WO2021042223A1 - Reactor de medio poroso inerte para la combustión o gasificación que comprende una pluralidad de esferas huecas de material inerte - Google Patents

Reactor de medio poroso inerte para la combustión o gasificación que comprende una pluralidad de esferas huecas de material inerte Download PDF

Info

Publication number
WO2021042223A1
WO2021042223A1 PCT/CL2020/050097 CL2020050097W WO2021042223A1 WO 2021042223 A1 WO2021042223 A1 WO 2021042223A1 CL 2020050097 W CL2020050097 W CL 2020050097W WO 2021042223 A1 WO2021042223 A1 WO 2021042223A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
reaction tube
inert
present
inert material
Prior art date
Application number
PCT/CL2020/050097
Other languages
English (en)
French (fr)
Inventor
Mario Gonzalo TOLEDO TORRES
Nicolás Alberto Andrés RIPOLL KAMEID
Gustavo Andrés RUIZ NÚÑEZ
Original Assignee
Universidad Técnica Federico Santa María
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Técnica Federico Santa María filed Critical Universidad Técnica Federico Santa María
Priority to EP20861655.7A priority Critical patent/EP4026613A4/en
Publication of WO2021042223A1 publication Critical patent/WO2021042223A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00513Controlling the temperature using inert heat absorbing solids in the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/06Details of tube reactors containing solid particles
    • B01J2208/065Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0993Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only

