WO2021042260A1 - Method and device for controlling dry gas seal booster pump - Google Patents

Method and device for controlling dry gas seal booster pump Download PDF

Info

Publication number
WO2021042260A1
WO2021042260A1 PCT/CN2019/104149 CN2019104149W WO2021042260A1 WO 2021042260 A1 WO2021042260 A1 WO 2021042260A1 CN 2019104149 W CN2019104149 W CN 2019104149W WO 2021042260 A1 WO2021042260 A1 WO 2021042260A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
pressure
booster pump
dry gas
determining whether
Prior art date
Application number
PCT/CN2019/104149
Other languages
French (fr)
Inventor
Jing Juan FU
Original Assignee
Siemens Energy Global Gmbh & Co., Kg
Siemens Ltd., China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global Gmbh & Co., Kg, Siemens Ltd., China filed Critical Siemens Energy Global Gmbh & Co., Kg
Priority to PCT/CN2019/104149 priority Critical patent/WO2021042260A1/en
Publication of WO2021042260A1 publication Critical patent/WO2021042260A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0292Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/122Shaft sealings using sealing-rings especially adapted for elastic fluid pumps
    • F04D29/124Shaft sealings using sealing-rings especially adapted for elastic fluid pumps with special means for adducting cooling or sealing fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3492Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member with monitoring or measuring means associated with the seal

