WO2021042358A1 - 一种膜式氧合器 - Google Patents

一种膜式氧合器 Download PDF

Info

Publication number
WO2021042358A1
WO2021042358A1 PCT/CN2019/104653 CN2019104653W WO2021042358A1 WO 2021042358 A1 WO2021042358 A1 WO 2021042358A1 CN 2019104653 W CN2019104653 W CN 2019104653W WO 2021042358 A1 WO2021042358 A1 WO 2021042358A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
blood
outlet
hole
array
Prior art date
Application number
PCT/CN2019/104653
Other languages
English (en)
French (fr)
Inventor
寿宸
卡谢菲阿里
穆扎基斯福沃斯
莫塔吉考斯洛
Original Assignee
西安西京医疗用品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安西京医疗用品有限公司 filed Critical 西安西京医疗用品有限公司
Priority to PCT/CN2019/104653 priority Critical patent/WO2021042358A1/zh
Priority to CN201990001417.6U priority patent/CN217391279U/zh
Publication of WO2021042358A1 publication Critical patent/WO2021042358A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits

Definitions

  • the invention relates to a liquid treatment device, such as a blood treatment device, especially a membrane oxygenator.
  • Membrane oxygenator has the function of regulating the content of oxygen and carbon dioxide in the blood. It is a necessary medical device in the process of cardiopulmonary bypass in cardiovascular surgery, and it is also a necessary medical device in the treatment of acute respiratory diseases and waiting for lung transplantation.
  • the principle of the membrane oxygenator is to take the venous blood in the body out of the body, exchange oxygen and carbon dioxide through the membrane oxygenator into arterial blood, and then return it to the patient's arterial system to maintain the supply of oxygenated blood to the organs and tissues of the human body , Membrane oxygenator acts as a temporary substitute for the lungs during surgery, and at the same time provides doctors with a quiet, blood-free, and clear operating environment to facilitate the operation.
  • the membrane oxygenator is provided with two annular chambers.
  • the two annular chambers are called the first chamber and the second chamber respectively.
  • the first chamber is located outside the second chamber, and the first chamber is located outside the second chamber.
  • the chamber is used to set an oxygenation membrane as an oxygenator to oxygenate the blood.
  • the second chamber is used to set a heat exchange membrane, which serves as a heat exchanger to exchange heat with the blood and maintain the blood temperature.
  • the blood enters the second chamber first, exchanges heat with the heat exchanger, and then enters the first chamber for oxygenation.
  • the blood temperature at the blood outlet of the membrane oxygenator will be reduced due to the heat loss, resulting in lower blood temperature in the arterial system of the patient.
  • the purpose of the present invention is to provide a membrane oxygenator to reduce heat loss as much as possible and maintain the blood temperature at the outlet of the oxygenator.
  • the present invention proposes a membrane oxygenator, which includes a shell with a blood inlet and a blood outlet, the shell is provided with a middle tube and an inner tube located inside the middle tube, the shell and An annular first chamber is formed between the middle tube, an annular second chamber located inside the first chamber is formed between the middle tube and the inner tube, and the blood inlet and the first chamber are formed between the middle tube and the inner tube.
  • a chamber, the second chamber and the blood outlet are connected in sequence, a heat exchange membrane is arranged in the first chamber, and an oxygenation membrane is arranged in the second chamber.
  • the heat exchange membrane is arranged in the first chamber, and the oxygenation membrane is arranged in the second chamber. Since the second chamber is located inside the first chamber, the first chamber and the heat exchange membrane inside it can be Insulate the blood flowing through the second chamber, minimize the heat loss of the blood in the second chamber, and maintain the blood temperature at the blood outlet of the membrane oxygenator;
  • the present invention provides a ring-shaped drainage chamber and a funnel-shaped drainage wall, so that blood can evenly enter the first chamber from all directions to achieve a more uniform radial and axial blood flow distribution;
  • the present invention can reduce the blood flow speed by setting the quiet zone chamber to prevent air bubbles in the blood from being carried to the blood outlet. By providing a gradually narrowing chamber cover, it helps to accumulate bubbles in the quiet zone chamber. Rise along the chamber cover to the exhaust port;
  • the present invention allows blood to enter the diversion cavity from all directions by providing a condensing structure, while avoiding blood turbulence and maintaining a low pressure gradient;
  • the present invention by arranging the first hole array on the middle tube, blood can flow from the first chamber to the second chamber more evenly, and by setting the second hole array in the middle of the middle tube, a part of blood can be removed from the middle tube.
  • the middle part of the tube flows into the second chamber, so that the blood flows more smoothly and reduces its flow resistance.
  • the third hole array on the inner cylinder By setting the third hole array on the inner cylinder, the blood can flow from the second chamber into the diversion cavity more evenly;
  • the first through hole and the second through hole are arranged as tangential holes, so that the extending direction of the first through hole and the second through hole is consistent with the blood flow direction, and it is convenient for blood to flow from the first chamber into the second chamber.
  • the third through hole is set as a tangential hole, so that the extension direction of the third through hole is consistent with the blood flow direction, which facilitates the flow of blood from the second chamber into the quiescent zone chamber and makes the blood flow more smoothly. Flow more smoothly;
  • the present invention rounds the two ends of the first through hole, the two ends of the second through hole, and the third through hole to avoid blood damage or platelet activation due to sharp corners. Causes blood clots.
  • Figure 1 is a front view of an embodiment of the membrane oxygenator of the present invention
  • Figure 2 is a bottom view of the membrane oxygenator in Figure 1;
  • Figure 3 is a cross-sectional view taken along line A-A in Figure 1;
  • Fig. 4 is a schematic diagram of the blood flow direction in the membrane oxygenator in Fig. 3;
  • Fig. 5 is a partial enlarged schematic diagram of B in Fig. 3;
  • Fig. 6 is a partial enlarged schematic diagram of C in Fig. 3;
  • Figure 7 is a cross-sectional view taken along line D-D in Figure 2;
  • Figure 8 is a cross-sectional view taken along line F-F in Figure 3;
  • Figure 9 is a schematic diagram of the first embodiment of the inner cylinder
  • Figure 10 is a cross-sectional view taken along line H-H in Figure 9;
  • Figure 11 is a schematic diagram of a second embodiment of the inner cylinder
  • Figure 12 is a cross-sectional view taken along line I-I in Figure 11;
  • Figure 13 is a schematic diagram of the first embodiment of the middle barrel
  • Figure 14 is a cross-sectional view taken along line J-J in Figure 13;
  • Figure 15 is a schematic diagram of a second embodiment of the middle barrel
  • Figure 16 is a schematic diagram of a third embodiment of the middle barrel
  • Figure 17 is a schematic diagram of a fourth embodiment of the middle tube
  • Figure 18 is a cross-sectional view along line K-K in Figure 17;
  • Figure 19 is a schematic diagram of a fifth embodiment of the middle barrel
  • Fig. 20 is a cross-sectional view taken along line L-L in Fig. 19.
  • Middle cylinder 21. First chamber; 22. Drainage chamber; 23. First through hole; 24. First opening;
  • the present invention proposes a membrane oxygenator, which includes a housing 1 having a blood inlet 11 and a blood outlet 12.
  • the housing 1 is generally cylindrical with closed ends.
  • a middle tube 2 and an inner tube 3 located inside the middle tube 2 are provided inside. Both the middle tube 2 and the inner tube 3 are in the shape of a tube.
  • the outer shell 1 and the middle tube 2 form an annular first chamber 21 (also called Temperature-changing chamber), a ring-shaped second chamber 31 (also called an oxygenation chamber) located inside the first chamber 21 is formed between the middle tube 2 and the inner tube 3, and the blood inlet 11, the first chamber 21, and the second chamber 31
  • the second chamber 31 and the blood outlet 12 are connected in sequence.
  • the blood enters through the blood inlet 11, flows through the first chamber 21 and the second chamber 31 in turn, and then flows out from the blood outlet 12.