Definitions

  • the present invention relates to the field of apparatus and processes for combustion or gasification and in particular provides an inert porous medium reactor for combustion or gasification comprising a plurality of hollow particles of inert material.
  • porous medium reactors have been described for the combustion or gasification of materials.
  • patent CL 56038 describes an inert porous medium reactor that includes a reaction tube lined internally and externally with a thermal insulator; and a plurality of particles of chemically inert material, specifically alumina spheres, arranged inside said tube.
  • the reactor described in said document works based on a homogeneous and random mixture of non-inert material with the inert material, which is gasified as a result of combustion with partial oxidation.
  • Patent CL 50692 describes an inert porous medium reactor that includes a reaction tube lined internally and externally with a thermal insulator; and a plurality of particles of chemically inert material, specifically alumina spheres, arranged inside said tube.
  • the reactor described in said document works based on the combustion of methanol, ethanol and other liquid fuels with similar characteristics, for the generation of hydrogen (H2) and carbon monoxide (CO) through the partial oxidation of the fuel.
  • document WO 2017/142515 describes a multi-stage system for the production of gas, for example a mixture of H2 and CO, from carbonaceous material, for example solid waste.
  • Said system includes at least one first reactor and at least one second reactor, wherein the heat from the second reactor is used to heat a medium that will be used as a reagent in the first reactor. It is indicated that both said first reactor and said second reactor can include inside them a particulate material for heat transfer.
  • the present invention provides an inert porous medium reactor for the combustion or gasification of a material comprising a reaction tube, said reaction tube having an inner coating of a first thermal insulating material and an outer coating of a second thermal insulating material. ; said reactor further comprising a plurality of particles of inert material inside said reaction tube characterized in that said particles of inert material are hollow and in that said hollow particles of inert material occupy the entire length of said reaction tube .
  • the reactor is characterized in that said reaction tube is manufactured with a material resistant to high temperatures that is selected from the group consisting of quartz, steels, iron, as well as combinations between them.
  • the reactor is characterized in that said first thermal insulating material and said second thermal insulating material are selected from the group consisting of glass fiber, ceramic fiber, as well as combinations between them.
  • the reactor is characterized in that said first thermal insulating material is the same material as said second thermal insulating material.
  • the reactor is characterized in that said inert material is selected from the group consisting of oxides of alumina, zirconium, silicon, as well as combinations between them.
  • the reactor is characterized in that said hollow particles of inert material have an equivalent diameter that is in the range between 3 mm and 100 mm.
  • the reactor is characterized in that said hollow particles of inert material have a wall whose thickness is between 1% and 10% of the equivalent diameter of said hollow particles of inert material.
  • the reactor is characterized in that said reaction tube has an internal diameter that is in the range between 30 mm and 1000 mm.
  • the reactor is characterized in that said reaction tube has a length that is in the range between 300 mm and 1500 mm.
  • the reactor is characterized in that it additionally comprises a plurality of carbonaceous material particles that are randomly distributed along said reaction tube.
  • Figure 1 shows a schematic view in longitudinal section of a first embodiment of the inert porous medium reactor that is the object of the present invention, with a detailed view of the hollow particles that form the same. Detailed description of the invention
  • the present invention provides a reactor (1) with an inert porous medium for the combustion or gasification of a material characterized in that it essentially comprises a reaction tube (2), said reaction tube (2) having an inner lining ( 3a) of a first thermal insulating material and an outer covering (3b) of a second thermal insulating material; wherein said reactor (1) further comprises a plurality of particles of inert material (4) inside said reaction tube (2), wherein said particles of inert material (4) are hollow and wherein said particles Hollow holes of inert material (4) occupy the entire length of said reaction tube (2).
  • the reactor (1) that is the object of the present invention can be used both for the combustion and for the gasification of a material.
  • the combustion or partial oxidation can be both of a gaseous or liquid fuel, and said material is a solid fuel material.
  • the inert porous medium reactor (1) that is the object of the present invention is an improvement over other reactors described in the state of the art, insofar as it allows the transfer of heat by radiation, as will be explained in detail later.
  • This difference in the heat transfer mechanism is not trivial and has the advantage that it allows higher temperatures to be reached inside the reactor (1) that is the object of the present invention.
  • reaction tube (2) the material with which it is manufactured does not limit the scope of the present invention, insofar as it allows it to withstand the temperatures that are reached inside said reaction tube (2).
  • said reaction tube (2) is manufactured with a material resistant to high temperatures that is selected from the group consisting of quartz, steels, iron, as well as combinations among the themselves.
  • the shape and dimensions of said reaction tube (2) do not limit the scope of the present invention.
  • Said reaction tube (2) can have a cross section having any shape.
  • said reaction tube (2) has a circular cross section.
  • said reaction tube (2) can have a polygonal, concave or convex cross section, which can be chosen, without being limited thereto, from the group formed by triangular, square, pentagonal, hexagonal or octagonal cross section.
  • the dimensions of said reaction tube (2) also do not limit the scope of the present invention and will depend, among other aspects and without limiting the scope of the present invention, on the specific application of the reactor (1) which is the object of the present invention, as well as the dimensions of the hollow particles of inert material (4) with which said reaction tube (2) is filled.
  • the internal and external diameters of said reaction tube (2) do not limit the scope of the present invention.
  • the width of said reaction tube (2) and the thickness of the walls of said reaction tube (2) do not limit the scope of the present invention.
  • its external diameter may be in the range between 34 mm and 1004 mm
  • its Internal diameter can be in the range between 30mm and 1000mm.
  • the length of said reaction tube (2) does not limit the scope of the present invention.
  • the length of said reaction tube (2) will depend, among other aspects and without limiting the scope of the present invention, on the dimensions of the hollow particles of inert material (4) that are arranged inside said tube. reaction (2), the material to be burned or gasified, as well as the temperatures reached inside said reaction tube (2). In a preferred embodiment, without limiting the scope of the In the present invention, the length of said reaction tube (2) is in the range between 300 mm and 1500 mm.
  • Said reaction tube (2) has an inner coating (3a) of a first thermal insulating material.
  • the nature of said first thermal insulating material does not limit the scope of the present invention.
  • Said first thermal insulating material must allow the inside of said reaction tube (2) to be thermally insulated from the outside thereof. Additionally, said first thermal insulating material must be inert with respect to the combustion or gasification reaction that takes place inside said reaction tube (2).
  • Said first thermal insulating material can be selected, for example and without limiting the scope of the present invention, from the group consisting of oxides of alumina, zirconium, silicon, as well as combinations between them.
