WO2021044856A1 - Film for tubular therapeutic tool and tubular therapeutic tool - Google Patents

Film for tubular therapeutic tool and tubular therapeutic tool Download PDF

Info

Publication number
WO2021044856A1
WO2021044856A1 PCT/JP2020/031413 JP2020031413W WO2021044856A1 WO 2021044856 A1 WO2021044856 A1 WO 2021044856A1 JP 2020031413 W JP2020031413 W JP 2020031413W WO 2021044856 A1 WO2021044856 A1 WO 2021044856A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
body layer
tubular
sealing material
fibers
Prior art date
Application number
PCT/JP2020/031413
Other languages
French (fr)
Japanese (ja)
Inventor
▲晄▼中 陳
Original Assignee
川澄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川澄化学工業株式会社 filed Critical 川澄化学工業株式会社
Priority to JP2021543689A priority Critical patent/JPWO2021044856A1/ja
Publication of WO2021044856A1 publication Critical patent/WO2021044856A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts

Definitions

  • the present invention relates to a membrane body for a tubular treatment tool and a tubular treatment tool.
  • a stent graft has been conventionally known as a tubular therapeutic tool used for treating an aortic aneurysm or aortic dissection occurring in the aorta (see, for example, Patent Documents 1 and 2).
  • the stent graft includes, for example, a skeleton portion using a metal wire and a coating portion that covers the skeleton portion, and has a tubular outer shape as a whole.
  • the stent graft expands by applying an external force from the inside to the outside in the radial direction at a predetermined position in the blood vessel, and is placed in the blood vessel in close contact with the blood vessel.
  • a fibrous material for the coating portion of the stent graft for example, from the viewpoint of suppressing tearing or tearing due to suturing with the skeleton portion.
  • the liquid permeability of the film portion is low.
  • body fluid easily leaks from the gaps between the fibers, so there is room for improvement in achieving low liquid permeability.
  • An object of the present invention is to provide a membrane body for a tubular treatment tool and a tubular treatment tool that are less likely to tear or tear at suture while ensuring low liquid permeability.
  • One aspect of the present invention is a membrane body for a tubular therapeutic tool including a tubular coating portion, in which the coating portion has a main body layer made of fibers, and the main body layer has biocompatibility in the gaps between the fibers.
  • the sealant is filled and the liquid permeability is relatively reduced as a whole.
  • one aspect of the present invention is a tubular treatment tool, which includes a tubular film portion and a skeleton portion sutured on one surface of the film portion, and the film portion has a main body layer made of fibers.
  • the main body layer is filled with a biocompatible sealing material in the gaps between the fibers, and the liquid permeability is relatively lowered as a whole.
  • FIG. 2 is an enlarged view of a cross section of a portion surrounded by a broken line in FIG. It is a figure which shows typically the cross-sectional structure of the part surrounded by the broken line in FIG.
  • FIG. 4 is a sectional view taken along line IIIb-IIIb of FIG.
  • FIG. 1 is a perspective view showing a schematic configuration of the stent graft 10 of one embodiment.
  • FIG. 1 shows a state (use state) in which the stent graft 10 is placed in a blood vessel.
  • the stent graft 10 shown in FIG. 1 is a stent graft for blood vessels, and has a tubular shape as a whole.
  • the stent graft 10 has openings provided at both ends in the axial direction Ax communicating with each other, and has a tubular flow path inside through which the patient's blood passes in the used state.
  • a straight tube-shaped stent graft 10 is shown.
  • the stent graft 10 of the present embodiment may have, for example, a shape curved in an arch shape (for example, a shape corresponding to the aortic arch of a patient) or a shape having a twist.
  • the stent graft 10 has a so-called self-expanding structure in which the shape of the expanded state is stored.
  • the stent graft 10 is introduced into the blood vessel 30 in a state of being housed in a tubular sheath (not shown) and contracted inward in the radial direction (not shown).
  • the stent graft 10 is carried to a predetermined position in the blood vessel 30 (for example, a lesion site 31 where an aortic aneurysm or the like is occurring), then released from the sheath, and expands radially outward.
  • the expanded stent graft 10 is placed in the blood vessel 30 in close contact with the inner wall of the blood vessel 30.
  • the stent graft 10 includes a skeleton portion 11 and a coating portion 12 fixed to the skeleton portion 11.
  • the film portion 12 is an example of a membrane body for a tubular therapeutic tool.
  • a bare portion 14 made of, for example, a metal skeleton is formed at one end of the axial direction Ax of the stent graft 10.
  • the bare portion 14 has a function of causing friction with the inner wall of the blood vessel 30 when the stent graft 10 is placed and suppressing a displacement (migration) of the stent graft 10.
  • the skeleton portion 11 is formed by, for example, spirally winding a thin metal wire (wire rod).
  • the skeleton portion 11 is formed by winding the thin metal wire spirally while bending so that peaks and valleys are alternately formed.
  • the cross-sectional shape of the thin metal wire of the skeleton portion 11 is, for example, a circular shape or an elliptical shape.
  • the skeleton portion 11 is configured to be deformable so as to self-expand from a contracted state contracted inward in the radial direction to an expanded state expanded outward in the radial direction.
  • Examples of the material constituting the fine metal wire of the skeleton portion 11 include known metals or metal alloys typified by Ni—Ti alloy (Nitinol), cobalt-chromium alloy, titanium alloy, stainless steel and the like.
  • the skeleton portion 11 may be made of a material other than metal (for example, ceramic or resin).
  • the material of the skeleton portion 11 (nitinol or the like), the cross-sectional area and cross-sectional shape of the thin metal wire of the skeleton portion 11 (circular wire rod such as a wire, or square wire rod by laser cutting), and the folding back of the skeleton portion 11 in the circumferential direction.
  • the film portion 12 is a tubular flexible film body that forms the above-mentioned tubular flow path, and is attached to the skeleton portion 11 so as to close the gap portion of the skeleton portion 11.
  • the film portion 12 is attached to the inside of the skeleton portion 11.
  • outer coating portions 12a that partially cover the skeleton portion 11 from the outside are attached to both ends of the stent graft 10 in the axial direction Ax.
  • the outer coating portion 12a may be formed by folding back the coating portion 12 from the inside to the outside of the skeleton portion 11, for example.
  • the outer coating portion 12a may be formed by overlapping the outer coating portion 12 formed in a band shape from the outside of the skeleton portion 11.