  • the first chamber 21 is provided with heat exchange Membrane 4, when blood flows through the first chamber 21, it exchanges heat with the heat exchange membrane 4 in the first chamber 21, adjusts the blood temperature through heat exchange, and maintains the blood at an appropriate temperature.
  • the second chamber 31 An oxygenation membrane 5 is provided inside, and when blood flows through the second chamber 31, it exchanges gas with the oxygenation membrane 5 in the second chamber 31 to oxygenate the blood through the gas exchange.
  • the heat exchange membrane 4 is arranged in the first chamber 21, and the oxygenated membrane 5 is arranged in the second chamber 31. Since the second chamber 31 is located inside the first chamber 21, the first chamber 21 and The internal heat exchange membrane 4 can keep the blood flowing through the second chamber 31 warm, reduce the heat loss of the blood in the second chamber 31 as much as possible, and maintain the blood temperature at the blood outlet 12 of the membrane oxygenator. ;
  • the present invention can realize rapid heat exchange and uniform heat exchange by arranging the heat exchange membrane 4 in the first chamber 21 as the heat exchange unit, and provide rapid and uniform temperature adjustment in a larger temperature range, so that it can achieve Adjust the patient's body temperature quickly and evenly during cardiopulmonary bypass;
  • the blood inlet 11, the first chamber 21, the second chamber 31, and the blood outlet 12 are connected in sequence, the blood first flows through the first chamber 21 to exchange heat with the heat exchange membrane 4, and after reaching a suitable temperature, Entering the second chamber 31 for oxygenation can avoid the risk of over-oxygen saturation. If oxygenation is performed first and then the blood is heated, there is a risk of over-oxygen saturation, resulting in free air bubbles. If these air bubbles enter the human body with the blood, Will cause embolism in the body.
  • the housing 1 includes a cylindrical outer tube 13, an upper end cover 14 provided at the top end of the outer tube 13, and a lower end cover 15 provided at the bottom end of the outer tube 13.
  • the upper end cover 14 is in sealed connection with the outer cylinder 13, and the lower end cover 15 is in sealed connection with the outer cylinder 13.
  • the middle cylinder 2 is located inside the outer cylinder 13, and the two ends of the middle cylinder 2 are respectively sealed and connected to the upper end cover 14 and the lower end cover 15.
  • the two ends of 3 are respectively sealedly connected with the upper end cover 14 and the lower end cover 15, and the blood inlet 11 is provided on the outer cylinder 13.
  • an annular drainage chamber 22 is also provided between the housing 1 and the middle cylinder 2, and the drainage chamber 22 is located between the blood inlet 11 and the first chamber 21
  • the drainage chamber 22 has a funnel-shaped drainage wall 131.
  • the drainage wall 131 drains the blood entering the drainage chamber 22 into the first chamber 21. That is, blood enters the drainage chamber 22 from the blood inlet 11, and then, under the drainage of the drainage wall 131, enters the first chamber 21 uniformly from all directions.
  • a more uniform radial and axial blood flow distribution can be achieved.
  • the drainage wall 131 is formed by the diameter reduction of the outer cylinder 13 of the housing 1.
  • the inner diameter of the drainage wall 131 gradually expands from the first chamber 21 to the blood inlet 11, and the both ends of the drainage wall 131 have a smooth transition at the reduced diameter to avoid Destroy the blood.
  • the inlet of the first chamber 21 and the outlet of the first chamber 21 are respectively provided at the axial ends of the first chamber 21, and the second chamber 31
  • the inlet and the outlet of the second chamber 31 are respectively provided at both ends of the second chamber 31 in the axial direction, so that the blood flows through the first chamber 21 and the second chamber 31 in the axial direction (longitudinal), and the blood Compared with flowing through the first chamber 21 and the second chamber 31 in the radial direction (lateral direction), the blood is more evenly distributed during the flow process, and sufficient heat exchange and oxygenation of the blood can be realized.
  • the inlet of the first chamber 21 is the blood inlet 11 and the outlet of the first chamber 21 is the inlet of the second chamber 31.
  • the middle cylinder 2 is provided with a first array of openings connecting the first chamber 21 and the second chamber 31, and the first array of openings and the blood inlet 11 are respectively located in the first
  • the first opening array includes a plurality of first openings 24 arranged at intervals along the circumferential direction of the middle cylinder 2.
  • the first openings 24 serve as both the outlet of the first chamber 21 and the second The entrance to the chamber 31.
  • the first opening 24 is a rectangular opening.
  • the first array of openings is provided in the lower part of the middle tube 2, and the blood inlet 11 is provided in the upper part of the outer tube 13 of the housing 1. It flows downward through the first chamber 21 and then flows into the second chamber 31 through the first opening 24 in the lower part of the middle cylinder 2.
  • the middle cylinder 2 is provided with a first hole array connecting the first chamber 21 and the second chamber 31, and the first hole array and the blood inlet 11 are respectively located in the first hole.
  • the first hole array includes a plurality of first through holes 23 arranged at intervals in the circumferential and axial directions of the middle cylinder 2.
  • the first through holes 23 serve as the first cavity 21
  • the exit is used as the entrance of the second chamber 31.
  • the plurality of first through holes 23 are arranged at equal intervals along the circumferential direction of the middle cylinder 2 to make the blood flow distribution more uniform.
  • the first hole array is provided in the lower part of the middle cylinder 2, and the blood inlet 11 is provided in the upper part of the outer cylinder 13 of the housing 1. After the blood flows into the first chamber 21 from the blood inlet 11, it is directed along the axial direction of the middle cylinder 2. It flows downward through the first chamber 21 and then flows into the second chamber 31 through the first through hole 23 in the lower part of the middle cylinder 2.
  • the arrangement of the first through holes 23 of the first hole array is: the first through holes 23 are arranged in at least two rows along the axial direction of the middle cylinder 2, and the first through holes 23 in each row are arranged in at least two rows. There are multiple, and the multiple first through holes 23 in each row are arranged at equal intervals along the circumferential direction of the middle cylinder 2, and the first through holes 23 in two adjacent rows are axially aligned or staggered.
  • the first through hole 23 is a tangential hole, that is, the first through hole 23 is arranged along the tangential direction of the middle cylinder 2, and the extending direction of the first through hole 23 is consistent with the blood flow direction.
  • the edges of both ends of the first through hole 23 are rounded, so as to avoid sharp corners that may cause blood cell destruction or platelet activation and cause thrombus.
  • all edges of the first through hole 23 may be rounded.
  • the shape of the first through hole 23 is rectangular (as shown in FIG. 13 and FIG. 14) or elliptical (as shown in FIG. 15 and FIG. 16), but the present invention is not limited to this.
  • the through hole 23 may also have other shapes.
  • the third solution as shown in Fig. 15 and Fig. 16, the middle cylinder 2 is provided with not only the first opening array in the first solution, but also the first hole array in the second solution, and the first opening array
  • the first hole array and the first hole array are both provided at one end of the middle tube 2 away from the blood inlet 11, and the first opening array and the first hole array are spaced apart in the axial direction of the middle tube 2, and the first openings 24 of the first opening array
  • the area of is larger than the area of the first through holes 23 of the first hole array.
  • the structure and location of the first opening array can be set with reference to the first solution, and the structure and location of the first hole array can be set with reference to the second solution.
  • the first array of openings and the first array of holes are both provided in the lower part of the middle cylinder 2, and the first array of holes is located above the first array of openings, the blood inlet 11 is provided on the upper part of the outer cylinder 13 of the housing 1, and the blood is fed from the blood inlet After 11 flows into the first chamber 21, it flows downwards through the first chamber 21 along the axial direction of the middle tube 2, and then flows into the second chamber 31 through the first opening 24 and the first through hole 23 in the lower part of the middle tube 2.