  • the thickness of said inner coating (3a) does not limit the scope of the present invention and will depend, among other aspects and without limiting the scope of the present invention, on the shape and dimensions of said reaction tube (2), on the thermal characteristics of said first thermal insulating material, and the temperatures reached inside said reaction tube (2).
  • Said reaction tube (2) has an outer coating (3b) of a second thermal insulating material.
  • the nature of said second thermal insulating material does not limit the scope of the present invention.
  • Said second thermal insulating material must make it possible to thermally insulate the exterior of said reaction tube (2).
  • Said second thermal insulating material can be selected, for example and without limiting the scope of the present invention, from the group consisting of oxides of alumina, zirconium, silicon, as well as combinations between them.
  • the thickness of said outer coating (3a) does not limit the scope of the present invention and will depend, among other aspects and without limiting the scope of the present invention, on the shape and dimensions of said reaction tube (2), on the thermal characteristics of said second thermal insulating material, and the temperatures reached inside said reaction tube (2).
  • said first thermal insulating material is the same as said second thermal insulating material.
  • Said reactor (1) further comprises a plurality of hollow particles of inert material (4) inside said reaction tube (2).
  • the characteristic that said particles of inert material (4) are hollow, is what allows the transfer of heat by radiation. This technical advantage is not described or suggested by the state of the art, in which the heat transfer is carried out by conduction between adjacent inert material particles. Additionally, the presence of said hollow particles of inert material (4) allows generating a lower thermal inertia, due to its lower mass, compared to solid particles. This allows it to have the thermal inertia of a ceramic sponge, while having the porosity of a bed of spheres.
  • the foregoing provides the reactor (1) that is the object of the present invention with a higher speed of the combustion waves for the same reactor size, compared to solid particles. This, in turn, translates into higher reaction rates in the combustion and gasification processes.
  • said inert material does not limit the scope of the present invention, as long as it is inert with respect to the reaction that takes place inside the reactor (1) that is the object of the present invention.
  • said inert material is selected from the group consisting of oxides of alumina, zirconium, silicon, as well as combinations between them.
  • said hollow particles of inert material (4) do not limit the scope of the present invention.
  • said hollow particles of inert material (4) have a wall (41) and an interior space (42) that allows the transfer of heat by radiation, as seen schematically in Figure 1.
  • hollow particles of inert material they do not limit the scope of the present invention and can be chosen, without being limited thereto, from the group formed by particles in the shape of spheres, in ellipsoids, ovoids, polyhedra, or irregularly shaped, as well as combinations between them.
  • the dimensions of said hollow particles of inert material (4) do not limit the scope of the present invention. Said dimensions will depend, among other aspects and without limiting the scope of the present invention, on the shape and dimensions of the reaction tube (2), on the shape of said hollow particles of inert material (4) and on the temperatures that are reached inside said reaction tube (2).
  • said hollow particles of inert material (4) that form the plurality can have a uniform size, or have a size distribution without limiting the scope of the present invention. In case of having a size distribution, the particular distribution does not limit the scope of the present invention and can be selected, for example and without limiting the scope of the present invention, from normal distribution, log-normal distribution, multimodal distribution, among others.
  • said hollow particles of inert material (4) have an equivalent diameter that is in the range between 3 mm and 100 mm.
  • the equivalent diameter of a hollow particle of inert material (4) will be understood as the diameter of a sphere that has the same volume as the outer volume of said hollow particle of inert material (4).
  • said hollow particles of inert material (4) have an equivalent diameter that is in the range between 5 mm and 50 mm, more preferably between 10 and 25 mm. mm.
  • said hollow particles (4) have a wall (41) and an interior space (42).
  • the dimensions of said wall (41) do not limit the scope of the present invention and will depend, for example and without limiting the scope of the present invention, on the equivalent diameter and shape of said hollow particles of inert material (4) and on reaction temperatures.
  • said hollow particles of inert material (4) have a wall (41) whose thickness it is between 1% and 10% of the equivalent diameter of said hollow particles of inert material (4).
  • Said plurality of hollow particles of inert material (4) occupy the entire length of said reaction tube (2).
  • Said configuration has the advantage that the same material, namely, said hollow particles of inert material (4), is used as thermal insulating material at the ends of said reaction tube (2), at the same time that it is used as material to intensify the heat transfer in the reaction that occurs inside said reaction tube (2). It can have the particularity of a transient nature, that is, that the reaction moves axially along the reactor, or of a stationary nature, where the reaction occurs in a fixed zone inside the reaction tube, without this limits the scope of the present invention.
  • the reactor (1) that is the object of the present invention can be used for the gasification of solid carbonaceous material.
  • the reactor (1) that is the object of the present invention additionally comprises a plurality of carbonaceous material particles that are randomly distributed along the reaction tube (2) that is part of said reactor (1).
  • Said carbonaceous material can be chosen, for example and without limiting the scope of the present invention, from the group consisting of wood, coal, plastic, biomass and papers.
  • said reactor (1) can be positioned vertically or horizontally.
  • the reactor (1) that is the object of the present invention can be used for the combustion of combustible fluids.
  • said reactor (1) can be positioned vertically, inclined or horizontally.
  • the direction of flow does not limit the scope of the present invention and can be, for example, upward or downward.
  • Figure 1 shows a reactor (1) in which the fuel flow is upward.
  • the reactor (1) that is the object of the present invention can be used simultaneously for the gasification of a material and for the combustion or partial oxidation of a combustible fluid.
  • a prototype of the inert porous medium reactor was manufactured consisting of a 221 mm long cylindrical quartz tube with an inner and outer diameter of 64.8 mm and 68.8 mm, respectively.
  • the interior of the cylindrical quartz tube was covered with a 3 mm thick fiberglass interior thermal insulator.
  • the exterior of the cylindrical quartz tube was protected with an exterior thermal insulator, made of the same material as the interior insulator, with a thickness of 30 mm.
  • the cylindrical quartz tube with its respective insulating walls was mounted on a A metallic piece of aluminum, which had 12 holes of 1.5 mm in diameter through which reactant combustible gases could enter.
  • the inert porous medium reactor is therefore positioned vertically.
  • thermocouple platinum rhodium - 10% / platinum
  • a "T" type connection means was installed, to which a digital air flow controller fed by a compressor and a digital flow controller were also connected. of fuel gas fed by a natural gas line. In this way, an air-fuel gas premix is obtained that feeds the reactor with an inert porous medium.
  • a Teflon and plastic line was installed that connected to a data acquisition system to take gas samples, which were analyzed through a Perkin Elmer gas chromatograph.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

