WO2021044907A1 - Thermic fluid state computation apparatus - Google Patents

Thermic fluid state computation apparatus Download PDF

Info

Publication number
WO2021044907A1
WO2021044907A1 PCT/JP2020/032026 JP2020032026W WO2021044907A1 WO 2021044907 A1 WO2021044907 A1 WO 2021044907A1 JP 2020032026 W JP2020032026 W JP 2020032026W WO 2021044907 A1 WO2021044907 A1 WO 2021044907A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow velocity
value
temperature distribution
distribution
velocity distribution
Prior art date
Application number
PCT/JP2020/032026
Other languages
French (fr)
Japanese (ja)
Inventor
俊太 原田
将輝 ▲高▼石
幸典 小山
徹 宇治原
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2021543710A priority Critical patent/JP7162937B2/en
Publication of WO2021044907A1 publication Critical patent/WO2021044907A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement

Definitions

  • the thermal fluid container structure is complicated and strict. Therefore, the observable region of the state of the thermal fluid (eg, temperature, flow velocity, etc.) may be limited to a local region such as a part of the surface of the thermal fluid. In this case, it is difficult to grasp the overall temperature distribution and flow velocity distribution of the thermal fluid.
  • the observable region of the state of the thermal fluid eg, temperature, flow velocity, etc.
  • thermo-fluid state calculation device acquires a plurality of sets of temperature distribution simulation values and flow velocity distribution simulation values in a J-dimensional region (J is a value of 1, 2, or 3) indicating a part of the thermo-fluid. It has a part. Multiple sets are acquired based on a plurality of parameter groups, each having a different value.
  • the thermo-fluid state calculation device includes an extraction unit that extracts two or more sets of characteristic temperature distribution and characteristic flow velocity distribution by decomposing each of a plurality of sets of temperature distribution simulation value and flow velocity distribution simulation value.
  • the thermo-fluid state calculation device includes a measuring unit for measuring a predetermined region temperature distribution measurement value, which is a temperature distribution of a predetermined region which is a region of a part of the thermal fluid and is included in the J-dimensional region.
  • the thermo-fluid state arithmetic unit is an arithmetic unit that calculates the predicted temperature distribution value and the predicted flow velocity distribution value in the J-dimensional region by linearly summing two or more sets of the characteristic temperature distribution and the characteristic flow velocity distribution. Be prepared.
  • the predetermined region temperature distribution predicted value included in the calculated temperature distribution predicted value, and the predetermined region temperature distribution predicted value indicating the temperature distribution in the predetermined region is the predetermined region temperature distribution measured value measured by the measuring unit. Calculate to match.
  • the simulation value of the temperature distribution and the simulation value of the flow velocity distribution can be decomposed as one. Then, by extracting two or more sets of the characteristic temperature distribution and the characteristic flow velocity distribution and linearly summing them with each other, the overall temperature distribution and the flow velocity distribution of the thermal fluid can be predicted. At this time, the linear sum is performed so that the temperature distribution predicted value of the predetermined region obtained by the measurement matches the temperature distribution predicted value of the predetermined region obtained by the measurement. This makes it possible to predict the overall thermofluid state based on the measured values in a local predetermined region. It is possible to grasp the overall temperature distribution and flow velocity distribution of the thermal fluid.
  • the extraction unit may standardize each of a plurality of sets of the temperature distribution simulation value and the flow velocity distribution simulation value, and then perform the decomposition.
  • To standardize the temperature distribution simulation values obtain the average temperature distribution of multiple temperature distribution simulation values, obtain the deviation from the average temperature distribution for each of the multiple temperature distribution simulation values, and obtain one deviation from the multiple average temperature distributions. It may be performed by obtaining the standard deviation of the temperature distribution and dividing each of the deviations from the plurality of average temperature distributions by the standard deviation of the temperature distribution.
  • To standardize the flow velocity distribution simulation values obtain the average flow velocity distribution of multiple flow velocity distribution simulation values, obtain the deviation from the average flow velocity distribution for each of the multiple flow velocity distribution simulation values, and obtain one from the deviations from the plurality of average flow velocity distributions. It may be performed by obtaining the flow velocity standard deviation and dividing each of the deviations from the plurality of average flow velocity distributions by the flow velocity standard deviation.
  • the thermal fluid may be a melt of a semiconductor crystal material.
  • the plurality of parameter groups may include the rotation speed of the container containing the thermal fluid and the rotation speed of the semiconductor crystal in contact with the melt.
  • the semiconductor crystal may be a SiC crystal.
  • the acquisition unit may further acquire the carbon concentration distribution simulation value in the J-dimensional region.
  • the extraction unit may further extract the characteristic carbon concentration distribution.
  • the calculation unit may further calculate the predicted carbon concentration distribution value.
  • the predetermined region may be a part of the upper surface of the melt.
  • a control unit that feedback-controls the rotation speed of the container and the rotation speed of the semiconductor crystal so that each of the predicted temperature distribution value and the predicted flow velocity distribution value calculated by the calculation unit are suitable values for the growth of the semiconductor crystal. You may have it.
  • the acquisition unit performs K rows on the XY plane.
  • L columns (K and L are natural numbers of 1 or more) may be treated as a matrix.
  • Each of the temperature distribution simulation value, the X-direction flow velocity distribution simulation value, and the Y-direction flow velocity distribution simulation value may be represented by a matrix of rows K and columns L.
  • the matrix X to be decomposed by singular value may be represented by a matrix of N rows and M columns (N and M are natural numbers of 1 or more).
  • the value of N may be the number of a plurality of parameter groups.
  • the components of the i-th row (i is a natural number of 1 or more and N or less) of the matrix X are standardized in the K ⁇ L column that unifies the standardized temperature distribution simulation values in the i-th parameter group and in the i-th parameter group. It has a component in which a K ⁇ L column that unifies the X-direction flow velocity distribution simulation values and a K ⁇ L column that unifies the standardized Y-direction flow velocity distribution simulation values in the i-th parameter group are arranged in order. May be good.
  • FIG. 1 shows a schematic configuration diagram of the crystal growth system 1.
  • the crystal growth system 1 includes a solution state calculation device 2 and a crystal growth device 3.
  • the crystal growth device 3 is a device that grows a SiC crystal in liquid phase by the TSSG (Top-Seeded Solution Growth) method.
  • the crystal growth device 3 includes a housing 10, a crucible accommodating unit 11, a rotating unit 12, a driving unit 12a, a crystal supporting unit 13, a driving unit 13a, a high frequency coil 14, a crucible 15, and a thermocamera (infrared thermography) 20.
  • the housing 10 has an outer wall surface on the outer surface of a cylinder, and houses a high-frequency coil 14 and a crucible accommodating portion 11.
  • a window portion 10w is arranged on the upper part of the housing 10.
  • the crucible accommodating section 11 accommodates the crucible 15.
  • the surface of the crucible accommodating portion 11 is covered with a heat insulating material.
  • the thermo camera 20 measures the temperature distribution of a part of the surface of the melt 17 through the gap between the window portion 10w and the upper portion of the crucible accommodating portion 11.
  • the drive unit 12a is a portion for rotating the crucible accommodating unit 11 and the crucible 15 via the rotating unit 12.
  • the crystal support portion 13 is a member that rotatably supports the seed crystal 16 and the grown SiC crystal 18.
  • the drive unit 13a is a portion for rotating the crystal support unit 13.
  • the central axes CA of the rotating portion 12 and the crystal supporting portion 13 are aligned.
  • the high-frequency coil 14 receives power from a power supply device (not shown) to induce and heat the crucible 15.
  • the relative positions of the high-frequency coil 14 and the crucible 15 can be changed by a drive mechanism (not shown). Thereby, the temperature distribution of the crucible 15 at the time of heating can be changed.
  • the crucible 15 contains the melt 17.
  • the melt 17 is a solution of Si. Carbon atoms melt from the crucible 15. Therefore, the SiC crystal 18 can be grown starting from the seed crystal 16 which is a SiC template.
  • the solution state calculation device 2 includes an acquisition unit 30, an extraction unit 32, a storage unit 34, a measurement unit 36, a calculation unit 38, and a control unit 40.
  • the acquisition unit 30, the extraction unit 32, the calculation unit 38, and the control unit 40 are, for example, CPUs. The contents of these parts will be described later.
  • the measurement unit 36 is an interface for acquiring the measurement result of the thermo camera 20.
  • the storage unit 34 is a portion that stores the simulation results described later and various data used in the calculation unit 38.
  • the storage unit 34 may be a combination of RAM, flash memory, HDD, and the like.
  • the control unit 40 is a portion that controls the rotation speed of the rotating unit 12 and the crystal support unit 13, the relative position between the high-frequency coil 14 and the crucible 15, the current value of the high-frequency coil 14, and the like.
  • the crystal growth system 1 predicts the temperature distribution and the flow velocity distribution of the entire melt 17 based on the measured values of the temperature distribution of a part of the surface of the melt 17. Then, by feedback-controlling the parameter group (eg, the rotation speed of the rotating portion 12 and the rotation speed of the crystal support portion 13) based on the prediction result, the temperature distribution and the flow velocity distribution of the melt 17 can be controlled by the growth of the SiC crystal 18. Keep it in a suitable condition.
  • the parameter group eg, the rotation speed of the rotating portion 12 and the rotation speed of the crystal support portion 13
  • FIG. 2 shows the operation flow of the crystal growth system 1.
  • the operation flow is roughly classified into a simulation value acquisition step S10, a feature amount extraction step S20, a temperature distribution and velocity distribution calculation step S30, and a feedback control step S40. Each step will be described below.
  • ⁇ Simulation value acquisition step> a regression model for predicting the temperature distribution and the flow velocity distribution of the entire melt 17 is created. Creating such a regression model requires the collection of large amounts of data, but it is difficult to collect by experiment. Therefore, data is acquired by simulation using thermo-fluid calculation software.
  • the acquisition unit 30 creates a two-dimensional model of the crystal growth apparatus 3.
  • an axisymmetric model for the central axis CA is created.
  • FIG. 3 is a view showing the right half side of the cross-sectional view passing through the central axis CA.
  • the horizontal direction from the central axis CA is defined as the X direction
  • the upward direction of the central axis CA is defined as the Y direction.
  • This XY plane shows a part of the melt 17 stored in the crucible 15.
  • a grid (mesh) is virtually set on this XY plane. Specifically, the XY plane is treated as a matrix of 41 rows and 120 columns.
  • the grid in the XY plane of FIG. 3 is an example, and is not 41 rows and 120 columns.
  • a predetermined region R1 that is not hidden by the seed crystal 16 exists on the surface of the melt 17.
  • the predetermined region R1 is a part of the upper surface of the melt 17, and is a region that can be observed by the thermo camera 20 (FIG. 1, arrow A11). Further, the predetermined region R1 is a region included in the XY plane.
  • the acquisition unit 30 sets a plurality of parameter groups.
  • the rotation speed of the crucible 15, the rotation speed of the crystal support portion 13, and the relative position of the high-frequency coil 14 with respect to the crucible 15 are used as the parameter group.
  • a plurality of parameter groups having various different combinations of the rotation speed of the crucible 15, the rotation speed of the crystal support portion 13, and the relative position of the high-frequency coil 14 with respect to the crucible 15 were set.
  • the inner and outer diameters of the crucible 15, the thickness of the bottom surface and the side wall of the crucible 15, the diameter of the seed crystal 16, the size of the crucible accommodating portion 11, and the like were set to constant values. Therefore, when changing these values, it is necessary to recreate them from the axisymmetric model of FIG.
  • the acquisition unit 30 performs a simulation calculation using each of the plurality of parameter groups.
  • one output result (a set of a temperature distribution simulation value in the XY plane, an X direction flow velocity distribution simulation value, and a Y direction flow velocity distribution simulation value) is obtained for one parameter group.
  • the temperature distribution simulation value, the X-direction flow velocity distribution simulation value, and the Y-direction flow velocity distribution simulation value are matrices of 41 rows and 120 columns, respectively.
  • results of 10 patterns or more and 100 million patterns or less can be obtained.
  • the number of patterns may be appropriately determined in consideration of the required simulation accuracy and calculation load.
  • 98 patterns of results were obtained based on 98 parameter groups.
  • the results are stored in the storage unit 34.
  • the feature amount extraction step (S20) is extracted by singular value decomposition. Specifically, the temperature distribution and the flow velocity distribution are integrated into a singular value decomposition. This is because the temperature distribution and the flow velocity distribution are closely related from the viewpoint of heat transport. This step is performed by the extraction unit 32.
  • the extraction unit 32 executes standardization of a plurality of sets of temperature distribution simulation values, standardization of a plurality of sets of X-direction flow velocity distribution simulation values, and standardization of a plurality of sets of Y-direction flow velocity distribution simulation values.
  • the reason for standardization is to align the scales of different physical quantities. This makes it possible to generate a matrix X by arranging physical quantities having different dimensions of "temperature” and "velocity” in the next step.
  • There are standardization methods such as "minimum value 0, maximum value 1" and standardization such that "mean 0, variance 1". Although the latter standardization method is used in the present specification, various standardization methods can be used without this limitation.
  • One average temperature distribution MTD is obtained from 98 temperature distribution simulation values TDS 1 to TDS 98 (FIG. 4A, arrow A0).
  • the average temperature distribution MTD is subtracted from each of the temperature distribution simulation values TDS 1 to TDS 98 (FIG. 4A, arrow A1).
