WO2021044460A1 - User/product map estimation device, method and program - Google Patents

User/product map estimation device, method and program Download PDF

Info

Publication number
WO2021044460A1
WO2021044460A1 PCT/JP2019/034346 JP2019034346W WO2021044460A1 WO 2021044460 A1 WO2021044460 A1 WO 2021044460A1 JP 2019034346 W JP2019034346 W JP 2019034346W WO 2021044460 A1 WO2021044460 A1 WO 2021044460A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
user
feature vector
hidden feature
word
Prior art date
Application number
PCT/JP2019/034346
Other languages
French (fr)
Japanese (ja)
Inventor
幸史 市川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021543616A priority Critical patent/JP7310899B2/en
Priority to PCT/JP2019/034346 priority patent/WO2021044460A1/en
Publication of WO2021044460A1 publication Critical patent/WO2021044460A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising

Definitions

  • the present invention relates to a user / product map estimation device that maps the estimated user / product relationship in space, a user / product map estimation method, and a user / product map estimation program.
  • map space the space for displaying products and users in association with each other (the space at the map destination)
  • the map space is an arbitrary vector space
  • each product and user is represented by a vector on the map space.
  • map space is not limited to the vector space, and may be defined as a module, for example.
  • users are arranged in the map space based on the purchasing behavior of products (for example, beer). For example, a user who often buys "sharp” beer is placed near the "sharp” beer.
  • Non-Patent Documents 1 to 3 describe techniques for mapping a user and a product in the same space, respectively.
  • Non-Patent Document 1 estimates the vector on the user's map space and the vector on the map space of the product based on the user behavior data as follows.
  • the vector on the map space will be referred to as a hidden feature vector.
  • a set of products that the user likes (hereinafter referred to as a positive example product) and a product that the user does not like (hereinafter referred to as a negative example product) is defined.
  • the positive example product and the negative example product can be defined by using the behavior data of the user who is paying attention.
  • a set of products that the user of interest has purchased is defined as a regular product of the user of interest.
  • a product that the user of interest has not purchased is defined as a negative example product of the user of interest.
  • the distance from the hidden feature vector of each user to the hidden feature vector of the positive example product and the hidden feature vector of the negative example product of each user is calculated.
  • the distance between the hidden feature vector of each user and the hidden feature vector of the positive example product of each user is the hidden feature vector of each user and the hidden feature vector of the negative example product of each user. Assume the constraint that it is closer than the distance to. Then, the hidden feature vector of the user and the hidden feature vector of the product are estimated so as to realize this constraint as much as possible.
  • the device described in Non-Patent Document 1 estimates a vector on the user's map space and a vector on the product's map space based on the user's behavior data and product features.
  • the features of the product are also mapped to the space in which the hidden feature vector of the user and the product is defined.
  • image data, tags, and the like are assumed as features of each product.
  • Product features are transformed into a single vector in map space by any function.
  • a function that converts a product feature into one vector on the map space is referred to as an encoder.
  • an encoder for example, an affine transformation or a neural network is assumed.
  • the hidden feature vector of the user and the product is estimated under the above-mentioned constraint based on the user behavior and the constraint that the distance between the hidden feature vector of the product and the product feature vector projected by the encoder becomes short.
  • the above-mentioned encoder parameters are also estimated at the same time.
  • the device described in Non-Patent Document 2 estimates the hidden feature vector of the user and the hidden feature vector of the product based on the user's behavior data and the product feature, similarly to the device described in Non-Patent Document 1.
  • the device described in Non-Patent Document 2 learns a function that converts a point on the map space to the product feature space.
  • this function is referred to as a decoder.
  • the decoder makes it possible to interpret what kind of image data each point in the map space is, for example, in a situation where product features are input as image data.
  • Non-Patent Document 3 estimates the hidden feature vector of the user and the hidden feature vector of the product as follows. First, the distributed representation of words is learned using external data. By this learning, a certain vector is assigned to each word. This vector is estimated by the semantic closeness of each word. The distance between the vectors of words used in similar contexts, such as "Shepherd,” “Doberman,” and “Akita Inu,” is estimated to be close. On the other hand, the distance between vectors of words used in completely different contexts, such as “shepherd” and “windbreak”, is estimated to be long. In the following, the vector of each obtained word will be referred to as a word vector using external data. In addition, the vector space in which this word vector is defined is referred to as a word space.
  • each product has a certain word set by decomposing the sentence of the product into words by morphological analysis.
  • the word set of the entire product is a subset of words obtained by using external data. If there are words that are not in the external data among the words that the entire product has, this assumption can be satisfied by removing such words.
  • the hidden feature vector of each product is defined as the average value of the word vectors of each product. Further, the hidden feature vector of each user is defined as the average value of the hidden feature vector of each user's example product.
  • Non-Patent Document 3 the product and the user have a vector defined in the word space. For example, by adding natural language-based features such as “cold,” “red,” and “carbonated” to a product, it becomes possible to identify similar products and target users of such products.
  • Non-Patent Document 1 has a problem that it is difficult to interpret what kind of features each point on the embedded space means. That is, the device described in Non-Patent Document 1 outputs a set of products commonly preferred by a plurality of users in a mass on the map space. However, what kind of commonality the masses have must be interpreted after knowing the properties of each product.
  • Non-Patent Document 2 the interpretability of the map space is improved by simultaneously learning the function of projecting each point on the map space onto the product feature space for the above problem.
  • the interpretability of the map space is improved by simultaneously learning the function of projecting each point on the map space onto the product feature space for the above problem.
  • the product feature space is limited to the features of the product. Therefore, for example, it is not possible to perform an operation such as adding a new feature (characteristic) or subtracting an undefined concept. Specifically, in the above beer example, for example, a product with a certain "sharpness” is added with the characteristic of "lemon flavor", or the characteristic of "beer” is subtracted to add the characteristic of "black tea". You cannot operate it freely. That is, in the device described in Non-Patent Document 2, it is not possible to manipulate the hidden feature vector of the product in the map space by adding or subtracting the features shown in natural language.
  • Non-Patent Document 3 the word space learned using external data is used, and the hidden feature vector of the user and the hidden feature vector of the product are defined on the word space.
  • the external data is created by a huge corpus, and that most of the words we use every day are also assigned word vectors. Therefore, in the device described in Non-Patent Document 3, for example, the feature of "lemon flavor” is added to the product with “sharpness” shown above, or the feature of "tea” is subtracted from the feature of "beer". It is possible to add or subtract features based on natural language, such as adding.
  • the hidden feature vector of the product is represented by the sum of the word vectors. Therefore, for example, when there are a plurality of products having only the word "sharp", they are projected at exactly the same points on the map space. As a result, the effects of features that do not appear in the text of the product cannot be reflected. For example, if a product with "sharpness” has a characteristic "scent of wheat” that is not described in the text, it should not be placed at the same position as the word vector of "sharpness” in the map space. Is also assumed. That is, products having the same word are projected on the same point in the map space.
  • Such a situation can occur in a situation where the product information is not so substantial.
  • Such a situation is assumed when, for example, only short information such as an explanation of an EC (Electronic Commerce) site, a catch phrase of a product, and a category of a product is recorded as data.
  • EC Electronic Commerce
  • the device described in Non-Patent Document 1 has a problem that it is difficult to interpret what kind of feature each point in the map space means. Further, in the device described in Non-Patent Document 2, features other than the set of features defined in the entire product are added or subtracted from the hidden feature vector of the product or the hidden feature vector of the user in the map space. There is a problem that it cannot be operated. Further, the device described in Non-Patent Document 3 has a problem that the effect of a feature that does not appear in the text of the product cannot be incorporated, and the product having the same word is projected at the same position. Therefore, it is preferable that features that do not appear in the text explaining the product or the user can be estimated from the user's behavior data and the features can be embedded in the map space in which the features of the product or the user can be operated.
  • the present invention is a user / product map capable of mapping the relationship between a user and a product in consideration of the characteristics even when the product or the characteristics of the user do not appear in the text explaining these. It is an object of the present invention to provide an estimation device, a user / product map estimation method, and a user / product map estimation program.
  • the user / product map estimation device has an input unit for inputting learning data representing a product targeted for action according to a user's preference, product information representing a feature of the product, and a relationship between words. It is provided with an estimation unit that estimates a hidden feature vector representing a position on the map space for each of the user and the product based on the word information representing the product and the learning data, and the estimation unit uses the user's hidden feature vector and the product.
  • the distance between the hidden feature vector of the product and the hidden feature vector of the product reflects the user's preference for the product indicated by the training data, and the closer the relationship indicated by the word information is, the more the hidden feature vector of the product and the product information represent. It is characterized in that the hidden feature vector is estimated so that the distance from the word vector estimated based on the word indicating the feature of the product is close.
  • an input unit for inputting learning data representing a product targeted for action according to a user's preference, user information representing a feature provided by the user, and between words. It is provided with an estimation unit that estimates a hidden feature vector representing a position on the map space for each of the user and the product based on the word information representing the relationship and the learning data, and the estimation unit is the hidden feature vector of the user.
  • the distance between the hidden feature vector of the product and the hidden feature vector of the product should be a distance that reflects the user's preference for the product indicated by the learning data, and the closer the relationship indicated by the user information is, the closer the hidden feature vector of the user and the user information are. It is characterized in that the hidden feature vector is estimated so that the distance from the word vector estimated based on the word indicating the feature of the user to be represented is close.
  • learning data representing a product targeted for action is input according to a user's preference, product information representing the characteristics of the product, and a word representing the relationship between words.
  • the hidden feature vector representing the position in the map space is estimated for each of the user and the product, and at the time of estimation, the distance between the hidden feature vector of the user and the hidden feature vector of the product is determined.
  • the distance is set to reflect the user's preference for the product indicated by the training data, and the closer the relationship indicated by the word information is, the more based on the hidden feature vector of the product and the word indicating the characteristic of the product represented by the product information. It is characterized in that the hidden feature vector is estimated so that the distance from the word vector estimated by the above is close.
  • the user / product map estimation program is an input process for inputting learning data representing a product targeted for action into a computer according to a user's preference, product information representing the characteristics of the product, and words. Based on the word information representing the relationship between the two, and the training data, an estimation process for estimating the hidden feature vector representing the position in the map space for each of the user and the product is executed, and the user's hidden feature is hidden in the estimation process.
  • the distance between the feature vector and the hidden feature vector of the product should be a distance that reflects the user's preference for the product indicated by the training data, and the closer the relationship indicated by the word information is, the more the hidden feature vector of the product and the product It is characterized in that the hidden feature vector is estimated so that the distance from the word vector estimated based on the word indicating the feature of the product represented by the information is short.
  • the relationship between the user and the product in consideration of the characteristics can be mapped in space.
  • the user / product map estimation device in the present invention is a device that displays the relationship between the estimated user and the product in association with each other.
  • FIG. 1 is a block diagram showing a configuration example of the first embodiment of the user / product map estimation device according to the present invention.
  • the distance relationship between the user and the product is restricted from the behavior mechanism of the user and the word information indicating the relationship between the words, and the position of the user and the product in the word space is estimated.
  • product purchasing that is, purchasing mechanism
  • the behavior according to the user's taste is not limited to purchasing, and includes, for example, the behavior of evaluating, referencing, searching, and displaying one product from many products.
  • the vector representing the position of the user in the map space is indicated by P
  • the vector representing the position of the product in the map space is indicated by Q
  • the vector P may be referred to as a user's hidden feature vector
  • the vector Q may be referred to as a product hidden feature vector.
  • the distance between the vector P and the vector Q is represented by d (P, Q). This distance d is calculated by, for example, the Euclidean distance or an absolute value.
  • a vector representing the semantic content of the word possessed (explained) by each product or each user is described as a word vector and is represented by V.
  • This vector is a vector defined by the semantic closeness of each word and is estimated from the word information. Words used in similar contexts, such as “Shepherd,” “Doberman,” and “Akita Inu,” are close together, while words used in completely different contexts, such as “Shepherd” and “windbreak.” Is set to be far away.
  • Such word vector estimation can be realized by widely known estimation techniques such as Word2vec, fastText, and Grove. Then, by mapping on the word space, it becomes possible to perform natural language-based operations on the hidden feature vector of the user and the hidden feature vector of the product.
  • it is an object to estimate the hidden feature vector P of the user and the hidden feature vector Q of the product described above.
  • the user / product map estimation device 100 of the present embodiment includes a product information input unit 10, a word information input unit 20, a learning data input unit 30, an estimation unit 40, and an output unit 50. It is provided with a storage unit 60.
  • the storage unit 60 stores various parameters used for processing by the estimation unit 40, which will be described later. Further, the storage unit 60 may store the information received as input by the product information input unit 10, the word information input unit 20, and the learning data input unit 30.
  • the storage unit 60 is realized by, for example, a magnetic disk or the like.
  • the product information input unit 10 accepts input of product information representing the characteristics (attributes) of the product.
  • the product information input unit 10 may directly accept the input of the attributes of each product, or may accept the product information including the product attributes. Examples of the product information include a description given to the product.
  • the product information input unit 10 extracts words related to the product attribute from the product information.
  • the method of extracting the word related to the product attribute is arbitrary, and the product information input unit 10 may extract the word related to the product attribute from the product information by, for example, morphological analysis.
  • the product information input unit 10 may accept user information as input instead of the product information.
  • User information includes, for example, the profession and interests of the user.
  • the product information input unit 10 extracts words related to the user attribute from the user information.
  • the product information input unit 10 accepts user information as an input instead of the product information, the same effect can be obtained by reading the part described as the product as the user and the part described as the user below as the product. Play.
  • the product information input unit 10 can be called a user information input unit. The same applies to the following embodiments.
  • the word information input unit 20 accepts input of word information.
  • the word information input unit 20 may directly accept the input of the word vector indicated by each word as the word information, or may accept the set of sentences including the words. Examples of a set of sentences including words include a dictionary of words, a product description, a review sentence, and posting on SNS (Social Networking Service).
  • SNS Social Networking Service
  • the word information input unit 20 estimates the word vector of each word from the set of sentences including words.
  • the word information input unit 20 may use a word vector estimation technique such as word2vec, fastext, or grow as the estimation method.
  • the learning data input unit 30 inputs the learning data used by the estimation unit 40, which will be described later, for estimating the vector P and the vector Q.
  • the learning data is data showing the relationship between the user and the product, and specifically, is data representing the product that is the target of the action according to the preference of the user. For example, when focusing on purchasing behavior as a user's behavior, purchasing data (purchasing history) indicating data linked to purchasing according to the user's preference may be used as learning data.
  • the estimation unit 40 estimates the hidden feature vector P of each user and the hidden feature vector Q of each product corresponding to the product information based on the product information, the learning data, and the word information.
  • the distance relationship between the user and the product is restricted from the learning data and the word information, and the estimation unit 40 estimates the position of the user and the product in the word space.
  • the estimation unit 40 may estimate the vector P and the vector Q by calculating P and Q that minimize (optimize) the loss function illustrated in the following equation 1, for example.
  • Equation 1 L (P, Q, Y) is a term calculated based on the distance relationship between the user and the product based on the purchase data.
  • Y represents learning data (purchasing data).
  • L (P, Q, Y) is, for example, a value larger as the distance from the hidden feature vector of the positive product is farther than the distance from the hidden feature vector of the negative product with respect to the hidden feature vector P of the user. Is defined to take.
  • the product set purchased by the user may be treated as the regular product, and the other product set not purchased may be treated as the negative example set.
  • the estimation unit 40 estimates that the distance between the hidden feature vector P of the user and the hidden feature vector Q of the product reflects the user's preference for the product indicated by the learning data Y. Specifically, the estimation unit 40 may calculate L (P, Q, Y) by the following equation 2.
  • Equation 2 P u is the hidden feature vectors, Q i and Q j of the user u each represents a hidden feature vector of positive cases items i and negative cases product j. Further, I u + represents a set of positive example products of user u, and I u ⁇ represents a set of negative example products of user u. Further, in Equation 2, the function h is a function that returns the same value as the argument when the argument is a positive value, and returns 0 when the argument is a negative value. Also, m is a hyperparameter that adjusts the distance between positive and negative examples.
  • w u, i, j is the user u, positive sample product i, and a weight that is defined for negative cases product j, the distance between the hidden feature vector of the positive sample product, Negative example Adjust the weight of the term when it is farther than the hidden feature vector of the product.
  • the same value may be defined for woo, i, j in all sets, or woo, i, j may be largely defined for a regular product that is presumed to have a stronger preference. Good.
  • the estimation unit 40 uses the user's normal product or negative product based on the learning data as the user's preference for the product. Then, the estimation unit 40 estimates the hidden feature vector so as to minimize the loss function including the term defined by the distance between the hidden feature vector of the user and the hidden feature vector of the positive product or the negative product. May be good.
  • the estimation unit 40 estimates the hidden feature vector so that the closer the relationship indicated by the word information is, the closer the distance between the hidden feature vector of the product and the word vector of the product is.
  • L (Q, V) in Equation 1 is a word vector in which the hidden feature vector of the product is linked to the attribute of the product based on the hidden feature vector Q of each product, the attribute of each product, and the word vector V. The closer it is to, the smaller the value.
  • the estimation unit 40 may calculate L (Q, V) by the formula 3 illustrated below. That is, the estimation unit 40 may estimate the hidden feature vector so as to minimize the loss function including the term defined by the distance between the word vector and the hidden feature vector of the product.
  • Equation 3 i represents the index of the product and k represents the index of the product attribute. Further, w ik is a weight indicating whether or not the product i has the product attribute k, and may be a binary value of 0 or 1, or may be a positive real number indicating the degree. ⁇ is a hyperparameter that adjusts the magnitude of contribution of L (P, Q, Y) and L (Q, V).
  • the estimation unit 40 may calculate the vector P and the vector Q by the method of minimizing (optimizing) the loss function of the above equation 1. In this case, the estimation unit 40 may calculate P and Q that maximize the loss function by the steepest descent method or Newton's method.
  • the output unit 50 outputs the hidden feature vector of each user and the hidden feature vector of each product in the map space.
  • FIG. 2 is an explanatory diagram showing an example of an output result.
  • the example shown in FIG. 2 shows an example in which users, products, and words are mapped in the same space.
  • the triangular mark illustrated in FIG. 2 indicates a word vector
  • the symbol shown in the area R1 indicates a hidden feature vector of the product.
  • the symbol existing in the area R2 indicates the hidden feature vector of the user.
  • the output unit 50 may accept a user, a product, or a word designated by the user and output a user, a product, or a word in the vicinity of the designated user, the product, or the word.
  • the product information input unit 10, the word information input unit 20, the learning data input unit 30, the estimation unit 40, and the output unit 50 are computer processors (for example, a user / product map estimation program) that operate according to a program (user / product map estimation program). It is realized by CPU (Central Processing Unit) and GPU (Graphics Processing Unit).
  • the program is stored in the storage unit 60, and the processor reads the program and operates as a product information input unit 10, a word information input unit 20, a learning data input unit 30, an estimation unit 40, and an output unit 50 according to the program. You may. Further, the function of the user / product map estimation device 100 may be provided in the SaaS (Software as a Service) format.
  • SaaS Software as a Service
  • the product information input unit 10, the word information input unit 20, the learning data input unit 30, the estimation unit 40, and the output unit 50 may each be realized by dedicated hardware. Further, a part or all of each component of each device may be realized by a general-purpose or dedicated circuit (circuitry), a processor, or a combination thereof. These may be composed of a single chip or may be composed of a plurality of chips connected via a bus. A part or all of each component of each device may be realized by a combination of the above-mentioned circuit or the like and a program.
  • each component of the user / product map estimation device 100 when a part or all of each component of the user / product map estimation device 100 is realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be centrally arranged. It may be arranged in a distributed manner.
  • the information processing device, the circuit, and the like may be realized as a form in which each of the client-server system, the cloud computing system, and the like is connected via a communication network.
  • FIG. 3 is a flowchart showing an operation example of the user / product map estimation device 100 of the present embodiment.
  • the product information input unit 10 inputs product information (step S11).
  • the word information input unit 20 inputs word information (step S12).
  • the learning data input unit 30 inputs the learning data (step S13).
  • the estimation unit 40 estimates the hidden feature vector P of the user and the hidden feature vector Q of the product based on the product information, the word information, and the learning data (step S14).
  • the estimation unit 40 may estimate the hidden feature vector P of the user and the hidden feature vector Q of the product by minimizing the loss function. Then, the estimation unit 40 determines the convergence test of the estimation process (step S15). The estimation unit 40 may determine that the processing has converged when, for example, the amount of change in the value to be minimized, such as the loss function value, is less than a predetermined value or ratio. When it is determined that the convergence has occurred (Yes in step S15), the estimation unit 40 ends the estimation process. On the other hand, if it is not determined that the convergence has occurred (No in step S15), the estimation unit 40 repeats the processes after step S14.
  • the learning data input unit 30 inputs the learning data
  • the estimation unit 40 receives the hidden feature vector for each of the user and the product based on the product information, the word information, and the learning data. To estimate.
  • the estimation unit 40 sets the distance between the hidden feature vector of the user and the hidden feature vector of the product to be a distance that reflects the user's preference for the product indicated by the training data, and the relationship indicated by the word information.
  • the hidden feature vector is estimated so that the closer is, the closer the distance between the hidden feature vector of the product and the word vector representing the feature of the product is. Therefore, even if the characteristics of the product do not appear in the text explaining the product, the relationship between the user and the product in consideration of the characteristics can be mapped in space.
  • the estimation unit 40 receives the user and the product based on the user information, the word information, and the learning data. Estimate the hidden feature vector for each of. At that time, the estimation unit 40 sets the distance between the hidden feature vector of the user and the hidden feature vector of the product to be a distance that reflects the user's preference for the product indicated by the learning data, and the relationship indicated by the user information. The closer is, the closer the hidden feature vector of the user is to the word vector representing the user's feature, and the hidden feature vector is estimated. Therefore, even if the user's characteristics do not appear in the text explaining the user, the relationship between the user and the product in consideration of the characteristics can be mapped in space.
  • the estimation unit 40 receives the user's information based on the product information, the word information, and the learning data.
  • the hidden feature vector P and the hidden feature vector Q of the product are estimated.
  • the user's example product is placed in the vicinity of the user by estimation between the vector P and the vector Q based on the learning data.
  • the user's negative product is placed at a position away from the user.
  • a restriction is imposed on arranging the hidden feature vector Q of the product and the word vector V based on the product information in the vicinity.
  • the hidden feature vector Q of the product is arranged near the word vector based on the product information. Therefore, the position of the product in the map space reflects the semantic position of the word that the product has. Due to the limitation to Q based on the above-mentioned learning data, the hidden feature vector Q of each product is not a simple average value of the word vectors of the product, but a position that reflects the user's preference.
  • FIG. 4 is an explanatory diagram showing an example of the relationship between hidden feature vectors of users, products, and words.
  • beer A having the word “rich” as product information
  • beer B having the word “fragrance” as product information.
  • beer A is mapped to the same position as the word vector of "rich”
  • beer B is mapped to the same position as the word vector of "fragrance”.
  • the constraint shown in Equation 2 tries to bring the user and the hidden feature vector of beer B closer to each other.
  • the regular products of each user are connected by a solid line, and the words possessed by each product are indicated by a dotted line.
  • the attractive force of the calculation result by the above equations 2 and 3 acts between the lines, and the accurate position of the hidden feature vector of the product is estimated.
  • the position of the user is estimated by taking into account the repulsive force from the negative example product.
  • the estimated hidden feature vector of beer B is positioned at a point deviated from the position of the word vector of "fragrance” in the direction of the word vector of "rich”. Therefore, according to the present embodiment, it is possible to obtain a map that estimates the hidden characteristics of the product (in the example here, the “richness” of beer B).
  • the output hidden feature vector P of the user and the hidden feature vector Q of the product are maps on the word space. Therefore, a new hidden feature vector can be calculated by freely adding or subtracting word vectors. For example, adding “lemon flavor” to a certain beer or subtracting the feature "beer” to add the feature "tea” can be calculated by calculation between the hidden feature vector and the word vector.
  • the output unit 50 may enumerate the users, products, or words positioned within a certain predetermined distance from the hidden feature vector Q of the product after the operation.
  • the same operation can be performed on the user. For example, it is possible to add the feature of "marriage” to a certain user, or subtract the feature of "student” and add the feature of "IT work” by the calculation between the hidden feature vector and the word vector. ..
  • the prepared word space uses the word space learned using external data. It is also assumed that the external data is created by a huge corpus and that most of the words we use every day are also assigned word vectors. Therefore, it is possible to add and subtract more flexible features than the word set that the set of goods or the entire user has as an attribute.
  • the learning data of this embodiment user behavior data, review data, etc. existing in ID-POS (Point of sale system), EC site, video viewing site, Web migration log, etc. can be used.
  • the word information a word vector obtained from a word dictionary, a product description, a review sentence, a post on SNS, or the like can be used.
  • product attributes that are not clearly stated can be estimated and used for promotion and product development. Further, according to the present embodiment, it is possible to output a target user, a similar product, or an associated word of a new product obtained when an attribute is changed based on a natural language starting from a certain product. Therefore, it is possible to grasp the target of new product development and devise promotion measures. In addition, even for changes in user characteristics such as life events, more effective product recommendation and promotion will be possible by changing the attributes of users based on natural language.
  • Embodiment 2 Next, a second embodiment of the user / product map estimation device according to the present invention will be described.
  • the hidden feature vectors of the user and the product are estimated based on the word information prepared in advance.
  • the word vector representing the semantic relationship of the words prepared in advance in this way may not always hold in terms of the relationship between the user and the product.
  • words such as “spicy” and “sweet” are assumed to exist in close positions in the word space.
  • the reason is that the context in which these words appear is similar. That is, since a sentence such as “this curry is spicy” can be replaced with the word “sweet” such as “this curry is sweet”, “sweet” and “spicy” exist in the vicinity as word vectors. Is assumed.
  • the user groups who prefer sweet-tasting products and spicy-tasting products are different.
  • due to the closeness of the word vectors of "sweet” and "spicy” there is a possibility that a user who prefers spicy taste is placed in the vicinity of the sweet product obtained by the first embodiment.
  • FIG. 5 is an explanatory diagram showing an example of the relationship between the hidden feature vector of the user, the product, and the word when the word space is not converted.
  • FIG. 5 illustrates a map of users and goods in the vicinity of the words “spicy,” “sweet,” and “cake.”
  • “spicy” and “sweet” are arranged in the vicinity as word vectors, and "cake” is arranged in the distance.
  • the neighborhood of the product having the attribute of "sweet” is indicated by a circle. In this case, it is difficult for users in the vicinity of the attribute of "sweet”, users who prefer “cake” to products in the vicinity, and products having the characteristic of "cake” to appear.
  • users and products in the vicinity are mixed with users who prefer “spicy” products and "spicy” products.
  • FIG. 6 is a block diagram showing a configuration example of a second embodiment of the user / product map estimation device according to the present invention.
  • the user / product map estimation device 200 of the present embodiment includes a product information input unit 10, a word information input unit 20, a learning data input unit 30, an estimation unit 42, an output unit 52, and a storage unit 60. ing. That is, the user / product map estimation device 200 of the present embodiment is compared with the user / product map estimation device 100 of the first embodiment, and instead of the estimation unit 40 and the output unit 50, the estimation unit 42 and the output unit 52 It differs in that it has.
  • the function f is arbitrary, and the function f may be a function determined by a certain parameter ⁇ .
  • FIG. 7 is an explanatory diagram showing an example of converting the word space by the function f.
  • “spicy” and “sweet” are arranged in the vicinity as word vectors, and “cake” is arranged in the distance.
  • the function f is defined as a transformation in which "sweet” and “cake” are placed close to each other as the converted word vector, and "spicy” is placed far away from “sweet” and “cake”.
  • the estimation unit 42 estimates the hidden feature vector P of each user corresponding to the product information, the hidden feature vector Q of each product, and the parameter ⁇ of the conversion f, based on the product information, the learning data, and the word information. Similar to the first embodiment, the estimation unit 42 constrains the distance relationship between the user and the product from the learning data and the word information, and estimates the position of the user and the product in the word space. Specifically, the estimation unit 42 may estimate the vector P, the vector Q, and the parameter ⁇ by calculating P, Q, and ⁇ that minimize (optimize) the loss function illustrated in the following equation 4. Good.
  • L (P, Q, Y) is a term calculated based on the distance relationship between the user and the product based on the purchase data, as in the first embodiment. Further, L (P, Q, Y) takes a larger value as the distance from the hidden feature vector of the positive product is farther than the distance from the hidden feature vector of the negative product, as in the first embodiment. It may be defined as. Specifically, L (P, Q, Y) may be defined as in Equation 2 described above.
  • L (Q, V, ⁇ ) is the hidden feature vector Q of the product and the attributes of the product based on the hidden feature vector Q of each product, the attributes of each product, the word vector, and the parameters ⁇ of the function f and the function f.
  • the estimation unit 42 estimates the hidden feature vector so as to minimize the loss function including the term defined by the distance between the vector obtained by converting the word vector V by the function f and the hidden feature vector Q of the product. You may. Specifically, the estimation unit 42 may calculate L (Q, V, ⁇ ) by the formula 5 illustrated below.
  • Equation 3 The contents of i, k, wick , and ⁇ are the same as those in Equation 3 described above.
  • a specific example of the function f is an affine transformation.
  • f (V k , ⁇ ) is expressed as VA + b by the matrix A and the vector b.
  • the parameter ⁇ is each element of the matrix A and each element of the vector b.
  • the estimation unit 42 may calculate the vector P and the vector Q and the parameter ⁇ by the method of minimizing (optimizing) the loss function of the above equation 4. That is, the estimation unit 42 minimizes the loss function including the term defined by the distance between the vector obtained by converting the word vector V by the function f and the hidden feature vector Q of the product, and the hidden feature vector and the function f.
  • the parameter ⁇ of In this case, the estimation unit 42 may calculate P and Q that maximize the loss function by the steepest descent method or Newton's method.
  • the output unit 52 outputs the hidden feature vector of each user, the hidden feature vector of each product, and the word vector converted by the function f. Further, the output unit 52 may output the parameter of the function f.
  • FIG. 8 is an explanatory diagram showing an example of the output result. The example shown in FIG. 8 shows an example in which users, products, and words are mapped in the same space.
  • the output unit 52 may accept the user, the product, or the word specified by the user and output the user, the product, or the word in the vicinity of the designated user, the product, or the word.
  • the product information input unit 10, the word information input unit 20, the learning data input unit 30, the estimation unit 42, and the output unit 52 are realized by a computer processor that operates according to a program (user / product map estimation program). To.
  • FIG. 9 is a flowchart showing an operation example of the user / product map estimation device 200 of the present embodiment.
  • the processes from step S11 to step S13 for inputting the product information, the word information, and the learning data are the same as the processes illustrated in FIG.
  • the estimation unit 42 estimates the hidden feature vector P of the user, the hidden feature vector Q of the product, and the parameter ⁇ of the function f that transforms the word space, based on the product information, the word information, and the learning data (step S24).
  • the estimation unit 42 may estimate the hidden feature vector P of the user and the hidden feature vector Q of the product by minimizing (optimizing) the loss function. ..
  • step S25 the estimation unit 42 makes a convergence test in the same manner as in step S15 in FIG. That is, when it is determined that the convergence has occurred (Yes in step S25), the estimation unit 42 ends the estimation process. On the other hand, if it is not determined that the convergence has occurred (No in step S25), the estimation unit 42 repeats the processes after step S24.
  • the estimation unit 42 minimizes the loss function including the term defined by the distance between the vector obtained by converting the word vector by the function f and the hidden feature vector Q of the product. , Estimate the hidden feature vector (and the parameter ⁇ of the function f). Therefore, in addition to the effect of the first embodiment, the word space can be modified to suit the user's taste.
  • the estimation unit 42 transforms the hidden feature vector P of the user, the hidden feature vector Q of the product, and the word space based on the product information, the word information, the learning data, and the word information, and the parameters of the function f. Estimate ⁇ .
  • the user's example product is placed in the vicinity of the user by estimation between the vector P and the vector Q based on the learning data.
  • the user's negative product is placed at a position away from the user. As a result, the similarity between products based on user behavior is reflected on the map space.
  • a restriction is imposed on arranging the hidden feature vector Q of the product and the word vector V based on the product information in the vicinity.
  • the hidden feature vector Q of the product is arranged near the word vector based on the product information. Therefore, the position of the product in the map space reflects the semantic position of the word that the product has. Due to the limitation to Q based on the above-mentioned learning data, the hidden feature vector Q of each product is not a simple average value of the word vectors of the product, but a position that reflects the user's preference.
  • FIG. 10 is an explanatory diagram showing an example of the relationship between the hidden feature vector of the user, the product, and the word when the word space is transformed.
  • FIG. 10 illustrates how the user and product maps in the vicinity of the words “spicy”, “sweet” and “cake” are corrected by the process according to this embodiment.
  • “spicy” and “sweet” are placed nearby as word vectors, and "cake” is placed at points away from the "spicy” and “sweet” word vectors.
  • the functions f place the words "sweet” and "cake” in the vicinity as converted word vectors, and the vector of "spicy” is far from “sweet” or "cake”. Placed in.
  • users in the vicinity of the attribute of "sweet” users who prefer “cake” to the products in the vicinity, and products having the characteristic of "cake” appear.
  • users who prefer “spicy” products and “spicy” products are less likely to be mixed.
  • the output hidden feature vector of the user and the product is a map on the word space converted by the function f.
  • the original word vector is associated with the vector of the converted word space by the function f. Therefore, also in this embodiment, a new hidden feature vector can be calculated by freely adding or subtracting a word vector. Specifically, when adding a certain word vector to a certain vector in the map space, the vector obtained by converting the word vector by the function f may be added to the vector in the map space.
  • the word space corrected by the user's preference can be obtained as an operable map space. It also makes it possible to obtain maps of users and products in that space.
  • Embodiment 3 a third embodiment of the user / product map estimation device according to the present invention will be described.
  • the hidden feature vector of the user and the hidden feature vector of the product are output.
  • the output user and product hidden feature vectors are maps on the word space. Therefore, a new hidden feature vector can be calculated by freely adding or subtracting word vectors. For example, it is possible to add a feature of "lemon flavor" to a certain beer, or subtract a feature of "beer” to add a feature of "tea” by calculation between a hidden feature vector and a word vector. However, observing such calculations and results is not always an intuitive operation for the user of the device.
  • FIG. 11 is a block diagram showing a configuration example of a third embodiment of the user / product map estimation device according to the present invention.
  • the user / product map estimation device 300 of the present embodiment has a product information input unit 10, a word information input unit 20, a learning data input unit 30, an estimation unit 42, an output unit 52, a storage unit 60, and an output.
  • the operation unit 70 is provided. That is, the user / product map estimation device 300 of the present embodiment is different from the user / product map estimation device 200 of the second embodiment in that it includes an output operation unit 70.
  • the estimation unit 42 and the output unit 52 may be realized by the estimation unit 40 and the output unit 50 in the first embodiment, respectively.
  • the output operation unit 70 receives information on the product or user for which the hidden feature vector is output.
  • the output operation unit 70 may accept, for example, a user ID or a name as user information.
  • the output operation unit 70 outputs a hidden feature vector of the corresponding product or user based on the received input.
  • the output operation unit 70 accepts the input of any word and operation defined in the word space.
  • the output operation unit 70 may accept operations between vectors such as addition and subtraction, and may accept numerical values indicating the degree of addition and subtraction.
  • the output operation unit 70 calculates a new hidden feature vector by the hidden feature vector specified by the above-mentioned product or user information, the hidden feature vector of the word to be the input calculation, and the input calculation. To do.
  • the output operation unit 70 performs an operation of subtracting the hidden feature vector of "caffeine” from the hidden feature vector of "product A”. Then, the output operation unit 70 calculates the distance between the hidden feature vector after the above calculation and the hidden feature vector of the user, product, or word arranged in the map space, and the user having the hidden feature vector closer to the hidden feature vector. , Identify the product or word.
  • the output operation unit 70 may perform this calculation process for all users, products, and words, or may set a range (for example, only users, only products, only products in a specific category, etc.) given by the users in advance. You may go to the subject.
  • the output operation unit 70 outputs the hidden feature vector of the specified user, product, or word in a manner that is easy for the user to see.
  • the output operation unit 70 may display the product name and the product image side by side in the order of the distance from the hidden feature vector after the above calculation.
  • the output operation unit 70 lower-dimensionalizes, for example, a user, a product, or a word determined to be in or near a point of a hidden feature vector obtained on a map space by a method such as principal component analysis or tSNE. It may be highlighted and displayed on the map space projected on.
  • the product information input unit 10, the word information input unit 20, the learning data input unit 30, the estimation unit 42, the output unit 52, and the output operation unit 70 operate according to a program (user / product map estimation program). It is realized by the processor of the computer.
  • FIG. 12 is a flowchart showing an operation example of the user / product map estimation device 300 of the present embodiment.
  • the processing from step S11 to step S25 for inputting various information and estimating the hidden feature vector and the parameter ⁇ of the function f is the same as the processing illustrated in FIG.
  • the output operation unit 70 receives the product or user information and the input of any word and operation defined in the word space (step S36).
  • the output operation unit 70 calculates a new hidden feature vector by the hidden feature vector specified from the input product or user information, the hidden feature vector assigned to the input word, and the input calculation. (Step S37). Then, the output operation unit 70 calculates the distance between the hidden feature vector of the user, the product, or the word arranged on the map space and the calculated hidden feature vector (step S38).
  • the output operation unit 70 outputs a hidden feature vector of a nearby user, product, or word in a manner that is easy for the user to see based on the above-mentioned distance calculation (step S39).
  • the output operation unit 70 receives the information of the product or user to be output of the hidden feature vector, the word to be calculated, and the input of the calculation, and the hidden feature of the product or user is hidden.
  • the result of performing the operation related to the hidden feature vector of the received word is output.
  • the output operation unit 70 outputs the result of the natural language-based operation to a certain product or user based on the user input. Therefore, in addition to the effects of the first embodiment and the second embodiment, in the present embodiment, the result can be observed more intuitively by performing the operation based on the natural language on the output hidden feature vector. ..
  • FIG. 13 is a block diagram showing an outline of the user / product map estimation device according to the present invention.
  • the user / product map estimation device 80 (for example, the user / product map estimation device 100) according to the present invention inputs learning data (for example, purchase data) representing a product that is the target of an action according to a user's preference.
  • learning data for example, purchase data
  • the unit 81 for example, the learning data input unit 30
  • the product information representing the features of the product
  • the word information representing the relationship between words
  • the learning data the hidden feature representing the position on the map space.
  • It includes an estimation unit 82 (for example, an estimation unit 40 and an estimation unit 42) that estimates a vector for each of a user and a product.
  • the distance between the hidden feature vector of the user (for example, the hidden feature vector P) and the hidden feature vector of the product (for example, the hidden feature vector Q) reflects the user's preference for the product indicated by the training data.
  • Estimate the hidden feature vector (eg, using Equation 1).
  • the estimation unit 82 minimizes the loss function (for example, the above-mentioned equation 1) including the term defined by the distance between the word vector and the hidden feature vector of the product (for example, the above-mentioned equation 3).
  • the hidden feature vector may be estimated.
  • the estimation unit 82 uses the user's positive or negative product based on the learning data as the user's preference for the product, and sets the user's hidden feature vector and the user's hidden feature vector of the positive or negative product.
  • the hidden feature vector may be estimated so as to minimize the loss function (eg, equation 1 above) that includes the term defined by the distance (eg, equation 2 above).
  • the estimation unit 82 performs a loss function (for example, the above-mentioned equation 4) including a term defined by the distance between the vector obtained by converting the word vector by the conversion function (for example, the function f) and the hidden feature vector of the product.
  • the hidden feature vector may be estimated to be minimized.
  • the estimation unit 82 minimizes the loss function including the term defined by the distance between the vector obtained by converting the word vector by the conversion function and the hidden feature vector of the product, and the parameters of the hidden feature vector and the conversion function. (For example, the parameter ⁇ ) may be estimated.
  • the user / product map estimation device 80 may include an output unit (for example, an output unit 52) that outputs the parameters of the conversion function.
  • an output unit for example, an output unit 52
  • the user / product map estimation device 80 may include an output unit (for example, an output unit 50) that outputs a hidden feature vector of each user and a hidden feature vector of each product in the map space.
  • an output unit for example, an output unit 50
  • the user / product map estimation device 80 receives the information of the target product or user that outputs the hidden feature vector, the word to be calculated, and the input of the calculation, and receives the input of the hidden feature vector of the product or user.
  • An output operation unit (for example, an output operation unit 70) that outputs the result of performing an operation on the hidden feature vector of the received word may be provided.
  • the output operation unit may output a user, a product, or a word arranged in the vicinity of the vector obtained as a result of the calculation.
  • the estimation unit 82 may estimate a hidden feature vector representing a position on the map space in which the feature of the product can be manipulated for each of the user and the product.
  • the user / product map estimation device 80 may estimate the hidden feature vector using the user information instead of the product information or together with the product information.
  • the input unit 81 (for example, the learning data input unit 30) inputs learning data (for example, purchase data) representing the product that is the target of the action according to the user's preference
  • the estimation unit 82 (for example, the learning data input unit 30) inputs.
  • the estimation unit 40 and the estimation unit 42) generate a hidden feature vector representing a position in the map space based on the user information representing the feature provided by the user, the word information representing the relationship between words, and the learning data. Estimate for each user and product.
  • the estimation unit 82 reflects the user's preference for the product indicated by the learning data in the distance between the hidden feature vector of the user (for example, the hidden feature vector P) and the hidden feature vector of the product (for example, the hidden feature vector Q).
  • a hidden feature vector representing a position on the map space based on the learning data is provided with an estimation unit that estimates each of the user and the product, and the estimation unit includes the hidden feature vector of the user and the hidden feature of the product.
  • the distance from the vector is set to be a distance that reflects the user's preference for the product indicated by the learning data, and the closer the relationship indicated by the word information is, the more the hidden feature vector of the product and the product information represent.
  • a user / product map estimation device that estimates the hidden feature vector so that the distance from the word vector estimated based on the word indicating the feature of the product is close.
  • the estimation unit estimates the hidden feature vector so as to minimize the loss function including the term defined by the distance between the word vector and the hidden feature vector of the product. apparatus.
  • the estimation unit uses the user's positive product or negative product based on the learning data as the user's preference for the product, and the user's hidden feature vector and the positive product or the hidden feature of the negative product.
  • the user / product map estimation device according to Appendix 1 or Appendix 2, which estimates a hidden feature vector so as to minimize a loss function including a term defined by a distance from the vector.
  • the estimation unit estimates the hidden feature vector so as to minimize the loss function including the term defined by the distance between the vector obtained by converting the word vector by the conversion function and the hidden feature vector of the product.
  • the user / product map estimation device according to any one of 1 to 3.
  • the estimation unit minimizes the loss function including the term defined by the distance between the vector obtained by converting the word vector by the conversion function and the hidden feature vector of the product, and the hidden feature vector and the conversion function.
  • the user / product map estimation device according to any one of Supplementary note 1 to Supplementary note 4, which estimates the parameters of the above.
  • Appendix 6 The user / product map estimation device according to Appendix 5, which includes an output unit that outputs parameters of a conversion function.
  • Supplementary note 7 The user / product map estimation device according to any one of Supplementary note 1 to Supplementary note 6, which includes an output unit for outputting a hidden feature vector of each user and a hidden feature vector of each product in the map space.
  • the output operation unit is a user / product map estimation device according to Supplementary note 8 that outputs a user, a product, or a word arranged in the vicinity of a vector obtained as a result of an operation.
  • the estimation unit describes a hidden feature vector representing a position on a map space in which the features of the product can be manipulated, in any one of Supplements 1 to 9 that estimates the features of the product for each of the user and the product.
  • User / product map estimation device User / product map estimation device.
  • a hidden feature vector representing a position on the map space based on the learning data is provided with an estimation unit that estimates each of the user and the product, and the estimation unit includes the hidden feature vector of the user and the hidden feature of the product.
  • the distance to the vector is set to be a distance that reflects the user's preference for the product indicated by the learning data, and the closer the relationship indicated by the word information is, the more the hidden feature vector of the user and the user information represent.
  • a user / product map estimation device that estimates the hidden feature vector so that the distance from the word vector estimated based on the word indicating the user's characteristics is close.
  • the learning data representing the product targeted for action is input according to the user's preference, the product information representing the characteristics of the product, the word information representing the relationship between words, and the learning data.
  • a hidden feature vector representing a position on the map space is estimated for each of the user and the product based on the above, and at the time of the estimation, the distance between the hidden feature vector of the user and the hidden feature vector of the product is the training data. The distance is set to reflect the user's preference for the product indicated by, and the closer the relationship indicated by the word information is, the more the hidden feature vector of the product and the word indicating the characteristic of the product represented by the product information are used.
  • a user / product map estimation method characterized in that the hidden feature vector is estimated so that the distance from the word vector estimated based on the data is close.
  • Appendix 13 The user / product map estimation method according to Appendix 12, wherein the hidden feature vector is estimated so as to minimize the loss function including the term defined by the distance between the word vector and the hidden feature vector of the product.
  • an estimation process for estimating a hidden feature vector representing a position in the map space for each of the user and the product is executed.
  • the distance between the hidden feature vector of the user and the hidden feature vector of the product is set to be a distance reflecting the user's preference for the product indicated by the learning data, and the relationship indicated by the word information.
  • the user for estimating the hidden feature vector so that the closer the sex is, the closer the distance between the hidden feature vector of the product and the word vector estimated based on the word indicating the feature of the product represented by the product information is.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

In the present invention, an input unit 81 inputs learning data representing a product that was a subject of an action in accordance with a user preference. On the basis of product information representing a feature of the product, word information representing a relationship between words, and the learning data, an estimation unit 82 estimates, for the user and for the product, a hidden feature vector representing a position on a map space. The estimation unit 82 estimates the hidden feature vectors such that the distance between the user hidden feature vector and the product hidden feature vector becomes a distance reflecting the user preference indicated by the learning data for the product, and such that the closer the relationship indicated by the word information, the closer the distance between the product hidden feature vector and a word vector estimated on the basis of a word indicating the product feature represented by the product information.