La presente invención se relaciona con el campo de los aparatos y procesos para la combustión o la gasificación y en particular proporciona un reactor de medio poroso inerte para la combustión o gasificación que comprende un tubo de reacción, dicho tubo de reacción que posee un recubrimiento interior de un primer material aislante térmico y un recubrimiento exterior de un segundo material aislante térmico; dicho reactor que comprende, además, una pluralidad de partículas de material inerte en el interior de dicho tubo de reacción que se caracteriza porque dichas partículas de material inerte son huecas y porque dichas partículas huecas de material inerte ocupan toda la longitud de dicho tubo de reacción.

Description

REACTOR DE MEDIO POROSO INERTE PARA LA COMBUSTIÓN O GASIFICACIÓN QUE COMPRENDE UNA PLURALIDAD DE ESFERAS HUECAS DE MATERIAL INERTE
Campo técnico de la invención
La presente invención se relaciona con el campo de los aparatos y procesos para la combustión o la gasificación y en particular proporciona un reactor de medio poroso inerte para la combustión o gasificación que comprende una pluralidad de partículas huecas de material inerte.
Antecedentes de la invención
En el estado de la técnica, se han descrito reactores de medio poroso para la combustión o gasificación de materiales.
Por ejemplo, la patente CL 56038 describe un reactor de medio poroso inerte que incluye un tubo de reacción recubierto interna y externamente con un aislante térmico; y una pluralidad de partículas de material inerte químicamente, en específico esferas de alúmina, dispuestas en el interior de dicho tubo. El reactor descrito en dicho documento funciona en base a una mezcla homogénea y aleatoria de material no inerte con el material inerte, que es gasificado como resultado de la combustión con oxidación parcial.
La patente CL 50692 describe un reactor de medio poroso inerte que incluye un tubo de reacción recubierto interna y externamente con un aislante térmico; y una pluralidad de partículas de material inerte químicamente, en específico esferas de alúmina, dispuestas en el interior de dicho tubo. El reactor descrito en dicho documento funciona en base a la combustión de metanol, etanol y otros combustibles líquidos de características similares, para la generación de hidrógeno (H2) y monóxido de carbono (CO) mediante la oxidación parcial del combustible.
A nivel internacional, el documento WO 2017/142515 describe un sistema de múltiples etapas para la producción de gas, por ejemplo, una mezcla de H2 y CO, a partir de material carbonoso, por ejemplo, residuos sólidos. Dicho sistema incluye al menos un primer reactor y al menos un segundo reactor, en donde el calor del segundo reactor se utiliza para calentar un medio que será utilizado como reactivo en el primer reactor. Se indica que tanto dicho primer reactor como dicho segundo reactor pueden incluir en su interior un material particulado para la transferencia de calor.
Sin embargo, los documentos del estado de la técnica se basan en la transferencia de calor por conducción para su funcionamiento. Lo anterior, limita el rango de temperaturas que dichos reactores pueden alcanzar. Adicionalmente, el material inerte utilizado para la transferencia de calor, al ser conductor, no puede utilizarse como aislante en las vecindades de los extremos del tubo de reacción.
En consecuencia, se requiere de un reactor de medio poroso inerte que permita superar estas deficiencias de la técnica anterior.
Sumario de la invención
La presente invención proporciona un reactor de medio poroso inerte para la combustión o gasificación de un material que comprende un tubo de reacción, dicho tubo de reacción que posee un recubrimiento interior de un primer material aislante térmico y un recubrimiento exterior de un segundo material aislante térmico; dicho reactor que comprende, además, una pluralidad de partículas de material inerte en el interior de dicho tubo de reacción que se caracteriza porque dichas partículas de material inerte son huecas y porque dichas partículas huecas de material inerte ocupan toda la longitud de dicho tubo de reacción.
En una realización preferida, el reactor se caracteriza porque dicho tubo de reacción se fabrica con un material resistente a altas temperaturas que se selecciona del grupo formado por cuarzo, aceros, hierro, así como combinaciones entre los mismos.
En otra realización preferida, el reactor se caracteriza porque dicho primer material aislante térmico y dicho segundo material aislante térmico se seleccionan del grupo formado por fibra de vidrio, fibra cerámica, así como combinaciones entre los mismos. En una realización preferida adicional, el reactor se caracteriza porque dicho primer material aislante térmico es el mismo material que dicho segundo material aislante térmico.
En otra realización preferida, el reactor se caracteriza porque dicho material inerte se selecciona del grupo formado por óxidos de alúmina, circonio, silicio, así como combinaciones entre los mismos.
En una realización preferida, el reactor se caracteriza porque dichas partículas huecas de material inerte poseen un diámetro equivalente que se encuentra en el rango entre 3 mm y 100 mm.
En otra realización preferida, el reactor se caracteriza porque dichas partículas huecas de material inerte poseen una pared cuyo espesor está entre un 1% y un 10% del diámetro equivalente de dichas partículas huecas de material inerte.
En una realización preferida adicional, el reactor se caracteriza porque dicho tubo de reacción posee un diámetro interno que se encuentra en el rango entre 30 mm y 1000 mm.
En otra realización preferida, el reactor se caracteriza porque dicho tubo de reacción posee una longitud que se encuentra en el rango entre 300 mm y 1500 mm.
En una realización preferida adicional, el reactor se caracteriza porque comprende, adicionalmente, una pluralidad de partículas de material carbonoso que se distribuyen aleatoriamente a lo largo de dicho tubo de reacción.
Breve descripción de las figuras
La Figura 1 muestra una vista esquemática en corte longitudinal de una primera realización del reactor de medio poroso inerte que es objeto de la presente invención, con una vista en detalle de las partículas huecas que forman el mismo. Descripción detallada de la invención
A continuación, se describirá en detalle la presente invención haciendo referencia, para esto, a las figuras que acompañan la presente solicitud.
La presente invención proporciona un reactor (1 ) de medio poroso inerte para la combustión o gasificación de un material que se caracteriza porque comprende, esencialmente, un tubo de reacción (2), dicho tubo de reacción (2) que posee un recubrimiento interior (3a) de un primer material aislante térmico y un recubrimiento exterior (3b) de un segundo material aislante térmico; en donde dicho reactor (1) comprende, además, una pluralidad de partículas de material inerte (4) en el interior de dicho tubo de reacción (2), en donde dichas partículas de material inerte (4) son huecas y en donde dichas partículas huecas de material inerte (4) ocupan toda la longitud de dicho tubo de reacción (2).
En el contexto de la presente invención, debe entenderse que el reactor (1 ) que es objeto de la presente invención puede utilizarse tanto para la combustión como para la gasificación de un material. En una realización preferida, la combustión u oxidación parcial puede ser tanto de un combustible gaseoso o líquido, y dicho material es un material combustible sólido.
El reactor (1 ) de medio poroso inerte que es objeto de la presente invención es una mejora con respecto a otros reactores descritos en el estado de la técnica, en tanto permite la transferencia de calor mediante radiación, como será explicado en detalle más adelante. Esta diferencia en el mecanismo de transferencia de calor no es trivial y posee la ventaja de que permite alcanzar mayores temperaturas en el interior del reactor (1 ) que es objeto de la presente invención.