Definitions

  • the invention relates to a method and a device for controlling a dry gas seal booster pump.
  • a dry gas seal booster pump may be connected to a compressor to provide a sealing atmosphere for the compressor.
  • the booster pump may be controlled according to a single parameter regardless of the operating conditions of the compressor and the state of the compressor.
  • process conditions controlled parameters
  • the booster pump may be controlled to work continuously.
  • the compressor goes wrong and stops, it enters a pressure holding phase.
  • the booster pump is not automatically started, but it is required to manually control the booster pump to start after manual determination.
  • the booster pump may be controlled to remain operation until the controlled variable reaches the normal value.
  • the controlled variable may not reach the normal value all the time, but the compressor may operate normally. At this time, the booster pump may be manually controlled to stop, thereby reducing the long-time operation of the booster pump.
  • the invention aims at solving the above and/or other technical problems and providing a method and a device for controlling a dry gas seal booster pump.
  • the method includes: determining a condition for starting the dry gas seal booster pump is satisfied, that is, determining whether a pressure of the current sealing atmosphere of the compressor satisfies a sealing requirement, and determining whether the compressor is in an operating state; determining whether a condition for stopping the dry gas seal booster pump is satisfied; and when it is determined that the pressure of the current sealing atmosphere of the compressor does not satisfy the sealing requirement and it is determined that the compressor is in the operating state and when it is determined that the condition for stopping the dry gas seal booster pump is not satisfied, controlling the dry gas seal booster pump to start. Therefore, automatic control on the booster pump may be achieved, thereby ensuring safe and effective operation of a dry gas seal system.
  • the step of determining whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement includes: determining whether a pressure difference between the pressure of the sealing atmosphere of the compressor and an internal pressure of the compressor is less than a predetermined threshold, and when it is determined that the pressure difference is less than the predetermined threshold, determining that the pressure of the current sealing atmosphere of the compressor does not satisfy the sealing requirement.
  • the step of determining whether a pressure difference between the pressure of the current sealing atmosphere of the compressor and a current ambient pressure of the compressor is less than the predetermined threshold includes: determining whether a pressure difference between a pressure of a primary seal gas of the dry gas seal booster pump and a pressure in a balance pipe of the compressor is less than 20%-30%of a normal value of a standard output pressure of the compressor.
  • the step of determining whether the compressor is in the operating state includes: determining whether a pressure of a gas at a compressor inlet is greater than or equal to a predetermined threshold, and when it is determined that the pressure is greater than or equal to the predetermined threshold, determining that the compressor is in the operating state.
  • the step of determining whether the pressure of the gas at the compressor inlet is greater than or equal to the predetermined threshold includes: determining whether the pressure at a primary inlet of the compressor is greater than or equal to 55%-65%of the normal value of the standard output pressure of the compressor.
  • the method further includes: determining that a manual start command is input.
  • the step of controlling the dry gas seal booster pump to start includes: when it is determined that the manual start command is input and it is determined that the condition for stopping the dry gas seal booster pump is not satisfied, controlling the dry gas seal booster pump to start.
  • control parameters including the internal pressure of the compressor, the pressure at the primary inlet of the compressor, the operating state of the drive motor of the compressor, whether the compressor is in the standby state, whether the manual start command or a manual stop command is input, and the like, may be obtained through signals from various sensors including a pressure sensor, a compressor, a manual start button, a manual stop button, and the like.
  • the step of determining whether the condition for stopping the dry gas seal booster pump is satisfied includes: determining whether the compressor is in a standby state, and determining whether a drive motor for driving the compressor is in a normal operating state, where when it is determined that the compressor is in the standby state and it is determined that the drive motor for driving the compressor is not in the normal operating state, determining that the condition for stopping the dry gas seal booster pump is satisfied.
  • the dry gas seal booster pump is controlled to stop.
  • the step of determining whether the compressor is in the standby state includes: determining whether the pressure of the gas at the compressor inlet is less than or equal to a predetermined threshold, and when it is determined that the pressure is less than or equal to the predetermined threshold, determining that the compressor is in the standby state.
  • the step of determining whether the pressure of the gas at the compressor inlet is less than or equal to the predetermined threshold includes: determining whether the pressure at the primary inlet of the compressor is less than or equal to 20%-30%of the normal value of the standard output pressure of the compressor.
  • the step of determining whether the condition for stopping the dry gas seal booster pump is satisfied includes: determining whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement, where when it is determined that the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement, determining that the condition for stopping the dry gas seal booster pump is satisfied.
  • the step of determining whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement includes: determining whether the pressure difference between the pressure of the current sealing atmosphere of the compressor and the current ambient pressure of the compressor is greater than a predetermined threshold, and when it is determined that the pressure difference is greater than the predetermined threshold, determining that the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement.
  • the step of determining whether the pressure difference between the pressure of the current sealing atmosphere of the compressor and the current ambient pressure of the compressor is greater than the predetermined threshold includes: determining whether the pressure difference between the pressure of the primary seal gas of the dry gas seal booster pump compressor and the pressure in the balance pipe of the compressor is greater than 70%-80%of the normal value of the standard output pressure of the compressor.
  • the step of determining whether the condition for stopping the dry gas seal booster pump is satisfied includes: determining that a manual stop command is input, where when it is determined that the manual stop command is input, it is determined that the condition for stopping the dry gas seal booster pump is satisfied.
  • Multivariable control parameters may be introduced to achieve segmented control on the booster pump for various states of the compressor, thereby reducing the continuous operation time of the booster pump and effectively increasing the service life of the booster pump. Further, control logic may be optimized, thereby reducing manual operations and enhancing the control safety. In addition, the booster pump may be automatically controlled when the compressor is in different states and under special conditions, thereby ensuring the safe and effective operation of the dry gas seal system.
  • a control device for a dry gas seal booster pump which may be configured to perform the method for controlling the dry gas seal booster pump as described above, is provided.
  • an electronic device including: at least one processor (41) ; and a memory (43) connected to the at least one processor, where the memory has an instruction stored therein, the instruction, when executed by the at least one processor, causing the electronic device to perform the method according to any one of claims 1 to 13.
  • FIG. 1 is a schematic structural view showing a gas turbine including a booster pump and a compressor according to an exemplary embodiment
  • FIG. 2 is a schematic flowchart showing a method for controlling a booster pump according to an exemplary embodiment
  • FIG. 3 is a schematic logic diagram showing a step of controlling a booster pump to start or stop according to an exemplary embodiment
  • FIG. 4 is a schematic block diagram showing an electronic device according to an exemplary embodiment.
  • FIG. 1 is a schematic structural view showing a gas turbine including a booster pump and a compressor according to an exemplary embodiment.
  • the gas turbine according to the exemplary embodiment may include a booster pump 100 and a compressor 300.
  • the booster pump 100 may be connected to the compressor 300 to provide a sealing atmosphere for the compressor 300.