  • the arrangement of the plurality of first openings 24 of the first opening array can be set with reference to the first opening 24 in the first solution, and the structure, shape, and structure of the plurality of first through holes 23 of the first hole array The arrangement can be set with reference to the first through hole 23 in the second solution.
  • the middle cylinder 2 is provided with not only the first hole array in the second solution, but also a second hole array.
  • the first hole array and the blood inlet 11 are respectively located At the axial ends of the first cavity 21, the second hole array is provided in the middle of the middle cylinder 2, that is, the second hole array corresponds to the middle position of the first cavity 21, and the first hole array and the second hole array are
  • the first cavity 21 and the second cavity 31 are in communication, and the second hole array includes a plurality of second through holes 25 arranged at intervals along the axial direction of the middle cylinder 2.
  • the structure and position of the first hole array can be set with reference to the second solution.
  • a part of blood can flow into the second chamber 31 from the middle of the middle cylinder 2, so that the blood flow is smoother and the flow resistance is reduced.
  • the first hole array is provided at the lower part of the middle cylinder 2
  • the second hole array is located above the first hole array
  • the blood inlet 11 is provided on the upper part of the outer cylinder 13 of the housing 1
  • the blood flows into the first chamber 21 from the blood inlet 11 After that, it flows downward along the axial direction of the middle cylinder 2 through the first chamber 21, and then flows into the second chamber 31 through the second through hole 25 in the middle of the middle cylinder 2 and the first through hole 23 in the lower part of the middle cylinder 2.
  • the structure, shape, and arrangement of the first through holes 23 can be set with reference to the first through hole 23 in the second solution, and the structure, shape and arrangement of the second through holes 25 can also refer to the second one.
  • the first through hole 23 in the solution is provided.
  • the arrangement of the second through holes 25 can also be different from the first through holes 23 in the second solution.
  • the second through holes 25 are arranged along the circumferential direction of the middle cylinder 2.
  • each second through hole 25 extends along the axial direction of the middle cylinder 2.
  • the shape of the second through hole 25 is rectangular.
  • each second through hole 25 extends along the circumferential direction of the middle cylinder 2.
  • the shape of the second through holes 25 is an ellipse, and a plurality of second through holes 25 in each column are arranged at equal intervals along the axial direction of the middle cylinder 2, and are adjacent to each other.
  • the second through holes 25 in the two rows are circumferentially aligned or staggered.
  • the first through hole 23 and the second through hole 25 are both tangential holes, that is, the first through hole 23 is arranged along the tangential direction of the middle cylinder 2, and the extension direction of the first through hole 23 Consistent with the blood flow direction, the second through hole 25 is arranged along the tangential direction of the middle cylinder 2, and the extension direction of the second through hole 25 is consistent with the blood flow direction.
  • the edges of both ends of the first through hole 23 are rounded, and the edges of both ends of the second through hole 25 are rounded, so as to prevent the sharp corners from destroying blood cells or activating platelets and causing thrombus. All edges of the first through hole 23 and the second through hole 25 are rounded.
  • the shape of the first through hole 23 is a rectangle or an ellipse
  • the shape of the second through hole 25 is a rectangle (as shown in FIG. 17 and FIG. 18) or an ellipse (as shown in FIG. 19 and FIG. 20). Show), but the present invention is not limited to this, the first through hole 23 and the second through hole 25 may also have other shapes.
  • the second hole array in the fourth scheme may be set on the basis of the first scheme, or the second hole array in the fourth scheme may be set on the basis of the third scheme.
  • a cylindrical diversion tube 6 is also connected inside the inner cylinder 3, a diversion cavity 61 is formed in the diversion cylinder 6, a second chamber 31, a diversion cavity 61 and The blood outlet 12 is connected in sequence, and the blood outlet 12 is located below the diversion cavity 61.
  • the communication structure between the second chamber 31 and the diversion chamber 61 has at least the following three solutions.
  • the inner cylinder 3 is provided with a second array of openings connecting the second chamber 31 and the diversion cavity 61, and the second array of openings is located above the diversion cavity 61.
  • the two opening arrays and the entrances of the second cavity 31 (that is, the first opening array and/or the first hole array) are respectively located at the two axial ends of the second cavity 31, and the second opening array includes a circumferential direction along the inner cylinder 3
  • a plurality of second openings 34 are arranged at intervals, and the second opening 34 serves as an outlet of the second chamber 31 and connects the second chamber 31 and the diversion cavity 61.
  • the second opening 34 is a rectangular opening.
  • the second opening array is provided in the upper part of the inner cylinder 3. After blood flows into the second chamber 31, it flows upward through the second chamber 31 in the axial direction, and then flows into the diversion chamber 61 through the second opening 34.
  • the inner cylinder 3 is provided with a third hole array connecting the second cavity 31 and the diversion cavity 61, the third hole array is located above the diversion cavity 61, and the third hole array is located above the diversion cavity 61.
  • the hole array and the entrance of the second cavity 31 ie, the first opening array and/or the first hole array
  • the third hole array includes the circumferential and A plurality of third through holes 32 are arranged at intervals in the axial direction.
  • the third through holes 32 serve as the outlet of the second chamber 31 and connect the second chamber 31 and the diversion cavity 61.
  • the blood in the second chamber 31 can flow into the diversion cavity 61 from all directions.
  • the plurality of third through holes 32 are arranged at equal intervals along the circumferential direction of the inner cylinder 3 to make the blood flow distribution more uniform.
  • the third hole array is provided in the upper part of the inner cylinder 3. After blood flows into the second chamber 31, it flows upward through the second chamber 31 in the axial direction, and then flows into the diversion chamber 61 through the third through hole 32.
  • the arrangement of the third through holes 32 of the third hole array is: the third through holes 32 are arranged in at least two rows along the axial direction of the inner cylinder 3, and there are multiple third through holes 32 in each row, and each The third through holes 32 in the row are arranged at equal intervals along the circumferential direction of the inner cylinder 3, and the third through holes 32 in two adjacent rows are axially aligned or staggered.
  • the third through hole 32 is a tangential hole, that is, the third through hole 32 is provided along the tangential direction of the inner cylinder 3, and the extending direction of the third through hole 32 is consistent with the blood flow direction.
  • the edges of both ends of the third through hole 32 are rounded, so as to avoid sharp corners that may cause blood cell destruction or platelet activation and cause thrombus.
  • all edges of the third through hole 32 may be rounded.
  • the shape of the third through hole 32 is rectangular (as shown in FIG. 9 and FIG. 10) or elliptical (as shown in FIG. 11 and FIG. 12), but it is not limited to this. 32 can also have other shapes.
  • the third solution the inner cylinder 3 is provided with not only the second opening array in the first solution, but also the third hole array in the second solution, and the second opening array and the third hole array are located in the diversion cavity Above 61, the second array of openings and the third array of holes are both arranged at one end of the inner cylinder 3 away from the blood outlet 12, and the second array of openings and the third array of holes are spaced apart in the axial direction of the inner cylinder 3.
  • the area of the second opening 34 of the opening array is larger than the area of the third through holes 32 of the third hole array.