Con respecto a dicho tubo de reacción (2), el material con el que se fabrique el mismo no limita el alcance de la presente invención, en tanto permita soportar las temperaturas que se alcanzan en el interior de dicho tubo de reacción (2). En una realización preferida, sin que esto limite el alcance de la presente invención, dicho tubo de reacción (2) se fabrica con un material resistente a altas temperaturas que se selecciona del grupo formado por cuarzo, aceros, hierro, así como combinaciones entre los mismos. Por otra parte, la forma y dimensiones de dicho tubo de reacción (2) no limita el alcance de la presente invención. Dicho tubo de reacción (2) puede tener una sección transversal que posee cualquier forma. En una realización preferida, sin que esto limite el alcance de la presente invención, dicho tubo de reacción (2) posee una sección transversal con forma circular. Sin embargo, en otras realizaciones preferidas sin que esto limite el alcance de la presente invención, dicho tubo de reacción (2) puede tener una sección transversal de forma poligonal, cóncava o convexa, que puede escogerse, sin limitarse a estos, del grupo formado por sección transversal triangular, cuadrada, pentagonal, hexagonal u octogonal.
Como se mencionó anteriormente, las dimensiones de dicho tubo de reacción (2) tampoco limitan el alcance de la presente invención y dependerán, entre otros aspectos y sin que esto limite el alcance de la presente invención, de la aplicación específica del reactor (1 ) que es objeto de la presente invención, así como de las dimensiones de las partículas huecas de material inerte (4) con las cuales dicho tubo de reacción (2) está relleno. En la realización preferida en la cual dicho tubo de reacción (2) posee una sección transversal de forma circular, los diámetros tanto interno como externo de dicho tubo de reacción (2) no limitan el alcance de la presente invención. Análogamente, cuando dicho tubo de reacción (2) posee una sección transversal de forma poligonal, el ancho de dicho tubo de reacción (2) y el espesor de las paredes de dicho tubo de reacción (2) no limitan el alcance de la presente invención. En una realización preferida, sin que esto limite el alcance de la presente invención, cuando dicho tubo de reacción (2) posee una sección transversal de forma circular, su diámetro externo puede estar en el rango entre 34 mm y 1004 mm, mientras que su diámetro interno puede estar en el rango entre 30 mm y 1000 mm.
Por otra parte, la longitud de dicho tubo de reacción (2) no limita el alcance de la presente invención. La longitud de dicho tubo de reacción (2) dependerá, entre otros aspectos y sin que esto limite el alcance de la presente invención, de las dimensiones de las partículas huecas de material inerte (4) que se disponen en el interior de dicho tubo de reacción (2), del material que se quiere combustionar o gasificar, así como de las temperaturas que se alcancen en el interior de dicho tubo de reacción (2). En una realización preferida, sin que esto limite el alcance de la presente invención, la longitud de dicho tubo de reacción (2) se encuentra en el rango entre 300 mm y 1500 mm.
Dicho tubo de reacción (2) posee un recubrimiento interior (3a) de un primer material aislante térmico. La naturaleza de dicho primer material aislante térmico no limita el alcance de la presente invención. Dicho primer material aislante térmico debe permitir aislar térmicamente el interior de dicho tubo de reacción (2) del exterior del mismo. Adicionalmente, dicho primer material aislante térmico debe ser inerte con respecto a la reacción de combustión o gasificación que se lleve a cabo en el interior de dicho tubo de reacción (2). Dicho primer material aislante térmico puede seleccionarse, por ejemplo y sin que esto limite el alcance de la presente invención, del grupo formado por óxidos de alúmina, circonio, silicio, así como combinaciones entre los mismos.
El espesor de dicho recubrimiento interior (3a) no limita el alcance de la presente invención y dependerá, entre otros aspectos y sin que esto limite el alcance de la presente invención, de la forma y dimensiones de dicho tubo de reacción (2), de las características térmicas de dicho primer material aislante térmico, y de las temperaturas que se alcancen en el interior de dicho tubo de reacción (2).
Dicho tubo de reacción (2), por otra parte, posee un recubrimiento exterior (3b) de un segundo material aislante térmico. La naturaleza de dicho segundo material aislante térmico no limita el alcance de la presente invención. Dicho segundo material aislante térmico debe permitir aislar térmicamente el exterior de dicho tubo de reacción (2). Dicho segundo material aislante térmico puede seleccionarse, por ejemplo y sin que esto limite el alcance de la presente invención, del grupo formado por óxidos de alúmina, circonio, silicio, así como combinaciones entre los mismos.
El espesor de dicho recubrimiento exterior (3a) no limita el alcance de la presente invención y dependerá, entre otros aspectos y sin que esto limite el alcance de la presente invención, de la forma y dimensiones de dicho tubo de reacción (2), de las características térmicas de dicho segundo material aislante térmico, y de las temperaturas que se alcancen en el interior de dicho tubo de reacción (2). En una realización preferida, sin que esto limite el alcance de la presente invención, dicho primer material aislante térmico es igual que dicho segundo material aislante térmico. Lo anterior posee la ventaja de que puede simplificar el proceso de fabricación del reactor (1 ) que es objeto de la presente invención.
Dicho reactor (1 ) comprende, además, una pluralidad de partículas huecas de material inerte (4) en el interior de dicho tubo de reacción (2). La característica de que dichas partículas de material inerte (4) son huecas, es la que permite la transferencia de calor mediante radiación. Esta ventaja técnica no se encuentra descrita ni sugerida por el estado de la técnica, en la cual la transferencia de calor se realiza por conducción entre partículas de material inerte adyacentes. Adicionalmente, la presencia de dichas partículas huecas de material inerte (4) permite generar una menor inercia térmica, debido a su menor masa, en comparación con las partículas sólidas. Esto le permite tener la inercia térmica de una esponja cerámica, mientras que se tiene la porosidad de un lecho de esferas. Lo anterior, le proporciona al reactor (1 ) que es objeto de la presente invención, una mayor velocidad de las ondas de combustión para un mismo tamaño de reactor, en comparación con las partículas sólidas. Esto, a su vez, se traduce en mayores tasas de reacción en los procesos de combustión y gasificación.
Con respecto a dichas partículas huecas de material inerte (4), dicho material inerte no limita el alcance de la presente invención, en tanto sea inerte con respecto a la reacción que se lleva a cabo en el interior del reactor (1) que es objeto de la presente invención. En una realización preferida, sin que esto limite el alcance de la presente invención, dicho material inerte se selecciona del grupo formado por óxidos de alúmina, circonio, silicio, así como combinaciones entre los mismos.
Por otra parte, la forma y dimensiones de dichas partículas huecas de material inerte (4) no limitan el alcance de la presente invención. En general, se entenderá que dichas partículas huecas de material inerte (4) poseen una pared (41 ) y un espacio interior (42) que permite la transferencia de calor por radiación, tal como se observa de manera esquemática en la Figura 1 .
Con respecto a la forma de dichas partículas huecas de material inerte, las mismas no limitan el alcance de la presente invención y pueden escogerse, sin limitarse a estas, del grupo formado por partículas con forma de esferas, de elipsoides, de ovoides, de poliedros, o de forma irregular, así como combinaciones entre las mismas.
Por otra parte, las dimensiones de dichas partículas huecas de material inerte (4) no limitan el alcance de la presente invención. Dichas dimensiones dependerán, entre otros aspectos y sin que esto limite el alcance de la presente invención, de la forma y dimensiones del tubo de reacción (2), de la forma de dichas partículas huecas de material inerte (4) y de las temperaturas que se alcancen en el interior de dicho tubo de reacción (2). Por otra parte, dichas partículas huecas de material inerte (4) que forman la pluralidad pueden tener un tamaño uniforme, o poseer una distribución de tamaños sin que esto limite el alcance de la presente invención. En caso de poseer una distribución de tamaños, la distribución particular no limita el alcance de la presente invención y puede seleccionarse, por ejemplo y sin que esto limite el alcance de la presente invención, de distribución normal, distribución log-normal, distribución multimodal, entre otros.