  • the outer coating portion 12a may be attached so as to cover the skeleton portion 11 as a whole from the outside, that is, to sandwich and cover the skeleton portion 11 from the inside and the outside by using the two coating portions 12. .. Further, the film portion 12 may be attached only to the outside of the skeleton portion 11.
  • the skeleton portion 11 of the present embodiment is sewn with the coating portion 12 and the thread 13 as shown in FIGS. 4 and 5 described later.
  • the method of fixing the skeleton portion 11 and the coating portion 12 may be, for example, adhesion, welding, or sticking with a tape.
  • FIG. 2 and 3 are diagrams schematically showing the configuration of the film portion 12. Further, FIG. 4 is a diagram schematically showing a cross-sectional structure of a portion surrounded by a broken line in FIG. 1, and FIG. 5 is a sectional view taken along line IIIb-IIIb of FIG.
  • the film portion 12 has a main body layer 21 made of a fabric of fibers 21a.
  • the body layer 21 is composed of a woven fabric, knitted fabric or non-woven fabric made of a biocompatible fibrous material.
  • FIG. 2-5 schematically shows an example in which the main body layer 21 of the film portion 12 is formed of a woven fabric, but the film portion 12 may be a knitted fabric or a non-woven fabric as described above.
  • the woven fabric of the main body layer 21 may be woven in any of plain weave, twill weave, and satin weave.
  • the fiber material of the main body layer 21 examples include a polyester resin such as polyethylene terephthalate and a fluororesin such as PTFE (polytetrafluoroethylene).
  • the main body layer 21 can pass the thread 13 through the gap between the fibers 21a. Therefore, the main body layer 21 and the skeleton portion 11 can be sutured without reducing the strength against tearing or tearing of the main body layer 21.
  • FIG. 3 shows a state in which the sealing material 22 has entered the gap between the fibers 21a of the main body layer 21 and the surface of the main body layer 21 is covered with the sealing material 22.
  • the sealing material 22 has a function of reducing the liquid permeability of the main body layer 21 by closing the gaps between the fibers 21a. That is, the main body layer 21 has a relatively low liquid permeability as a whole as compared with the one formed of the fiber alone.
  • the sealing material 22 is made of a resin material having lower liquid permeability than the fiber 21a of the main body layer 21 and having biocompatibility.
  • Examples of the material of the sealing material 22 include polyethylene, silicone, urethane and the like.
  • the main body layer 21 may be filled with the sealing material 22 by, for example, sprinkling granular sealing material 22 on at least one surface of the main body layer 21 and then heating to melt the sealing material 22. Further, the solution of the sealing material 22 may be adhered to at least one surface of the main body layer 21 by dipping or the like, or the sheet of the sealing material 22 may be heat-pressed. When heating is performed when the main body layer 21 is filled with the sealing material 22, a material having a melting point lower than that of the main body layer 21 is used for the sealing material 22.
  • the sealing material 22 By coating the surface of the main body layer 21 with the sealing material 22, it is possible to impart slipperiness to the main body layer 21 as compared with the case where there is no coating. As a result, the resistance when the stent graft 10 is loaded into the sheath and when the stent graft 10 is released from the sheath can be reduced, and the wear resistance can be improved.
  • a material containing a polymer compound such as polyethylene particularly, ultra-high molecular weight polyethylene having a molecular weight of about 1 million to 6 million
  • the slipperiness of the main body layer 21 can be further improved. It can be done and is preferable.
  • a biodegradable polymer such as polylactic acid may be applied as the sealing material 22. That is, polylactic acid is hydrolyzed in the living body and finally dissolved.
  • the lesion site 31 (aortic aneurysm, etc.) is controlled by controlling the period until the gap between the fibers 21a of the main body layer 21 is closed by the thrombus. ), It is considered that the inflow of blood to) can be suppressed.
  • the stent graft 10 of the present embodiment includes a tubular film portion 12 and a skeleton portion 11 sutured on one surface of the film portion 12.
  • the film portion 12 has a main body layer 21 made of fibers 21a, and the main body layer 21 is filled with a biocompatible sealing material 22 in the gaps between the fibers 21a, so that the liquid permeability is relatively lowered as a whole. ing.
  • the gaps between the fibers 21a of the main body layer 21 are closed by filling the sealing material 22, leakage of body fluid from the gaps between the fibers 21a of the main body layer 21 in the film portion 12 is suppressed. ..
  • the stent graft 10 of the present embodiment it is possible to suppress the inflow of blood inside the stent graft 10 to the lesion site 31 on the outside. Further, since the main body layer 21 of the film portion 12 can pass the thread 13 through the gap between the fibers 21a, the skeleton portion 11 is sewn to the main body layer 21 without reducing the strength against tearing or tearing of the main body layer 21. be able to. Therefore, according to the stent graft 10 of the present embodiment, tearing or tearing of the coating portion 12 due to suturing is less likely to occur.
  • the film portion 12 having reduced liquid permeability as a whole is used by filling the gaps between the fibers 21a of the main body layer 21 with a sealing material, so that the film portion can be formed only with the fabric.
  • the thickness of the entire film portion can be reduced as compared with the case of configuration. For example, when the film portion is composed of only the cloth, it is necessary to thicken the film portion in order to reduce the liquid permeability. If the film portion is thickened, there is a concern that the storability when the tubular treatment tool is stored in the sheath is deteriorated and the release property from the sheath is lowered.
  • the liquid permeability can be lowered even if the thickness of the main body layer 21 is small.
  • stent graft placement using a sheath having a smaller diameter than before becomes possible, and the burden (invasiveness) on the patient during the surgery can be further reduced.
  • the surface of the main body layer 21 with the sealing material 22 to impart slipperiness, it is possible to reduce the resistance when the stent graft 10 is released from the sheath. With such a configuration, it becomes easier to use a sheath having a smaller diameter than before in the stent graft placement operation, and the work of loading the stent graft 10 into the sheath becomes easy.
  • Stent graft tubular treatment tool
  • Skeleton part 11
  • Film part 12
  • Thread 21
  • Body layer 21a Fiber 22 Sealing material

