WO2021040391A1 - Micro led transfer method - Google Patents
Micro led transfer method Download PDFInfo
- Publication number
- WO2021040391A1 WO2021040391A1 PCT/KR2020/011362 KR2020011362W WO2021040391A1 WO 2021040391 A1 WO2021040391 A1 WO 2021040391A1 KR 2020011362 W KR2020011362 W KR 2020011362W WO 2021040391 A1 WO2021040391 A1 WO 2021040391A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micro led
- substrate
- loading
- separating
- micro
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 239000000758 substrate Substances 0.000 claims abstract description 235
- 238000011068 loading method Methods 0.000 claims abstract description 100
- 238000002360 preparation method Methods 0.000 claims abstract description 20
- 238000000926 separation method Methods 0.000 claims description 48
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 17
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 17
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 17
- 229910052594 sapphire Inorganic materials 0.000 claims description 10
- 239000010980 sapphire Substances 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 8
- 229920001971 elastomer Polymers 0.000 claims description 7
- 239000000806 elastomer Substances 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 239000004593 Epoxy Substances 0.000 claims description 5
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 claims description 4
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims 2
- 239000010410 layer Substances 0.000 description 54
- 239000010408 film Substances 0.000 description 13
- 238000005411 Van der Waals force Methods 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- -1 polydimethylsiloxane Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/52—Mounting semiconductor bodies in containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/75—Apparatus for connecting with bump connectors or layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
Definitions
- the present invention relates to a micro LED transfer method, and relates to a micro LED transfer method for quickly and stably transferring the micro LED to a target substrate.
- LEDs Light-emitting diodes
- LEDs are widely used as products with high luminance and high power emission functions in the fields of lighting, electric signboards, traffic lights, and home appliances in the function of small display devices, and general LEDs used for lighting have a size of 1000 um * 1000 um. .
- micro LED When the area of these LEDs is reduced to 1/100, they become 100 um * 100 um in size about the thickness of a hair. This is called micro LED, and it is emerging as a next-generation display.
- Micro LED can form a side length of 1 to 100 um, and a flexible display can be implemented by transferring a micro LED of this size to a flexible substrate, and various industrial fields such as wearable displays and medical devices for human body insertion. It can be applied to.
- micro LEDs In order to manufacture a micro LED display, micro LEDs must be transferred to a target substrate such as a flexible substrate. When implementing a micro LED display in 4K UHD (3840 * 2160), approximately 25 million micro LEDs are used as the target substrate. Since it must be transferred to and mounted, the speed, accuracy, and stability of the transfer process have a great influence on micro LED display products.
- a transfer method to transfer the micro LED to the target substrate there is a method using an electrostatic head developed by Luxvue, USA.
- a micro LED is placed on the electrostatic head and a voltage is applied to the electrostatic head to connect the micro LED. Pick up and transfer to the target substrate.
- since voltage is applied to the electrostatic head there is a problem that damage to the micro LED occurs.
- the problem to be solved by the present invention is to provide a micro LED transfer method for quickly and stably transferring a micro LED to a target substrate.
- Micro LED transfer method for solving the above problem is a micro LED preparing step of preparing a loading substrate on which the micro LED is loaded; A pickup step of adsorbing the upper surface of the micro LED loaded on the loading substrate with a transfer head and separating the micro LED from the loading substrate; And an arrangement step in which the transfer head locates the electrode portion of the micro LED at a terminal portion of a target substrate, and applies a positive pressure to the transfer head to place the micro LED on the target substrate.
- the elastic modulus of the transfer head may be implemented in 0.00036 ⁇ 5.5 GPa.
- the step of preparing the micro LED may include a preparation step of disposing a plurality of micro LEDs located on an upper surface of the electrode unit to be spaced apart from each other on a separation substrate; And a loading step of inverting the separation substrate to load the micro LED so that the electrode part faces the loading substrate, and separating the micro LED from the separation substrate. It may include.
- the preparation step may include a diode forming step of forming a diode by laminating an n layer, a light emitting layer, and a p layer on a growth substrate; A separating substrate laminating step of laminating the separating substrate on the p-layer; A growth substrate separation step of separating the growth substrate from the diode and inverting the separation substrate; And a micro LED processing step of processing the diode into a micro LED. It may include.
- the separation substrate may be implemented as a thermal peeling tape or a UV peeling tape.
- the loading substrate may be implemented as a PDMS film or an elastomer film.
- the loading substrate may be implemented by any one of a polymer tape, a glass substrate, a polymer coated glass substrate, a SiC substrate, a GaAs substrate, a Si substrate, or a sapphire substrate.
- the loading step may include a micro LED arranging step in which the electrode portion of the micro LED is in contact with the loading substrate; And a micro LED separating step of separating the micro LED from the separating substrate by applying heat or UV to the separating substrate. It may include.
- the loading substrate includes: a loading die having a plurality of receiving grooves for accommodating one micro LED chip, and having a first chamber formed therein; A first through hole formed in the receiving groove and communicating with the first chamber; And a vacuum module for applying a negative pressure to the first chamber. It may include.
- the loading step may include a micro LED arranging step of arranging the electrode part of the micro LED to be seated in the receiving groove of the loading die; And a micro LED separating step of separating the micro LED from the separating substrate by applying a negative pressure to the first chamber to fix the micro LED in the receiving groove and then applying heat or UV to the separating substrate. It may include.