En una realización preferida, sin que esto limite el alcance de la presente invención, dichas partículas huecas de material inerte (4) poseen un diámetro equivalente que se encuentra en el rango entre 3 mm y 100 mm. En el contexto de la presente invención, sin que esto limite el alcance de la misma, se entenderá como diámetro equivalente de una partícula hueca de material inerte (4), al diámetro de una esfera que posee el mismo volumen que el volumen exterior de dicha partícula hueca de material inerte (4). En una realización más preferida, sin que esto limite el alcance de la presente invención, dichas partículas huecas de material inerte (4) poseen un diámetro equivalente que se encuentra en el rango entre 5 mm y 50 mm, más preferentemente entre 10 mm y 25 mm.
Por otra parte, como se mencionó previamente, dichas partículas huecas (4) poseen una pared (41 ) y un espacio interior (42). Las dimensiones de dicha pared (41 ) no limitan el alcance de la presente invención y dependerán, por ejemplo y sin que esto limite el alcance de la presente invención, del diámetro equivalente y forma de dichas partículas huecas de material inerte (4) y de las temperaturas de reacción. En una realización preferida, sin que esto limite el alcance de la presente invención, dichas partículas huecas de material inerte (4) poseen una pared (41) cuyo espesor está entre un 1% y un 10% del diámetro equivalente de dichas partículas huecas de material inerte (4).
Dicha pluralidad de partículas huecas de material inerte (4) ocupan toda la longitud de dicho tubo de reacción (2). Dicha configuración posee la ventaja de que el mismo material, a saber, dichas partículas huecas de material inerte (4), se utiliza como material aislante térmico en los extremos de dicho tubo de reacción (2), a la vez que se utiliza como material para intensificar la transferencia de calor en la reacción que ocurre al interior de dicho tubo de reacción (2). La misma puede tener la particularidad de una naturaleza transiente, esto es que la reacción se desplace axialmente a lo largo del reactor, o bien de una naturaleza estacionaria, donde la reacción ocurre en una zona fija en el interior del tubo de reacción, sin que esto limite el alcance de la presente invención.
En una realización preferida, sin que esto limite el alcance de la presente invención, el reactor (1 ) que es objeto de la presente invención, puede utilizarse para la gasificación de material carbonoso sólido. En esta realización preferida, sin que esto limite el alcance de la presente invención, el reactor (1 ) que es objeto de la presente invención comprende, adicionalmente, una pluralidad de partículas de material carbonoso que se distribuyen aleatoriamente a lo largo del tubo de reacción (2) que forma parte de dicho reactor (1 ). Dicho material carbonoso puede escogerse, por ejemplo y sin que esto limite el alcance de la presente invención, del grupo formado por madera, carbón, plástico, biomasa y papeles. En este caso, por ejemplo y sin que esto limite el alcance de la presente invención, dicho reactor (1 ) puede posicionarse de forma vertical u horizontal.
Sin embargo, en otras realizaciones preferidas, el reactor (1 ) que es objeto de la presente invención puede utilizarse para la combustión de fluidos combustibles. En este caso, por ejemplo y sin que esto limite el alcance de la presente invención, dicho reactor (1 ) puede posicionarse de forma vertical, inclinada u horizontal. En cualquiera de dichos casos, la dirección del flujo no limita el alcance de la presente invención y puede ser, por ejemplo, ascendente o descendente. Por ejemplo, y sin que esto limite el alcance de la presente invención, en la Figura 1 se observa un reactor (1) en el cual el flujo de combustible es ascendente. En una realización más preferida, sin que esto limite el alcance de la presente invención, el reactor (1 ) que es objeto de la presente invención puede utilizarse simultáneamente para la gasificación de un material y para la combustión u oxidación parcial de un fluido combustible. Lo anterior, como es conocido en el estado de la técnica, permite aumentar la proporción de gas de síntesis obtenido, así como disminuir costos con respecto a otros métodos conocidos en el estado de la técnica.
De acuerdo a la descripción previamente detallada es posible obtener un reactor (1 ) de medio poroso inerte para la combustión o gasificación de materiales que permite superar las deficiencias presentes en el estado de la técnica.
Debe entenderse que opciones descritas para características técnicas diferentes pueden combinarse entre sí de cualquier manera prevista por una persona con conocimientos medios en el campo técnico sin que esto limite el alcance de la presente invención.
En lo sucesivo, se describirán ejemplos de realización de la presente invención. Debe entenderse que el objetivo de dichos ejemplos es proporcionar un mejor entendimiento de la presente invención, pero en ningún caso limitan el alcance de la misma.
Adicionalmente, características técnicas descritas en ejemplos diferentes pueden combinarse entre sí, o con otras características técnicas previamente descritas, de cualquier manera, prevista por una persona con conocimientos medios en el campo técnico sin que esto limite el alcance de la presente invención.
Ejemplo 1 : Construcción del reactor de medio poroso inerte
Se fabricó un prototipo del reactor de medio poroso inerte consistente en un tubo cilindrico de cuarzo de 221 mm de largo con un diámetro interior y exterior de 64,8 mm y 68,8 mm, respectivamente. El interior del tubo cilindrico de cuarzo se cubrió con un aislante térmico interior de fibra de vidrio de 3 mm de espesor. El exterior del tubo cilindrico de cuarzo fue protegido con aislante térmico exterior, del mismo material del aislante interior, con un espesor de 30 mm. Luego, el tubo cilindrico de cuarzo con sus respectivas paredes aislantes se montó sobre una pieza metálica de aluminio, la cual poseía 12 orificios de 1 ,5 mm de diámetro por donde podían ingresar gases combustibles reactantes. El reactor de medio poroso inerte, por tanto, se posiciona verticalmente.
A fin de medir la temperatura en el interior del reactor, se posicionó axialmente, en el centro del tubo cilindrico de cuarzo y a lo largo de todo el reactor de medio poroso, una cerámica cilindrica de 5 mm de diámetro exterior y de 560 mm de largo, que contenía 6 orificios de 0,8 mm. En cada uno de dichos orificios se instaló un termopar tipo S (platino rodio - 10%/platino). Dichos termopares se posicionaron de forma equidistantes uno tras otro a 30 mm, donde el primer termopar se encontraba a aproximadamente 26 mm de la parte superior del reactor de medio poroso inerte. Luego el reactor de medio poroso inerte se llenó con material inerte de esferas huecas de alúmina de 3,5 a 5,5 mm de diámetro exterior.
En la parte inferior de la pieza metálica de aluminio del reactor del ejemplo anterior se instaló un medio de conexión tipo “T”, al cual se conectaron, además, un controlador de flujo digital de aire alimentado por un compresor y un controlador de flujo digital de gas combustible alimentado por una línea de gas natural. De esta manera, se obtiene una premezcla aire - gas combustible que alimenta al reactor de medio poroso inerte.
En la parte superior del reactor de medio poroso inerte se instaló una línea de teflón y plástico que conectaba a un sistema de adquisición de datos para tomar muestras de gases, las cuales fueron analizadas a través de un cromatógrafo de gases Perkin Elmer.
Ejemplo 2: Uso del reactor para reacción aire - gas combustible
Los resultados de reacción aire - gas combustible utilizando este prototipo indicaron que para procesos de combustión en un rango de relaciones de equivalencia de 0.8 a 1 .2 para la premezcla aire-gas combustible, se alcanzan temperaturas de combustión de 1280 K en promedio, las cuales resultan 240 K más altas que las temperaturas del mismo reactor con esferas sólidas de alúmina. Ejemplo 3: Uso del reactor para gasificación de material combustible sólido
El mismo prototipo de los ejemplos anteriores se utilizó para la gasificación de material combustible sólido. Para esto, se adicionó material sólido combustible a gasificar de tamaño similar a las esferas huecas de alúmina. Para procesos de combustión en un rango de fracciones de material sólido combustible y esferas huecas de alúmina de 10% a 40%, se alcanzan temperaturas de combustión de 1280 K en promedio, las cuales resultan 130 K más altas que las temperaturas del mismo reactor con esferas sólidas de alúmina. Por su parte, la producción de gas de síntesis, mezcla de hidrógeno y monóxido de carbono principalmente, alcanza un porcentaje de 2,5% mayor en comparación con el mismo reactor con esferas sólidas de alúmina.