Description

ユーザ・商品マップ推定装置、方法およびプログラムUser / Product Map Estimator, Method and Program
 本発明は、推定されるユーザおよび商品の関係を空間上にマップするユーザ・商品マップ推定装置、ユーザ・商品マップ推定方法およびユーザ・商品マップ推定プログラムに関する。 The present invention relates to a user / product map estimation device that maps the estimated user / product relationship in space, a user / product map estimation method, and a user / product map estimation program.
 マーケティングにおいて、どのような消費者がどのようなものを好んでいるか、という商品および消費者の関係性の把握は、消費者のセグメンテーションや自社製品のターゲッティングまたはポジショニングなどのマーケティング分析において極めて重要である。 In marketing, understanding the product-consumer relationships of what consumers like and what they like is extremely important in marketing analysis such as consumer segmentation and targeting or positioning of their products. ..
 近年では、商品および消費者の関係性を直感的に把握するため、商品と、商品の消費者であるサービスのユーザとの関係を、ある一つの空間に関連付けて表示(以下、マップと記す。)する技術が広く利用されている。 In recent years, in order to intuitively grasp the relationship between a product and a consumer, the relationship between the product and the user of the service that is the consumer of the product is displayed in association with a certain space (hereinafter, referred to as a map). ) Is widely used.
 以下では、商品およびユーザを関連付けて表示する空間(マップ先の空間)をマップ空間と記す。マップ空間は任意のベクトル空間であり、各商品およびユーザはマップ空間上のあるベクトルにより表されることを想定する。ただし、マップ空間は、ベクトル空間に限らず、例えば加群として定義されてもよい。 In the following, the space for displaying products and users in association with each other (the space at the map destination) will be referred to as the map space. It is assumed that the map space is an arbitrary vector space, and each product and user is represented by a vector on the map space. However, the map space is not limited to the vector space, and may be defined as a module, for example.
 例えば、あるサービスにおける取扱商品として、ビールを考える。そして、ビールを購買するサービスのユーザの集合を考える。商品およびユーザをある一つの空間にマップする技術では、類似した商品および類似したユーザは、マップ空間上において近傍に配置される。例えば、ビールの中でも「キレ」のあるビール同士はマップ空間上で近い位置に配置される。 For example, consider beer as a product handled in a certain service. Then, consider a set of users of a service that purchases beer. In the technique of mapping goods and users to one space, similar goods and similar users are placed close to each other in the map space. For example, among beers, beers with "sharpness" are placed close to each other in the map space.
 さらに、商品およびユーザを同一空間にマップする技術では、商品(例えば、ビール)に対する購買行動を基準として、マップ空間上にユーザが配置される。例えば、「キレ」のあるビールをよく買っているユーザは、「キレ」のあるビールの近くに配置される。 Furthermore, in the technology of mapping products and users in the same space, users are arranged in the map space based on the purchasing behavior of products (for example, beer). For example, a user who often buys "sharp" beer is placed near the "sharp" beer.
 このマップにより、例えば、「キレ」や「コク」といった性質を代表するビールの周りにどのような商品が配置されているか(すなわち、類似品としてみなせるか)を観察することができる。また、この観察に基づいて、各ビールがどのような性質をどの程度有しているのかを直感的に把握することが可能になる。 From this map, for example, it is possible to observe what kind of products are arranged around beer that represents properties such as "sharpness" and "richness" (that is, whether they can be regarded as similar products). In addition, based on this observation, it becomes possible to intuitively grasp what kind of property each beer has and how much.
 さらに、それぞれのビールに対して、近傍に配置されたユーザを観察することで、それぞれのビールが、どのようなユーザに購買されているかといった情報や、そのビールを好むユーザがどの程度の人数存在するのかといった情報を得ることが可能になる。 Furthermore, by observing the users placed in the vicinity of each beer, information such as what kind of user each beer is purchased and how many users like the beer exist. It becomes possible to obtain information such as whether to do it.
 また、非特許文献1~3には、ユーザと商品を同一空間にマップする技術がそれぞれ記載されている。 In addition, Non-Patent Documents 1 to 3 describe techniques for mapping a user and a product in the same space, respectively.
 非特許文献1に記載された装置は、ユーザ行動データに基づき、ユーザのマップ空間上のベクトル、および、商品のマップ空間上のベクトルを以下のように推定する。以下、マップ空間上のベクトルのことを、隠れ特徴ベクトルと記す。 The device described in Non-Patent Document 1 estimates the vector on the user's map space and the vector on the map space of the product based on the user behavior data as follows. Hereinafter, the vector on the map space will be referred to as a hidden feature vector.
 あるユーザに着目したとき、そのユーザが好む商品(以下、正例商品と記す)と、好んでいない商品(以下、負例商品と記す)の集合が定義される状況を想定する。正例商品および負例商品は、着目しているユーザの行動データを用いて定義することができる。具体的には、着目しているユーザが購入したことがある商品の集合が、着目しているユーザの正例商品として定義される。また、着目しているユーザが購入していない商品が、着目しているユーザの負例商品として定義される。 When focusing on a certain user, it is assumed that a set of products that the user likes (hereinafter referred to as a positive example product) and a product that the user does not like (hereinafter referred to as a negative example product) is defined. The positive example product and the negative example product can be defined by using the behavior data of the user who is paying attention. Specifically, a set of products that the user of interest has purchased is defined as a regular product of the user of interest. In addition, a product that the user of interest has not purchased is defined as a negative example product of the user of interest.
 このとき、各ユーザの正例商品の隠れ特徴ベクトルおよび負例商品の隠れ特徴ベクトルに対して、各ユーザの隠れ特徴ベクトルとの距離が算出される。非特許文献1に記載された装置は、各ユーザの隠れ特徴ベクトルと各ユーザの正例商品の隠れ特徴ベクトルとの距離が、各ユーザの隠れ特徴ベクトルと各ユーザの負例商品の隠れ特徴ベクトルとの距離よりも近い、という制約を想定する。そして、この制約をできる限り実現するように、ユーザの隠れ特徴ベクトルおよび商品の隠れ特徴ベクトルが推定される。 At this time, the distance from the hidden feature vector of each user to the hidden feature vector of the positive example product and the hidden feature vector of the negative example product of each user is calculated. In the device described in Non-Patent Document 1, the distance between the hidden feature vector of each user and the hidden feature vector of the positive example product of each user is the hidden feature vector of each user and the hidden feature vector of the negative example product of each user. Assume the constraint that it is closer than the distance to. Then, the hidden feature vector of the user and the hidden feature vector of the product are estimated so as to realize this constraint as much as possible.
 また、非特許文献1に記載された装置は、ユーザの行動データおよび商品特徴に基づき、ユーザのマップ空間上のベクトル、および、商品のマップ空間上のベクトルを推定する。非特許文献1に記載された装置は、商品が有する特徴も、ユーザおよび商品の隠れ特徴ベクトルが定義される空間にマップされる。非特許文献1では、例えば、画像データや、タグなどが各商品の特徴として想定されている。商品特徴は、任意の関数によりマップ空間上の1つのベクトルに変換される。以下、マップ空間上の1つのベクトルに商品特徴を変換する関数をエンコーダと記す。エンコーダとして、例えばアフィン変換や、ニューラルネットワークが想定されている。そして、上述したユーザ行動に基づく制約、および、商品の隠れ特徴ベクトルとエンコーダにより射影された商品特徴ベクトルとの距離が近くなるという制約のもと、ユーザおよび商品の隠れ特徴ベクトルが推定される。このとき、上述したエンコーダのパラメータも同時に推定される。 Further, the device described in Non-Patent Document 1 estimates a vector on the user's map space and a vector on the product's map space based on the user's behavior data and product features. In the device described in Non-Patent Document 1, the features of the product are also mapped to the space in which the hidden feature vector of the user and the product is defined. In Non-Patent Document 1, for example, image data, tags, and the like are assumed as features of each product. Product features are transformed into a single vector in map space by any function. Hereinafter, a function that converts a product feature into one vector on the map space is referred to as an encoder. As an encoder, for example, an affine transformation or a neural network is assumed. Then, the hidden feature vector of the user and the product is estimated under the above-mentioned constraint based on the user behavior and the constraint that the distance between the hidden feature vector of the product and the product feature vector projected by the encoder becomes short. At this time, the above-mentioned encoder parameters are also estimated at the same time.
 非特許文献2に記載された装置は、非特許文献1に記載された装置と同様に、ユーザの行動データおよび商品特徴に基づき、ユーザの隠れ特徴ベクトルおよび商品の隠れ特徴ベクトルを推定する。非特許文献2に記載された装置は、上述したエンコーダに加えて、マップ空間上の点から商品特徴空間上へ変換を行う関数を学習する。以下、この関数をデコーダと記す。デコーダによって、例えば商品特徴が画像データとして入力されている状況において、マップ空間上の各点がどのような画像データであるかを解釈することが可能になる。 The device described in Non-Patent Document 2 estimates the hidden feature vector of the user and the hidden feature vector of the product based on the user's behavior data and the product feature, similarly to the device described in Non-Patent Document 1. In addition to the encoder described above, the device described in Non-Patent Document 2 learns a function that converts a point on the map space to the product feature space. Hereinafter, this function is referred to as a decoder. The decoder makes it possible to interpret what kind of image data each point in the map space is, for example, in a situation where product features are input as image data.
 非特許文献3に記載された装置は、ユーザの隠れ特徴ベクトルおよび商品の隠れ特徴ベクトルを以下のように推定する。まず、外部データを使用し、単語の分散表現が学習される。この学習により、各単語にはあるベクトルが割り当てられる。このベクトルは、各単語の意味的な近さにより推定される。例えば「シェパード」、「ドーベルマン」および「秋田犬」といった、似た文脈で使用される単語のベクトル間の距離は近くなるように推定される。一方で「シェパード」と「防風林」のような、全く別の文脈で使用される単語のベクトル間の距離は遠くなるように推定される。以下では、外部データを使用し、得られた各単語のベクトルを単語ベクトルと記す。また、この単語ベクトルが定義されるベクトル空間を単語空間と記す。 The device described in Non-Patent Document 3 estimates the hidden feature vector of the user and the hidden feature vector of the product as follows. First, the distributed representation of words is learned using external data. By this learning, a certain vector is assigned to each word. This vector is estimated by the semantic closeness of each word. The distance between the vectors of words used in similar contexts, such as "Shepherd," "Doberman," and "Akita Inu," is estimated to be close. On the other hand, the distance between vectors of words used in completely different contexts, such as "shepherd" and "windbreak", is estimated to be long. In the following, the vector of each obtained word will be referred to as a word vector using external data. In addition, the vector space in which this word vector is defined is referred to as a word space.
 次に、商品の文章を形態素解析で単語へ分解することにより、各商品がある単語集合を有する状況を想定する。ここで、商品全体が有する単語集合は、外部データを用いて得られた単語の部分集合になっていると想定する。なお、商品全体が有する単語のうち、外部データにない単語が存在する場合は、そのような単語を取り除くことで、この想定を満たすことができる。 Next, assume a situation where each product has a certain word set by decomposing the sentence of the product into words by morphological analysis. Here, it is assumed that the word set of the entire product is a subset of words obtained by using external data. If there are words that are not in the external data among the words that the entire product has, this assumption can be satisfied by removing such words.
 このとき、非特許文献3に記載された装置では、各商品の隠れ特徴ベクトルが、各商品が有する単語ベクトルの平均値として定義される。また、各ユーザの隠れ特徴ベクトルは、各ユーザの正例商品の隠れ特徴ベクトルの平均値として定義される。 At this time, in the device described in Non-Patent Document 3, the hidden feature vector of each product is defined as the average value of the word vectors of each product. Further, the hidden feature vector of each user is defined as the average value of the hidden feature vector of each user's example product.
 非特許文献3に記載された技術により、商品およびユーザが単語空間上で定義されたベクトルを有することになる。例えば、ある商品に対して、「冷たい」、「赤い」、「炭酸」などの自然言語ベースの特徴を加えることで、そのような商品の類似商品やターゲットユーザを把握することが可能になる。 According to the technique described in Non-Patent Document 3, the product and the user have a vector defined in the word space. For example, by adding natural language-based features such as "cold," "red," and "carbonated" to a product, it becomes possible to identify similar products and target users of such products.
 しかし、非特許文献1に記載された方法では、埋め込み空間上での各点が、どのような特徴を意味しているのか解釈しにくいという問題がある。すなわち、非特許文献1に記載された装置により、複数のユーザが共通して好む商品の集合がマップ空間上で固まりになって出力される。しかし、その固まりがどのような共通性を有するかは、それぞれの商品の性質を知った上で解釈を行わなければならない。 However, the method described in Non-Patent Document 1 has a problem that it is difficult to interpret what kind of features each point on the embedded space means. That is, the device described in Non-Patent Document 1 outputs a set of products commonly preferred by a plurality of users in a mass on the map space. However, what kind of commonality the masses have must be interpreted after knowing the properties of each product.
 例えば、ビールの購買を考えると、「キレ」のあるビールと、「コク」のあるビールとでは、購買するユーザ層が異なる状況が想定される。この購買行動に基づいてビールをマップすると、「キレ」のあるビールが、ある点の付近に固まり、その点からある程度離れた点で、「コク」のあるビールが固まると想定される。しかし、マップ空間上における各商品の固まりが、「キレ」または「コク」という共通特徴を有するという発見は、各ビールの商品をよく知ったうえで内容を分析しないと分からない。 For example, when considering the purchase of beer, it is assumed that the user group to purchase is different between beer with "sharpness" and beer with "richness". When beer is mapped based on this purchasing behavior, it is assumed that beer with "sharpness" solidifies near a certain point, and beer with "richness" solidifies at a point some distance from that point. However, the discovery that the mass of each product in the map space has the common characteristic of "sharpness" or "richness" cannot be understood without familiarizing the product of each beer and analyzing the contents.
 また、非特許文献2に記載された方法では、上記の問題に対して、マップ空間上の各点を商品特徴空間に射影する関数を同時に学習することで、マップ空間の解釈性を向上させている。非特許文献2に記載された方法では、例えば、上述したビールの例において、各商品が有する「キレ」や「コク」といった単語をあらかじめ用意しておき、商品の説明文中に該当の単語が「存在する」または「存在しない」を表わす2値のベクトルで各商品の特徴を表現できる。 Further, in the method described in Non-Patent Document 2, the interpretability of the map space is improved by simultaneously learning the function of projecting each point on the map space onto the product feature space for the above problem. There is. In the method described in Non-Patent Document 2, for example, in the above-mentioned beer example, words such as "sharpness" and "richness" possessed by each product are prepared in advance, and the corresponding word is "" in the description of the product. The characteristics of each product can be expressed by a binary vector representing "exists" or "does not exist".
 仮に、単語を「キレ」および「コク」の2つに限定した場合、「キレ」が説明文中に存在する商品を(1,0)、「コク」が説明文中に存在する商品を(0,1)というベクトルで商品特徴を表現できる。同様に、「キレ」および「コク」が説明文中に存在する商品を(1,1)というベクトルで商品特徴を表現できる。この場合、非特許文献2に記載された装置では、例えばマップ空間上の(0,0.3,0.5)というベクトルが、上述したエンコーダにより、(0.5、0.2)といった特徴空間上での数値に変換される。したがって、マップ空間上の各点を、「キレ」と「コク」の度合いとして解釈できる。 If the words are limited to two words, "Kire" and "Koku", the product with "Kire" in the description (1,0) and the product with "Koku" in the description (0,0) Product features can be expressed by the vector 1). Similarly, a product in which "sharpness" and "richness" are present in the description can be represented by a vector (1,1). In this case, in the apparatus described in Non-Patent Document 2, for example, the vector (0, 0.3, 0.5) on the map space is characterized by (0.5, 0.2) by the above-mentioned encoder. Converted to a number in space. Therefore, each point on the map space can be interpreted as the degree of "sharpness" and "richness".
 しかし、非特許文献2に記載された装置では、商品特徴空間が、商品の有する特徴に制限されている。そのため、例えば、新たな特徴(特性)を付け加えたり、定義されていない概念を差し引いたりするような操作を行うことはできない。具体的には、上記のビールの例において、例えば、ある「キレ」のある商品に「レモン風味」という特徴を付け加えることや、「ビール」という特徴を差し引いて「紅茶」という特徴を付け加える、という自由な操作はできない。すなわち、非特許文献2に記載された装置では、自然言語で示される特徴の加算または減算により、マップ空間上の商品の隠れ特徴ベクトルを操作することはできない。 However, in the device described in Non-Patent Document 2, the product feature space is limited to the features of the product. Therefore, for example, it is not possible to perform an operation such as adding a new feature (characteristic) or subtracting an undefined concept. Specifically, in the above beer example, for example, a product with a certain "sharpness" is added with the characteristic of "lemon flavor", or the characteristic of "beer" is subtracted to add the characteristic of "black tea". You cannot operate it freely. That is, in the device described in Non-Patent Document 2, it is not possible to manipulate the hidden feature vector of the product in the map space by adding or subtracting the features shown in natural language.
 非特許文献3に記載された方法では、外部データを用いて学習した単語空間を利用し、ユーザの隠れ特徴ベクトルおよび商品の隠れ特徴ベクトルを単語空間上で定義する。ここで、外部データは巨大なコーパスにより作成され、我々が日常使用するほとんどの単語についても、単語ベクトルが割り当てられていると想定される。そのため、非特許文献3に記載された装置では、上記に示す、例えば、「キレ」のある商品に「レモン風味」という特徴を付け加えることや、「ビール」という特徴を差し引いて「紅茶」という特徴を付け加える、という自然言語ベースでの特徴の加算または減算が可能である。 In the method described in Non-Patent Document 3, the word space learned using external data is used, and the hidden feature vector of the user and the hidden feature vector of the product are defined on the word space. Here, it is assumed that the external data is created by a huge corpus, and that most of the words we use every day are also assigned word vectors. Therefore, in the device described in Non-Patent Document 3, for example, the feature of "lemon flavor" is added to the product with "sharpness" shown above, or the feature of "tea" is subtracted from the feature of "beer". It is possible to add or subtract features based on natural language, such as adding.
 しかし、非特許文献3に記載された装置では、商品の隠れ特徴ベクトルが単語ベクトルの和で表される。そのため、例えば、「キレ」の単語のみを有する商品が複数あった場合、マップ空間上で全く同じ点に射影される。その結果、商品の文章上に現れていない特徴の効果を反映することができない。例えば、ある「キレ」のある商品が、文章に記載されていない特徴である「麦の香り」を有している場合、マップ空間上での「キレ」の単語ベクトルと同じ位置に配置されないことも想定される。すなわち、同じ単語を有する商品はマップ空間上で同じ点に射影されてしまう。 However, in the device described in Non-Patent Document 3, the hidden feature vector of the product is represented by the sum of the word vectors. Therefore, for example, when there are a plurality of products having only the word "sharp", they are projected at exactly the same points on the map space. As a result, the effects of features that do not appear in the text of the product cannot be reflected. For example, if a product with "sharpness" has a characteristic "scent of wheat" that is not described in the text, it should not be placed at the same position as the word vector of "sharpness" in the map space. Is also assumed. That is, products having the same word are projected on the same point in the map space.
 このような状況は、商品情報がそれほど充実していない状況で起こり得る。このような状況は、例えば、EC(Electronic Commerce)サイトの説明文や、商品のキャッチコピー、商品のカテゴリなど、短文での情報しかデータとして記録されていない場合に想定される。このように、非特許文献3に記載された装置では、上述した2つの問題点の結果、近傍ユーザや類似商品を列挙する際、これらの関係が正確に出力されない状況が想定される。 Such a situation can occur in a situation where the product information is not so substantial. Such a situation is assumed when, for example, only short information such as an explanation of an EC (Electronic Commerce) site, a catch phrase of a product, and a category of a product is recorded as data. As described above, in the device described in Non-Patent Document 3, as a result of the above-mentioned two problems, it is assumed that these relationships are not accurately output when listing neighboring users and similar products.
 以上に示すように、非特許文献1に記載された装置では、マップ空間上での各点が、どのような特徴を意味しているのか解釈しにくいという問題がある。また、非特許文献2に記載された装置では、マップ空間上の商品の隠れ特徴ベクトルまたはユーザの隠れ特徴ベクトルに対し、商品全体で定義された特徴の集合以外の特徴を付け加えたり、差し引いたりする操作ができないという問題がある。また、非特許文献3に記載された装置では、商品の文章上に現れていない特徴の効果を取り入れられず、また、同じ単語を有する商品が同じ位置に射影されてしまうという問題がある。そのため、商品やユーザを説明する文章上に現れていない特徴についても、ユーザの行動データから推定し、商品またはユーザが有する特徴について操作可能なマップ空間上に、その特徴を埋め込みできることが好ましい。 As shown above, the device described in Non-Patent Document 1 has a problem that it is difficult to interpret what kind of feature each point in the map space means. Further, in the device described in Non-Patent Document 2, features other than the set of features defined in the entire product are added or subtracted from the hidden feature vector of the product or the hidden feature vector of the user in the map space. There is a problem that it cannot be operated. Further, the device described in Non-Patent Document 3 has a problem that the effect of a feature that does not appear in the text of the product cannot be incorporated, and the product having the same word is projected at the same position. Therefore, it is preferable that features that do not appear in the text explaining the product or the user can be estimated from the user's behavior data and the features can be embedded in the map space in which the features of the product or the user can be operated.
 そこで、本発明は、商品またはユーザの特徴が、これらを説明する文章上に現れていない場合であっても、その特徴を考慮したユーザと商品との関係を空間上にマップできるユーザ・商品マップ推定装置、ユーザ・商品マップ推定方法およびユーザ・商品マップ推定プログラムを提供することを目的とする。 Therefore, the present invention is a user / product map capable of mapping the relationship between a user and a product in consideration of the characteristics even when the product or the characteristics of the user do not appear in the text explaining these. It is an object of the present invention to provide an estimation device, a user / product map estimation method, and a user / product map estimation program.
 本発明によるユーザ・商品マップ推定装置は、ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力する入力部と、商品が備える特徴を表わす商品情報と、単語間の関係性を表す単語情報と、学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する推定部とを備え、推定部が、ユーザの隠れ特徴ベクトルと商品の隠れ特徴ベクトルとの距離が学習データが示すその商品に対するユーザの嗜好を反映した距離になるようにするとともに、単語情報が示す関係性が近いほど、商品の隠れ特徴ベクトルと商品情報が表わすその商品の特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように隠れ特徴ベクトルを推定することを特徴とする。 The user / product map estimation device according to the present invention has an input unit for inputting learning data representing a product targeted for action according to a user's preference, product information representing a feature of the product, and a relationship between words. It is provided with an estimation unit that estimates a hidden feature vector representing a position on the map space for each of the user and the product based on the word information representing the product and the learning data, and the estimation unit uses the user's hidden feature vector and the product. The distance between the hidden feature vector of the product and the hidden feature vector of the product reflects the user's preference for the product indicated by the training data, and the closer the relationship indicated by the word information is, the more the hidden feature vector of the product and the product information represent. It is characterized in that the hidden feature vector is estimated so that the distance from the word vector estimated based on the word indicating the feature of the product is close.
