WO2021044478A1 - Ionic compound, organic electronics material, organic layer, organic electronics element, organic electroluminescent element, display element, lighting device, and method for manufacturing organic electronics element - Google Patents

Ionic compound, organic electronics material, organic layer, organic electronics element, organic electroluminescent element, display element, lighting device, and method for manufacturing organic electronics element Download PDF

Info

Publication number
WO2021044478A1
WO2021044478A1 PCT/JP2019/034408 JP2019034408W WO2021044478A1 WO 2021044478 A1 WO2021044478 A1 WO 2021044478A1 JP 2019034408 W JP2019034408 W JP 2019034408W WO 2021044478 A1 WO2021044478 A1 WO 2021044478A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
ionic compound
charge
layer
Prior art date
Application number
PCT/JP2019/034408
Other languages
French (fr)
Japanese (ja)
Inventor
和幸 加茂
伊織 福島
健一 石塚
貴紀 宮
俊輔 児玉
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2019/034408 priority Critical patent/WO2021044478A1/en
Priority to JP2021543806A priority patent/JP7444170B2/en
Publication of WO2021044478A1 publication Critical patent/WO2021044478A1/en
Priority to JP2023213579A priority patent/JP2024037956A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/20Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic unsaturated carbon skeleton
    • C07C211/21Monoamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms

Definitions

  • An embodiment of the present invention relates to an ionic compound, an organic electronic material, an organic layer, an organic electronic element, an organic electroluminescence element, a display element, a lighting device, and a method for manufacturing an organic electronic element.
  • Organic electronics devices are devices that perform electrical operations using organic substances, and are expected to exhibit features such as energy saving, low cost, and flexibility, and are attracting attention as a technology that replaces conventional silicon-based inorganic semiconductors. Has been done.
  • organic electronic devices include organic electroluminescence devices (hereinafter, also referred to as organic EL devices), organic photoelectric conversion devices, and organic transistors.
  • organic EL devices organic electroluminescence devices
  • organic photoelectric conversion devices organic photoelectric conversion devices
  • organic transistors organic transistors
  • organic EL devices are attracting attention as large-area solid-state light source applications as alternatives to, for example, incandescent lamps and gas-filled lamps. It is also attracting attention as the most promising self-luminous display that can replace the liquid crystal display (LCD) in the flat panel display (FPD) field, and its commercialization is progressing.
  • LCD liquid crystal display
  • FPD flat panel display
  • Organic EL devices are roughly classified into two types, low-molecular-weight organic EL devices and high-molecular-weight organic EL devices, according to the organic materials used.
  • a high molecular weight material is used as the organic material
  • a low molecular weight material is used in the low molecular weight organic EL device.
  • high-molecular-weight organic EL devices can be easily formed by wet processes such as printing and inkjet. It is expected as an indispensable element for EL displays.
  • an organic EL device manufactured by a wet process using a polymer material has the features that it is easy to reduce the cost and increase the area.
  • an organic EL device containing a thin film produced by using a conventional polymer material is desired to be further improved in the characteristics of the organic EL device such as driving voltage, luminous efficiency, and luminous life.
  • high-temperature baking is required in the process of drying the solvent in the production of the organic EL device, high-temperature process resistance is also desired for each material.
  • the present invention has been made in view of the above, and the embodiment of the present invention is an organic electronic material that can be used for an organic electronic element having excellent element characteristics, and an excellent heat resistance that can be used for the organic electronic material. It is an object of the present invention to provide an ionic compound. Another embodiment aims to provide an organic layer using the organic electronic material, and an organic electronic device, an organic electroluminescence device, a display element, and a lighting device including the organic layer. Furthermore, another embodiment aims to provide a method for manufacturing an organic electronic device using the organic electronic material.
  • One embodiment of the present invention relates to an ionic compound containing an ammonium cation and an anion represented by the following formula (1a).
  • Ra , R b and R c each independently represent a hydrogen atom or a monovalent organic group, and at least two selected from Ra , R b and R c are monovalent organic.
  • a group, at least one selected from Ra , R b and R c is an organic group containing a double bond.
  • Another embodiment of the present invention relates to an organic electronics material containing the ionic compound and the charge transporting compound.
  • Another embodiment of the present invention relates to an organic layer formed by using the organic electronic material.
  • Another embodiment of the present invention relates to an organic electronic device provided with the organic layer.
  • Another embodiment of the present invention relates to an organic electroluminescence device provided with the organic layer.
  • Another embodiment of the present invention relates to a display element including the organic electroluminescence element.
  • another embodiment of the present invention relates to a lighting device including the organic electroluminescence element.
  • another embodiment of the present invention relates to a display element including the lighting device and a liquid crystal element as a display means.
  • another embodiment of the present invention relates to a method for manufacturing an organic electronic element, which comprises a step of forming an organic layer by a coating method using the organic electronic material.
  • an organic electronic material that can be used for an organic electronic device having excellent element characteristics, and an ionic compound that can be used for the organic electronic material and has excellent heat resistance. Further, according to another embodiment of the present invention, it is possible to provide an organic layer using the organic electronic material, and an organic electronic device, an organic electroluminescence device, a display element, and a lighting device including the organic layer. .. Further, according to another embodiment of the present invention, it is possible to provide a method for manufacturing an organic electronic device using the organic electronic material.
  • the ionic compound the organic electronics material, the organic layer, the organic electronics element, the organic electroluminescence element, the display element, and the lighting device according to the embodiment of the present invention will be described in detail.
  • the embodiment of the present invention is as follows.
  • Ra , R b and R c each independently represent a hydrogen atom or a monovalent organic group, and at least two selected from Ra , R b and R c are monovalent organic.
  • a group, at least one selected from Ra , R b and R c is an organic group containing a double bond.
  • ⁇ 4> The ionic compound according to any one of ⁇ 1> to ⁇ 3>, wherein the organic group has 4 or less carbon atoms in each of Ra , R b, and R c.
  • the organic group containing the double bond is any one of ⁇ 1> to ⁇ 4> selected from the group consisting of a vinyl group, a propenyl group, an isopropenyl group, a butenyl group, and an isobutenyl group. Or the ionic compound according to item 1.
  • ⁇ 6> The ionic compound according to any one of ⁇ 1> to ⁇ 5>, which contains only one organic group containing the double bond.
  • ⁇ 7> The item according to any one of ⁇ 1> to ⁇ 5>, which contains two or more organic groups containing the double bond, and each of the organic groups containing the double bond is the same as each other. Ionic compounds according to.
  • E 1 represents an oxygen atom
  • E 2 represents a nitrogen atom
  • E 3 represents a carbon atom
  • E 4 represents a boron atom or a gallium atom
  • E 5 represents a phosphorus atom or an antimony atom
  • Y 1 ⁇ Y 6 independently represent a single bond or a divalent linking group
  • R 1 to R 16 each independently represent an electron-attracting monovalent group (R 2 and R 3 , R 4 to R 6).
  • At least two groups selected from, at least two groups selected from R 7 to R 10 , and at least two groups selected from R 11 to R 16 may each be attached to each other.
  • the charge transporting compound has at least one unit selected from the group consisting of a unit containing an aromatic amine structure, a unit containing a carbazole structure, and a unit containing a thiophene structure.
  • An organic electronic device provided with the organic layer according to ⁇ 15> and ⁇ 14>.
  • An organic electroluminescence device provided with the organic layer according to ⁇ 19> and ⁇ 14>.
  • ⁇ 23> The organic electroluminescence device according to any one of ⁇ 19> to ⁇ 22>, which has a white emission color.
  • ⁇ 24> The organic electroluminescence device according to any one of ⁇ 19> to ⁇ 23>, further comprising a substrate, wherein the substrate has flexibility.
  • the organic electroluminescence device according to any one of ⁇ 19> to ⁇ 23>, further comprising a substrate, wherein the substrate is a resin film.
  • a display device including the organic electroluminescence device according to any one of ⁇ 26> and ⁇ 19> to ⁇ 25>.
  • a lighting device provided with the organic electroluminescence element according to any one of ⁇ 19> to ⁇ 25>.
  • a display element including the lighting device according to ⁇ 28> and ⁇ 27> and a liquid crystal element as a display means.
  • a method for manufacturing an organic electronic device which comprises a step of forming an organic layer by a coating method using the organic electronic material according to ⁇ 13>.
  • the ionic compound of this embodiment comprises an ammonium cation and an anion represented by the following formula, which will be described later. Hereinafter, ammonium cations and anions will be described.
  • the ionic compound of the present embodiment is preferably used as a dopant for organic electronic materials.
  • the charge-transporting polymer contains a polymerizable functional group
  • the ionic compound of the present embodiment is preferably used as a polymerization initiator.
  • ammonium cation (Ammonium cation)
  • the ammonium cation of the ionic compound of this embodiment is represented by the following formula (1a).
  • Ra , R b and R c each independently represent a hydrogen atom or a monovalent organic group, and at least two selected from Ra , R b and R c are monovalent organic. It is the basis.
  • the monovalent organic group include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an arylalkyl group and the like. These groups may further have a substituent, and examples of the substituent include an alkyl group, and an alkyl group having 1 to 10 carbon atoms is preferable. At least two of R a , R b and R c may be bonded to each other to form a ring.
  • R a , R b and R c may be the same or different from each other. Further, at least one selected from Ra , R b and R c is an organic group containing a double bond. Examples of the organic group containing a double bond include an alkenyl group and the like.
  • the organic group means an atomic group having one or more carbon atoms.
  • the aryl group means an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • the aromatic hydrocarbon include a monocyclic ring, a condensed ring, or a polycyclic ring in which two or more selected from an independent monocyclic ring and a condensed ring are bonded via a single bond.
  • the heteroaryl group refers to an atomic group obtained by removing one hydrogen atom from an aromatic heterocycle. Examples of the aromatic heterocycle include a monocyclic ring, a condensed ring, or a polycyclic ring in which two or more selected from an independent monocyclic ring and a condensed ring are bonded via a single bond.
  • R a , R b, and R c Specific examples of R a , R b, and R c will be described, but the present invention is not limited to the following.
  • the alkyl group may be linear, branched or cyclic, and may have a substituent.
  • the alkyl group preferably has 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, an i-butyl group, a t-butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group and an octyl group.
  • 2-Ethylhexyl group nonyl group, decyl group, dodecyl group, tetradecyl group, octadecyl group, 3,7-dimethyloctyl group, lauryl group, trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group , Perfluorooctyl group and the like.
  • the alkenyl group may be linear, branched or cyclic, and may have a substituent.
  • the alkenyl group preferably has 2 to 12, more preferably 2 to 8, and even more preferably 2 to 6.
  • Specific examples of the alkenyl group include vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-octenyl group and 1-decenyl group. Examples include 1-octadecenyl group.
  • the alkynyl group may be linear, branched or cyclic, and may have a substituent.
  • the carbon number of the alkynyl group is preferably 2 to 12, more preferably 2 to 8, and even more preferably 2 to 6.
  • Specific examples of the alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 1-octynyl group, 1-decynyl group and 1-octadecynyl group. And so on.
  • the aryl group may further have a substituent, and examples of the substituent include an alkyl group, and an alkyl group having 1 to 10 carbon atoms is preferable.
  • the monovalent aryl group in the unsubstituted state preferably has 6 to 60 carbon atoms, more preferably 6 to 30 carbon atoms, and further preferably 6 to 18 carbon atoms.
  • a phenyl group, a C1 to C12 alkoxyphenyl group (C1 to C12 indicate that the substituent has 1 to 12 carbon atoms; the same applies hereinafter), a C1 to C12 alkylphenyl group, Examples thereof include 1-naphthyl group, 2-naphthyl group, 1-anthrasenyl group, 2-anthrasenyl group, 9-anthrasenyl group, phenanthrene-yl group, pyrene-yl group, perylene-yl group, pentafluorophenyl group and the like.
  • C1-C12 alkyl examples include methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 3 , 7-Dimethyloctyl, lauryl and the like are exemplified.
  • the heteroaryl group may further have a substituent, and examples of the substituent include an alkyl group, and an alkyl group having 1 to 10 carbon atoms is preferable.
  • the monovalent heteroaryl group in the unsubstituted state preferably has 4 to 60 carbon atoms, more preferably 4 to 40 carbon atoms, and further preferably 4 to 20 carbon atoms.
  • a thienyl group, a C1 to C12 alkylthenyl group, a pyrrolyl group, a frill group, a pyridyl group, a C1 to C12 alkylpyridyl group and the like are exemplified, and a thienyl group, a C1 to C12 alkylthenyl group, a pyridyl group, a C1 to A C12 alkylpyridyl group is preferred.
  • Examples of C1-C12 alkyl are as described above.
  • the arylalkyl group is a group in which at least one hydrogen atom of the alkyl group is substituted with an aryl group.
  • the arylalkyl group may further have a substituent, and examples of the substituent include an alkyl group, and an alkyl group having 1 to 10 carbon atoms is preferable.
  • the monovalent arylalkyl group in the unsubstituted state preferably has 7 to 19 carbon atoms, more preferably 7 to 16 carbon atoms, and further preferably 7 to 13 carbon atoms.
  • Examples of the alkyl group include the above-mentioned alkyl group, and examples of the aryl group include the above-mentioned aryl group.
  • a benzyl group, a phenethyl group, a naphthylmethyl group, a naphthylethyl group, a diphenylmethyl group and the like are exemplified.
  • the organic group containing a double bond preferably has 2 to 6 carbon atoms.
  • the ammonium cation of the ionic compound of the present embodiment can be easily produced, and the organic electronics element containing the ammonium cation can be used. Excellent element characteristics such as drive voltage, light emission efficiency, and light emission life can be obtained.
  • the solvent can be used.
  • the ammonium cation of the ionic compound of the present embodiment is an organic group having at least one selected from Ra , R b and R c containing a double bond, and is an organic group containing a double bond. It is considered that the heat resistance of the ionic compound is improved because the ammonium cation is stabilized by the cross-linking.
  • the ionic compound of the present embodiment containing an organic group containing a double bond is excellent in heat resistance without increasing the carbon number of the substituents Ra , R b and R c of the ammonium cation.
  • R a, number of carbon atoms of the organic group in each of R b and R c (R a, one of R b and R c include be a hydrogen atom) is preferably 4 or less, more 3 or less preferable. It is considered that the small number of carbon atoms in the organic group suppresses the residual of bulky impurities and improves the element characteristics of the organic electronic device.
  • the double bond is preferably located at the terminal of the organic group, and examples of the organic group containing the double bond include a vinyl group, a propenyl group, an isopropenyl group, a butenyl group, and an isobutenyl group. And so on.
  • the organic groups containing the double bond are the same from each other from the viewpoint of ease of production. Is preferable.
  • the anion is not particularly limited, and for example, a known anion can be used.
  • E 1 represents an oxygen atom
  • E 2 represents a nitrogen atom
  • E 3 represents a carbon atom
  • E 4 represents a boron atom or a gallium atom
  • E 5 represents a phosphorus atom or an antimony atom
  • Y 1 to Y 6 independently represent a single bond or a divalent linking group, respectively.
  • R 1 to R 16 are at least two groups independently selected from electron-attracting monovalent groups (R 2 and R 3 , R 4 to R 6 and at least R 7 to R 10). The two groups and at least two groups selected from R 11 to R 16 may each be attached to each other).
  • R 1 to R 16 each independently represent an electron-attracting monovalent group.
  • An electron-attracting monovalent group is a substituent that is more likely to attract an electron from the bonding atom side than a hydrogen atom.
  • R 1 to R 16 are preferably organic groups. At least two groups selected from R 2 and R 3 , R 4 to R 6, at least two groups selected from R 7 to R 10 , and at least two groups selected from R 11 to R 16 , Each may be coupled to each other. The bonded groups may be cyclic.
  • electron-attracting monovalent groups include halogen atoms such as fluorine atom, chlorine atom and bromine atom; cyano group; thiocyano group; nitro group; alkylsulfonyl group such as mesil group (for example, 1 to 12 carbon atoms).
  • arylsulfonyl groups such as tosyl groups (for example, 6 to 18 carbon atoms, preferably 6 to 15 carbon atoms, still more preferably 6 to 12 carbon atoms); Alkyloxysulfonyl groups such as methoxysulfonyl groups (eg 1-12 carbons, preferably 1-8 carbons, more preferably 1-6 carbons); aryloxysulfonyl groups such as phenoxysulfonyl groups (eg 6-carbons) 18, preferably 6 to 15 carbon atoms, more preferably 6 to 12 carbon atoms); acyl groups such as formyl groups, acetyl groups, benzoyl groups (for example, 1 to 12 carbon atoms, preferably 1 to 9 carbon atoms, still more preferable.
  • acyloxy groups such as formyloxy groups and acetoxy groups (for example, 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 6 carbon atoms); methoxycarbonyl groups, ethoxycarbonyl groups.
  • An alkoxycarbonyl group such as a group (for example, 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 7 carbon atoms); an "aryloxycarbonyl group or heteroaryl” such as a phenoxycarbonyl group or a pyridyloxycarbonyl group.
  • Oxycarbonyl group (eg, 4 to 25 carbon atoms, preferably 5 to 20 carbon atoms, more preferably 5 to 15 carbon atoms); linear, branched or cyclic such as trifluoromethyl group and pentafluoroethyl group.
  • Haloalkyl group, haloalkenyl group or haloalkynyl group in which a halogen atom is substituted with the "alkyl group, alkenyl group or alkynyl group” (for example, 1 to 10, preferably 1 to 8, more preferably carbon number).
  • a haloaryl group in which an aryl group such as a pentafluorophenyl group is substituted with a halogen atom for example, 6 to 20 carbon atoms, preferably 6 to 16 carbon atoms, more preferably 6 to 12 carbon atoms
  • pentafluorophenyl examples thereof include a haloarylalkyl group in which an arylalkyl group such as a methyl group is substituted with a halogen atom (for example, 7 to 19 carbon atoms, preferably 7 to 16 carbon atoms, and more preferably 7 to 13 carbon atoms).
  • an electron-attracting monovalent group from the viewpoint of efficiently delocalizing a negative charge, among the examples of the electron-attracting monovalent group, "organic group having a hydrogen atom". A group in which a part or all of the hydrogen atom is replaced with a halogen atom is preferable.
  • a perfluoroalkylsulfonyl group For example, a perfluoroalkylsulfonyl group, a perfluoroarylsulfonyl group, a perfluoroalkyloxysulfonyl group, a perfluoroaryloxysulfonyl group, a perfluoroacyl group, a perfluoroacyloxy group, a perfluoroalkoxycarbonyl group, a perfluoroaryloxycarbonyl group.
  • Perfluoroalkyl group perfluoroalkenyl group, perfluoroalkynyl group, perfluoroaryl group, perfluoroarylalkyl group and the like.
  • electron-attracting monovalent groups include, in particular, a linear or branched perfluoroalkyl group having 1 to 8 carbon atoms, a cyclic perfluoroalkyl group having 3 to 6 carbon atoms, or carbon.
  • Perfluoroaryl groups of number 6-18 are preferred.
  • the monovalent group of electronic attractiveness is not limited to these.
  • the example of the electron-attracting monovalent group shown above may have a substituent or may have a hetero atom.
  • electron-attracting monovalent group examples include the groups shown in the following substituent group (1).
  • substituent group (1) examples include the groups shown in the following substituent group (1).
  • "*" in the structural formula represents a binding site with another structural unit.
  • Y 1 to Y 6 independently represent a single bond or a divalent linking group, respectively.
  • Y 1 to Y 6 are single bonds, it means that E and R are directly bonded (for example, in the formula (1b), E 1 and R 1 are directly bonded).
  • the divalent linking group include a linking group represented by any of the following formulas (1c) to (11c).
  • R independently represents a hydrogen atom or a monovalent group, and is preferably an organic group. It is more preferable that R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group independently from the viewpoints of improving electron acceptability, solubility in a solvent and the like. These groups may have substituents or heteroatoms. Further, R is preferably an electron-attracting monovalent group, and examples of the electron-attracting monovalent group include the above-mentioned alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group. , Or the group shown in the substituent group (1).
  • the ionic compound of this embodiment has excellent heat resistance and can be used for organic electronic devices. Further, when used together with a charge transporting compound having a polymerizable functional group described later, the curability at a low temperature can be improved and the film forming property can be improved.
  • the organic electronic material of the present embodiment contains the ionic compound of the above-described embodiment, and may contain only one type of ionic compound or two or more types of ionic compound.
  • the organic electronic material of the present embodiment may further contain a charge transporting compound.
  • the organic electronics material may contain a charge transporting compound.
  • the charge transporting compound may be a low molecular weight compound or a polymer. From the viewpoint of solubility in an organic solvent, a polymer is preferable, and from the viewpoint of easy purification by sublimation, recrystallization, etc., a low molecular weight compound is preferable.
  • the "polymer” includes an oligomer having a low degree of polymerization (for example, a number average degree of polymerization of 2 or more and 20 or less) and a polymer having a high degree of polymerization (for example, a number average degree of polymerization of more than 20).
  • the charge transporting compound may be a commercially available compound or may be synthesized by a known method, and is not particularly limited.
  • the charge transporting compound preferably contains at least one unit selected from the group consisting of a unit containing an aromatic amine structure, a unit containing a carbazole structure, and a unit containing a thiophene structure.
  • the charge transporting compound preferably has one or more polymerizable functional groups in the molecule.
  • the polymerizable functional group is not particularly limited, and preferred polymerizable functional groups include an oxetane group, an epoxy group, and a vinyl ether group.
  • Charge-transporting polymers have the ability to transport charges.
  • the charge-transporting polymer may be linear or may have a branched structure.
  • the charge-transporting polymer preferably contains at least a divalent structural unit D having charge transportability and a monovalent structural unit M constituting the terminal portion, and contains a trivalent or higher-valent structural unit T constituting the branch portion. Further may be included.
  • the charge-transporting polymer may contain only one type of each structural unit, or may contain a plurality of types of each structural unit. Each structural unit is bound to each other at a binding site of "monovalent" to "trivalent or higher".
  • the charge-transporting polymer is not limited to those having the following partial structures.
  • D represents the structural unit D
  • M represents the structural unit M
  • T represents the structural unit T.
  • * in the formula represents a binding site with another structural unit.
  • the plurality of Ds may be the same structural unit or different structural units from each other. The same applies to M and T.
  • the structural unit D is a divalent structural unit having charge transportability.
  • the structural unit D is not particularly limited as long as it includes an atomic group capable of transporting electric charges.
  • the structural unit D is a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure, tetracene structure, phenanthrene structure, dihydro.
  • Phenanthrene structure pyridine structure, pyrazine structure, quinoline structure, isoquinoline structure, quinoxalin structure, aclysine structure, diazaphenanthrene structure, furan structure, pyrrole structure, oxazole structure, oxaziazole structure, thiazole structure, thiazazole structure, triazole structure, benzo It is selected from a thiophene structure, a benzoxazole structure, a benzoxaziazole structure, a benzothiazole structure, a benzothiazazole structure, a benzotriazole structure, and a structure containing one or more of these.
  • the aromatic amine structure is preferably a triarylamine structure, more preferably a triphenylamine structure.
  • the structural unit D is a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, pyrrole structure, and these, from the viewpoint of obtaining excellent hole transportability. It is preferable to select from a structure containing one or more of these, and select from a substituted or unsubstituted aromatic amine structure, a carbazole structure, a thiophene structure, and a structure containing one or more of these. It is more preferable to be done.
  • the structural unit D is derived from a substituted or unsubstituted fluorene structure, benzene structure, phenanthrene structure, pyridine structure, quinoline structure, and a structure containing one or more of these, from the viewpoint of obtaining excellent electron transportability. It is preferably selected.
  • structural unit D includes the following.
  • the structural unit D is not limited to the following.
  • R independently represents a hydrogen atom or a substituent.
  • the substituents are independently -R 1 , -OR 2 , -SR 3 , -OCOR 4 , -COOR 5 , -SiR 6 R 7 R 8 , and a halogen atom, and It is preferably selected from the group consisting of groups containing polymerizable functional groups, which will be described later.
  • R 1 to R 8 independently represent a hydrogen atom; a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms; or an aryl group or a heteroaryl group having 2 to 30 carbon atoms.
  • the alkyl group may be further substituted with an aryl group or a heteroaryl group having 2 to 20 carbon atoms, and the aryl group or the heteroaryl group may be further substituted with a linear, cyclic or branched group having 1 to 22 carbon atoms. It may be substituted with an alkyl group.
  • R is preferably a hydrogen atom, an alkyl group, an aryl group, or an alkyl-substituted aryl group.
  • Ar represents an arylene group or a heteroarylene group having 2 to 30 carbon atoms.
  • Ar is preferably an arylene group, more preferably a phenylene group.
  • the arylene group means an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon.
  • the heteroarylene group means an atomic group obtained by removing two hydrogen atoms from an aromatic heterocycle.
  • the description of the aromatic hydrocarbon and the aromatic heterocycle is the same as that of the aryl group and the heteroaryl group.
  • the structural unit M is a monovalent structural unit constituting the terminal portion of the charge-transporting polymer.
  • the structural unit M is not particularly limited, and is selected from, for example, a substituted or unsubstituted aromatic hydrocarbon structure, an aromatic heterocyclic structure, and a structure containing one or more of these.
  • the structural unit M may have the same structure as the structural unit D except for the valence.
  • the structural unit M is preferably a substituted or unsubstituted aromatic hydrocarbon structure from the viewpoint of imparting durability without lowering the charge transportability, and is preferably a substituted or unsubstituted benzene.
  • the structure is more preferable.
  • the structural unit M has a polymerizable structure (that is, a polymerizable functional group such as a pyrrole-yl group). May be good.
  • a polymerizable structure that is, a polymerizable functional group such as a pyrrole-yl group.
  • R includes a hydrogen atom or a substituent listed as R in the structural unit D.
  • the charge-transporting polymer has a polymerizable functional group at the terminal portion, it is preferable that at least one of R is a group containing a polymerizable functional group.
  • the structural unit T is a trivalent or higher structural unit constituting the branched portion when the charge-transporting polymer has a branched structure. From the viewpoint of improving the durability of the organic electronic device, the structural unit T is preferably a hexavalent or lower structural unit, more preferably a tetravalent or lower structural unit, and further preferably a trivalent or tetravalent structural unit. Is.
  • the structural unit T is preferably a unit having charge transportability.
  • the structural unit T is a substituted or unsubstituted triphenylamine structure, a carbazole structure, a condensed polycyclic aromatic hydrocarbon structure, and one or two of these, from the viewpoint of improving the durability of the organic electronic device. Includes at least one selected from structures containing more than one species.
  • the structural unit T may have the same structure as the structural unit D except for the valence, and may have the same structure as the structural unit M except for the valence.
  • structural unit T includes the following.
  • the structural unit T is not limited to the following.
  • W represents a trivalent linking group, for example, an arene triyl group having 2 to 30 carbon atoms or a heteroarene triyl group.
  • the arene triyl group refers to an atomic group obtained by removing three hydrogen atoms from an aromatic hydrocarbon.
  • the heteroarene triyl group refers to an atomic group obtained by removing three hydrogen atoms from an aromatic heterocycle.
  • Ar independently represents a divalent linking group, and for example, each independently represents an arylene group or a heteroarylene group having 2 to 30 carbon atoms.
  • Ar is preferably an arylene group, more preferably a phenylene group.
  • Y represents a divalent linking group, for example, from the group having one or more hydrogen atoms among the substituents listed as R (excluding the group containing a polymerizable functional group) in the structural unit D. Examples thereof include a divalent group excluding one hydrogen atom.
  • Z represents either a carbon atom, a silicon atom, or a phosphorus atom.
  • the fused ring, W, Y, and Ar may have a substituent, and examples of the substituent include the substituents listed as R in the structural unit D.
  • the charge-transporting polymer is preferably cured by a polymerization reaction and has at least one polymerizable functional group from the viewpoint of changing the solubility in a solvent.
  • the "polymerizable functional group” refers to a functional group capable of forming a bond with each other by applying at least one of heat and light.
  • the polymerizable functional group includes a group having a carbon-carbon multiple bond (for example, a vinyl group, an allyl group, a butenyl group, an ethynyl group, an acryloyl group, an acryloyloxy group, an acryloylamino group, a methacryloyl group, a methacryloyloxy group, and a methacryloylamino group.
  • a group having a carbon-carbon multiple bond for example, a vinyl group, an allyl group, a butenyl group, an ethynyl group, an acryloyl group, an acryloyloxy group, an acryloylamino group, a methacryloyl group, a methacryloyloxy group, and a methacryloylamino group.
  • Group, vinyloxy group, vinylamino group, etc.), group having a small ring for example, cyclic alkyl group such as cyclopropyl group, cyclobutyl group; cyclic ether group such as epoxy group (oxylanyl group), oxetan group (oxetanyl group)
  • examples thereof include a diketen group; an episulfide group; a lactone group; a lactam group, etc.), a heterocyclic group (for example, a furan-yl group, a pyrrole-yl group, a thiophen-yl group, a silol-yl group) and the like.
  • These groups may further have a substituent, and examples of the substituent include an alkyl group, and an alkyl group having 1 to 10 carbon atoms is preferable.
  • a vinyl group, an acryloyl group, a methacryloyl group, an epoxy group, and an oxetane group are particularly preferable, and a vinyl group, an oxetan group, or an epoxy group is more preferable from the viewpoint of reactivity and characteristics of the organic electronic device. preferable.
  • the main skeleton of the charge-transporting polymer and the polymerizable functional group are linked by an alkylene chain.
  • a hydrophilic chain such as an ethylene glycol chain or a diethylene glycol chain is used from the viewpoint of improving the affinity with a hydrophilic electrode such as ITO (indium oxide-tin oxide). It is preferable that they are connected.
  • the charge-transporting polymer polymerizes with at least one of the terminal portions of the alkylene chain and the hydrophilic chain, that is, these chains. At least one of the linking portion with the sex functional group and the connecting portion between these chains and the skeleton of the charge-transporting polymer may have an ether bond or an ester bond.
  • group containing a polymerizable functional group means a polymerizable functional group itself or a group in which a polymerizable functional group and an alkylene chain are combined.
  • the group containing the polymerizable functional group for example, the group exemplified in International Publication No. 2010/1405553 can be preferably used.
  • the polymerizable functional group is introduced at the terminal portion (that is, the structural unit M) of the charge-transporting polymer or at a portion other than the terminal portion (that is, the structural unit D or T). It may be introduced in both the and non-terminal parts. From the viewpoint of curability, it is preferable that it is introduced at least at the terminal portion, and from the viewpoint of achieving both curability and charge transportability, it is preferable that it is introduced only at the terminal portion. Further, when the charge-transporting polymer has a branched structure, the polymerizable functional group may be introduced into the main chain or the side chain of the charge-transporting polymer, and both the main chain and the side chain may be introduced. It may be introduced in.
  • the polymerizable functional group is contained in a large amount in the charge-transporting polymer from the viewpoint of contributing to the change in solubility.
  • the polymerizable functional group preferably contains a small amount in the charge-transporting polymer from the viewpoint of not hindering the charge-transporting property.
  • the content of the polymerizable functional group can be appropriately set in consideration of these.
  • the number of polymerizable functional groups per molecule of the charge-transporting polymer is preferably 2 or more, and more preferably 3 or more, from the viewpoint of obtaining a sufficient change in solubility.
  • the number of polymerizable functional groups is preferably 1,000 or less, more preferably 700 or less, and even more preferably 500 or less, from the viewpoint of maintaining charge transportability.
  • the number of polymerizable functional groups per molecule of the charge-transporting polymer is the amount of the polymerizable functional group charged (for example, the amount of the monomer having the polymerizable functional group) used for synthesizing the charge-transporting polymer, and each structure. It can be obtained as an average value by using the amount of the monomer charged corresponding to the unit, the weight average molecular weight of the charge-transporting polymer, and the like.
  • the number of polymerizable functional groups is the ratio of the integrated value of the signal derived from the polymerizable functional group in the 1 H NMR (nuclear magnetic resonance) spectrum of the charge transport polymer to the integrated value of the entire spectrum, and the charge transport polymer. It can be calculated as an average value by using the weight average molecular weight of. When the amount to be charged is clear, it is preferable to adopt the value obtained by using the amount to be charged because it is convenient.
  • the number average molecular weight of the charge-transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film-forming property, and the like.
  • the number average molecular weight is preferably 500 or more, more preferably 1,000 or more, and even more preferably 2,000 or more, from the viewpoint of excellent charge transportability.
  • the number average molecular weight is preferably 1,000,000 or less, more preferably 100,000 or less, and more preferably 50,000 or less, from the viewpoint of maintaining good solubility in the solvent and facilitating the preparation of the ink composition. The following is more preferable.
  • the weight average molecular weight of the charge-transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film-forming property, and the like.
  • the weight average molecular weight is preferably 1,000 or more, more preferably 5,000 or more, still more preferably 10,000 or more, from the viewpoint of excellent charge transportability.
  • the weight average molecular weight is preferably 1,000,000 or less, more preferably 700,000 or less, and more preferably 400,000 or less, from the viewpoint of maintaining good solubility in the solvent and facilitating the preparation of the ink composition. The following is more preferable.
  • the number average molecular weight and the weight average molecular weight can be measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • the ratio of the structural unit D contained in the charge-transporting polymer is preferably 10 mol% or more, more preferably 20 mol% or more, and 30 mol% or more, based on all the structural units, from the viewpoint of obtaining sufficient charge transportability. Is more preferable. Further, the ratio of the structural unit D is preferably 95 mol% or less, more preferably 90 mol% or less, more preferably 85 mol% or less, based on all the structural units, in consideration of the structural unit M and the structural unit T to be introduced as needed. More preferably, it is mol% or less.
  • the ratio of the structural unit M contained in the charge-transporting polymer is based on all the structural units from the viewpoint of improving the characteristics of the organic electronic device or from the viewpoint of suppressing the increase in viscosity and satisfactorily synthesizing the charge-transporting polymer. 5 mol% or more is preferable, 10 mol% or more is more preferable, and 15 mol% or more is further preferable.
  • the ratio of the structural unit M is preferably 60 mol% or less, more preferably 55 mol% or less, still more preferably 50 mol% or less, based on all structural units, from the viewpoint of obtaining sufficient charge transportability.
  • the ratio of the structural unit T is preferably 1 mol% or more, more preferably 5 mol% or more, based on all the structural units, from the viewpoint of improving the durability of the organic electronic device. It is preferable, and 10 mol% or more is more preferable.
  • the ratio of the structural unit T is 50 mol% or less based on all structural units from the viewpoint of suppressing an increase in viscosity and satisfactorily synthesizing a charge-transporting polymer or obtaining sufficient charge-transporting property. Is preferable, 40 mol% or less is more preferable, and 30 mol% or less is further preferable.
  • the ratio of the polymerizable functional group is preferably 0.1 mol% or more based on all structural units from the viewpoint of efficiently curing the charge-transporting polymer. 1 mol% or more is more preferable, and 3 mol% or more is further preferable.
  • the proportion of the polymerizable functional group is preferably 70 mol% or less, more preferably 60 mol% or less, still more preferably 50 mol% or less, based on all structural units, from the viewpoint of obtaining good charge transportability. ..
  • the "ratio of polymerizable functional groups" here means the ratio of structural units having polymerizable functional groups.
  • 100: 20 to 180: 20 to 90 is more preferable, and 100: 40 to 160: 30 to 80 is even more preferable.
  • the ratio of the structural units can be determined by using the amount of the monomer charged corresponding to each structural unit used for synthesizing the charge-transporting polymer. Further, the ratio of the structural units can be calculated as an average value by using the integrated value of the spectrum derived from each structural unit in the 1 H NMR spectrum of the charge transport polymer. When the amount to be charged is clear, it is preferable to adopt the value obtained by using the amount to be charged because it is convenient.
  • the charge-transporting polymer can be produced by various synthetic methods and is not particularly limited. For example, known coupling reactions such as Suzuki coupling, Negishi coupling, Sonogashira coupling, Still coupling, and Buchwald-Hartwig coupling can be used. Suzuki coupling causes a Pd-catalyzed cross-coupling reaction between an aromatic boronic acid derivative and an aromatic halide. According to Suzuki Coupling, a charge-transporting polymer can be easily produced by binding desired aromatic rings to each other.
  • a Pd (0) compound, a Pd (II) compound, a Ni compound and the like are used as the catalyst.
  • a catalyst species generated by mixing tris (dibenzylideneacetone) dipalladium (0), palladium (II) acetate or the like as a precursor and mixing with a phosphine ligand can also be used.
  • the description of International Publication No. 2010/1405553 can be incorporated.
  • the charge-transporting low-molecular-weight compound is not particularly limited as long as it contains an atomic group capable of transporting charges.
  • the charge transporting low molecular weight compound may have a polymerizable functional group.
  • the charge-transporting low molecular weight compound preferably contains at least one unit selected from the group consisting of a unit containing an aromatic amine structure, a unit containing a carbazole structure, and a unit containing a thiophene structure.
  • Examples of the structure of the charge transporting low molecular weight compound include the following. “D” represents the structural unit D, and “M” represents the structural unit M. The structural unit D and the structural unit M are as described above.
  • the organic electronics material may contain only one type of charge transporting compound (including a charge transporting low molecular weight compound), or may contain two or more types.
  • the content of the ionic compound is 0.1% by mass or more based on the mass of the charge transporting compound from the viewpoint of film forming property. Is preferable, 0.2% by mass or more is more preferable, and 0.5% by mass or more is further preferable.
  • the content of the ionic compound is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less, based on the mass of the charge transporting compound, from the viewpoint of the driving voltage of the organic electronics element. More preferred.
  • the organic electronics material may further contain a solvent.
  • the solvent-containing organic electronics material is preferably used as an ink composition in the manufacture of organic electronics devices.
  • the solvent water, an organic solvent, or a mixed solvent thereof can be used.
  • the organic solvent include alcohols such as methanol, ethanol and isopropyl alcohol; alkanes such as pentane, hexane and octane; cyclic alkanes such as cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, methicylene, tetraline and diphenylmethane; ethylene glycol.
  • Alibo ethers such as dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2-methoxytoluene, 3-methoxytoluene, Aromatic ethers such as 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole; aliphatic esters such as ethyl acetate, n-butyl acetate, ethyl lactate and n-butyl lactate; phenyl acetate and propionic acid Aromatic esters such as phenyl, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide; dimethyls
  • the content of the solvent in the ionic compound can be determined in consideration of application to various coating methods.
  • the ionic compound preferably contains an amount of the solvent having a charge-transporting polymer ratio of 0.1% by mass or more with respect to the solvent, and preferably contains an amount of the solvent having an amount of 0.2% by mass or more. It is more preferable that the solvent is contained in an amount of 0.5% by mass or more.
  • the ionic compound preferably contains a solvent in an amount such that the ratio of the charge transport polymer to the solvent is 20% by mass or less, and more preferably 15% by mass or less. It is more preferable to contain the solvent in an amount of 10% by mass or less.
  • the organic electronics material may further contain an additive as an optional component.
  • Additives include, for example, polymerization inhibitors, stabilizers, thickeners, gelling agents, flame retardants, antioxidants, antioxidants, oxidizing agents, reducing agents, surface modifiers, emulsifiers, defoamers, etc. Dispersants, surfactants and the like can be mentioned. Further, if necessary, a known polymerization initiator and dopant may be used together with the ionic compound as long as the effects of the ionic compound of the present embodiment described above (for example, heat resistance, device characteristics, etc.) are not impaired. ..
  • the organic layer of the present embodiment is obtained by polymerizing a layer formed by a coating method using the organic electronic material of the above-described embodiment or an ink composition containing the organic electronic material, and further, the formed layer. It is a layer that has been allowed to insolubilize.
  • an organic electronic material containing a solvent By using an organic electronic material containing a solvent, an organic layer can be satisfactorily formed by a coating method.
  • the coating method include a spin coating method; a casting method; a dipping method; a letterpress printing, a concave plate printing, an offset printing, a flat plate printing, a letterpress reversal offset printing, a screen printing, a plate printing method such as gravure printing; an inkjet method and the like.
  • Known methods such as a plateless printing method can be mentioned.
  • the organic layer (coating layer) obtained after coating may be dried using a hot plate or an oven to remove the solvent.
  • the organic electronics material contains a charge-transporting compound having a polymerizable functional group
  • these polymerization reactions can be allowed to proceed by light irradiation, heat treatment, or the like to change the solubility of the organic layer.
  • ionic compounds can function as polymerization initiators.
  • the organic electronics material contains a charge-transporting compound having a polymerizable functional group
  • the curability at a low temperature can be improved when the ink composition is prepared.
  • good stacking of organic layers is possible, and when an organic electronic device is used, the life of the organic electronic device can be extended.
  • the thickness of the organic layer after drying or curing is preferably 0.1 nm or more, more preferably 1 nm or more, and further preferably 3 nm or more from the viewpoint of improving the efficiency of charge transport.
  • the thickness of the organic layer is preferably 300 nm or less, more preferably 200 nm or less, and further preferably 100 nm or less from the viewpoint of reducing the electric resistance.
  • the organic electronic device of the present embodiment has at least the organic layer of the above-described embodiment.
  • the organic electronics element include an organic EL element such as an organic light emitting diode (OLED), an organic photoelectric conversion element, and an organic transistor.
  • the organic electronics device preferably has a structure in which an organic layer is arranged between at least a pair of electrodes.
  • the organic EL device of the present embodiment has at least one or more organic layers of the above-described embodiment.
  • the organic EL device usually includes a light emitting layer, an anode, a cathode, and a substrate, and if necessary, provides other functional layers such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer. I have. Each layer may be formed by a thin-film deposition method or a coating method.
  • the organic EL device preferably has an organic layer as a light emitting layer or another functional layer, more preferably as a functional layer, and further preferably as at least one of a hole injection layer and a hole transport layer.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an organic EL device.
  • the organic EL device shown in FIG. 1 is a multi-layered device, and has a substrate 8, an anode 2, a hole injection layer 3, a hole transport layer 6, a light emitting layer 1, an electron transport layer 7, an electron injection layer 5, and a cathode. It has a multi-layer structure in which 4 are laminated in this order.
  • FIG. 1 is an example, and the organic EL element of the present embodiment is not limited to this figure.
  • the hole injection layer 3 is an organic layer formed by using the above-mentioned organic electronic material, but the organic EL device of the present embodiment is not limited to such a structure, and other organic layers may be used.
  • It may be an organic layer formed by using the above-mentioned organic electronic material.
  • a hole transport layer a hole transport layer
  • a hole injection layer a hole injection layer
  • a light emitting layer a layer selected from the group consisting of a hole transport layer, a hole injection layer and a light emitting layer.
  • Light emitting layer As the material used for the light emitting layer, a light emitting material such as a low molecular weight compound, a polymer, or a dendrimer can be used. Polymers are preferred because they are highly soluble in solvents and suitable for coating methods. Examples of the light emitting material include fluorescent materials, phosphorescent materials, thermal activated delayed fluorescent materials (TADF) and the like.
  • TADF thermal activated delayed fluorescent materials
  • Low molecular weight compounds such as perylene, coumarin, rubrene, quinacridone, stilbene, dyes for dye lasers, aluminum complexes, and derivatives thereof as fluorescent materials; polyfluorene, polyphenylene, polyphenylene vinylene, polyvinylcarbazole, fluorene-benzothiazol copolymer , Fluorene-triphenylamine copolymers, polymers such as derivatives thereof; mixtures thereof and the like.
  • a metal complex containing a metal such as Ir or Pt can be used.
  • Ir complex include FIr (pic) (iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C 2 ] picolinate) that emits blue light, and Ir (ppy) 3 that emits green light.
  • the light emitting layer contains a phosphorescent material
  • a host material a low molecular weight compound, a polymer, or a dendrimer can be used.
  • low molecular weight compounds include CBP (4,4'-bis (9H-carbazole-9-yl) biphenyl), mCP (1,3-bis (9-carbazolyl) benzene), and CDBP (4,4'-.
  • thermally activated delayed fluorescent materials include Adv. Mater., 21, 4802-4906 (2009); Appl. Phys. Lett., 98, 083302 (2011); Chem. Comm., 48, 9580 (2012). Appl. Phys. Lett., 101, 093306 (2012); J. Am. Chem. Soc., 134, 14706 (2012); Chem. Comm., 48, 11392 (2012); Nature, 492, 234 (2012) ); Adv. Mater., 25, 3319 (2013); J. Phys. Chem. A, 117, 5607 (2013); Phys. Chem. Chem. Phys., 15, 15850 (2013); Chem. Comm., 49, 10385 (2013); Chem. Lett., 43, 319 (2014), etc. can be used.
  • the above-mentioned organic layer is preferably used as at least one of the hole injection layer and the hole transport layer, and more preferably at least as the hole transport layer.
  • a known material can be used for the hole injection layer.
  • a known material can be used for the hole transport layer.
  • Examples of materials that can be used for the hole injection layer and the hole transport layer include aromatic amine compounds, phthalocyanine compounds, and thiophene compounds.
  • Electrode transport layer electron injection layer
  • Examples of the material used for the electron transport layer and the electron injection layer include fused ring tetracarboxylic acid anhydrides such as phenanthroline derivative, bipyridine derivative, nitro-substituted fluorene derivative, diphenylquinone derivative, thiopyrandioxide derivative, naphthalene and perylene, and carbodiimide. , Fluolenilidene methane derivative, anthraquinodimethane and antron derivative, oxadiazole derivative, thiadiazole derivative, benzoimidazole derivative, quinoxalin derivative, aluminum complex (for example, BAlq, Alq 3 ) and the like. Further, the organic electronic material of the above-described embodiment can also be used.
  • cathode As the cathode material, for example, a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, CsF is used.
  • a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, CsF is used.
  • anode for example, a metal (for example, Au) or another conductive material is used.
  • Other materials include, for example, oxides (eg, ITO), conductive polymers (eg, polythiophene-polystyrene sulfonic acid mixture (PEDOT: PSS)).
  • [substrate] Glass, plastic, etc. can be used as the substrate.
  • the substrate is preferably transparent and preferably has flexibility. Quartz glass, light-transmitting resin film and the like are preferably used.
  • the resin film for example, a film containing polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, cellulose acetate propionate and the like. Can be mentioned.
  • the resin film When a resin film is used, the resin film may be coated with an inorganic substance such as silicon oxide or silicon nitride in order to suppress the permeation of water vapor, oxygen, etc.
  • an inorganic substance such as silicon oxide or silicon nitride
  • the emission color of the organic EL element is not particularly limited.
  • An organic EL element exhibiting white light emission (also referred to as a white organic EL element) is preferable because it can be used for various lighting fixtures such as household lighting, vehicle interior lighting, clocks, and liquid crystal backlights.
  • a method for forming the white organic EL element a method of simultaneously emitting a plurality of emission colors using a plurality of light emitting materials and mixing the colors can be used.
  • the combination of a plurality of emission colors is not particularly limited, but for example, a combination containing three emission maximum wavelengths of blue, green and red, and a complementary color relationship such as blue and yellow and yellow-green and orange. Examples thereof include a combination containing the two maximum emission wavelengths used.
  • the emission color can be controlled by adjusting the type and amount of the emission material.
  • the display element of the present embodiment includes the organic EL element of the above-described embodiment.
  • an organic EL element as an element corresponding to each pixel of red, green, and blue (RGB)
  • RGB red, green, and blue
  • the lighting device of the present embodiment includes the organic EL element of the above-described embodiment.
  • the display device of the present embodiment includes a lighting device and a liquid crystal element as a display means.
  • the display device can be a display device using the lighting device of the above-described embodiment as a backlight and a known liquid crystal element as a display means, that is, a liquid crystal display device.
  • Example 1 (Synthesis of Ionic Compound 1) Ionic compound 1 having the following structure was synthesized as follows. 25 g of acetone and 5 g of pure water were added to 1.111 g (10 mmol) of diallyl methylamine and stirred to obtain a uniform solution, and then 3.653 g of a 10% hydrogen chloride aqueous solution was slowly added dropwise, and the mixture was stirred for 1 hour after the completion of the addition. The solvent was distilled off from this solution under reduced pressure. Then, 77.49 g (11 mmol) of a 10% aqueous solution of Sodium tetrakis (pentafluorophenyl) borate was mixed, and the mixture was stirred for 1 hour. This was washed with water 5 times and dried to prepare a white solid.
  • Example 2 (Synthesis of Ionic Compound 2) Ionic compound 2 having the following structure was synthesized as follows. To 1.132 g (10 mmol) of diethylallylamine, 25 g of acetone and 5 g of pure water were added and stirred to obtain a uniform solution, and then 3.653 g of a 10% hydrogen chloride aqueous solution was slowly added dropwise, and the mixture was stirred for 1 hour after the completion of the addition. The solvent was distilled off from this solution under reduced pressure. Then, 77.49 g (11 mmol) of a 10% aqueous solution of Sodium tetrakis (pentafluorophenyl) borate was mixed, and the mixture was stirred for 1 hour. This was washed with water 5 times and dried to prepare a white solid.
  • Example 3 (Synthesis of Ionic Compound 3)
  • the ionic compound 3 having the following structure was synthesized as follows. To 1.372 g (10 mmol) of triallylamine, 25 g of acetone and 5 g of pure water were added and stirred to obtain a uniform solution, and then 3.653 g of a 10% hydrogen chloride aqueous solution was slowly added dropwise, and the mixture was stirred for 1 hour after the completion of the addition. The solvent was distilled off from this solution under reduced pressure. Then, 77.49 g (11 mmol) of a 10% aqueous solution of Sodium tetrakis (pentafluorophenyl) borate was mixed, and the mixture was stirred for 1 hour. This was washed with water 5 times and dried to prepare a white solid.
  • thermogravimetric reduction was determined by measuring 10 mg of each of the produced ionic compounds in air using a TG-DTA measuring device (DTG-60H manufactured by Shimadzu Corporation) under a temperature rising condition of 5 ° C./min.
  • the temperature at which the weight loss of 2% occurred when each ionic compound was heated was defined as the weight loss temperature.
  • Table 1 shows the evaluation results of the weight loss temperature.
  • the ionic compounds 1 to 3 (Examples 1 to 3) in the above-described embodiment showed higher weight loss temperatures than the ionic compounds 4 to 7 (Comparative Examples 1 to 4). It can be seen that the heat resistance is excellent by using an ionic compound having a small thermal weight loss.
  • a charge-transporting polymer 1 was prepared as shown below. The monomers used are shown below.
  • the charge-transporting polymer 1 had a number average molecular weight of 11,900 and a weight average molecular weight of 66,200.
  • the number average molecular weight and the weight average molecular weight were measured by GPC (polystyrene conversion) using tetrahydrofuran (THF) as an eluent.
  • the measurement conditions are as follows.
  • Organic layers A1 to 7 were formed using the charge-transporting polymer 1 and the ionic compounds 1 to 7, and the solvent resistance was evaluated by measuring the residual film ratio.
  • Example 1 The ionic compound (10 mg) used in Example 1 was weighed into a 20 mL screw tube, a certain amount of chlorobenzene was added, and the mixture was stirred to prepare an ionic compound solution. Then, the charge-transporting polymer 1 (10 mg) and a certain amount of chlorobenzene (792 ⁇ L) were added to the 9 mL screw tube to dissolve the charge-transporting polymer. Then, a certain amount of the ionic compound solution was added to the above-mentioned 9 mL screw tube and stirred to prepare an ink composition.
  • the ink composition is filtered through a polytetrafluoroethylene (PTFE) filter (pore diameter 0.2 ⁇ m), dropped onto a quartz substrate (length 22 mm ⁇ width 29 mm ⁇ thickness 0.7 mm), and a coating film is formed by a spin coater. Membrane. Subsequently, heat curing was carried out at 200 ° C. for 30 minutes in a nitrogen atmosphere to form an organic layer having a film thickness of 30 nm on a quartz substrate. (The solution was adjusted so that the charge-transporting polymer was 1 wt% and the ionic compound was 1 wt% with respect to the charge-transporting polymer.)
  • PTFE polytetrafluoroethylene
  • the absorbance A of the organic layer formed on the quartz substrate was measured using a spectrophotometer (“UV-2700” manufactured by Shimadzu Corporation). Subsequently, the mixture was immersed in anisole (10 mL, 25 ° C.) for 10 minutes in an environment of 25 ° C. so that the organic layer after measurement was on the upper surface.
  • the absorbance B of the organic layer after immersion in anisole was measured, and the residual film ratio was calculated from the absorbance A of the formed organic layer and the absorbance B of the organic layer after immersion in anisole using the following formula.
  • the value of absorbance the value at the maximum absorption wavelength of the organic layer was used. The larger the residual film ratio, the better the solvent resistance.
  • Table 2 shows the measurement results of the residual film ratio.
  • the organic layers A1 to A3 using the ionic compounds 1 to 3 of the present embodiment have a better residual film ratio and a film forming property as compared with the organic layers A4 to A7 using the ionic compounds 4 to 7. Good measurement results were shown.
  • Organic EL devices 1 to 7 were prepared using the charge-transporting polymer 1 and the ionic compounds 1 to 7 according to the following, and the drive voltage, luminous efficiency, and emission lifetime were evaluated.
  • Example 2 Manufacturing of organic EL element
  • the ionic compound (10.0 mg) used in Example 1 was weighed into a 20 mL screw tube, a certain amount of chlorobenzene was added, and the mixture was stirred to prepare an ionic compound solution.
  • a charge-transporting polymer (10 mg) and a certain amount of chlorobenzene were added to the 9 mL screw tube to dissolve the charge-transporting polymer.
  • a certain amount of the ionic compound solution was added to the above-mentioned 9 mL screw tube and stirred to prepare an ink composition.
  • a patterned ITO having a width of 1.6 mm is formed on a glass substrate (length 22 mm ⁇ width 29 mm ⁇ thickness 0.7 mm), and an ink composition is applied onto the glass substrate and the formed ITO with a polytetrafluoroethylene (PTFE) filter (PTFE).
  • PTFE polytetrafluoroethylene
  • the filtrate prepared by filtering with a pore size of 0.2 ⁇ m) was dropped, and a coating film was formed by a spin coater. Then, it was heated on a hot plate at 200 ° C. for 30 minutes in a nitrogen atmosphere to form a hole injection layer (30 nm).
  • the solution was adjusted so that the charge-transporting polymer was 1 wt% and the ionic compound was 1 wt% with respect to the charge-transporting polymer.
  • the glass substrate having the hole injection layer is transferred into the vacuum vapor deposition machine, and ⁇ -NPD (40 nm), CBP: Ir (ppy) 3 (94: 6, 30 nm), BAlq (10 nm), TPBi are placed on the hole injection layer. (30 nm), LiF (0.8 nm), and Al (100 nm) were deposited in this order by a vapor deposition method. Then, a sealing process was performed to produce an organic EL element.
  • Table 3 shows the measurement results of drive voltage, luminous efficiency, and luminous life.
  • the organic EL devices 1 to 3 using the ionic compounds 1 to 3 of the present embodiment are compared with the organic EL devices 4 to 7 using the ionic compounds 4 to 7 in terms of drive voltage, light emission efficiency, and light emission lifetime. Good measurement results were shown.