Landscapes

  • Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

Provided is a film for a tubular therapeutic tool which comprises a tubular film portion (12), wherein the film portion has a body layer (21) comprising fibers (21a), and the gaps between the fibers in the body layer are filled with a biocompatible sealing material (22) so that liquid permeability as a whole is relatively low.

Description

管状治療具用膜体および管状治療具Membrane body for tubular treatment tool and tubular treatment tool
 本発明は、管状治療具用膜体および管状治療具に関する。 The present invention relates to a membrane body for a tubular treatment tool and a tubular treatment tool.
 例えば、大動脈に生じた大動脈瘤や大動脈解離などの治療に用いられる管状治療具として、ステントグラフトが従来から知られている(例えば、特許文献1、2参照)。
 ステントグラフトは、例えば、金属線を用いた骨格部と、骨格部を被覆する皮膜部を含み、全体として管状の外形をなす。ステントグラフトは、血管内の所定位置において内側から径方向外側に外力が加えられることで拡張し、血管と密着した状態で血管内に留置される。
For example, a stent graft has been conventionally known as a tubular therapeutic tool used for treating an aortic aneurysm or aortic dissection occurring in the aorta (see, for example, Patent Documents 1 and 2).
The stent graft includes, for example, a skeleton portion using a metal wire and a coating portion that covers the skeleton portion, and has a tubular outer shape as a whole. The stent graft expands by applying an external force from the inside to the outside in the radial direction at a predetermined position in the blood vessel, and is placed in the blood vessel in close contact with the blood vessel.
特許第6131441号公報Japanese Patent No. 6131441 特許第5824759号公報Japanese Patent No. 5824759
 ステントグラフトの被膜部には、例えば骨格部との縫合による破れや裂けを抑制する点で繊維材料を用いることが好ましい。また、ステントグラフトの使用時に病変部位への血液の流入を抑制する上で、皮膜部の透液性は低いことが好ましい。
 しかしながら、皮膜部に繊維材料を用いる場合には、繊維の隙間からの体液の漏れが生じ易いので、低い透液性を実現するには改善の余地がある。
It is preferable to use a fibrous material for the coating portion of the stent graft, for example, from the viewpoint of suppressing tearing or tearing due to suturing with the skeleton portion. Further, in order to suppress the inflow of blood to the lesion site when the stent graft is used, it is preferable that the liquid permeability of the film portion is low.
However, when a fiber material is used for the film portion, body fluid easily leaks from the gaps between the fibers, so there is room for improvement in achieving low liquid permeability.
 本発明の目的は、低い透液性を確保しつつ、縫合での裂けや破れの生じにくい管状治療具用膜体および管状治療具を提供することである。 An object of the present invention is to provide a membrane body for a tubular treatment tool and a tubular treatment tool that are less likely to tear or tear at suture while ensuring low liquid permeability.
 本発明の一態様は、管状の皮膜部を備える管状治療具用膜体であって、皮膜部は、繊維からなる本体層を有し、本体層は、その繊維の隙間に生体適合性を有するシーリング材が充填され、全体として透液性が相対的に低下されている。 One aspect of the present invention is a membrane body for a tubular therapeutic tool including a tubular coating portion, in which the coating portion has a main body layer made of fibers, and the main body layer has biocompatibility in the gaps between the fibers. The sealant is filled and the liquid permeability is relatively reduced as a whole.
 また、本発明の一態様は、管状治療具であって、管状の皮膜部と、皮膜部の一面に縫合される骨格部と、を備え、皮膜部は、繊維からなる本体層を有し、本体層は、その繊維の隙間に生体適合性を有するシーリング材が充填され、全体として透液性が相対的に低下されている。 Further, one aspect of the present invention is a tubular treatment tool, which includes a tubular film portion and a skeleton portion sutured on one surface of the film portion, and the film portion has a main body layer made of fibers. The main body layer is filled with a biocompatible sealing material in the gaps between the fibers, and the liquid permeability is relatively lowered as a whole.
 本発明によれば、低い透液性を確保しつつ、縫合での裂けや破れを生じにくくすることができる。 According to the present invention, it is possible to prevent tearing or tearing in suturing while ensuring low liquid permeability.
本発明を適用した一実施形態のステントグラフトの斜視図である。It is a perspective view of the stent graft of one Embodiment to which this invention was applied. 皮膜部の構成を模式的に示す図である。It is a figure which shows typically the structure of the film part. 図2において破線で囲った部分の断面の拡大図である。FIG. 2 is an enlarged view of a cross section of a portion surrounded by a broken line in FIG. 図1において破線で囲った部分の断面構造を模式的に示す図である。It is a figure which shows typically the cross-sectional structure of the part surrounded by the broken line in FIG. 図4のIIIb-IIIb線断面図である。FIG. 4 is a sectional view taken along line IIIb-IIIb of FIG.
 以下、本発明の実施形態について図面を参照して説明する。