 本発明による他のユーザ・商品マップ推定装置は、ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力する入力部と、ユーザが備える特徴を表わすユーザ情報と、単語間の関係性を表す単語情報と、学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する推定部とを備え、推定部が、ユーザの隠れ特徴ベクトルと商品の隠れ特徴ベクトルとの距離が学習データが示すその商品に対するユーザの嗜好を反映した距離になるようにするとともに、ユーザ情報が示す関係性が近いほど、ユーザの隠れ特徴ベクトルとユーザ情報が表わすそのユーザの特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように隠れ特徴ベクトルを推定することを特徴とする。 In another user / product map estimation device according to the present invention, an input unit for inputting learning data representing a product targeted for action according to a user's preference, user information representing a feature provided by the user, and between words. It is provided with an estimation unit that estimates a hidden feature vector representing a position on the map space for each of the user and the product based on the word information representing the relationship and the learning data, and the estimation unit is the hidden feature vector of the user. The distance between the hidden feature vector of the product and the hidden feature vector of the product should be a distance that reflects the user's preference for the product indicated by the learning data, and the closer the relationship indicated by the user information is, the closer the hidden feature vector of the user and the user information are. It is characterized in that the hidden feature vector is estimated so that the distance from the word vector estimated based on the word indicating the feature of the user to be represented is close.
 本発明によるユーザ・商品マップ推定方法は、ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力し、商品が備える特徴を表わす商品情報と、単語間の関係性を表す単語情報と、学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定し、推定の際、ユーザの隠れ特徴ベクトルと商品の隠れ特徴ベクトルとの距離が学習データが示すその商品に対するユーザの嗜好を反映した距離になるようにするとともに、単語情報が示す関係性が近いほど、商品の隠れ特徴ベクトルと商品情報が表わすその商品の特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように隠れ特徴ベクトルを推定することを特徴とする。 In the user / product map estimation method according to the present invention, learning data representing a product targeted for action is input according to a user's preference, product information representing the characteristics of the product, and a word representing the relationship between words. Based on the information and the training data, the hidden feature vector representing the position in the map space is estimated for each of the user and the product, and at the time of estimation, the distance between the hidden feature vector of the user and the hidden feature vector of the product is determined. The distance is set to reflect the user's preference for the product indicated by the training data, and the closer the relationship indicated by the word information is, the more based on the hidden feature vector of the product and the word indicating the characteristic of the product represented by the product information. It is characterized in that the hidden feature vector is estimated so that the distance from the word vector estimated by the above is close.
 本発明によるユーザ・商品マップ推定プログラムは、コンピュータに、ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力する入力処理、および、商品が備える特徴を表わす商品情報と、単語間の関係性を表す単語情報と、学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する推定処理を実行させ、推定処理で、ユーザの隠れ特徴ベクトルと商品の隠れ特徴ベクトルとの距離が学習データが示すその商品に対するユーザの嗜好を反映した距離になるようにするとともに、単語情報が示す関係性が近いほど、商品の隠れ特徴ベクトルと商品情報が表わすその商品の特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように隠れ特徴ベクトルを推定させることを特徴とする。 The user / product map estimation program according to the present invention is an input process for inputting learning data representing a product targeted for action into a computer according to a user's preference, product information representing the characteristics of the product, and words. Based on the word information representing the relationship between the two, and the training data, an estimation process for estimating the hidden feature vector representing the position in the map space for each of the user and the product is executed, and the user's hidden feature is hidden in the estimation process. The distance between the feature vector and the hidden feature vector of the product should be a distance that reflects the user's preference for the product indicated by the training data, and the closer the relationship indicated by the word information is, the more the hidden feature vector of the product and the product It is characterized in that the hidden feature vector is estimated so that the distance from the word vector estimated based on the word indicating the feature of the product represented by the information is short.
 本発明によれば、商品またはユーザの特徴が、これらを説明する文章上に現れていない場合であっても、その特徴を考慮したユーザと商品との関係を空間上にマップできる。 According to the present invention, even when a product or a user's characteristics do not appear in the text explaining these, the relationship between the user and the product in consideration of the characteristics can be mapped in space.
本発明によるユーザ・商品マップ推定装置の第一の実施形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of the 1st Embodiment of the user / product map estimation apparatus by this invention. 出力結果の例を示す説明図である。It is explanatory drawing which shows the example of the output result. 第一の実施形態のユーザ・商品マップ推定装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the user-product map estimation apparatus of 1st Embodiment. ユーザ、商品および単語の隠れ特徴ベクトルの関係例を示す説明図である。It is explanatory drawing which shows the relation example of the hidden feature vector of a user, a product, and a word. ユーザ、商品および単語の隠れ特徴ベクトルの他の関係例を示す説明図である。It is explanatory drawing which shows the other relation example of the hidden feature vector of a user, a product and a word. 本発明によるユーザ・商品マップ推定装置の第二の実施形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of the 2nd Embodiment of the user / product map estimation apparatus by this invention. 単語空間を変換する例を示す説明図である。It is explanatory drawing which shows the example which transforms a word space. 出力結果の例を示す説明図である。It is explanatory drawing which shows the example of the output result. 第二の実施形態のユーザ・商品マップ推定装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the user-product map estimation apparatus of 2nd Embodiment. ユーザ、商品および単語の隠れ特徴ベクトルの関係例を示す説明図である。It is explanatory drawing which shows the relation example of the hidden feature vector of a user, a product, and a word. 本発明によるユーザ・商品マップ推定装置の第三の実施形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of the 3rd Embodiment of the user / product map estimation apparatus by this invention. 第三の実施形態のユーザ・商品マップ推定装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the user-product map estimation apparatus of 3rd Embodiment. 本発明によるユーザ・商品マップ推定装置の概要を示すブロック図である。It is a block diagram which shows the outline of the user / product map estimation apparatus by this invention.
 以下、本発明の実施形態を図面を参照して説明する。以下の説明において、ユーザと商品との関係を表現する場合、“ユーザ・商品”と表現する。例えば、本発明におけるユーザ・商品マップ推定装置は、推定されるユーザと商品との関係を関連付けて表示する装置であることを示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, when expressing the relationship between the user and the product, it is expressed as "user / product". For example, it is shown that the user / product map estimation device in the present invention is a device that displays the relationship between the estimated user and the product in association with each other.
実施形態1.
 図1は、本発明によるユーザ・商品マップ推定装置の第一の実施形態の構成例を示すブロック図である。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration example of the first embodiment of the user / product map estimation device according to the present invention.
 本実施形態では、ユーザの行動メカニズム、および、単語間の関係性を表わす単語情報からユーザ・商品間の距離関係に制約を与え、ユーザおよび商品の単語空間上での位置を推定する。以下の説明では、ユーザの嗜好に応じた行動メカニズムとして、商品の購買(すなわち、購買メカニズム)を例示する。ただし、ユーザの嗜好に応じた行動は、購買に限られず、例えば、多くの商品の中から一の商品を評価、参照、検索、表示するといった行動も含まれる。 In the present embodiment, the distance relationship between the user and the product is restricted from the behavior mechanism of the user and the word information indicating the relationship between the words, and the position of the user and the product in the word space is estimated. In the following description, product purchasing (that is, purchasing mechanism) will be illustrated as an action mechanism according to the user's preference. However, the behavior according to the user's taste is not limited to purchasing, and includes, for example, the behavior of evaluating, referencing, searching, and displaying one product from many products.
 以下の説明では、ユーザのマップ空間上での位置を表わすベクトルをPで示し、商品のマップ空間上での位置を表わすベクトルをQで示す。以下、ベクトルPのことをユーザの隠れ特徴ベクトルと記し、ベクトルQのことを商品の隠れ特徴ベクトルと記すこともある。また、ベクトルPとベクトルQの間の距離をd(P,Q)で表す。この距離dは、例えばユークリッド距離や絶対値などにより算出される。 In the following description, the vector representing the position of the user in the map space is indicated by P, and the vector representing the position of the product in the map space is indicated by Q. Hereinafter, the vector P may be referred to as a user's hidden feature vector, and the vector Q may be referred to as a product hidden feature vector. Further, the distance between the vector P and the vector Q is represented by d (P, Q). This distance d is calculated by, for example, the Euclidean distance or an absolute value.
 さらに、本実施形態では、各商品または各ユーザが有する(説明する)単語の意味的な内容を表すベクトルを単語ベクトルと記し、Vで表す。このベクトルは、各単語の意味的な近さにより定義されるベクトルであり、単語情報から推定される。例えば「シェパード」、「ドーベルマン」および「秋田犬」といった、似た文脈で使用される単語間の距離は近く、一方で「シェパード」と「防風林」のような全く別の文脈で使用される単語は遠くなるように設定される。このような単語ベクトルの推定は、Word2vecやfastText,Gloveなど、広く知られた推定技術により実現できる。そして、単語空間上へのマッピングにより、ユーザの隠れ特徴ベクトルおよび商品の隠れ特徴ベクトルに対して自然言語ベースの操作を行えるようになる。 Further, in the present embodiment, a vector representing the semantic content of the word possessed (explained) by each product or each user is described as a word vector and is represented by V. This vector is a vector defined by the semantic closeness of each word and is estimated from the word information. Words used in similar contexts, such as "Shepherd," "Doberman," and "Akita Inu," are close together, while words used in completely different contexts, such as "Shepherd" and "windbreak." Is set to be far away. Such word vector estimation can be realized by widely known estimation techniques such as Word2vec, fastText, and Grove. Then, by mapping on the word space, it becomes possible to perform natural language-based operations on the hidden feature vector of the user and the hidden feature vector of the product.
 本実施形態では、上述するユーザの隠れ特徴ベクトルPおよび商品の隠れ特徴ベクトルQを推定することを目標とする。 In the present embodiment, it is an object to estimate the hidden feature vector P of the user and the hidden feature vector Q of the product described above.
 図1を参照すると、本実施形態のユーザ・商品マップ推定装置100は、商品情報入力部10と、単語情報入力部20と、学習データ入力部30と、推定部40と、出力部50と、記憶部60とを備えている。 Referring to FIG. 1, the user / product map estimation device 100 of the present embodiment includes a product information input unit 10, a word information input unit 20, a learning data input unit 30, an estimation unit 40, and an output unit 50. It is provided with a storage unit 60.
 記憶部60は、後述する推定部40が処理に利用する各種パラメータを記憶する。また、記憶部60は、商品情報入力部10、単語情報入力部20、および、学習データ入力部30が入力として受け付けた情報を記憶してもよい。記憶部60は、例えば、磁気ディスク等により実現される。 The storage unit 60 stores various parameters used for processing by the estimation unit 40, which will be described later. Further, the storage unit 60 may store the information received as input by the product information input unit 10, the word information input unit 20, and the learning data input unit 30. The storage unit 60 is realized by, for example, a magnetic disk or the like.
 商品情報入力部10は、商品が備える特徴(属性)を表わす商品情報の入力を受け付ける。商品情報入力部10は、各商品の属性の入力を直接受け付けてもよいし、商品属性を含む商品情報を受け付けてもよい。商品情報として、例えば、商品に付与された説明文などが挙げられる。商品情報を受け付けた場合、商品情報入力部10は、商品情報から商品属性に関する単語を抽出する。商品属性に関する単語を抽出する方法は任意であり、商品情報入力部10は、例えば、形態素解析により、商品情報から商品属性に関する単語を抽出してもよい。 The product information input unit 10 accepts input of product information representing the characteristics (attributes) of the product. The product information input unit 10 may directly accept the input of the attributes of each product, or may accept the product information including the product attributes. Examples of the product information include a description given to the product. When the product information is received, the product information input unit 10 extracts words related to the product attribute from the product information. The method of extracting the word related to the product attribute is arbitrary, and the product information input unit 10 may extract the word related to the product attribute from the product information by, for example, morphological analysis.
 なお、商品情報入力部10は、商品情報の代わりに、ユーザ情報を入力として受け付けてもよい。ユーザ情報として、例えば、ユーザの職業や興味が挙げられる。ユーザ情報を受け付けた場合、商品情報入力部10は、ユーザ情報からユーザ属性に関する単語を抽出する。商品情報入力部10が、商品情報の代わりに、ユーザ情報を入力として受け付けた場合、以下、商品と記している箇所をユーザ、また、以下ユーザと記している箇所を商品と読み替えることで同じ効果を奏する。この場合、商品情報入力部10は、ユーザ情報入力部ということができる。以下の実施形態でも同様である。 Note that the product information input unit 10 may accept user information as input instead of the product information. User information includes, for example, the profession and interests of the user. When the user information is received, the product information input unit 10 extracts words related to the user attribute from the user information. When the product information input unit 10 accepts user information as an input instead of the product information, the same effect can be obtained by reading the part described as the product as the user and the part described as the user below as the product. Play. In this case, the product information input unit 10 can be called a user information input unit. The same applies to the following embodiments.
 単語情報入力部20は、単語情報の入力を受け付ける。単語情報入力部20は、単語情報として、各単語が示す単語ベクトルの入力を直接受け付けてもよいし、単語を含む文章の集合を受け付けてもよい。単語を含む文章の集合として、例えば、単語の辞書や、商品説明文、レビュー文章や、SNS(Social Networking Service )での投稿などが挙げられる。単語を含む文章の集合を受け付けた場合、単語情報入力部20は、単語を含む文章の集合から各単語の単語ベクトルを推定する。単語情報入力部20は、推定方法に、word2vecやfasttext、gloveなどの単語ベクトル推定技術を用いてもよい。 The word information input unit 20 accepts input of word information. The word information input unit 20 may directly accept the input of the word vector indicated by each word as the word information, or may accept the set of sentences including the words. Examples of a set of sentences including words include a dictionary of words, a product description, a review sentence, and posting on SNS (Social Networking Service). When the set of sentences including words is accepted, the word information input unit 20 estimates the word vector of each word from the set of sentences including words. The word information input unit 20 may use a word vector estimation technique such as word2vec, fastext, or grow as the estimation method.
 学習データ入力部30は、後述する推定部40がベクトルPおよびベクトルQの推定に用いる学習データを入力する。学習データは、ユーザと商品との間の関係性を示すデータであり、具体的には、ユーザの嗜好に応じて行動の対象になった商品を表わすデータである。例えば、ユーザの行動として購買行為に着目する場合、学習データとして、ユーザの嗜好により購買に結び付いたデータを示す購買データ(購買履歴)が用いられてもよい。 The learning data input unit 30 inputs the learning data used by the estimation unit 40, which will be described later, for estimating the vector P and the vector Q. The learning data is data showing the relationship between the user and the product, and specifically, is data representing the product that is the target of the action according to the preference of the user. For example, when focusing on purchasing behavior as a user's behavior, purchasing data (purchasing history) indicating data linked to purchasing according to the user's preference may be used as learning data.
 推定部40は、商品情報と学習データと単語情報とに基づいて、商品情報に対応した各ユーザの隠れ特徴ベクトルPおよび各商品の隠れ特徴ベクトルQを推定する。ここで、本実施形態では、学習データおよび単語情報からユーザ・商品間の距離関係に制約を与え、推定部40は、ユーザおよび商品の単語空間上での位置を推定する。具体的には、推定部40は、例えば、以下の式1に例示する損失関数を最小化(最適化)するP,Qを算出することでベクトルPおよびベクトルQを推定してもよい。 The estimation unit 40 estimates the hidden feature vector P of each user and the hidden feature vector Q of each product corresponding to the product information based on the product information, the learning data, and the word information. Here, in the present embodiment, the distance relationship between the user and the product is restricted from the learning data and the word information, and the estimation unit 40 estimates the position of the user and the product in the word space. Specifically, the estimation unit 40 may estimate the vector P and the vector Q by calculating P and Q that minimize (optimize) the loss function illustrated in the following equation 1, for example.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式1において、L(P,Q,Y)は、購買データに基づき、ユーザ・商品間の距離関係により算出される項である。なお、Yは、学習データ(購買データ)を表わす。 In Equation 1, L (P, Q, Y) is a term calculated based on the distance relationship between the user and the product based on the purchase data. In addition, Y represents learning data (purchasing data).
 L(P,Q,Y)は、例えば、ユーザの隠れ特徴ベクトルPに対して、正例商品の隠れ特徴ベクトルとの距離が、負例商品の隠れ特徴ベクトルとの距離よりも遠いほど大きな値をとるように定義される。なお、正例商品および負例商品について、例えば、ユーザが購入した商品集合を正例商品、購入しなかったその他の商品集合を負例集合と扱ってもよい。 L (P, Q, Y) is, for example, a value larger as the distance from the hidden feature vector of the positive product is farther than the distance from the hidden feature vector of the negative product with respect to the hidden feature vector P of the user. Is defined to take. Regarding the positive example product and the negative example product, for example, the product set purchased by the user may be treated as the regular product, and the other product set not purchased may be treated as the negative example set.
 このように、推定部40は、ユーザの隠れ特徴ベクトルPと商品の隠れ特徴ベクトルQとの距離が、学習データYが示すその商品に対するユーザの嗜好を反映した距離になるように推定する。推定部40は、具体的には、以下に例示する式2によりL(P,Q,Y)を算出してもよい。 In this way, the estimation unit 40 estimates that the distance between the hidden feature vector P of the user and the hidden feature vector Q of the product reflects the user's preference for the product indicated by the learning data Y. Specifically, the estimation unit 40 may calculate L (P, Q, Y) by the following equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式2において、Pは、ユーザuの隠れ特徴ベクトル、QおよびQは、それぞれ正例商品iおよび負例商品jの隠れ特徴ベクトルを表す。また、I はユーザuの正例商品の集合、I は、ユーザuの負例商品の集合を表す。また、式2において、関数hは、引数が正の値の場合に引数と同じ値を返し、引数が負の値の場合には0を返す関数である。また、mは正例と負例の間の距離を調整するハイパーパラメータである。 In Equation 2, P u is the hidden feature vectors, Q i and Q j of the user u each represents a hidden feature vector of positive cases items i and negative cases product j. Further, I u + represents a set of positive example products of user u, and I u − represents a set of negative example products of user u. Further, in Equation 2, the function h is a function that returns the same value as the argument when the argument is a positive value, and returns 0 when the argument is a negative value. Also, m is a hyperparameter that adjusts the distance between positive and negative examples.
 また、式2において、wu,i,jは各ユーザu、正例商品i、および、負例商品jに対して定義される重みであり、正例商品の隠れ特徴ベクトルとの距離が、負例商品の隠れ特徴ベクトルとの距離よりも遠い場合の項の重さを調整する。例えば、すべての組で同じ値がwu,i,jに定義されてもよいし、より嗜好が強いと推察される正例商品に対して、wu,i,jが大きく定義されてもよい。 Further, in the equation 2, w u, i, j is the user u, positive sample product i, and a weight that is defined for negative cases product j, the distance between the hidden feature vector of the positive sample product, Negative example Adjust the weight of the term when it is farther than the hidden feature vector of the product. For example, the same value may be defined for woo, i, j in all sets, or woo, i, j may be largely defined for a regular product that is presumed to have a stronger preference. Good.
 このように、推定部40は、学習データに基づくユーザの正例商品または負例商品を、商品に対するユーザの嗜好として用いる。そして、推定部40は、ユーザの隠れ特徴ベクトルと正例商品または負例商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定してもよい。 In this way, the estimation unit 40 uses the user's normal product or negative product based on the learning data as the user's preference for the product. Then, the estimation unit 40 estimates the hidden feature vector so as to minimize the loss function including the term defined by the distance between the hidden feature vector of the user and the hidden feature vector of the positive product or the negative product. May be good.
 一方、推定部40は、単語情報が示す関係性が近いほど、商品の隠れ特徴ベクトルとその商品の単語ベクトルとの距離が近くなるように隠れ特徴ベクトルを推定する。式1におけるL(Q,V)は、各商品の隠れ特徴ベクトルQと、各商品の属性と、単語ベクトルVとに基づき、商品の隠れ特徴ベクトルが、その商品が有する属性に結び付いた単語ベクトルの近くにあるほど小さい値をとる。推定部40は、具体的には、以下に例示する式3によりL(Q,V)を算出してもよい。すなわち、推定部40は、単語ベクトルと商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定してもよい。 On the other hand, the estimation unit 40 estimates the hidden feature vector so that the closer the relationship indicated by the word information is, the closer the distance between the hidden feature vector of the product and the word vector of the product is. L (Q, V) in Equation 1 is a word vector in which the hidden feature vector of the product is linked to the attribute of the product based on the hidden feature vector Q of each product, the attribute of each product, and the word vector V. The closer it is to, the smaller the value. Specifically, the estimation unit 40 may calculate L (Q, V) by the formula 3 illustrated below. That is, the estimation unit 40 may estimate the hidden feature vector so as to minimize the loss function including the term defined by the distance between the word vector and the hidden feature vector of the product.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式3において、iは、商品のインデックス、kは、商品属性のインデックスを表す。また、wikは、商品iが商品属性kを有しているかどうかを表す重みであり、0または1のバイナリ値でもよいし、度合いを表す正の実数でもよい。αは、L(P,Q,Y)とL(Q,V)の寄与の大きさを調整するハイパーパラメータである。 In Equation 3, i represents the index of the product and k represents the index of the product attribute. Further, w ik is a weight indicating whether or not the product i has the product attribute k, and may be a binary value of 0 or 1, or may be a positive real number indicating the degree. α is a hyperparameter that adjusts the magnitude of contribution of L (P, Q, Y) and L (Q, V).
 推定部40は、上記に示す式1の損失関数を最小化(最適化)する手法により、ベクトルPおよびベクトルQを算出してもよい。この場合、推定部40は、最急降下法やニュートン法により、損失関数が最大になるPおよびQを算出してもよい。 The estimation unit 40 may calculate the vector P and the vector Q by the method of minimizing (optimizing) the loss function of the above equation 1. In this case, the estimation unit 40 may calculate P and Q that maximize the loss function by the steepest descent method or Newton's method.
