることで、圧縮機13の冷却を適切に行い、圧縮機13の発熱を抑制するモードである。これにより、圧縮機13を介した除湿能力が適正範囲に維持されるため、効率的に室内の除湿を行うことができる。また、圧縮機13の温度が低下している場合に、所定の風量を減少させても良い。これにより、圧縮機13を適切な風量で冷却することができ、給気ファンモータ10の消費エネルギーを削減できる。 The dehumidification priority mode is a mode in which the compressor 13 is appropriately cooled by increasing a predetermined air volume when the temperature of the compressor 13 is rising, and the heat generation of the compressor 13 is suppressed. As a result, the dehumidifying capacity via the compressor 13 is maintained within an appropriate range, so that the room can be efficiently dehumidified. Further, when the temperature of the compressor 13 is lowered, the predetermined air volume may be reduced. As a result, the compressor 13 can be cooled with an appropriate air volume, and the energy consumption of the air supply fan motor 10 can be reduced.
 除湿優先モードが選択された場合の風量一定制御部11による制御について、図4を参照して説明する。図4は除湿優先モードの制御の処理を示すフローチャートである。 The control by the constant air volume control unit 11 when the dehumidification priority mode is selected will be described with reference to FIG. FIG. 4 is a flowchart showing a process of controlling the dehumidification priority mode.
 S11~S12の処理については、前述の図2のフローチャートのS1~S2と同一であるため説明を省略する。 The processing of S11 to S12 is the same as that of S1 to S2 in the flowchart of FIG. 2 described above, and thus the description thereof will be omitted.
 風量一定制御部11は、圧縮機温度センサ14より圧縮機13の温度を取得する(S13)。 The constant air volume control unit 11 acquires the temperature of the compressor 13 from the compressor temperature sensor 14 (S13).
 風量一定制御部11は、圧縮機13の温度に基づき目標風量を変更する(S14)。ここで、目標風量の変更方法について説明する。例えば事前に実験を行い、効率的に除湿を行うことが出来る圧縮機13の目標温度を決定する。風量一定制御部11は、圧縮機温度センサ14が検出した温度が目標温度よりも高い場合は、圧縮機13の温度を下げるために目標風量を上げる。逆に、風量一定制御部11は、圧縮機温度センサ14が検出した温度が目標温度よりも低い場合は、圧縮機13を必要以上に冷却しているので目標風量を下げる。 The constant air volume control unit 11 changes the target air volume based on the temperature of the compressor 13 (S14). Here, a method of changing the target air volume will be described. For example, an experiment is conducted in advance to determine a target temperature of the compressor 13 capable of efficiently dehumidifying. When the temperature detected by the compressor temperature sensor 14 is higher than the target temperature, the constant air volume control unit 11 raises the target air volume in order to lower the temperature of the compressor 13. On the contrary, when the temperature detected by the compressor temperature sensor 14 is lower than the target temperature, the constant air volume control unit 11 lowers the target air volume because the compressor 13 is cooled more than necessary.
 S15~S19の処理については、前述の図2のフローチャートのS3~S7と同一であるため説明を省略する。 The processing of S15 to S19 is the same as that of S3 to S7 in the flowchart of FIG. 2 described above, and thus the description thereof will be omitted.
 S13~S19の処理を繰り返すことで、圧縮機13の温度に応じて目標風量を変化させることが出来る。 By repeating the processes of S13 to S19, the target air volume can be changed according to the temperature of the compressor 13.
 これにより、圧縮機13の温度が上昇している場合に、所定の風量を増加させることで、圧縮機の冷却を適切に行い、圧縮機13の発熱を抑制することができる。つまり、給気装置1は圧縮機13の発熱を抑制し効率的に除湿することが出来る。また、圧縮機の温度が低下している場合に、所定の風量を減少させることで、圧縮機を適切な風量で冷却することができ、給気ファンモータ10の消費エネルギーを削減することができる。 As a result, when the temperature of the compressor 13 is rising, the compressor can be appropriately cooled by increasing the predetermined air volume, and the heat generation of the compressor 13 can be suppressed. That is, the air supply device 1 can suppress the heat generation of the compressor 13 and efficiently dehumidify. Further, when the temperature of the compressor is lowered, the compressor can be cooled with an appropriate air volume by reducing the predetermined air volume, and the energy consumption of the air supply fan motor 10 can be reduced. ..