 後述の各図では、管状治療具の一実施形態としてのステントグラフト10の構成例を模式的に表している。図面におけるステントグラフト10の形状、寸法等は模式的に示したもので、実際の形状や寸法等を示すものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In each figure described later, a configuration example of the stent graft 10 as an embodiment of the tubular treatment tool is schematically shown. The shapes, dimensions, etc. of the stent graft 10 in the drawings are schematically shown, and do not show the actual shapes, dimensions, etc.
 図1は、一実施形態のステントグラフト10の概略構成を示す斜視図である。図1では、ステントグラフト10を血管内に留置させた状態(使用状態)を示している。 FIG. 1 is a perspective view showing a schematic configuration of the stent graft 10 of one embodiment. FIG. 1 shows a state (use state) in which the stent graft 10 is placed in a blood vessel.
 図1に示すステントグラフト10は、血管用のステントグラフトであり、全体形状が管状をなしている。ステントグラフト10は、軸方向Axの両端部に設けられた開口が連通しており、使用状態において患者の血液が通過する管状流路を内部に有している。
 図1の例では、直管形状のステントグラフト10を示している。もっとも、本実施形態のステントグラフト10は、例えば、弓状に湾曲した形状(例えば、患者の大動脈弓に対応した形状)であってもよく、捻れを有する形状であってもよい。
The stent graft 10 shown in FIG. 1 is a stent graft for blood vessels, and has a tubular shape as a whole. The stent graft 10 has openings provided at both ends in the axial direction Ax communicating with each other, and has a tubular flow path inside through which the patient's blood passes in the used state.
In the example of FIG. 1, a straight tube-shaped stent graft 10 is shown. However, the stent graft 10 of the present embodiment may have, for example, a shape curved in an arch shape (for example, a shape corresponding to the aortic arch of a patient) or a shape having a twist.
 ステントグラフト10は、拡張状態の形状が記憶された、いわゆる自己拡張型の構成を有する。ステントグラフト10は、図示しない筒状のシースに収容されて径方向内側に収縮された状態(不図示)で血管30内に導入される。ステントグラフト10は、血管30内の所定位置(例えば、大動脈瘤等が生じている病変部位31)に運ばれた後にシースから放出され、径方向外側に拡張する。拡張したステントグラフト10は、図1に示すように血管30の内壁と密着した状態で血管30内に留置される。 The stent graft 10 has a so-called self-expanding structure in which the shape of the expanded state is stored. The stent graft 10 is introduced into the blood vessel 30 in a state of being housed in a tubular sheath (not shown) and contracted inward in the radial direction (not shown). The stent graft 10 is carried to a predetermined position in the blood vessel 30 (for example, a lesion site 31 where an aortic aneurysm or the like is occurring), then released from the sheath, and expands radially outward. As shown in FIG. 1, the expanded stent graft 10 is placed in the blood vessel 30 in close contact with the inner wall of the blood vessel 30.
 図1に示すように、ステントグラフト10は、骨格部11と、骨格部11に固定された皮膜部12とを備えている。皮膜部12は、管状治療具用膜体の一例である。また、ステントグラフト10の軸方向Axの一端には、例えば金属骨格からなるベア部14が形成されている。
 ベア部14は、ステントグラフト10の留置時に血管30の内壁との間で摩擦を生じさせ、ステントグラフト10の位置ずれ(マイグレーション)を抑制する機能を担う。
As shown in FIG. 1, the stent graft 10 includes a skeleton portion 11 and a coating portion 12 fixed to the skeleton portion 11. The film portion 12 is an example of a membrane body for a tubular therapeutic tool. Further, a bare portion 14 made of, for example, a metal skeleton is formed at one end of the axial direction Ax of the stent graft 10.
The bare portion 14 has a function of causing friction with the inner wall of the blood vessel 30 when the stent graft 10 is placed and suppressing a displacement (migration) of the stent graft 10.
 骨格部11は、例えば、金属細線(線材)が螺旋状に巻回されて形成されている。例えば、金属細線が山部と谷部とが交互に形成されるように屈曲しながら螺旋状に巻回されることで、骨格部11が形成されている。骨格部11の金属細線の断面形状は、例えば、円形又は楕円形である。 The skeleton portion 11 is formed by, for example, spirally winding a thin metal wire (wire rod). For example, the skeleton portion 11 is formed by winding the thin metal wire spirally while bending so that peaks and valleys are alternately formed. The cross-sectional shape of the thin metal wire of the skeleton portion 11 is, for example, a circular shape or an elliptical shape.
 骨格部11は、径方向内側に収縮した収縮状態から、径方向外側に拡張した拡張状態へと自己拡張するように変形可能に構成される。 The skeleton portion 11 is configured to be deformable so as to self-expand from a contracted state contracted inward in the radial direction to an expanded state expanded outward in the radial direction.
 骨格部11の金属細線を構成する材料としては、例えば、Ni-Ti合金(ニチノール)、コバルト-クロム合金、チタン合金、及びステンレス鋼等に代表される公知の金属又は金属合金が挙げられる。なお、骨格部11は、金属以外の材料(例えば、セラミックや樹脂等)で形成されていてもよい。 Examples of the material constituting the fine metal wire of the skeleton portion 11 include known metals or metal alloys typified by Ni—Ti alloy (Nitinol), cobalt-chromium alloy, titanium alloy, stainless steel and the like. The skeleton portion 11 may be made of a material other than metal (for example, ceramic or resin).