Abstract

An ionic compound containing an ammonium cation represented by formula (1a) and an anion has excellent heat resistance. In formula (1a), Ra, Rb and Rc independently represent a hydrogen atom or a monovalent organic group, wherein at least two radicals selected from Ra, Rb and Rc independently represent a monovalent organic group and at least one radical selected from Ra, Rb and Rc represents an organic group having a double bond.

Description

イオン性化合物、有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び有機エレクトロニクス素子の製造方法Ionic compounds, organic electronics materials, organic layers, organic electronics elements, organic electroluminescence elements, display elements, lighting devices, and methods for manufacturing organic electronics elements.
 本発明の実施形態は、イオン性化合物、有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び有機エレクトロニクス素子の製造方法に関する。 An embodiment of the present invention relates to an ionic compound, an organic electronic material, an organic layer, an organic electronic element, an organic electroluminescence element, a display element, a lighting device, and a method for manufacturing an organic electronic element.
 有機エレクトロニクス素子は、有機物を用いて電気的な動作を行う素子であり、省エネルギー、低価格、及び柔軟性といった特長を発揮できると期待され、従来のシリコンを主体とした無機半導体に替わる技術として注目されている。 Organic electronics devices are devices that perform electrical operations using organic substances, and are expected to exhibit features such as energy saving, low cost, and flexibility, and are attracting attention as a technology that replaces conventional silicon-based inorganic semiconductors. Has been done.
 有機エレクトロニクス素子の一例としては、有機エレクトロルミネセンス素子(以下、有機EL素子ということもある。)、有機光電変換素子、及び有機トランジスタなどが挙げられる。 Examples of organic electronic devices include organic electroluminescence devices (hereinafter, also referred to as organic EL devices), organic photoelectric conversion devices, and organic transistors.
 有機エレクトロニクス素子の中でも有機EL素子は、例えば、白熱ランプ、及びガス充填ランプ等の代替えとして、大面積ソリッドステート光源用途として注目されている。また、フラットパネルディスプレイ(FPD)分野における液晶ディスプレイ(LCD)に置き換わる最有力の自発光ディスプレイとしても注目されており、製品化が進んでいる。 Among organic electronic devices, organic EL devices are attracting attention as large-area solid-state light source applications as alternatives to, for example, incandescent lamps and gas-filled lamps. It is also attracting attention as the most promising self-luminous display that can replace the liquid crystal display (LCD) in the flat panel display (FPD) field, and its commercialization is progressing.
 有機EL素子は、使用される有機材料から、低分子型有機EL素子及び高分子型有機EL素子の2つに大別される。高分子型有機EL素子では、有機材料として高分子材料が用いられ、低分子型有機EL素子では、低分子材料が用いられる。高分子型有機EL素子は、主に真空系で成膜が行われる低分子型有機EL素子と比較して、印刷及びインクジェットなどの湿式プロセスによる簡易成膜が可能なため、今後の大画面有機ELディスプレイには不可欠な素子として期待されている。 Organic EL devices are roughly classified into two types, low-molecular-weight organic EL devices and high-molecular-weight organic EL devices, according to the organic materials used. In the high molecular weight organic EL device, a high molecular weight material is used as the organic material, and in the low molecular weight organic EL device, a low molecular weight material is used. Compared to low-molecular-weight organic EL devices, which are mainly formed in a vacuum system, high-molecular-weight organic EL devices can be easily formed by wet processes such as printing and inkjet. It is expected as an indispensable element for EL displays.
 このため、湿式プロセスに適した材料の開発が進められている。 For this reason, the development of materials suitable for wet processes is underway.
特開2006-279007号公報Japanese Unexamined Patent Publication No. 2006-279007 国際公開第2010/140553号International Publication No. 2010/1405553
 一般に、高分子材料を使用して湿式プロセスにより作製した有機EL素子は、低コスト化、大面積化が容易であるという特長を有している。しかし、従来の高分子材料を用いて作製した薄膜を含む有機EL素子は、駆動電圧、発光効率、及び発光寿命といった、有機EL素子の特性において、さらなる改善が望まれている。さらに、有機EL素子作製には溶媒を乾燥する工程で高温ベークを要するため、各材料には高温プロセス耐性も望まれている。 Generally, an organic EL device manufactured by a wet process using a polymer material has the features that it is easy to reduce the cost and increase the area. However, an organic EL device containing a thin film produced by using a conventional polymer material is desired to be further improved in the characteristics of the organic EL device such as driving voltage, luminous efficiency, and luminous life. Further, since high-temperature baking is required in the process of drying the solvent in the production of the organic EL device, high-temperature process resistance is also desired for each material.
 本発明は、上記を鑑みてなされたものであり、本発明の実施形態は、素子特性に優れた有機エレクトロニクス素子に利用可能な有機エレクトロニクス材料、及び該有機エレクトロニクス材料に利用可能な耐熱性に優れたイオン性化合物を提供することを目的とする。また、他の実施形態は、該有機エレクトロニクス材料を用いる有機層、ならびに該有機層を備える有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、及び照明装置を提供することを目的とする。さらに、他の実施形態は、該有機エレクトロニクス材料を用いた有機エレクトロニクス素子の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and the embodiment of the present invention is an organic electronic material that can be used for an organic electronic element having excellent element characteristics, and an excellent heat resistance that can be used for the organic electronic material. It is an object of the present invention to provide an ionic compound. Another embodiment aims to provide an organic layer using the organic electronic material, and an organic electronic device, an organic electroluminescence device, a display element, and a lighting device including the organic layer. Furthermore, another embodiment aims to provide a method for manufacturing an organic electronic device using the organic electronic material.
 本発明の一実施形態は、下記式(1a)で表されるアンモニウムカチオン及びアニオンを含有するイオン性化合物に関する。 One embodiment of the present invention relates to an ionic compound containing an ammonium cation and an anion represented by the following formula (1a).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1a)中、R、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、R、R及びRから選択される少なくとも2つは1価の有機基であり、R、R及びRから選択される少なくとも1つは二重結合を含有する有機基である。 In formula (1a), Ra , R b and R c each independently represent a hydrogen atom or a monovalent organic group, and at least two selected from Ra , R b and R c are monovalent organic. A group, at least one selected from Ra , R b and R c is an organic group containing a double bond.
 また、本発明の他の実施形態は、前記イオン性化合物と電荷輸送性化合物と、を含有する、有機エレクトロニクス材料に関する。 Further, another embodiment of the present invention relates to an organic electronics material containing the ionic compound and the charge transporting compound.
 また、本発明の他の実施形態は、前記有機エレクトロニクス材料を用いて成膜された、有機層に関する。 Further, another embodiment of the present invention relates to an organic layer formed by using the organic electronic material.
 また、本発明の他の実施形態は、前記有機層を備えた、有機エレクトロニクス素子に関する。 Further, another embodiment of the present invention relates to an organic electronic device provided with the organic layer.
 また、本発明の他の実施形態は、前記有機層を備えた、有機エレクトロルミネセンス素子に関する。 Further, another embodiment of the present invention relates to an organic electroluminescence device provided with the organic layer.
 また、本発明の他の実施形態は、前記有機エレクトロルミネセンス素子を備えた、表示素子に関する。 Further, another embodiment of the present invention relates to a display element including the organic electroluminescence element.
 また、本発明の他の実施形態は、前記有機エレクトロルミネセンス素子を備えた、照明装置に関する。 Further, another embodiment of the present invention relates to a lighting device including the organic electroluminescence element.
 また、本発明の他の実施形態は、前記照明装置と、表示手段として液晶素子と、を備えた、表示素子に関する。 Further, another embodiment of the present invention relates to a display element including the lighting device and a liquid crystal element as a display means.
 また、本発明の他の実施形態は、前記有機エレクトロニクス材料を用いて塗布法により有機層を形成する工程を含む、有機エレクトロニクス素子の製造方法に関する。 Further, another embodiment of the present invention relates to a method for manufacturing an organic electronic element, which comprises a step of forming an organic layer by a coating method using the organic electronic material.
 本発明の実施形態によれば、素子特性に優れた有機エレクトロニクス素子に利用可能な有機エレクトロニクス材料、及び該有機エレクトロニクス材料に利用可能な耐熱性に優れたイオン性化合物を提供することができる。また、本発明の他の実施形態によれば、該有機エレクトロニクス材料を用いる有機層、ならびに該有機層を備える有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、及び照明装置を提供することができる。また、本発明の他の実施形態によれば、該有機エレクトロニクス材料を用いた有機エレクトロニクス素子の製造方法を提供することができる。 According to the embodiment of the present invention, it is possible to provide an organic electronic material that can be used for an organic electronic device having excellent element characteristics, and an ionic compound that can be used for the organic electronic material and has excellent heat resistance. Further, according to another embodiment of the present invention, it is possible to provide an organic layer using the organic electronic material, and an organic electronic device, an organic electroluminescence device, a display element, and a lighting device including the organic layer. .. Further, according to another embodiment of the present invention, it is possible to provide a method for manufacturing an organic electronic device using the organic electronic material.
本発明の一実施形態である有機EL素子の一例を示す模式的断面図である。It is a schematic cross-sectional view which shows an example of the organic EL element which is one Embodiment of this invention.
 以下、本発明の実施形態のイオン性化合物、有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、及び照明装置について詳しく説明する。 Hereinafter, the ionic compound, the organic electronics material, the organic layer, the organic electronics element, the organic electroluminescence element, the display element, and the lighting device according to the embodiment of the present invention will be described in detail.
 本発明の実施形態は、以下の通りである。 The embodiment of the present invention is as follows.
 <1> 下記式(1a)で表されるアンモニウムカチオン及びアニオンを含有するイオン性化合物。 <1> An ionic compound containing an ammonium cation and an anion represented by the following formula (1a).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1a)中、R、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、R、R及びRから選択される少なくとも2つは1価の有機基であり、R、R及びRから選択される少なくとも1つは二重結合を含有する有機基である。 In formula (1a), Ra , R b and R c each independently represent a hydrogen atom or a monovalent organic group, and at least two selected from Ra , R b and R c are monovalent organic. A group, at least one selected from Ra , R b and R c is an organic group containing a double bond.
 <2> 前記二重結合を含有する有機基の炭素数は2~6である<1>に記載のイオン性化合物。 <2> The ionic compound according to <1>, wherein the organic group containing the double bond has 2 to 6 carbon atoms.
 <3> 前記二重結合は、前記有機基の末端に位置する<1>又は<2>に記載のイオン性化合物。 <3> The ionic compound according to <1> or <2>, wherein the double bond is located at the terminal of the organic group.
 <4> R、R及びRのそれぞれにおける前記有機基の炭素数は4以下である<1>~<3>のいずれか1項に記載のイオン性化合物。 <4> The ionic compound according to any one of <1> to <3>, wherein the organic group has 4 or less carbon atoms in each of Ra , R b, and R c.
 <5> 前記二重結合を含有する有機基は、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、及びイソブテニル基からなる群から選択される1つである<1>~<4>のいずれか1項に記載に記載のイオン性化合物。 <5> The organic group containing the double bond is any one of <1> to <4> selected from the group consisting of a vinyl group, a propenyl group, an isopropenyl group, a butenyl group, and an isobutenyl group. Or the ionic compound according to item 1.
 <6> 前記二重結合を含有する有機基を1つのみ含有する<1>~<5>のいずれか1項に記載に記載のイオン性化合物。 <6> The ionic compound according to any one of <1> to <5>, which contains only one organic group containing the double bond.
 <7> 前記二重結合を含有する有機基を2つ以上含有し、前記二重結合を含有する有機基のそれぞれは、互いに同一である<1>~<5>のいずれか1項に記載に記載のイオン性化合物。 <7> The item according to any one of <1> to <5>, which contains two or more organic groups containing the double bond, and each of the organic groups containing the double bond is the same as each other. Ionic compounds according to.
 <8> 前記アニオンが下記式(1b)~(5b)のいずれかで表される<1>~<7>のいずれか1項に記載のイオン性化合物。 <8> The ionic compound according to any one of <1> to <7>, wherein the anion is represented by any of the following formulas (1b) to (5b).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1b)~(5b)中、Eは酸素原子、Eは窒素原子、Eは炭素原子、Eはホウ素原子又はガリウム原子、Eはリン原子又はアンチモン原子を表し、Y~Yは、それぞれ独立に単結合又は2価の連結基を表し、R~R16は、それぞれ独立に電子求引性の1価の基(R及びR、R~Rから選択される少なくとも2つの基、R~R10から選択される少なくとも2つの基、及び、R11~R16から選択される少なくとも2つの基は、それぞれ互いに結合していてもよい。)を表す。 In formulas (1b) to (5b), E 1 represents an oxygen atom, E 2 represents a nitrogen atom, E 3 represents a carbon atom, E 4 represents a boron atom or a gallium atom, E 5 represents a phosphorus atom or an antimony atom, and Y 1 ~ Y 6 independently represent a single bond or a divalent linking group, and R 1 to R 16 each independently represent an electron-attracting monovalent group (R 2 and R 3 , R 4 to R 6). At least two groups selected from, at least two groups selected from R 7 to R 10 , and at least two groups selected from R 11 to R 16 may each be attached to each other.) Represents.
 <9> <1>~<8>のいずれか1項に記載のイオン性化合物と電荷輸送性化合物と、を含有する、有機エレクトロニクス材料。 <9> An organic electronic material containing the ionic compound and the charge transporting compound according to any one of <1> to <8>.
 <10> 前記電荷輸送性化合物が、芳香族アミン構造を含む単位、カルバゾール構造を含む単位、及びチオフェン構造を含む単位からなる群から選択される少なくとも1種の単位を有する、<9>に記載の有機エレクトロニクス材料。 <10> The unit according to <9>, wherein the charge transporting compound has at least one unit selected from the group consisting of a unit containing an aromatic amine structure, a unit containing a carbazole structure, and a unit containing a thiophene structure. Organic electronics materials.
 <11> 前記電荷輸送性化合物が、分子内に1つ以上の重合性官能基を有する、<9>又は<10>に記載の有機エレクトロニクス材料。 <11> The organic electronic material according to <9> or <10>, wherein the charge transporting compound has one or more polymerizable functional groups in the molecule.
 <12> 前記重合性官能基が、オキセタン基、エポキシ基、及びビニルエーテル基からなる群から選択される少なくとも1種を含む、<11>に記載の有機エレクトロニクス材料。 <12> The organic electronic material according to <11>, wherein the polymerizable functional group contains at least one selected from the group consisting of an oxetane group, an epoxy group, and a vinyl ether group.
 <13> 更に、溶媒を含有する、<9>~<12>のいずれか1項に記載の有機エレクトロニクス材料。 <13> The organic electronic material according to any one of <9> to <12>, which further contains a solvent.
 <14> <9>~<13>のいずれか1項に記載の有機エレクトロニクス材料を用いて成膜された、有機層。 <14> An organic layer formed by using the organic electronic material according to any one of <9> to <13>.
 <15> <14>に記載の有機層を備えた、有機エレクトロニクス素子。 An organic electronic device provided with the organic layer according to <15> and <14>.
 <16> 前記有機層上に、更に他の有機層を有する、<15>に記載の有機エレクトロニクス素子。 <16> The organic electronics element according to <15>, which has another organic layer on the organic layer.
 <17> 更に基板を有し、前記基板が、フレキシブル性を有する、<15>又は<16>に記載の有機エレクトロニクス素子。 <17> The organic electronic device according to <15> or <16>, which further has a substrate, and the substrate has flexibility.
 <18> 更に基板を有し、前記基板が、樹脂フィルムである、<15>又は<16>に記載の有機エレクトロニクス素子。 <18> The organic electronic device according to <15> or <16>, further comprising a substrate, wherein the substrate is a resin film.
 <19> <14>に記載の有機層を備えた、有機エレクトロルミネセンス素子。 An organic electroluminescence device provided with the organic layer according to <19> and <14>.
 <20> 前記有機層が正孔注入層である、<19>に記載の有機エレクトロルミネセンス素子。 <20> The organic electroluminescence device according to <19>, wherein the organic layer is a hole injection layer.
 <21> 前記有機層が正孔輸送層である、<19>に記載の有機エレクトロルミネセンス素子。 <21> The organic electroluminescence device according to <19>, wherein the organic layer is a hole transport layer.
 <22> 前記有機層が発光層である、<19>に記載の有機エレクトロルミネセンス素子。 <22> The organic electroluminescence device according to <19>, wherein the organic layer is a light emitting layer.
 <23> 発光色が白色である、<19>~<22>のいずれか1項に記載の有機エレクトロルミネセンス素子。 <23> The organic electroluminescence device according to any one of <19> to <22>, which has a white emission color.
 <24> 更に基板を有し、前記基板が、フレキシブル性を有する、<19>~<23>のいずれか1項に記載の有機エレクトロルミネセンス素子。 <24> The organic electroluminescence device according to any one of <19> to <23>, further comprising a substrate, wherein the substrate has flexibility.
 <25> 更に基板を有し、前記基板が、樹脂フィルムである、<19>~<23>のいずれか1項に記載の有機エレクトロルミネセンス素子。 <25> The organic electroluminescence device according to any one of <19> to <23>, further comprising a substrate, wherein the substrate is a resin film.
 <26> <19>~<25>のいずれか1項に記載の有機エレクトロルミネセンス素子を備えた、表示素子。 A display device including the organic electroluminescence device according to any one of <26> and <19> to <25>.
 <27> <19>~<25>のいずれか1項に記載の有機エレクトロルミネセンス素子を備えた、照明装置。 <27> A lighting device provided with the organic electroluminescence element according to any one of <19> to <25>.
 <28> <27>に記載の照明装置と、表示手段として液晶素子と、を備えた、表示素子。 A display element including the lighting device according to <28> and <27> and a liquid crystal element as a display means.
 <29> <13>に記載の有機エレクトロニクス材料を用いて塗布法により有機層を形成する工程を含む、有機エレクトロニクス素子の製造方法。 <29> A method for manufacturing an organic electronic device, which comprises a step of forming an organic layer by a coating method using the organic electronic material according to <13>.
<イオン性化合物>
 本実施形態のイオン性化合物は、後述する下記式で表されるアンモニウムカチオン、及びアニオンからなる。以下、アンモニウムカチオン及びアニオンについて説明する。本実施形態のイオン性化合物は、有機エレクトロニクス材料のドーパントとして用いることが好ましい。また、電荷輸送性ポリマーが重合性官能基を含む場合、本実施形態のイオン性化合物は、重合開始剤として用いることが好ましい。
<Ionic compound>
The ionic compound of this embodiment comprises an ammonium cation and an anion represented by the following formula, which will be described later. Hereinafter, ammonium cations and anions will be described. The ionic compound of the present embodiment is preferably used as a dopant for organic electronic materials. When the charge-transporting polymer contains a polymerizable functional group, the ionic compound of the present embodiment is preferably used as a polymerization initiator.
(アンモニウムカチオン)
 本実施形態のイオン性化合物のアンモニウムカチオンは、下記式(1a)で表される。
(Ammonium cation)
The ammonium cation of the ionic compound of this embodiment is represented by the following formula (1a).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1a)において、R、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、R、R及びRから選択される少なくとも2つは1価の有機基である。1価の有機基としては、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アリールアルキル基等が挙げられる。これらの基はさらに置換基を有していてもよく、該置換基としては、アルキル基等が挙げられ、炭素数1~10のアルキル基が好ましい。R、R及びRのうちの少なくとも2つが互いに結合し、環を形成していてもよい。R、R及びRは、互いに同一であっても異なってもよい。また、R、R及びRから選択される少なくとも1つは二重結合を含有する有機基である。二重結合を含有する有機基としては、アルケニル基等が挙げられる。 In formula (1a), Ra , R b and R c each independently represent a hydrogen atom or a monovalent organic group, and at least two selected from Ra , R b and R c are monovalent organic. It is the basis. Examples of the monovalent organic group include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an arylalkyl group and the like. These groups may further have a substituent, and examples of the substituent include an alkyl group, and an alkyl group having 1 to 10 carbon atoms is preferable. At least two of R a , R b and R c may be bonded to each other to form a ring. R a , R b and R c may be the same or different from each other. Further, at least one selected from Ra , R b and R c is an organic group containing a double bond. Examples of the organic group containing a double bond include an alkenyl group and the like.
 本明細書等において、有機基とは、炭素原子を1つ以上有する原子団をいう。
 本明細書等において、アリール基とは、芳香族炭化水素から水素原子1個を除いた原子団をいう。芳香族炭化水素としては、単環、縮合環、又は、独立した単環及び縮合環から選択される2個以上が単結合を介して結合した多環が挙げられる。
 本明細書等において、ヘテロアリール基とは、芳香族複素環から水素原子1個を除いた原子団をいう。芳香族複素環としては、単環、縮合環、又は、独立した単環及び縮合環から選択される2個以上が単結合を介して結合した多環が挙げられる。
In the present specification and the like, the organic group means an atomic group having one or more carbon atoms.
In the present specification and the like, the aryl group means an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon. Examples of the aromatic hydrocarbon include a monocyclic ring, a condensed ring, or a polycyclic ring in which two or more selected from an independent monocyclic ring and a condensed ring are bonded via a single bond.
In the present specification and the like, the heteroaryl group refers to an atomic group obtained by removing one hydrogen atom from an aromatic heterocycle. Examples of the aromatic heterocycle include a monocyclic ring, a condensed ring, or a polycyclic ring in which two or more selected from an independent monocyclic ring and a condensed ring are bonded via a single bond.
 R、R及びRの具体例を説明するが、以下に限定されない。 Specific examples of R a , R b, and R c will be described, but the present invention is not limited to the following.
 前記アルキル基は、直鎖、分岐又は環状のいずれでもよく、置換基を有していてもよい。アルキル基の炭素数は、好ましくは1~24、より好ましくは2~18である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、ブチル基、i-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ドデシル基、テトラデシル基、オクタデシル基、3,7-ジメチルオクチル基、ラウリル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。 The alkyl group may be linear, branched or cyclic, and may have a substituent. The alkyl group preferably has 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, an i-butyl group, a t-butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group and an octyl group. 2-Ethylhexyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, octadecyl group, 3,7-dimethyloctyl group, lauryl group, trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group , Perfluorooctyl group and the like.
 前記アルケニル基は、直鎖、分岐又は環状のいずれでもよく、置換基を有していてもよい。アルケニル基の炭素数は、好ましくは2~12、より好ましくは2~8、更に好ましくは2~6である。アルケニル基の具体例としては、ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-オクテニル基、1-デセニル基、1-オクタデセニル基等が挙げられる。 The alkenyl group may be linear, branched or cyclic, and may have a substituent. The alkenyl group preferably has 2 to 12, more preferably 2 to 8, and even more preferably 2 to 6. Specific examples of the alkenyl group include vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-octenyl group and 1-decenyl group. Examples include 1-octadecenyl group.
 前記アルキニル基は、直鎖、分岐又は環状のいずれでもよく、置換基を有していてもよい。アルキニル基の炭素数は、好ましくは2~12、より好ましくは2~8、更に好ましくは2~6である。アルキニル基の具体例としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-オクチニル基、1-デシニル基、1-オクタデシニル基等が挙げられる。 The alkynyl group may be linear, branched or cyclic, and may have a substituent. The carbon number of the alkynyl group is preferably 2 to 12, more preferably 2 to 8, and even more preferably 2 to 6. Specific examples of the alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 1-octynyl group, 1-decynyl group and 1-octadecynyl group. And so on.
 前記アリール基はさらに置換基を有していてもよく、該置換基としては、アルキル基等が挙げられ、炭素数1~10のアルキル基が好ましい。非置換の状態の1価のアリール基の炭素数は、好ましくは6~60であり、より好ましくは6~30であり、更に好ましくは6~18である。具体的には、フェニル基、C1~C12アルコキシフェニル基(C1~C12は、置換基の炭素数が1~12であることを示す。以下も同様である。)、C1~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、フェナントレン-イル基、ピレン-イル基、ペリレン-イル基、ペンタフルオロフェニル基等が例示される。 The aryl group may further have a substituent, and examples of the substituent include an alkyl group, and an alkyl group having 1 to 10 carbon atoms is preferable. The monovalent aryl group in the unsubstituted state preferably has 6 to 60 carbon atoms, more preferably 6 to 30 carbon atoms, and further preferably 6 to 18 carbon atoms. Specifically, a phenyl group, a C1 to C12 alkoxyphenyl group (C1 to C12 indicate that the substituent has 1 to 12 carbon atoms; the same applies hereinafter), a C1 to C12 alkylphenyl group, Examples thereof include 1-naphthyl group, 2-naphthyl group, 1-anthrasenyl group, 2-anthrasenyl group, 9-anthrasenyl group, phenanthrene-yl group, pyrene-yl group, perylene-yl group, pentafluorophenyl group and the like.
 C1~C12アルキルとして、具体的には、メチル、エチル、プロピル、i-プロピル、ブチル、i-ブチル、t-ブチル、ペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、2-エチルヘキシル、ノニル、デシル、3,7-ジメチルオクチル、ラウリル等が例示される。 Specific examples of C1-C12 alkyl include methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 3 , 7-Dimethyloctyl, lauryl and the like are exemplified.
 前記ヘテロアリール基はさらに置換基を有していてもよく、該置換基としては、アルキル基等が挙げられ、炭素数1~10のアルキル基が好ましい。非置換の状態の1価のヘテロアリール基の炭素数は、好ましくは4~60であり、より好ましくは4~40であり、更に好ましくは4~20である。具体的には、チエニル基、C1~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1~C12アルキルピリジル基等が例示され、チエニル基、C1~C12アルキルチエニル基、ピリジル基、C1~C12アルキルピリジル基が好ましい。C1~C12アルキルの例としては、前述のとおりである。 The heteroaryl group may further have a substituent, and examples of the substituent include an alkyl group, and an alkyl group having 1 to 10 carbon atoms is preferable. The monovalent heteroaryl group in the unsubstituted state preferably has 4 to 60 carbon atoms, more preferably 4 to 40 carbon atoms, and further preferably 4 to 20 carbon atoms. Specifically, a thienyl group, a C1 to C12 alkylthenyl group, a pyrrolyl group, a frill group, a pyridyl group, a C1 to C12 alkylpyridyl group and the like are exemplified, and a thienyl group, a C1 to C12 alkylthenyl group, a pyridyl group, a C1 to A C12 alkylpyridyl group is preferred. Examples of C1-C12 alkyl are as described above.
 前記アリールアルキル基は、アルキル基が有する水素原子の少なくとも1つがアリール基により置換された基である。アリールアルキル基はさらに置換基を有していてもよく、該置換基としては、アルキル基等が挙げられ、炭素数1~10のアルキル基が好ましい。非置換の状態の1価のアリールアルキル基の炭素数は、好ましくは7~19、より好ましくは7~16、更に好ましくは7~13である。アルキル基としては、前述のアルキル基が例示され、アリール基としては、前述のアリール基が例示される。具体的には、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基、ジフェニルメチル基等が例示される。 The arylalkyl group is a group in which at least one hydrogen atom of the alkyl group is substituted with an aryl group. The arylalkyl group may further have a substituent, and examples of the substituent include an alkyl group, and an alkyl group having 1 to 10 carbon atoms is preferable. The monovalent arylalkyl group in the unsubstituted state preferably has 7 to 19 carbon atoms, more preferably 7 to 16 carbon atoms, and further preferably 7 to 13 carbon atoms. Examples of the alkyl group include the above-mentioned alkyl group, and examples of the aryl group include the above-mentioned aryl group. Specifically, a benzyl group, a phenethyl group, a naphthylmethyl group, a naphthylethyl group, a diphenylmethyl group and the like are exemplified.
 式(1a)において、二重結合を含有する有機基の炭素数は2~6であることが好ましい。二重結合を含有する有機基の炭素数が2~6である場合、本実施形態のイオン性化合物のアンモニウムカチオンを簡便に製造することができ、かつ、該アンモニウムカチオンを含む有機エレクトロニクス素子は、駆動電圧、発光効率、及び発光寿命等の優れた素子特性を得ることができる。 In the formula (1a), the organic group containing a double bond preferably has 2 to 6 carbon atoms. When the organic group containing a double bond has 2 to 6 carbon atoms, the ammonium cation of the ionic compound of the present embodiment can be easily produced, and the organic electronics element containing the ammonium cation can be used. Excellent element characteristics such as drive voltage, light emission efficiency, and light emission life can be obtained.
 一般に、アンモニウムカチオンの置換基(本実施形態のイオン性化合物のアンモニウムカチオン中のR、R及びRなどに相当)の炭素数を大きく(例えば、炭素数5以上)することで溶媒への溶解性の向上及びイオン性化合物の耐熱性の向上を検討している。一方、本実施形態のイオン性化合物のアンモニウムカチオンは、R、R及びRから選択される少なくとも1つは二重結合を含有する有機基であり、二重結合を含有する有機基の架橋により、アンモニウムカチオンは安定化するため、イオン性化合物の耐熱性が向上すると考えられる。 Generally, by increasing the carbon number (for example, 5 or more carbon atoms) of the substituent of the ammonium cation (corresponding to Ra , R b, R c, etc. in the ammonium cation of the ionic compound of the present embodiment), the solvent can be used. We are studying the improvement of the solubility of ionic compounds and the heat resistance of ionic compounds. On the other hand, the ammonium cation of the ionic compound of the present embodiment is an organic group having at least one selected from Ra , R b and R c containing a double bond, and is an organic group containing a double bond. It is considered that the heat resistance of the ionic compound is improved because the ammonium cation is stabilized by the cross-linking.
 したがって、二重結合を含有する有機基を含有する本実施形態のイオン性化合物は、アンモニウムカチオンの置換基R、R及びRの炭素数を大きくしなくても耐熱性に優れる。例えば、R、R及びRのそれぞれ(R、R及びRのうち1つが水素原子である場合も含む)における有機基の炭素数は、4以下が好ましく、3以下がより好ましい。有機基の炭素数が小さいことで嵩高い不純物の残存が抑制されて、有機エレクトロニクス素子の素子特性が向上すると考えられる。 Therefore, the ionic compound of the present embodiment containing an organic group containing a double bond is excellent in heat resistance without increasing the carbon number of the substituents Ra , R b and R c of the ammonium cation. For example, R a, number of carbon atoms of the organic group in each of R b and R c (R a, one of R b and R c include be a hydrogen atom) is preferably 4 or less, more 3 or less preferable. It is considered that the small number of carbon atoms in the organic group suppresses the residual of bulky impurities and improves the element characteristics of the organic electronic device.