 出力部50は、マップ空間における各ユーザの隠れ特徴ベクトルおよび各商品の隠れ特徴ベクトルを出力する。図2は、出力結果の例を示す説明図である。図2に示す例では、ユーザ、商品および単語が同一の空間上にマップされた例を示す。図2に例示する三角印が、単語ベクトルを示し、領域R1に示す記号が、商品の隠れ特徴ベクトルを示す。また、領域R2に存在する記号が、ユーザの隠れ特徴ベクトルを示す。なお、出力部50は、ユーザによって指定されたユーザ、商品または単語を受け付けて、指定されたユーザ、商品または単語の近傍のユーザ、商品または単語を出力するようにしてもよい。 The output unit 50 outputs the hidden feature vector of each user and the hidden feature vector of each product in the map space. FIG. 2 is an explanatory diagram showing an example of an output result. The example shown in FIG. 2 shows an example in which users, products, and words are mapped in the same space. The triangular mark illustrated in FIG. 2 indicates a word vector, and the symbol shown in the area R1 indicates a hidden feature vector of the product. Further, the symbol existing in the area R2 indicates the hidden feature vector of the user. The output unit 50 may accept a user, a product, or a word designated by the user and output a user, a product, or a word in the vicinity of the designated user, the product, or the word.
 商品情報入力部10と、単語情報入力部20と、学習データ入力部30と、推定部40と、出力部50とは、プログラム(ユーザ・商品マップ推定プログラム)に従って動作するコンピュータのプロセッサ(例えば、CPU(Central Processing Unit )、GPU(Graphics Processing Unit))によって実現される。 The product information input unit 10, the word information input unit 20, the learning data input unit 30, the estimation unit 40, and the output unit 50 are computer processors (for example, a user / product map estimation program) that operate according to a program (user / product map estimation program). It is realized by CPU (Central Processing Unit) and GPU (Graphics Processing Unit).
 例えば、プログラムは、記憶部60に記憶され、プロセッサは、そのプログラムを読み込み、プログラムに従って、商品情報入力部10、単語情報入力部20、学習データ入力部30、推定部40および出力部50として動作してもよい。また、ユーザ・商品マップ推定装置100の機能がSaaS(Software as a Service )形式で提供されてもよい。 For example, the program is stored in the storage unit 60, and the processor reads the program and operates as a product information input unit 10, a word information input unit 20, a learning data input unit 30, an estimation unit 40, and an output unit 50 according to the program. You may. Further, the function of the user / product map estimation device 100 may be provided in the SaaS (Software as a Service) format.
 商品情報入力部10と、単語情報入力部20と、学習データ入力部30と、推定部40と、出力部50とは、それぞれが専用のハードウェアで実現されていてもよい。また、各装置の各構成要素の一部又は全部は、汎用または専用の回路(circuitry )、プロセッサ等やこれらの組合せによって実現されてもよい。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。各装置の各構成要素の一部又は全部は、上述した回路等とプログラムとの組合せによって実現されてもよい。 The product information input unit 10, the word information input unit 20, the learning data input unit 30, the estimation unit 40, and the output unit 50 may each be realized by dedicated hardware. Further, a part or all of each component of each device may be realized by a general-purpose or dedicated circuit (circuitry), a processor, or a combination thereof. These may be composed of a single chip or may be composed of a plurality of chips connected via a bus. A part or all of each component of each device may be realized by a combination of the above-mentioned circuit or the like and a program.
 また、ユーザ・商品マップ推定装置100の各構成要素の一部又は全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。 Further, when a part or all of each component of the user / product map estimation device 100 is realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be centrally arranged. It may be arranged in a distributed manner. For example, the information processing device, the circuit, and the like may be realized as a form in which each of the client-server system, the cloud computing system, and the like is connected via a communication network.
 次に、本実施形態のユーザ・商品マップ推定装置の動作を説明する。図3は、本実施形態のユーザ・商品マップ推定装置100の動作例を示すフローチャートである。商品情報入力部10は、商品情報を入力する(ステップS11)。単語情報入力部20は、単語情報を入力する(ステップS12)。また、学習データ入力部30は、学習データを入力する(ステップS13)。 Next, the operation of the user / product map estimation device of this embodiment will be described. FIG. 3 is a flowchart showing an operation example of the user / product map estimation device 100 of the present embodiment. The product information input unit 10 inputs product information (step S11). The word information input unit 20 inputs word information (step S12). Further, the learning data input unit 30 inputs the learning data (step S13).
 推定部40は、商品情報と単語情報と学習データとに基づいて、ユーザの隠れ特徴ベクトルPおよび商品の隠れ特徴ベクトルQを推定する(ステップS14)。損失関数が上記に示す式1で表される場合、推定部40は、損失関数を最小化することでユーザの隠れ特徴ベクトルPおよび商品の隠れ特徴ベクトルQを推定してもよい。そして、推定部40は、推定処理の収束判定を行う(ステップS15)。推定部40は、例えば、損失関数値など、最小化しようとする値の変化量が予め定めた値や割合を下回った場合に、処理が収束したと判定してもよい。収束したと判定された場合(ステップS15におけるYes)、推定部40は、推定処理を終了する。一方、収束したと判定されなかった場合(ステップS15におけるNo)、推定部40は、ステップS14以降の処理を繰り返す。 The estimation unit 40 estimates the hidden feature vector P of the user and the hidden feature vector Q of the product based on the product information, the word information, and the learning data (step S14). When the loss function is represented by the above equation 1, the estimation unit 40 may estimate the hidden feature vector P of the user and the hidden feature vector Q of the product by minimizing the loss function. Then, the estimation unit 40 determines the convergence test of the estimation process (step S15). The estimation unit 40 may determine that the processing has converged when, for example, the amount of change in the value to be minimized, such as the loss function value, is less than a predetermined value or ratio. When it is determined that the convergence has occurred (Yes in step S15), the estimation unit 40 ends the estimation process. On the other hand, if it is not determined that the convergence has occurred (No in step S15), the estimation unit 40 repeats the processes after step S14.
 以上のように、本実施形態では、学習データ入力部30が、学習データを入力し、推定部40が、商品情報と単語情報と学習データとに基づいて、ユーザおよび商品のそれぞれについて隠れ特徴ベクトルを推定する。その際、推定部40が、ユーザの隠れ特徴ベクトルと商品の隠れ特徴ベクトルとの距離が学習データが示すその商品に対するユーザの嗜好を反映した距離になるようにするとともに、単語情報が示す関係性が近いほど、商品の隠れ特徴ベクトルとその商品の特徴を表わす単語ベクトルとの距離が近くなるように隠れ特徴ベクトルを推定する。よって、商品の特徴がその商品を説明する文章上に現れていない場合であっても、その特徴を考慮したユーザと商品との関係を空間上にマップできる。 As described above, in the present embodiment, the learning data input unit 30 inputs the learning data, and the estimation unit 40 receives the hidden feature vector for each of the user and the product based on the product information, the word information, and the learning data. To estimate. At that time, the estimation unit 40 sets the distance between the hidden feature vector of the user and the hidden feature vector of the product to be a distance that reflects the user's preference for the product indicated by the training data, and the relationship indicated by the word information. The hidden feature vector is estimated so that the closer is, the closer the distance between the hidden feature vector of the product and the word vector representing the feature of the product is. Therefore, even if the characteristics of the product do not appear in the text explaining the product, the relationship between the user and the product in consideration of the characteristics can be mapped in space.
 また、商品情報入力部10(ユーザ情報入力部)が、商品情報の代わりにユーザ情報を入力として受け付けた場合、推定部40が、ユーザ情報と単語情報と学習データとに基づいて、ユーザおよび商品のそれぞれについて隠れ特徴ベクトルを推定する。その際、推定部40が、ユーザの隠れ特徴ベクトルと商品の隠れ特徴ベクトルとの距離が学習データが示すその商品に対するユーザの嗜好を反映した距離になるようにするとともに、ユーザ情報が示す関係性が近いほど、ユーザの隠れ特徴ベクトルとそのユーザの特徴を表わす単語ベクトルとの距離が近くなるように隠れ特徴ベクトルを推定する。よって、ユーザの特徴がそのユーザを説明する文章上に現れていない場合であっても、その特徴を考慮したユーザと商品との関係を空間上にマップできる。 Further, when the product information input unit 10 (user information input unit) accepts the user information as input instead of the product information, the estimation unit 40 receives the user and the product based on the user information, the word information, and the learning data. Estimate the hidden feature vector for each of. At that time, the estimation unit 40 sets the distance between the hidden feature vector of the user and the hidden feature vector of the product to be a distance that reflects the user's preference for the product indicated by the learning data, and the relationship indicated by the user information. The closer is, the closer the hidden feature vector of the user is to the word vector representing the user's feature, and the hidden feature vector is estimated. Therefore, even if the user's characteristics do not appear in the text explaining the user, the relationship between the user and the product in consideration of the characteristics can be mapped in space.
 例えば、損失関数が上記に示す式1で表される場合、学習データ入力部30が、学習データの入力を受け付けると、推定部40が、商品情報、単語情報および学習データに基づいて、ユーザの隠れ特徴ベクトルPおよび商品の隠れ特徴ベクトルQを推定する。このとき、学習データに基づくベクトルPとベクトルQとの間の推定により、ユーザの正例商品はそのユーザの近傍に配置される。一方で、ユーザの負例商品はそのユーザから離れた位置に配置される。あるユーザの隠れ特徴ベクトルPに対して、二つの商品の隠れ特徴ベクトルをQ1,Q2と記した場合、距離の三角不等式によりd(P,Q1)+d(P,Q2)≧d(Q1,Q2)が成立する。したがって、正例商品同士は、それぞれ近傍に配置される。これにより、結果として、ユーザ行動を基準とした商品間の類似性がマップ空間上に反映される。 For example, when the loss function is represented by the above equation 1, when the learning data input unit 30 receives the input of the learning data, the estimation unit 40 receives the user's information based on the product information, the word information, and the learning data. The hidden feature vector P and the hidden feature vector Q of the product are estimated. At this time, the user's example product is placed in the vicinity of the user by estimation between the vector P and the vector Q based on the learning data. On the other hand, the user's negative product is placed at a position away from the user. When the hidden feature vectors of two products are written as Q1 and Q2 with respect to the hidden feature vector P of a certain user, d (P, Q1) + d (P, Q2) ≥ d (Q1, Q2) by the triangle inequality of the distance. ) Is established. Therefore, the regular products are arranged in the vicinity of each other. As a result, the similarity between products based on user behavior is reflected on the map space.
 また、本実施形態では、商品の隠れ特徴ベクトルQと、商品情報に基づく単語ベクトルVとを近傍に配置する制限が課される。結果、商品の隠れ特徴ベクトルQは、商品情報に基づく単語ベクトルの近くに配置される。したがって、商品のマップ空間上での位置は、商品が有する単語の意味的な位置を反映する。上述する学習データに基づくQへの制限により、各商品の隠れ特徴ベクトルQは、商品が有する単語ベクトルの単純な平均値ではなく、ユーザ嗜好を反映した位置になっている。 Further, in the present embodiment, a restriction is imposed on arranging the hidden feature vector Q of the product and the word vector V based on the product information in the vicinity. As a result, the hidden feature vector Q of the product is arranged near the word vector based on the product information. Therefore, the position of the product in the map space reflects the semantic position of the word that the product has. Due to the limitation to Q based on the above-mentioned learning data, the hidden feature vector Q of each product is not a simple average value of the word vectors of the product, but a position that reflects the user's preference.
 図4は、ユーザ、商品および単語の隠れ特徴ベクトルの関係例を示す説明図である。図4に例示するように、商品情報として「コク」という単語を有するビールA、および、商品情報として「香り」という単語を有するビールBを考える。単語ベクトルにしたがった配置では、ビールAは「コク」の単語ベクトルと同じ位置に、またビールBは「香り」の単語ベクトルと同じ位置にマップされる。ここで、例えば、ビールAを好むユーザの一部が、ビールBも正例商品としていた場合、式2に示す制約は、このユーザおよびビールBの隠れ特徴ベクトルを互いに近づけようとする。 FIG. 4 is an explanatory diagram showing an example of the relationship between hidden feature vectors of users, products, and words. As illustrated in FIG. 4, consider beer A having the word "rich" as product information and beer B having the word "fragrance" as product information. In the arrangement according to the word vector, beer A is mapped to the same position as the word vector of "rich", and beer B is mapped to the same position as the word vector of "fragrance". Here, for example, when some users who prefer beer A also use beer B as a regular product, the constraint shown in Equation 2 tries to bring the user and the hidden feature vector of beer B closer to each other.
 図4に示す例では、各ユーザの正例商品を実線で結び、各商品の有する単語を点線で記している。図4に示す例では、それぞれの線の間に、上記に示す式2および式3による算出結果の引力が働き、正確な商品の隠れ特徴ベクトルの位置が推定されると考えられる。ただし、これに加えて、ユーザの位置は、負例商品からの斥力も加味されて推定される。その結果、推定されるビールBの隠れ特徴ベクトルは、「香り」の単語ベクトルの位置から、「コク」の単語ベクトル方向へずれた点に位置付けられる。したがって、本実施形態によれば、商品が有する隠れた特徴(ここでの例では、ビールBの「コク」)を推定したマップを得ることが可能になる。 In the example shown in FIG. 4, the regular products of each user are connected by a solid line, and the words possessed by each product are indicated by a dotted line. In the example shown in FIG. 4, it is considered that the attractive force of the calculation result by the above equations 2 and 3 acts between the lines, and the accurate position of the hidden feature vector of the product is estimated. However, in addition to this, the position of the user is estimated by taking into account the repulsive force from the negative example product. As a result, the estimated hidden feature vector of beer B is positioned at a point deviated from the position of the word vector of "fragrance" in the direction of the word vector of "rich". Therefore, according to the present embodiment, it is possible to obtain a map that estimates the hidden characteristics of the product (in the example here, the “richness” of beer B).
 また、出力されたユーザの隠れ特徴ベクトルPおよび商品の隠れ特徴ベクトルQは、単語空間上へのマップになっている。したがって、自由に単語ベクトルを付け加えたり差し引いたりすることで、新たな隠れ特徴ベクトルを算出できる。例えば、あるビールに、「レモン風味」を付け加えたり、「ビール」という特徴を差し引いて「紅茶」という特徴を付け加えたりすることが、隠れ特徴ベクトルと単語ベクトル間の演算により算出可能である。 Further, the output hidden feature vector P of the user and the hidden feature vector Q of the product are maps on the word space. Therefore, a new hidden feature vector can be calculated by freely adding or subtracting word vectors. For example, adding "lemon flavor" to a certain beer or subtracting the feature "beer" to add the feature "tea" can be calculated by calculation between the hidden feature vector and the word vector.
 ある商品の隠れ特徴ベクトルQに対して、自然言語ベースでの操作後、得られた隠れ特徴ベクトルの近傍にある商品、ユーザまたは単語を観察することで、操作後の商品の、類似商品またはターゲットになるユーザを知ることができる。例えば、操作後の商品を最も好みそうなユーザは、操作後の隠れ特徴ベクトルに最も近い隠れ特徴ベクトルをもつユーザと考えられる。また、操作後の商品に最も近い商品は、操作後の隠れ特徴ベクトルに最も近い隠れ特徴ベクトルをもつ商品と考えられる。また、操作後の商品に最も近い属性は、操作後の隠れ特徴ベクトルに最も近い隠れ特徴ベクトルを有する単語と考えられる。また、出力部50は、操作後の商品の隠れ特徴ベクトルQから、ある定められた距離内に位置づけられているユーザ、商品または単語を列挙してもよい。 By observing a product, user, or word in the vicinity of the obtained hidden feature vector after a natural language-based operation on the hidden feature vector Q of a certain product, a similar product or target of the operated product. You can know who will be. For example, the user who is most likely to like the product after the operation is considered to be the user who has the hidden feature vector closest to the hidden feature vector after the operation. Further, the product closest to the product after the operation is considered to be the product having the hidden feature vector closest to the hidden feature vector after the operation. Further, the attribute closest to the product after the operation is considered to be a word having the hidden feature vector closest to the hidden feature vector after the operation. Further, the output unit 50 may enumerate the users, products, or words positioned within a certain predetermined distance from the hidden feature vector Q of the product after the operation.
 また、同様の操作はユーザに対しても行うことができる。例えば、あるユーザに、「結婚」という特徴を付け加えたり、「学生」という特徴を差し引いて「IT業務」という特徴を付け加えたりすることが、隠れ特徴ベクトルと単語ベクトル間の演算により算出可能である。 Also, the same operation can be performed on the user. For example, it is possible to add the feature of "marriage" to a certain user, or subtract the feature of "student" and add the feature of "IT work" by the calculation between the hidden feature vector and the word vector. ..
 用意されている単語空間は、外部データを用いて学習した単語空間を利用している。また、外部データは、巨大なコーパスにより作成され、我々が日常使用するほとんどの単語についても、単語ベクトルが割り当てられていると想定される。そのため、商品またはユーザ全体の集合が属性として有する単語集合以上の柔軟な特徴の足し引きを行うことができる。 The prepared word space uses the word space learned using external data. It is also assumed that the external data is created by a huge corpus and that most of the words we use every day are also assigned word vectors. Therefore, it is possible to add and subtract more flexible features than the word set that the set of goods or the entire user has as an attribute.
 よって、本実施形態によれば、商品の文章上で現れていない特徴の効果を推定しつつ、ユーザおよび商品の関係を自然言語ベースでの操作が可能な空間上にマップすることができる。 Therefore, according to the present embodiment, it is possible to map the relationship between the user and the product in a space that can be operated based on the natural language while estimating the effect of the feature that does not appear in the text of the product.
 例えば、本実施形態の学習データとして、ID-POS(Point of sale system)やECサイト、動画視聴サイト、Web回遊ログなどに存在するユーザの行動データや、レビューデータなどを使用することができる。また、単語情報として、単語の辞書や、商品説明文、レビュー文章や、SNSでの投稿などから得られる単語ベクトルを使用することができる。このようなデータを用い、本実施形態のマッピングを行うことで、セグメンテーション、ターゲッティング、ポジショニング、ユーザの近傍商品を利用した推薦などが可能になる。 For example, as the learning data of this embodiment, user behavior data, review data, etc. existing in ID-POS (Point of sale system), EC site, video viewing site, Web migration log, etc. can be used. Further, as the word information, a word vector obtained from a word dictionary, a product description, a review sentence, a post on SNS, or the like can be used. By mapping the present embodiment using such data, segmentation, targeting, positioning, recommendation using nearby products of the user, and the like become possible.
 また、本実施形態によれば、明文化されていない商品属性が推定され、プロモーションや商品開発に利用することができる。また、本実施形態によれば、ある商品を起点に、自然言語ベースでの属性変更を行った際に得られる新商品の、ターゲットユーザや類似商品や連想される単語を出力できる。そのため、新商品開発のターゲット把握やプロモーション施策考案を行うことができる。また、ライフイベントをはじめとするユーザ性質の変化に対しても、ユーザに対する自然言語ベースでの属性変更により、より効果的な商品推薦やプロモーションが可能になる。 In addition, according to this embodiment, product attributes that are not clearly stated can be estimated and used for promotion and product development. Further, according to the present embodiment, it is possible to output a target user, a similar product, or an associated word of a new product obtained when an attribute is changed based on a natural language starting from a certain product. Therefore, it is possible to grasp the target of new product development and devise promotion measures. In addition, even for changes in user characteristics such as life events, more effective product recommendation and promotion will be possible by changing the attributes of users based on natural language.
実施形態2.
 次に、本発明によるユーザ・商品マップ推定装置の第二の実施形態を説明する。第一の実施形態では、ユーザおよび商品の隠れ特徴ベクトルを事前に用意した単語情報をもとに推定した。一方、このように事前に用意された単語の意味的な関係性を表す単語ベクトルが、必ずしもユーザと商品間の関係の上では成り立たない場合がある。
Embodiment 2.
Next, a second embodiment of the user / product map estimation device according to the present invention will be described. In the first embodiment, the hidden feature vectors of the user and the product are estimated based on the word information prepared in advance. On the other hand, the word vector representing the semantic relationship of the words prepared in advance in this way may not always hold in terms of the relationship between the user and the product.
 例えば、「辛い」や「甘い」といった言葉は、単語空間上では近い位置に存在する場合が想定される。その理由は、これらの言葉が出てくる文脈が似通っているためである。すなわち、「このカレーは辛い」といった文章は、「このカレーは甘い」のように、「甘い」という単語で置き換え可能であるため、単語ベクトルとして、「甘い」と「辛い」は近傍に存在することが想定される。一方、あるサービスにおいて、甘い味の商品と辛い味の商品それぞれを嗜好するユーザ層が異なっているという状況が想定される。しかし、「甘い」と「辛い」の単語ベクトルの近さが理由となり、第一の実施形態によって得られた甘口の商品の近傍に、辛い味を好むユーザが配置されてしまう可能性がある。 For example, words such as "spicy" and "sweet" are assumed to exist in close positions in the word space. The reason is that the context in which these words appear is similar. That is, since a sentence such as "this curry is spicy" can be replaced with the word "sweet" such as "this curry is sweet", "sweet" and "spicy" exist in the vicinity as word vectors. Is assumed. On the other hand, in a certain service, it is assumed that the user groups who prefer sweet-tasting products and spicy-tasting products are different. However, due to the closeness of the word vectors of "sweet" and "spicy", there is a possibility that a user who prefers spicy taste is placed in the vicinity of the sweet product obtained by the first embodiment.
 図5は、単語空間が変換されない場合のユーザ、商品および単語の隠れ特徴ベクトルの関係例を示す説明図である。例えば、図5では、「辛い」、「甘い」および「ケーキ」という単語の近傍のユーザおよび商品のマップを例示している。図5に示す例は「辛い」および「甘い」が単語ベクトルとして近傍に配置され、「ケーキ」が遠くに配置されている。また、図5に示す例では「甘い」という属性を有する商品の近傍を円で示している。この場合、「甘い」という属性の近傍のユーザや近傍の商品に「ケーキ」を好むユーザ、「ケーキ」という特徴を有する商品が表れにくくなる。加えて、近傍のユーザや商品に、「辛い」商品を好むユーザや、「辛い」商品が混入してしまう。 FIG. 5 is an explanatory diagram showing an example of the relationship between the hidden feature vector of the user, the product, and the word when the word space is not converted. For example, FIG. 5 illustrates a map of users and goods in the vicinity of the words "spicy," "sweet," and "cake." In the example shown in FIG. 5, "spicy" and "sweet" are arranged in the vicinity as word vectors, and "cake" is arranged in the distance. Further, in the example shown in FIG. 5, the neighborhood of the product having the attribute of "sweet" is indicated by a circle. In this case, it is difficult for users in the vicinity of the attribute of "sweet", users who prefer "cake" to products in the vicinity, and products having the characteristic of "cake" to appear. In addition, users and products in the vicinity are mixed with users who prefer "spicy" products and "spicy" products.
 そこで、本実施形態では、単語空間をユーザの嗜好に見合うように変形することにより、単語ベクトル間の距離関係を補正できるようにすることを目的とする。 Therefore, in the present embodiment, it is an object of the present embodiment to be able to correct the distance relationship between word vectors by transforming the word space so as to suit the user's taste.
 図6は、本発明によるユーザ・商品マップ推定装置の第二の実施形態の構成例を示すブロック図である。本実施形態のユーザ・商品マップ推定装置200は、商品情報入力部10と、単語情報入力部20と、学習データ入力部30と、推定部42と、出力部52と、記憶部60とを備えている。すなわち、本実施形態のユーザ・商品マップ推定装置200は、第一の実施形態のユーザ・商品マップ推定装置100と比較し、推定部40および出力部50の代わりに、推定部42および出力部52を備えている点において異なる。 FIG. 6 is a block diagram showing a configuration example of a second embodiment of the user / product map estimation device according to the present invention. The user / product map estimation device 200 of the present embodiment includes a product information input unit 10, a word information input unit 20, a learning data input unit 30, an estimation unit 42, an output unit 52, and a storage unit 60. ing. That is, the user / product map estimation device 200 of the present embodiment is compared with the user / product map estimation device 100 of the first embodiment, and instead of the estimation unit 40 and the output unit 50, the estimation unit 42 and the output unit 52 It differs in that it has.