  • the compressor 300 may be a Siemens product STC-GV Compressor Unit.
  • the booster pump 100 providing a compressed atmosphere for the compressor 300 may be a dry gas seal booster pump.
  • the gas turbine according to the exemplary embodiment may further include a booster pump control device 500. An operator may operate the booster pump control device 500 to control the booster pump 100, or the booster pump control device 500 may operate the control method according to an exemplary embodiment to automatically control the booster pump 100.
  • FIG. 2 shows a control method for a booster pump according to an exemplary embodiment.
  • the control method according to the exemplary embodiment may be performed by the booster pump control device 500.
  • the method for controlling a booster pump according to the exemplary embodiment will be specifically described below with reference to FIG. 1 and FIG. 2.
  • the booster pump control device 500 may include a start condition determining unit 510.
  • the start condition determining unit 510 may perform the step S210 of determining whether the condition for starting the booster pump is satisfied.
  • condition C1 may be to determine whether the manual start command is input.
  • the gas turbine or booster pump control device 500 may include a manual start button. The operator may input the manual start command by pressing the manual start button. When it is determined that the manual start command is input, it may mean that the operator desires to start the booster pump.
  • the condition C2 may be to determine whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement.
  • the condition C2 may include determining whether the pressure difference between the pressure of the current sealing atmosphere of the compressor and the internal pressure of the compressor is less than a predetermined threshold (first threshold) .
  • first threshold a predetermined threshold
  • condition C2 may be embodied to determine whether a pressure difference between a pressure of a primary seal gas of the dry gas seal booster pump 100 and a pressure in a balance pipe of the compressor 300 is less than 20%-30%of a normal value of a standard output pressure of the compressor 300 (i.e., 0.5) . When it is determined that the pressure difference is less than 20%-30%of the normal value of the standard output pressure, it may be determined that the sealing requirement is not satisfied.
  • the condition C3 may be to determine whether the compressor is in an operating state.
  • a variety of ways may be used to determine whether the compressor is in the operating state. In an exemplary embodiment, it may be determined whether a pressure of a gas at a compressor inlet is greater than or equal to a predetermined threshold (second threshold) . When it is determined that the pressure is greater than or equal to the second threshold, it may be determined that the compressor is in the operating state. At this time, it may be required to start the booster pump to increase the pressure of the sealing atmosphere of the compressor.
  • the condition C2 may be embodied to determine whether a pressure at a primary inlet of the compressor 300 is greater than or equal to 55%-65%of the normal value of the standard output pressure of the compressor 300. When it is determined that the pressure is greater than or equal to 55%-65%of the normal value of the standard output pressure, it may be determined that the compressor 300 is in the operating state.
  • the booster pump control device 500 may include a stop condition determining unit 530.
  • the stop condition determining unit 530 may perform the step S230 of determining whether the condition for stopping the booster pump is satisfied.
  • condition C4 may be similar to the condition C2 above.
  • the condition C4 may be to determine whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement.
  • the condition C4 may include determining whether the pressure difference between the pressure of the current sealing atmosphere of the compressor and the internal pressure of the compressor is greater than a predetermined threshold (third threshold) .
  • a predetermined threshold third threshold
  • condition C4 may be embodied to determine whether the pressure difference between the pressure of the primary seal gas of the dry gas seal booster pump 100 and the pressure in the balance pipe of the compressor 300 is greater than 70%-80%of the normal value of the standard output pressure of the compressor 300. When it is determined that the pressure difference is greater than 70%-80%of the normal value of the standard output pressure, it may be determined that the sealing requirement is satisfied.
  • the condition C5 may be to determine whether the compressor is in a standby state.
  • a variety of ways may be used to determine whether the compressor is in the standby state. For example, it may be determined whether the pressure of the gas at the compressor inlet is less than or equal to a predetermined threshold (fourth threshold) , and when it is determined that the pressure is less than or equal to the fourth threshold, it is determined that the compressor is in the standby state. At this time, it may be possible to stop the booster pump to no longer increase the pressure of the sealing atmosphere of the compressor. In the example shown in FIG. 1, it may be determined whether the pressure at the primary inlet of the compressor 300 is less than or equal to 20%-30%of the normal value of the standard output pressure of the compressor. When it is determined that the pressure is less than or equal to 20%-30%of the normal value of the standard output pressure, it may be determined that the compressor is in the standby state.
  • the condition C6 may be to determine whether the drive motor for driving the compressor is in a normal operating state. When the drive motor is not in the normal operating state, it may be possible to stop the booster pump to no longer increase the pressure of the sealing atmosphere of the compressor.
  • the condition C7 may be to determine whether a manual stop command is input.
  • the gas turbine or booster pump control device 500 may include a manual stop button. The operator may input the manual stop command by pressing the manual stop button. When it is determined that the manual stop command is input, it may mean that the operator desires to stop the booster pump.
  • the booster pump may be controlled to start or stop according to the result of determining whether the condition for starting the booster pump is satisfied in the step S210 and the result of determining whether the condition for stopping the booster pump is satisfied in the step S230 (S250) .
  • the booster pump control device 500 may include a booster pump control unit 550.
  • the booster pump control unit 550 may control the booster pump to start or stop according to the performing result of the start condition determining unit 510 for the step S210 and/or the performing result of the stop condition determining unit 530 for the step S230.
  • FIG. 3 is a schematic logic diagram of controlling a booster pump to start or stop according to an exemplary embodiment.
  • the booster pump may be controlled to start or stop according to the results of step S210 and step S230 by the arithmetic logic of an RS flip-flop.
  • a truth table of the RS flip-flop shown in FIG. 3 is shown in Table 1 below.
  • control parameters including the internal pressure of the compressor, the pressure at the primary inlet of the compressor, the operating state of the drive motor of the compressor, whether the compressor is in the standby state, whether the manual start command or the manual stop command is input, and the like, may be obtained through signals from various sensors including a pressure sensor, a compressor, a manual start button, a manual stop button, and the like.
  • control logic may be optimized, thereby reducing manual operations and enhancing the control safety.
  • the booster pump may be automatically controlled when the compressor is in different states and under special conditions, thereby ensuring the safe and effective operation of a dry gas seal system.
  • FIG. 4 is a block diagram showing an electronic device according to an exemplary embodiment.
  • the electronic device may include at least one processor 41 and a memory 43.
  • the processor 41 may execute at least one computer readable instruction (i.e., above-mentioned elements implemented in a software form) stored or encoded in a computer readable storage medium (i.e., memory 43) .
  • computer executable instructions are stored in memory 43, and when executed, they cause at least one processor 41 to implement or perform the method described above with reference to FIG. 2 and FIG. 3.
  • a program product such as a non-transitory machine-readable medium.
  • the non-transitory machine-readable medium may have instructions (i.e., above-mentioned elements implemented in a software form) .
  • the instructions when executed by a machine, cause the machine to perform the various operations and functions described above in conjunction with FIG. 2 and FIG. 3 in various embodiments of the present application.
  • a computer program product including a computer executable instruction.
  • the computer executable instruction when executed, causes at least one processor to perform various operations and functions described above in conjunction with FIG. 2 and FIG. 3 in various embodiments of the present application.