  • the deviations TDV 1 to TDV 98 from the average temperature distribution MTD can be obtained for each of the temperature distribution simulation values TDS 1 to TDS 98.
  • the temperature distribution standard deviation TSD can be obtained by finding the positive square root of the value obtained by dividing the sum of the squares of the deviations TDV 1 to TDV 98 by the total number of data (98). Then, by dividing each of the deviations TDV 1 to TDV 98 by the temperature distribution standard deviation TSD, the standardized temperature distribution simulation values STS 1 to STS 98 can be obtained. (FIG. 4B, arrow A3).
  • the temperature distribution simulation value TDS, average temperature distribution MTD, deviation TDV, temperature distribution standard deviation TSD, and standardized temperature distribution simulation value STS are all a matrix of "41 rows x 120 columns".
  • the standardized X-direction flow velocity distribution simulation values SXS 1 to SXS 98 can be obtained.
  • the X-direction flow velocity distribution simulation value XFS, the average X-direction flow velocity distribution MXF, the deviation XDV, the X-direction flow velocity standard deviation XSD, and the standardized X-direction flow velocity distribution simulation value SXS are all a matrix of “41 rows ⁇ 120 columns”.
  • the standardized Y-direction flow velocity distribution simulation values SYS 1 to SYS 98 can be obtained.
  • the Y-direction flow velocity distribution simulation value YFS, the average Y-direction flow velocity distribution MYF, the deviation YDV, the Y-direction flow velocity standard deviation YSD, and the standardized Y-direction flow velocity distribution simulation value SYS are all a matrix of “41 rows ⁇ 120 columns”.
  • the extraction unit 32 generates a matrix X to be decomposed into singular values.
  • FIG. 5 shows a method of generating the matrix X.
  • the matrix X is an N-row and M-column matrix.
  • the value of N is the number of parameter groups, which is "98" in this embodiment.
  • the value of M is "14760" as described later.
  • Standardized temperature distribution simulation values STS 1 to STS 98 are arranged in the region RC1 from the first column to the 4920th column.
  • the standardized temperature distribution simulation values STS 1 to STS 98 are arranged after being unified from the matrix of "41 rows x 120 columns” to "1 row x 4920 columns”.
  • the standardized X-direction flow velocity distribution simulation values SXS 1 to SXS 98 are arranged in a unified manner in “1 row ⁇ 4920 columns”.
  • normalized Y-direction flow velocity distribution simulation values SYS 1 ⁇ SYS 98 is arranged on which a centralized "1 row ⁇ 4920 columns.”
  • the components of the i-th row (i is a natural number of 1 or more and N or less) of the matrix X are the standardized X-direction flow velocity distribution simulation value SXS i in the unified 4920 columns and the standardized X-direction flow velocity distribution simulation value. It has a component in which 4920 columns in which the SXS i is unified and 4920 columns in which the standardized Y-direction flow velocity distribution simulation value SYS i is unified are arranged in order. Therefore, the matrix X has "14760 columns".
  • the temperature distribution and the velocity distribution can be integrated into a singular value decomposition.
  • the matrix X is decomposed into singular values. That is, as shown in FIG. 6, the matrix X (N ⁇ M matrix) can be represented by the product of the matrix U (N ⁇ s matrix), the matrix S (s ⁇ s matrix), and the matrix V (s ⁇ M matrix). it can. As described above, the value of N is "98" and the value of M is "14760". s is the number of singular values. The larger the value of s, the smaller the error in the predicted values of the temperature distribution and the flow velocity distribution obtained by the calculation of S33 described later. However, the burden of calculation becomes large. For example, the value of s may be determined so that the root mean square error (RMSE) of the error of the predicted value with respect to the actual value is equal to or less than a predetermined value. In this embodiment, the value of s is set to "10".
  • RMSE root mean square error
  • the characteristic temperature distributions CTD 1 to CTD s , the characteristic X-direction flow velocity distributions CXF 1 to CXF s , and the characteristic Y-direction flow velocity distributions CYF 1 to CYF s can be obtained. It can.
  • s (10) sets consisting of the characteristic temperature distribution CTD, the characteristic X-direction flow velocity distribution CXF, and the characteristic Y-direction flow velocity distribution CYF can be extracted.
  • the characteristic temperature distribution CTD, the characteristic X-direction flow velocity distribution CXF, and the characteristic Y-direction flow velocity distribution CYF are a matrix unified into "1 row ⁇ 4920 columns". These characteristic distributions cannot be obtained by observation, but can be obtained only by calculation, so it can be said that they are potential solution states.
  • each of the matrices U, S, and V is converted into the matrices U', S', and V'.
  • N is the number of rows in the matrix X
  • M is the number of columns in the matrix X.
  • U' U ⁇ N 1/2 ... Equation (1)
  • S' S / (N ⁇ M) 1/2 ... Equation (2)
  • V' V ⁇ M 1/2 ... Equation (3)
  • the calculation step (S30) of the temperature distribution and the velocity distribution is performed by the calculation unit 38.
  • the crystal growth system 1 starts the growth of the SiC crystal 18.
  • the measuring unit 36 measures the temperature distribution of the predetermined region R1 on the surface of the melt 17 by using the thermo camera 20 (see FIGS. 1 and 3).
  • the calculation unit 38 calculates the predicted values of the temperature distribution and the flow velocity distribution. This will be specifically described with reference to FIG. 7. Linear by multiplying each of the 10 sets of characteristic temperature distributions CTD 1 to CTD 10 , characteristic X-direction flow velocity distributions CXF 1 to CXF 10 , and characteristic Y-direction flow velocity distributions CYF 1 to CYF 10 by coefficients ⁇ 1 to ⁇ 10. Reconcile.
  • the temperature distribution predicted value TDP can be calculated from the linear sum of the characteristic temperature distributions CTD 1 to CTD 10.
  • the X-direction flow velocity distribution predicted value XFP can be calculated from the linear sum of the characteristic X-direction flow velocity distributions CXF 1 to CXF 10.
  • the Y-direction flow velocity distribution predicted value YFP can be calculated from the linear sum of the characteristic Y-direction flow velocity distributions CYF 1 to CYF 10.
  • the characteristic temperature distribution CTD, the characteristic X-direction flow velocity distribution CXF, the characteristic Y-direction flow velocity distribution CYF, the temperature distribution predicted value TDP, the X-direction flow velocity distribution predicted value XFP, and the Y-direction flow velocity distribution predicted value YFP are all "41". It is a matrix of "rows x 120 columns”.
  • the calculated temperature distribution predicted value TDP includes a predetermined region R1p (see FIG. 7). This is an area corresponding to a predetermined area R1 (see FIG. 3) that can be observed by the thermo camera 20. Then, the coefficients ⁇ 1 to ⁇ 10 are searched so that the predicted temperature distribution value in the predetermined region R1p matches the measured temperature distribution value in the predetermined region R1 measured by the thermo camera 20. In other words, the coefficients ⁇ 1 to ⁇ 10 are optimized so as to minimize the error between the measured value and the predicted value in the temperature distribution of the local region (predetermined region R1).
  • the temperature distribution and velocity distribution (temperature distribution predicted value TDP, X-direction flow velocity distribution predicted value XFP, Y-direction flow velocity distribution predicted value YFP) of the entire melt 17 are obtained. ) Can be predicted accurately.
  • optimization was performed using a genetic algorithm. Specifically, a multi-objective optimization algorithm (NSGAII) was used.
  • the objective function was the root mean square error (RMSE) of the error between the measured and predicted values in the temperature distribution within the predetermined region R1.
  • RMSE root mean square error
  • the coefficient optimization method is not limited to the genetic algorithm, and various methods can be used.
  • the feedback control step (S40) is performed by the control unit 40.
  • the control unit 40 sets each of the temperature distribution predicted value TDP, the X-direction flow velocity distribution predicted value XFP, and the Y-direction flow velocity distribution predicted value YFP calculated by the calculation unit 38 as ideal values for the growth of the SiC crystal 18. Therefore, the rotation speed of the crucible 15, the rotation speed of the crystal support portion 13, and the relative position of the high-frequency coil 14 with respect to the crucible 15 are feedback-controlled. For example, when the X-direction flow velocity distribution predicted value XFP or the Y-direction flow velocity distribution predicted value YFP is smaller than the ideal value, the rotation speed of the crucible 15 or the crystal support portion 13 may be increased.
  • S42 it is determined whether or not the SiC crystal 18 is completed. If a negative determination is made (S42: NO), the processes of S32, S33, and S41 are repeated. If affirmative judgment is made (S42: YES), the flow is terminated.
  • characteristic temperature distributions CTD 1 to CTD 10 characteristic temperature distributions selected from the characteristic distributions extracted by the singular value decomposition (S23). 10.
  • the overall temperature distribution and velocity distribution can be predicted by linearly summing the characteristic Y-direction flow velocity distributions CYF 1 to CYF 10). That is, various and complicated temperature distributions and flow velocity distributions can be approximated (low-rank approximation) with as few features as possible. Since the burden of the arithmetic processing (S33) can be reduced, high-speed solution state prediction becomes possible. Therefore, it is possible to perform feedback control by following the momentary change of the temperature distribution and the velocity distribution.
  • Comparative experiments were performed to confirm the superiority of the simulations described herein.
  • the parameters of SiC crystal growth were determined without using the simulation according to the present specification.
  • the parameters of SiC crystal growth were determined based on the simulation according to the present specification. Examples of the parameters include the rotation speed of the rotating portion 12, the rotation speed of the crystal support portion 13, the heating temperature, and the like.
  • FIG. 8 shows a surface photograph of the SiC crystal grown in the comparative experimental example. It can be seen from FIG. 8 that the unevenness of the crystal surface is extremely severe. This is because polycrystals have grown and adhered to the surface due to improper parameter control. Moreover, since the surface is covered with SiC polycrystals, defect evaluation could not be performed. Although the parameters were tried and errored and comparative experiments were performed several times, only polycrystals could be grown in each case.
  • FIG. 9 shows a surface photograph of the SiC crystal grown in this experimental example.
  • the diameter of the grown crystal is about 3 inches.
  • the crystal surface is sufficiently smooth as compared with the comparative experimental example (FIG. 8). This is because the parameter control can be appropriately performed based on the simulation according to the present specification, and the single crystal can be grown.
  • defect evaluation was performed by synchrotron radiation topography. As a result, no penetrating spiral dislocations and basal plane dislocations were observed in a part of the region (10 ⁇ 10 mm 2). In this experimental example, it can be seen that a high-quality single crystal with few defects can be grown.
  • the SiC crystal grown in the comparative example is polycrystalline and cannot be used as a semiconductor substrate.
  • the SiC crystal grown in this experimental example is a single crystal and can be practically used as a semiconductor substrate. Moreover, since there are few defects, it is possible to produce a semiconductor device having good electrical characteristics. From the above, the performance and superiority of the simulation of this specification can be confirmed.
  • the solution state that is the subject of the prediction technique of this specification is not limited to the temperature distribution and the flow velocity distribution.
  • the carbon concentration distribution simulation value may be acquired (S13), and the carbon concentration distribution simulation value may be added to the matrix X (S22) by standardizing (S21) and making it one-dimensional.
  • the characteristic carbon concentration distribution may be extracted by performing a singular value decomposition (S23) by integrating the temperature distribution, the flow velocity distribution, and the carbon concentration distribution. Then, in addition to the predicted value of the temperature distribution and the predicted value of the flow velocity distribution, the predicted value of the carbon concentration distribution may be calculated (S33).
  • the present invention is not limited to this form.
  • Various methods such as an eigendecomposition method, a QZ decomposition method, and a Takagi decomposition method can be used.
  • the plane to be simulated when performing a "two-dimensional" simulation is not limited to the XY plane illustrated in FIG. It is possible to set a free plane such as a YY plane or an XX plane as a simulation target.
  • the number of matrices on the XY plane (41 rows and 120 columns) is an example.
  • the virtual grid size and the number of matrices can be set arbitrarily.
  • the calculation load increases as the grid size decreases and the matrix size increases. Therefore, the grid size and the number of matrices may be appropriately determined in consideration of the spatial resolution and the calculation load required in the simulation result.
  • the number of parameter groups (98) and the number of singular values (10) are all examples. These values may be appropriately determined from the required accuracy and computing power.
  • thermal fluid is a concept that also includes gas (high temperature gas).
  • gas high temperature gas
  • the field of application of the prediction technique of the present specification is not limited to the growth of semiconductor crystals. It can also be applied to various fields such as the growth of oxide crystals other than semiconductors and the refining of metals.
  • the parameter group described in this specification is an example.
  • Examples of other parameters include the frequency and current amount of the high frequency coil 14, the relative position of the high frequency coil 14 with respect to the crucible 15, the dimensions of the high frequency coil 14, the composition of the melt 17, and the thickness of the side wall and bottom of the crucible 15. , The pressure of the gas filled in the crystal growth apparatus 3, the material and thickness of the heat insulating material, and the like.
  • the physical quantity measured in the predetermined region R1 is not limited to the temperature distribution. Physical quantities such as flow velocity distribution and concentration distribution are also measured. Further, the predetermined region R1 is not limited to a part of the surface of the melt 17. It may be a region where the physical quantity of the melt 17 can be indirectly measured. For example, the predetermined region R1 may be a region inside the crystal growth apparatus 3.
  • the means for measuring the temperature distribution of the predetermined region R1 of the melt 17 is not limited to the thermo camera 20, and various means can be used.
  • the crystal to be grown by the crystal growth device 3 is not limited to SiC.
  • Various semiconductor crystals such as GaN, GaAs, and AlN can be grown.
  • the XY plane is an example of the J-dimensional region.
  • Crucible 15 is an example of a container.
  • the melt 17 is an example of a thermal fluid.