 また、例えば、骨格部11の材料(ニチノール等)、骨格部11の金属細線の断面積及び断面形状(ワイヤ等の円線材、又は、レーザーカットによる角線材)、周方向における骨格部11の折り返し回数及び折り返し形状(山部の数及び山部の形状)、並びに、軸方向における骨格部11の螺旋ピッチ(ステントグラフト10の単位長さ当たりの骨格量)等は、留置される血管の径等に応じて適切な値に設定され得る。これらのパラメータに関する詳細な説明は省略する。 Further, for example, the material of the skeleton portion 11 (nitinol or the like), the cross-sectional area and cross-sectional shape of the thin metal wire of the skeleton portion 11 (circular wire rod such as a wire, or square wire rod by laser cutting), and the folding back of the skeleton portion 11 in the circumferential direction. The number of times, the folded shape (the number of peaks and the shape of the peaks), the spiral pitch of the skeleton portion 11 in the axial direction (the amount of skeleton per unit length of the stent graft 10), etc. It can be set to an appropriate value accordingly. Detailed description of these parameters will be omitted.
 皮膜部12は、上述の管状流路を形成する管状の可撓性の膜体であって、骨格部11の隙間部分を閉塞するように骨格部11に取り付けられている。本実施形態では、図1に示すように、皮膜部12は、骨格部11の内側に取り付けられている。また、ステントグラフト10の軸方向Axの両端部には、骨格部11を外側から部分的に覆う外側皮膜部12aが貼設されている。
 外側皮膜部12aは、例えば、骨格部11の内側から外側に皮膜部12が折り返されて形成されても良い。あるいは、外側皮膜部12aは、皮膜部12を帯状に形成したものを骨格部11の外側から重ね合わせるようにして形成されてもよい。
The film portion 12 is a tubular flexible film body that forms the above-mentioned tubular flow path, and is attached to the skeleton portion 11 so as to close the gap portion of the skeleton portion 11. In the present embodiment, as shown in FIG. 1, the film portion 12 is attached to the inside of the skeleton portion 11. Further, outer coating portions 12a that partially cover the skeleton portion 11 from the outside are attached to both ends of the stent graft 10 in the axial direction Ax.
The outer coating portion 12a may be formed by folding back the coating portion 12 from the inside to the outside of the skeleton portion 11, for example. Alternatively, the outer coating portion 12a may be formed by overlapping the outer coating portion 12 formed in a band shape from the outside of the skeleton portion 11.
 なお、外側皮膜部12aは、骨格部11を外側から全体的に覆うように、すなわち、2枚の皮膜部12を用いて骨格部11を内側と外側から挟み込んで覆うように取り付けられてもよい。
 また、皮膜部12は、骨格部11の外側にのみ取り付けられていてもよい。
The outer coating portion 12a may be attached so as to cover the skeleton portion 11 as a whole from the outside, that is, to sandwich and cover the skeleton portion 11 from the inside and the outside by using the two coating portions 12. ..
Further, the film portion 12 may be attached only to the outside of the skeleton portion 11.
 本実施形態の骨格部11は、後述の図4、図5で示すように、皮膜部12と糸13で縫い付けられている。なお、骨格部11と皮膜部12の固定方法は、例えば、接着、溶着、テープによる貼着などであってもよい。 The skeleton portion 11 of the present embodiment is sewn with the coating portion 12 and the thread 13 as shown in FIGS. 4 and 5 described later. The method of fixing the skeleton portion 11 and the coating portion 12 may be, for example, adhesion, welding, or sticking with a tape.
 図2、図3は、皮膜部12の構成を模式的に示す図である。また、図4は、図1において破線で囲った部分の断面構造を模式的に示す図であり、図5は、図4のIIIb-IIIb線断面図である。 2 and 3 are diagrams schematically showing the configuration of the film portion 12. Further, FIG. 4 is a diagram schematically showing a cross-sectional structure of a portion surrounded by a broken line in FIG. 1, and FIG. 5 is a sectional view taken along line IIIb-IIIb of FIG.
 皮膜部12は、繊維21aの布地からなる本体層21を有する。本体層21は、生体適合性を有する繊維材料の織物、編物又は不織布で構成される。図2-5では、皮膜部12の本体層21が織物で形成された例を模式的に示すが、上記のように皮膜部12は編物や不織布であってもよい。また、本体層21の織物の織り方は、平織り、綾織り、繻子織りのいずれでもよい。 The film portion 12 has a main body layer 21 made of a fabric of fibers 21a. The body layer 21 is composed of a woven fabric, knitted fabric or non-woven fabric made of a biocompatible fibrous material. FIG. 2-5 schematically shows an example in which the main body layer 21 of the film portion 12 is formed of a woven fabric, but the film portion 12 may be a knitted fabric or a non-woven fabric as described above. The woven fabric of the main body layer 21 may be woven in any of plain weave, twill weave, and satin weave.
 本体層21の繊維材料としては、例えば、ポリエチレンテレフタレート等のポリエステル樹脂や、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂等が挙げられる。
 本体層21は、繊維21aの隙間に糸13を通すことができる。そのため、本体層21の裂けや破れに対する強度を低下させずに、本体層21と骨格部11の縫合を行うことができる。
Examples of the fiber material of the main body layer 21 include a polyester resin such as polyethylene terephthalate and a fluororesin such as PTFE (polytetrafluoroethylene).