Abstract

A method for controlling a dry gas seal booster pump (100), including: determining whether a condition for starting the dry gas seal booster pump (100) is satisfied (S210); determining whether a condition for stopping the dry gas seal booster pump (100) is satisfied (S230); and when it is determined that the condition for starting the dry gas seal booster pump (100) is satisfied and it is determined that the condition for stopping the dry gas seal booster pump (100) is not satisfied, controlling the dry gas seal booster pump (100) to start. A control device for a dry gas seal booster pump and an electronic device are disclosed. Therefore, automatic control on the booster pump may be achieved, thereby ensuring safe and effective operation of a dry gas seal system.

Description

METHOD AND DEVICE FOR CONTROLLING DRY GAS SEAL BOOSTER PUMP BACKGROUND Technical Field
The invention relates to a method and a device for controlling a dry gas seal booster pump.
Related Art
In equipment such as gas turbines, a dry gas seal booster pump may be connected to a compressor to provide a sealing atmosphere for the compressor. In a current control method for the booster pump, the booster pump may be controlled according to a single parameter regardless of the operating conditions of the compressor and the state of the compressor. When process conditions (controlled parameters) cannot reach a normal value for a long time, the booster pump may be controlled to work continuously. When the compressor goes wrong and stops, it enters a pressure holding phase. When an internal pressure of the compressor is higher than an external pressure, since the controlled parameter is in a normal range, the booster pump is not automatically started, but it is required to manually control the booster pump to start after manual determination. In addition, during the start-up of the compressor, the booster pump may be controlled to remain operation until the controlled variable reaches the normal value. Furthermore, when the local compressor is in some special conditions, the controlled variable may not reach the normal value all the time, but the compressor may operate normally. At this time, the booster pump may be manually controlled to stop, thereby reducing the long-time operation of the booster pump.
SUMMARY
The invention aims at solving the above and/or other technical problems and providing a method and a device for controlling a dry gas seal booster pump. The method includes: determining a condition for starting the dry gas seal booster pump is satisfied, that is, determining whether a pressure of the current sealing atmosphere of the compressor  satisfies a sealing requirement, and determining whether the compressor is in an operating state; determining whether a condition for stopping the dry gas seal booster pump is satisfied; and when it is determined that the pressure of the current sealing atmosphere of the compressor does not satisfy the sealing requirement and it is determined that the compressor is in the operating state and when it is determined that the condition for stopping the dry gas seal booster pump is not satisfied, controlling the dry gas seal booster pump to start. Therefore, automatic control on the booster pump may be achieved, thereby ensuring safe and effective operation of a dry gas seal system.
The step of determining whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement includes: determining whether a pressure difference between the pressure of the sealing atmosphere of the compressor and an internal pressure of the compressor is less than a predetermined threshold, and when it is determined that the pressure difference is less than the predetermined threshold, determining that the pressure of the current sealing atmosphere of the compressor does not satisfy the sealing requirement. The step of determining whether a pressure difference between the pressure of the current sealing atmosphere of the compressor and a current ambient pressure of the compressor is less than the predetermined threshold includes: determining whether a pressure difference between a pressure of a primary seal gas of the dry gas seal booster pump and a pressure in a balance pipe of the compressor is less than 20%-30%of a normal value of a standard output pressure of the compressor.
Furthermore, the step of determining whether the compressor is in the operating state includes: determining whether a pressure of a gas at a compressor inlet is greater than or equal to a predetermined threshold, and when it is determined that the pressure is greater than or equal to the predetermined threshold, determining that the compressor is in the operating state. The step of determining whether the pressure of the gas at the compressor inlet is greater than or equal to the predetermined threshold includes: determining whether the pressure at a primary inlet of the compressor is greater than or equal to 55%-65%of the normal value of the standard output pressure of the compressor.
The method further includes: determining that a manual start command is input. The  step of controlling the dry gas seal booster pump to start includes: when it is determined that the manual start command is input and it is determined that the condition for stopping the dry gas seal booster pump is not satisfied, controlling the dry gas seal booster pump to start.
Here, control parameters, including the internal pressure of the compressor, the pressure at the primary inlet of the compressor, the operating state of the drive motor of the compressor, whether the compressor is in the standby state, whether the manual start command or a manual stop command is input, and the like, may be obtained through signals from various sensors including a pressure sensor, a compressor, a manual start button, a manual stop button, and the like.
In another aspect, the step of determining whether the condition for stopping the dry gas seal booster pump is satisfied includes: determining whether the compressor is in a standby state, and determining whether a drive motor for driving the compressor is in a normal operating state, where when it is determined that the compressor is in the standby state and it is determined that the drive motor for driving the compressor is not in the normal operating state, determining that the condition for stopping the dry gas seal booster pump is satisfied. Thus, when it is determined that the condition for stopping the dry gas seal booster pump is satisfied, the dry gas seal booster pump is controlled to stop.
The step of determining whether the compressor is in the standby state includes: determining whether the pressure of the gas at the compressor inlet is less than or equal to a predetermined threshold, and when it is determined that the pressure is less than or equal to the predetermined threshold, determining that the compressor is in the standby state. The step of determining whether the pressure of the gas at the compressor inlet is less than or equal to the predetermined threshold includes: determining whether the pressure at the primary inlet of the compressor is less than or equal to 20%-30%of the normal value of the standard output pressure of the compressor.
The step of determining whether the condition for stopping the dry gas seal booster pump is satisfied includes: determining whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement, where when it is  determined that the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement, determining that the condition for stopping the dry gas seal booster pump is satisfied. The step of determining whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement includes: determining whether the pressure difference between the pressure of the current sealing atmosphere of the compressor and the current ambient pressure of the compressor is greater than a predetermined threshold, and when it is determined that the pressure difference is greater than the predetermined threshold, determining that the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement.
The step of determining whether the pressure difference between the pressure of the current sealing atmosphere of the compressor and the current ambient pressure of the compressor is greater than the predetermined threshold includes: determining whether the pressure difference between the pressure of the primary seal gas of the dry gas seal booster pump compressor and the pressure in the balance pipe of the compressor is greater than 70%-80%of the normal value of the standard output pressure of the compressor.
Furthermore, the step of determining whether the condition for stopping the dry gas seal booster pump is satisfied includes: determining that a manual stop command is input, where when it is determined that the manual stop command is input, it is determined that the condition for stopping the dry gas seal booster pump is satisfied.