  • the second array of openings and the third array of holes are both arranged on the upper part of the inner cylinder 3, and the third array of holes is located below or above the second array of openings.
  • the arrangement of the second openings 34 of the second opening array can be set with reference to the second openings 34 in the first solution, and the structure, shape and arrangement of the third through holes 32 of the third hole array can be referred to The third through hole 32 in the second solution is provided.
  • the blood outlet 12 is provided in the middle of the bottom end of the housing 1, and is located below the diversion cavity 61. Specifically, the blood outlet 12 is provided on the lower end cover of the housing 1. At the center of 15, therefore, after the blood flows into the diversion cavity 61, it flows down through the diversion cavity 61 in the axial direction, and then flows out through the blood outlet 12.
  • a quiet zone chamber 33 is provided inside the inner cylinder 3, and the quiet zone chamber 33 is located above the diversion cavity 61, or the quiet zone chamber 33 Located above the flow guide cylinder 6, the second chamber 31, the quiet zone chamber 33 and the flow guide chamber 61 are sequentially connected, and the second opening array and/or the third hole array connect the second chamber 31 and the quiet zone chamber 33 , That is, the second chamber 31, the second opening 34 and/or the third through hole 32, the quiet zone chamber 33 and the diversion chamber 61 are connected in sequence, and blood flows in through the second opening 34 and/or the third through hole 32 In the quiet zone chamber 33, the diameter of the quiet zone chamber 33 is greater than the diameter of the diversion chamber 61.
  • a ring-shaped chamber cover 7 is provided on the top of the quiet zone chamber 33.
  • the chamber cover 7 is a structure that gradually narrows from bottom to top.
  • the apex of the chamber cover 7 There is an exhaust port 71 for the bubbles accumulated in the quiet zone chamber 33 to be discharged at the center (that is, at the center).
  • the chamber cover 7 and the upper end cover 14 of the housing 1 are an integral structure, and the structural strength is high.
  • an exhaust pipe 72 is connected above the exhaust port 71, the exhaust pipe 72 passes through the upper end cover 14 of the housing 1 and extends out of the housing 1, and the exhaust pipe 72 is provided with a one-way valve 73.
  • the one-way valve 73 only allows the bubbles in the quiet zone chamber 33 to be discharged, and does not allow outside air to enter the quiet zone chamber 33.
  • the shape of the chamber cover 7 is conical or hemispherical.
  • the shape of the chamber cover 7 is conical, its slope can be set according to actual needs, and the present invention does not limit this; when the shape of the chamber cover 7 is hemispherical, its radius can be set according to actual needs, The present invention does not impose restrictions on this.
  • the chamber cover 7 may also have other structures that gradually narrow from bottom to top, and the present invention does not limit this.
  • the slope of the chamber cover 7 is assumed to be k
  • a bus bar of the chamber cover 7 is taken as an example for description
  • k 0.1377.
  • the bottom of the quiet zone chamber 33 is provided with a ring-shaped gathering structure 8, which is a trumpet-shaped structure whose diameter is tapered from top to bottom, or the gathering structure 8 It is a streamlined structure, the inner wall surface of the gathering structure 8 facing the quiet zone chamber 33 is a curved surface 81, the upper end of the gathering structure 8 is connected with the inner cylinder 3, the lower end of the gathering structure 8 is connected with the diversion cylinder 6, and the gathering structure 8 is connected with The junction of the diversion cylinder 6 is smoothly transitioned, and the condensing structure 8 is located below the third hole array.
  • the curved surface 81 guides the blood entering the quiet zone chamber 33 from the third through hole 32 to the diversion cavity 61.
  • the inner cylinder 3, the gathering structure 8 and the deflector cylinder 6 are an integrated structure, which has high structural strength and facilitates the assembly of the membrane oxygenator.
  • the shape of the curved surface 81 of the gathering structure 8 is an arc surface, and the center of the arc line on the curved surface 81 is located outside the gathering structure 8.
  • the radius of the arc line on the curved surface 81 can be set according to actual needs. There is no restriction on this.
  • the curved surface 81 may also be curved surfaces of other shapes, and the present invention does not limit this.
  • the radius of the arc is provided on the line 818 is retractable structure surface is r, a retractable structure to the surface 81 of the arcuate line 8 as an example, to the center line of the arc of O 2,
  • the heat exchange membrane 4 is a hollow fiber membrane bundle used to guide the heat exchange fluid.
  • the heat exchange fluid in the hollow fiber membrane inside performs heat exchange.
  • the oxygenated membrane 5 is a hollow fiber membrane bundle used to guide gas.
  • the housing 1 also has a liquid inlet 16 for the heat exchange fluid to enter, a liquid outlet 17 for the heat exchange fluid to flow out, an air inlet 18 for gas to enter, and a gas outlet 19 for gas to flow out.
  • the housing 1 is also provided with an annular liquid inlet chamber 141, a liquid outlet chamber 142, an air inlet chamber 151 and an air outlet chamber 152.
  • the liquid inlet chamber 141 is in communication with the liquid inlet 16, and the liquid outlet chamber 142 is connected to The liquid outlet 17 is in communication
  • the air inlet chamber 151 is in communication with the air inlet 18
  • the air outlet chamber 152 is in communication with the air outlet 19
  • the liquid inlet chamber 141 and the liquid outlet chamber 142 are located in the air inlet chamber 151 and the air outlet chamber 152
  • the liquid inlet chamber 141 and the air outlet chamber 152 are located inside the lower end cover 15, and the liquid outlet chamber 142 and the air inlet chamber 151 are located inside the upper end cover 14;
  • the inlet chamber 141 and the outlet chamber 142 are respectively located at two axial ends of the first chamber 21, and the inlet chamber 141 and the outlet chamber 142 respectively pass through a first potting member 9 and the first chamber 21.
  • the two ends of the hollow fiber membrane bundle in the first chamber 21 respectively pass through the first potting member 9 and communicate with the inlet chamber 141 and the outlet chamber 142 respectively.
  • the heat exchange fluid is supplied by the inlet
  • the port 16 enters the liquid inlet chamber 141, and then enters the hollow fiber membrane from one end of the hollow fiber membrane. After flowing through the hollow fiber membrane, it flows out from the other end of the hollow fiber membrane and enters the liquid outlet chamber 142.
  • the outlet 17 flows out; the inlet chamber 151 and the outlet chamber 152 are respectively located at the axial ends of the second chamber 31, and the inlet chamber 151 and the outlet chamber 152 respectively pass through a second potting member 10 and a second
  • the chambers 31 are separated, the two ends of the hollow fiber membrane bundles in the second chamber 31 respectively pass through the second potting member 10, and communicate with the inlet chamber 151 and the outlet chamber 152 respectively, and the gas flows through the inlet 18 enters the air inlet chamber 151, then enters the hollow fiber membrane from one end of the hollow fiber membrane, flows through the hollow fiber membrane, flows out from the other end of the hollow fiber membrane and enters the air outlet chamber 152, and finally flows out from the air outlet 19 .
  • the membrane oxygenator further includes a blood outlet tube 20 and a blood inlet tube 30 provided outside the housing 1.
  • the blood outlet tube 20 communicates with the blood outlet 12, and the blood inlet tube 30 is in communication with the blood inlet 11, and the blood outlet tube 20 is provided with an arterial blood sampling port 40 and a temperature probe 50 for measuring blood temperature, and blood is sampled through the arterial blood sampling port 40.
  • the blood introduction tube 30 is provided on the outer tube 13 of the housing 1, and the blood delivery tube 20 is provided on the lower end cover 15 of the housing 1.
  • the membrane oxygenator further includes a venous blood exhaust port 60 and a recirculation/cardioplegia perfusion device interface 70 provided outside the housing 1.
  • the venous blood exhaust port 60 is provided On the outer cylinder 13 of the housing 1, a recirculation/cardioplegia infusion device interface 70 is provided on the blood outlet tube 20.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