The main body layer 21 can pass the thread 13 through the gap between the fibers 21a. Therefore, the main body layer 21 and the skeleton portion 11 can be sutured without reducing the strength against tearing or tearing of the main body layer 21.
 本体層21の布地には繊維21aの隙間に微細な孔が形成されるが、図3に示すように、本体層21の繊維21aの隙間にはシーリング材22が充填されている。図3では、シーリング材22が本体層21の繊維21aの隙間に入り込み、本体層21の表面がシーリング材22で被覆された状態を示している。シーリング材22は、繊維21aの隙間を塞ぐことで、本体層21の透液性を低下させる機能を担う。つまり、本体層21は、繊維単体で形成したものよりも、全体として透液性が相対的に低下されている。 Fine holes are formed in the gaps between the fibers 21a in the fabric of the main body layer 21, and as shown in FIG. 3, the gaps between the fibers 21a in the main body layer 21 are filled with the sealing material 22. FIG. 3 shows a state in which the sealing material 22 has entered the gap between the fibers 21a of the main body layer 21 and the surface of the main body layer 21 is covered with the sealing material 22. The sealing material 22 has a function of reducing the liquid permeability of the main body layer 21 by closing the gaps between the fibers 21a. That is, the main body layer 21 has a relatively low liquid permeability as a whole as compared with the one formed of the fiber alone.
 シーリング材22は、本体層21の繊維21aよりも透液性が低く、生体適合性を有する樹脂材料で構成される。シーリング材22の材料としては、例えば、ポリエチレン、シリコーン、ウレタン等を挙げることができる。 The sealing material 22 is made of a resin material having lower liquid permeability than the fiber 21a of the main body layer 21 and having biocompatibility. Examples of the material of the sealing material 22 include polyethylene, silicone, urethane and the like.
 本体層21へのシーリング材22の充填は、例えば、本体層21の少なくとも一方の表面に粒状のシーリング材22を散りばめた後に加熱してシーリング材22を溶融させて行ってもよい。また、本体層21の少なくとも一方の表面に、シーリング材22の溶液をディッピング等で付着させることで行ってもよいし、シーリング材22のシートをヒートプレスすることで行ってもよい。
 なお、本体層21にシーリング材22を充填するときに加熱を行う場合、シーリング材22には本体層21よりも低い融点の材料が用いられる。
The main body layer 21 may be filled with the sealing material 22 by, for example, sprinkling granular sealing material 22 on at least one surface of the main body layer 21 and then heating to melt the sealing material 22. Further, the solution of the sealing material 22 may be adhered to at least one surface of the main body layer 21 by dipping or the like, or the sheet of the sealing material 22 may be heat-pressed.
When heating is performed when the main body layer 21 is filled with the sealing material 22, a material having a melting point lower than that of the main body layer 21 is used for the sealing material 22.
 本体層21の表面をシーリング材22で被覆することで、被覆のない場合と比べて本体層21に滑り性を付与することができる。これにより、ステントグラフト10をシース内に装填するときやステントグラフト10をシースから放出するときの抵抗を下げ、耐摩耗性を向上させることができる。例えば、シーリング材22としてポリエチレン(特に、分子量が100万~600万程度の超高分子ポリエチレン等)等の高分子化合物を含有する材料を用いると、本体層21の滑り性を一層向上させることができ、好ましい。 By coating the surface of the main body layer 21 with the sealing material 22, it is possible to impart slipperiness to the main body layer 21 as compared with the case where there is no coating. As a result, the resistance when the stent graft 10 is loaded into the sheath and when the stent graft 10 is released from the sheath can be reduced, and the wear resistance can be improved. For example, when a material containing a polymer compound such as polyethylene (particularly, ultra-high molecular weight polyethylene having a molecular weight of about 1 million to 6 million) is used as the sealing material 22, the slipperiness of the main body layer 21 can be further improved. It can be done and is preferable.
 また、シーリング材22としては、例えば、ポリ乳酸などの生分解性ポリマーなどを適用してもよい。すなわち、ポリ乳酸は生体内で加水分解を受け、最終的に溶けることとなる。しかし、少なくともステントグラフト10の留置後の所定期間は加水分解されずに、本体層21の繊維21aの隙間が血栓で塞がれていくまでの期間をコントロールすることで、病変部位31(大動脈瘤等)への血液の流入を抑制できると考えられる。 Further, as the sealing material 22, for example, a biodegradable polymer such as polylactic acid may be applied. That is, polylactic acid is hydrolyzed in the living body and finally dissolved. However, at least for a predetermined period after the placement of the stent graft 10, the lesion site 31 (aortic aneurysm, etc.) is controlled by controlling the period until the gap between the fibers 21a of the main body layer 21 is closed by the thrombus. ), It is considered that the inflow of blood to) can be suppressed.
 以上のように、本実施形態のステントグラフト10は、管状の皮膜部12と、皮膜部12の一面に縫合される骨格部11と、を備える。皮膜部12は、繊維21aからなる本体層21を有し、本体層21は、その繊維21aの隙間に生体適合性を有するシーリング材22が充填され、全体として透液性が相対的に低下されている。