Abstract

Provided is technology with which the temperature distribution and the flow velocity distribution of an entire thermic fluid can be ascertained. This thermic fluid state computation apparatus acquires and decomposes multiple sets of a simulation value of the temperature distribution and a simulation value of the flow velocity distribution in a J-dimensional region (J is any value of 1, 2, and 3) representing a portion of the thermic fluid to extract two or more sets of a characteristic temperature distribution and a characteristic flow velocity distribution. The thermic fluid state computation apparatus linearly adds the two or more sets of a characteristic temperature distribution and a characteristic flow velocity distribution to compute a predicted value of the temperature distribution and a predicted value of the flow velocity distribution in the J-dimensional region. The thermic fluid state computation apparatus performs computation such that a predicted temperature distribution value for a predetermined region indicating the temperature distribution in the predetermined region matches a measured temperature distribution value for the predetermined region measured by a measurement unit.

Description

熱流体状態演算装置Thermo-fluid state arithmetic unit
 本出願は、2019年9月3日に出願された日本国特許出願第2019-160600号に基づく優先権を主張する。その出願の全ての内容はこの明細書中に参照により援用されている。本明細書では、熱流体状態演算装置に関する技術を開示する。 This application claims priority based on Japanese Patent Application No. 2019-160600 filed on September 3, 2019. The entire contents of that application are incorporated herein by reference. This specification discloses a technique relating to a thermo-fluid state arithmetic unit.
 熱流体の全体の温度分布や流速分布を把握する必要がある場合がある。例えば、溶液成長法により半導体結晶を成長させる場合などである。一例として国際公開WO2012/127703号公報には、黒鉛の坩堝の内部にSi溶液を収容し、SiC種結晶をそのSi溶液に接触させることによりSiC単結晶を成長させる技術が開示されている。 It may be necessary to grasp the overall temperature distribution and flow velocity distribution of the thermal fluid. For example, when a semiconductor crystal is grown by a solution growth method. As an example, International Publication WO2012 / 127703 discloses a technique for growing a SiC single crystal by accommodating a Si solution inside a graphite crucible and bringing a SiC seed crystal into contact with the Si solution.
 熱流体の容器構造は、複雑・厳重である。よって、熱流体の状態(例:温度、流速など)の観測可能領域が、熱流体の表面の一部などの局所領域に制限されてしまう場合がある。この場合、熱流体の全体の温度分布や流速分布を把握することが困難である。 The thermal fluid container structure is complicated and strict. Therefore, the observable region of the state of the thermal fluid (eg, temperature, flow velocity, etc.) may be limited to a local region such as a part of the surface of the thermal fluid. In this case, it is difficult to grasp the overall temperature distribution and flow velocity distribution of the thermal fluid.
 本明細書では、熱流体状態演算装置を開示する。熱流体状態演算装置は、熱流体の一部を示すJ次元領域(Jは1、2、3の何れかの値)内の温度分布シミュレーション値および流速分布シミュレーション値のセットを複数セット取得する取得部を備える。複数セットは各々異なる値を備える複数のパラメータ群に基づいて取得される。熱流体状態演算装置は、温度分布シミュレーション値および流速分布シミュレーション値の複数セットの各々を分解することにより、特徴的温度分布および特徴的流速分布のセットを2個以上抽出する抽出部を備える。熱流体状態演算装置は、熱流体の一部の領域であってJ次元領域に含まれる領域である所定領域の温度分布である所定領域温度分布測定値を測定する測定部を備える。熱流体状態演算装置は、特徴的温度分布および特徴的流速分布のセットの2個以上を互いに線形和することで、J次元領域内の温度分布予測値および流速分布予測値を演算する演算部を備える。演算部は、演算された温度分布予測値が含んでいる所定領域温度分布予測値であって所定領域の温度分布を示す所定領域温度分布予測値が、測定部で測定した所定領域温度分布測定値と一致するように演算する。 This specification discloses a thermo-fluid state calculation device. The thermo-fluid state calculation device acquires a plurality of sets of temperature distribution simulation values and flow velocity distribution simulation values in a J-dimensional region (J is a value of 1, 2, or 3) indicating a part of the thermo-fluid. It has a part. Multiple sets are acquired based on a plurality of parameter groups, each having a different value. The thermo-fluid state calculation device includes an extraction unit that extracts two or more sets of characteristic temperature distribution and characteristic flow velocity distribution by decomposing each of a plurality of sets of temperature distribution simulation value and flow velocity distribution simulation value. The thermo-fluid state calculation device includes a measuring unit for measuring a predetermined region temperature distribution measurement value, which is a temperature distribution of a predetermined region which is a region of a part of the thermal fluid and is included in the J-dimensional region. The thermo-fluid state arithmetic unit is an arithmetic unit that calculates the predicted temperature distribution value and the predicted flow velocity distribution value in the J-dimensional region by linearly summing two or more sets of the characteristic temperature distribution and the characteristic flow velocity distribution. Be prepared. In the calculation unit, the predetermined region temperature distribution predicted value included in the calculated temperature distribution predicted value, and the predetermined region temperature distribution predicted value indicating the temperature distribution in the predetermined region is the predetermined region temperature distribution measured value measured by the measuring unit. Calculate to match.
 温度分布と流速分布は熱輸送の観点から密接な関係があるため、温度分布のシミュレーション値と流速分布のシミュレーション値とを一体として分解することができる。そして、特徴的温度分布および特徴的流速分布のセットを2個以上抽出した上で、互いに線形和することで、熱流体の全体の温度分布や流速分布を予測することができる。このとき、測定で得られた所定領域の温度分布測定値に対して、演算で得られた所定領域の温度分布予測値が一致するように、線形和を行う。これにより、局所的な所定領域の測定値に基づいて、全体の熱流体状態を予測することができる。熱流体の全体の温度分布や流速分布を把握することが可能となる。 Since the temperature distribution and the flow velocity distribution are closely related from the viewpoint of heat transport, the simulation value of the temperature distribution and the simulation value of the flow velocity distribution can be decomposed as one. Then, by extracting two or more sets of the characteristic temperature distribution and the characteristic flow velocity distribution and linearly summing them with each other, the overall temperature distribution and the flow velocity distribution of the thermal fluid can be predicted. At this time, the linear sum is performed so that the temperature distribution predicted value of the predetermined region obtained by the measurement matches the temperature distribution predicted value of the predetermined region obtained by the measurement. This makes it possible to predict the overall thermofluid state based on the measured values in a local predetermined region. It is possible to grasp the overall temperature distribution and flow velocity distribution of the thermal fluid.
 抽出部は、温度分布シミュレーション値および流速分布シミュレーション値の複数セットの各々を標準化してから分解を行ってもよい。温度分布シミュレーション値の標準化は、複数の温度分布シミュレーション値の平均温度分布を求め、複数の温度分布シミュレーション値の各々について平均温度分布からの偏差を求め、複数の平均温度分布からの偏差から1つの温度分布標準偏差を求め、複数の平均温度分布からの偏差の各々を温度分布標準偏差で除することで行われてもよい。流速分布シミュレーション値の標準化は、複数の流速分布シミュレーション値の平均流速分布を求め、複数の流速分布シミュレーション値の各々について平均流速分布からの偏差を求め、複数の平均流速分布からの偏差から1つの流速標準偏差を求め、複数の平均流速分布からの偏差の各々を流速標準偏差で除することで行われてもよい。 The extraction unit may standardize each of a plurality of sets of the temperature distribution simulation value and the flow velocity distribution simulation value, and then perform the decomposition. To standardize the temperature distribution simulation values, obtain the average temperature distribution of multiple temperature distribution simulation values, obtain the deviation from the average temperature distribution for each of the multiple temperature distribution simulation values, and obtain one deviation from the multiple average temperature distributions. It may be performed by obtaining the standard deviation of the temperature distribution and dividing each of the deviations from the plurality of average temperature distributions by the standard deviation of the temperature distribution. To standardize the flow velocity distribution simulation values, obtain the average flow velocity distribution of multiple flow velocity distribution simulation values, obtain the deviation from the average flow velocity distribution for each of the multiple flow velocity distribution simulation values, and obtain one from the deviations from the plurality of average flow velocity distributions. It may be performed by obtaining the flow velocity standard deviation and dividing each of the deviations from the plurality of average flow velocity distributions by the flow velocity standard deviation.
 熱流体は半導体結晶材料の融液であってもよい。複数のパラメータ群は、熱流体を格納している容器の回転数、および、融液に接触している半導体結晶の回転数を含んでいてもよい。 The thermal fluid may be a melt of a semiconductor crystal material. The plurality of parameter groups may include the rotation speed of the container containing the thermal fluid and the rotation speed of the semiconductor crystal in contact with the melt.
 半導体結晶はSiC結晶であってもよい。取得部は、J次元領域内のカーボン濃度分布シミュレーション値をさらに取得してもよい。抽出部は、特徴的カーボン濃度分布をさらに抽出してもよい。演算部は、カーボン濃度分布予測値をさらに演算してもよい。 The semiconductor crystal may be a SiC crystal. The acquisition unit may further acquire the carbon concentration distribution simulation value in the J-dimensional region. The extraction unit may further extract the characteristic carbon concentration distribution. The calculation unit may further calculate the predicted carbon concentration distribution value.
 所定領域は、融液の上面の一部の領域であってもよい。 The predetermined region may be a part of the upper surface of the melt.
 演算部によって演算された温度分布予測値および流速分布予測値の各々が、半導体結晶の成長にとって好適な値となるように、容器の回転数および半導体結晶の回転数をフィードバック制御する制御部をさらに備えていてもよい。 Further, a control unit that feedback-controls the rotation speed of the container and the rotation speed of the semiconductor crystal so that each of the predicted temperature distribution value and the predicted flow velocity distribution value calculated by the calculation unit are suitable values for the growth of the semiconductor crystal. You may have it.
 J次元領域がX-Y平面を備える2次元領域であるとともに流速分布シミュレーション値がX方向流速分布シミュレーション値およびY方向流速分布シミュレーション値を備える場合に、取得部は、X-Y平面をK行およびL列(KおよびLは1以上の自然数)のマトリクスとして取り扱ってもよい。温度分布シミュレーション値、X方向流速分布シミュレーション値、Y方向流速分布シミュレーション値の各々は、K行およびL列の行列で表されてもよい。特異値分解の対象となる行列Xは、N行およびM列(NおよびMは1以上の自然数)の行列で表されてもよい。Nの値は複数のパラメータ群の数であってもよい。行列Xのi行目(iは1以上N以下の自然数)の成分は、i番目のパラメータ群における標準化された温度分布シミュレーション値を一元化したK×L列と、i番目のパラメータ群における標準化されたX方向流速分布シミュレーション値を一元化したK×L列と、i番目のパラメータ群における標準化されたY方向流速分布シミュレーション値を一元化したK×L列と、を順に並べた成分を有していてもよい。 When the J-dimensional region is a two-dimensional region including the XY plane and the flow velocity distribution simulation value includes the X-direction flow velocity distribution simulation value and the Y-direction flow velocity distribution simulation value, the acquisition unit performs K rows on the XY plane. And L columns (K and L are natural numbers of 1 or more) may be treated as a matrix. Each of the temperature distribution simulation value, the X-direction flow velocity distribution simulation value, and the Y-direction flow velocity distribution simulation value may be represented by a matrix of rows K and columns L. The matrix X to be decomposed by singular value may be represented by a matrix of N rows and M columns (N and M are natural numbers of 1 or more). The value of N may be the number of a plurality of parameter groups. The components of the i-th row (i is a natural number of 1 or more and N or less) of the matrix X are standardized in the K × L column that unifies the standardized temperature distribution simulation values in the i-th parameter group and in the i-th parameter group. It has a component in which a K × L column that unifies the X-direction flow velocity distribution simulation values and a K × L column that unifies the standardized Y-direction flow velocity distribution simulation values in the i-th parameter group are arranged in order. May be good.
結晶成長システム1の概略構成図である。It is a schematic block diagram of a crystal growth system 1. 結晶成長システム1の動作フローを示す図である。It is a figure which shows the operation flow of the crystal growth system 1. 結晶成長装置3の2次元モデルを示す図である。It is a figure which shows the 2D model of the crystal growth apparatus 3. 温度分布シミュレーション値の標準化を説明する図である。It is a figure explaining the standardization of a temperature distribution simulation value. 温度分布シミュレーション値の標準化を説明する図である。It is a figure explaining the standardization of a temperature distribution simulation value. 行列Xの生成方法を示す図である。It is a figure which shows the generation method of the matrix X. 行列Xの特異値分解を示す図である。It is a figure which shows the singular value decomposition of a matrix X. 温度分布および流速分布の予測値の演算方法を説明する図である。It is a figure explaining the calculation method of the predicted value of a temperature distribution and a flow velocity distribution. 比較実験例で成長させたSiC結晶の表面写真である。It is a surface photograph of the SiC crystal grown in the comparative experimental example. 本実験例で成長させたSiC結晶の表面写真である。It is a surface photograph of the SiC crystal grown in this experimental example.
<結晶成長システム1の構成>
 図1に、結晶成長システム1の概略構成図を示す。結晶成長システム1は、溶液状態演算装置2および結晶成長装置3を備えている。
<Structure of crystal growth system 1>
FIG. 1 shows a schematic configuration diagram of the crystal growth system 1. The crystal growth system 1 includes a solution state calculation device 2 and a crystal growth device 3.