 以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。また、上記各実施形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 Although the present invention has been described above based on the embodiments, the present invention is not limited to the above embodiments, and it is easy to make various improvements and modifications within a range that does not deviate from the gist of the present invention. It can be inferred. Further, the numerical values given in each of the above embodiments are examples, and it is naturally possible to adopt other numerical values.
 (発明の概要)
 本発明に係る給気装置は、室外側吸込口と室内側吹出口とを有する筐体と、室外側吸込口と室内側吹出口とを連通する給気風路と、室外側吸込口から室内側吹出口へ空気を導く給気ファンモータと、圧縮機を用いた冷媒サイクルによって給気風路を流れる空気を除湿する除湿部と、外気を前記室外側吸込口に導くダクトである外部ダクト、または筐体内で除湿された空気を室内側吹出口から室内へ導くダクトである内部ダクト、の少なくとも一方と、ダクトの長さに関わらず給気ファンモータを介して送風する風量を所定の一定風量に制御する風量一定制御部と、を備え、圧縮機は、給気風路に設けられ、風量一定制御部によって一定風量に保たれた空気により冷却される。
(Outline of Invention)
The air supply device according to the present invention includes a housing having an outdoor suction port and an indoor air outlet, an air supply air passage communicating the outdoor air inlet and the indoor air outlet, and an outdoor air inlet to the indoor side. An air supply fan motor that guides air to the air outlet, a dehumidifying section that dehumidifies the air flowing through the air supply air passage by a refrigerant cycle using a compressor, and an external duct or casing that is a duct that guides the outside air to the outdoor suction port. Controls at least one of the internal duct, which is a duct that guides the dehumidified air in the body from the indoor outlet to the room, and the air volume that is blown through the air supply fan motor regardless of the length of the duct to a predetermined constant air volume. The compressor is provided in the air supply air passage, and is cooled by the air maintained at a constant air volume by the air volume constant control unit.
 この構成によると、制御部によって、給気ファンモータの電流及び回転数を検出し所定の風量となるように給気ファンモータの出力が制御される。これにより、住宅の施工状態に関わらず所定の風量に維持され、圧縮機の冷却が行われることで効率的に室内の給気及び除湿を行うことができるという効果をえることができる。 According to this configuration, the control unit detects the current and rotation speed of the air supply fan motor and controls the output of the air supply fan motor so that the air volume becomes a predetermined value. As a result, it is possible to obtain the effect that the air volume is maintained at a predetermined level regardless of the construction state of the house and the compressor is cooled so that the air can be efficiently supplied and dehumidified in the room.
 また、本願発明の給気装置は、圧縮機の温度を検出する圧縮機温度センサを備えても良い。 Further, the air supply device of the present invention may include a compressor temperature sensor that detects the temperature of the compressor.
 この構成により、圧縮機の温度が上昇している場合に、所定の風量を増加させることで、圧縮機の冷却を適切に行い、圧縮機の発熱を抑制するという効果を得ることができる。また、圧縮機の温度が低下している場合に、所定の風量を減少させても良い。これにより、圧縮機を適切な風量で冷却することができ、給気ファンモータの消費エネルギーを削減できるという効果を得ることができる。 With this configuration, when the temperature of the compressor is rising, the effect of appropriately cooling the compressor and suppressing the heat generation of the compressor can be obtained by increasing the predetermined air volume. Further, when the temperature of the compressor is lowered, the predetermined air volume may be reduced. As a result, the compressor can be cooled with an appropriate air volume, and the effect of reducing the energy consumption of the air supply fan motor can be obtained.
 また、本願発明の筐体は、屋根裏、床下、または壁内のいずれかに設けられてもよい。これにより、様々な場所に筐体を設置することが出来るという効果を得ることが出来る。 Further, the housing of the present invention may be provided in the attic, under the floor, or in the wall. This makes it possible to obtain the effect that the housing can be installed in various places.
 本発明に係る給気装置は、室外空気の室内への供給を行うと共に除湿を行う給気装置として有効である。 The air supply device according to the present invention is effective as an air supply device that supplies outdoor air into the room and dehumidifies the room.
1    給気装置
2    本体
3    室外側吸込口
4    室内側吹出口
7、101    給気風路
10   給気ファンモータ
11   風量一定制御部
12   除湿部
13、102   圧縮機
14   圧縮機温度センサ
15   制御部
1 Air supply device 2 Main body 3 Outdoor suction port 4 Indoor air outlet 7, 101 Air supply air passage 10 Air supply fan motor 11 Constant air volume control unit 12 Dehumidifying unit 13, 102 Compressor 14 Compressor temperature sensor 15 Control unit