 推定部42は、第一の実施形態の推定部40と同様、商品情報と学習データとに基づいて、商品情報に対応した各ユーザの隠れ特徴ベクトルPおよび各商品の隠れ特徴ベクトルQを推定する。さらに、本実施形態では、推定部42は、入力された単語空間を、あるベクトル空間に射影する関数fを推定する。すなわち、関数fは入力された単語空間の点Vに対して、あるベクトル空間上のある点Wをf(V)=Wのような形で対応付ける関数である。 Similar to the estimation unit 40 of the first embodiment, the estimation unit 42 estimates the hidden feature vector P of each user and the hidden feature vector Q of each product corresponding to the product information based on the product information and the learning data. .. Further, in the present embodiment, the estimation unit 42 estimates a function f that projects the input word space onto a certain vector space. That is, the function f is a function that associates a certain point W on a certain vector space with a point V in the input word space in the form of f (V) = W.
 関数fは任意であり、関数fを、あるパラメータθによって決まる関数としてもよい。 The function f is arbitrary, and the function f may be a function determined by a certain parameter θ.
 図7は、関数fにより単語空間を変換する例を示す説明図である。変換前の単語空間では、「辛い」と「甘い」が単語ベクトルとして近傍に配置され、「ケーキ」が遠くに配置されている。図7に示す例では、関数fが、「甘い」と「ケーキ」が変換後の単語ベクトルとして近傍に配置し、「辛い」を「甘い」および「ケーキ」の遠くに配置する変換として定義されていることを示す。 FIG. 7 is an explanatory diagram showing an example of converting the word space by the function f. In the word space before conversion, "spicy" and "sweet" are arranged in the vicinity as word vectors, and "cake" is arranged in the distance. In the example shown in FIG. 7, the function f is defined as a transformation in which "sweet" and "cake" are placed close to each other as the converted word vector, and "spicy" is placed far away from "sweet" and "cake". Indicates that
 推定部42は、商品情報と学習データと単語情報とに基づいて、商品情報に対応した各ユーザの隠れ特徴ベクトルPおよび各商品の隠れ特徴ベクトルQ、並びに、変換fのパラメータθを推定する。推定部42は、第一の実施形態と同様に、学習データおよび単語情報からユーザ・商品間の距離関係に制約を与え、ユーザおよび商品の単語空間上での位置を推定する。具体的には、推定部42は、以下の式4に例示する損失関数を最小化(最適化)するP、Q,θ算出することでベクトルP、ベクトルQ,およびパラメータθを推定してもよい。 The estimation unit 42 estimates the hidden feature vector P of each user corresponding to the product information, the hidden feature vector Q of each product, and the parameter θ of the conversion f, based on the product information, the learning data, and the word information. Similar to the first embodiment, the estimation unit 42 constrains the distance relationship between the user and the product from the learning data and the word information, and estimates the position of the user and the product in the word space. Specifically, the estimation unit 42 may estimate the vector P, the vector Q, and the parameter θ by calculating P, Q, and θ that minimize (optimize) the loss function illustrated in the following equation 4. Good.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式4において、L(P,Q,Y)は、第一の実施形態と同様、購買データに基づき、ユーザ・商品間の距離関係により算出される項である。また、L(P,Q,Y)は、第一の実施形態と同様、正例商品の隠れ特徴ベクトルとの距離が、負例商品の隠れ特徴ベクトルとの距離よりも遠いほど大きな値をとるように定義されてもよい。具体的には、L(P,Q,Y)が、上述する式2のように定義されてもよい。 In Equation 4, L (P, Q, Y) is a term calculated based on the distance relationship between the user and the product based on the purchase data, as in the first embodiment. Further, L (P, Q, Y) takes a larger value as the distance from the hidden feature vector of the positive product is farther than the distance from the hidden feature vector of the negative product, as in the first embodiment. It may be defined as. Specifically, L (P, Q, Y) may be defined as in Equation 2 described above.
 L(Q,V,θ)は、各商品の隠れ特徴ベクトルQ、各商品の属性、単語ベクトル並びに関数fおよび関数fのパラメータθに基づき、商品の隠れ特徴ベクトルQと、その商品が有する属性に結び付いた単語ベクトルを関数fにより変換して得られるベクトルとが、近くにあるほど小さい値をとる。すなわち、推定部42は、関数fにより単語ベクトルVを変換したベクトルと、商品の隠れ特徴ベクトルQとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定してもよい。推定部42は、具体的には、以下に例示する式5によりL(Q,V,θ)を算出してもよい。 L (Q, V, θ) is the hidden feature vector Q of the product and the attributes of the product based on the hidden feature vector Q of each product, the attributes of each product, the word vector, and the parameters θ of the function f and the function f. The closer the word vector connected to to the vector obtained by converting the word vector by the function f, the smaller the value. That is, the estimation unit 42 estimates the hidden feature vector so as to minimize the loss function including the term defined by the distance between the vector obtained by converting the word vector V by the function f and the hidden feature vector Q of the product. You may. Specifically, the estimation unit 42 may calculate L (Q, V, θ) by the formula 5 illustrated below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 i、k、wik、およびαの内容は、上述する式3と同様と同様である。関数fの具体例として、例えば、アフィン変換が挙げられる。関数fをアフィン変換としたとき、f(V,θ)は行列Aとベクトルbにより、VA+bのように表現される。この場合、パラメータθは、行列Aの各要素およびベクトルbの各要素である。 The contents of i, k, wick , and α are the same as those in Equation 3 described above. A specific example of the function f is an affine transformation. When the function f is an affine transformation, f (V k , θ) is expressed as VA + b by the matrix A and the vector b. In this case, the parameter θ is each element of the matrix A and each element of the vector b.
 推定部42は、上記に示す式4の損失関数を最小化(最適化)する手法により、ベクトルPおよびベクトルQ並びにパラメータθを算出してもよい。すなわち、推定部42は、関数fにより単語ベクトルVを変換したベクトルと、商品の隠れ特徴ベクトルQとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルおよび関数fのパラメータθを推定してもよい。この場合、推定部42は、最急降下法やニュートン法により、損失関数が最大になるPおよびQを算出してもよい。 The estimation unit 42 may calculate the vector P and the vector Q and the parameter θ by the method of minimizing (optimizing) the loss function of the above equation 4. That is, the estimation unit 42 minimizes the loss function including the term defined by the distance between the vector obtained by converting the word vector V by the function f and the hidden feature vector Q of the product, and the hidden feature vector and the function f. The parameter θ of In this case, the estimation unit 42 may calculate P and Q that maximize the loss function by the steepest descent method or Newton's method.
 出力部52は、各ユーザの隠れ特徴ベクトルおよび各商品の隠れ特徴ベクトル並びに関数fにより変換された単語ベクトルを出力する。また、出力部52は、関数fのパラメータを出力してもよい。図8は、出力結果の例を示す説明図である。図8に示す例では、ユーザ、商品および単語が同一の空間上にマップされた例を示す。なお、出力部52は、ユーザによって指定されたユーザ、商品または単語を受け付けて、指定されたユーザ、商品または単語の近傍のユーザ、商品または単語を出力するようにしてもよい。 The output unit 52 outputs the hidden feature vector of each user, the hidden feature vector of each product, and the word vector converted by the function f. Further, the output unit 52 may output the parameter of the function f. FIG. 8 is an explanatory diagram showing an example of the output result. The example shown in FIG. 8 shows an example in which users, products, and words are mapped in the same space. The output unit 52 may accept the user, the product, or the word specified by the user and output the user, the product, or the word in the vicinity of the designated user, the product, or the word.
 商品情報入力部10と、単語情報入力部20と、学習データ入力部30と、推定部42と、出力部52とは、プログラム(ユーザ・商品マップ推定プログラム)に従って動作するコンピュータのプロセッサによって実現される。 The product information input unit 10, the word information input unit 20, the learning data input unit 30, the estimation unit 42, and the output unit 52 are realized by a computer processor that operates according to a program (user / product map estimation program). To.
 次に、本実施形態のユーザ・商品マップ推定装置の動作を説明する。図9は、本実施形態のユーザ・商品マップ推定装置200の動作例を示すフローチャートである。商品情報、単語情報および学習データを入力するステップS11からステップS13までの処理は、図3に例示する処理と同様である。 Next, the operation of the user / product map estimation device of this embodiment will be described. FIG. 9 is a flowchart showing an operation example of the user / product map estimation device 200 of the present embodiment. The processes from step S11 to step S13 for inputting the product information, the word information, and the learning data are the same as the processes illustrated in FIG.
 推定部42は、商品情報と単語情報と学習データとに基づいて、ユーザの隠れ特徴ベクトルPおよび商品の隠れ特徴ベクトルQ並びに単語空間を変換する関数fのパラメータθを推定する(ステップS24)。損失関数が上記に示す式4で表される場合、推定部42は、損失関数を最小化(最適化)することでユーザの隠れ特徴ベクトルPおよび商品の隠れ特徴ベクトルQを推定してもよい。 The estimation unit 42 estimates the hidden feature vector P of the user, the hidden feature vector Q of the product, and the parameter θ of the function f that transforms the word space, based on the product information, the word information, and the learning data (step S24). When the loss function is represented by the above equation 4, the estimation unit 42 may estimate the hidden feature vector P of the user and the hidden feature vector Q of the product by minimizing (optimizing) the loss function. ..
 以降、ステップS25において、図2におけるステップS15と同様に、推定部42は、収束判定を行う。すなわち、収束したと判定された場合(ステップS25におけるYes)、推定部42は、推定処理を終了する。一方、収束したと判定されなかった場合(ステップS25におけるNo)、推定部42は、ステップS24以降の処理を繰り返す。 After that, in step S25, the estimation unit 42 makes a convergence test in the same manner as in step S15 in FIG. That is, when it is determined that the convergence has occurred (Yes in step S25), the estimation unit 42 ends the estimation process. On the other hand, if it is not determined that the convergence has occurred (No in step S25), the estimation unit 42 repeats the processes after step S24.
 以上のように、本実施形態では、推定部42が、関数fにより単語ベクトルを変換したベクトルと、商品の隠れ特徴ベクトルQとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトル(および関数fのパラメータθ)を推定する。よって、第一の実施形態の効果に加え、単語空間をユーザの嗜好に見合うように変形できる。 As described above, in the present embodiment, the estimation unit 42 minimizes the loss function including the term defined by the distance between the vector obtained by converting the word vector by the function f and the hidden feature vector Q of the product. , Estimate the hidden feature vector (and the parameter θ of the function f). Therefore, in addition to the effect of the first embodiment, the word space can be modified to suit the user's taste.
 すなわち、本実施形態では、推定部42が、商品情報と単語情報と学習データと単語情報に基づいて、ユーザの隠れ特徴ベクトルPおよび商品の隠れ特徴ベクトルQ並びに単語空間を変換する関数fのパラメータθを推定する。 That is, in the present embodiment, the estimation unit 42 transforms the hidden feature vector P of the user, the hidden feature vector Q of the product, and the word space based on the product information, the word information, the learning data, and the word information, and the parameters of the function f. Estimate θ.
 このとき、第一の実施形態と同様に、学習データに基づくベクトルPとベクトルQとの間の推定により、ユーザの正例商品はそのユーザの近傍に配置される。一方で、ユーザの負例商品はそのユーザから離れた位置に配置される。結果として、ユーザ行動を基準とした商品間の類似性がマップ空間上に反映される。 At this time, as in the first embodiment, the user's example product is placed in the vicinity of the user by estimation between the vector P and the vector Q based on the learning data. On the other hand, the user's negative product is placed at a position away from the user. As a result, the similarity between products based on user behavior is reflected on the map space.
 また、本実施形態では、商品の隠れ特徴ベクトルQと、商品情報に基づく単語ベクトルVとを近傍に配置する制限が課される。結果、商品の隠れ特徴ベクトルQは、商品情報に基づく単語ベクトルの近くに配置される。したがって、商品のマップ空間上での位置は、商品が有する単語の意味的な位置を反映する。上述する学習データに基づくQへの制限により、各商品の隠れ特徴ベクトルQは、商品が有する単語ベクトルの単純な平均値ではなく、ユーザ嗜好を反映した位置になっている。 Further, in the present embodiment, a restriction is imposed on arranging the hidden feature vector Q of the product and the word vector V based on the product information in the vicinity. As a result, the hidden feature vector Q of the product is arranged near the word vector based on the product information. Therefore, the position of the product in the map space reflects the semantic position of the word that the product has. Due to the limitation to Q based on the above-mentioned learning data, the hidden feature vector Q of each product is not a simple average value of the word vectors of the product, but a position that reflects the user's preference.
 さらに、本実施形態では、関数fによって、入力された単語ベクトルが、ユーザの嗜好に合うように補正される。図10は、単語空間が変換された場合のユーザ、商品および単語の隠れ特徴ベクトルの関係例を示す説明図である。図10では、「辛い」、「甘い」および「ケーキ」という単語の近傍のユーザおよび商品のマップが、本実施形態による処理でどのように補正されるかを例示している。変換前のマップでは、「辛い」および「甘い」が単語ベクトルとして近傍に配置され、「ケーキ」が、「辛い」および「甘い」の単語ベクトルから離れた点に配置されている。この場合、「甘い」という属性の近傍のユーザや近傍の商品に「ケーキ」を好むユーザ、「ケーキ」という特徴を有する商品が表れにくくなる。加えて、近傍のユーザや商品に、「辛い」商品を好むユーザや、「辛い」商品が混入してしまう。 Further, in the present embodiment, the input word vector is corrected by the function f so as to suit the user's taste. FIG. 10 is an explanatory diagram showing an example of the relationship between the hidden feature vector of the user, the product, and the word when the word space is transformed. FIG. 10 illustrates how the user and product maps in the vicinity of the words "spicy", "sweet" and "cake" are corrected by the process according to this embodiment. In the unconverted map, "spicy" and "sweet" are placed nearby as word vectors, and "cake" is placed at points away from the "spicy" and "sweet" word vectors. In this case, it is difficult for users in the vicinity of the attribute of "sweet", users who prefer "cake" to products in the vicinity, and products having the characteristic of "cake" to appear. In addition, users and products in the vicinity are mixed with users who prefer "spicy" products and "spicy" products.
 一方、本実施形態によれば、関数fにより、「甘い」および「ケーキ」という単語が変換後の単語ベクトルとして近傍に配置され、「甘い」または「ケーキ」から、「辛い」のベクトルは遠くに配置される。その結果、この場合、「甘い」という属性の近傍のユーザや近傍の商品に「ケーキ」を好むユーザ、「ケーキ」という特徴を有する商品が表れるようになる。また、加えて、「甘い」という属性のベクトルの近傍のユーザや商品として、「辛い」商品を好むユーザや、「辛い」商品が混入しにくくなる。 On the other hand, according to the present embodiment, the functions f place the words "sweet" and "cake" in the vicinity as converted word vectors, and the vector of "spicy" is far from "sweet" or "cake". Placed in. As a result, in this case, users in the vicinity of the attribute of "sweet", users who prefer "cake" to the products in the vicinity, and products having the characteristic of "cake" appear. In addition, as users and products in the vicinity of the vector of the attribute "sweet", users who prefer "spicy" products and "spicy" products are less likely to be mixed.
 本実施形態において、出力されたユーザおよび商品の隠れ特徴ベクトルは、関数fにより変換された単語空間上へのマップになっている。もともとの単語ベクトルは、関数fにより、変換後の単語空間のベクトルが対応付けられている。したがって、本実施形態においても、自由に単語ベクトルを付け加えたり差し引いたりすることにより、新たな隠れ特徴ベクトルを算出できる。具体的には、ある単語ベクトルをマップ空間上のあるベクトルに付け加える場合、その単語ベクトルに対し関数fで変換して得られたベクトルを、マップ空間上のベクトルに付け加えればよい。 In the present embodiment, the output hidden feature vector of the user and the product is a map on the word space converted by the function f. The original word vector is associated with the vector of the converted word space by the function f. Therefore, also in this embodiment, a new hidden feature vector can be calculated by freely adding or subtracting a word vector. Specifically, when adding a certain word vector to a certain vector in the map space, the vector obtained by converting the word vector by the function f may be added to the vector in the map space.
 よって、第一の実施形態の効果に加え、ユーザの嗜好により補正された単語空間が、操作可能なマップ空間として得られる。また、その空間中でユーザおよび商品のマップを得ることが可能になる。 Therefore, in addition to the effect of the first embodiment, the word space corrected by the user's preference can be obtained as an operable map space. It also makes it possible to obtain maps of users and products in that space.
実施形態3.
 次に、本発明によるユーザ・商品マップ推定装置の第三の実施形態を説明する。第一の実施形態および第二の実施形態では、ユーザの隠れ特徴ベクトルおよび商品の隠れ特徴ベクトルが出力された。出力されたユーザおよび商品の隠れ特徴ベクトルは、単語空間上へのマップになっている。したがって、自由に単語ベクトルを付け加えたり差し引いたりすることで、新たな隠れ特徴ベクトルを算出できる。例えば、あるビールに、「レモン風味」という特徴を付け加えたり、「ビール」特徴を差し引いて「紅茶」という特徴を付け加えたりすることが、隠れ特徴ベクトルと単語ベクトル間の演算により算出可能である。しかし、このような計算と結果の観察は、装置のユーザにとっては必ずしも直観的な操作ではない。
Embodiment 3.
Next, a third embodiment of the user / product map estimation device according to the present invention will be described. In the first embodiment and the second embodiment, the hidden feature vector of the user and the hidden feature vector of the product are output. The output user and product hidden feature vectors are maps on the word space. Therefore, a new hidden feature vector can be calculated by freely adding or subtracting word vectors. For example, it is possible to add a feature of "lemon flavor" to a certain beer, or subtract a feature of "beer" to add a feature of "tea" by calculation between a hidden feature vector and a word vector. However, observing such calculations and results is not always an intuitive operation for the user of the device.
 そこで、本実施形態では、出力された隠れ特徴ベクトルに操作を施すことで、より直観的に結果の観察をできるようにすることを目的とする。 Therefore, in the present embodiment, it is an object to enable more intuitive observation of the result by manipulating the output hidden feature vector.
 図11は、本発明によるユーザ・商品マップ推定装置の第三の実施形態の構成例を示すブロック図である。本実施形態のユーザ・商品マップ推定装置300は、商品情報入力部10と、単語情報入力部20と、学習データ入力部30と、推定部42と、出力部52と、記憶部60と、出力操作部70を備えている。すなわち、本実施形態のユーザ・商品マップ推定装置300は、第二の実施形態のユーザ・商品マップ推定装置200と比較し、出力操作部70を備えている点において異なる。 FIG. 11 is a block diagram showing a configuration example of a third embodiment of the user / product map estimation device according to the present invention. The user / product map estimation device 300 of the present embodiment has a product information input unit 10, a word information input unit 20, a learning data input unit 30, an estimation unit 42, an output unit 52, a storage unit 60, and an output. The operation unit 70 is provided. That is, the user / product map estimation device 300 of the present embodiment is different from the user / product map estimation device 200 of the second embodiment in that it includes an output operation unit 70.
 なお、推定部42および出力部52が、それぞれ第一の実施形態における推定部40および出力部50により実現されてもよい。 The estimation unit 42 and the output unit 52 may be realized by the estimation unit 40 and the output unit 50 in the first embodiment, respectively.
 出力操作部70は、隠れ特徴ベクトルを出力する対象の商品またはユーザの情報を受け付ける。出力操作部70は、例えば、ユーザIDや名前をユーザの情報として受け付けてもよい。出力操作部70は、受け付けた入力に基づいて、対応する商品またはユーザの隠れ特徴ベクトルを出力する。 The output operation unit 70 receives information on the product or user for which the hidden feature vector is output. The output operation unit 70 may accept, for example, a user ID or a name as user information. The output operation unit 70 outputs a hidden feature vector of the corresponding product or user based on the received input.
 また、出力操作部70は、単語空間上で定義されているいずれかの単語および演算の入力を受け付ける。出力操作部70は、加算や減算などのベクトル間の演算を受け付けてもよいし、その加算や減算の度合いを示す数値を受け付けてもよい。出力操作部70は、上述する商品またはユーザの情報により特定された隠れ特徴ベクトルと、入力された演算の対象とする単語の隠れ特徴ベクトルと、入力された演算により、新たな隠れ特徴ベクトルを算出する。 Further, the output operation unit 70 accepts the input of any word and operation defined in the word space. The output operation unit 70 may accept operations between vectors such as addition and subtraction, and may accept numerical values indicating the degree of addition and subtraction. The output operation unit 70 calculates a new hidden feature vector by the hidden feature vector specified by the above-mentioned product or user information, the hidden feature vector of the word to be the input calculation, and the input calculation. To do.
 例えば、商品名に「商品A」、演算に「-」(減算)、単語に「カフェイン」が入力されたとする。この場合、出力操作部70は、「商品A」の隠れ特徴ベクトルから、「カフェイン」の隠れ特徴ベクトルを減算する演算を行う。そして、出力操作部70は、上述する演算後の隠れ特徴ベクトルと、マップ空間上に配置されているユーザ、商品または単語の隠れ特徴ベクトルとの距離を計算し、より近い隠れ特徴ベクトルを有するユーザ、商品または単語を特定する。出力操作部70は、この計算処理を、すべてのユーザ、商品および単語について行ってもよいし、あらかじめユーザによって与えられた範囲(例えばユーザのみ、商品のみ、特定のカテゴリの商品のみ、など)を対象に行ってもよい。 For example, suppose that "product A" is entered in the product name, "-" (subtraction) is entered in the calculation, and "caffeine" is entered in the word. In this case, the output operation unit 70 performs an operation of subtracting the hidden feature vector of "caffeine" from the hidden feature vector of "product A". Then, the output operation unit 70 calculates the distance between the hidden feature vector after the above calculation and the hidden feature vector of the user, product, or word arranged in the map space, and the user having the hidden feature vector closer to the hidden feature vector. , Identify the product or word. The output operation unit 70 may perform this calculation process for all users, products, and words, or may set a range (for example, only users, only products, only products in a specific category, etc.) given by the users in advance. You may go to the subject.
 出力操作部70は、特定されたユーザ、商品または単語の隠れ特徴ベクトルをユーザが視認しやすい態様で出力する。出力操作部70は、例えば、上述する演算後の隠れ特徴ベクトルからの距離が近い順に、商品名や商品イメージを並べて表示してもよい。他にも、出力操作部70は、例えば、マップ空間上で得られた隠れ特徴ベクトルの点およびその近傍にあると判定されたユーザ、商品または単語を、主成分分析やtSNEといった手法によって低次元に射影されたマップ空間上に強調して表示してもよい。 The output operation unit 70 outputs the hidden feature vector of the specified user, product, or word in a manner that is easy for the user to see. For example, the output operation unit 70 may display the product name and the product image side by side in the order of the distance from the hidden feature vector after the above calculation. In addition, the output operation unit 70 lower-dimensionalizes, for example, a user, a product, or a word determined to be in or near a point of a hidden feature vector obtained on a map space by a method such as principal component analysis or tSNE. It may be highlighted and displayed on the map space projected on.
 商品情報入力部10と、単語情報入力部20と、学習データ入力部30と、推定部42と、出力部52と、出力操作部70とは、プログラム(ユーザ・商品マップ推定プログラム)に従って動作するコンピュータのプロセッサによって実現される。 The product information input unit 10, the word information input unit 20, the learning data input unit 30, the estimation unit 42, the output unit 52, and the output operation unit 70 operate according to a program (user / product map estimation program). It is realized by the processor of the computer.
 次に、本実施形態のユーザ・商品マップ推定装置の動作を説明する。図12は、本実施形態のユーザ・商品マップ推定装置300の動作例を示すフローチャートである。各種情報の入力並びに隠れ特徴ベクトルおよび関数fのパラメータθを推定するステップS11からステップS25までの処理は、図9に例示する処理と同様である。 Next, the operation of the user / product map estimation device of this embodiment will be described. FIG. 12 is a flowchart showing an operation example of the user / product map estimation device 300 of the present embodiment. The processing from step S11 to step S25 for inputting various information and estimating the hidden feature vector and the parameter θ of the function f is the same as the processing illustrated in FIG.