 結晶成長装置3は、TSSG(Top-Seeded Solution Growth)法によってSiC結晶を液相成長させる装置である。結晶成長装置3は、筐体10、坩堝収容部11、回転部12、駆動部12a、結晶支持部13、駆動部13a、高周波コイル14、坩堝15、サーモカメラ(赤外線サーモグラフィ)20を備える。筐体10は、円筒外面の外壁面を有し、高周波コイル14および坩堝収容部11を格納している。筐体10の上部には、窓部10wが配置されている。坩堝収容部11は、坩堝15を収容している。坩堝収容部11の表面は、断熱材で覆われている。サーモカメラ20は、窓部10wおよび坩堝収容部11の上部の隙間を介して、融液17の表面の一部の温度分布を測定する。 The crystal growth device 3 is a device that grows a SiC crystal in liquid phase by the TSSG (Top-Seeded Solution Growth) method. The crystal growth device 3 includes a housing 10, a crucible accommodating unit 11, a rotating unit 12, a driving unit 12a, a crystal supporting unit 13, a driving unit 13a, a high frequency coil 14, a crucible 15, and a thermocamera (infrared thermography) 20. The housing 10 has an outer wall surface on the outer surface of a cylinder, and houses a high-frequency coil 14 and a crucible accommodating portion 11. A window portion 10w is arranged on the upper part of the housing 10. The crucible accommodating section 11 accommodates the crucible 15. The surface of the crucible accommodating portion 11 is covered with a heat insulating material. The thermo camera 20 measures the temperature distribution of a part of the surface of the melt 17 through the gap between the window portion 10w and the upper portion of the crucible accommodating portion 11.
 坩堝15は炭素素材(黒鉛)で形成されている。駆動部12aは、回転部12を介して坩堝収容部11および坩堝15を回転させる部位である。結晶支持部13は、種結晶16および成長したSiC結晶18を回転可能に支持する部材である。駆動部13aは、結晶支持部13を回転させる部位である。回転部12および結晶支持部13の中心軸CAは一致している。高周波コイル14は、不図示の電源装置からの電源供給を受けて、坩堝15を誘導加熱する。高周波コイル14と坩堝15との相対位置は、不図示の駆動機構によって変更することができる。これにより、坩堝15の加熱時の温度分布を変更することができる。 Crucible 15 is made of carbon material (graphite). The drive unit 12a is a portion for rotating the crucible accommodating unit 11 and the crucible 15 via the rotating unit 12. The crystal support portion 13 is a member that rotatably supports the seed crystal 16 and the grown SiC crystal 18. The drive unit 13a is a portion for rotating the crystal support unit 13. The central axes CA of the rotating portion 12 and the crystal supporting portion 13 are aligned. The high-frequency coil 14 receives power from a power supply device (not shown) to induce and heat the crucible 15. The relative positions of the high-frequency coil 14 and the crucible 15 can be changed by a drive mechanism (not shown). Thereby, the temperature distribution of the crucible 15 at the time of heating can be changed.
 坩堝15には融液17が収容される。融液17は、Siの溶液である。坩堝15から炭素原子が溶融する。従って、SiCテンプレートである種結晶16を起点に、SiC結晶18を成長させることができる。 The crucible 15 contains the melt 17. The melt 17 is a solution of Si. Carbon atoms melt from the crucible 15. Therefore, the SiC crystal 18 can be grown starting from the seed crystal 16 which is a SiC template.
 溶液状態演算装置2は、取得部30、抽出部32、記憶部34、測定部36、演算部38、制御部40、を備える。取得部30、抽出部32、演算部38、制御部40は、例えばCPUである。これらの部位の内容については後述する。測定部36は、サーモカメラ20での測定結果を取得するインターフェースである。記憶部34は、後述するシミュレーション結果や、演算部38で用いる各種データを記憶する部位である。記憶部34は、RAMやフラッシュメモリ、HDDなどの組み合わせであってもよい。制御部40は、回転部12や結晶支持部13の回転数、高周波コイル14と坩堝15との相対位置、高周波コイル14の電流値、などを制御する部位である。 The solution state calculation device 2 includes an acquisition unit 30, an extraction unit 32, a storage unit 34, a measurement unit 36, a calculation unit 38, and a control unit 40. The acquisition unit 30, the extraction unit 32, the calculation unit 38, and the control unit 40 are, for example, CPUs. The contents of these parts will be described later. The measurement unit 36 is an interface for acquiring the measurement result of the thermo camera 20. The storage unit 34 is a portion that stores the simulation results described later and various data used in the calculation unit 38. The storage unit 34 may be a combination of RAM, flash memory, HDD, and the like. The control unit 40 is a portion that controls the rotation speed of the rotating unit 12 and the crystal support unit 13, the relative position between the high-frequency coil 14 and the crucible 15, the current value of the high-frequency coil 14, and the like.
<結晶成長システム1の概略>
 SiC溶液成長プロセスでは、融液17の温度分布や流速分布の制御が、SiC結晶18の高品質化に重要である。そこで結晶成長システム1は、融液17の表面の一部領域の温度分布の測定値に基づいて、融液17全体の温度分布と流速分布を予測する。そして、予測結果に基づいてパラメータ群(例:回転部12の回転数、結晶支持部13の回転数)をフィードバック制御することで、融液17の温度分布や流速分布を、SiC結晶18の成長に適した状態に維持する。
<Outline of Crystal Growth System 1>
In the SiC solution growth process, control of the temperature distribution and the flow velocity distribution of the melt 17 is important for improving the quality of the SiC crystal 18. Therefore, the crystal growth system 1 predicts the temperature distribution and the flow velocity distribution of the entire melt 17 based on the measured values of the temperature distribution of a part of the surface of the melt 17. Then, by feedback-controlling the parameter group (eg, the rotation speed of the rotating portion 12 and the rotation speed of the crystal support portion 13) based on the prediction result, the temperature distribution and the flow velocity distribution of the melt 17 can be controlled by the growth of the SiC crystal 18. Keep it in a suitable condition.
 図2に、結晶成長システム1の動作フローを示す。動作フローは、大きく分類すると、シミュレーション値取得ステップS10、特徴量の抽出ステップS20、温度分布および速度分布の演算ステップS30、フィードバック制御ステップS40、を備える。各ステップにつき、以下に説明する。 FIG. 2 shows the operation flow of the crystal growth system 1. The operation flow is roughly classified into a simulation value acquisition step S10, a feature amount extraction step S20, a temperature distribution and velocity distribution calculation step S30, and a feedback control step S40. Each step will be described below.
<シミュレーション値取得ステップ>
 本明細書の技術では、融液17全体の温度分布と流速分布を予測するための回帰モデルを作成する。このような回帰モデルの作成には、大量のデータの収集が必要であるが、実験による収集は困難である。そこで、熱流体計算ソフトを用いたシミュレーションによりデータを取得する。
<Simulation value acquisition step>
In the technique of the present specification, a regression model for predicting the temperature distribution and the flow velocity distribution of the entire melt 17 is created. Creating such a regression model requires the collection of large amounts of data, but it is difficult to collect by experiment. Therefore, data is acquired by simulation using thermo-fluid calculation software.
 S11において取得部30は、結晶成長装置3の2次元モデルを作成する。図3に示すように、中心軸CAに対する軸対象モデルを作成する。図3は、中心軸CAを通る断面図の右半分側を示す図である。中心軸CAから水平方向をX方向、中心軸CAの上方向をY方向と定義している。このX-Y平面は、坩堝15に格納されている融液17の一部を示している。このX-Y平面に、仮想的に格子(メッシュ)を設定する。具体的には、X-Y平面を、41行および120列のマトリクスとして取り扱う。なお図3のX-Y平面の格子は例示であり、41行120列ではない。 In S11, the acquisition unit 30 creates a two-dimensional model of the crystal growth apparatus 3. As shown in FIG. 3, an axisymmetric model for the central axis CA is created. FIG. 3 is a view showing the right half side of the cross-sectional view passing through the central axis CA. The horizontal direction from the central axis CA is defined as the X direction, and the upward direction of the central axis CA is defined as the Y direction. This XY plane shows a part of the melt 17 stored in the crucible 15. A grid (mesh) is virtually set on this XY plane. Specifically, the XY plane is treated as a matrix of 41 rows and 120 columns. The grid in the XY plane of FIG. 3 is an example, and is not 41 rows and 120 columns.
 図3に示すように、融液17の表面には、種結晶16によって隠されていない所定領域R1が存在する。所定領域R1は、融液17の上面の一部の領域であり、サーモカメラ20によって観察が可能な領域である(図1、矢印A11)。また所定領域R1は、X-Y平面に含まれる領域である。 As shown in FIG. 3, a predetermined region R1 that is not hidden by the seed crystal 16 exists on the surface of the melt 17. The predetermined region R1 is a part of the upper surface of the melt 17, and is a region that can be observed by the thermo camera 20 (FIG. 1, arrow A11). Further, the predetermined region R1 is a region included in the XY plane.
 S12において取得部30は、複数のパラメータ群を設定する。本実施例では、坩堝15の回転速度、結晶支持部13の回転速度、高周波コイル14の坩堝15に対する相対位置、をパラメータ群に使用した。そして、坩堝15の回転速度、結晶支持部13の回転速度、高周波コイル14の坩堝15に対する相対位置、を様々に異ならせた組み合わせを有する、複数のパラメータ群を設定した。なお、坩堝15の内外径、坩堝15の底面および側壁の厚さ、種結晶16の径、坩堝収容部11のサイズなどは一定値とした。従って、これらの値を変更する場合には、図3の軸対象モデルから作り直す必要がある。 In S12, the acquisition unit 30 sets a plurality of parameter groups. In this embodiment, the rotation speed of the crucible 15, the rotation speed of the crystal support portion 13, and the relative position of the high-frequency coil 14 with respect to the crucible 15 are used as the parameter group. Then, a plurality of parameter groups having various different combinations of the rotation speed of the crucible 15, the rotation speed of the crystal support portion 13, and the relative position of the high-frequency coil 14 with respect to the crucible 15 were set. The inner and outer diameters of the crucible 15, the thickness of the bottom surface and the side wall of the crucible 15, the diameter of the seed crystal 16, the size of the crucible accommodating portion 11, and the like were set to constant values. Therefore, when changing these values, it is necessary to recreate them from the axisymmetric model of FIG.
 S13において取得部30は、複数のパラメータ群の各々を用いて、シミュレーション計算を実施する。シミュレーションを実施する度に、1つのパラメータ群に対する1つの出力結果(X-Y平面内の温度分布シミュレーション値、X方向流速分布シミュレーション値、Y方向流速分布シミュレーション値のセット)が得られる。温度分布シミュレーション値、X方向流速分布シミュレーション値、Y方向流速分布シミュレーション値の各々は、41行および120列の行列である。シミュレーションを繰り返すことにより、例えば、10パターン以上1億パターン以下の結果が得られる。なおパターン数は、必要とされるシミュレーション精度および計算負荷を勘案することで、適宜に定めればよい。本実施例では、98個のパラメータ群に基づき、98パターンの結果を取得した。それらの結果は、記憶部34に記憶される。 In S13, the acquisition unit 30 performs a simulation calculation using each of the plurality of parameter groups. Each time the simulation is performed, one output result (a set of a temperature distribution simulation value in the XY plane, an X direction flow velocity distribution simulation value, and a Y direction flow velocity distribution simulation value) is obtained for one parameter group. The temperature distribution simulation value, the X-direction flow velocity distribution simulation value, and the Y-direction flow velocity distribution simulation value are matrices of 41 rows and 120 columns, respectively. By repeating the simulation, for example, results of 10 patterns or more and 100 million patterns or less can be obtained. The number of patterns may be appropriately determined in consideration of the required simulation accuracy and calculation load. In this example, 98 patterns of results were obtained based on 98 parameter groups. The results are stored in the storage unit 34.
<特徴量の抽出ステップ>
 特徴量の抽出ステップ(S20)では、特異値分解による特徴量の抽出が行われる。具体的には、温度分布と流速分布とを一体として特異値分解する。温度分布と流速分布は、熱輸送の観点から密接な関係があるためである。このステップは、抽出部32で行われる。
<Feature quantity extraction step>
In the feature amount extraction step (S20), the feature amount is extracted by singular value decomposition. Specifically, the temperature distribution and the flow velocity distribution are integrated into a singular value decomposition. This is because the temperature distribution and the flow velocity distribution are closely related from the viewpoint of heat transport. This step is performed by the extraction unit 32.
 S21において抽出部32は、温度分布シミュレーション値の複数セットの標準化、X方向流速分布シミュレーション値の複数セットの標準化、Y方向流速分布シミュレーション値の複数セットの標準化、を実行する。標準化を行う理由は、異なる物理量のスケールを揃えるためである。これにより、次ステップにおいて、「温度」と「速度」という次元の異なる物理量を並べて行列Xを生成することが可能となる。標準化方法には、「最小値0、最大値1」となるような標準化や、「平均0、分散1」となるような標準化が存在する。本明細書では後者の標準化方法を用いるが、この限りではなく、様々な標準化方法を使用可能である。 In S21, the extraction unit 32 executes standardization of a plurality of sets of temperature distribution simulation values, standardization of a plurality of sets of X-direction flow velocity distribution simulation values, and standardization of a plurality of sets of Y-direction flow velocity distribution simulation values. The reason for standardization is to align the scales of different physical quantities. This makes it possible to generate a matrix X by arranging physical quantities having different dimensions of "temperature" and "velocity" in the next step. There are standardization methods such as "minimum value 0, maximum value 1" and standardization such that "mean 0, variance 1". Although the latter standardization method is used in the present specification, various standardization methods can be used without this limitation.
 図4Aおよび図4Bを用いて、温度分布シミュレーション値の複数セットの標準化を説明する。98個の温度分布シミュレーション値TDS~TDS98から、1つの平均温度分布MTDを求める(図4A、矢印A0)。次に、温度分布シミュレーション値TDS~TDS98の各々から、平均温度分布MTDを減算する(図4A、矢印A1)。これにより、温度分布シミュレーション値TDS~TDS98の各々について、平均温度分布MTDからの偏差TDV~TDV98が求まる。 The standardization of a plurality of sets of temperature distribution simulation values will be described with reference to FIGS. 4A and 4B. One average temperature distribution MTD is obtained from 98 temperature distribution simulation values TDS 1 to TDS 98 (FIG. 4A, arrow A0). Next, the average temperature distribution MTD is subtracted from each of the temperature distribution simulation values TDS 1 to TDS 98 (FIG. 4A, arrow A1). As a result, the deviations TDV 1 to TDV 98 from the average temperature distribution MTD can be obtained for each of the temperature distribution simulation values TDS 1 to TDS 98.
 偏差TDV~TDV98から、1つの温度分布標準偏差TSDを求める(図4B、矢印A2)。温度分布標準偏差TSDは、偏差TDV~TDV98の2乗の合計をデータ総数(98)で割った値の正の平方根を求めることで、取得できる。そして、偏差TDV~TDV98の各々を温度分布標準偏差TSDで除することで、標準化温度分布シミュレーション値STS~STS98が得られる。(図4B、矢印A3)。なお、温度分布シミュレーション値TDS、平均温度分布MTD、偏差TDV、温度分布標準偏差TSD、標準化温度分布シミュレーション値STSは、全て「41行×120列」の行列である。 From the deviations TDV 1 to TDV 98 , one temperature distribution standard deviation TSD is obtained (FIG. 4B, arrow A2). The temperature distribution standard deviation TSD can be obtained by finding the positive square root of the value obtained by dividing the sum of the squares of the deviations TDV 1 to TDV 98 by the total number of data (98). Then, by dividing each of the deviations TDV 1 to TDV 98 by the temperature distribution standard deviation TSD, the standardized temperature distribution simulation values STS 1 to STS 98 can be obtained. (FIG. 4B, arrow A3). The temperature distribution simulation value TDS, average temperature distribution MTD, deviation TDV, temperature distribution standard deviation TSD, and standardized temperature distribution simulation value STS are all a matrix of "41 rows x 120 columns".