一种膜式氧合器,其包括具有血液入口(11)和血液出口(12)的外壳(1),外壳(1)内设有中筒(2)和位于中筒(2)内侧的内筒(3),外壳(1)与中筒(2)之间形成环形的第一腔室(21),中筒(2)与内筒(3)之间形成环形的第二腔室(31),血液入口(11)、第一腔室(21)、第二腔室(31)和血液出口(12)依次连通,第一腔室(21)内设有热交换膜(4),第二腔室(31)内设有氧合膜(5)。将热交换膜(4)设置在第一腔室(21)内,将氧合膜(5)设置在第二腔室(31)内,由于第二腔室(31)位于第一腔室(21)内侧,第一腔室(21)及其内部的热交换膜(4)能对流经第二腔室(31)的血液起到保温作用,尽可能减少第二腔室(31)中血液的热损失,维持膜式氧合器的血液出口(12)处的血液温度。

Description

一种膜式氧合器 技术领域
本发明是关于一种液体处理装置,如血液处理装置,尤其是一种膜式氧合器。
背景技术
膜式氧合器具有调节血液内氧气和二氧化碳含量的功能,是心血管手术实施体外循环的过程中必备的医疗器械,也是治疗急性呼吸疾病和等待肺移植阶段必备的医疗器械。膜式氧合器的原理是将体内的静脉血引出体外,经过膜式氧合器进行氧气和二氧化碳交换变成动脉血,再输回病人的动脉系统,维持人体脏器组织氧合血的供应,膜式氧合器在手术过程中起到暂时替代肺的作用,同时为医生提供安静、无血、清晰的手术环境,以便于实施手术。
通常膜式氧合器设有两个环形腔室,为便于描述,将两个环形腔室分别称为第一腔室和第二腔室,第一腔室位于第二腔室外侧,第一腔室用于设置氧合膜,作为氧合器,以对血液进行氧合。第二腔室用于设置热交换膜,作为热交换器,以与血液进行热交换,维持血液温度。血液首先进入第二腔室,与热交换器进行热交换后,再进入第一腔室进行氧合。但由于第一腔室内的血液存在热损失,膜式氧合器的血液出口处的血液温度会因热损失而降低,造成输回病人的动脉系统的血液温度偏低。
发明内容
本发明的目的是提供一种膜式氧合器,以尽可能减少热损失,维持氧合器出口处的血液温度。
为达到上述目的,本发明提出一种膜式氧合器,其包括具有血液入口和血液出口的外壳,所述外壳内设有中筒和位于所述中筒内侧的内筒,所述外壳与所述中筒之间形成环形的第一腔室,所述中筒与所述内筒之间形成环形的位于所述第一腔室内侧的第二腔室,所述血液入口、所述第一腔室、所述第二腔室和所述血液出口依次连通,所述第一腔室内设有热交换膜,所述第二腔室内设有氧合膜。
本发明的膜式氧合器的特点和优点是:
1、本发明将热交换膜设置在第一腔室内,将氧合膜设置在第二腔室内,由于第二腔室位于第一腔室内侧,第一腔室及其内部的热交换膜能对流经第二腔室的血液起 到保温作用,尽可能减少第二腔室中血液的热损失,维持膜式氧合器的血液出口处的血液温度;
2、本发明通过设置环形的引流腔室和漏斗形的引流壁,能使血液从各个方向均匀地进入第一腔室内,实现更均匀的径向和轴向血流分布;
3、本发明通过设置静区腔室,可以降低血流速度,防止血液中的气泡被血液携带至血液出口处,通过设置逐渐收窄的腔室盖,有助于静区腔室中积聚的气泡沿着腔室盖上升至排气口排出;
4、本发明通过设置收拢结构,能使血液从各个方向进入导流腔内,同时避免血液出现紊流,保持较低的压力梯度;
5、本发明通过在中筒上设置第一孔阵列,能使血液更均匀的从第一腔室流入第二腔室,通过在中筒的中部设置第二孔阵列,能使一部分血液从中筒的中部流入第二腔室,从而使血液流动更平缓,降低其流动阻力,通过在内筒上设置第三孔阵列,能使血液更均匀的从第二腔室流入导流腔;
6、本发明通过将第一通孔和第二通孔设置为切向孔,使得第一通孔和第二通孔的延伸方向与血液流向一致,便于血液从第一腔室流入第二腔室,且使血液流动更平缓,通过将第三通孔设置为切向孔,使得第三通孔的延伸方向与血液流向一致,便于血液从第二腔室流入静区腔室,且使血液流动更平缓;
7、本发明通过将第一通孔的两端边缘、第二通孔的两端边缘和第三通孔的两端边缘倒圆角,能避免因存在尖角而导致血液破坏或血小板激活进而引起血栓。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:
图1是本发明的膜式氧合器的一个实施例的主视图;
图2是图1中的膜式氧合器的仰视图;
图3是图1中沿A-A线的剖视图;
图4是图3中的膜式氧合器内血液流动方向的示意图;
图5是图3中B处的局部放大示意图;
图6是图3中C处的局部放大示意图;
图7是图2中沿D-D线的剖视图;
图8是图3中沿F-F线的剖视图;
图9是内筒的第一个实施例的示意图;
图10是图9中沿H-H线的剖视图;
图11是内筒的第二个实施例的示意图;
图12是图11中沿I-I线的剖视图;
图13是中筒的第一个实施例的示意图;
图14是图13中沿J-J线的剖视图;
图15是中筒的第二个实施例的示意图;
图16是中筒的第三个实施例的示意图;
图17是中筒的第四个实施例的示意图;
图18是图17中沿K-K线的剖视图;
图19是中筒的第五个实施例的示意图;
图20是图19中沿L-L线的剖视图。
主要元件标号说明:
1、外壳;
11、血液入口;12、血液出口;13、外筒;131、引流壁;14、上端盖;
141、进液腔室;142、出液腔室;15、下端盖;151、进气腔室;152、出气腔室;
16、进液口;17、出液口;18、进气口;19、出气口;
2、中筒;21、第一腔室;22、引流腔室;23、第一通孔;24、第一开口;
25、第二通孔;
3、内筒;31、第二腔室;32、第三通孔;33、静区腔室;34、第二开口;
4、热交换膜;5、氧合膜;6、导流筒;61、导流腔;
7、腔室盖;71、排气口;72、排气管;73、单向阀;
8、收拢结构;81、曲面;9、第一灌封件;10、第二灌封件;
20、血液导出管;30、血液导入管;40、动脉血采样口;50、温度探头;
60、静脉血排气口;70、再循环/心脏停跳液灌注器接口。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所 示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1、图2、图3所示,本发明提出一种膜式氧合器,其包括具有血液入口11和血液出口12的外壳1,外壳1大体呈两端封闭的筒状,外壳1内设有中筒2和位于中筒2内侧的内筒3,中筒2和内筒3均呈筒状,外壳1与中筒2之间形成环形的第一腔室21(也可称为变温室),中筒2与内筒3之间形成环形的位于第一腔室21内侧的第二腔室31(也可称为氧合室),血液入口11、第一腔室21、第二腔室31和血液出口12依次连通,血液由血液入口11进入,依次流经第一腔室21和第二腔室31后,由血液出口12流出,第一腔室21内设有热交换膜4,血液在流经第一腔室21时,与第一腔室21内的热交换膜4进行热交换,通过热交换调节血液温度,使血液维持在合适的温度,第二腔室31内设有氧合膜5,血液在流经第二腔室31时,与第二腔室31内的氧合膜5进行气体交换,通过气体交换使血液氧合。
本发明将热交换膜4设置在第一腔室21内,将氧合膜5设置在第二腔室31内,由于第二腔室31位于第一腔室21内侧,第一腔室21及其内部的热交换膜4能对流经第二腔室31的血液起到保温作用,尽可能减少第二腔室31中血液的热损失,维持膜式氧合器的血液出口12处的血液温度;
另外,本发明通过在第一腔室21内设置热交换膜4作为热交换单元,能实现快速换热和均匀换热,在较大的温度范围内提供快速、均匀的温度调节,因此能实现在体外循环期间快速、均匀调节患者的体温;
此外,由于血液入口11、第一腔室21、第二腔室31和血液出口12依次连通,血液先流经第一腔室21与热交换膜4进行热交换,达到合适的温度后,再进入第二腔室31进行氧合,可避免过氧饱和的风险,而若先氧合再加热血液,则存在过氧饱和的风险,从而产生自由气泡,若这些气泡随着血液进入人体,则会在体内引起栓塞。
如图1、图3、图6、图7所示,具体是,外壳1包括筒状的外筒13、设于外筒13顶端的上端盖14和设于外筒13底端的下端盖15,上端盖14与外筒13密封连接,下端盖15与外筒13密封连接,中筒2位于外筒13的内侧,中筒2的两端分别与上 端盖14和下端盖15密封连接,内筒3的两端分别与上端盖14和下端盖15密封连接,血液入口11设于外筒13上。