 また、該二重結合は、有機基の末端に位置していることが好ましく、二重結合を含有する有機基としては、例えば、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、及びイソブテニル基等が挙げられる。 The double bond is preferably located at the terminal of the organic group, and examples of the organic group containing the double bond include a vinyl group, a propenyl group, an isopropenyl group, a butenyl group, and an isobutenyl group. And so on.
 本実施形態のイオン性化合物のアンモニウムカチオンが二重結合を含有する有機基を2つ以上含有する場合、製造容易性の観点から、二重結合を含有する有機基のそれぞれは、互いに同一であることが好ましい。 When the ammonium cation of the ionic compound of the present embodiment contains two or more organic groups containing a double bond, the organic groups containing the double bond are the same from each other from the viewpoint of ease of production. Is preferable.
(アニオン)
 アニオンは、特に限定されず、例えば、公知のアニオンを用いることができる。下記式(1b)、(2b)、(3b)、(4b)または(5b)で表されるアニオンが、有機エレクトロニクス素子を長時間駆動させる観点、さらに、有機エレクトロニクス素子の駆動電圧を低減させる観点から好ましい。
(Anion)
The anion is not particularly limited, and for example, a known anion can be used. The viewpoint that the anion represented by the following formulas (1b), (2b), (3b), (4b) or (5b) drives the organic electronic element for a long time, and further, the viewpoint of reducing the driving voltage of the organic electronic element. Is preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1b)~(5b)において、Eは酸素原子、Eは窒素原子、Eは炭素原子、Eはホウ素原子又はガリウム原子、Eはリン原子又はアンチモン原子を表し、
 Y~Yは、それぞれ独立に単結合又は2価の連結基を表し、
 R~R16は、それぞれ独立に電子求引性の1価の基(R及びR、R~Rから選択される少なくとも2つの基、R~R10から選択される少なくとも2つの基、及び、R11~R16から選択される少なくとも2つの基は、それぞれ互いに結合していてもよい。)を表す。
In formulas (1b) to (5b), E 1 represents an oxygen atom, E 2 represents a nitrogen atom, E 3 represents a carbon atom, E 4 represents a boron atom or a gallium atom, and E 5 represents a phosphorus atom or an antimony atom.
Y 1 to Y 6 independently represent a single bond or a divalent linking group, respectively.
R 1 to R 16 are at least two groups independently selected from electron-attracting monovalent groups (R 2 and R 3 , R 4 to R 6 and at least R 7 to R 10). The two groups and at least two groups selected from R 11 to R 16 may each be attached to each other).
 式(1b)~(5b)において、R~R16は、それぞれ独立に電子求引性の1価の基を表す。電子求引性の1価の基とは、水素原子と比べて、結合する原子側から電子を引きつけやすい置換基をいう。R~R16は、有機基であることが好ましい。R及びR、R~Rから選択される少なくとも2つの基、R~R10から選択される少なくとも2つの基、及び、R11~R16から選択される少なくとも2つの基は、それぞれ互いに結合していてもよい。結合した基は、環状になっていてもよい。 In the formulas (1b) to (5b), R 1 to R 16 each independently represent an electron-attracting monovalent group. An electron-attracting monovalent group is a substituent that is more likely to attract an electron from the bonding atom side than a hydrogen atom. R 1 to R 16 are preferably organic groups. At least two groups selected from R 2 and R 3 , R 4 to R 6, at least two groups selected from R 7 to R 10 , and at least two groups selected from R 11 to R 16 , Each may be coupled to each other. The bonded groups may be cyclic.
 電子求引性の1価の基の例としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子;シアノ基;チオシアノ基;ニトロ基;メシル基等のアルキルスルホニル基(例えば炭素数1~12、好ましくは炭素数1~8、更に好ましくは1~6);トシル基等のアリールスルホニル基(例えば炭素数6~18、好ましくは炭素数6~15、更に好ましくは炭素数6~12);メトキシスルホニル基等のアルキルオキシスルホニル基(例えば炭素数1~12、好ましくは炭素数1~8、更に好ましくは炭素数1~6);フェノキシスルホニル基等のアリールオキシスルホニル基(例えば炭素数6~18、好ましくは炭素数6~15、更に好ましくは炭素数6~12);ホルミル基、アセチル基、ベンゾイル基等のアシル基(例えば炭素数1~12、好ましくは炭素数1~9、更に好ましくは炭素数1~6);ホルミルオキシ基、アセトキシ基等のアシルオキシ基(例えば炭素数1~20、好ましくは炭素数1~15、更に好ましくは炭素数1~6);メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基(例えば炭素数2~10、好ましくは炭素数2~8、更に好ましくは炭素数2~7);フェノキシカルボニル基、ピリジルオキシカルボニル基等の「アリールオキシカルボニル基又はヘテロアリールオキシカルボニル基」(例えば炭素数4~25、好ましくは炭素数5~20、更に好ましくは炭素数5~15);トリフルオロメチル基、ペンタフルオロエチル基等の直鎖状、分岐鎖状若しくは環状の「アルキル基、アルケニル基又はアルキニル基」にハロゲン原子が置換した「ハロアルキル基、ハロアルケニル基又はハロアルキニル基」(例えば炭素数1~10、好ましくは炭素数1~8、更に好ましくは炭素数1~6);ペンタフルオロフェニル基等のアリール基にハロゲン原子が置換したハロアリール基(例えば炭素数6~20、好ましくは炭素数6~16、更に好ましくは炭素数6~12);ペンタフルオロフェニルメチル基等のアリールアルキル基にハロゲン原子が置換したハロアリールアルキル基(例えば炭素数7~19、好ましくは炭素数7~16、更に好ましくは炭素数7~13)等が挙げられる。 Examples of electron-attracting monovalent groups include halogen atoms such as fluorine atom, chlorine atom and bromine atom; cyano group; thiocyano group; nitro group; alkylsulfonyl group such as mesil group (for example, 1 to 12 carbon atoms). , Preferably 1 to 8 carbon atoms, more preferably 1 to 6); arylsulfonyl groups such as tosyl groups (for example, 6 to 18 carbon atoms, preferably 6 to 15 carbon atoms, still more preferably 6 to 12 carbon atoms); Alkyloxysulfonyl groups such as methoxysulfonyl groups (eg 1-12 carbons, preferably 1-8 carbons, more preferably 1-6 carbons); aryloxysulfonyl groups such as phenoxysulfonyl groups (eg 6-carbons) 18, preferably 6 to 15 carbon atoms, more preferably 6 to 12 carbon atoms); acyl groups such as formyl groups, acetyl groups, benzoyl groups (for example, 1 to 12 carbon atoms, preferably 1 to 9 carbon atoms, still more preferable. 1 to 6 carbon atoms); acyloxy groups such as formyloxy groups and acetoxy groups (for example, 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 6 carbon atoms); methoxycarbonyl groups, ethoxycarbonyl groups. An alkoxycarbonyl group such as a group (for example, 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 7 carbon atoms); an "aryloxycarbonyl group or heteroaryl" such as a phenoxycarbonyl group or a pyridyloxycarbonyl group. "Oxycarbonyl group" (eg, 4 to 25 carbon atoms, preferably 5 to 20 carbon atoms, more preferably 5 to 15 carbon atoms); linear, branched or cyclic such as trifluoromethyl group and pentafluoroethyl group. "Haloalkyl group, haloalkenyl group or haloalkynyl group" in which a halogen atom is substituted with the "alkyl group, alkenyl group or alkynyl group" (for example, 1 to 10, preferably 1 to 8, more preferably carbon number). 1 to 6); A haloaryl group in which an aryl group such as a pentafluorophenyl group is substituted with a halogen atom (for example, 6 to 20 carbon atoms, preferably 6 to 16 carbon atoms, more preferably 6 to 12 carbon atoms); pentafluorophenyl. Examples thereof include a haloarylalkyl group in which an arylalkyl group such as a methyl group is substituted with a halogen atom (for example, 7 to 19 carbon atoms, preferably 7 to 16 carbon atoms, and more preferably 7 to 13 carbon atoms).
 さらに、電子求引性の1価の基の例として、負電荷を効率よく非局在化する観点から、前記電子求引性の1価の基の例のうち「水素原子を有する有機基」から水素原子の一部又は全てをハロゲン原子で置換した基が好ましく挙げられる。例えば、パーフルオロアルキルスルホニル基、パーフルオロアリールスルホニル基、パーフルオロアルキルオキシスルホニル基、パーフルオロアリールオキシスルホニル基、パーフルオロアシル基、パーフルオロアシルオキシ基、パーフルオロアルコキシカルボニル基、パーフルオロアリールオキシカルボニル基、パーフルオロアルキル基、パーフルオロアルケニル基、パーフルオロアルキニル基、パーフルオロアリール基、パーフルオロアリールアルキル基等が挙げられる。 Further, as an example of an electron-attracting monovalent group, from the viewpoint of efficiently delocalizing a negative charge, among the examples of the electron-attracting monovalent group, "organic group having a hydrogen atom". A group in which a part or all of the hydrogen atom is replaced with a halogen atom is preferable. For example, a perfluoroalkylsulfonyl group, a perfluoroarylsulfonyl group, a perfluoroalkyloxysulfonyl group, a perfluoroaryloxysulfonyl group, a perfluoroacyl group, a perfluoroacyloxy group, a perfluoroalkoxycarbonyl group, a perfluoroaryloxycarbonyl group. , Perfluoroalkyl group, perfluoroalkenyl group, perfluoroalkynyl group, perfluoroaryl group, perfluoroarylalkyl group and the like.
 電子求引性の1価の基の例としては、特に、炭素数1~8の直鎖状若しくは分岐鎖状のパーフルオロアルキル基、炭素数3~6の環状パーフルオロアルキル基、又は、炭素数6~18のパーフルオロアリール基が好ましい。 Examples of electron-attracting monovalent groups include, in particular, a linear or branched perfluoroalkyl group having 1 to 8 carbon atoms, a cyclic perfluoroalkyl group having 3 to 6 carbon atoms, or carbon. Perfluoroaryl groups of number 6-18 are preferred.
 電子求引性の1価の基は、これらに限定されるものではない。以上に示した電子求引性の1価の基の例は、置換基を有していても、また、ヘテロ原子を有していてもよい。 The monovalent group of electronic attractiveness is not limited to these. The example of the electron-attracting monovalent group shown above may have a substituent or may have a hetero atom.
 電子求引性の1価の基の例として、具体的には、下記置換基群(1)において示される基が挙げられる。なお、本明細書等において、構造式中の「*」は、他の構造単位との結合部位を表す。 Specific examples of the electron-attracting monovalent group include the groups shown in the following substituent group (1). In the present specification and the like, "*" in the structural formula represents a binding site with another structural unit.
 置換基群(1) Substituent group (1)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(1b)~(5b)において、Y~Yは、それぞれ独立に単結合又は2価の連結基を表す。Y~Yが単結合の場合、EとRとが(例えば式(1b)では、EとRとが)直接結合していることを意味する。2価の連結基として、例えば、下記式(1c)~(11c)のいずれかで表される連結基が挙げられる。 In formulas (1b) to (5b), Y 1 to Y 6 independently represent a single bond or a divalent linking group, respectively. When Y 1 to Y 6 are single bonds, it means that E and R are directly bonded (for example, in the formula (1b), E 1 and R 1 are directly bonded). Examples of the divalent linking group include a linking group represented by any of the following formulas (1c) to (11c).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(7c)~(11c)中、Rは、それぞれ独立に水素原子又は1価の基を表し、有機基であることが好ましい。Rは、電子受容性の向上、溶媒への溶解性等の観点から、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基であることがより好ましい。これらの基は置換基を有していても、ヘテロ原子を有していてもよい。また、Rは、電子求引性の1価の基であることが好ましく、電子求引性の1価の基として、例えば、前述のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、又は前記置換基群(1)において示される基等が挙げられる。 In the formulas (7c) to (11c), R independently represents a hydrogen atom or a monovalent group, and is preferably an organic group. It is more preferable that R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group independently from the viewpoints of improving electron acceptability, solubility in a solvent and the like. These groups may have substituents or heteroatoms. Further, R is preferably an electron-attracting monovalent group, and examples of the electron-attracting monovalent group include the above-mentioned alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group. , Or the group shown in the substituent group (1).
 本実施形態のイオン性化合物は、耐熱性に優れ、かつ、有機エレクトロニクス素子に利用することができる。また、後述する重合性官能基を有する電荷輸送性化合物とともに用いた場合に、低温での硬化性を向上させ、成膜性を向上させることができる。 The ionic compound of this embodiment has excellent heat resistance and can be used for organic electronic devices. Further, when used together with a charge transporting compound having a polymerizable functional group described later, the curability at a low temperature can be improved and the film forming property can be improved.
<有機エレクトロニクス材料>
 本実施形態の有機エレクトロニクス材料は、前述の実施形態のイオン性化合物を含み、イオン性化合物を、1種のみ含有しても、又は、2種以上含有してもよい。本実施形態の有機エレクトロニクス材料は、さらに電荷輸送性化合物を含んでいてもよい。前述の実施形態のイオン性化合物を含む有機エレクトロニクス材料を用いることによって、駆動電圧、発光効率、及び発光寿命等の優れた有機エレクトロニクス素子を得ることができる。
<Organic electronics materials>
The organic electronic material of the present embodiment contains the ionic compound of the above-described embodiment, and may contain only one type of ionic compound or two or more types of ionic compound. The organic electronic material of the present embodiment may further contain a charge transporting compound. By using the organic electronic material containing the ionic compound of the above-described embodiment, it is possible to obtain an organic electronic element having excellent driving voltage, luminous efficiency, luminous life and the like.
[電荷輸送性化合物]
 有機エレクトロニクス材料は、電荷輸送性化合物を含有してもよい。電荷輸送性化合物は、低分子の化合物であっても、ポリマーであってもよい。有機溶媒への溶解性の観点から、ポリマーであることが好ましく、昇華、再結晶等による精製が容易な観点から、低分子化合物であることが好ましい。「ポリマー」には、重合度の低いオリゴマー(例えば、数平均重合度が2以上20以下)と、重合度の高いポリマー(例えば、数平均重合度が20超)とが含まれる。電荷輸送性化合物は、市販のものでもよく、公知の方法で合成したものであってもよく、特に制限はない。
[Charge transporting compound]
The organic electronics material may contain a charge transporting compound. The charge transporting compound may be a low molecular weight compound or a polymer. From the viewpoint of solubility in an organic solvent, a polymer is preferable, and from the viewpoint of easy purification by sublimation, recrystallization, etc., a low molecular weight compound is preferable. The "polymer" includes an oligomer having a low degree of polymerization (for example, a number average degree of polymerization of 2 or more and 20 or less) and a polymer having a high degree of polymerization (for example, a number average degree of polymerization of more than 20). The charge transporting compound may be a commercially available compound or may be synthesized by a known method, and is not particularly limited.
 電荷輸送性化合物は、芳香族アミン構造を含む単位、カルバゾール構造を含む単位、及びチオフェン構造を含む単位からなる群から選択される少なくとも1種の単位を含むことが好ましい。
 電荷輸送性化合物は、分子内に1つ以上の重合性官能基を有することが好ましい。重合性官能基としてはとくに限定されないが、好ましい重合性官能基として、オキセタン基、エポキシ基、及びビニルエーテル基が挙げられる。
 電荷輸送性化合物が重合性官能基を有する場合、この電荷輸送性化合物と、前述の実施形態のイオン性化合物とを含む有機エレクトロニクス材料をインク組成物とした場合に、低温での硬化性を向上させて、低温での成膜性を向上させることができる。
The charge transporting compound preferably contains at least one unit selected from the group consisting of a unit containing an aromatic amine structure, a unit containing a carbazole structure, and a unit containing a thiophene structure.
The charge transporting compound preferably has one or more polymerizable functional groups in the molecule. The polymerizable functional group is not particularly limited, and preferred polymerizable functional groups include an oxetane group, an epoxy group, and a vinyl ether group.
When the charge transporting compound has a polymerizable functional group, the curability at low temperature is improved when the organic electronics material containing the charge transporting compound and the ionic compound of the above-described embodiment is used as an ink composition. Therefore, the film forming property at a low temperature can be improved.
(電荷輸送性ポリマー)
 以下、電荷輸送性ポリマーについて説明する。
 電荷輸送性ポリマーは電荷を輸送する能力を有する。電荷輸送性ポリマーは、直鎖状であっても、又は、分岐構造を有していてもよい。電荷輸送性ポリマーは、好ましくは、電荷輸送性を有する2価の構造単位Dと末端部を構成する1価の構造単位Mとを少なくとも含み、分岐部を構成する3価以上の構造単位Tを更に含んでもよい。電荷輸送性ポリマーは、各構造単位を、それぞれ1種のみ含んでいても、又は、それぞれ複数種含んでいてもよい。各構造単位は、「1価」~「3価以上」の結合部位において互いに結合している。
(Charge transport polymer)
Hereinafter, the charge transporting polymer will be described.
Charge-transporting polymers have the ability to transport charges. The charge-transporting polymer may be linear or may have a branched structure. The charge-transporting polymer preferably contains at least a divalent structural unit D having charge transportability and a monovalent structural unit M constituting the terminal portion, and contains a trivalent or higher-valent structural unit T constituting the branch portion. Further may be included. The charge-transporting polymer may contain only one type of each structural unit, or may contain a plurality of types of each structural unit. Each structural unit is bound to each other at a binding site of "monovalent" to "trivalent or higher".
(電荷輸送性ポリマーの構造)
 電荷輸送性ポリマーに含まれる部分構造の例として、以下が挙げられる。電荷輸送性ポリマーは以下の部分構造を有するものに限定されない。部分構造中、「D」は構造単位Dを、「M」は構造単位Mを、「T」は構造単位Tを表す。下記に示す電荷輸送性ポリマーに含まれる部分構造において式中の「*」は、他の構造単位との結合部位を表す。以下の部分構造中、複数のDは、互いに同一の構造単位であっても、互いに異なる構造単位であってもよい。M及びTについても、同様である。
(Structure of charge transport polymer)
Examples of the partial structure contained in the charge transport polymer include the following. The charge-transporting polymer is not limited to those having the following partial structures. In the partial structure, "D" represents the structural unit D, "M" represents the structural unit M, and "T" represents the structural unit T. In the partial structure contained in the charge-transporting polymer shown below, "*" in the formula represents a binding site with another structural unit. In the following substructures, the plurality of Ds may be the same structural unit or different structural units from each other. The same applies to M and T.
 直鎖状の電荷輸送性ポリマー Linear charge transport polymer
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 分岐構造を有する電荷輸送性ポリマー Charge-transporting polymer with a branched structure
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(構造単位D)
 構造単位Dは、電荷輸送性を有する2価の構造単位である。構造単位Dは、電荷を輸送する能力を有する原子団を含んでいればよく、特に限定されない。例えば、構造単位Dは、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、フルオレン構造、ベンゼン構造、ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造、テトラセン構造、フェナントレン構造、ジヒドロフェナントレン構造、ピリジン構造、ピラジン構造、キノリン構造、イソキノリン構造、キノキサリン構造、アクリジン構造、ジアザフェナントレン構造、フラン構造、ピロール構造、オキサゾール構造、オキサジアゾール構造、チアゾール構造、チアジアゾール構造、トリアゾール構造、ベンゾチオフェン構造、ベンゾオキサゾール構造、ベンゾオキサジアゾール構造、ベンゾチアゾール構造、ベンゾチアジアゾール構造、ベンゾトリアゾール構造、及び、これらの1種又は2種以上を含む構造から選択される。芳香族アミン構造は、好ましくはトリアリールアミン構造であり、より好ましくはトリフェニルアミン構造である。
(Structural unit D)
The structural unit D is a divalent structural unit having charge transportability. The structural unit D is not particularly limited as long as it includes an atomic group capable of transporting electric charges. For example, the structural unit D is a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure, tetracene structure, phenanthrene structure, dihydro. Phenanthrene structure, pyridine structure, pyrazine structure, quinoline structure, isoquinoline structure, quinoxalin structure, aclysine structure, diazaphenanthrene structure, furan structure, pyrrole structure, oxazole structure, oxaziazole structure, thiazole structure, thiazazole structure, triazole structure, benzo It is selected from a thiophene structure, a benzoxazole structure, a benzoxaziazole structure, a benzothiazole structure, a benzothiazazole structure, a benzotriazole structure, and a structure containing one or more of these. The aromatic amine structure is preferably a triarylamine structure, more preferably a triphenylamine structure.
 本実施形態において、構造単位Dは、優れた正孔輸送性を得る観点から、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、フルオレン構造、ベンゼン構造、ピロール構造、及び、これらの1種又は2種以上を含む構造から選択されることが好ましく、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、及び、これらの1種又は2種以上を含む構造から選択されることがより好ましい。構造単位Dは、優れた電子輸送性を得る観点から、置換又は非置換の、フルオレン構造、ベンゼン構造、フェナントレン構造、ピリジン構造、キノリン構造、及び、これらの1種又は2種以上を含む構造から選択されることが好ましい。 In the present embodiment, the structural unit D is a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, pyrrole structure, and these, from the viewpoint of obtaining excellent hole transportability. It is preferable to select from a structure containing one or more of these, and select from a substituted or unsubstituted aromatic amine structure, a carbazole structure, a thiophene structure, and a structure containing one or more of these. It is more preferable to be done. The structural unit D is derived from a substituted or unsubstituted fluorene structure, benzene structure, phenanthrene structure, pyridine structure, quinoline structure, and a structure containing one or more of these, from the viewpoint of obtaining excellent electron transportability. It is preferably selected.
  構造単位Dの具体例として、以下が挙げられる。構造単位Dは、以下に限定されない。 Specific examples of the structural unit D include the following. The structural unit D is not limited to the following.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 Rは、それぞれ独立に、水素原子又は置換基を表す。Rが置換基である場合、該置換基は、それぞれ独立に、-R、-OR、-SR、-OCOR、-COOR、-SiR、ハロゲン原子、及び、後述する重合性官能基を含む基からなる群から選択されることが好ましい。R~Rは、それぞれ独立に、水素原子;炭素数1~22個の直鎖、環状又は分岐アルキル基;又は、炭素数2~30個のアリール基又はヘテロアリール基を表す。アルキル基は、更に、炭素数2~20個のアリール基又はヘテロアリール基により置換されていてもよく、アリール基又はヘテロアリール基は、更に、炭素数1~22個の直鎖、環状又は分岐アルキル基により置換されていてもよい。Rは、好ましくは水素原子、アルキル基、アリール基、アルキル置換アリール基である。Arは、炭素数2~30個のアリーレン基又はヘテロアリーレン基を表す。Arは、好ましくはアリーレン基であり、より好ましくはフェニレン基である。本明細書等において、アリーレン基とは、芳香族炭化水素から水素原子2個を除いた原子団をいう。また、本明細書等において、ヘテロアリーレン基とは、芳香族複素環から水素原子2個を除いた原子団をいう。芳香族炭化水素及び芳香族複素環については、アリール基及びヘテロアリール基の説明と同様である。 R independently represents a hydrogen atom or a substituent. When R is a substituent, the substituents are independently -R 1 , -OR 2 , -SR 3 , -OCOR 4 , -COOR 5 , -SiR 6 R 7 R 8 , and a halogen atom, and It is preferably selected from the group consisting of groups containing polymerizable functional groups, which will be described later. R 1 to R 8 independently represent a hydrogen atom; a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms; or an aryl group or a heteroaryl group having 2 to 30 carbon atoms. The alkyl group may be further substituted with an aryl group or a heteroaryl group having 2 to 20 carbon atoms, and the aryl group or the heteroaryl group may be further substituted with a linear, cyclic or branched group having 1 to 22 carbon atoms. It may be substituted with an alkyl group. R is preferably a hydrogen atom, an alkyl group, an aryl group, or an alkyl-substituted aryl group. Ar represents an arylene group or a heteroarylene group having 2 to 30 carbon atoms. Ar is preferably an arylene group, more preferably a phenylene group. In the present specification and the like, the arylene group means an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon. Further, in the present specification and the like, the heteroarylene group means an atomic group obtained by removing two hydrogen atoms from an aromatic heterocycle. The description of the aromatic hydrocarbon and the aromatic heterocycle is the same as that of the aryl group and the heteroaryl group.
(構造単位M)
 構造単位Mは、電荷輸送性ポリマーの末端部を構成する1価の構造単位である。構造単位Mは、特に限定されず、例えば、置換又は非置換の、芳香族炭化水素構造、芳香族複素環構造、及び、これらの1種又は2種以上を含む構造から選択される。構造単位Mは、価数以外において構造単位Dと同じ構造を有していてもよい。本実施形態において、構造単位Mは、電荷の輸送性を低下させずに耐久性を付与するという観点から、置換又は非置換の芳香族炭化水素構造であることが好ましく、置換又は非置換のベンゼン構造であることがより好ましい。また、後述するように、電荷輸送性ポリマーが末端部に重合性官能基を有する場合、構造単位Mは重合可能な構造(すなわち、例えば、ピロール-イル基等の重合性官能基)であってもよい。構造単位Mの具体例として、以下が挙げられる。
(Structural unit M)
The structural unit M is a monovalent structural unit constituting the terminal portion of the charge-transporting polymer. The structural unit M is not particularly limited, and is selected from, for example, a substituted or unsubstituted aromatic hydrocarbon structure, an aromatic heterocyclic structure, and a structure containing one or more of these. The structural unit M may have the same structure as the structural unit D except for the valence. In the present embodiment, the structural unit M is preferably a substituted or unsubstituted aromatic hydrocarbon structure from the viewpoint of imparting durability without lowering the charge transportability, and is preferably a substituted or unsubstituted benzene. The structure is more preferable. Further, as will be described later, when the charge-transporting polymer has a polymerizable functional group at the terminal portion, the structural unit M has a polymerizable structure (that is, a polymerizable functional group such as a pyrrole-yl group). May be good. Specific examples of the structural unit M include the following.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式中、Rは、構造単位DにおけるRとして挙げた水素原子又は置換基が挙げられる。電荷輸送性ポリマーが末端部に重合性官能基を有する場合、Rの少なくとも1つが、重合性官能基を含む基であることが好ましい。 In the above formula, R includes a hydrogen atom or a substituent listed as R in the structural unit D. When the charge-transporting polymer has a polymerizable functional group at the terminal portion, it is preferable that at least one of R is a group containing a polymerizable functional group.
(構造単位T)
 構造単位Tは、電荷輸送性ポリマーが分岐構造を有する場合に、分岐部を構成する3価以上の構造単位である。構造単位Tは、有機エレクトロニクス素子の耐久性向上の観点から、好ましくは6価以下の構造単位であり、より好ましくは4価以下の構造単位であり、更に好ましくは3価又は4価の構造単位である。構造単位Tは、電荷輸送性を有する単位であることが好ましい。例えば、構造単位Tは、有機エレクトロニクス素子の耐久性向上の観点から、置換又は非置換の、トリフェニルアミン構造、カルバゾール構造、縮合多環式芳香族炭化水素構造、及び、これらの1種又は2種以上を含有する構造から選択される少なくとも1種を含む。構造単位Tは、価数以外において構造単位Dと同じ構造を有していてもよく、また、価数以外において構造単位Mと同じ構造を有していてもよい。
(Structural unit T)
The structural unit T is a trivalent or higher structural unit constituting the branched portion when the charge-transporting polymer has a branched structure. From the viewpoint of improving the durability of the organic electronic device, the structural unit T is preferably a hexavalent or lower structural unit, more preferably a tetravalent or lower structural unit, and further preferably a trivalent or tetravalent structural unit. Is. The structural unit T is preferably a unit having charge transportability. For example, the structural unit T is a substituted or unsubstituted triphenylamine structure, a carbazole structure, a condensed polycyclic aromatic hydrocarbon structure, and one or two of these, from the viewpoint of improving the durability of the organic electronic device. Includes at least one selected from structures containing more than one species. The structural unit T may have the same structure as the structural unit D except for the valence, and may have the same structure as the structural unit M except for the valence.
 構造単位Tの具体例として、以下が挙げられる。構造単位Tは、以下に限定されない。 Specific examples of the structural unit T include the following. The structural unit T is not limited to the following.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 Wは、3価の連結基を表し、例えば、炭素数2~30個のアレーントリイル基又はヘテロアレーントリイル基を表す。本明細書等において、アレーントリイル基とは、芳香族炭化水素から水素原子3個を除いた原子団をいう。本明細書等において、ヘテロアレーントリイル基とは、芳香族複素環から水素原子3個を除いた原子団をいう。Arは、それぞれ独立に2価の連結基を表し、例えば、それぞれ独立に、炭素数2~30個のアリーレン基又はヘテロアリーレン基を表す。Arは、好ましくはアリーレン基、より好ましくはフェニレン基である。Yは、2価の連結基を表し、例えば、構造単位DにおけるR(ただし、重合性官能基を含む基を除く。)として挙げた置換基のうち水素原子を1個以上有する基から、更に1個の水素原子を除いた2価の基が挙げられる。Zは、炭素原子、ケイ素原子、又はリン原子のいずれかを表す。構造単位中、縮合環、W、Y、及びArは、置換基を有していてもよく、置換基の例として、構造単位DにおけるRとして挙げた置換基等が挙げられる。 W represents a trivalent linking group, for example, an arene triyl group having 2 to 30 carbon atoms or a heteroarene triyl group. In the present specification and the like, the arene triyl group refers to an atomic group obtained by removing three hydrogen atoms from an aromatic hydrocarbon. In the present specification and the like, the heteroarene triyl group refers to an atomic group obtained by removing three hydrogen atoms from an aromatic heterocycle. Ar independently represents a divalent linking group, and for example, each independently represents an arylene group or a heteroarylene group having 2 to 30 carbon atoms. Ar is preferably an arylene group, more preferably a phenylene group. Y represents a divalent linking group, for example, from the group having one or more hydrogen atoms among the substituents listed as R (excluding the group containing a polymerizable functional group) in the structural unit D. Examples thereof include a divalent group excluding one hydrogen atom. Z represents either a carbon atom, a silicon atom, or a phosphorus atom. In the structural unit, the fused ring, W, Y, and Ar may have a substituent, and examples of the substituent include the substituents listed as R in the structural unit D.
(重合性官能基)
 本実施形態において電荷輸送性ポリマーは、重合反応により硬化させ、溶剤への溶解度を変化させる観点から、重合性官能基を少なくとも1つ有することが好ましい。「重合性官能基」とは、熱及び光の少なくとも一方を加えることにより、互いに結合を形成し得る官能基をいう。
(Polymerizable functional group)
In the present embodiment, the charge-transporting polymer is preferably cured by a polymerization reaction and has at least one polymerizable functional group from the viewpoint of changing the solubility in a solvent. The "polymerizable functional group" refers to a functional group capable of forming a bond with each other by applying at least one of heat and light.