 同様にして、X方向流速分布シミュレーション値の複数セットの標準化を説明する。98個のX方向流速分布シミュレーション値XFS~XFS98から、1つの平均X方向流速分布MXFを求める。次に、X方向流速分布シミュレーション値XFS~XFS98の各々について、平均X方向流速分布MXFからの偏差XDV~XDV98を求める。偏差XDV~XDV98から1つのX方向流速標準偏差XSDを求める。偏差XDV~XDV98の各々をX方向流速標準偏差XSDで除することで、標準化X方向流速分布シミュレーション値SXS~SXS98が得られる。なお、X方向流速分布シミュレーション値XFS、平均X方向流速分布MXF、偏差XDV、X方向流速標準偏差XSD、標準化X方向流速分布シミュレーション値SXSは、全て「41行×120列」の行列である。 Similarly, standardization of a plurality of sets of X-direction flow velocity distribution simulation values will be described. From 98 X-direction flow velocity distribution simulation values XFS 1 to XFS 98 , one average X-direction flow velocity distribution MXF is obtained. Next, for each of the X-direction flow velocity distribution simulation values XFS 1 to XFS 98 , the deviations XDV 1 to XDV 98 from the average X-direction flow velocity distribution MXF are obtained. From the deviations XDV 1 to XDV 98 , one X-direction flow velocity standard deviation XSD is obtained. By dividing each of the deviations XDV 1 to XDV 98 by the X-direction flow velocity standard deviation XSD, the standardized X-direction flow velocity distribution simulation values SXS 1 to SXS 98 can be obtained. The X-direction flow velocity distribution simulation value XFS, the average X-direction flow velocity distribution MXF, the deviation XDV, the X-direction flow velocity standard deviation XSD, and the standardized X-direction flow velocity distribution simulation value SXS are all a matrix of “41 rows × 120 columns”.
 また同様にして、Y方向流速分布シミュレーション値の複数セットの標準化を説明する。98個のY方向流速分布シミュレーション値YFS~YFS98から、1つの平均Y方向流速分布MYFを求める。次に、Y方向流速分布シミュレーション値YFS~YFS98の各々について、平均Y方向流速分布MYFからの偏差YDV~YDV98を求める。偏差YDV~YDV98から1つのY方向流速標準偏差YSDを求める。偏差YDV~YDV98の各々をY方向流速標準偏差YSDで除することで、標準化Y方向流速分布シミュレーション値SYS~SYS98が得られる。なお、Y方向流速分布シミュレーション値YFS、平均Y方向流速分布MYF、偏差YDV、Y方向流速標準偏差YSD、標準化Y方向流速分布シミュレーション値SYSは、全て「41行×120列」の行列である。 Similarly, the standardization of a plurality of sets of Y-direction flow velocity distribution simulation values will be described. From 98 Y-direction flow velocity distribution simulation values YFS 1 to YFS 98 , one average Y-direction flow velocity distribution MYF is obtained. Next, for each of the Y-direction flow velocity distribution simulation values YFS 1 to YFS 98 , the deviations YDV 1 to YDV 98 from the average Y-direction flow velocity distribution MYF are obtained. From the deviations YDV 1 to YDV 98 , one Y-direction flow velocity standard deviation YSD is obtained. By dividing each of the deviations YDV 1 to YDV 98 by the Y-direction flow velocity standard deviation YSD, the standardized Y-direction flow velocity distribution simulation values SYS 1 to SYS 98 can be obtained. The Y-direction flow velocity distribution simulation value YFS, the average Y-direction flow velocity distribution MYF, the deviation YDV, the Y-direction flow velocity standard deviation YSD, and the standardized Y-direction flow velocity distribution simulation value SYS are all a matrix of “41 rows × 120 columns”.
 S22において抽出部32は、特異値分解の対象となる行列Xを生成する。図5に、行列Xの生成方法を示す。行列Xは、N行およびM列の行列である。Nの値はパラメータ群の数であり、本実施形態では「98」である。Mの値は、後述するように「14760」である。 In S22, the extraction unit 32 generates a matrix X to be decomposed into singular values. FIG. 5 shows a method of generating the matrix X. The matrix X is an N-row and M-column matrix. The value of N is the number of parameter groups, which is "98" in this embodiment. The value of M is "14760" as described later.
 第1列から第4920列までの領域RC1には、標準化温度分布シミュレーション値STS~STS98が配置される。ここで、標準化温度分布シミュレーション値STS~STS98は、「41行×120列」の行列から「1行×4920列」へ一元化された上で配置される。同様に、第4921列から第9840列までの領域RC2には、標準化X方向流速分布シミュレーション値SXS~SXS98が、「1行×4920列」に一元化された上で配置される。また同様に、第9841列から第14760列までの領域RC3には、標準化Y方向流速分布シミュレーション値SYS~SYS98が、「1行×4920列」に一元化された上で配置される。 Standardized temperature distribution simulation values STS 1 to STS 98 are arranged in the region RC1 from the first column to the 4920th column. Here, the standardized temperature distribution simulation values STS 1 to STS 98 are arranged after being unified from the matrix of "41 rows x 120 columns" to "1 row x 4920 columns". Similarly, in the region RC2 from the 4921th column to the 9840th column, the standardized X-direction flow velocity distribution simulation values SXS 1 to SXS 98 are arranged in a unified manner in “1 row × 4920 columns”. Similarly, in the region RC3 from the 9841 column to the 14760 column, normalized Y-direction flow velocity distribution simulation values SYS 1 ~ SYS 98 is arranged on which a centralized "1 row × 4920 columns."
 図5に示すように、行列Xのi行目(iは1以上N以下の自然数)の成分は、標準化X方向流速分布シミュレーション値SXSを一元化した4920列と、標準化X方向流速分布シミュレーション値SXSを一元化した4920列と、標準化Y方向流速分布シミュレーション値SYSを一元化した4920列と、を順に並べた成分を有している。よって行列Xは、「14760列」を有する。 As shown in FIG. 5, the components of the i-th row (i is a natural number of 1 or more and N or less) of the matrix X are the standardized X-direction flow velocity distribution simulation value SXS i in the unified 4920 columns and the standardized X-direction flow velocity distribution simulation value. It has a component in which 4920 columns in which the SXS i is unified and 4920 columns in which the standardized Y-direction flow velocity distribution simulation value SYS i is unified are arranged in order. Therefore, the matrix X has "14760 columns".
 このように温度分布と速度分布を並べて行列Xを生成することで、次ステップにおいて、温度分布と流速分布とを一体として特異値分解することが可能となる。 By arranging the temperature distribution and the velocity distribution in this way to generate the matrix X, in the next step, the temperature distribution and the flow velocity distribution can be integrated into a singular value decomposition.
 S23において、行列Xを特異値分解する。すなわち図6に示すように、行列X(N×M行列)を、行列U(N×s行列)と行列S(s×s行列)と行列V(s×M行列)の積で表すことができる。前述したように、Nの値は「98」であり、Mの値は「14760」である。sは特異値の個数である。sの値を大きくするほど、後述するS33の演算で得られる温度分布や流速分布の予測値の誤差は小さくなる。しかし、演算の負担が大きくなる。例えば、実際の値に対する予測値の誤差の二乗平均平方根誤差(RMSE)が所定値以下となるように、sの値を決定してもよい。本実施例では、sの値を「10」とした。 In S23, the matrix X is decomposed into singular values. That is, as shown in FIG. 6, the matrix X (N × M matrix) can be represented by the product of the matrix U (N × s matrix), the matrix S (s × s matrix), and the matrix V (s × M matrix). it can. As described above, the value of N is "98" and the value of M is "14760". s is the number of singular values. The larger the value of s, the smaller the error in the predicted values of the temperature distribution and the flow velocity distribution obtained by the calculation of S33 described later. However, the burden of calculation becomes large. For example, the value of s may be determined so that the root mean square error (RMSE) of the error of the predicted value with respect to the actual value is equal to or less than a predetermined value. In this embodiment, the value of s is set to "10".
 これにより、図6の行列Vに示すように、特徴的温度分布CTD~CTD、特徴的X方向流速分布CXF~CXF、特徴的Y方向流速分布CYF~CYFを得ることができる。換言すると、特徴的温度分布CTD、特徴的X方向流速分布CXF、特徴的Y方向流速分布CYF、からなるセットをs個(10個)抽出することができる。特徴的温度分布CTD、特徴的X方向流速分布CXF、特徴的Y方向流速分布CYFは、「1行×4920列」に一元化された行列である。これらの特徴的な分布は、観測では取得できず、計算によってのみ取得できるため、潜在的な溶液状態であると言える。 As a result, as shown in the matrix V of FIG. 6, the characteristic temperature distributions CTD 1 to CTD s , the characteristic X-direction flow velocity distributions CXF 1 to CXF s , and the characteristic Y-direction flow velocity distributions CYF 1 to CYF s can be obtained. it can. In other words, s (10) sets consisting of the characteristic temperature distribution CTD, the characteristic X-direction flow velocity distribution CXF, and the characteristic Y-direction flow velocity distribution CYF can be extracted. The characteristic temperature distribution CTD, the characteristic X-direction flow velocity distribution CXF, and the characteristic Y-direction flow velocity distribution CYF are a matrix unified into "1 row × 4920 columns". These characteristic distributions cannot be obtained by observation, but can be obtained only by calculation, so it can be said that they are potential solution states.
 S24において、行列Uおよび行列Vの各要素の値が「1」程度になるように、変換する。具体的には、下式(1)~(3)に示すように、行列U、S、Vの各々を、行列U’、S’、V’に変換する。ここで「N」は行列Xの行数であり、「M」は行列Xの列数である。
  U’=U×N1/2 ・・・式(1)
  S’=S/(N×M)1/2 ・・・式(2)
  V’=V×M1/2 ・・・式(3)
In S24, the conversion is performed so that the values of the elements of the matrix U and the matrix V are about "1". Specifically, as shown in the following equations (1) to (3), each of the matrices U, S, and V is converted into the matrices U', S', and V'. Here, "N" is the number of rows in the matrix X, and "M" is the number of columns in the matrix X.
U'= U × N 1/2 ... Equation (1)
S'= S / (N × M) 1/2 ... Equation (2)
V'= V × M 1/2 ... Equation (3)
 変換の効果を説明する。行列Uおよび行列Vの各要素の値は、特異値分解の特性上、1以下の小さな値となる。すると、後述する線形和の演算処理(S33)において、小数点以下の桁数の取り扱いが必要となり、計算負荷が大きくなってしまう。そこで、変換処理によって小数点以下の桁数を抑制することで、計算負荷を小さくすることができる。 Explain the effect of conversion. The value of each element of the matrix U and the matrix V is a small value of 1 or less due to the characteristics of the singular value decomposition. Then, in the linear sum calculation process (S33) described later, it is necessary to handle the number of digits after the decimal point, which increases the calculation load. Therefore, the calculation load can be reduced by suppressing the number of digits after the decimal point by the conversion process.
<温度分布および速度分布の演算ステップ>
 温度分布および速度分布の演算ステップ(S30)は、演算部38で行われる。S31において結晶成長システム1は、SiC結晶18の成長を開始する。S32において測定部36は、サーモカメラ20を用いて、融液17表面の所定領域R1の温度分布を測定する(図1および図3を参照)。
<Calculation step of temperature distribution and velocity distribution>
The calculation step (S30) of the temperature distribution and the velocity distribution is performed by the calculation unit 38. In S31, the crystal growth system 1 starts the growth of the SiC crystal 18. In S32, the measuring unit 36 measures the temperature distribution of the predetermined region R1 on the surface of the melt 17 by using the thermo camera 20 (see FIGS. 1 and 3).
 S33において演算部38は、温度分布および流速分布の予測値を演算する。図7を用いて具体的に説明する。特徴的温度分布CTD~CTD10、特徴的X方向流速分布CXF~CXF10、特徴的Y方向流速分布CYF~CYF10の10個のセットの各々に、係数θ1~θ10を乗じて線形和する。特徴的温度分布CTD~CTD10の線形和により、温度分布予測値TDPを算出することができる。また、特徴的X方向流速分布CXF~CXF10の線形和により、X方向流速分布予測値XFPを算出することができる。また、特徴的Y方向流速分布CYF~CYF10の線形和により、Y方向流速分布予測値YFPを算出することができる。なお、特徴的温度分布CTD、特徴的X方向流速分布CXF、特徴的Y方向流速分布CYF、温度分布予測値TDP、X方向流速分布予測値XFP、Y方向流速分布予測値YFPは、全て「41行×120列」の行列である。 In S33, the calculation unit 38 calculates the predicted values of the temperature distribution and the flow velocity distribution. This will be specifically described with reference to FIG. 7. Linear by multiplying each of the 10 sets of characteristic temperature distributions CTD 1 to CTD 10 , characteristic X-direction flow velocity distributions CXF 1 to CXF 10 , and characteristic Y-direction flow velocity distributions CYF 1 to CYF 10 by coefficients θ1 to θ10. Reconcile. The temperature distribution predicted value TDP can be calculated from the linear sum of the characteristic temperature distributions CTD 1 to CTD 10. Further, the X-direction flow velocity distribution predicted value XFP can be calculated from the linear sum of the characteristic X-direction flow velocity distributions CXF 1 to CXF 10. Further, the Y-direction flow velocity distribution predicted value YFP can be calculated from the linear sum of the characteristic Y-direction flow velocity distributions CYF 1 to CYF 10. The characteristic temperature distribution CTD, the characteristic X-direction flow velocity distribution CXF, the characteristic Y-direction flow velocity distribution CYF, the temperature distribution predicted value TDP, the X-direction flow velocity distribution predicted value XFP, and the Y-direction flow velocity distribution predicted value YFP are all "41". It is a matrix of "rows x 120 columns".
 演算された温度分布予測値TDPは、所定領域R1p(図7参照)を備えている。これはサーモカメラ20によって観察可能な所定領域R1(図3参照)に対応する領域である。そして、所定領域R1p内の温度分布予測値が、サーモカメラ20で測定した所定領域R1内の温度分布測定値と一致するように、係数θ1~θ10を探索する。換言すると、局所領域(所定領域R1)の温度分布の、測定値と予測値との誤差を最小化するように、係数θ1~θ10を最適化する。これにより、局所領域(所定領域R1)の温度分布の測定値から、融液17全体の温度分布や速度分布(温度分布予測値TDP、X方向流速分布予測値XFP、Y方向流速分布予測値YFP)を正確に予測することができる。 The calculated temperature distribution predicted value TDP includes a predetermined region R1p (see FIG. 7). This is an area corresponding to a predetermined area R1 (see FIG. 3) that can be observed by the thermo camera 20. Then, the coefficients θ1 to θ10 are searched so that the predicted temperature distribution value in the predetermined region R1p matches the measured temperature distribution value in the predetermined region R1 measured by the thermo camera 20. In other words, the coefficients θ1 to θ10 are optimized so as to minimize the error between the measured value and the predicted value in the temperature distribution of the local region (predetermined region R1). As a result, from the measured value of the temperature distribution in the local region (predetermined region R1), the temperature distribution and velocity distribution (temperature distribution predicted value TDP, X-direction flow velocity distribution predicted value XFP, Y-direction flow velocity distribution predicted value YFP) of the entire melt 17 are obtained. ) Can be predicted accurately.