 本実施形態によれば、本体層21の繊維21aの隙間がシーリング材22の充填によって塞がれているので、皮膜部12における本体層21の繊維21aの隙間からの体液の漏れが抑制される。そのため、本実施形態のステントグラフト10によれば、ステントグラフト10の内側の血液が外側の病変部位31に流入することを抑制できる。
 また、皮膜部12の本体層21は、繊維21aの隙間に糸13を通すことができるので、本体層21の裂けや破れに対する強度を低下させずに、骨格部11を本体層21に縫合することができる。そのため、本実施形態のステントグラフト10によれば、縫合による皮膜部12の裂けや破れが生じにくくなる。
As described above, the stent graft 10 of the present embodiment includes a tubular film portion 12 and a skeleton portion 11 sutured on one surface of the film portion 12. The film portion 12 has a main body layer 21 made of fibers 21a, and the main body layer 21 is filled with a biocompatible sealing material 22 in the gaps between the fibers 21a, so that the liquid permeability is relatively lowered as a whole. ing.
According to the present embodiment, since the gaps between the fibers 21a of the main body layer 21 are closed by filling the sealing material 22, leakage of body fluid from the gaps between the fibers 21a of the main body layer 21 in the film portion 12 is suppressed. .. Therefore, according to the stent graft 10 of the present embodiment, it is possible to suppress the inflow of blood inside the stent graft 10 to the lesion site 31 on the outside.
Further, since the main body layer 21 of the film portion 12 can pass the thread 13 through the gap between the fibers 21a, the skeleton portion 11 is sewn to the main body layer 21 without reducing the strength against tearing or tearing of the main body layer 21. be able to. Therefore, according to the stent graft 10 of the present embodiment, tearing or tearing of the coating portion 12 due to suturing is less likely to occur.
 また、本実施形態のステントグラフト10では、本体層21の繊維21aの隙間にシーリング材を充填することで、全体として透液性が低下された皮膜部12を用いることで、布地のみで皮膜部を構成する場合と比べて皮膜部全体の厚さを小さくできる。
 例えば、布地のみで皮膜部を構成した場合には、透液性を低下させるには皮膜部を厚くする必要が生じる。皮膜部を厚くすると、管状治療具をシースに収納するときの収納性の悪化や、シースからの放出性の低下が懸念される。
 これに対し、本実施形態では、皮膜部12の繊維21aの隙間がシーリング材22で塞がれているので、本体層21の厚さが小さくても透液性を低くすることができる。これにより、本実施形態によれば、従来よりも細径のシースを利用したステントグラフト留置術が可能となり、手術の際の患者の負荷(侵襲性)を一層少なくすることができる。
Further, in the stent graft 10 of the present embodiment, the film portion 12 having reduced liquid permeability as a whole is used by filling the gaps between the fibers 21a of the main body layer 21 with a sealing material, so that the film portion can be formed only with the fabric. The thickness of the entire film portion can be reduced as compared with the case of configuration.
For example, when the film portion is composed of only the cloth, it is necessary to thicken the film portion in order to reduce the liquid permeability. If the film portion is thickened, there is a concern that the storability when the tubular treatment tool is stored in the sheath is deteriorated and the release property from the sheath is lowered.
On the other hand, in the present embodiment, since the gap between the fibers 21a of the film portion 12 is closed by the sealing material 22, the liquid permeability can be lowered even if the thickness of the main body layer 21 is small. As a result, according to the present embodiment, stent graft placement using a sheath having a smaller diameter than before becomes possible, and the burden (invasiveness) on the patient during the surgery can be further reduced.
 また、本実施形態では、本体層21の表面をシーリング材22で被覆して滑り性を付与することで、ステントグラフト10をシースから放出するときの抵抗を下げることができる。かかる構成により、ステントグラフト留置術の際に従来よりも細径のシースを利用しやすくなり、シースへのステントグラフト10の装填作業も容易になる。 Further, in the present embodiment, by coating the surface of the main body layer 21 with the sealing material 22 to impart slipperiness, it is possible to reduce the resistance when the stent graft 10 is released from the sheath. With such a configuration, it becomes easier to use a sheath having a smaller diameter than before in the stent graft placement operation, and the work of loading the stent graft 10 into the sheath becomes easy.
 以上、本発明は上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において、種々の改良並びに設計の変更を行ってもよい。
 加えて、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
As described above, the present invention is not limited to the above-described embodiment, and various improvements and design changes may be made without departing from the spirit of the present invention.
In addition, the embodiments disclosed this time should be considered to be exemplary and not restrictive in all respects. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
10  ステントグラフト(管状治療具)
11  骨格部
12  皮膜部
13  糸
21  本体層
21a 繊維
22  シーリング材