 重合性官能基としては、炭素-炭素多重結合を有する基(例えば、ビニル基、アリル基、ブテニル基、エチニル基、アクリロイル基、アクリロイルオキシ基、アクリロイルアミノ基、メタクリロイル基、メタクリロイルオキシ基、メタクリロイルアミノ基、ビニルオキシ基、ビニルアミノ基等)、小員環を有する基(例えば、シクロプロピル基、シクロブチル基等の環状アルキル基;エポキシ基(オキシラニル基)、オキセタン基(オキセタニル基)等の環状エーテル基;ジケテン基;エピスルフィド基;ラクトン基;ラクタム基等)、複素環基(例えば、フラン-イル基、ピロール-イル基、チオフェン-イル基、シロール-イル基)などが挙げられる。これらの基はさらに置換基を有してもよく、該置換基としては、アルキル基等が挙げられ、炭素数1~10のアルキル基が好ましい。重合性官能基としては、特に、ビニル基、アクリロイル基、メタクリロイル基、エポキシ基、及びオキセタン基が好ましく、反応性及び有機エレクトロニクス素子の特性の観点から、ビニル基、オキセタン基、又はエポキシ基がより好ましい。 The polymerizable functional group includes a group having a carbon-carbon multiple bond (for example, a vinyl group, an allyl group, a butenyl group, an ethynyl group, an acryloyl group, an acryloyloxy group, an acryloylamino group, a methacryloyl group, a methacryloyloxy group, and a methacryloylamino group. Group, vinyloxy group, vinylamino group, etc.), group having a small ring (for example, cyclic alkyl group such as cyclopropyl group, cyclobutyl group; cyclic ether group such as epoxy group (oxylanyl group), oxetan group (oxetanyl group)) Examples thereof include a diketen group; an episulfide group; a lactone group; a lactam group, etc.), a heterocyclic group (for example, a furan-yl group, a pyrrole-yl group, a thiophen-yl group, a silol-yl group) and the like. These groups may further have a substituent, and examples of the substituent include an alkyl group, and an alkyl group having 1 to 10 carbon atoms is preferable. As the polymerizable functional group, a vinyl group, an acryloyl group, a methacryloyl group, an epoxy group, and an oxetane group are particularly preferable, and a vinyl group, an oxetan group, or an epoxy group is more preferable from the viewpoint of reactivity and characteristics of the organic electronic device. preferable.
 重合性官能基の自由度を上げ、重合反応を生じさせやすくする観点から、電荷輸送性ポリマーの主骨格と重合性官能基とが、アルキレン鎖で連結されていることが好ましい。
また、例えば、電極上に有機層を形成する場合、ITO(酸化インジウム-酸化錫)等の親水性電極との親和性を向上させる観点から、エチレングリコール鎖、ジエチレングリコール鎖等の親水性の鎖で連結されていることが好ましい。さらに、重合性官能基を導入するために用いられるモノマーの調製が容易になる観点から、電荷輸送性ポリマーは、アルキレン鎖及び親水性の鎖の末端部の少なくとも一方、すなわち、これらの鎖と重合性官能基との連結部、及び、これらの鎖と電荷輸送性ポリマーの骨格との連結部の少なくとも一方に、エーテル結合又はエステル結合を有していてもよい。前述の「重合性官能基を含む基」とは、重合性官能基それ自体、又は、重合性官能基とアルキレン鎖等とを合わせた基を意味する。重合性官能基を含む基として、例えば、国際公開第2010/140553号に例示された基を好適に援用することができる。
From the viewpoint of increasing the degree of freedom of the polymerizable functional group and facilitating the occurrence of a polymerization reaction, it is preferable that the main skeleton of the charge-transporting polymer and the polymerizable functional group are linked by an alkylene chain.
Further, for example, when an organic layer is formed on an electrode, a hydrophilic chain such as an ethylene glycol chain or a diethylene glycol chain is used from the viewpoint of improving the affinity with a hydrophilic electrode such as ITO (indium oxide-tin oxide). It is preferable that they are connected. Further, from the viewpoint of facilitating the preparation of the monomer used for introducing the polymerizable functional group, the charge-transporting polymer polymerizes with at least one of the terminal portions of the alkylene chain and the hydrophilic chain, that is, these chains. At least one of the linking portion with the sex functional group and the connecting portion between these chains and the skeleton of the charge-transporting polymer may have an ether bond or an ester bond. The above-mentioned "group containing a polymerizable functional group" means a polymerizable functional group itself or a group in which a polymerizable functional group and an alkylene chain are combined. As the group containing the polymerizable functional group, for example, the group exemplified in International Publication No. 2010/1405553 can be preferably used.
 重合性官能基は、電荷輸送性ポリマーの末端部(すなわち、構造単位M)に導入されていても、末端部以外の部分(すなわち、構造単位D又はT)に導入されていても、末端部と末端以外の部分の両方に導入されていてもよい。硬化性の観点から、少なくとも末端部に導入されていることが好ましく、硬化性及び電荷輸送性の両立を図る観点から、末端部のみに導入されていることが好ましい。また、電荷輸送性ポリマーが分岐構造を有する場合、重合性官能基は、電荷輸送性ポリマーの主鎖に導入されていても、側鎖に導入されていてもよく、主鎖と側鎖の両方に導入されていてもよい。 The polymerizable functional group is introduced at the terminal portion (that is, the structural unit M) of the charge-transporting polymer or at a portion other than the terminal portion (that is, the structural unit D or T). It may be introduced in both the and non-terminal parts. From the viewpoint of curability, it is preferable that it is introduced at least at the terminal portion, and from the viewpoint of achieving both curability and charge transportability, it is preferable that it is introduced only at the terminal portion. Further, when the charge-transporting polymer has a branched structure, the polymerizable functional group may be introduced into the main chain or the side chain of the charge-transporting polymer, and both the main chain and the side chain may be introduced. It may be introduced in.
 重合性官能基は、溶解度の変化に寄与する観点から、電荷輸送性ポリマー中に多く含まれる方が好ましい。一方、重合性官能基は、電荷輸送性を妨げない観点から、電荷輸送性ポリマー中に含まれる量が少ない方が好ましい。重合性官能基の含有量は、これらを考慮し、適宜設定できる。 It is preferable that the polymerizable functional group is contained in a large amount in the charge-transporting polymer from the viewpoint of contributing to the change in solubility. On the other hand, the polymerizable functional group preferably contains a small amount in the charge-transporting polymer from the viewpoint of not hindering the charge-transporting property. The content of the polymerizable functional group can be appropriately set in consideration of these.
 例えば、電荷輸送性ポリマー1分子あたりの重合性官能基数は、十分な溶解度の変化を得る観点から、2個以上が好ましく、3個以上がより好ましい。また、重合性官能基数は、電荷輸送性を保つ観点から、1,000個以下が好ましく、700個以下がより好ましく、500個以下が更に好ましい。 For example, the number of polymerizable functional groups per molecule of the charge-transporting polymer is preferably 2 or more, and more preferably 3 or more, from the viewpoint of obtaining a sufficient change in solubility. The number of polymerizable functional groups is preferably 1,000 or less, more preferably 700 or less, and even more preferably 500 or less, from the viewpoint of maintaining charge transportability.
 電荷輸送性ポリマー1分子あたりの重合性官能基数は、電荷輸送性ポリマーを合成するために使用した、重合性官能基の仕込み量(例えば、重合性官能基を有するモノマーの仕込み量)、各構造単位に対応するモノマーの仕込み量、電荷輸送性ポリマーの重量平均分子量等を用い、平均値として求めることができる。また、重合性官能基の数は、電荷輸送性ポリマーのH NMR(核磁気共鳴)スペクトルにおける重合性官能基に由来するシグナルの積分値と全スペクトルの積分値との比、電荷輸送性ポリマーの重量平均分子量等を利用し、平均値として算出できる。仕込み量が明らかである場合は、仕込み量を用いて求めた値を採用することが簡便であるため好ましい。 The number of polymerizable functional groups per molecule of the charge-transporting polymer is the amount of the polymerizable functional group charged (for example, the amount of the monomer having the polymerizable functional group) used for synthesizing the charge-transporting polymer, and each structure. It can be obtained as an average value by using the amount of the monomer charged corresponding to the unit, the weight average molecular weight of the charge-transporting polymer, and the like. The number of polymerizable functional groups is the ratio of the integrated value of the signal derived from the polymerizable functional group in the 1 H NMR (nuclear magnetic resonance) spectrum of the charge transport polymer to the integrated value of the entire spectrum, and the charge transport polymer. It can be calculated as an average value by using the weight average molecular weight of. When the amount to be charged is clear, it is preferable to adopt the value obtained by using the amount to be charged because it is convenient.
(数平均分子量)
 電荷輸送性ポリマーの数平均分子量は、溶剤への溶解性、成膜性等を考慮して適宜、調整できる。数平均分子量は、電荷輸送性に優れるという観点から、500以上が好ましく、1,000以上がより好ましく、2,000以上が更に好ましい。また、数平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、100,000以下がより好ましく、50,000以下が更に好ましい。
(Number average molecular weight)
The number average molecular weight of the charge-transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film-forming property, and the like. The number average molecular weight is preferably 500 or more, more preferably 1,000 or more, and even more preferably 2,000 or more, from the viewpoint of excellent charge transportability. The number average molecular weight is preferably 1,000,000 or less, more preferably 100,000 or less, and more preferably 50,000 or less, from the viewpoint of maintaining good solubility in the solvent and facilitating the preparation of the ink composition. The following is more preferable.
(重量平均分子量)
 電荷輸送性ポリマーの重量平均分子量は、溶剤への溶解性、成膜性等を考慮して適宜、調整できる。重量平均分子量は、電荷輸送性に優れるという観点から、1,000以上が好ましく、5,000以上がより好ましく、10,000以上が更に好ましい。また、重量平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、700,000以下がより好ましく、400,000以下が更に好ましい。
(Weight average molecular weight)
The weight average molecular weight of the charge-transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film-forming property, and the like. The weight average molecular weight is preferably 1,000 or more, more preferably 5,000 or more, still more preferably 10,000 or more, from the viewpoint of excellent charge transportability. The weight average molecular weight is preferably 1,000,000 or less, more preferably 700,000 or less, and more preferably 400,000 or less, from the viewpoint of maintaining good solubility in the solvent and facilitating the preparation of the ink composition. The following is more preferable.
 数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、標準ポリスチレンの検量線を用いて測定することができる。 The number average molecular weight and the weight average molecular weight can be measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
(構造単位の割合)
 電荷輸送性ポリマーに含まれる構造単位Dの割合は、十分な電荷輸送性を得る観点から、全構造単位を基準として、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上が更に好ましい。また、構造単位Dの割合は、構造単位M及び必要に応じて導入される構造単位Tを考慮すると、全構造単位を基準として、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下が更に好ましい。
(Ratio of structural units)
The ratio of the structural unit D contained in the charge-transporting polymer is preferably 10 mol% or more, more preferably 20 mol% or more, and 30 mol% or more, based on all the structural units, from the viewpoint of obtaining sufficient charge transportability. Is more preferable. Further, the ratio of the structural unit D is preferably 95 mol% or less, more preferably 90 mol% or less, more preferably 85 mol% or less, based on all the structural units, in consideration of the structural unit M and the structural unit T to be introduced as needed. More preferably, it is mol% or less.
 電荷輸送性ポリマーに含まれる構造単位Mの割合は、有機エレクトロニクス素子の特性向上の観点、又は、粘度の上昇を抑え、電荷輸送性ポリマーの合成を良好に行う観点から、全構造単位を基準として、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましい。また、構造単位Mの割合は、十分な電荷輸送性を得る観点から、全構造単位を基準として、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下が更に好ましい。 The ratio of the structural unit M contained in the charge-transporting polymer is based on all the structural units from the viewpoint of improving the characteristics of the organic electronic device or from the viewpoint of suppressing the increase in viscosity and satisfactorily synthesizing the charge-transporting polymer. 5 mol% or more is preferable, 10 mol% or more is more preferable, and 15 mol% or more is further preferable. The ratio of the structural unit M is preferably 60 mol% or less, more preferably 55 mol% or less, still more preferably 50 mol% or less, based on all structural units, from the viewpoint of obtaining sufficient charge transportability.
 電荷輸送性ポリマーが構造単位Tを含む場合、構造単位Tの割合は、有機エレクトロニクス素子の耐久性向上の観点から、全構造単位を基準として、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上が更に好ましい。また、構造単位Tの割合は、粘度の上昇を抑え、電荷輸送性ポリマーの合成を良好に行う観点、又は、十分な電荷輸送性を得る観点から、全構造単位を基準として、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下が更に好ましい。 When the charge transporting polymer contains the structural unit T, the ratio of the structural unit T is preferably 1 mol% or more, more preferably 5 mol% or more, based on all the structural units, from the viewpoint of improving the durability of the organic electronic device. It is preferable, and 10 mol% or more is more preferable. The ratio of the structural unit T is 50 mol% or less based on all structural units from the viewpoint of suppressing an increase in viscosity and satisfactorily synthesizing a charge-transporting polymer or obtaining sufficient charge-transporting property. Is preferable, 40 mol% or less is more preferable, and 30 mol% or less is further preferable.
 電荷輸送性ポリマーが重合性官能基を有する場合、重合性官能基の割合は、電荷輸送性ポリマーを効率よく硬化させるという観点から、全構造単位を基準として、0.1モル%以上が好ましく、1モル%以上がより好ましく、3モル%以上が更に好ましい。また、重合性官能基の割合は、良好な電荷輸送性を得るという観点から、全構造単位を基準として、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下が更に好ましい。なお、ここでの「重合性官能基の割合」とは、重合性官能基を有する構造単位の割合をいう。 When the charge-transporting polymer has a polymerizable functional group, the ratio of the polymerizable functional group is preferably 0.1 mol% or more based on all structural units from the viewpoint of efficiently curing the charge-transporting polymer. 1 mol% or more is more preferable, and 3 mol% or more is further preferable. The proportion of the polymerizable functional group is preferably 70 mol% or less, more preferably 60 mol% or less, still more preferably 50 mol% or less, based on all structural units, from the viewpoint of obtaining good charge transportability. .. The "ratio of polymerizable functional groups" here means the ratio of structural units having polymerizable functional groups.
 電荷輸送性、耐久性、生産性等のバランスを考慮すると、構造単位D及び構造単位Mの割合(モル比)は、D:M=100:1~70が好ましく、100:3~50がより好ましく、100:5~30が更に好ましい。また、電荷輸送性ポリマーが構造単位Tを含む場合、構造単位D、構造単位M、及び構造単位Tの割合(モル比)は、D:M:T=100:10~200:10~100が好ましく、100:20~180:20~90がより好ましく、100:40~160:30~80が更に好ましい。 Considering the balance of charge transportability, durability, productivity, etc., the ratio (molar ratio) of the structural unit D and the structural unit M is preferably D: M = 100: 1 to 70, more preferably 100: 3 to 50. It is preferable, and 100: 5 to 30 is more preferable. When the charge transporting polymer contains the structural unit T, the ratio (molar ratio) of the structural unit D, the structural unit M, and the structural unit T is D: M: T = 100: 10 to 200: 10 to 100. Preferably, 100: 20 to 180: 20 to 90 is more preferable, and 100: 40 to 160: 30 to 80 is even more preferable.
 構造単位の割合は、電荷輸送性ポリマーを合成するために使用した、各構造単位に対応するモノマーの仕込み量を用いて求めることができる。また、構造単位の割合は、電荷輸送性ポリマーのH NMRスペクトルにおける各構造単位に由来するスペクトルの積分値を利用し、平均値として算出することができる。仕込み量が明らかである場合は、仕込み量を用いて求めた値を採用することが簡便であるため好ましい。 The ratio of the structural units can be determined by using the amount of the monomer charged corresponding to each structural unit used for synthesizing the charge-transporting polymer. Further, the ratio of the structural units can be calculated as an average value by using the integrated value of the spectrum derived from each structural unit in the 1 H NMR spectrum of the charge transport polymer. When the amount to be charged is clear, it is preferable to adopt the value obtained by using the amount to be charged because it is convenient.
(製造方法)
 電荷輸送性ポリマーは、種々の合成方法により製造でき、特に限定されない。例えば、鈴木カップリング、根岸カップリング、薗頭カップリング、スティルカップリング、ブッフバルト・ハートウィッグカップリング等の公知のカップリング反応を用いることができる。鈴木カップリングは、芳香族ボロン酸誘導体と芳香族ハロゲン化物の間で、Pd触媒を用いたクロスカップリング反応を起こさせるものである。鈴木カップリングによれば、所望とする芳香環同士を結合させることにより、電荷輸送性ポリマーを簡便に製造できる。
(Production method)
The charge-transporting polymer can be produced by various synthetic methods and is not particularly limited. For example, known coupling reactions such as Suzuki coupling, Negishi coupling, Sonogashira coupling, Still coupling, and Buchwald-Hartwig coupling can be used. Suzuki coupling causes a Pd-catalyzed cross-coupling reaction between an aromatic boronic acid derivative and an aromatic halide. According to Suzuki Coupling, a charge-transporting polymer can be easily produced by binding desired aromatic rings to each other.
 カップリング反応では、触媒として、例えば、Pd(0)化合物、Pd(II)化合物、Ni化合物等が用いられる。また、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム(II)等を前駆体とし、ホスフィン配位子と混合することにより発生させた触媒種を用いることもできる。電荷輸送性ポリマーの合成方法については、例えば、国際公開第2010/140553号の記載を援用できる。 In the coupling reaction, for example, a Pd (0) compound, a Pd (II) compound, a Ni compound and the like are used as the catalyst. Further, a catalyst species generated by mixing tris (dibenzylideneacetone) dipalladium (0), palladium (II) acetate or the like as a precursor and mixing with a phosphine ligand can also be used. Regarding the method for synthesizing the charge-transporting polymer, for example, the description of International Publication No. 2010/1405553 can be incorporated.
(電荷輸送性低分子化合物)
 以下、電荷輸送性低分子化合物について説明する。
 電荷輸送性低分子化合物は、電荷を輸送する能力を有する原子団を含んでいればよく、特に限定されない。電荷輸送性低分子化合物は、重合性官能基を有していてもよい。電荷輸送性低分子化合物は、芳香族アミン構造を含む単位、カルバゾール構造を含む単位、及びチオフェン構造を含む単位からなる群から選択される少なくとも1種の単位を含むことが好ましい。
(Charge transporting low molecular weight compound)
Hereinafter, the charge transporting low molecular weight compound will be described.
The charge-transporting low-molecular-weight compound is not particularly limited as long as it contains an atomic group capable of transporting charges. The charge transporting low molecular weight compound may have a polymerizable functional group. The charge-transporting low molecular weight compound preferably contains at least one unit selected from the group consisting of a unit containing an aromatic amine structure, a unit containing a carbazole structure, and a unit containing a thiophene structure.
(電荷輸送性低分子化合物の構造)
 電荷輸送性低分子化合物の構造の例として、以下が挙げられる。「D」は構造単位Dを、「M」は構造単位Mを表す。構造単位D及び構造単位Mについては、上述のとおりである。
(Structure of charge transporting low molecular weight compound)
Examples of the structure of the charge transporting low molecular weight compound include the following. “D” represents the structural unit D, and “M” represents the structural unit M. The structural unit D and the structural unit M are as described above.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 有機エレクトロニクス材料は、電荷輸送性化合物(電荷輸送性低分子化合物を含む)を、1種のみ含有しても、又は、2種以上含有してもよい。 The organic electronics material may contain only one type of charge transporting compound (including a charge transporting low molecular weight compound), or may contain two or more types.
 有機エレクトロニクス材料が、イオン性化合物と電荷輸送性化合物とを含有する場合、イオン性化合物の含有量は、成膜性の観点から、電荷輸送性化合物の質量を基準として、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.5質量%以上が更に好ましい。また、イオン性化合物の含有量は、有機エレクトロニクス素子の駆動電圧の観点から、電荷輸送性化合物の質量を基準として、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましい。 When the organic electronics material contains an ionic compound and a charge transporting compound, the content of the ionic compound is 0.1% by mass or more based on the mass of the charge transporting compound from the viewpoint of film forming property. Is preferable, 0.2% by mass or more is more preferable, and 0.5% by mass or more is further preferable. The content of the ionic compound is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less, based on the mass of the charge transporting compound, from the viewpoint of the driving voltage of the organic electronics element. More preferred.
[溶媒]
 有機エレクトロニクス材料は、更に溶媒を含有してもよい。溶媒を含有する有機エレクトロニクス材料は、インク組成物として有機エレクトロニクス素子の製造に好ましく用いられる。
[solvent]
The organic electronics material may further contain a solvent. The solvent-containing organic electronics material is preferably used as an ink composition in the manufacture of organic electronics devices.
 溶媒としては、水、有機溶媒、又はこれらの混合溶媒を使用できる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール;ペンタン、ヘキサン、オクタン等のアルカン;シクロヘキサン等の環状アルカン;ベンゼン、トルエン、キシレン、メシチレン、テトラリン、ジフェニルメタン等の芳香族炭化水素;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル;酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、テトラヒドロフラン、アセトン、クロロホルム、塩化メチレンなどが挙げられる。好ましくは、芳香族炭化水素、脂肪族エステル、芳香族エステル、脂肪族エーテル、芳香族エーテル等である。溶媒としては、非極性の有機溶媒が好ましい。 As the solvent, water, an organic solvent, or a mixed solvent thereof can be used. Examples of the organic solvent include alcohols such as methanol, ethanol and isopropyl alcohol; alkanes such as pentane, hexane and octane; cyclic alkanes such as cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, methicylene, tetraline and diphenylmethane; ethylene glycol. Alibo ethers such as dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2-methoxytoluene, 3-methoxytoluene, Aromatic ethers such as 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole; aliphatic esters such as ethyl acetate, n-butyl acetate, ethyl lactate and n-butyl lactate; phenyl acetate and propionic acid Aromatic esters such as phenyl, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide; dimethylsulfoxide, tetrahydrofuran, acetone , Chloroform, methylene chloride and the like. Preferred are aromatic hydrocarbons, aliphatic esters, aromatic esters, aliphatic ethers, aromatic ethers and the like. As the solvent, a non-polar organic solvent is preferable.
 イオン性化合物における溶媒の含有量は、種々の塗布方法へ適用することを考慮して定めることができる。例えば、イオン性化合物は、溶媒に対し電荷輸送性ポリマーの割合が、0.1質量%以上となる量の溶媒を含有することが好ましく、0.2質量%以上となる量の溶媒を含有することがより好ましく、0.5質量%以上となる量の溶媒を含有することが更に好ましい。また、イオン性化合物は、溶媒に対し電荷輸送性ポリマーの割合が、20質量%以下となる量の溶媒を含有することが好ましく、15質量%以下となる量の溶媒を含有することがより好ましく、10質量%以下となる量の溶媒を含有することが更に好ましい。 The content of the solvent in the ionic compound can be determined in consideration of application to various coating methods. For example, the ionic compound preferably contains an amount of the solvent having a charge-transporting polymer ratio of 0.1% by mass or more with respect to the solvent, and preferably contains an amount of the solvent having an amount of 0.2% by mass or more. It is more preferable that the solvent is contained in an amount of 0.5% by mass or more. Further, the ionic compound preferably contains a solvent in an amount such that the ratio of the charge transport polymer to the solvent is 20% by mass or less, and more preferably 15% by mass or less. It is more preferable to contain the solvent in an amount of 10% by mass or less.
[添加剤]
 有機エレクトロニクス材料は、更に、任意成分として添加剤を含有してもよい。添加剤としては、例えば、重合禁止剤、安定剤、増粘剤、ゲル化剤、難燃剤、酸化防止剤、還元防止剤、酸化剤、還元剤、表面改質剤、乳化剤、消泡剤、分散剤、界面活性剤等が挙げられる。また、必要に応じて、上述した本実施形態のイオン性化合物による効果(例えば、耐熱性、素子特性など)を妨げない範囲内で公知の重合開始剤及びドーパントをイオン性化合物と共に用いてもよい。
[Additive]
The organic electronics material may further contain an additive as an optional component. Additives include, for example, polymerization inhibitors, stabilizers, thickeners, gelling agents, flame retardants, antioxidants, antioxidants, oxidizing agents, reducing agents, surface modifiers, emulsifiers, defoamers, etc. Dispersants, surfactants and the like can be mentioned. Further, if necessary, a known polymerization initiator and dopant may be used together with the ionic compound as long as the effects of the ionic compound of the present embodiment described above (for example, heat resistance, device characteristics, etc.) are not impaired. ..
<有機層>
 本実施形態である有機層は、前述の実施形態の有機エレクトロニクス材料、又は該有機エレクトロニクス材料を含有するインク組成物を用いて塗布法で成膜された層、さらには当該成膜した層を重合させて不溶化した層である。溶媒を含有する有機エレクトロニクス材料を用いることによって、塗布法により有機層を良好に形成できる。塗布方法としては、例えば、スピンコーティング法;キャスト法;浸漬法;凸版印刷、凹版印刷、オフセット印刷、平版印刷、凸版反転オフセット印刷、スクリーン印刷、グラビア印刷等の有版印刷法;インクジェット法等の無版印刷法などの公知の方法が挙げられる。塗布法によって有機層を形成する場合、塗布後に得られた有機層(塗布層)を、ホットプレート又はオーブンを用いて乾燥させ、溶媒を除去してもよい。
<Organic layer>
The organic layer of the present embodiment is obtained by polymerizing a layer formed by a coating method using the organic electronic material of the above-described embodiment or an ink composition containing the organic electronic material, and further, the formed layer. It is a layer that has been allowed to insolubilize. By using an organic electronic material containing a solvent, an organic layer can be satisfactorily formed by a coating method. Examples of the coating method include a spin coating method; a casting method; a dipping method; a letterpress printing, a concave plate printing, an offset printing, a flat plate printing, a letterpress reversal offset printing, a screen printing, a plate printing method such as gravure printing; an inkjet method and the like. Known methods such as a plateless printing method can be mentioned. When the organic layer is formed by the coating method, the organic layer (coating layer) obtained after coating may be dried using a hot plate or an oven to remove the solvent.
 有機エレクトロニクス材料が、重合性官能基を有する電荷輸送性化合物を含有する場合、光照射、加熱処理等によりこれらの重合反応を進行させ、有機層の溶解度を変化させることができる。有機エレクトロニクス材料において、イオン性化合物は、重合開始剤として機能し得る。溶解度を変化させた有機層を積層することで、有機エレクトロニクス素子の多層化を容易に図ることが可能となる。有機層の形成方法については、例えば、国際公開第2010/140553号の記載を援用できる。
 有機エレクトロニクス材料が重合性官能基を有する電荷輸送性化合物を含有する場合、インク組成物としたときに低温での硬化性を向上させることができる。また、良好な有機層の積層が可能となり、有機エレクトロニクス素子としたときに、有機エレクトロニクス素子の長寿命化を達成できる。
When the organic electronics material contains a charge-transporting compound having a polymerizable functional group, these polymerization reactions can be allowed to proceed by light irradiation, heat treatment, or the like to change the solubility of the organic layer. In organic electronics materials, ionic compounds can function as polymerization initiators. By stacking organic layers having different solubilities, it is possible to easily increase the number of layers of organic electronic devices. As for the method of forming the organic layer, for example, the description of International Publication No. 2010/1405553 can be incorporated.
When the organic electronics material contains a charge-transporting compound having a polymerizable functional group, the curability at a low temperature can be improved when the ink composition is prepared. In addition, good stacking of organic layers is possible, and when an organic electronic device is used, the life of the organic electronic device can be extended.
 乾燥後又は硬化後の有機層の厚さは、電荷輸送の効率を向上させる観点から、好ましくは0.1nm以上であり、より好ましくは1nm以上であり、更に好ましくは3nm以上である。また、有機層の厚さは、電気抵抗を小さくする観点から、好ましくは300nm以下であり、より好ましくは200nm以下であり、更に好ましくは100nm以下である。 The thickness of the organic layer after drying or curing is preferably 0.1 nm or more, more preferably 1 nm or more, and further preferably 3 nm or more from the viewpoint of improving the efficiency of charge transport. The thickness of the organic layer is preferably 300 nm or less, more preferably 200 nm or less, and further preferably 100 nm or less from the viewpoint of reducing the electric resistance.
<有機エレクトロニクス素子>
 本実施形態である有機エレクトロニクス素子は、少なくとも前述の実施形態の有機層を有する。有機エレクトロニクス素子として、例えば、有機発光ダイオード(OLED)等の有機EL素子、有機光電変換素子、有機トランジスタ等が挙げられる。有機エレクトロニクス素子は、好ましくは、少なくとも一対の電極の間に有機層が配置された構造を有する。
<Organic electronics element>
The organic electronic device of the present embodiment has at least the organic layer of the above-described embodiment. Examples of the organic electronics element include an organic EL element such as an organic light emitting diode (OLED), an organic photoelectric conversion element, and an organic transistor. The organic electronics device preferably has a structure in which an organic layer is arranged between at least a pair of electrodes.
[有機EL素子]
 本実施形態である有機EL素子は、少なくとも一つ以上の前述の実施形態の有機層を有する。有機EL素子は、通常、発光層、陽極、陰極、及び基板を備えており、必要に応じて、正孔注入層、電子注入層、正孔輸送層、電子輸送層等の他の機能層を備えている。各層は、蒸着法により形成してもよく、塗布法により形成してもよい。有機EL素子は、好ましくは、有機層を発光層又は他の機能層として有し、より好ましくは機能層として有し、更に好ましくは正孔注入層及び正孔輸送層の少なくとも一方として有する。
[Organic EL element]
The organic EL device of the present embodiment has at least one or more organic layers of the above-described embodiment. The organic EL device usually includes a light emitting layer, an anode, a cathode, and a substrate, and if necessary, provides other functional layers such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer. I have. Each layer may be formed by a thin-film deposition method or a coating method. The organic EL device preferably has an organic layer as a light emitting layer or another functional layer, more preferably as a functional layer, and further preferably as at least one of a hole injection layer and a hole transport layer.
 図1は、有機EL素子の一実施形態を示す断面模式図である。図1に示す有機EL素子は、多層構造の素子であり、基板8、陽極2、正孔注入層3、正孔輸送層6、発光層1、電子輸送層7、電子注入層5、及び陰極4をこの順に積層された多層構造を有している。なお、図1は例示であり、本実施形態の有機EL素子はこの図に限定されるものではない。図1では、正孔注入層3が、前述の有機エレクトロニクス材料を用いて形成された有機層であるが、本実施形態の有機EL素子は、このような構造に限らず、他の有機層が、前述の有機エレクトロニクス材料を用いて形成された有機層であってもよい。例えば、前述の有機エレクトロニクス材料を用いて形成された有機層を、正孔輸送層、正孔注入層及び発光層からなる群から選択される少なくとも1つの層として含むことが好ましい。以下、各層について説明する。 FIG. 1 is a schematic cross-sectional view showing an embodiment of an organic EL device. The organic EL device shown in FIG. 1 is a multi-layered device, and has a substrate 8, an anode 2, a hole injection layer 3, a hole transport layer 6, a light emitting layer 1, an electron transport layer 7, an electron injection layer 5, and a cathode. It has a multi-layer structure in which 4 are laminated in this order. Note that FIG. 1 is an example, and the organic EL element of the present embodiment is not limited to this figure. In FIG. 1, the hole injection layer 3 is an organic layer formed by using the above-mentioned organic electronic material, but the organic EL device of the present embodiment is not limited to such a structure, and other organic layers may be used. , It may be an organic layer formed by using the above-mentioned organic electronic material. For example, it is preferable to include an organic layer formed by using the above-mentioned organic electronics material as at least one layer selected from the group consisting of a hole transport layer, a hole injection layer and a light emitting layer. Hereinafter, each layer will be described.