Multivariable control parameters may be introduced to achieve segmented control on the booster pump for various states of the compressor, thereby reducing the continuous operation time of the booster pump and effectively increasing the service life of the booster pump. Further, control logic may be optimized, thereby reducing manual operations and enhancing the control safety. In addition, the booster pump may be automatically controlled when the compressor is in different states and under special conditions, thereby ensuring the safe and effective operation of the dry gas seal system.
According to another exemplary embodiment, a control device for a dry gas seal booster pump, which may be configured to perform the method for controlling the dry gas seal booster pump as described above, is provided.
According to still another exemplary embodiment, an electronic device is provided, the electronic device including: at least one processor (41) ; and a memory (43) connected to the at least one processor, where the memory has an instruction stored therein, the instruction, when executed by the at least one processor, causing the electronic device to perform the method according to any one of claims 1 to 13.
BRIEF DESCRIPTION OF THE DRAWINGS
The following drawings are only intended to illustrate and explain the invention, and not to limit the scope of the invention. In the drawings,
FIG. 1 is a schematic structural view showing a gas turbine including a booster pump and a compressor according to an exemplary embodiment;
FIG. 2 is a schematic flowchart showing a method for controlling a booster pump according to an exemplary embodiment;
FIG. 3 is a schematic logic diagram showing a step of controlling a booster pump to start or stop according to an exemplary embodiment; and
FIG. 4 is a schematic block diagram showing an electronic device according to an exemplary embodiment.
Description of the reference signs:
100 booster pump 00 compressor 00 booster pump control device
510 start condition determining unit 30 stop condition determining unit 50 booster pump control unit
41 processor 43 memory
DETAILED DESCRIPTION
For clearly understanding the technical features, objects and effects of the invention, the specific implementations of the invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic structural view showing a gas turbine including a booster pump and a compressor according to an exemplary embodiment. As shown in FIG. 1, the gas turbine according to the exemplary embodiment may include a booster pump 100 and a compressor 300. The booster pump 100 may be connected to the compressor 300 to provide a sealing atmosphere for the compressor 300. Here, according to the exemplary embodiment, the compressor 300 may be a Siemens product STC-GV Compressor Unit. The booster pump 100 providing a compressed atmosphere for the compressor 300 may be a dry gas seal booster pump. Further, the gas turbine according to the exemplary embodiment may further include a booster pump control device 500. An operator may operate the booster pump control device 500 to control the booster pump 100, or the booster pump control device 500 may operate the control method according to an exemplary embodiment to automatically control the booster pump 100.
FIG. 2 shows a control method for a booster pump according to an exemplary embodiment. The control method according to the exemplary embodiment may be performed by the booster pump control device 500. The method for controlling a booster pump according to the exemplary embodiment will be specifically described below with reference to FIG. 1 and FIG. 2.
Firstly, it may be determined whether a condition for starting the booster pump is satisfied (S210) . For example, it may be determined whether the condition for starting the booster pump is satisfied according to a plurality of conditions. Here, as an example, the condition to be satisfied for determining whether to start the booster pump may include a manual start command (condition C1) , a current sealing atmosphere pressure of the compressor (condition C2) , and a current operating state of the compressor (condition C3) . Referring to FIG. 1, the booster pump control device 500 may include a start condition determining unit 510. The start condition determining unit 510 may perform the step S210 of determining whether the condition for starting the booster pump is satisfied.
Specifically, the condition C1 may be to determine whether the manual start command is input. Here, the gas turbine or booster pump control device 500 according to the exemplary embodiment may include a manual start button. The operator may input the  manual start command by pressing the manual start button. When it is determined that the manual start command is input, it may mean that the operator desires to start the booster pump.
The condition C2 may be to determine whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement. Here, since sealing for the compressor may not be achieved when the pressure of the sealing atmosphere provided for the compressor is relatively small, the condition C2 may include determining whether the pressure difference between the pressure of the current sealing atmosphere of the compressor and the internal pressure of the compressor is less than a predetermined threshold (first threshold) . When it is determined that the pressure difference is less than the first threshold, it may be determined that the pressure of the current sealing atmosphere of the compressor does not satisfy the sealing requirement. At this time, it may be required to start the booster pump to increase the pressure of the sealing atmosphere of the compressor. In an example shown in FIG. 1, the condition C2 may be embodied to determine whether a pressure difference between a pressure of a primary seal gas of the dry gas seal booster pump 100 and a pressure in a balance pipe of the compressor 300 is less than 20%-30%of a normal value of a standard output pressure of the compressor 300 (i.e., 0.5) . When it is determined that the pressure difference is less than 20%-30%of the normal value of the standard output pressure, it may be determined that the sealing requirement is not satisfied.
The condition C3 may be to determine whether the compressor is in an operating state. A variety of ways may be used to determine whether the compressor is in the operating state. In an exemplary embodiment, it may be determined whether a pressure of a gas at a compressor inlet is greater than or equal to a predetermined threshold (second threshold) . When it is determined that the pressure is greater than or equal to the second threshold, it may be determined that the compressor is in the operating state. At this time, it may be required to start the booster pump to increase the pressure of the sealing atmosphere of the compressor. In the example shown in FIG. 1, the condition C2 may be embodied to determine whether a pressure at a primary inlet of the compressor 300 is greater than or equal to 55%-65%of the normal value of the standard output pressure of the compressor  300. When it is determined that the pressure is greater than or equal to 55%-65%of the normal value of the standard output pressure, it may be determined that the compressor 300 is in the operating state.
Referring to FIG. 2, it may also be determined whether a condition for stopping the booster pump is satisfied (S230) . According to an exemplary embodiment, the step S210 and the step S230 may be performed sequentially or may be performed simultaneously. Here, as an example, the condition to be satisfied for determining whether to stop the booster pump may include a current sealing atmosphere pressure of the compressor (condition C4) , a current standby state of the compressor (condition C5) , a normal operating state of the drive motor of the compressor (condition C6) , and a manual stop command (condition C7) . Referring to FIG. 1, the booster pump control device 500 may include a stop condition determining unit 530. The stop condition determining unit 530 may perform the step S230 of determining whether the condition for stopping the booster pump is satisfied.
Specifically, the condition C4 may be similar to the condition C2 above. The condition C4 may be to determine whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement. Here, since the sealing for the compressor may be achieved when the pressure of the sealing atmosphere provided for the compressor is large enough, the condition C4 may include determining whether the pressure difference between the pressure of the current sealing atmosphere of the compressor and the internal pressure of the compressor is greater than a predetermined threshold (third threshold) . When it is determined that the pressure difference is greater than the third threshold, it may be determined that the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement. At this time, it may be possible to stop the booster pump to no longer increase the pressure of the sealing atmosphere of the compressor. In the example shown in FIG. 1, the condition C4 may be embodied to determine whether the pressure difference between the pressure of the primary seal gas of the dry gas seal booster pump 100 and the pressure in the balance pipe of the compressor 300 is greater than 70%-80%of the normal value of the standard output pressure of the compressor 300. When  it is determined that the pressure difference is greater than 70%-80%of the normal value of the standard output pressure, it may be determined that the sealing requirement is satisfied.