如图3、图8所示,在一个优选的实施例中,外壳1与中筒2之间还设有环形的引流腔室22,引流腔室22位于血液入口11与第一腔室21之间,血液入口11、引流腔室22和第一腔室21依次连通,引流腔室22具有漏斗形的引流壁131,引流壁131将进入引流腔室22的血液引流至第一腔室21内,也就是,血液由血液入口11进入引流腔室22内,再在引流壁131的引流下,从各个方向均匀地进入第一腔室21内。本实施例通过设置环形的引流腔室22和漏斗形的引流壁131,能实现更均匀的径向和轴向血流分布。
具体是,引流壁131是由外壳1的外筒13变径形成的,引流壁131的内径自第一腔室21至血液入口11渐扩,引流壁131的两端变径处圆滑过渡,以免破坏血液。
如图4所示,在另一个优选的实施例中,第一腔室21的入口和第一腔室21的出口分别设于第一腔室21的轴向两端,第二腔室31的入口和第二腔室31的出口分别设于第二腔室31的轴向两端,以使血液沿轴向方向(纵向)依次流经第一腔室21和第二腔室31,与血液沿径向方向(横向)流经第一腔室21和第二腔室31相比,血液在流动过程中的分布更均匀,能实现血液的充分热交换和氧合。例如,第一腔室21的入口为血液入口11,第一腔室21的出口为第二腔室31的入口。
第一腔室21和第二腔室31的连通结构,至少有以下四种方案。
第一种方案:如图15、图16所示,中筒2上设有将第一腔室21和第二腔室31连通的第一开口阵列,第一开口阵列和血液入口11分别位于第一腔室21的轴向两端,第一开口阵列包括沿中筒2的周向间隔排列的多个第一开口24,第一开口24既作为第一腔室21的出口,又作为第二腔室31的入口。例如,第一开口24为矩形开口。本方案通过设置第一开口阵列,能使第一腔室21中的血液从各个方向流入第二腔室31内。
具体是,第一开口阵列设于中筒2的下部,血液入口11设于外壳1的外筒13上部,血液由血液入口11流入第一腔室21后,沿中筒2的轴向方向向下流经第一腔室21,再经由中筒2下部的第一开口24流入第二腔室31。
第二种方案:如图13、图14所示,中筒2上设有将第一腔室21和第二腔室31连通的第一孔阵列,第一孔阵列和血液入口11分别位于第一腔室21的轴向两端,第一孔阵列包括在中筒2的周向和轴向方向上间隔排列的多个第一通孔23,第一通孔 23既作为第一腔室21的出口,又作为第二腔室31的入口。本方案通过设置第一孔阵列,能使第一腔室21中的血液从各个方向流入第二腔室31内。较佳地,多个第一通孔23沿中筒2的周向等间隔排列,使血流分布更均匀。
具体是,第一孔阵列设于中筒2的下部,血液入口11设于外壳1的外筒13上部,血液由血液入口11流入第一腔室21后,沿中筒2的轴向方向向下流经第一腔室21,再经由中筒2下部的第一通孔23流入第二腔室31。
例如,如图13所示,第一孔阵列的第一通孔23的排列方式为:第一通孔23沿中筒2的轴向排列成至少两排,每排中的第一通孔23为多个,且每排中的多个第一通孔23沿中筒2的周向等间隔排列,相邻两排中的第一通孔23轴向对齐或错位设置。
本方案中,优选地,第一通孔23为切向孔,也就是,第一通孔23沿中筒2的切向方向设置,第一通孔23的延伸方向与血液流向一致。
本方案中,优选地,第一通孔23的两端边缘倒圆角,以免存在尖角导致血细胞破坏或血小板激活进而引起血栓,当然也可以将第一通孔23的所有边缘倒圆角。
本方案中,优选地,第一通孔23的形状为矩形(如图13、图14所示)或椭圆形(如图15、图16所示),但本发明并不限于此,第一通孔23还可以是其他形状。
第三种方案:如图15、图16所示,中筒2上不仅设有第一种方案中的第一开口阵列,还设有第二种方案中的第一孔阵列,第一开口阵列和第一孔阵列均设于中筒2的远离血液入口11的一端,且第一开口阵列和第一孔阵列在中筒2的轴向方向上相间隔,第一开口阵列的第一开口24的面积大于第一孔阵列的第一通孔23的面积。本方案中,第一开口阵列的结构和位置可参照第一种方案进行设置,第一孔阵列的结构和位置可参照第二种方案进行设置。
具体是,第一开口阵列和第一孔阵列均设于中筒2的下部,且第一孔阵列位于第一开口阵列上方,血液入口11设于外壳1的外筒13上部,血液由血液入口11流入第一腔室21后,沿中筒2的轴向方向向下流经第一腔室21,再经由中筒2下部的第一开口24和第一通孔23流入第二腔室31。
本方案中,第一开口阵列的多个第一开口24的排列方式可参照第一个方案中的第一开口24进行设置,第一孔阵列的多个第一通孔23的结构、形状和排列方式可参照第二个方案中的第一通孔23进行设置。
第四种方案:如图17、图19所示,中筒2上不仅设有第二种方案中的第一孔阵列,还设有第二孔阵列,第一孔阵列和血液入口11分别位于第一腔室21的轴向两端, 第二孔阵列设于中筒2的中部,也就是第二孔阵列对应第一腔室21的中部位置,第一孔阵列和第二孔阵列将第一腔室21和第二腔室31连通,第二孔阵列包括沿中筒2的轴向间隔排列的多个第二通孔25。本方案中,第一孔阵列的结构和位置可参照第二种方案进行设置。本方案通过在中筒2的中部设置第二孔阵列,能使一部分血液从中筒2的中部流入第二腔室31,使血液流动更平缓,降低其流动阻力。
具体是,第一孔阵列设于中筒2的下部,第二孔阵列位于第一孔阵列上方,血液入口11设于外壳1的外筒13上部,血液由血液入口11流入第一腔室21后,沿中筒2的轴向方向向下流经第一腔室21,再经由中筒2中部的第二通孔25和中筒2下部的第一通孔23流入第二腔室31。
本方案中,第一通孔23的结构、形状和排列方式可参照第二个方案中的第一通孔23进行设置,第二通孔25的结构、形状和排列方式也可参照第二个方案中的第一通孔23进行设置。
当然,第二通孔25的排列方式也可以与第二个方案中的第一通孔23不同,比如,如图17、图19所示,第二通孔25沿中筒2的周向排列成至少两列,每列中的第二通孔25为一个或多个,当每列中的第二通孔25为一个时(如图17、图18所示),每个第二通孔25沿中筒2的轴向方向延伸,例如第二通孔25的形状为矩形,当每列中的第二通孔25为多个时(如图19、图20所示),每个第二通孔25沿中筒2的周向方向延伸,例如第二通孔25的形状为椭圆形,每列中的多个第二通孔25沿中筒2的轴向等间隔排列,相邻两列中的第二通孔25周向对齐或错位设置。
本方案中,优选地,第一通孔23和第二通孔25均为切向孔,也就是,第一通孔23沿中筒2的切向方向设置,第一通孔23的延伸方向与血液流向一致,第二通孔25沿中筒2的切向方向设置,第二通孔25的延伸方向与血液流向一致。
本方案中,优选地,第一通孔23的两端边缘倒圆角,第二通孔25的两端边缘倒圆角,以免存在尖角导致血细胞破坏或血小板激活进而引起血栓,当然也可以将第一通孔23和第二通孔25的所有边缘倒圆角。
本方案中,优选地,第一通孔23的形状为矩形或椭圆形,第二通孔25的形状为矩形(如图17、图18所示)或椭圆形(如图19、图20所示),但本发明并不限于此,第一通孔23和第二通孔25还可以是其他形状。
除以上四种方案外,还可以在第一种方案的基础上设置第四种方案中的第二孔阵列,或在第三种方案的基础上设置第四种方案中的第二孔阵列。
如图3所示,在一个具体实施例中,内筒3内侧还连接有筒状的导流筒6,导流筒6内形成导流腔61,第二腔室31、导流腔61和血液出口12依次连通,其中血液出口12位于导流腔61下方。
第二腔室31和导流腔61的连通结构,至少有以下三种方案。
第一种方案:如图4、图5所示,内筒3上设有将第二腔室31和导流腔61连通的第二开口阵列,第二开口阵列位于导流腔61上方,第二开口阵列和第二腔室31的入口(即第一开口阵列和/或第一孔阵列)分别位于第二腔室31的轴向两端,第二开口阵列包括沿内筒3的周向间隔排列的多个第二开口34,第二开口34作为第二腔室31的出口,将第二腔室31和导流腔61连通。例如,第二开口34为矩形开口。
具体是,第二开口阵列设于内筒3的上部,血液流入第二腔室31后,沿轴向向上流经第二腔室31,再经由第二开口34流入导流腔61。
第二种方案:如图9、图11所示,内筒3上设有连通第二腔室31和导流腔61的第三孔阵列,第三孔阵列位于导流腔61上方,第三孔阵列和第二腔室31的入口(即第一开口阵列和/或第一孔阵列)分别位于第二腔室31的轴向两端,第三孔阵列包括在内筒3的周向和轴向方向上间隔排列的多个第三通孔32,第三通孔32作为第二腔室31的出口,将第二腔室31和导流腔61连通。本方案通过设置第三孔阵列,能使第二腔室31中的血液从各个方向流入导流腔61内。较佳地,多个第三通孔32沿内筒3的周向等间隔排列,以使血流分布更均匀。