Claims (3)

  1. 室外側吸込口と室内側吹出口とを有する筐体と、
    前記室外側吸込口と前記室内側吹出口とを連通する給気風路と、
    前記室外側吸込口から前記室内側吹出口へ空気を導く給気ファンモータと、
    圧縮機を用いた冷媒サイクルによって前記給気風路を流れる空気を除湿する除湿部と、
    外気を前記室外側吸込口に導くダクトである外部ダクト、または前記筐体内で除湿された空気を前記室内側吹出口から室内へ導くダクトである内部ダクト、の少なくとも一方と、
    前記ダクトの長さに関わらず前記給気ファンモータを介して送風する風量を所定の一定風量に制御する風量一定制御部と、を備え、
    前記圧縮機は、
     前記給気風路に設けられ、
     前記風量一定制御部によって前記一定風量に保たれた空気により冷却される、給気装置。
    A housing having an outdoor suction port and an indoor air outlet,
    An air supply air passage that communicates the outdoor suction port and the indoor air outlet, and
    An air supply fan motor that guides air from the outdoor suction port to the indoor air outlet,
    A dehumidifying section that dehumidifies the air flowing through the air supply air passage by a refrigerant cycle using a compressor,
    At least one of an external duct, which is a duct that guides the outside air to the outdoor suction port, or an internal duct, which is a duct that guides the dehumidified air in the housing from the indoor air outlet to the room.
    A constant air volume control unit that controls the air volume to be blown through the air supply fan motor to a predetermined constant air volume regardless of the length of the duct is provided.
    The compressor
    Provided in the air supply air passage
    An air supply device that is cooled by the air maintained at a constant air volume by the constant air volume control unit.
  2. 前記空気の除湿を優先する除湿優先モードと、前記一定風量の制御を優先する風量優先モードとを選択可能に制御する制御部と、
    前記圧縮機の温度を検知する温度センサと、を備え、
    前記風量一定制御部は、
     前記制御部が前記除湿優先モードを選択している場合には、前記温度センサが検出した前記圧縮機の検出温度に基づき、前記給気ファンモータを介して送風する風量を制御する請求項1に記載の給気装置。
    A control unit that can selectably control a dehumidification priority mode that prioritizes dehumidification of the air and an air volume priority mode that prioritizes control of the constant air volume.
    A temperature sensor for detecting the temperature of the compressor is provided.
    The constant air volume control unit
    When the control unit selects the dehumidification priority mode, claim 1 controls the amount of air blown through the air supply fan motor based on the temperature detected by the compressor detected by the temperature sensor. The described air supply device.
  3. 前記筐体は、
     屋根裏、床下、または壁内のいずれかに設けられる請求項1記載の給気装置。
    The housing is
    The air supply device according to claim 1, which is provided in the attic, under the floor, or in the wall.
PCT/JP2020/032984 2019-09-02 2020-09-01 Air supply device WO2021045026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021543765A JPWO2021045026A1 (en) 2019-09-02 2020-09-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-159288 2019-09-02
JP2019159288 2019-09-02

Publications (1)

Publication Number Publication Date
WO2021045026A1 true WO2021045026A1 (en) 2021-03-11

Family

ID=74852544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032984 WO2021045026A1 (en) 2019-09-02 2020-09-01 Air supply device

Country Status (2)

Country Link
JP (1) JPWO2021045026A1 (en)
WO (1) WO2021045026A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468929U (en) * 1990-10-24 1992-06-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468929U (en) * 1990-10-24 1992-06-18

Also Published As

Publication number Publication date
JPWO2021045026A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6397050B2 (en) Air conditioner
JP5896719B2 (en) Air conditioner
US20070289322A1 (en) Air handler unit fan installation and control method
JP2012241969A (en) Air volume adjustment device for air conditioner
US20190203971A1 (en) Heat exchange-type ventilation device
WO2021045026A1 (en) Air supply device
KR100491718B1 (en) Air conditioner
KR100717345B1 (en) Air conditioner
JP2651328B2 (en) Method and apparatus for controlling hot gas bypass circuit of refrigeration circuit
JP2014215008A (en) Air conditioner and air conditioner operation method
EP3415831B1 (en) Cooling fan automatic control system and cooling fan automatic control device
JP5849237B2 (en) Embedded ceiling air conditioner
JP2009133573A (en) Operation control method of refrigerator in environmental test system, and environmental test system
JPH0823432B2 (en) Air conditioner air volume control method
JP2019128070A (en) Blast volume change detection device
JPS5927145A (en) Air conditioner
JP7296780B2 (en) Exhaust system
WO2023062908A1 (en) Air conditioner
WO2023062909A1 (en) Air conditioner
JP3144829B2 (en) Air conditioner
WO2016199218A1 (en) Air conditioning device
JP2870861B2 (en) Air conditioner
JPH03255861A (en) Air conditioner
JP3144869B2 (en) Air conditioner
JP3144885B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860738

Country of ref document: EP

Kind code of ref document: A1