 
10 Stent graft (tubular treatment tool)
11 Skeleton part 12 Film part 13 Thread 21 Body layer 21a Fiber 22 Sealing material

Claims (6)

  1.  管状の皮膜部を備える管状治療具用膜体であって、
     前記皮膜部は、繊維からなる本体層を有し、
     前記本体層は、その繊維の隙間に生体適合性を有するシーリング材が充填され、全体として透液性が相対的に低下されている
    管状治療具用膜体。
    A membrane body for a tubular treatment tool having a tubular coating portion,
    The film portion has a main body layer made of fibers and has a main body layer.
    The main body layer is a membrane body for a tubular therapeutic tool in which the gaps between the fibers are filled with a biocompatible sealing material, and the liquid permeability is relatively reduced as a whole.
  2.  前記シーリング材は、前記本体層よりも透液性が低い材料からなる
    請求項1に記載の管状治療具用膜体。
    The membrane body for a tubular therapeutic tool according to claim 1, wherein the sealing material is made of a material having a lower liquid permeability than the main body layer.
  3.  前記シーリング材は、前記本体層よりも低い融点の材料からなる
    請求項1または請求項2に記載の管状治療具用膜体。
    The membrane body for a tubular therapeutic tool according to claim 1 or 2, wherein the sealing material is made of a material having a melting point lower than that of the main body layer.
  4.  前記本体層の表面は、前記シーリング材により被覆されている
    請求項1から請求項3のいずれか一項に記載の管状治療具用膜体。
    The membrane body for a tubular therapeutic tool according to any one of claims 1 to 3, wherein the surface of the main body layer is covered with the sealing material.
  5.  前記皮膜部の一面には、前記管状治療具の骨格部が縫合される
    請求項1から請求項4のいずれか一項に記載の管状治療具用膜体。
    The membrane body for a tubular therapeutic tool according to any one of claims 1 to 4, wherein the skeleton portion of the tubular therapeutic tool is sutured on one surface of the film portion.
  6.  管状治療具であって、
     管状の皮膜部と、前記皮膜部の一面に縫合される骨格部と、を備え、
     前記皮膜部は、繊維からなる本体層を有し、
     前記本体層は、その繊維の隙間に生体適合性を有するシーリング材が充填され、全体として透液性が相対的に低下されている
    管状治療具。

     
    Tubular treatment tool
    A tubular film portion and a skeleton portion sewn on one surface of the film portion are provided.
    The film portion has a main body layer made of fibers and has a main body layer.
    The main body layer is a tubular therapeutic tool in which the gaps between the fibers are filled with a biocompatible sealing material, and the liquid permeability is relatively reduced as a whole.

PCT/JP2020/031413 2019-09-04 2020-08-20 Film for tubular therapeutic tool and tubular therapeutic tool WO2021044856A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021543689A JPWO2021044856A1 (en) 2019-09-04 2020-08-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019160922 2019-09-04
JP2019-160922 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021044856A1 true WO2021044856A1 (en) 2021-03-11

Family

ID=74852446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031413 WO2021044856A1 (en) 2019-09-04 2020-08-20 Film for tubular therapeutic tool and tubular therapeutic tool

Country Status (2)

Country Link
JP (1) JPWO2021044856A1 (en)
WO (1) WO2021044856A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522155A (en) * 1998-08-14 2002-07-23 ボストン・サイエンティフィク・サイムド・インコーポレーテッド Stent / graft / membrane and manufacturing method thereof
WO2019078218A1 (en) * 2017-10-16 2019-04-25 川澄化学工業株式会社 Stent graft
US20190231511A1 (en) * 2018-01-31 2019-08-01 The Secant Group, Llc Woven graft composite with varied density

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522155A (en) * 1998-08-14 2002-07-23 ボストン・サイエンティフィク・サイムド・インコーポレーテッド Stent / graft / membrane and manufacturing method thereof
WO2019078218A1 (en) * 2017-10-16 2019-04-25 川澄化学工業株式会社 Stent graft
US20190231511A1 (en) * 2018-01-31 2019-08-01 The Secant Group, Llc Woven graft composite with varied density

Also Published As

Publication number Publication date
JPWO2021044856A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US10925712B2 (en) Pararenal and thoracic arch stent graft and methods for use
US20220273416A1 (en) Stent-graft with improved flexibility
US9463102B2 (en) Pararenal and thoracic arch stent graft and methods for use
AU2015211083B2 (en) Pararenal and thoracic arch stent graft and methods for use
US20180263753A1 (en) Low profile stent graft and delivery system
US7905915B2 (en) Z-stent with incorporated barbs
JP7438681B2 (en) Low profile stent graft and delivery system
EP2679197A1 (en) Sealing mechanism for expandable vascular graft
US11638638B2 (en) Filling structure for a graft system and methods of use
JP2011507657A (en) Stent and method for making a stent
US20170056152A1 (en) Pre-Curved Stent Graft and Methods for Use
WO2021044856A1 (en) Film for tubular therapeutic tool and tubular therapeutic tool
KR20170120657A (en) Stent graft
KR102323198B1 (en) DEVICE AND ASSOCIATED PERCUTANEOUS MINIMALLY INVASIVE METHOD FOR CREATING A VENOUS VALVE
EP3443935B1 (en) Flexible stent with non-bonded stent cover material regions
WO2021044858A1 (en) Tubular treatment tool membrane body and tubular treatment tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860152

Country of ref document: EP

Kind code of ref document: A1