The condition C5 may be to determine whether the compressor is in a standby state. Here, a variety of ways may be used to determine whether the compressor is in the standby state. For example, it may be determined whether the pressure of the gas at the compressor inlet is less than or equal to a predetermined threshold (fourth threshold) , and when it is determined that the pressure is less than or equal to the fourth threshold, it is determined that the compressor is in the standby state. At this time, it may be possible to stop the booster pump to no longer increase the pressure of the sealing atmosphere of the compressor. In the example shown in FIG. 1, it may be determined whether the pressure at the primary inlet of the compressor 300 is less than or equal to 20%-30%of the normal value of the standard output pressure of the compressor. When it is determined that the pressure is less than or equal to 20%-30%of the normal value of the standard output pressure, it may be determined that the compressor is in the standby state.
The condition C6 may be to determine whether the drive motor for driving the compressor is in a normal operating state. When the drive motor is not in the normal operating state, it may be possible to stop the booster pump to no longer increase the pressure of the sealing atmosphere of the compressor.
The condition C7 may be to determine whether a manual stop command is input. Here, the gas turbine or booster pump control device 500 according to the exemplary embodiment may include a manual stop button. The operator may input the manual stop command by pressing the manual stop button. When it is determined that the manual stop command is input, it may mean that the operator desires to stop the booster pump.
Referring to FIG. 2, the booster pump may be controlled to start or stop according to the result of determining whether the condition for starting the booster pump is satisfied in the step S210 and the result of determining whether the condition for stopping the booster pump is satisfied in the step S230 (S250) . Referring to FIG. 1, the booster pump control device 500 may include a booster pump control unit 550. The booster pump control unit 550 may control the booster pump to start or stop according to the performing result of the  start condition determining unit 510 for the step S210 and/or the performing result of the stop condition determining unit 530 for the step S230.
FIG. 3 is a schematic logic diagram of controlling a booster pump to start or stop according to an exemplary embodiment. As shown in FIG. 3, the booster pump may be controlled to start or stop according to the results of step S210 and step S230 by the arithmetic logic of an RS flip-flop. A truth table of the RS flip-flop shown in FIG. 3 is shown in Table 1 below.
Table 1
Figure PCTCN2019104149-appb-000001
As shown in FIG. 3 and Table 1, according to the exemplary embodiment, when it is determined that the condition for stopping the dry gas seal booster pump is satisfied, the booster pump may be controlled to stop, and it may be disregarded whether the condition for starting the booster pump (R1=1, S=0 or S=1) is satisfied. In another aspect, when it is determined that the condition for stopping the dry gas seal booster pump is not satisfied (R1=0) and the condition for driving the booster pump is satisfied (R1=0, S=1) , the booster pump may be controlled to start.
Corresponding logical values as results of the condition C1 to the condition C7 of the logical judgment module (AND gate logic module, OR gate logic module) shown in FIG. 3 are respectively shown in Table 2 and Table 3 below.
Table 2
Figure PCTCN2019104149-appb-000002
Table 3
Figure PCTCN2019104149-appb-000003
As shown in FIG. 3 and Table 2, according to the exemplary embodiment, when it is determined that the pressure of the current sealing atmosphere of the compressor does not satisfy the sealing requirement (C2=1) and it is determined that the compressor is in the operating state (C3=1) , it may be determined that the condition for starting the booster pump is satisfied (S=1) . Further, when it is determined that the manual start command is input (condition C1=1) , it may be determined that the condition for starting the booster pump is satisfied (S=1) .
As shown in FIG. 3 and Table 3, according to the exemplary embodiment, when it is determined that the compressor is in the standby state (C5=1) and it is determined that the  drive motor for driving the compressor is not in the normal operating state (C6=0) , it may be determined that the condition for stopping the dry gas seal booster pump is satisfied (R1=1) . Further, when it is determined that the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement (C4=1) , it may be determined that the condition for stopping the dry gas seal booster pump is satisfied (R1=1) . Further, when it is determined that the manual stop command is input (C7=0) , it may be determined that the condition for stopping the booster pump is satisfied (R1=1) .
According to the exemplary embodiment, when the booster pump is controlled, multivariable control parameters may be introduced to achieve segmented control on the booster pump for various states of the compressor, thereby reducing the continuous operation time of the booster pump and effectively increasing the service life of the booster pump. Here, the control parameters, including the internal pressure of the compressor, the pressure at the primary inlet of the compressor, the operating state of the drive motor of the compressor, whether the compressor is in the standby state, whether the manual start command or the manual stop command is input, and the like, may be obtained through signals from various sensors including a pressure sensor, a compressor, a manual start button, a manual stop button, and the like. Further, control logic may be optimized, thereby reducing manual operations and enhancing the control safety. In addition, the booster pump may be automatically controlled when the compressor is in different states and under special conditions, thereby ensuring the safe and effective operation of a dry gas seal system.
The data processing method according to the exemplary embodiment as described above with reference to FIG. 2 and FIG. 3 may be achieved by hardware, software, or a combination of hardware and software. FIG. 4 is a block diagram showing an electronic device according to an exemplary embodiment. In the present exemplary embodiment, the electronic device may include at least one processor 41 and a memory 43. The processor 41 may execute at least one computer readable instruction (i.e., above-mentioned elements implemented in a software form) stored or encoded in a computer readable storage medium (i.e., memory 43) .
In one embodiment, computer executable instructions are stored in memory 43, and when executed, they cause at least one processor 41 to implement or perform the method described above with reference to FIG. 2 and FIG. 3.
It should be understood that the computer executable instructions stored in the memory 43, when executed, cause at least one processor 41 to perform the various operations and functions described above in conjunction with FIG. 2 and FIG. 3 in various embodiments.
According to one embodiment, a program product such as a non-transitory machine-readable medium is provided. The non-transitory machine-readable medium may have instructions (i.e., above-mentioned elements implemented in a software form) . The instructions, when executed by a machine, cause the machine to perform the various operations and functions described above in conjunction with FIG. 2 and FIG. 3 in various embodiments of the present application.
According to one embodiment, a computer program product is provided, including a computer executable instruction. The computer executable instruction, when executed, causes at least one processor to perform various operations and functions described above in conjunction with FIG. 2 and FIG. 3 in various embodiments of the present application.
It should be understood that although this specification is described in terms of various embodiments, not every embodiment includes only one single technical solution. This description manner of the specification is merely for clarity, and those skilled in the art should consider the specification as a whole. The technical solutions in the embodiments may also be combined as appropriate to form other implementations that may be understood by those skilled in the art.
The above is only exemplary specific implementations of the invention and is not intended to limit the scope of the invention. The equivalent changes, modifications, and combinations made by those skilled in the art without departing from the concept and principle of the invention should all fall within the protection scope of the invention.