[発光層]
 発光層に用いる材料として、低分子化合物、ポリマー、デンドリマー等の発光材料を使用できる。ポリマーは、溶媒への溶解性が高く、塗布法に適しているため好ましい。発光材料としては、蛍光材料、燐光材料、熱活性化遅延蛍光材料(TADF)等が挙げられる。
[Light emitting layer]
As the material used for the light emitting layer, a light emitting material such as a low molecular weight compound, a polymer, or a dendrimer can be used. Polymers are preferred because they are highly soluble in solvents and suitable for coating methods. Examples of the light emitting material include fluorescent materials, phosphorescent materials, thermal activated delayed fluorescent materials (TADF) and the like.
 蛍光材料として、ペリレン、クマリン、ルブレン、キナクリドン、スチルベン、色素レーザー用色素、アルミニウム錯体、これらの誘導体等の低分子化合物;ポリフルオレン、ポリフェニレン、ポリフェニレンビニレン、ポリビニルカルバゾール、フルオレンーベンゾチアジアゾール共重合体、フルオレン-トリフェニルアミン共重合体、これらの誘導体等のポリマー;これらの混合物等が挙げられる。 Low molecular weight compounds such as perylene, coumarin, rubrene, quinacridone, stilbene, dyes for dye lasers, aluminum complexes, and derivatives thereof as fluorescent materials; polyfluorene, polyphenylene, polyphenylene vinylene, polyvinylcarbazole, fluorene-benzothiazol copolymer , Fluorene-triphenylamine copolymers, polymers such as derivatives thereof; mixtures thereof and the like.
 燐光材料として、Ir、Pt等の金属を含む金属錯体などを使用できる。Ir錯体としては、例えば、青色発光を呈するFIr(pic)(イリジウム(III)ビス[(4,6-ジフルオロフェニル)-ピリジネート-N,C]ピコリネート)、緑色発光を呈するIr(ppy)(ファク トリス(2-フェニルピリジン)イリジウム)、赤色発光を呈する(btp)Ir(acac)(ビス〔2-(2’-ベンゾ[4,5-α]チエニル)ピリジナート-N,C〕イリジウム(アセチル-アセトネート))、Ir(piq)(トリス(1-フェニルイソキノリン)イリジウム)等が挙げられる。Pt錯体としては、例えば、赤色発光を呈するPtOEP(2、3、7、8、12、13、17、18-オクタエチル-21H、23H-フォルフィンプラチナ)等が挙げられる。 As the phosphorescent material, a metal complex containing a metal such as Ir or Pt can be used. Examples of the Ir complex include FIr (pic) (iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C 2 ] picolinate) that emits blue light, and Ir (ppy) 3 that emits green light. (Factris (2-phenylpyridine) iridium), exhibiting red luminescence (btp) 2 Ir (acac) (bis [2- (2'-benzo [4,5-α] thienyl) pyridinate-N, C 3 ] Iridium (acetyl-acetonate)), Ir (piq) 3 (tris (1-phenylisoquinoline) iridium) and the like can be mentioned. Examples of the Pt complex include PtOEP (2, 3, 7, 8, 12, 13, 17, 18-octaethyl-21H, 23H-forfin platinum) that emits red light.
 発光層が燐光材料を含む場合、燐光材料の他に、更にホスト材料を含むことが好ましい。ホスト材料としては、低分子化合物、ポリマー、又はデンドリマーを使用できる。低分子化合物としては、例えば、CBP(4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル)、mCP(1,3-ビス(9-カルバゾリル)ベンゼン)、CDBP(4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル)、これらの誘導体等が、ポリマーとしては、前述の実施形態の有機エレクトロニクス材料、ポリビニルカルバゾール、ポリフェニレン、ポリフルオレン、これらの誘導体等が挙げられる。 When the light emitting layer contains a phosphorescent material, it is preferable to further contain a host material in addition to the phosphorescent material. As the host material, a low molecular weight compound, a polymer, or a dendrimer can be used. Examples of low molecular weight compounds include CBP (4,4'-bis (9H-carbazole-9-yl) biphenyl), mCP (1,3-bis (9-carbazolyl) benzene), and CDBP (4,4'-. Bis (carbazole-9-yl) -2,2'-dimethylbiphenyl), derivatives thereof and the like, and as the polymer, the organic electronics material of the above-described embodiment, polyvinylcarbazole, polyphenylene, polyfluorene, derivatives thereof and the like can be used. Can be mentioned.
 熱活性化遅延蛍光材料としては、例えば、Adv. Mater., 21, 4802-4906 (2009);Appl. Phys. Lett., 98, 083302 (2011);Chem. Comm., 48, 9580 (2012);Appl. Phys. Lett., 101, 093306 (2012);J. Am. Chem. Soc., 134, 14706 (2012);Chem. Comm., 48, 11392 (2012);Nature, 492, 234 (2012);Adv. Mater., 25, 3319 (2013);J. Phys. Chem. A, 117, 5607 (2013);Phys. Chem. Chem. Phys., 15, 15850 (2013);Chem. Comm., 49, 10385 (2013);Chem. Lett., 43, 319 (2014)等に記載の化合物を援用できる。 Examples of thermally activated delayed fluorescent materials include Adv. Mater., 21, 4802-4906 (2009); Appl. Phys. Lett., 98, 083302 (2011); Chem. Comm., 48, 9580 (2012). Appl. Phys. Lett., 101, 093306 (2012); J. Am. Chem. Soc., 134, 14706 (2012); Chem. Comm., 48, 11392 (2012); Nature, 492, 234 (2012) ); Adv. Mater., 25, 3319 (2013); J. Phys. Chem. A, 117, 5607 (2013); Phys. Chem. Chem. Phys., 15, 15850 (2013); Chem. Comm., 49, 10385 (2013); Chem. Lett., 43, 319 (2014), etc. can be used.
[正孔輸送層、正孔注入層]
 前述の有機層を、正孔注入層及び正孔輸送層の少なくとも一方として使用することが好ましく、少なくとも正孔輸送層として使用することがより好ましい。有機EL素子が、前述の有機層を正孔輸送層として有し、さらに正孔注入層を有する場合、正孔注入層には公知の材料を使用できる。また、前述の有機層を正孔注入層として有し、さらに正孔輸送層を有する場合、正孔輸送層には公知の材料を使用できる。
[Hole transport layer, hole injection layer]
The above-mentioned organic layer is preferably used as at least one of the hole injection layer and the hole transport layer, and more preferably at least as the hole transport layer. When the organic EL device has the above-mentioned organic layer as a hole transport layer and further has a hole injection layer, a known material can be used for the hole injection layer. Further, when the above-mentioned organic layer is provided as a hole injection layer and further has a hole transport layer, a known material can be used for the hole transport layer.
 正孔注入層及び正孔輸送層に用いることができる材料として、例えば、芳香族アミン系化合物、フタロシアニン系化合物、チオフェン系化合物等が挙げられる。 Examples of materials that can be used for the hole injection layer and the hole transport layer include aromatic amine compounds, phthalocyanine compounds, and thiophene compounds.
[電子輸送層、電子注入層]
 電子輸送層及び電子注入層に用いる材料としては、例えば、フェナントロリン誘導体、ビピリジン誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレン、ペリレンなどの縮合環テトラカルボン酸無水物、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、アルミニウム錯体(例えばBAlq、Alq)等が挙げられる。また、前述の実施形態の有機エレクトロニクス材料も使用できる。
[Electron transport layer, electron injection layer]
Examples of the material used for the electron transport layer and the electron injection layer include fused ring tetracarboxylic acid anhydrides such as phenanthroline derivative, bipyridine derivative, nitro-substituted fluorene derivative, diphenylquinone derivative, thiopyrandioxide derivative, naphthalene and perylene, and carbodiimide. , Fluolenilidene methane derivative, anthraquinodimethane and antron derivative, oxadiazole derivative, thiadiazole derivative, benzoimidazole derivative, quinoxalin derivative, aluminum complex (for example, BAlq, Alq 3 ) and the like. Further, the organic electronic material of the above-described embodiment can also be used.
[陰極]
 陰極材料としては、例えば、Li、Ca、Mg、Al、In、Cs、Ba、Mg/Ag、LiF、CsF等の金属又は金属合金が用いられる。
[cathode]
As the cathode material, for example, a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, CsF is used.
[陽極]
 陽極材料としては、例えば、金属(例えば、Au)又は導電性を有する他の材料が用いられる。他の材料として、例えば、酸化物(例えば、ITO)、導電性高分子(例えば、ポリチオフェン-ポリスチレンスルホン酸混合物(PEDOT:PSS))が挙げられる。
[anode]
As the anode material, for example, a metal (for example, Au) or another conductive material is used. Other materials include, for example, oxides (eg, ITO), conductive polymers (eg, polythiophene-polystyrene sulfonic acid mixture (PEDOT: PSS)).
[基板]
 基板として、ガラス、プラスチック等を使用できる。基板は、透明であることが好ましく、また、フレキシブル性を有することが好ましい。石英ガラス、光透過性樹脂フィルム等が好ましく用いられる。
[substrate]
Glass, plastic, etc. can be used as the substrate. The substrate is preferably transparent and preferably has flexibility. Quartz glass, light-transmitting resin film and the like are preferably used.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート、セルローストリアセテート、セルロースアセテートプロピオネート等を含有するフィルムが挙げられる。 As the resin film, for example, a film containing polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, cellulose acetate propionate and the like. Can be mentioned.
 樹脂フィルムを用いる場合、水蒸気、酸素等の透過を抑制するために、樹脂フィルムへ酸化珪素、窒化珪素等の無機物をコーティングして用いてもよい。 When a resin film is used, the resin film may be coated with an inorganic substance such as silicon oxide or silicon nitride in order to suppress the permeation of water vapor, oxygen, etc.
[発光色]
 有機EL素子の発光色は特に限定されるものではない。白色発光を呈する有機EL素子(白色有機EL素子」とも記す。)は、家庭用照明、車内照明、時計又は液晶のバックライト等の各種照明器具に用いることができるため好ましい。
[Emission color]
The emission color of the organic EL element is not particularly limited. An organic EL element exhibiting white light emission (also referred to as a white organic EL element) is preferable because it can be used for various lighting fixtures such as household lighting, vehicle interior lighting, clocks, and liquid crystal backlights.
 白色有機EL素子を形成する方法としては、複数の発光材料を用いて複数の発光色を同時に発光させて混色させる方法を用いることができる。複数の発光色の組み合わせとしては、特に限定されるものではないが、例えば、青色、緑色及び赤色の3つの発光極大波長を含有する組み合わせ、青色と黄色、黄緑色と橙色等の補色の関係を利用した2つの発光極大波長を含有する組み合わせが挙げられる。発光色の制御は、発光材料の種類と量の調整により行うことができる。 As a method for forming the white organic EL element, a method of simultaneously emitting a plurality of emission colors using a plurality of light emitting materials and mixing the colors can be used. The combination of a plurality of emission colors is not particularly limited, but for example, a combination containing three emission maximum wavelengths of blue, green and red, and a complementary color relationship such as blue and yellow and yellow-green and orange. Examples thereof include a combination containing the two maximum emission wavelengths used. The emission color can be controlled by adjusting the type and amount of the emission material.
<表示素子、照明装置、表示装置>
 本実施形態である表示素子は、前述の実施形態の有機EL素子を備えている。例えば、赤、緑及び青(RGB)の各画素に対応する素子として、有機EL素子を用いることで、カラーの表示素子が得られる。画像の形成方法には、マトリックス状に配置した電極でパネルに配列された個々の有機EL素子を直接駆動する単純マトリックス型と、各素子に薄膜トランジスタを配置して駆動するアクティブマトリックス型とがある。
<Display element, lighting device, display device>
The display element of the present embodiment includes the organic EL element of the above-described embodiment. For example, by using an organic EL element as an element corresponding to each pixel of red, green, and blue (RGB), a color display element can be obtained. There are two methods for forming an image: a simple matrix type in which individual organic EL elements arranged on a panel are directly driven by electrodes arranged in a matrix, and an active matrix type in which a thin film transistor is arranged and driven in each element.
 また、本実施形態である照明装置は、前述の実施形態の有機EL素子を備えている。さらに、本実施形態である表示装置は、照明装置と、表示手段として液晶素子とを備えている。例えば、表示装置は、バックライトとして前述の実施形態である照明装置を用い、表示手段として公知の液晶素子を用いた表示装置、すなわち液晶表示装置とできる。 Further, the lighting device of the present embodiment includes the organic EL element of the above-described embodiment. Further, the display device of the present embodiment includes a lighting device and a liquid crystal element as a display means. For example, the display device can be a display device using the lighting device of the above-described embodiment as a backlight and a known liquid crystal element as a display means, that is, a liquid crystal display device.
 以下に、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
<イオン性化合物の合成> <Synthesis of ionic compounds>
[実施例1]
(イオン性化合物1の合成)
 下記構造のイオン性化合物1を以下のようにして合成した。
 ジアリルメチルアミン1.111g(10mmol)にアセトン25gと純水5gを加え撹拌し均一溶液とした後、10%塩化水素水溶液3.653gをゆっくりと滴下し、滴下終了後1時間撹拌した。この溶液から溶剤を減圧溜去した。ついで、Sodium tetrakis (pentafluorophenyl) borateの10%水溶液77.49g(11mmol)を混合し、1時間撹拌した。これを5回水洗し、乾燥し、白色の固体物を作製した。
[Example 1]
(Synthesis of Ionic Compound 1)
Ionic compound 1 having the following structure was synthesized as follows.
25 g of acetone and 5 g of pure water were added to 1.111 g (10 mmol) of diallyl methylamine and stirred to obtain a uniform solution, and then 3.653 g of a 10% hydrogen chloride aqueous solution was slowly added dropwise, and the mixture was stirred for 1 hour after the completion of the addition. The solvent was distilled off from this solution under reduced pressure. Then, 77.49 g (11 mmol) of a 10% aqueous solution of Sodium tetrakis (pentafluorophenyl) borate was mixed, and the mixture was stirred for 1 hour. This was washed with water 5 times and dried to prepare a white solid.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[実施例2]
(イオン性化合物2の合成)
 下記構造のイオン性化合物2を以下のようにして合成した。
 ジエチルアリルアミン1.132g(10mmol)にアセトン25gと純水5gを加え撹拌し均一溶液とした後、10%塩化水素水溶液3.653gをゆっくりと滴下し、滴下終了後1時間撹拌した。この溶液から溶剤を減圧溜去した。ついで、Sodium tetrakis (pentafluorophenyl) borateの10%水溶液77.49g(11mmol)を混合し、1時間撹拌した。これを5回水洗し、乾燥し、白色の固体物を作製した。
[Example 2]
(Synthesis of Ionic Compound 2)
Ionic compound 2 having the following structure was synthesized as follows.
To 1.132 g (10 mmol) of diethylallylamine, 25 g of acetone and 5 g of pure water were added and stirred to obtain a uniform solution, and then 3.653 g of a 10% hydrogen chloride aqueous solution was slowly added dropwise, and the mixture was stirred for 1 hour after the completion of the addition. The solvent was distilled off from this solution under reduced pressure. Then, 77.49 g (11 mmol) of a 10% aqueous solution of Sodium tetrakis (pentafluorophenyl) borate was mixed, and the mixture was stirred for 1 hour. This was washed with water 5 times and dried to prepare a white solid.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[実施例3]
(イオン性化合物3の合成)
 下記構造のイオン性化合物3を以下のようにして合成した。
 トリアリルアミン1.372g(10mmol)にアセトン25gと純水5gを加え撹拌し均一溶液とした後、10%塩化水素水溶液3.653gをゆっくりと滴下し、滴下終了後1時間撹拌した。この溶液から溶剤を減圧溜去した。ついで、Sodium tetrakis (pentafluorophenyl) borateの10%水溶液77.49g(11mmol)を混合し、1時間撹拌した。これを5回水洗し、乾燥し、白色の固体物を作製した。
[Example 3]
(Synthesis of Ionic Compound 3)
The ionic compound 3 having the following structure was synthesized as follows.
To 1.372 g (10 mmol) of triallylamine, 25 g of acetone and 5 g of pure water were added and stirred to obtain a uniform solution, and then 3.653 g of a 10% hydrogen chloride aqueous solution was slowly added dropwise, and the mixture was stirred for 1 hour after the completion of the addition. The solvent was distilled off from this solution under reduced pressure. Then, 77.49 g (11 mmol) of a 10% aqueous solution of Sodium tetrakis (pentafluorophenyl) borate was mixed, and the mixture was stirred for 1 hour. This was washed with water 5 times and dried to prepare a white solid.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[比較例1]
(イオン性化合物4の合成)
 下記構造のイオン性化合物4を以下のようにして合成した。
 N,N-ジメチルオクタデシルアミン2.986g(10mmol)にアセトン25gと純水5gを加え撹拌し均一溶液とした後、10%塩化水素水溶液3.653gをゆっくりと滴下し、滴下終了後1時間撹拌した。この溶液から溶剤を減圧溜去した。ついで、Sodium tetrakis (pentafluorophenyl) borateの10%水溶液77.49g(11mmol)を混合し、1時間撹拌した。これを5回水洗し、乾燥し、白色の固体物を作製した。
[Comparative Example 1]
(Synthesis of Ionic Compound 4)
The ionic compound 4 having the following structure was synthesized as follows.
To 2.986 g (10 mmol) of N, N-dimethyloctadecylamine, 25 g of acetone and 5 g of pure water were added and stirred to make a uniform solution, then 3.653 g of a 10% hydrogen chloride aqueous solution was slowly added dropwise, and the mixture was stirred for 1 hour after the addition was completed. did. The solvent was distilled off from this solution under reduced pressure. Then, 77.49 g (11 mmol) of a 10% aqueous solution of Sodium tetrakis (pentafluorophenyl) borate was mixed, and the mixture was stirred for 1 hour. This was washed with water 5 times and dried to prepare a white solid.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[比較例2]
(イオン性化合物5の合成)
 下記構造のイオン性化合物5を以下のようにして合成した。
 N,N-ジデカノメチルアミン3.126g(10mmol)にアセトン25gと純水5gを加え撹拌し均一溶液とした後、10%塩化水素水溶液3.653gをゆっくりと滴下し、滴下終了後1時間撹拌した。この溶液から溶剤を減圧溜去した。ついで、Sodium tetrakis (pentafluorophenyl) borateの10%水溶液77.49g(11mmol)を混合し、1時間撹拌した。これを5回水洗し、乾燥し、白色の固体物を作製した。
[Comparative Example 2]
(Synthesis of Ionic Compound 5)
The ionic compound 5 having the following structure was synthesized as follows.
To 3.126 g (10 mmol) of N, N-didecanomethylamine, 25 g of acetone and 5 g of pure water were added and stirred to make a uniform solution, and then 3.653 g of a 10% hydrogen chloride aqueous solution was slowly added dropwise, and 1 hour after the completion of the addition. Stirred. The solvent was distilled off from this solution under reduced pressure. Then, 77.49 g (11 mmol) of a 10% aqueous solution of Sodium tetrakis (pentafluorophenyl) borate was mixed, and the mixture was stirred for 1 hour. This was washed with water 5 times and dried to prepare a white solid.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[比較例3]
(イオン性化合物6の合成)
 下記構造のイオン性化合物6を以下のようにして合成した。
 トリドデカノアミン5.220g(10mmol)にアセトン25gと純水5gを加え撹拌し均一溶液とした後、10%塩化水素水溶液3.653gをゆっくりと滴下し、滴下終了後1時間撹拌した。この溶液から溶剤を減圧溜去した。ついで、Sodium tetrakis (pentafluorophenyl) borateの10%水溶液77.49g(11mmol)を混合し、1時間撹拌した。これを5回水洗し、乾燥し、白色の固体物を作製した。
[Comparative Example 3]
(Synthesis of Ionic Compound 6)
The ionic compound 6 having the following structure was synthesized as follows.
To 5.220 g (10 mmol) of tridodecanoamine, 25 g of acetone and 5 g of pure water were added and stirred to obtain a uniform solution, and then 3.653 g of a 10% hydrogen chloride aqueous solution was slowly added dropwise, and the mixture was stirred for 1 hour after the completion of the addition. The solvent was distilled off from this solution under reduced pressure. Then, 77.49 g (11 mmol) of a 10% aqueous solution of Sodium tetrakis (pentafluorophenyl) borate was mixed, and the mixture was stirred for 1 hour. This was washed with water 5 times and dried to prepare a white solid.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[比較例4]
(イオン性化合物7の合成)
 下記構造のイオン性化合物7を以下のようにして合成した。
 トリペンチルアミン2.274g(10mmol)にアセトン25gと純水5gを加え撹拌し均一溶液とした後、10%塩化水素水溶液3.653gをゆっくりと滴下し、滴下終了後1時間撹拌した。この溶液から溶剤を減圧溜去した。ついで、Sodium tetrakis (pentafluorophenyl) borateの10%水溶液77.49g(11mmol)を混合し、1時間撹拌した。これを5回水洗し、乾燥し、白色の固体物を作製した。
[Comparative Example 4]
(Synthesis of Ionic Compound 7)
The ionic compound 7 having the following structure was synthesized as follows.
To 2.274 g (10 mmol) of trypentylamine, 25 g of acetone and 5 g of pure water were added and stirred to obtain a uniform solution, and then 3.653 g of a 10% hydrogen chloride aqueous solution was slowly added dropwise, and the mixture was stirred for 1 hour after the completion of the addition. The solvent was distilled off from this solution under reduced pressure. Then, 77.49 g (11 mmol) of a 10% aqueous solution of Sodium tetrakis (pentafluorophenyl) borate was mixed, and the mixture was stirred for 1 hour. This was washed with water 5 times and dried to prepare a white solid.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
[重量減少温度の測定]
 熱重量減少は、作製した各イオン性化合物10mgを空気中、5℃/分の昇温条件でTG-DTA測定装置(株式会社島津製作所製DTG-60H)を用いて測定することにより求めた。各イオン性化合物を加熱した際2%の重量減少が生じた温度を重量減少温度とした。表1に重量減少温度の評価結果を示す。
[Measurement of weight loss temperature]
The thermogravimetric reduction was determined by measuring 10 mg of each of the produced ionic compounds in air using a TG-DTA measuring device (DTG-60H manufactured by Shimadzu Corporation) under a temperature rising condition of 5 ° C./min. The temperature at which the weight loss of 2% occurred when each ionic compound was heated was defined as the weight loss temperature. Table 1 shows the evaluation results of the weight loss temperature.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 前述の実施形態であるイオン性化合物1~3(実施例1~3)は、イオン性化合物4~7(比較例1~4)と比較し、いずれも重量減少温度が高い結果を示した。熱重量減少が小さいイオン性化合物を使用することによって、耐熱性に優れることが分かる。 The ionic compounds 1 to 3 (Examples 1 to 3) in the above-described embodiment showed higher weight loss temperatures than the ionic compounds 4 to 7 (Comparative Examples 1 to 4). It can be seen that the heat resistance is excellent by using an ionic compound having a small thermal weight loss.
 以下に、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
<電荷輸送性ポリマーの調製>
[Pd触媒の調製]
 窒素雰囲気下のグローブボックス中で、室温下、サンプル管にトリス(ジベンジリデンアセトン)ジパラジウム(73.2mg、80μmol)を量り取り、トルエン(15mL)を加え、30分間撹拌した。同様に、サンプル管にトリス(t-ブチル)ホスフィン(129.6mg、640μmol)を量り取り、トルエン(5mL)を加え、5分間撹拌した。これらの溶液を混合し、室温で30分間撹拌し、触媒の溶液(以下、「Pd触媒溶液」と記す。)を得た。Pd触媒の調製において、全ての溶媒は30分間以上、窒素バブルにより脱気した後に使用した。
<Preparation of charge-transporting polymer>
[Preparation of Pd catalyst]
Tris (dibenzylideneacetone) dipalladium (73.2 mg, 80 μmol) was weighed in a sample tube at room temperature in a glove box under a nitrogen atmosphere, toluene (15 mL) was added, and the mixture was stirred for 30 minutes. Similarly, tris (t-butyl) phosphine (129.6 mg, 640 μmol) was weighed into a sample tube, toluene (5 mL) was added, and the mixture was stirred for 5 minutes. These solutions were mixed and stirred at room temperature for 30 minutes to obtain a catalyst solution (hereinafter referred to as "Pd catalyst solution"). In the preparation of the Pd catalyst, all solvents were used after degassing with nitrogen bubbles for at least 30 minutes.
[電荷輸送性ポリマーの調製]
 以下に示すように、電荷輸送性ポリマー1を調製した。使用したモノマーを、以下に示す。
[Preparation of charge-transporting polymer]
A charge-transporting polymer 1 was prepared as shown below. The monomers used are shown below.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(電荷輸送性ポリマー1の調製)
 三口丸底フラスコに、モノマーA(5.0mmol)、モノマーB(2.0mmol)、モノマーC(3.4mmol)、モノマーD(0.6mmol)、メチルトリ-n-オクチルアンモニウムクロリド(Alfa Aesar社製「アリコート336」)(0.04g)、3Mの水酸化カリウム水溶液(7.79g)、及びトルエン(53mL)を加え、更に、先に調製したPd触媒溶液(1.0mL)を加えて混合した。得られた混合液を2時間、加熱還流した。ここまでの全ての操作は窒素気流下で行った。また、全ての溶媒は、30分間以上、窒素バブルにより脱気した後に使用した。
(Preparation of Charge Transport Polymer 1)
Monomer A (5.0 mmol), Monomer B (2.0 mmol), Monomer C (3.4 mmol), Monomer D (0.6 mmol), Methyltri-n-octylammonium chloride (manufactured by Alfa Aesar) in a three-necked round-bottom flask. "Aliquot 336") (0.04 g), 3M aqueous potassium hydroxide solution (7.79 g), and toluene (53 mL) were added, and the Pd catalyst solution (1.0 mL) prepared above was further added and mixed. .. The resulting mixture was heated to reflux for 2 hours. All operations up to this point were performed under a nitrogen stream. In addition, all the solvents were used after being degassed by nitrogen bubbles for 30 minutes or more.
 反応終了後、有機層を水洗し、有機層をメタノール-水(9:1)に注いだ。生じた沈殿を吸引ろ過により回収し、メタノール-水(9:1)で洗浄した。得られた沈殿をアニソールに溶解し、メタノールへ注ぎ、再沈殿させた。得られた沈殿を吸引ろ過により回収し、アニソールに溶解し、金属吸着剤(Strem Chemicals社製「Triphenylphosphine, polymer-bound on styrene-divinylbenzene copolymer」、沈殿物100mgに対して200mg)を加えて、80℃で2時間撹拌した。撹拌終了後、金属吸着剤と不溶物とをろ過により取り除いた後に、メタノールへ注ぎ、再沈殿させた。生じた沈殿を吸引ろ過により回収し、メタノールで洗浄した。得られた沈殿を真空乾燥し、電荷輸送性ポリマー1を作製した。電荷輸送性ポリマー1の数平均分子量は11,900、重量平均分子量は66,200であった。 After completion of the reaction, the organic layer was washed with water, and the organic layer was poured into methanol-water (9: 1). The resulting precipitate was collected by suction filtration and washed with methanol-water (9: 1). The resulting precipitate was dissolved in anisole, poured into methanol and reprecipitated. The obtained precipitate was collected by suction filtration, dissolved in anisole, and a metal adsorbent (“Triphenylphosphine, polymerase-bound on styrene-divinylbenzene copolymer” manufactured by Strem Chemicals, 200 mg with respect to 100 mg of the precipitate) was added to 80. The mixture was stirred at ° C. for 2 hours. After the stirring was completed, the metal adsorbent and the insoluble matter were removed by filtration, and then poured into methanol for reprecipitation. The resulting precipitate was collected by suction filtration and washed with methanol. The obtained precipitate was vacuum dried to prepare a charge-transporting polymer 1. The charge-transporting polymer 1 had a number average molecular weight of 11,900 and a weight average molecular weight of 66,200.
 数平均分子量及び重量平均分子量は、溶離液にテトラヒドロフラン(THF)を用いたGPC(ポリスチレン換算)により測定した。測定条件は以下のとおりである。
装置:高速液体クロマトグラフ Prominence 株式会社島津製作所
         送液ポンプ(LC-20AD)
         脱気ユニット(DGU-20A)
         オートサンプラ(SIL-20AHT)
         カラムオーブン(CTO-20A)
         PDA検出器(SPD-M20A)
         示差屈折率検出器(RID-20A)
 カラム    :Gelpack(登録商標)
         GL-A160S(製造番号:686-1J27)
         GL-A150S(製造番号:685-1J27)日立化成株式会社
 溶離液    :テトラヒドロフラン(THF)(HPLC用、安定剤含有)富士フイルム和光純薬工業株式会社
 流速     :1mL/min
 カラム温度  :40℃
 検出波長   :254nm
 分子量標準物質:PStQuick A/B/C 東ソー株式会社
The number average molecular weight and the weight average molecular weight were measured by GPC (polystyrene conversion) using tetrahydrofuran (THF) as an eluent. The measurement conditions are as follows.
Equipment: High Performance Liquid Chromatograph Prominence Shimadzu Corporation Liquid Transfer Pump (LC-20AD)
Degassing unit (DGU-20A)
Autosampler (SIL-20AHT)
Column oven (CTO-20A)
PDA detector (SPD-M20A)
Differential Refractometer Detector (RID-20A)
Column: Gelpack®
GL-A160S (serial number: 686-1J27)
GL-A150S (serial number: 685-1J27) Hitachi Kasei Co., Ltd. Eluent: tetrahydrofuran (THF) (for HPLC, containing stabilizer) Fujifilm Wako Pure Chemical Industries, Ltd. Flow velocity: 1 mL / min
Column temperature: 40 ° C
Detection wavelength: 254 nm
Molecular weight standard substance: PStQuick A / B / C Tosoh Corporation
[耐溶剤性評価]
 電荷輸送性ポリマー1及びイオン性化合物1~7を用いて有機層A1~7を形成し、残膜率測定により耐溶剤性の評価を実施した。
[Solvent resistance evaluation]
Organic layers A1 to 7 were formed using the charge-transporting polymer 1 and the ionic compounds 1 to 7, and the solvent resistance was evaluated by measuring the residual film ratio.
(残膜率測定)
 20mLスクリュー管に、実施例1で用いたイオン性化合物(10mg)を量り取り、クロロベンゼンを一定量加えて撹拌し、イオン性化合物溶液を作製した。次いで、9mLスクリュー管に、電荷輸送性ポリマー1(10mg)及び一定量のクロロベンゼン(792μL)を加え、電荷輸送性ポリマーを溶解させた。その後、前述の9mLスクリュー管に、イオン性化合物溶液を一定量加え、撹拌し、インク組成物を調製した。インク組成物をポリテトラフルオロエチレン(PTFE)フィルタ(孔径0.2μm)にてろ過した後に、石英基板(縦22mm×横29mm×厚0.7mm)上に滴下し、スピンコーターにより塗布膜を成膜した。続いて、200℃、30分間、窒素雰囲気下で加熱硬化を実施し、石英基板上に膜厚30nmの有機層を形成した。(溶液は電荷輸送性ポリマーが1wt%、イオン性化合物が電荷輸送ポリマーに対して1wt%となるように調整した。)
(Measurement of residual film ratio)
The ionic compound (10 mg) used in Example 1 was weighed into a 20 mL screw tube, a certain amount of chlorobenzene was added, and the mixture was stirred to prepare an ionic compound solution. Then, the charge-transporting polymer 1 (10 mg) and a certain amount of chlorobenzene (792 μL) were added to the 9 mL screw tube to dissolve the charge-transporting polymer. Then, a certain amount of the ionic compound solution was added to the above-mentioned 9 mL screw tube and stirred to prepare an ink composition. The ink composition is filtered through a polytetrafluoroethylene (PTFE) filter (pore diameter 0.2 μm), dropped onto a quartz substrate (length 22 mm × width 29 mm × thickness 0.7 mm), and a coating film is formed by a spin coater. Membrane. Subsequently, heat curing was carried out at 200 ° C. for 30 minutes in a nitrogen atmosphere to form an organic layer having a film thickness of 30 nm on a quartz substrate. (The solution was adjusted so that the charge-transporting polymer was 1 wt% and the ionic compound was 1 wt% with respect to the charge-transporting polymer.)
 分光光度計(株式会社島津製作所製「UV-2700」)を用いて、石英基板上に形成した有機層の吸光度Aを測定した。続いて、測定後の有機層が上面になるように、25℃の環境下で、アニソール(10mL、25℃)に10分間浸漬した。アニソール浸漬後の有機層の吸光度Bを測定し、形成した有機層の吸光度Aとアニソール浸漬後の有機層の吸光度Bから、以下の式を用いて、残膜率を算出した。なお、吸光度の値は、有機層の極大吸収波長における値を用いた。残膜率が大きいほど、耐溶剤性が優れている。 The absorbance A of the organic layer formed on the quartz substrate was measured using a spectrophotometer (“UV-2700” manufactured by Shimadzu Corporation). Subsequently, the mixture was immersed in anisole (10 mL, 25 ° C.) for 10 minutes in an environment of 25 ° C. so that the organic layer after measurement was on the upper surface. The absorbance B of the organic layer after immersion in anisole was measured, and the residual film ratio was calculated from the absorbance A of the formed organic layer and the absorbance B of the organic layer after immersion in anisole using the following formula. As the value of absorbance, the value at the maximum absorption wavelength of the organic layer was used. The larger the residual film ratio, the better the solvent resistance.
[数1]
残膜率(%)=(吸光度B/吸光度A)×100
 