Claims

REIVINDICACIONES
1. Un reactor (1) de medio poroso inerte para la combustión o gasificación de un material que comprende un tubo de reacción (2), dicho tubo de reacción (2) que posee un recubrimiento interior (3a) de un primer material aislante térmico y un recubrimiento exterior (3b) de un segundo material aislante térmico; dicho reactor (1) que comprende, además, una pluralidad de partículas de material inerte (4) en el interior de dicho tubo de reacción (2), CARACTERIZADO porque dichas partículas de material inerte (4) son huecas y porque dichas partículas huecas de material inerte (4) ocupan toda la longitud de dicho tubo de reacción (2).
2. El reactor (1) de la reivindicación 1 , CARACTERIZADO porque dicho tubo de reacción (2) se fabrica con un material resistente a altas temperaturas que se selecciona del grupo formado por cuarzo, aceros, hierro, así como combinaciones entre los mismos.
3. El reactor (1 ) de la reivindicación 1 , CARACTERIZADO porque dicho primer material aislante térmico y dicho segundo material aislante térmico se seleccionan del grupo formado por óxidos de alúmina, circonio, silicio, así como combinaciones entre los mismos.
4. El reactor (1) de la reivindicación 1 , CARACTERIZADO porque dicho primer material aislante térmico es el mismo material que dicho segundo material aislante térmico.
5. El reactor (1) de la reivindicación 1 , CARACTERIZADO porque dicho material inerte se selecciona del grupo formado por óxidos de alúmina, circonio, silicio, así como combinaciones entre los mismos.
6. El reactor (1) de la reivindicación 1 , CARACTERIZADO porque dichas partículas huecas de material inerte (4) poseen un diámetro equivalente que se encuentra en el rango entre 3 mm y 100 mm.
7. El reactor (1) de la reivindicación 1 , CARACTERIZADO porque dichas partículas huecas de material inerte (4) poseen una pared (41) cuyo espesor está entre un 1% y un 10% del diámetro equivalente de dichas partículas huecas de material inerte (4).
8. El reactor (1) de la reivindicación 1 , CARACTERIZADO porque dicho tubo de reacción (2) posee un diámetro interno que se encuentra en el rango entre 30 mm y 1000 mm.
9. El reactor (1) de la reivindicación 1 , CARACTERIZADO porque dicho tubo de reacción (2) posee una longitud que se encuentra en el rango entre 300 mm y 1500 mm.
10. El reactor (1) de la reivindicación 1 , CARACTERIZADO porque comprende, adicionalmente, una pluralidad de partículas de material carbonoso que se distribuyen aleatoriamente a lo largo de dicho tubo de reacción (2).
PCT/CL2020/050097 2019-09-02 2020-08-31 Reactor de medio poroso inerte para la combustión o gasificación que comprende una pluralidad de esferas huecas de material inerte WO2021042223A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20861655.7A EP4026613A4 (en) 2019-09-02 2020-08-31 REACTOR WITH AN INERT POROUS MEDIUM FOR COMBUSTION OR GASIFICATION THAT COMPRISES A PLURALITY OF HOLLOW SPHERES OF INERT MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2517-2019 2019-09-02
CL2019002517A CL2019002517A1 (es) 2019-09-02 2019-09-02 Reactor de medio poroso inerte para la combustión o gasificación que comprende una pluralidad de esferas huecas de material inerte