具体是,第三孔阵列设于内筒3的上部,血液流入第二腔室31后,沿轴向向上流经第二腔室31,再经由第三通孔32流入导流腔61。
例如,第三孔阵列的第三通孔32的排列方式为:第三通孔32沿内筒3的轴向排列成至少两排,每排中的第三通孔32为多个,且每排中的第三通孔32沿内筒3的周向等间隔排列,相邻两排中的第三通孔32轴向对齐或错位设置。
本方案中,优选地,第三通孔32为切向孔,也就是,第三通孔32沿内筒3的切向方向设置,第三通孔32的延伸方向与血液流向一致。
本方案中,优选地,第三通孔32的两端边缘倒圆角,以免存在尖角导致血细胞破坏或血小板激活进而引起血栓,当然也可以将第三通孔32的所有边缘倒圆角。
本方案中,优选地,第三通孔32的形状为矩形(如图9、图10所示)或椭圆形(如图11、图12所示),但并不限于此,第三通孔32还可以是其他形状。
第三种方案:内筒3上不仅设有第一种方案中的第二开口阵列,还设有第二种方 案中的第三孔阵列,第二开口阵列和第三孔阵列位于导流腔61上方,第二开口阵列和第三孔阵列均设于内筒3的远离血液出口12的一端,且第二开口阵列和第三孔阵列在内筒3的轴向方向上相间隔,第二开口阵列的第二开口34的面积大于第三孔阵列的第三通孔32的面积。本方案中,第二开口阵列的结构和位置可参照第一种方案进行设置,第三孔阵列的结构和位置可参照第二种方案进行设置。
具体是,第二开口阵列和第三孔阵列均设于内筒3的上部,第三孔阵列位于第二开口阵列下方或上方,血液进入第二腔室31后,沿轴向向上流经第二腔室31,再经由第二开口34和第三通孔32流入导流腔61。
本方案中,第二开口阵列的第二开口34的排列方式可参照第一个方案中的第二开口34进行设置,第三孔阵列的第三通孔32的结构、形状和排列方式可参照第二个方案中的第三通孔32进行设置。
以上将第二腔室31和导流腔61连通的三种方案中,血液出口12设于外壳1底端的中部,且位于导流腔61下方,具体是血液出口12设于外壳1的下端盖15的中心处,因此血液流入导流腔61后,沿轴向向下流经导流腔61,再经由血液出口12流出。
如图3、图4所示,在一个较佳的实施例中,内筒3的内部设有静区腔室33,静区腔室33位于导流腔61上方,或者说静区腔室33位于导流筒6上方,第二腔室31、静区腔室33和导流腔61依次连通,第二开口阵列和/或第三孔阵列将第二腔室31和静区腔室33连通,也就是第二腔室31、第二开口34和/或第三通孔32、静区腔室33和导流腔61依次连通,血液经由第二开口34和/或第三通孔32流入静区腔室33内,静区腔室33的直径大于导流腔61的直径,通过设置静区腔室33,可以降低血流速度,防止血液中的气泡被血液夹带至血液出口12处。
如图3、图4、图5所示,进一步,静区腔室33的顶部设有环形的腔室盖7,腔室盖7为由下至上逐渐收窄的结构,腔室盖7的顶点处(即中心处)设有供静区腔室33内积聚的气泡排出的排气口71。通过将腔室盖7设置为由下至上逐渐收窄的结构,有助于静区腔室33中积聚的气泡沿着腔室盖7上升至排气口71,由排气口71排出。例如腔室盖7与外壳1的上端盖14为一体式结构,结构强度高。
如图3所示,具体是,在排气口71上方连接有排气管72,排气管72穿过外壳1的上端盖14并伸出外壳1,排气管72上设有单向阀73,该单向阀73只允许静区腔室33内的气泡排出,不允许外界的气体进入静区腔室33内。
更进一步,腔室盖7的形状为圆锥形或半球形。当腔室盖7的形状为圆锥形时,其斜率可根据实际需要进行设置,本发明对此不加以限制;当腔室盖7的形状为半球形时,其半径可根据实际需要进行设置,本发明对此不加以限制。当然,腔室盖7还可以是其它由下至上逐渐收窄的结构,本发明对此亦不加以限制。
如图5所示,当腔室盖7的形状为圆锥形时,设腔室盖7的斜率为k,以腔室盖7的一条母线为例进行说明,以该母线的最低点O 1为坐标原点建立平面直角坐标系,该母线上任意一点的横坐标和纵坐标分别为x 1和y 1,则y 1=kx 1。例如,k=0.1377。
如图3、图4、图5所示,进一步,静区腔室33的底部设有环形的收拢结构8,收拢结构8为直径由上至下渐缩的喇叭形结构,或者说收拢结构8为流线型结构,收拢结构8朝向静区腔室33的内壁面为曲面81,收拢结构8的上端与内筒3相接,收拢结构8的下端与导流筒6相接,且收拢结构8与导流筒6的相接处平滑过渡,收拢结构8位于第三孔阵列的下方,曲面81将由第三通孔32进入静区腔室33内的血液引流至导流腔61内。通过设置环形的收拢结构8,能使血液从各个方向流入导流腔61内,同时避免血液出现紊流,保持较低的压力梯度。例如内筒3、收拢结构8和导流筒6为一体式结构,结构强度高,且使膜式氧合器便于组装。
更进一步,收拢结构8的曲面81的形状为圆弧面,且曲面81上的圆弧线的圆心位于收拢结构8外侧,曲面81上的圆弧线的半径可根据实际需要进行设置,本发明对此不加以限制。当然,曲面81还可以是其它形状的曲面,本发明对此亦不加以限制。
如图5所示,设收拢结构8的曲面81上的圆弧线的半径为r,以收拢结构8的曲面81的一条圆弧线为例进行说明,以该圆弧线的圆心O 2为坐标原点建立平面直角坐标系,该圆弧线上任意一点(如点P)的横坐标和纵坐标分别为x 2和y 2,则
Figure PCTCN2019104653-appb-000001
例如,r=16.8975。
如图1、图3所示,在一个具体实施例中,热交换膜4为用于引导热交换流体的中空纤维膜束,血液在流经第一腔室21时,与第一腔室21内的中空纤维膜中的热交换流体进行热交换,氧合膜5为用于引导气体的中空纤维膜束,血液在流经第二腔室31时,与第二腔室31内的中空纤维膜中的气体进行气体交换;外壳1还具有供热交换流体进入的进液口16、供热交换流体流出的出液口17、供气体进入的进气口18和供气体流出的出气口19,外壳1内还设有环形的进液腔室141、出液腔室142、进气腔室151和出气腔室152,进液腔室141与进液口16连通,出液腔室142与出液 口17连通,进气腔室151与进气口18连通,出气腔室152与出气口19连通,进液腔室141和出液腔室142位于进气腔室151和出气腔室152的外侧,具体是,进液腔室141和出气腔室152位于下端盖15内部,出液腔室142和进气腔室151位于上端盖14内部;
进液腔室141和出液腔室142分别位于第一腔室21的轴向两端,且进液腔室141和出液腔室142分别通过一第一灌封件9与第一腔室21隔开,第一腔室21内的中空纤维膜束的两端分别穿过第一灌封件9,并分别与进液腔室141和出液腔室142连通,热交换流体由进液口16进入进液腔室141内,再从中空纤维膜的一端进入中空纤维膜内,流经中空纤维膜后,从中空纤维膜的另一端流出并进入出液腔室142,最后由出液口17流出;进气腔室151和出气腔室152分别位于第二腔室31的轴向两端,且进气腔室151和出气腔室152分别通过一第二灌封件10与第二腔室31隔开,第二腔室31内的中空纤维膜束的两端分别穿过第二灌封件10,并分别与进气腔室151和出气腔室152连通,气体由进气口18进入进气腔室151内,再从中空纤维膜的一端进入中空纤维膜内,流经中空纤维膜后,从中空纤维膜的另一端流出并进入出气腔室152,最后由出气口19流出。
如图1、图2、图3所示,进一步,膜式氧合器还包括设于外壳1外部的血液导出管20和血液导入管30,血液导出管20与血液出口12连通,血液导入管30与血液入口11连通,所述血液导出管20上设有动脉血采样口40和用于测量血液温度的温度探头50,经由动脉血采样口40对血液进行采样。具体是,血液导入管30设置在外壳1的外筒13上,血液导出管20设置在外壳1的下端盖15上。
如图1所示,进一步,膜式氧合器还包括设于外壳1外部的静脉血排气口60和再循环/心脏停跳液灌注器接口70,具体是,静脉血排气口60设置在外壳1的外筒13上,再循环/心脏停跳液灌注器接口70设置在血液导出管20上。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化与修改,均应属于本发明保护的范围。而且需要说明的是,本发明的各组成部分并不仅限于上述整体应用,本发明的说明书中描述的各技术特征可以根据实际需要选择一项单独采用或选择多项组合起来使用,因此,本发明理所当然地涵盖了与本案发明点有关的其它组合及具体应用。