 係数θ1~θ10の最適化は非常に困難である。そこで本実施例では、遺伝的アルゴリズムを用いて最適化を行った。具体的には、多目的最適化アルゴリズム(NSGA II)を使用した。目的関数は、所定領域R1内の温度分布における、測定値と予測値との誤差の二乗平均平方根誤差(RMSE)とした。なお、係数の最適化手法は遺伝的アルゴリズムに限られず、様々な手法を用いることが可能である。 It is very difficult to optimize the coefficients θ1 to θ10. Therefore, in this example, optimization was performed using a genetic algorithm. Specifically, a multi-objective optimization algorithm (NSGAII) was used. The objective function was the root mean square error (RMSE) of the error between the measured and predicted values in the temperature distribution within the predetermined region R1. The coefficient optimization method is not limited to the genetic algorithm, and various methods can be used.
<フィードバック制御ステップ>
 フィードバック制御ステップ(S40)は、制御部40で行われる。S41において制御部40は、演算部38によって演算された温度分布予測値TDP、X方向流速分布予測値XFP、Y方向流速分布予測値YFPの各々が、SiC結晶18の成長にとって理想的な値となるように、坩堝15の回転数および結晶支持部13の回転数や、高周波コイル14の坩堝15に対する相対位置をフィードバック制御する。例えば、X方向流速分布予測値XFPやY方向流速分布予測値YFPが理想値よりも小さい場合には、坩堝15や結晶支持部13の回転数を高めてもよい。
<Feedback control step>
The feedback control step (S40) is performed by the control unit 40. In S41, the control unit 40 sets each of the temperature distribution predicted value TDP, the X-direction flow velocity distribution predicted value XFP, and the Y-direction flow velocity distribution predicted value YFP calculated by the calculation unit 38 as ideal values for the growth of the SiC crystal 18. Therefore, the rotation speed of the crucible 15, the rotation speed of the crystal support portion 13, and the relative position of the high-frequency coil 14 with respect to the crucible 15 are feedback-controlled. For example, when the X-direction flow velocity distribution predicted value XFP or the Y-direction flow velocity distribution predicted value YFP is smaller than the ideal value, the rotation speed of the crucible 15 or the crystal support portion 13 may be increased.
 S42において、SiC結晶18が完成したか否かが判断される。否定判断される場合(S42:NO)には、S32、S33、S41の処理が繰り返される。肯定判断される場合(S42:YES)には、フローを終了する。 In S42, it is determined whether or not the SiC crystal 18 is completed. If a negative determination is made (S42: NO), the processes of S32, S33, and S41 are repeated. If affirmative judgment is made (S42: YES), the flow is terminated.
 効果を説明する。本実施例の技術では、特異値分解(S23)によって抽出した特徴的な分布から選択した少数の特徴的な分布(特徴的温度分布CTD~CTD10、特徴的X方向流速分布CXF~CXF10、特徴的Y方向流速分布CYF~CYF10)を、線形和することで、全体の温度分布や速度分布を予測できる。すなわち、多様で複雑な温度分布や流速分布を、可能な限り少ない特徴量で近似(低ランク近似)することができる。演算処理(S33)の負担を軽減できるため、高速な溶液状態予測が可能となる。従って、温度分布や速度分布の時々刻々な変化に追従して、フィードバック制御することが可能となる。 Explain the effect. In the technique of this example, a small number of characteristic distributions (characteristic temperature distributions CTD 1 to CTD 10 , characteristic X-direction flow velocity distributions CXF 1 to CXF) selected from the characteristic distributions extracted by the singular value decomposition (S23). 10. The overall temperature distribution and velocity distribution can be predicted by linearly summing the characteristic Y-direction flow velocity distributions CYF 1 to CYF 10). That is, various and complicated temperature distributions and flow velocity distributions can be approximated (low-rank approximation) with as few features as possible. Since the burden of the arithmetic processing (S33) can be reduced, high-speed solution state prediction becomes possible. Therefore, it is possible to perform feedback control by following the momentary change of the temperature distribution and the velocity distribution.
<結晶成長の比較実験>
 本明細書で説明したシミュレーションの優位性を確認するために、比較実験を行った。比較実験例では、本明細書に係るシミュレーションを用いずに、SiC結晶成長のパラメータを決定した。一方、本実験例では、本明細書に係るシミュレーションに基づいて、SiC結晶成長のパラメータを決定した。パラメータの一例としては、回転部12の回転数、結晶支持部13の回転数、加熱温度などが挙げられる。
<Comparative experiment of crystal growth>
Comparative experiments were performed to confirm the superiority of the simulations described herein. In the comparative experimental example, the parameters of SiC crystal growth were determined without using the simulation according to the present specification. On the other hand, in this experimental example, the parameters of SiC crystal growth were determined based on the simulation according to the present specification. Examples of the parameters include the rotation speed of the rotating portion 12, the rotation speed of the crystal support portion 13, the heating temperature, and the like.
 図8に、比較実験例で成長させたSiC結晶の表面写真を示す。結晶表面の凹凸が非常に激しいことが、図8から分かる。これは、パラメータ制御が不適切であったため、多結晶が成長し表面に付着しているためである。また、表面がSiC多結晶で覆われているため、欠陥評価を行うことはできなかった。なお、パラメータを試行錯誤して比較実験例を複数回行ったが、いずれも多結晶しか成長させることができなかった。 FIG. 8 shows a surface photograph of the SiC crystal grown in the comparative experimental example. It can be seen from FIG. 8 that the unevenness of the crystal surface is extremely severe. This is because polycrystals have grown and adhered to the surface due to improper parameter control. Moreover, since the surface is covered with SiC polycrystals, defect evaluation could not be performed. Although the parameters were tried and errored and comparative experiments were performed several times, only polycrystals could be grown in each case.
 図9に、本実験例で成長させたSiC結晶の表面写真を示す。成長させた結晶の直径は、約3インチである。比較実験例(図8)に比して、結晶表面が十分に滑らかであることが、図9から分かる。これは、本明細書に係るシミュレーションに基づいてパラメータ制御を適切に行うことが可能となり、単結晶を成長させることができたためである。また、放射光トポグラフィーによる欠陥評価を行った。その結果、一部の領域(10×10mm)では、貫通らせん転位、基底面転位が観察されなかった。本実験例では、欠陥の少ない高品質な単結晶を成長させることができることが分かる。 FIG. 9 shows a surface photograph of the SiC crystal grown in this experimental example. The diameter of the grown crystal is about 3 inches. It can be seen from FIG. 9 that the crystal surface is sufficiently smooth as compared with the comparative experimental example (FIG. 8). This is because the parameter control can be appropriately performed based on the simulation according to the present specification, and the single crystal can be grown. In addition, defect evaluation was performed by synchrotron radiation topography. As a result, no penetrating spiral dislocations and basal plane dislocations were observed in a part of the region (10 × 10 mm 2). In this experimental example, it can be seen that a high-quality single crystal with few defects can be grown.
 比較例で成長させたSiC結晶は多結晶であり、半導体基板として用いることはできない。一方、本実験例で成長させたSiC結晶は単結晶であり、半導体基板として実用可能である。また、欠陥が少ないため、電気特性のよい半導体デバイスを作成することが可能である。以上より、本明細書のシミュレーションの性能および優位性が確認できた。 The SiC crystal grown in the comparative example is polycrystalline and cannot be used as a semiconductor substrate. On the other hand, the SiC crystal grown in this experimental example is a single crystal and can be practically used as a semiconductor substrate. Moreover, since there are few defects, it is possible to produce a semiconductor device having good electrical characteristics. From the above, the performance and superiority of the simulation of this specification can be confirmed.
<変形例>
 以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
<Modification example>
Although the examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above.
 本明細書の予測技術の対象となる溶液状態は、温度分布や流速分布に限られない。例えば炭素濃度分布は、温度分布や流速分布と互いに密接な関係があるため、本明細書の技術で予測することが可能である。この場合、カーボン濃度分布シミュレーション値を取得し(S13)、カーボン濃度分布シミュレーション値を標準化(S21)および1次元化することで、行列Xに追加(S22)すればよい。温度分布、流速分布、カーボン濃度分布を一体として特異値分解(S23)することで、特徴的カーボン濃度分布を抽出すればよい。そして、温度分布の予測値および流速分布の予測値に加えて、カーボン濃度分布の予測値を演算(S33)すればよい。 The solution state that is the subject of the prediction technique of this specification is not limited to the temperature distribution and the flow velocity distribution. For example, since the carbon concentration distribution is closely related to the temperature distribution and the flow velocity distribution, it can be predicted by the technique of the present specification. In this case, the carbon concentration distribution simulation value may be acquired (S13), and the carbon concentration distribution simulation value may be added to the matrix X (S22) by standardizing (S21) and making it one-dimensional. The characteristic carbon concentration distribution may be extracted by performing a singular value decomposition (S23) by integrating the temperature distribution, the flow velocity distribution, and the carbon concentration distribution. Then, in addition to the predicted value of the temperature distribution and the predicted value of the flow velocity distribution, the predicted value of the carbon concentration distribution may be calculated (S33).
 本明細書では、行列の分解法として特異値分解を用いる場合を説明したが、この形態に限られない。固有分解法、QZ分解法、高木分解法など、様々な方法を用いることが可能である。 In this specification, the case where the singular value decomposition is used as the matrix factorization method has been described, but the present invention is not limited to this form. Various methods such as an eigendecomposition method, a QZ decomposition method, and a Takagi decomposition method can be used.
 本明細書では、「2次元」のシミュレーション結果を「行列」として取り扱う場合を説明したが、この形態に限られない。「3次元」のシミュレーション結果を「3階のテンソル」として取り扱うことも可能である。これにより、温度分布や速度分布を3次元(立体)で予測することができる。 In this specification, the case where the "two-dimensional" simulation result is treated as a "matrix" has been described, but the present invention is not limited to this form. It is also possible to treat the "three-dimensional" simulation result as a "third-floor tensor". This makes it possible to predict the temperature distribution and velocity distribution in three dimensions (three-dimensional).
 「2次元」のシミュレーションを行う場合のシミュレーション対象の平面は、図3に例示するX-Y平面に限られない。Y-Z平面やX-Z平面など、自由な平面をシミュレーション対象に設定することが可能である。 The plane to be simulated when performing a "two-dimensional" simulation is not limited to the XY plane illustrated in FIG. It is possible to set a free plane such as a YY plane or an XX plane as a simulation target.
 X-Y平面の行列数(41行120列)は一例である。仮想的な格子サイズおよび行列数は、任意に設定することができる。なお、格子サイズを小さくし行列のサイズを大きくすることに従って、計算負荷が大きくなる。よって、シミュレーション結果で必要とされる空間分解能および計算負荷を勘案することで、格子サイズおよび行列数を適宜に定めればよい。また、パラメータ群の数(98個)、特異値の個数(10個)、は全て一例である。これらの値は、要求される精度と計算能力から適宜定めればよい。 The number of matrices on the XY plane (41 rows and 120 columns) is an example. The virtual grid size and the number of matrices can be set arbitrarily. The calculation load increases as the grid size decreases and the matrix size increases. Therefore, the grid size and the number of matrices may be appropriately determined in consideration of the spatial resolution and the calculation load required in the simulation result. The number of parameter groups (98) and the number of singular values (10) are all examples. These values may be appropriately determined from the required accuracy and computing power.
 本明細書では、熱流体の一例として半導体結晶材料の液体を説明したが、この形態に限られない。熱流体は気体(高温ガス)も含む概念である。また、本明細書の予測技術の適用分野は、半導体結晶の成長に限られない。半導体以外の酸化物結晶の成長や、金属の精錬などの各種分野においても適用が可能である。 In this specification, the liquid of the semiconductor crystal material has been described as an example of the thermal fluid, but the present invention is not limited to this form. Thermal fluid is a concept that also includes gas (high temperature gas). Further, the field of application of the prediction technique of the present specification is not limited to the growth of semiconductor crystals. It can also be applied to various fields such as the growth of oxide crystals other than semiconductors and the refining of metals.
 本明細書の技術の適用対象は、「容器」に格納されている熱流体に限られない。例えば、容器を用いずに装置内部に充填されているガスなども、適用対象である。従って本明細書の技術は、容器を用いない他の結晶成長方法やプロセスにも適用可能である。 The application of the technology of this specification is not limited to the thermal fluid stored in the "container". For example, gas filled inside the device without using a container is also applicable. Therefore, the techniques herein are also applicable to other crystal growth methods and processes that do not use containers.
 本明細書で説明したパラメータ群は一例である。他のパラメータの例としては、高周波コイル14の周波数や電流量、高周波コイル14の坩堝15に対する相対的な位置、高周波コイル14の寸法、融液17の組成、坩堝15の側壁や底部の厚さ、結晶成長装置3内に充填するガスの圧力、断熱材の素材や厚み、などが挙げられる。 The parameter group described in this specification is an example. Examples of other parameters include the frequency and current amount of the high frequency coil 14, the relative position of the high frequency coil 14 with respect to the crucible 15, the dimensions of the high frequency coil 14, the composition of the melt 17, and the thickness of the side wall and bottom of the crucible 15. , The pressure of the gas filled in the crystal growth apparatus 3, the material and thickness of the heat insulating material, and the like.
 所定領域R1で測定される物理量は、温度分布に限られない。流速分布や濃度分布などの物理量も測定対象となる。また所定領域R1は、融液17表面の一部の領域に限られない。融液17の物理量を間接的に測定可能な領域であってもよい。例えば所定領域R1は、結晶成長装置3の内部の領域であってもよい。 The physical quantity measured in the predetermined region R1 is not limited to the temperature distribution. Physical quantities such as flow velocity distribution and concentration distribution are also measured. Further, the predetermined region R1 is not limited to a part of the surface of the melt 17. It may be a region where the physical quantity of the melt 17 can be indirectly measured. For example, the predetermined region R1 may be a region inside the crystal growth apparatus 3.
 融液17の所定領域R1の温度分布を測定する手段は、サーモカメラ20に限られず、様々な手段を使用することが可能である。 The means for measuring the temperature distribution of the predetermined region R1 of the melt 17 is not limited to the thermo camera 20, and various means can be used.
 結晶成長装置3で成長させる結晶は、SiCに限られない。GaN、GaAs、AlN、などの各種の半導体結晶を成長させることができる。 The crystal to be grown by the crystal growth device 3 is not limited to SiC. Various semiconductor crystals such as GaN, GaAs, and AlN can be grown.
 本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques illustrated in the present specification or drawings can achieve a plurality of purposes at the same time, and achieving one of the purposes itself has technical usefulness.
 X-Y平面はJ次元領域の一例である。坩堝15は容器の一例である。融液17は熱流体の一例である。 The XY plane is an example of the J-dimensional region. Crucible 15 is an example of a container. The melt 17 is an example of a thermal fluid.