 出力操作部70は、商品またはユーザの情報、並びに、単語空間上で定義されているいずれかの単語および演算の入力を受け付ける(ステップS36)。出力操作部70は、入力された商品またはユーザの情報から特定された隠れ特徴ベクトルと、入力された単語に割り当てられた隠れ特徴ベクトルと、入力された演算により、新たな隠れ特徴ベクトルを算出する(ステップS37)。そして、出力操作部70は、マップ空間上に配置されているユーザ、商品または単語の隠れ特徴ベクトルと算出された隠れ特徴ベクトルとの距離を算出する(ステップS38)。 The output operation unit 70 receives the product or user information and the input of any word and operation defined in the word space (step S36). The output operation unit 70 calculates a new hidden feature vector by the hidden feature vector specified from the input product or user information, the hidden feature vector assigned to the input word, and the input calculation. (Step S37). Then, the output operation unit 70 calculates the distance between the hidden feature vector of the user, the product, or the word arranged on the map space and the calculated hidden feature vector (step S38).
 出力操作部70は、上述する距離の計算に基づき、近傍のユーザ、商品または単語の隠れ特徴ベクトルをユーザに視認しやすい態様で出力する(ステップS39)。 The output operation unit 70 outputs a hidden feature vector of a nearby user, product, or word in a manner that is easy for the user to see based on the above-mentioned distance calculation (step S39).
 以上のように、本実施形態では、出力操作部70が、隠れ特徴ベクトルを出力する対象の商品またはユーザの情報、並びに、演算の対象とする単語および演算の入力を受け付け、商品またはユーザの隠れ特徴ベクトルに対して、受け付けた単語の隠れ特徴ベクトルに関する演算を行った結果を出力する。 As described above, in the present embodiment, the output operation unit 70 receives the information of the product or user to be output of the hidden feature vector, the word to be calculated, and the input of the calculation, and the hidden feature of the product or user is hidden. For the feature vector, the result of performing the operation related to the hidden feature vector of the received word is output.
 すなわち、本実施形態では、出力操作部70が、ユーザ入力に基づいて、ある商品またはユーザに対する、自然言語ベースで操作した結果の出力を行う。よって、第一の実施形態および第二の実施形態の効果に加え、本実施形態では、出力された隠れ特徴ベクトルに自然言語ベースでの操作を施すことで、より直観的に結果の観察ができる。 That is, in the present embodiment, the output operation unit 70 outputs the result of the natural language-based operation to a certain product or user based on the user input. Therefore, in addition to the effects of the first embodiment and the second embodiment, in the present embodiment, the result can be observed more intuitively by performing the operation based on the natural language on the output hidden feature vector. ..
 次に、本発明の概要を説明する。図13は、本発明によるユーザ・商品マップ推定装置の概要を示すブロック図である。本発明によるユーザ・商品マップ推定装置80(例えば、ユーザ・商品マップ推定装置100)は、ユーザの嗜好に応じて行動の対象になった商品を表わす学習データ(例えば、購買データ)を入力する入力部81(例えば、学習データ入力部30)と、商品が備える特徴を表わす商品情報と、単語間の関係性を表す単語情報と、学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する推定部82(例えば、推定部40、推定部42)とを備えている。 Next, the outline of the present invention will be described. FIG. 13 is a block diagram showing an outline of the user / product map estimation device according to the present invention. The user / product map estimation device 80 (for example, the user / product map estimation device 100) according to the present invention inputs learning data (for example, purchase data) representing a product that is the target of an action according to a user's preference. Based on the unit 81 (for example, the learning data input unit 30), the product information representing the features of the product, the word information representing the relationship between words, and the learning data, the hidden feature representing the position on the map space. It includes an estimation unit 82 (for example, an estimation unit 40 and an estimation unit 42) that estimates a vector for each of a user and a product.
 推定部82は、ユーザの隠れ特徴ベクトル(例えば、隠れ特徴ベクトルP)と商品の隠れ特徴ベクトル(例えば、隠れ特徴ベクトルQ)との距離が学習データが示すその商品に対するユーザの嗜好を反映した距離になるようにするとともに、単語情報が示す関係性が近いほど、商品の隠れ特徴ベクトルと商品情報が表わすその商品の特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように(例えば、式1を用いて)隠れ特徴ベクトルを推定する。 In the estimation unit 82, the distance between the hidden feature vector of the user (for example, the hidden feature vector P) and the hidden feature vector of the product (for example, the hidden feature vector Q) reflects the user's preference for the product indicated by the training data. The closer the relationship indicated by the word information is, the closer the distance between the hidden feature vector of the product and the word vector estimated based on the word indicating the feature of the product represented by the product information. Estimate the hidden feature vector (eg, using Equation 1).
 そのような構成により、商品の特徴がその商品を説明する文章上に現れていない場合であっても、その特徴を考慮したユーザと商品との関係を空間上にマップできる。 With such a configuration, even if the characteristics of the product do not appear in the text explaining the product, the relationship between the user and the product in consideration of the characteristics can be mapped in space.
 具体的には、推定部82は、単語ベクトルと商品の隠れ特徴ベクトルとの距離によって定義される項(例えば、上述する式3)を含む損失関数(例えば、上述する式1)を最小化するように、隠れ特徴ベクトルを推定してもよい。 Specifically, the estimation unit 82 minimizes the loss function (for example, the above-mentioned equation 1) including the term defined by the distance between the word vector and the hidden feature vector of the product (for example, the above-mentioned equation 3). As such, the hidden feature vector may be estimated.
 また、推定部82は、学習データに基づくユーザの正例商品または負例商品を、商品に対するユーザの嗜好として用いて、ユーザの隠れ特徴ベクトルと正例商品または負例商品の隠れ特徴ベクトルとの距離によって定義される項(例えば、上述する式2)を含む損失関数(例えば、上述する式1)を最小化するように、隠れ特徴ベクトルを推定してもよい。 Further, the estimation unit 82 uses the user's positive or negative product based on the learning data as the user's preference for the product, and sets the user's hidden feature vector and the user's hidden feature vector of the positive or negative product. The hidden feature vector may be estimated so as to minimize the loss function (eg, equation 1 above) that includes the term defined by the distance (eg, equation 2 above).
 また、推定部82は、変換関数(例えば、関数f)により単語ベクトルを変換したベクトルと、商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数(例えば、上述する式4)を最小化するように、隠れ特徴ベクトルを推定してもよい。 Further, the estimation unit 82 performs a loss function (for example, the above-mentioned equation 4) including a term defined by the distance between the vector obtained by converting the word vector by the conversion function (for example, the function f) and the hidden feature vector of the product. The hidden feature vector may be estimated to be minimized.
 また、推定部82は、変換関数により単語ベクトルを変換したベクトルと、商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルおよび変換関数のパラメータ(例えば、パラメータθ)を推定してもよい。 Further, the estimation unit 82 minimizes the loss function including the term defined by the distance between the vector obtained by converting the word vector by the conversion function and the hidden feature vector of the product, and the parameters of the hidden feature vector and the conversion function. (For example, the parameter θ) may be estimated.
 また、ユーザ・商品マップ推定装置80は、変換関数のパラメータを出力する出力部(例えば、出力部52)を備えていてもよい。 Further, the user / product map estimation device 80 may include an output unit (for example, an output unit 52) that outputs the parameters of the conversion function.
 また、ユーザ・商品マップ推定装置80は、マップ空間における各ユーザの隠れ特徴ベクトルおよび各商品の隠れ特徴ベクトルを出力する出力部(例えば、出力部50)を備えていてもよい。 Further, the user / product map estimation device 80 may include an output unit (for example, an output unit 50) that outputs a hidden feature vector of each user and a hidden feature vector of each product in the map space.
 また、ユーザ・商品マップ推定装置80は、隠れ特徴ベクトルを出力する対象の商品またはユーザの情報、並びに、演算の対象とする単語および演算の入力を受け付け、商品またはユーザの隠れ特徴ベクトルに対して、受け付けた単語の隠れ特徴ベクトルに関する演算を行った結果を出力する出力操作部(例えば、出力操作部70)を備えていてもよい。 Further, the user / product map estimation device 80 receives the information of the target product or user that outputs the hidden feature vector, the word to be calculated, and the input of the calculation, and receives the input of the hidden feature vector of the product or user. , An output operation unit (for example, an output operation unit 70) that outputs the result of performing an operation on the hidden feature vector of the received word may be provided.
 具体的には、出力操作部は、演算の結果得られたベクトルの近傍に配置されたユーザ、商品または単語を出力してもよい。 Specifically, the output operation unit may output a user, a product, or a word arranged in the vicinity of the vector obtained as a result of the calculation.
 また、推定部82は、商品が有する特徴を操作可能なマップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定してもよい。 Further, the estimation unit 82 may estimate a hidden feature vector representing a position on the map space in which the feature of the product can be manipulated for each of the user and the product.
 また、本発明によるユーザ・商品マップ推定装置80が、商品情報の代わりに、または、商品情報とともに、ユーザ情報を用いて隠れ特徴ベクトルを推定してもよい。この場合、入力部81(例えば、学習データ入力部30)は、ユーザの嗜好に応じて行動の対象になった商品を表わす学習データ(例えば、購買データ)を入力し、推定部82(例えば、推定部40、推定部42)は、ユーザが備える特徴を表わすユーザ情報と、単語間の関係性を表す単語情報と、学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する。 Further, the user / product map estimation device 80 according to the present invention may estimate the hidden feature vector using the user information instead of the product information or together with the product information. In this case, the input unit 81 (for example, the learning data input unit 30) inputs learning data (for example, purchase data) representing the product that is the target of the action according to the user's preference, and the estimation unit 82 (for example, the learning data input unit 30) inputs. The estimation unit 40 and the estimation unit 42) generate a hidden feature vector representing a position in the map space based on the user information representing the feature provided by the user, the word information representing the relationship between words, and the learning data. Estimate for each user and product.
 そして、推定部82は、ユーザの隠れ特徴ベクトル(例えば、隠れ特徴ベクトルP)と商品の隠れ特徴ベクトル(例えば、隠れ特徴ベクトルQ)との距離が学習データが示すその商品に対するユーザの嗜好を反映した距離になるようにするとともに、ユーザ情報が示す関係性が近いほど、ユーザの隠れ特徴ベクトルとユーザ情報が表わすそのユーザの特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように(例えば、式1を用いて)隠れ特徴ベクトルを推定する。 Then, the estimation unit 82 reflects the user's preference for the product indicated by the learning data in the distance between the hidden feature vector of the user (for example, the hidden feature vector P) and the hidden feature vector of the product (for example, the hidden feature vector Q). The closer the relationship indicated by the user information is, the closer the distance between the hidden feature vector of the user and the word vector estimated based on the word indicating the user's characteristic represented by the user information is reduced. (For example, using Equation 1), the hidden feature vector is estimated.
 そのような構成により、ユーザの特徴がそのユーザを説明する文章上に現れていない場合であっても、その特徴を考慮したユーザと商品との関係を空間上にマップできる。 With such a configuration, even if the user's characteristics do not appear in the text explaining the user, the relationship between the user and the product considering the characteristics can be mapped in space.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Part or all of the above embodiments may be described as in the following appendix, but are not limited to the following.
(付記1)ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力する入力部と、商品が備える特徴を表わす商品情報と、単語間の関係性を表す単語情報と、前記学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する推定部とを備え、前記推定部は、ユーザの前記隠れ特徴ベクトルと商品の前記隠れ特徴ベクトルとの距離が前記学習データが示す当該商品に対するユーザの嗜好を反映した距離になるようにするとともに、前記単語情報が示す関係性が近いほど、商品の前記隠れ特徴ベクトルと前記商品情報が表わす当該商品の特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように前記隠れ特徴ベクトルを推定することを特徴とするユーザ・商品マップ推定装置。 (Appendix 1) An input unit for inputting learning data representing a product targeted for action according to a user's preference, product information representing the characteristics of the product, word information representing the relationship between words, and the above. A hidden feature vector representing a position on the map space based on the learning data is provided with an estimation unit that estimates each of the user and the product, and the estimation unit includes the hidden feature vector of the user and the hidden feature of the product. The distance from the vector is set to be a distance that reflects the user's preference for the product indicated by the learning data, and the closer the relationship indicated by the word information is, the more the hidden feature vector of the product and the product information represent. A user / product map estimation device that estimates the hidden feature vector so that the distance from the word vector estimated based on the word indicating the feature of the product is close.
(付記2)推定部は、単語ベクトルと商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定する付記1記載のユーザ・商品マップ推定装置。 (Appendix 2) The estimation unit estimates the hidden feature vector so as to minimize the loss function including the term defined by the distance between the word vector and the hidden feature vector of the product. apparatus.
(付記3)推定部は、学習データに基づくユーザの正例商品または負例商品を、商品に対するユーザの嗜好として用いて、ユーザの隠れ特徴ベクトルと前記正例商品または前記負例商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定する付記1または付記2記載のユーザ・商品マップ推定装置。 (Appendix 3) The estimation unit uses the user's positive product or negative product based on the learning data as the user's preference for the product, and the user's hidden feature vector and the positive product or the hidden feature of the negative product. The user / product map estimation device according to Appendix 1 or Appendix 2, which estimates a hidden feature vector so as to minimize a loss function including a term defined by a distance from the vector.
(付記4)推定部は、変換関数により単語ベクトルを変換したベクトルと、商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定する付記1から付記3のうちのいずれか1つに記載のユーザ・商品マップ推定装置。 (Appendix 4) The estimation unit estimates the hidden feature vector so as to minimize the loss function including the term defined by the distance between the vector obtained by converting the word vector by the conversion function and the hidden feature vector of the product. The user / product map estimation device according to any one of 1 to 3.
(付記5)推定部は、変換関数により単語ベクトルを変換したベクトルと、商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルおよび前記変換関数のパラメータを推定する付記1から付記4のうちのいずれか1つに記載のユーザ・商品マップ推定装置。 (Appendix 5) The estimation unit minimizes the loss function including the term defined by the distance between the vector obtained by converting the word vector by the conversion function and the hidden feature vector of the product, and the hidden feature vector and the conversion function. The user / product map estimation device according to any one of Supplementary note 1 to Supplementary note 4, which estimates the parameters of the above.
(付記6)変換関数のパラメータを出力する出力部を備えた付記5記載のユーザ・商品マップ推定装置。 (Appendix 6) The user / product map estimation device according to Appendix 5, which includes an output unit that outputs parameters of a conversion function.
(付記7)マップ空間における各ユーザの隠れ特徴ベクトルおよび各商品の隠れ特徴ベクトルを出力する出力部を備えた付記1から付記6のうちのいずれか1つに記載のユーザ・商品マップ推定装置。 (Supplementary note 7) The user / product map estimation device according to any one of Supplementary note 1 to Supplementary note 6, which includes an output unit for outputting a hidden feature vector of each user and a hidden feature vector of each product in the map space.
(付記8)隠れ特徴ベクトルを出力する対象の商品またはユーザの情報、並びに、演算の対象とする単語および演算の入力を受け付け、前記商品またはユーザの隠れ特徴ベクトルに対して、受け付けた単語の隠れ特徴ベクトルに関する前記演算を行った結果を出力する出力操作部を備えた付記1から付記7のうちのいずれか1つに記載のユーザ・商品マップ推定装置。 (Appendix 8) The information of the product or user for which the hidden feature vector is output, the word to be calculated, and the input of the calculation are accepted, and the hidden feature vector of the received word is hidden with respect to the hidden feature vector of the product or user. The user / product map estimation device according to any one of Supplementary notes 1 to 7, further comprising an output operation unit that outputs the result of performing the above calculation regarding the feature vector.
(付記9)出力操作部は、演算の結果得られたベクトルの近傍に配置されたユーザ、商品または単語を出力する付記8記載のユーザ・商品マップ推定装置。 (Supplementary note 9) The output operation unit is a user / product map estimation device according to Supplementary note 8 that outputs a user, a product, or a word arranged in the vicinity of a vector obtained as a result of an operation.
(付記10)推定部は、商品が有する特徴を操作可能なマップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する付記1から付記9のうちのいずれか1つに記載のユーザ・商品マップ推定装置。 (Appendix 10) The estimation unit describes a hidden feature vector representing a position on a map space in which the features of the product can be manipulated, in any one of Supplements 1 to 9 that estimates the features of the product for each of the user and the product. User / product map estimation device.
(付記11)ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力する入力部と、ユーザが備える特徴を表わすユーザ情報と、単語間の関係性を表す単語情報と、前記学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する推定部とを備え、前記推定部は、ユーザの前記隠れ特徴ベクトルと商品の前記隠れ特徴ベクトルとの距離が前記学習データが示す当該商品に対するユーザの嗜好を反映した距離になるようにするとともに、前記単語情報が示す関係性が近いほど、ユーザの前記隠れ特徴ベクトルと前記ユーザ情報が表わす当該ユーザの特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように前記隠れ特徴ベクトルを推定することを特徴とするユーザ・商品マップ推定装置。 (Appendix 11) An input unit for inputting learning data representing a product targeted for action according to a user's preference, user information representing a feature provided by the user, word information representing a relationship between words, and the above. A hidden feature vector representing a position on the map space based on the learning data is provided with an estimation unit that estimates each of the user and the product, and the estimation unit includes the hidden feature vector of the user and the hidden feature of the product. The distance to the vector is set to be a distance that reflects the user's preference for the product indicated by the learning data, and the closer the relationship indicated by the word information is, the more the hidden feature vector of the user and the user information represent. A user / product map estimation device that estimates the hidden feature vector so that the distance from the word vector estimated based on the word indicating the user's characteristics is close.
(付記12)ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力し、商品が備える特徴を表わす商品情報と、単語間の関係性を表す単語情報と、前記学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定し、前記推定の際、ユーザの前記隠れ特徴ベクトルと商品の前記隠れ特徴ベクトルとの距離が前記学習データが示す当該商品に対するユーザの嗜好を反映した距離になるようにするとともに、前記単語情報が示す関係性が近いほど、商品の前記隠れ特徴ベクトルと前記商品情報が表わす当該商品の特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように前記隠れ特徴ベクトルを推定することを特徴とするユーザ・商品マップ推定方法。 (Appendix 12) The learning data representing the product targeted for action is input according to the user's preference, the product information representing the characteristics of the product, the word information representing the relationship between words, and the learning data. A hidden feature vector representing a position on the map space is estimated for each of the user and the product based on the above, and at the time of the estimation, the distance between the hidden feature vector of the user and the hidden feature vector of the product is the training data. The distance is set to reflect the user's preference for the product indicated by, and the closer the relationship indicated by the word information is, the more the hidden feature vector of the product and the word indicating the characteristic of the product represented by the product information are used. A user / product map estimation method characterized in that the hidden feature vector is estimated so that the distance from the word vector estimated based on the data is close.
(付記13)単語ベクトルと商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定する付記12記載のユーザ・商品マップ推定方法。 (Appendix 13) The user / product map estimation method according to Appendix 12, wherein the hidden feature vector is estimated so as to minimize the loss function including the term defined by the distance between the word vector and the hidden feature vector of the product.
(付記14)コンピュータに、ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力する入力処理、および、商品が備える特徴を表わす商品情報と、単語間の関係性を表す単語情報と、前記学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する推定処理を実行させ、
 前記推定処理で、ユーザの前記隠れ特徴ベクトルと商品の前記隠れ特徴ベクトルとの距離が前記学習データが示す当該商品に対するユーザの嗜好を反映した距離になるようにするとともに、前記単語情報が示す関係性が近いほど、商品の前記隠れ特徴ベクトルと前記商品情報が表わす当該商品の特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように前記隠れ特徴ベクトルを推定させるためのユーザ・商品マップ推定プログラム。
(Appendix 14) An input process for inputting learning data representing a product targeted for action according to a user's preference into a computer, product information representing the characteristics of the product, and a word representing the relationship between words. Based on the information and the training data, an estimation process for estimating a hidden feature vector representing a position in the map space for each of the user and the product is executed.
In the estimation process, the distance between the hidden feature vector of the user and the hidden feature vector of the product is set to be a distance reflecting the user's preference for the product indicated by the learning data, and the relationship indicated by the word information. The user for estimating the hidden feature vector so that the closer the sex is, the closer the distance between the hidden feature vector of the product and the word vector estimated based on the word indicating the feature of the product represented by the product information is. -Product map estimation program.
(付記15)コンピュータに、推定処理で、単語ベクトルと商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定させる付記14記載のユーザ・商品マップ推定プログラム。 (Supplementary note 15) The user according to Supplementary note 14, wherein the computer is made to estimate the hidden feature vector so as to minimize the loss function including the term defined by the distance between the word vector and the hidden feature vector of the product in the estimation process. Product map estimation program.
 10 商品情報入力部
 20 単語情報入力部
 30 学習データ入力部
 40,42 推定部
 50,52 出力部
 60 記憶部
 70 出力操作部
 100,200,300 ユーザ・商品マップ推定装置
10 Product information input unit 20 Word information input unit 30 Learning data input unit 40, 42 Estimator unit 50, 52 Output unit 60 Storage unit 70 Output operation unit 100, 200, 300 User / product map estimation device