Claims (19)

  1. 一种膜式氧合器,其特征在于,所述膜式氧合器包括具有血液入口和血液出口的外壳,所述外壳内设有中筒和位于所述中筒内侧的内筒,所述外壳与所述中筒之间形成环形的第一腔室,所述中筒与所述内筒之间形成环形的位于所述第一腔室内侧的第二腔室,所述血液入口、所述第一腔室、所述第二腔室和所述血液出口依次连通,所述第一腔室内设有热交换膜,所述第二腔室内设有氧合膜。
  2. 如权利要求1所述的膜式氧合器,其特征在于,所述外壳与所述中筒之间还设有环形的引流腔室,所述血液入口、所述引流腔室和所述第一腔室依次连通,所述引流腔室具有漏斗形的引流壁,所述引流壁将进入所述引流腔室的血液引流至所述第一腔室内。
  3. 如权利要求1所述的膜式氧合器,其特征在于,所述第一腔室的入口和所述第一腔室的出口分别位于所述第一腔室的轴向两端,所述第二腔室的入口和所述第二腔室的出口分别位于所述第二腔室的轴向两端,以使血液沿轴向方向依次流经所述第一腔室和所述第二腔室。
  4. 如权利要求1所述的膜式氧合器,其特征在于,所述中筒上设有连通所述第一腔室和所述第二腔室的第一开口阵列,所述第一开口阵列和所述血液入口分别位于所述第一腔室的轴向两端,所述第一开口阵列包括沿所述中筒的周向间隔排列的多个第一开口。
  5. 如权利要求1所述的膜式氧合器,其特征在于,所述中筒上设有连通所述第一腔室和所述第二腔室的第一孔阵列,所述第一孔阵列和所述血液入口分别位于所述第一腔室的轴向两端,所述第一孔阵列包括在所述中筒的周向和轴向方向上间隔排列的多个第一通孔。
  6. 如权利要求1所述的膜式氧合器,其特征在于,所述中筒上设有连通所述第一腔室和所述第二腔室的第一开口阵列和第一孔阵列,所述第一开口阵列和所述血液入口分别位于所述第一腔室的轴向两端,所述第一孔阵列和所述血液入口分别位于所述第一腔室的轴向两端,所述第一开口阵列与所述第一孔阵列在所述中筒的轴向方向上相间隔,所述第一开口阵列包括沿所述中筒的周向间隔排列的多个第一开口,所述第一孔阵列包括在所述中筒的周向和轴向方向上间隔排列的多个第一通孔,所述第一开口的面积大于所述第一通孔的面积。
  7. 如权利要求5或6所述的膜式氧合器,其特征在于,所述第一通孔为切向孔, 所述第一通孔的两端边缘倒圆角。
  8. 如权利要求4至6任一项所述的膜式氧合器,其特征在于,所述中筒的中部设有连通所述第一腔室和所述第二腔室的第二孔阵列,所述第二孔阵列包括沿所述中筒的周向间隔排列的多个第二通孔。
  9. 如权利要求8所述的膜式氧合器,其特征在于,所述第二通孔为切向孔,所述第二通孔的两端边缘倒圆角。
  10. 如权利要求1至9任一项所述的膜式氧合器,其特征在于,所述内筒内侧还连接有导流筒,所述导流筒内形成导流腔,所述第二腔室的出口、所述导流腔和所述血液出口依次连通。
  11. 如权利要求10所述的膜式氧合器,其特征在于,所述第二腔室的出口为设于所述内筒上的第二开口阵列,所述第二开口阵列包括沿所述内筒的周向间隔排列的多个第二开口。
  12. 如权利要求10所述的膜式氧合器,其特征在于,所述第二腔室的出口为设于所述内筒上的第三孔阵列,所述第三孔阵列包括在所述内筒的周向和轴向方向上间隔排列的多个第三通孔。
  13. 如权利要求10所述的膜式氧合器,其特征在于,所述第二腔室的出口为设于所述内筒上的第二开口阵列和第三孔阵列,所述第二开口阵列包括沿所述内筒的周向间隔排列的多个第二开口,所述第三孔阵列包括在所述内筒的周向和轴向方向上间隔排列的多个第三通孔,所述第二开口的面积大于所述第三通孔的面积。
  14. 如权利要求12或13所述的膜式氧合器,其特征在于,所述第三通孔为切向孔,所述第三通孔的两端边缘倒圆角。
  15. 如权利要求10所述的膜式氧合器,其特征在于,所述第二腔室的出口位于所述导流腔上方,所述血液出口设于所述外壳底端的中部,且所述血液出口位于所述导流腔下方。
  16. 如权利要求10所述的膜式氧合器,其特征在于,所述内筒的内部设有静区腔室,所述静区腔室位于所述导流腔上方,所述第二腔室、所述静区腔室和所述导流腔依次连通,所述静区腔室的直径大于所述导流腔的直径。
  17. 如权利要求16所述的膜式氧合器,其特征在于,所述静区腔室的顶部设有腔室盖,所述腔室盖为由下至上逐渐收窄的结构,所述腔室盖的顶点处设有供所述静区腔室内积聚的气泡排出的排气口。
  18. 如权利要求16所述的膜式氧合器,其特征在于,所述静区腔室的底部设有环形的收拢结构,所述收拢结构为直径由上至下渐缩的喇叭形结构,所述收拢结构朝向所述静区腔室的内壁面为曲面,所述收拢结构的上端与所述内筒相接,所述收拢结构的下端与所述导流筒相接,所述曲面将进入所述静区腔室的血液引流至所述导流腔内。
  19. 如权利要求1所述的膜式氧合器,其特征在于,所述热交换膜为用于引导热交换流体的中空纤维膜束,所述氧合膜为用于引导气体的中空纤维膜束;
    所述外壳还具有进液口、出液口、进气口和出气口,所述外壳内还设有环形的进液腔室、出液腔室、进气腔室和出气腔室,所述进液腔室与所述进液口连通,所述出液腔室与所述出液口连通,所述进气腔室与所述进气口连通,所述出气腔室与所述出气口连通,所述进液腔室和所述出液腔室位于所述进气腔室和所述出气腔室的外侧;
    所述进液腔室和所述出液腔室分别位于所述第一腔室的轴向两端,且所述进液腔室和所述出液腔室分别通过一第一灌封件与所述第一腔室隔开,所述第一腔室内的中空纤维膜束穿过所述第一灌封件,并与所述进液腔室和所述出液腔室连通;
    所述进气腔室和所述出气腔室分别位于所述第二腔室的轴向两端,且所述进气腔室和所述出气腔室分别通过一第二灌封件与所述第二腔室隔开,所述第二腔室内的中空纤维膜束穿过所述第二灌封件,并与所述进气腔室和所述出气腔室连通。
PCT/CN2019/104653 2019-09-06 2019-09-06 一种膜式氧合器 WO2021042358A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/104653 WO2021042358A1 (zh) 2019-09-06 2019-09-06 一种膜式氧合器
CN201990001417.6U CN217391279U (zh) 2019-09-06 2019-09-06 一种膜式氧合器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104653 WO2021042358A1 (zh) 2019-09-06 2019-09-06 一种膜式氧合器

Publications (1)

Publication Number Publication Date
WO2021042358A1 true WO2021042358A1 (zh) 2021-03-11

Family

ID=74852931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104653 WO2021042358A1 (zh) 2019-09-06 2019-09-06 一种膜式氧合器

Country Status (2)

Country Link
CN (1) CN217391279U (zh)
WO (1) WO2021042358A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284152A1 (zh) * 2021-07-14 2023-01-19 江苏赛腾医疗科技有限公司 内置过滤器的膜式氧合器
CN115920161A (zh) * 2022-07-13 2023-04-07 苏州心擎医疗技术有限公司 氧合器
US11730870B2 (en) * 2021-07-14 2023-08-22 Jiangsu Stmed Technology Co., Ltd. Integrated membrane oxygenators

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2277783Y (zh) * 1996-06-27 1998-04-08 西安西京医疗用品有限公司 膜式氧合器
US6001306A (en) * 1996-11-07 1999-12-14 C. R. Bard, Inc. Integrated oxygenator and heat exchanger
CN204364532U (zh) * 2014-12-13 2015-06-03 西安西京医疗用品有限公司 一种膜式氧合器
CN109224163A (zh) * 2018-10-16 2019-01-18 广东工业大学 一种热交换层外置的中空纤维膜式氧合器
CN208893292U (zh) * 2017-09-12 2019-05-24 东莞科威医疗器械有限公司 一种螺旋导流集成式膜式氧合器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2277783Y (zh) * 1996-06-27 1998-04-08 西安西京医疗用品有限公司 膜式氧合器
US6001306A (en) * 1996-11-07 1999-12-14 C. R. Bard, Inc. Integrated oxygenator and heat exchanger
CN204364532U (zh) * 2014-12-13 2015-06-03 西安西京医疗用品有限公司 一种膜式氧合器
CN208893292U (zh) * 2017-09-12 2019-05-24 东莞科威医疗器械有限公司 一种螺旋导流集成式膜式氧合器
CN109224163A (zh) * 2018-10-16 2019-01-18 广东工业大学 一种热交换层外置的中空纤维膜式氧合器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284152A1 (zh) * 2021-07-14 2023-01-19 江苏赛腾医疗科技有限公司 内置过滤器的膜式氧合器
US11724014B2 (en) * 2021-07-14 2023-08-15 Jiangsu Stmed Technology Co., Ltd. Membrane oxygenator with built-in filter
US11730870B2 (en) * 2021-07-14 2023-08-22 Jiangsu Stmed Technology Co., Ltd. Integrated membrane oxygenators
CN115920161A (zh) * 2022-07-13 2023-04-07 苏州心擎医疗技术有限公司 氧合器
CN115920161B (zh) * 2022-07-13 2024-05-31 心擎医疗(苏州)股份有限公司 氧合器

Also Published As

Publication number Publication date
CN217391279U (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US11433168B2 (en) Dual chamber gas exchanger and method of use for respiratory support
WO2021042358A1 (zh) 一种膜式氧合器
US11160912B2 (en) Blood processing unit with modified flow path
JP6461975B2 (ja) 血液酸素付加装置
US8980176B2 (en) Blood processing unit with cross blood flow
EP0243796B1 (en) Hollow fiber-type artificial lung
US6682698B2 (en) Apparatus for exchanging gases in a liquid
US20040223872A1 (en) Extracorporeal blood handling system with integrated heat exchanger
CN113509605B (zh) 膜式氧合器
USRE49759E1 (en) Blood processing unit with heat exchanger core for providing modified flow path
CN113398354B9 (zh) 集成式膜式氧合器
US6998093B1 (en) Fluid oxygenator with access port
US11918719B2 (en) Blood processing unit (BPU) with countercurrent blood/water flow paths in the heat exchanger (HEX)
WO2024159000A2 (en) Blood gas exchanger for multifunctional respiratory support
AU4739299A (en) Blood oxygenator with heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944254

Country of ref document: EP

Kind code of ref document: A1