Claims (15)

  1. A method for controlling a dry gas seal booster pump, the dry gas seal booster pump providing a sealing atmosphere having a certain pressure for a compressor, wherein the method comprises:
    determining whether a pressure of the current sealing atmosphere of the compressor satisfies a sealing requirement, and determining whether the compressor is in an operating state;
    determining whether a condition for stopping the dry gas seal booster pump is satisfied; and
    when it is determined that the pressure of the current sealing atmosphere of the compressor does not satisfy the sealing requirement and it is determined that the compressor is in the operating state and when it is determined that the condition for stopping the dry gas seal booster pump is not satisfied, controlling the dry gas seal booster pump to start.
  2. The method according to claim 1, wherein the step of determining whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement comprises: determining whether a pressure difference between the pressure of the sealing atmosphere of the compressor and an internal pressure of the compressor is less than a predetermined threshold, and when it is determined that the pressure difference is less than the predetermined threshold, determining that the pressure of the current sealing atmosphere of the compressor does not satisfy the sealing requirement.
  3. The method according to claim 2, wherein the step of determining whether a pressure difference between the pressure of the current sealing atmosphere of the compressor and a current ambient pressure of the compressor is less than the predetermined threshold comprises: determining whether a pressure difference between a pressure of a primary seal gas of the dry gas seal booster pump and a pressure in a balance pipe of the compressor is less than 20%-30%of a normal value of a standard output pressure of the  compressor.
  4. The method according to claim 1, wherein the step of determining whether the compressor is in the operating state comprises: determining whether a pressure of a gas at a compressor inlet is greater than or equal to a predetermined threshold, and when it is determined that the pressure is greater than or equal to the predetermined threshold, determining that the compressor is in the operating state.
  5. The method according to claim 4, wherein the step of determining whether the pressure of the gas at the compressor inlet is greater than or equal to the predetermined threshold comprises: determining whether the pressure at a primary inlet of the compressor is greater than or equal to 55%-65%of a normal value of a standard output pressure of the compressor.
  6. The method according to claim 1, wherein the method comprises:
    determining that a manual start command is input,
    wherein the step of controlling the dry gas seal booster pump to start comprises: when it is determined that the manual start command is input and it is determined that the condition for stopping the dry gas seal booster pump is not satisfied, controlling the dry gas seal booster pump to start.
  7. The method according to claim 1, wherein the step of determining whether the condition for stopping the dry gas seal booster pump is satisfied comprises: determining whether the compressor is in a standby state, and determining whether a drive motor for driving the compressor is in a normal operating state, wherein when it is determined that the compressor is in the standby state and it is determined that the drive motor for driving the compressor is not in the normal operating state, determining that the condition for stopping the dry gas seal booster pump is satisfied; and
    the method further comprises: when it is determined that the condition for stopping the dry gas seal booster pump is satisfied, controlling the dry gas seal booster pump to stop.
  8. The method according to claim 7, wherein the step of determining whether the compressor is in the standby state comprises: determining whether a pressure of a gas at a  compressor inlet is less than or equal to a predetermined threshold, and when it is determined that the pressure is less than or equal to the predetermined threshold, determining that the compressor is in the standby state.
  9. The method according to claim 8, wherein the step of determining whether the pressure of the gas at the compressor inlet is less than or equal to the predetermined threshold comprises: determining whether the pressure at a primary inlet of the compressor is less than or equal to 20%-30%of a normal value of a standard output pressure of the compressor.
  10. The method according to claim 7, wherein the step of determining whether the condition for stopping the dry gas seal booster pump is satisfied comprises:
    determining whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement, wherein when it is determined that the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement, determining that the condition for stopping the dry gas seal booster pump is satisfied.
  11. The method according to claim 10, wherein the step of determining whether the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement comprises: determining whether a pressure difference between the pressure of the current sealing atmosphere of the compressor and a current ambient pressure of the compressor is greater than a predetermined threshold, and when it is determined that the pressure difference is greater than the predetermined threshold, determining that the pressure of the current sealing atmosphere of the compressor satisfies the sealing requirement.
  12. The method according to claim 11, wherein the step of determining whether the pressure difference between the pressure of the current sealing atmosphere of the compressor and the current ambient pressure of the compressor is greater than the predetermined threshold comprises: determining whether a pressure difference between a pressure of a primary seal gas of the dry gas seal booster pump compressor and a pressure in a balance pipe of the compressor is greater than 70%-80%of a normal value of a  standard output pressure of the compressor.
  13. The method according to claim 7, wherein the step of determining whether the condition for stopping the dry gas seal booster pump is satisfied comprises:
    determining that a manual stop command is input,
    wherein when it is determined that the manual stop command is input, it is determined that the condition for stopping the dry gas seal booster pump is satisfied.
  14. A control device for a dry gas seal booster pump, the dry gas seal booster pump providing a sealing atmosphere having a certain pressure for a compressor, wherein the control device comprises:
    a start condition determining unit (510) , configured to determine whether a pressure of the current sealing atmosphere of the compressor satisfies a sealing requirement, and determine whether the compressor is in an operating state;
    a stop condition determining unit (530) , configured to determine whether a condition for stopping the dry gas seal booster pump is satisfied; and
    a booster pump control unit (550) , configured to control the dry gas seal booster pump to start when it is determined that the pressure of the current sealing atmosphere of the compressor does not satisfy the sealing requirement and it is determined that the compressor is in the operating state and when it is determined that the condition for stopping the dry gas seal booster pump is not satisfied.
  15. An electronic device, wherein the electronic device comprises:
    at least one processor (41) ; and
    a memory (43) connected to the at least one processor, wherein the memory has an instruction stored therein, the instruction, when executed by the at least one processor, causing the electronic device to perform the method according to any one of claims 1 to 13.
PCT/CN2019/104149 2019-09-03 2019-09-03 Method and device for controlling dry gas seal booster pump WO2021042260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104149 WO2021042260A1 (en) 2019-09-03 2019-09-03 Method and device for controlling dry gas seal booster pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104149 WO2021042260A1 (en) 2019-09-03 2019-09-03 Method and device for controlling dry gas seal booster pump