Claims (15)

  1.  ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力する入力部と、
     商品が備える特徴を表わす商品情報と、単語間の関係性を表す単語情報と、前記学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する推定部とを備え、
     前記推定部は、ユーザの前記隠れ特徴ベクトルと商品の前記隠れ特徴ベクトルとの距離が前記学習データが示す当該商品に対するユーザの嗜好を反映した距離になるようにするとともに、前記単語情報が示す関係性が近いほど、商品の前記隠れ特徴ベクトルと前記商品情報が表わす当該商品の特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように前記隠れ特徴ベクトルを推定する
     ことを特徴とするユーザ・商品マップ推定装置。
    An input unit for inputting learning data representing a product that is the target of action according to the user's preference,
    Based on the product information representing the features of the product, the word information representing the relationship between words, and the learning data, an estimation that estimates a hidden feature vector representing a position in the map space for each of the user and the product. With a department,
    The estimation unit sets the distance between the hidden feature vector of the user and the hidden feature vector of the product to be a distance reflecting the user's preference for the product indicated by the learning data, and the relationship indicated by the word information. The feature is that the hidden feature vector is estimated so that the closer the sex is, the closer the distance between the hidden feature vector of the product and the word vector estimated based on the word indicating the feature of the product represented by the product information is. User / product map estimation device.
  2.  推定部は、単語ベクトルと商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定する
     請求項1記載のユーザ・商品マップ推定装置。
    The user / product map estimation device according to claim 1, wherein the estimation unit estimates the hidden feature vector so as to minimize the loss function including the term defined by the distance between the word vector and the hidden feature vector of the product.
  3.  推定部は、学習データに基づくユーザの正例商品または負例商品を、商品に対するユーザの嗜好として用いて、ユーザの隠れ特徴ベクトルと前記正例商品または前記負例商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定する
     請求項1または請求項2記載のユーザ・商品マップ推定装置。
    The estimation unit uses the user's positive product or negative product based on the learning data as the user's preference for the product, and the distance between the user's hidden feature vector and the positive product or the hidden feature vector of the negative product. The user-commodity map estimator according to claim 1 or 2, which estimates a hidden feature vector so as to minimize the loss function including the terms defined by.
  4.  推定部は、変換関数により単語ベクトルを変換したベクトルと、商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定する
     請求項1から請求項3のうちのいずれか1項に記載のユーザ・商品マップ推定装置。
    The estimator claims from claim 1 to estimate the hidden feature vector so as to minimize the loss function including the term defined by the distance between the vector obtained by transforming the word vector by the conversion function and the hidden feature vector of the product. Item 3. The user / product map estimation device according to any one of items 3.
  5.  推定部は、変換関数により単語ベクトルを変換したベクトルと、商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルおよび前記変換関数のパラメータを推定する
     請求項1から請求項4のうちのいずれか1項に記載のユーザ・商品マップ推定装置。
    The estimator estimates the hidden feature vector and the parameters of the transform function so as to minimize the loss function including the term defined by the distance between the vector obtained by transforming the word vector by the transform function and the hidden feature vector of the product. The user / product map estimation device according to any one of claims 1 to 4.
  6.  変換関数のパラメータを出力する出力部を備えた
     請求項5記載のユーザ・商品マップ推定装置。
    The user / product map estimation device according to claim 5, further comprising an output unit that outputs parameters of a conversion function.
  7.  マップ空間における各ユーザの隠れ特徴ベクトルおよび各商品の隠れ特徴ベクトルを出力する出力部を備えた
     請求項1から請求項6のうちのいずれか1項に記載のユーザ・商品マップ推定装置。
    The user / product map estimation device according to any one of claims 1 to 6, further comprising an output unit that outputs a hidden feature vector of each user and a hidden feature vector of each product in the map space.
  8.  隠れ特徴ベクトルを出力する対象の商品またはユーザの情報、並びに、演算の対象とする単語および演算の入力を受け付け、前記商品またはユーザの隠れ特徴ベクトルに対して、受け付けた単語の隠れ特徴ベクトルに関する前記演算を行った結果を出力する出力操作部を備えた
     請求項1から請求項7のうちのいずれか1項に記載のユーザ・商品マップ推定装置。
    The information about the product or user to output the hidden feature vector, the word to be calculated, and the input of the calculation are received, and the hidden feature vector of the received word is related to the hidden feature vector of the product or user. The user / product map estimation device according to any one of claims 1 to 7, further comprising an output operation unit that outputs the result of calculation.
  9.  出力操作部は、演算の結果得られたベクトルの近傍に配置されたユーザ、商品または単語を出力する
     請求項8記載のユーザ・商品マップ推定装置。
    The user / product map estimation device according to claim 8, wherein the output operation unit outputs a user, a product, or a word arranged in the vicinity of the vector obtained as a result of the calculation.
  10.  推定部は、商品が有する特徴を操作可能なマップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する
     請求項1から請求項9のうちのいずれか1項に記載のユーザ・商品マップ推定装置。
    The user according to any one of claims 1 to 9, wherein the estimation unit estimates a hidden feature vector representing a position on a map space in which the features of the product can be manipulated for each of the user and the product. -Product map estimation device.
  11.  ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力する入力部と、
     ユーザが備える特徴を表わすユーザ情報と、単語間の関係性を表す単語情報と、前記学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する推定部とを備え、
     前記推定部は、ユーザの前記隠れ特徴ベクトルと商品の前記隠れ特徴ベクトルとの距離が前記学習データが示す当該商品に対するユーザの嗜好を反映した距離になるようにするとともに、前記単語情報が示す関係性が近いほど、ユーザの前記隠れ特徴ベクトルと前記ユーザ情報が表わす当該ユーザの特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように前記隠れ特徴ベクトルを推定する
     ことを特徴とするユーザ・商品マップ推定装置。
    An input unit for inputting learning data representing a product that is the target of action according to the user's preference,
    Based on the user information representing the features provided by the user, the word information representing the relationship between words, and the learning data, an estimation that estimates a hidden feature vector representing a position in the map space for each of the user and the product. With a department,
    The estimation unit sets the distance between the hidden feature vector of the user and the hidden feature vector of the product to be a distance reflecting the user's preference for the product indicated by the learning data, and the relationship indicated by the word information. The closer the sex is, the closer the hidden feature vector of the user is to the word vector estimated based on the word indicating the user's feature represented by the user information. User / product map estimation device.
  12.  ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力し、
     商品が備える特徴を表わす商品情報と、単語間の関係性を表す単語情報と、前記学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定し、
     前記推定の際、ユーザの前記隠れ特徴ベクトルと商品の前記隠れ特徴ベクトルとの距離が前記学習データが示す当該商品に対するユーザの嗜好を反映した距離になるようにするとともに、前記単語情報が示す関係性が近いほど、商品の前記隠れ特徴ベクトルと前記商品情報が表わす当該商品の特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように前記隠れ特徴ベクトルを推定する
     ことを特徴とするユーザ・商品マップ推定方法。
    Input learning data representing the product that was the target of the action according to the user's preference,
    Based on the product information representing the features of the product, the word information representing the relationship between words, and the learning data, a hidden feature vector representing the position in the map space is estimated for each of the user and the product.
    At the time of the estimation, the distance between the hidden feature vector of the user and the hidden feature vector of the product is set to be a distance reflecting the user's preference for the product indicated by the learning data, and the relationship indicated by the word information. The feature is that the hidden feature vector is estimated so that the closer the sex is, the closer the distance between the hidden feature vector of the product and the word vector estimated based on the word indicating the feature of the product represented by the product information is. User / product map estimation method.
  13.  単語ベクトルと商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定する
     請求項12記載のユーザ・商品マップ推定方法。
    The user-product map estimation method according to claim 12, wherein the hidden feature vector is estimated so as to minimize the loss function including the term defined by the distance between the word vector and the hidden feature vector of the product.
  14.  コンピュータに、
     ユーザの嗜好に応じて行動の対象になった商品を表わす学習データを入力する入力処理、および、
     商品が備える特徴を表わす商品情報と、単語間の関係性を表す単語情報と、前記学習データとに基づいて、マップ空間上の位置を表わす隠れ特徴ベクトルを、ユーザおよび商品のそれぞれについて推定する推定処理を実行させ、
     前記推定処理で、ユーザの前記隠れ特徴ベクトルと商品の前記隠れ特徴ベクトルとの距離が前記学習データが示す当該商品に対するユーザの嗜好を反映した距離になるようにするとともに、前記単語情報が示す関係性が近いほど、商品の前記隠れ特徴ベクトルと前記商品情報が表わす当該商品の特徴を示す単語に基づいて推定される単語ベクトルとの距離が近くなるように前記隠れ特徴ベクトルを推定させる
     ためのユーザ・商品マップ推定プログラム。
    On the computer
    Input processing for inputting learning data representing the product targeted for action according to the user's preference, and
    Based on the product information representing the features of the product, the word information representing the relationship between words, and the learning data, an estimation that estimates a hidden feature vector representing a position in the map space for each of the user and the product. Let the process be executed
    In the estimation process, the distance between the hidden feature vector of the user and the hidden feature vector of the product is set to be a distance reflecting the user's preference for the product indicated by the learning data, and the relationship indicated by the word information. The user for estimating the hidden feature vector so that the closer the sex is, the closer the distance between the hidden feature vector of the product and the word vector estimated based on the word indicating the feature of the product represented by the product information is. -Product map estimation program.
  15.  コンピュータに、
     推定処理で、単語ベクトルと商品の隠れ特徴ベクトルとの距離によって定義される項を含む損失関数を最小化するように、隠れ特徴ベクトルを推定させる
     請求項14記載のユーザ・商品マップ推定プログラム。
    On the computer
    The user / product map estimation program according to claim 14, wherein the hidden feature vector is estimated so as to minimize the loss function including the term defined by the distance between the word vector and the hidden feature vector of the product in the estimation process.
PCT/JP2019/034346 2019-09-02 2019-09-02 User/product map estimation device, method and program WO2021044460A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021543616A JP7310899B2 (en) 2019-09-02 2019-09-02 USER/PRODUCT MAP ESTIMATING DEVICE, METHOD AND PROGRAM
PCT/JP2019/034346 WO2021044460A1 (en) 2019-09-02 2019-09-02 User/product map estimation device, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034346 WO2021044460A1 (en) 2019-09-02 2019-09-02 User/product map estimation device, method and program