[Number 1]
Residual film ratio (%) = (absorbance B / absorbance A) x 100
 表2に残膜率の測定結果を示す。 Table 2 shows the measurement results of the residual film ratio.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 本実施形態であるイオン性化合物1~3を用いた有機層A1~A3はイオン性化合物4~7を用いた有機層A4~A7と比較し、良好な残膜率であり、成膜性において良好な測定結果を示した。 The organic layers A1 to A3 using the ionic compounds 1 to 3 of the present embodiment have a better residual film ratio and a film forming property as compared with the organic layers A4 to A7 using the ionic compounds 4 to 7. Good measurement results were shown.
 以下に、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[素子特性評価]
 以下に従い、電荷輸送性ポリマー1及びイオン性化合物1~7を用いて有機EL素子1~7を作製し、駆動電圧、発光効率、及び発光寿命の評価を実施した。
[Evaluation of element characteristics]
Organic EL devices 1 to 7 were prepared using the charge-transporting polymer 1 and the ionic compounds 1 to 7 according to the following, and the drive voltage, luminous efficiency, and emission lifetime were evaluated.
(有機EL素子の作製)
 20mLスクリュー管に、実施例1で用いたイオン性化合物(10.0mg)を量り取り、クロロベンゼンを一定量加えて撹拌し、イオン性化合物溶液を作製した。次いで、9mLスクリュー管に、電荷輸送性ポリマー(10mg)及び一定量のクロロベンゼンを加え、電荷輸送性ポリマーを溶解させた。その後、前述の9mLスクリュー管に、イオン性化合物溶液を一定量加え、撹拌し、インク組成物を調製した。ガラス基板(縦22mm×横29mm×厚0.7mm)上1.6mm幅にパターニングされたITOを形成し、ガラス基板上及び形成したITO上にインク組成物をポリテトラフルオロエチレン(PTFE)フィルタ(孔径0.2μm)にてろ過して作製したろ液を滴下し、スピンコーターにより塗布膜を成膜した。次いで、ホットプレート上で200℃、30分間、窒素雰囲気下で加熱して、正孔注入層(30nm)を形成した。(溶液は電荷輸送性ポリマーが1wt%、イオン性化合物が電荷輸送ポリマーに対して1wt%となるように調整した。)
(Manufacturing of organic EL element)
The ionic compound (10.0 mg) used in Example 1 was weighed into a 20 mL screw tube, a certain amount of chlorobenzene was added, and the mixture was stirred to prepare an ionic compound solution. Then, a charge-transporting polymer (10 mg) and a certain amount of chlorobenzene were added to the 9 mL screw tube to dissolve the charge-transporting polymer. Then, a certain amount of the ionic compound solution was added to the above-mentioned 9 mL screw tube and stirred to prepare an ink composition. A patterned ITO having a width of 1.6 mm is formed on a glass substrate (length 22 mm × width 29 mm × thickness 0.7 mm), and an ink composition is applied onto the glass substrate and the formed ITO with a polytetrafluoroethylene (PTFE) filter (PTFE). The filtrate prepared by filtering with a pore size of 0.2 μm) was dropped, and a coating film was formed by a spin coater. Then, it was heated on a hot plate at 200 ° C. for 30 minutes in a nitrogen atmosphere to form a hole injection layer (30 nm). (The solution was adjusted so that the charge-transporting polymer was 1 wt% and the ionic compound was 1 wt% with respect to the charge-transporting polymer.)
 正孔注入層を有するガラス基板を、真空蒸着機内に移し、正孔注入層上にα-NPD(40nm)、CBP:Ir(ppy)(94:6、30nm)、BAlq(10nm)、TPBi(30nm)、LiF(0.8nm)、及びAl(100nm)をこの順に蒸着法で成膜した。その後、封止処理を行って有機EL素子を作製した。 The glass substrate having the hole injection layer is transferred into the vacuum vapor deposition machine, and α-NPD (40 nm), CBP: Ir (ppy) 3 (94: 6, 30 nm), BAlq (10 nm), TPBi are placed on the hole injection layer. (30 nm), LiF (0.8 nm), and Al (100 nm) were deposited in this order by a vapor deposition method. Then, a sealing process was performed to produce an organic EL element.
(有機EL素子の評価)
 有機EL素子に電圧を印加したところ、緑色発光が確認された。それぞれの有機EL素子について、発光輝度5,000cd/mにおける駆動電圧、発光効率、及び初期発光輝度5,000cd/mにおける発光寿命(輝度半減時間)を測定した。
(Evaluation of organic EL element)
When a voltage was applied to the organic EL element, green light emission was confirmed. For each of the organic EL device, the driving voltage of the light emitting luminance 5,000 cd / m 2, and luminescence was measured lifetime (luminance half-life) in the luminous efficiency, and the initial emission luminance 5,000 cd / m 2.
 表3に駆動電圧、発光効率、及び発光寿命の測定結果を示す。 Table 3 shows the measurement results of drive voltage, luminous efficiency, and luminous life.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 本実施形態であるイオン性化合物1~3を用いた有機EL素子1~3はイオン性化合物4~7を用いた有機EL素子4~7と比較し、駆動電圧、発光効率、及び発光寿命において良好な測定結果を示した。 The organic EL devices 1 to 3 using the ionic compounds 1 to 3 of the present embodiment are compared with the organic EL devices 4 to 7 using the ionic compounds 4 to 7 in terms of drive voltage, light emission efficiency, and light emission lifetime. Good measurement results were shown.
1  発光層
2  陽極
3  正孔注入層
4  陰極
5  電子注入層
6  正孔輸送層
7  電子輸送層
8  基板
1 Light emitting layer 2 Anode 3 Hole injection layer 4 Cathode 5 Electron injection layer 6 Hole transport layer 7 Electron transport layer 8 Substrate