Claims (7)

  1.  熱流体の一部を示すJ次元領域(Jは1、2、3の何れかの値)内の温度分布シミュレーション値および流速分布シミュレーション値のセットを複数セット取得する取得部であって、前記複数セットは各々異なる値を備える複数のパラメータ群に基づいて取得される、前記取得部と、
     前記温度分布シミュレーション値および前記流速分布シミュレーション値の複数セットの各々を分解することにより、特徴的温度分布および特徴的流速分布のセットを2個以上抽出する抽出部と、
     前記熱流体の一部の領域であって前記J次元領域に含まれる領域である所定領域の温度分布である所定領域温度分布測定値を測定する測定部と、
     前記特徴的温度分布および前記特徴的流速分布のセットの2個以上を互いに線形和することで、前記J次元領域内の温度分布予測値および流速分布予測値を演算する演算部であって、演算された前記温度分布予測値が含んでいる所定領域温度分布予測値であって前記所定領域の温度分布を示す前記所定領域温度分布予測値が、前記測定部で測定した前記所定領域温度分布測定値と一致するように演算する、前記演算部と、
     を備える、熱流体状態演算装置。
    An acquisition unit that acquires a plurality of sets of temperature distribution simulation values and flow velocity distribution simulation values in a J-dimensional region (J is a value of 1, 2, or 3) indicating a part of a thermal fluid. The acquisition unit and the acquisition unit, in which the set is acquired based on a plurality of parameter groups each having a different value,
    An extraction unit that extracts two or more sets of characteristic temperature distribution and characteristic flow velocity distribution by decomposing each of a plurality of sets of the temperature distribution simulation value and the flow velocity distribution simulation value.
    A measuring unit that measures a predetermined region temperature distribution measurement value, which is a temperature distribution of a predetermined region that is a partial region of the thermal fluid and is a region included in the J-dimensional region.
    A calculation unit that calculates the predicted temperature distribution value and the predicted flow velocity distribution value in the J-dimensional region by linearly summing two or more sets of the characteristic temperature distribution and the characteristic flow velocity distribution. The predetermined region temperature distribution predicted value included in the temperature distribution predicted value, which indicates the temperature distribution of the predetermined region, is the predetermined region temperature distribution measured value measured by the measuring unit. With the above-mentioned calculation unit, which calculates so as to match with
    A thermo-fluid state arithmetic unit.
  2.  前記抽出部は、前記温度分布シミュレーション値および前記流速分布シミュレーション値の複数セットの各々を標準化してから前記分解を行い、
     前記温度分布シミュレーション値の標準化は、
      複数の前記温度分布シミュレーション値の平均温度分布を求め、
      複数の前記温度分布シミュレーション値の各々について前記平均温度分布からの偏差を求め、
      複数の前記平均温度分布からの偏差から1つの温度分布標準偏差を求め、
      複数の前記平均温度分布からの偏差の各々を前記温度分布標準偏差で除することで行われ、
     前記流速分布シミュレーション値の標準化は、
      複数の前記流速分布シミュレーション値の平均流速分布を求め、
      複数の前記流速分布シミュレーション値の各々について前記平均流速分布からの偏差を求め、
      複数の前記平均流速分布からの偏差から1つの流速標準偏差を求め、
      複数の前記平均流速分布からの偏差の各々を前記流速標準偏差で除することで行われる、
     請求項1に記載の熱流体状態演算装置。
    The extraction unit standardizes each of the plurality of sets of the temperature distribution simulation value and the flow velocity distribution simulation value, and then performs the decomposition.
    The standardization of the temperature distribution simulation value is
    Obtain the average temperature distribution of the plurality of temperature distribution simulation values,
    The deviation from the average temperature distribution was obtained for each of the plurality of temperature distribution simulation values.
    Obtain one temperature distribution standard deviation from the deviations from the plurality of average temperature distributions.
    It is performed by dividing each of the deviations from the plurality of average temperature distributions by the temperature distribution standard deviation.
    The standardization of the flow velocity distribution simulation value is
    Obtain the average flow velocity distribution of the plurality of flow velocity distribution simulation values, and obtain
    The deviation from the average flow velocity distribution was obtained for each of the plurality of flow velocity distribution simulation values.
    Obtain one flow velocity standard deviation from the deviations from the plurality of average flow velocity distributions.
    It is performed by dividing each of the deviations from the plurality of average flow velocity distributions by the flow velocity standard deviations.
    The thermo-fluid state calculation device according to claim 1.
  3.  前記熱流体は半導体結晶材料の融液であり、
     前記複数のパラメータ群は、前記熱流体を格納している容器の回転数、および、前記融液に接触している半導体結晶の回転数を含んでいる、請求項1または2に記載の熱流体状態演算装置。
    The thermal fluid is a melt of a semiconductor crystal material and is
    The thermal fluid according to claim 1 or 2, wherein the plurality of parameter groups include the rotation speed of the container containing the thermal fluid and the rotation speed of the semiconductor crystal in contact with the melt. State arithmetic unit.
  4.  前記半導体結晶はSiC結晶であり、
     前記取得部は、前記J次元領域内のカーボン濃度分布シミュレーション値をさらに取得し、
     前記抽出部は、特徴的カーボン濃度分布をさらに抽出し、
     前記演算部は、カーボン濃度分布予測値をさらに演算する、請求項3に記載の熱流体状態演算装置。
    The semiconductor crystal is a SiC crystal and
    The acquisition unit further acquires the carbon concentration distribution simulation value in the J-dimensional region, and further acquires the carbon concentration distribution simulation value.
    The extraction unit further extracts the characteristic carbon concentration distribution.
    The thermo-fluid state calculation device according to claim 3, wherein the calculation unit further calculates a carbon concentration distribution predicted value.
  5.  前記所定領域は、前記融液の上面の一部の領域である、請求項3または4に記載の熱流体状態演算装置。 The thermo-fluid state arithmetic unit according to claim 3 or 4, wherein the predetermined region is a part region on the upper surface of the melt.
  6.  前記演算部によって演算された前記温度分布予測値および前記流速分布予測値の各々が、前記半導体結晶の成長にとって好適な値となるように、前記容器の回転数および前記半導体結晶の回転数をフィードバック制御する制御部をさらに備える、請求項3~5の何れか1項に記載の熱流体状態演算装置。 The rotation speed of the container and the rotation speed of the semiconductor crystal are fed back so that each of the temperature distribution predicted value and the flow velocity distribution predicted value calculated by the arithmetic unit are suitable values for the growth of the semiconductor crystal. The thermo-fluid state calculation device according to any one of claims 3 to 5, further comprising a control unit for controlling.
  7.  前記J次元領域がX-Y平面を備える2次元領域であるとともに前記流速分布シミュレーション値がX方向流速分布シミュレーション値およびY方向流速分布シミュレーション値を備える場合に、前記取得部は、前記X-Y平面をK行およびL列(KおよびLは1以上の自然数)のマトリクスとして取り扱い、
     前記温度分布シミュレーション値、前記X方向流速分布シミュレーション値、前記Y方向流速分布シミュレーション値の各々は、前記K行およびL列の行列で表され、
     前記分解の対象となる行列Xは、N行およびM列(NおよびMは1以上の自然数)の行列で表され、
     前記Nの値は前記複数のパラメータ群の数であり、
     前記行列Xのi行目(iは1以上N以下の自然数)の成分は、
      i番目のパラメータ群における標準化された前記温度分布シミュレーション値を一元化したK×L列と、
      i番目のパラメータ群における標準化された前記X方向流速分布シミュレーション値を一元化したK×L列と、
      i番目のパラメータ群における標準化された前記Y方向流速分布シミュレーション値を一元化したK×L列と、を順に並べた成分を有している、請求項1~6の何れか1項に記載の熱流体状態演算装置。
    When the J-dimensional region is a two-dimensional region including the XY plane and the flow velocity distribution simulation value includes the X-direction flow velocity distribution simulation value and the Y-direction flow velocity distribution simulation value, the acquisition unit is the XY. Treat the plane as a matrix of rows K and columns L (K and L are natural numbers greater than or equal to 1).
    Each of the temperature distribution simulation value, the X-direction flow velocity distribution simulation value, and the Y-direction flow velocity distribution simulation value is represented by a matrix of rows K and columns L.
    The matrix X to be decomposed is represented by a matrix of N rows and M columns (N and M are natural numbers of 1 or more).
    The value of N is the number of the plurality of parameter groups.
    The component of the i-th row of the matrix X (i is a natural number of 1 or more and N or less) is
    A K × L sequence that unifies the standardized temperature distribution simulation values in the i-th parameter group, and
    A K × L sequence that unifies the standardized X-direction flow velocity distribution simulation values in the i-th parameter group, and
    The heat according to any one of claims 1 to 6, which has a component in which a K × L sequence in which the standardized Y-direction flow velocity distribution simulation value in the i-th parameter group is unified and the K × L sequence are arranged in order. Fluid state arithmetic unit.
PCT/JP2020/032026 2019-09-03 2020-08-25 Thermic fluid state computation apparatus WO2021044907A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021543710A JP7162937B2 (en) 2019-09-03 2020-08-25 Thermo-fluid state calculator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-160600 2019-09-03
JP2019160600 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021044907A1 true WO2021044907A1 (en) 2021-03-11