Publications (1)

Publication Number Publication Date
WO2021044460A1 true WO2021044460A1 (en) 2021-03-11

Family

ID=74852034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034346 WO2021044460A1 (en) 2019-09-02 2019-09-02 User/product map estimation device, method and program

Country Status (2)

Country Link
JP (1) JP7310899B2 (en)
WO (1) WO2021044460A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239759B1 (en) 2022-03-17 2023-03-14 ヤフー株式会社 Information providing device, information providing method, and information providing program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257811A (en) * 2010-06-04 2011-12-22 Shinshu Univ Merchandise search system, and method for searching merchandise in merchandise search system
JP2013105309A (en) * 2011-11-14 2013-05-30 Sony Corp Information processing apparatus, information processing method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257811A (en) * 2010-06-04 2011-12-22 Shinshu Univ Merchandise search system, and method for searching merchandise in merchandise search system
JP2013105309A (en) * 2011-11-14 2013-05-30 Sony Corp Information processing apparatus, information processing method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOHTANI, HIROTSUGUET AL: "A note on visualization of user preference based on purchase data analysis", ITE TECHNICAL REPORT, vol. 35, no. 9, 14 February 2011 (2011-02-14), pages 199 - 202 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239759B1 (en) 2022-03-17 2023-03-14 ヤフー株式会社 Information providing device, information providing method, and information providing program
JP2023137093A (en) * 2022-03-17 2023-09-29 ヤフー株式会社 Information provision device, method for providing information, and information provision program

Also Published As

Publication number Publication date
JP7310899B2 (en) 2023-07-19
JPWO2021044460A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US11836780B2 (en) Recommendations based upon explicit user similarity
US8769417B1 (en) Identifying an answer to a question in an electronic forum
US9449073B2 (en) Measuring and displaying facets in context-based conformed dimensional data gravity wells
KR20180091043A (en) Method and apparatus for obtaining user portraits
US20140019285A1 (en) Dynamic Listing Recommendation
US9135329B1 (en) Presenting item information based on associated entity relationships
Hauff et al. Importance and performance in PLS-SEM and NCA: Introducing the combined importance-performance map analysis (cIPMA)
WO2021044460A1 (en) User/product map estimation device, method and program
Chen et al. Data acquisition: A new frontier in data-centric AI
TWI506569B (en) A method for image tagging that identifies regions and behavior relationship between different objects
US20090144618A1 (en) Method and apparatus for displaying text information and numerical information in association with each other
CN111476511B (en) Data display method and device for specific risks faced by server
CN115033785A (en) Post recommendation method and device, readable storage medium and electronic equipment
JP6527257B1 (en) Provision apparatus, provision method and provision program
JP2003167920A (en) Needs information constructing method, needs information constructing device, needs information constructing program and recording medium with this program recorded thereon
JP6680725B2 (en) Category selection device, advertisement distribution system, category selection method, and program
US8538813B2 (en) Method and system for providing an SMS-based interactive electronic marketing offer search and distribution system
KR20090029220A (en) Multicurrency display
JP6506839B2 (en) Dissatisfied information processing device and system
JP2020035072A (en) Device, method, and program for processing information
WO2019008394A1 (en) Digital information capture and retrieval
WO2021176716A1 (en) Preference inference device, preference inference method, and preference inference program
JP5775241B1 (en) Information processing system, information processing method, and information processing program
US11605100B1 (en) Methods and systems for determining cadences
CN116932832B (en) Data asset catalog generation method, device and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543616

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944498

Country of ref document: EP

Kind code of ref document: A1