Claims (29)

  1.  下記式(1a)で表されるアンモニウムカチオン及びアニオンを含有するイオン性化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1a)中、R、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、R、R及びRから選択される少なくとも2つは1価の有機基であり、R、R及びRから選択される少なくとも1つは二重結合を含有する有機基である。)
    An ionic compound containing an ammonium cation and an anion represented by the following formula (1a).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1a), Ra , R b and R c each independently represent a hydrogen atom or a monovalent organic group, and at least two selected from Ra , R b and R c are monovalent. It is an organic group, and at least one selected from Ra , R b and R c is an organic group containing a double bond.)
  2.  前記二重結合を含有する有機基の炭素数は2~6である請求項1に記載のイオン性化合物。 The ionic compound according to claim 1, wherein the organic group containing the double bond has 2 to 6 carbon atoms.
  3.  前記二重結合は、前記有機基の末端に位置する請求項1又は2に記載のイオン性化合物。 The ionic compound according to claim 1 or 2, wherein the double bond is located at the end of the organic group.
  4.  R、R及びRのそれぞれにおける前記有機基の炭素数は4以下である請求項1~3のいずれか1項に記載のイオン性化合物。 The ionic compound according to any one of claims 1 to 3, wherein the organic group in each of R a , R b and R c has 4 or less carbon atoms.
  5.  前記二重結合を含有する有機基は、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、及びイソブテニル基からなる群から選択される1つである請求項1~4のいずれか1項に記載に記載のイオン性化合物。 The method according to any one of claims 1 to 4, wherein the organic group containing the double bond is one selected from the group consisting of a vinyl group, a propenyl group, an isopropenyl group, a butenyl group, and an isobutenyl group. Ionic compounds according to.
  6.  前記二重結合を含有する有機基を1つのみ含有する請求項1~5のいずれか1項に記載に記載のイオン性化合物。 The ionic compound according to any one of claims 1 to 5, which contains only one organic group containing the double bond.
  7.  前記二重結合を含有する有機基を2つ以上含有し、
     前記二重結合を含有する有機基のそれぞれは、互いに同一である請求項1~5のいずれか1項に記載に記載のイオン性化合物。
    Containing two or more organic groups containing the double bond,
    The ionic compound according to any one of claims 1 to 5, wherein each of the organic groups containing a double bond is the same as each other.
  8.  前記アニオンが下記式(1b)~(5b)のいずれかで表される請求項1~7のいずれか1項に記載のイオン性化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1b)~(5b)中、
     Eは酸素原子、Eは窒素原子、Eは炭素原子、Eはホウ素原子又はガリウム原子、Eはリン原子又はアンチモン原子を表し、
     Y~Yは、それぞれ独立に単結合又は2価の連結基を表し、
     R~R16は、それぞれ独立に電子求引性の1価の基(R及びR、R~Rから選択される少なくとも2つの基、R~R10から選択される少なくとも2つの基、及び、R11~R16から選択される少なくとも2つの基は、それぞれ互いに結合していてもよい。)を表す。)
    The ionic compound according to any one of claims 1 to 7, wherein the anion is represented by any of the following formulas (1b) to (5b).
    Figure JPOXMLDOC01-appb-C000002
    (In equations (1b) to (5b),
    E 1 represents an oxygen atom, E 2 represents a nitrogen atom, E 3 represents a carbon atom, E 4 represents a boron atom or a gallium atom, and E 5 represents a phosphorus atom or an antimony atom.
    Y 1 to Y 6 independently represent a single bond or a divalent linking group, respectively.
    R 1 to R 16 are at least two groups independently selected from electron-attracting monovalent groups (R 2 and R 3 , R 4 to R 6 and at least R 7 to R 10). The two groups and at least two groups selected from R 11 to R 16 may each be attached to each other). )
  9.  請求項1~8のいずれか1項に記載のイオン性化合物と電荷輸送性化合物と、を含有する、有機エレクトロニクス材料。 An organic electronics material containing the ionic compound and the charge transporting compound according to any one of claims 1 to 8.
  10.  前記電荷輸送性化合物が、芳香族アミン構造を含む単位、カルバゾール構造を含む単位、及びチオフェン構造を含む単位からなる群から選択される少なくとも1種の単位を有する、請求項9に記載の有機エレクトロニクス材料。 The organic electronics according to claim 9, wherein the charge transporting compound has at least one unit selected from the group consisting of a unit containing an aromatic amine structure, a unit containing a carbazole structure, and a unit containing a thiophene structure. material.
  11.  前記電荷輸送性化合物が、分子内に1つ以上の重合性官能基を有する、請求項9又は10に記載の有機エレクトロニクス材料。 The organic electronic material according to claim 9 or 10, wherein the charge-transporting compound has one or more polymerizable functional groups in the molecule.
  12.  前記重合性官能基が、オキセタン基、エポキシ基、及びビニルエーテル基からなる群から選択される少なくとも1種を含む、請求項11に記載の有機エレクトロニクス材料。 The organic electronics material according to claim 11, wherein the polymerizable functional group contains at least one selected from the group consisting of an oxetane group, an epoxy group, and a vinyl ether group.
  13.  更に、溶媒を含有する、請求項9~12のいずれか1項に記載の有機エレクトロニクス材料。 The organic electronic material according to any one of claims 9 to 12, further containing a solvent.
  14.  請求項9~13のいずれか1項に記載の有機エレクトロニクス材料を用いて成膜された、有機層。 An organic layer formed by using the organic electronic material according to any one of claims 9 to 13.
  15.  請求項14に記載の有機層を備えた、有機エレクトロニクス素子。 An organic electronic device provided with the organic layer according to claim 14.
  16.  前記有機層上に、更に他の有機層を有する、請求項15に記載の有機エレクトロニクス素子。 The organic electronic device according to claim 15, further comprising another organic layer on the organic layer.
  17.  更に基板を有し、前記基板が、フレキシブル性を有する、請求項15又は16に記載の有機エレクトロニクス素子。 The organic electronic device according to claim 15 or 16, further comprising a substrate, wherein the substrate has flexibility.
  18.  更に基板を有し、前記基板が、樹脂フィルムである、請求項15又は16に記載の有機エレクトロニクス素子。 The organic electronic device according to claim 15 or 16, further comprising a substrate, wherein the substrate is a resin film.
  19.  請求項14に記載の有機層を備えた、有機エレクトロルミネセンス素子。 An organic electroluminescence device provided with the organic layer according to claim 14.
  20.  前記有機層が正孔注入層である、請求項19に記載の有機エレクトロルミネセンス素子。 The organic electroluminescence device according to claim 19, wherein the organic layer is a hole injection layer.
  21.  前記有機層が正孔輸送層である、請求項19に記載の有機エレクトロルミネセンス素子。 The organic electroluminescence device according to claim 19, wherein the organic layer is a hole transport layer.
  22.  前記有機層が発光層である、請求項19に記載の有機エレクトロルミネセンス素子。 The organic electroluminescence device according to claim 19, wherein the organic layer is a light emitting layer.
  23.  発光色が白色である、請求項19~22のいずれか1項に記載の有機エレクトロルミネセンス素子。 The organic electroluminescence device according to any one of claims 19 to 22, which has a white emission color.
  24.  更に基板を有し、前記基板が、フレキシブル性を有する、請求項19~23のいずれか1項に記載の有機エレクトロルミネセンス素子。 The organic electroluminescence device according to any one of claims 19 to 23, further comprising a substrate, wherein the substrate has flexibility.
  25.  更に基板を有し、前記基板が、樹脂フィルムである、請求項19~23のいずれか1項に記載の有機エレクトロルミネセンス素子。 The organic electroluminescence device according to any one of claims 19 to 23, further comprising a substrate, wherein the substrate is a resin film.
  26.  請求項19~25のいずれか1項に記載の有機エレクトロルミネセンス素子を備えた、表示素子。 A display device including the organic electroluminescence device according to any one of claims 19 to 25.
  27.  請求項19~25のいずれか1項に記載の有機エレクトロルミネセンス素子を備えた、照明装置。 A lighting device provided with the organic electroluminescence element according to any one of claims 19 to 25.
  28.  請求項27に記載の照明装置と、表示手段として液晶素子と、を備えた、表示素子。 A display element including the lighting device according to claim 27 and a liquid crystal element as a display means.
  29.  請求項13に記載の有機エレクトロニクス材料を用いて塗布法により有機層を形成する工程を含む、有機エレクトロニクス素子の製造方法。 A method for manufacturing an organic electronic device, which comprises a step of forming an organic layer by a coating method using the organic electronic material according to claim 13.
PCT/JP2019/034408 2019-09-02 2019-09-02 Ionic compound, organic electronics material, organic layer, organic electronics element, organic electroluminescent element, display element, lighting device, and method for manufacturing organic electronics element WO2021044478A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/034408 WO2021044478A1 (en) 2019-09-02 2019-09-02 Ionic compound, organic electronics material, organic layer, organic electronics element, organic electroluminescent element, display element, lighting device, and method for manufacturing organic electronics element
JP2021543806A JP7444170B2 (en) 2019-09-02 2019-09-02 Ionic compound, organic electronic material, organic layer, organic electronic device, organic electroluminescent device, display device, lighting device, and method for producing an organic electronic device
JP2023213579A JP2024037956A (en) 2019-09-02 2023-12-19 Ionic compound, organic electronic material, organic layer, organic electronic device, organic electroluminescent device, display device, lighting device, and method for producing an organic electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034408 WO2021044478A1 (en) 2019-09-02 2019-09-02 Ionic compound, organic electronics material, organic layer, organic electronics element, organic electroluminescent element, display element, lighting device, and method for manufacturing organic electronics element

Publications (1)

Publication Number Publication Date
WO2021044478A1 true WO2021044478A1 (en) 2021-03-11

Family

ID=74852532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034408 WO2021044478A1 (en) 2019-09-02 2019-09-02 Ionic compound, organic electronics material, organic layer, organic electronics element, organic electroluminescent element, display element, lighting device, and method for manufacturing organic electronics element

Country Status (2)

Country Link
JP (2) JP7444170B2 (en)
WO (1) WO2021044478A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023039514A1 (en) * 2021-09-10 2023-03-16 Dow Global Technologies Llc Hydrocarbon soluble borate cocatalysts for olefin polymerization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510002A (en) * 2003-11-05 2007-04-19 ノバルティス アクチエンゲゼルシャフト Macrocyclic lactams and their pharmaceutical use
WO2010140553A1 (en) * 2009-06-01 2010-12-09 日立化成工業株式会社 Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic electroluminescent element, lighting device, and display device formed therewith
CN109369413A (en) * 2018-10-29 2019-02-22 邹平铭兴化工有限公司 The preparation method of diallylamine and its hydrochloride

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269413A (en) 2018-11-28 2019-01-25 信利光电股份有限公司 Equipment based on time-of-flight method measurement object size

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510002A (en) * 2003-11-05 2007-04-19 ノバルティス アクチエンゲゼルシャフト Macrocyclic lactams and their pharmaceutical use
WO2010140553A1 (en) * 2009-06-01 2010-12-09 日立化成工業株式会社 Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic electroluminescent element, lighting device, and display device formed therewith
CN109369413A (en) * 2018-10-29 2019-02-22 邹平铭兴化工有限公司 The preparation method of diallylamine and its hydrochloride

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D'ARCY, R. ET AL.: "Die synchrone Fragmentierung von γ-Amino-cycloalkylhalogeniden. 3. Teil. 4-Chlorpiperidine Fragmentierungsrcaktionen, 13. Mitteilung", HELVETICA CHIMICA ACTA, vol. 49, no. 1, 1966, pages 185 - 203, XP055803267 *
PAVLOV, GEORGES M. ET AL.: "Strong Linear Polyelectrolytes in Solutions of Extreme Concentrations of One–One Valent Salt. Hydrodynamic Study", MACROMOLECULES, vol. 47, 3 April 2014 (2014-04-03), pages 2748 - 2758, XP055803260 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023039514A1 (en) * 2021-09-10 2023-03-16 Dow Global Technologies Llc Hydrocarbon soluble borate cocatalysts for olefin polymerization

Also Published As

Publication number Publication date
JP2024037956A (en) 2024-03-19
JPWO2021044478A1 (en) 2021-03-11
JP7444170B2 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
JP7044063B2 (en) Organic electronics materials and their use
JP6954297B2 (en) Organic Electronics Materials, Ink Compositions, and Organic Electronics Devices
JP2021061445A (en) Electric charge-transporting material, organic electronic element, and organic electroluminescent element
JP6782418B2 (en) Organic electronics materials and their use
JP2024037956A (en) Ionic compound, organic electronic material, organic layer, organic electronic device, organic electroluminescent device, display device, lighting device, and method for producing an organic electronic device
JP6954284B2 (en) Organic electronics materials
JP6775736B2 (en) Charge transporting material, ink composition using the material, organic electronics element, organic electroluminescence element, display element, lighting device, and display device.
JP6769020B2 (en) Charge transporting material, ink composition using the material, organic electronics element, organic electroluminescence element, display element, lighting device, and display device.
JP7103424B2 (en) Organic electronics materials and their use
WO2020090294A1 (en) Ionic compound, organic electronics material, ink composition, and organic electronics device
JP6775731B2 (en) Charge transport material and its use
JP2020145234A (en) Organic electronics material and use thereof
JP6641845B2 (en) Charge transporting material, ink composition using the material, organic electronic device, organic electroluminescent device, display device, lighting device, and display device
WO2019009327A1 (en) Organic electronics material and organic electronics element
JP7363214B2 (en) Ionic compounds, organic electronic materials, ink compositions, and organic electronic devices
JP2017218426A (en) Ionic compound, organic electronic material, organic electronic element, and organic electroluminescent element
JP6816540B2 (en) Charge-transporting material, ink composition using the material, organic electronics element, organic electroluminescence element, display element, lighting device, and display device.
JP6756143B2 (en) Organic Electronics Materials and Organic Electroluminescence Devices
JP7073789B2 (en) Methods for Controlling the Conductivity of Charge Transport Layers, Organic Electronics Devices, and Organic Electroluminescence Devices and Their Utilization
JP6946934B2 (en) Charge transport materials and organic electronics devices
JP6972589B2 (en) Organic electronics materials, and organic layers, organic electronics elements, organic electroluminescence elements, display elements, lighting devices, and display devices using the materials.
JP6915621B2 (en) Charge transport materials, ink compositions, and organic electronics devices
JP6657663B2 (en) Charge transporting material, ink composition using the material, organic electronic device, organic electroluminescent device, display device, display device, and lighting device
JP2022016775A (en) Organic electronics material, ink composition, organic layer, organic electronics element, organic electroluminescence element, illumination device, display element, and display unit
JPWO2020067300A1 (en) Organic Electronics Materials and Organic Electronics Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021543806

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19944298

Country of ref document: EP

Kind code of ref document: A1