Family

ID=74852886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032026 WO2021044907A1 (en) 2019-09-03 2020-08-25 Thermic fluid state computation apparatus

Country Status (2)

Country Link
JP (1) JP7162937B2 (en)
WO (1) WO2021044907A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275587A (en) * 1990-03-23 1991-12-06 Toshiba Ceramics Co Ltd Semiconductor single crystal pulling-up device
JPH11190662A (en) * 1997-12-26 1999-07-13 Sumitomo Sitix Corp Method of measuring surface temperature of molten liquid in single crystal pull-up furnace and device for the method
WO2004018742A1 (en) * 2002-07-05 2004-03-04 Sumitomo Mitsubishi Silicon Corporation Method of producing silicon monocrystal
JP2016150882A (en) * 2015-02-18 2016-08-22 トヨタ自動車株式会社 MANUFACTURING METHOD OF SiC SINGLE CRYSTAL
JP2018108910A (en) * 2017-01-05 2018-07-12 株式会社Sumco Silicon single crystal pulling condition calculation program, silicon single crystal hot zone improvement method, and silicon single crystal growing method
JP2018169818A (en) * 2017-03-30 2018-11-01 国立大学法人名古屋大学 Video display system and manufacturing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275587A (en) * 1990-03-23 1991-12-06 Toshiba Ceramics Co Ltd Semiconductor single crystal pulling-up device
JPH11190662A (en) * 1997-12-26 1999-07-13 Sumitomo Sitix Corp Method of measuring surface temperature of molten liquid in single crystal pull-up furnace and device for the method
WO2004018742A1 (en) * 2002-07-05 2004-03-04 Sumitomo Mitsubishi Silicon Corporation Method of producing silicon monocrystal
JP2016150882A (en) * 2015-02-18 2016-08-22 トヨタ自動車株式会社 MANUFACTURING METHOD OF SiC SINGLE CRYSTAL
JP2018108910A (en) * 2017-01-05 2018-07-12 株式会社Sumco Silicon single crystal pulling condition calculation program, silicon single crystal hot zone improvement method, and silicon single crystal growing method
JP2018169818A (en) * 2017-03-30 2018-11-01 国立大学法人名古屋大学 Video display system and manufacturing apparatus

Also Published As

Publication number Publication date
JP7162937B2 (en) 2022-10-31
JPWO2021044907A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7059908B2 (en) Thermal conductivity estimation method, thermal conductivity estimation device, manufacturing method of semiconductor crystal products, thermal conductivity calculation device, thermal conductivity calculation program, and thermal conductivity calculation method
US20050071038A1 (en) System and method for using first-principles simulation to control a semiconductor manufacturing process
Maroudas Surface morphological response of crystalline solids to mechanical stresses and electric fields
KR20230031925A (en) Control of processing equipment
CN108411253A (en) A kind of atomic air chamber preparation facilities that alkali metal is quantitatively filled and preparation method
WO2021044907A1 (en) Thermic fluid state computation apparatus
Winkler et al. A review of the automation of the Czochralski crystal growth process
Kutsukake et al. Real-time prediction of interstitial oxygen concentration in Czochralski silicon using machine learning
Kleinschmidt et al. Direct observation of dimer flipping at the hydrogen-stabilized GaP (100) and InP (100) surfaces
Glas et al. Statistics of nucleation and growth of single monolayers in nanowires: Towards a deterministic regime
Müller Experimental analysis and modeling of melt growth processes
Ciobanu et al. Reconstruction of silicon surfaces: A stochastic optimization problem
Hashimoto Optimal Feedback Control Method Using Magnetic Force for Crystal Growth Dynamics
JP2023512382A (en) Conductive Gallium Oxide Quality Prediction Method, Manufacturing Method and System Using Deep Learning and EFG Techniques
Zhang et al. Anisotropy effect on strain-induced instability during growth of heteroepitaxial films
CN110656322A (en) Method, device and equipment for continuously growing epitaxial wafer and storage medium
Zieyana Mohamed Annuar et al. Modeling and simulation of metal organic halide vapor phase epitaxy (MOHVPE) growth chamber
Ghritli A numerical investigation and optimization by
Li et al. Smart-Cast: An AI-Based System for Semisolid Casting Process Control
Life Accelerated Characterization and Optimization of Thin-Film Materials With Combinatorial Deposition and Bayesian Active Learning
Bique et al. Cellular automata application for simulation of uranium crystallization process
Winkler et al. Observer based determination of the crystal diameter in Czochralski crystal growth utilizing algorithmic differentiation
Kozin et al. Development of an advanced control system for a chemical vapor deposition (CVD) reactor for polysilicon production
Kutsukake Review of machine learning applications for crystal growth research
JPH08250384A (en) Controlling method for manufacturing equipment and manufacturing condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860296

Country of ref document: EP

Kind code of ref document: A1