Publications (1)

Publication Number Publication Date
WO2021042223A1 true WO2021042223A1 (es) 2021-03-11

Family

ID=68695499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050097 WO2021042223A1 (es) 2019-09-02 2020-08-31 Reactor de medio poroso inerte para la combustión o gasificación que comprende una pluralidad de esferas huecas de material inerte

Country Status (3)

Country Link
EP (1) EP4026613A4 (es)
CL (1) CL2019002517A1 (es)
WO (1) WO2021042223A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899236A (zh) * 2021-11-10 2022-01-07 哈尔滨工程大学 一种球形颗粒填充的微肋换热管
CN113899237A (zh) * 2021-11-10 2022-01-07 哈尔滨工程大学 一种采用中空结构球床的强化换热管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043900A1 (en) * 2002-08-12 2004-03-04 Combs Glenn A. Heterogeneous gaseous chemical reactor catalyst
JP2007061779A (ja) * 2005-09-02 2007-03-15 National Institute Of Advanced Industrial & Technology 中空構造体、該構造体を用いた浄化、触媒システム
EP1386664B1 (en) * 2002-07-31 2016-05-11 Ineos Technologies (Vinyls) Limited A hollow parallelepiped pellet suitable as carrier of catalysts for selective exothermic reactions
WO2016097997A1 (en) * 2014-12-16 2016-06-23 Sabic Global Technologies B.V. Engineered inert media for use in fixed bed dehydrogenation reactors
WO2017142515A1 (en) 2016-02-16 2017-08-24 Thermochem Recovery International, Inc., Two-stage energy-integrated product gas generation system and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341347A (ja) * 1991-02-14 1992-11-27 Akiyoshi Asaki 触媒担体及びその製造方法
EP3149115A1 (en) * 2014-05-26 2017-04-05 CENTRO SVILUPPO MATERIALI S.p.A. Process and apparatus for producing fuel gas obtained by exhausted plastics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1386664B1 (en) * 2002-07-31 2016-05-11 Ineos Technologies (Vinyls) Limited A hollow parallelepiped pellet suitable as carrier of catalysts for selective exothermic reactions
US20040043900A1 (en) * 2002-08-12 2004-03-04 Combs Glenn A. Heterogeneous gaseous chemical reactor catalyst
JP2007061779A (ja) * 2005-09-02 2007-03-15 National Institute Of Advanced Industrial & Technology 中空構造体、該構造体を用いた浄化、触媒システム
WO2016097997A1 (en) * 2014-12-16 2016-06-23 Sabic Global Technologies B.V. Engineered inert media for use in fixed bed dehydrogenation reactors
WO2017142515A1 (en) 2016-02-16 2017-08-24 Thermochem Recovery International, Inc., Two-stage energy-integrated product gas generation system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4026613A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899236A (zh) * 2021-11-10 2022-01-07 哈尔滨工程大学 一种球形颗粒填充的微肋换热管
CN113899237A (zh) * 2021-11-10 2022-01-07 哈尔滨工程大学 一种采用中空结构球床的强化换热管

Also Published As

Publication number Publication date
EP4026613A1 (en) 2022-07-13
CL2019002517A1 (es) 2019-11-15
EP4026613A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2021042223A1 (es) Reactor de medio poroso inerte para la combustión o gasificación que comprende una pluralidad de esferas huecas de material inerte
TW299345B (es)
US2421744A (en) Gas reaction furnace
CN205606542U (zh) 一种极低污染物排放的催化无焰燃烧装置
US7070634B1 (en) Plasma reformer for hydrogen production from water and fuel
CN104566367B (zh) 低浓度煤层气或瓦斯燃烧器及其配套系统
CN107300169A (zh) 一种极低污染物排放的催化无焰燃烧装置及燃烧方法
Kuo et al. Use of spinel nickel aluminium ferrite as self-supported oxygen carrier for chemical looping hydrogen generation process
Zhu et al. Improvement of hollow cylinders on the conversion of coal mine methane to hydrogen in packed bed burner
RU2005138146A (ru) Теплоизолированный высокотемпературный реактор
US10401023B2 (en) Perovskite catalysts enhanced combustion on porous media
ES2423791T3 (es) Procedimiento para la preparación de cianuro de hidrógeno en un transmisor de calor en partículas conducido cíclicamente en forma de un lecho fluido de transporte
Mujeebu et al. Development of premixed burner based on stabilized combustion within discrete porous medium
Zhang et al. Inhomogeneous packed bed burner for improving the utilization of low‐concentration methane
CN201999904U (zh) 一种下行式干粉气化炉
CN103740410A (zh) 生物质两段式气流床气化装置及气化方法
Vasilik et al. Use of matrices made of permeable wire material in infrared burners
CN204287095U (zh) 煤自燃升温实验罐
CN107166386B (zh) 一种防回火的预混燃烧渐扩燃烧器
RU2615768C1 (ru) Реактор для каталитической паровой и пароуглекислотной конверсии углеводородов
Pradhan et al. Thermal performance and emission characteristics of newly developed porous radiant burner for cooking applications
CN102165256A (zh) 用于燃烧燃料/氧化剂混合物的设备
Khan et al. Design and development of low scale, high temperature, hybrid furnace for the extraction of metallurgical grade silicon from raw mineral quartz
CN201212677Y (zh) 一种链篦机-回转窑用的单通道煤枪
CN205504988U (zh) 一种蜂窝陶瓷多孔介质燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861655

Country of ref document: EP

Effective date: 20220404