Publications (1)

Publication Number Publication Date
WO2021042260A1 true WO2021042260A1 (en) 2021-03-11

Family

ID=74851960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104149 WO2021042260A1 (en) 2019-09-03 2019-09-03 Method and device for controlling dry gas seal booster pump

Country Status (1)

Country Link
WO (1) WO2021042260A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925413B1 (en) * 2009-05-07 2009-11-06 주식회사 대영파워펌프 Method for controlling inverter booster pump system
CN103069126A (en) * 2010-08-18 2013-04-24 克诺尔商用车制动系统有限公司 Method for regulating stable operation of an exhaust-gas turbocharger of an internal combustion engine, and a corresponding apparatus
KR101540777B1 (en) * 2015-02-11 2015-07-31 화랑시스템(주) Booster pump system and method for driving booster pump
CN107013448A (en) * 2015-10-16 2017-08-04 格兰富控股联合股份公司 Method for controlling pump and supercharging device
CN110173870A (en) * 2019-05-29 2019-08-27 广东美的制冷设备有限公司 Control method, air conditioner and the computer readable storage medium of air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925413B1 (en) * 2009-05-07 2009-11-06 주식회사 대영파워펌프 Method for controlling inverter booster pump system
CN103069126A (en) * 2010-08-18 2013-04-24 克诺尔商用车制动系统有限公司 Method for regulating stable operation of an exhaust-gas turbocharger of an internal combustion engine, and a corresponding apparatus
KR101540777B1 (en) * 2015-02-11 2015-07-31 화랑시스템(주) Booster pump system and method for driving booster pump
CN107013448A (en) * 2015-10-16 2017-08-04 格兰富控股联合股份公司 Method for controlling pump and supercharging device
CN110173870A (en) * 2019-05-29 2019-08-27 广东美的制冷设备有限公司 Control method, air conditioner and the computer readable storage medium of air conditioner

Similar Documents

Publication Publication Date Title
US8347296B2 (en) Priority control apparatus and priority control method
KR101839188B1 (en) Fuel cell system and method for controlling rotational speed of air compressor
US7497195B2 (en) Engine control device of construction machinery
WO2021042260A1 (en) Method and device for controlling dry gas seal booster pump
CN112228326A (en) Method and device for controlling static pressure driven vehicle, driven vehicle and medium
JP4610014B2 (en) Servo system control apparatus and control method
CN111997761B (en) Method and system for improving plateau starting success rate of aeroengine
JPS6311451A (en) Continuously variable transmission control device
EP2982804A1 (en) Apparatus for controlling construction equipment engine and control method therefor
US10547254B2 (en) Apparatus for controlling multiple inverters and inverter system including the same
CN113581016B (en) Idle speed control method of fuel cell system and related equipment
CN110456752B (en) Air compression station control method based on combination of plan scheduling and algorithm scheduling
KR102046183B1 (en) Method and Apparatus for Controlling Vehicle of Construction Machine
CN109790761B (en) Method for operating a turbomachine
CN112166252A (en) Exhaust control method of water pump, movable equipment, spraying device and storage medium
CN106194387B (en) Method and system for controlling electric water pump
CN216975299U (en) Fan hydraulic system based on open pump drive
JP2001263252A (en) Inverter control device of pump
CN117404827A (en) Heat pump system control method and device and heat pump system
EP3473816B1 (en) Systems and methods to control power plant operation via control of turbine run-up and acceleration
CN116816826A (en) Pneumatic clutch duty ratio control method and device, vehicle and storage medium
CN108005801B (en) Power response method and device
CN106016610A (en) Method and system for intelligently adjusting set temperatures of air conditioning systems
JPH0581065A (en) Self diagnostic method for programmable controller system
CN117489624A (en) Cooling fan rotating speed control method and related equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943881

Country of ref document: EP

Kind code of ref document: A1