- the transfer head may include a transfer head body having a second chamber formed therein; A gripper provided to protrude from the transfer head body to contact the micro LED; A second through hole formed to pass through the gripper and communicating with the second chamber; And a pressure applying module for applying a negative or positive pressure to the second chamber. It may include.
- a negative pressure is applied to the second chamber, so that the micro LED may be adsorbed by the gripper.
- the transfer head may adsorb one micro LED of the plurality of micro LEDs loaded on the loading substrate, and other micro LEDs adjacent to the adsorbed micro LEDs may remain on the loading substrate.
- the loading step is a micro LED separating step of separating the micro LED from the separating substrate by applying a negative pressure to the first chamber to fix the micro LED in the receiving groove and then applying heat or UV to the separating substrate. It may include.
- an absolute value of the sound pressure applied to the second chamber may be applied to a value greater than an absolute value of the sound pressure applied to the first chamber.
- an electrically conductive ink may be applied to the terminal portion of the target substrate.
- the gripper may have an inclined surface formed on the outer circumferential surface.
- the transfer head may be made of at least one of polycarbonate, polyurethane, urethane acrylate, isobornyl acrylate, epoxy, and PDMS.
- the micro LED 20 can be quickly, accurately and stably transferred to the target substrate 60.
- FIG. 1 is a flow chart of a micro LED transfer method according to an embodiment of the present invention.
- FIG. 4 is another embodiment of the loading step (S12) according to the present invention.
- Figure 8 (a) is a gripper 539 according to an embodiment of the present invention
- Figure 8 (b) is a gripper 539 according to another embodiment of the present invention.
- FIG 9 is an embodiment of a micro LED display 1 manufactured according to embodiments of the present invention.
- Figure 1 is a flow chart of a micro LED transfer method according to an embodiment of the present invention
- Figure 2 is an embodiment of a preparation step (S11) according to the present invention
- Figure 3 is a loading step (S12) according to the present invention
- Figure 4 is another embodiment of the loading step (S12) according to the present invention
- Figure 5 is an embodiment of the pickup step (S20) according to the present invention
- Figure 6 is a pickup according to the present invention
- Figure 7 is an embodiment of the arrangement step (S30) according to the present invention
- Figure 8 (a) is a gripper 539 according to an embodiment of the present invention
- 8B is a gripper 539 according to another embodiment of the present invention.
- a pickup step (S20) of adsorbing the upper surface of the micro LEDs 20 loaded on the transfer head 50 and separating the micro LEDs 20 from the loading substrate 40, and the transfer head 50 Arrangement in which the electrode part 21 of the LED 20 is placed on the terminal part 61 of the target substrate 60, and the micro LED 20 is placed on the target substrate 60 by applying positive pressure to the transfer head 50 It includes step S30.
- the loading substrate 40 on which the micro LED 20 is loaded is prepared.
- the micro LED 20 may be formed by growing a plurality of thin films of inorganic materials such as Al, Ga, N, P, and As In on a sapphire substrate or a silicon substrate, and then cutting and separating a sapphire substrate or a silicon substrate.
- the sapphire substrate or the silicon substrate functions as the growth substrate 30.
- the micro LED 20 may be formed in a maximum size of 100 um * 100 um.
- the micro LED 20 may be formed in a square or rectangular shape. At this time, the length of the side of the micro LED 20 may be formed of 1 ⁇ 100 um.
- the micro LED 20 is formed in a fine size, it can be transferred to a flexible substrate such as plastic, and thus a flexible display device can be manufactured.
- the micro LED 20 is formed by growing a thin film of an inorganic material, so that the manufacturing process is simple and the yield is improved.
- the micro LEDs 20 separated individually are transferred onto a large-area substrate, it is possible to manufacture a large-area display device.
- the loading substrate 40 on which the micro LED 20 is mounted on the surface may be provided.
- a plurality of micro LEDs 20 may be provided on the loading substrate 40 in a state in which the plurality of micro LEDs 20 are disposed to be spaced apart from each other.
- the micro LED 20 may be loaded on the surface of the loading substrate 40 to prepare the loading substrate 40 on which the micro LED is loaded.
- the micro LED 20 provided on the loading substrate 40 in the micro LED preparation step S10 may be picked up in the pickup step S20 to be described later.
- the micro LED preparation step (S10) is a preparation step of disposing the plurality of micro LEDs 20 on which the electrode part 21 is located on the upper surface to be spaced apart from each other ( S11), a loading step of inverting the separation substrate 10 to load the micro LEDs 20 so that the electrode part 21 faces the loading substrate 40, and to separate the micro LEDs 20 from the separation substrate 10 (S12) is included.
- the plurality of micro LEDs 20 on which the electrode part 21 is located on the upper surface are arranged to be spaced apart from each other on the separation substrate 10.
- a plurality of micro LEDs 20 are disposed on the separation substrate 10.
- a plurality of micro LEDs 20 may be disposed on the separation substrate 10.
- the plurality of micro LEDs 20 may be disposed to be spaced apart from each other.
- the micro LED 20 may be disposed such that the electrode part 21 is positioned on the upper surface. In this case, as shown in (d) of FIG. 2, the electrode portion 21 of the micro LED 20 is positioned on the upper surface of the separator plate 10. This will be described later.
- micro LED 20 is disposed on the separator plate 10.
- the micro LED 20 may be implemented in any one of R (red), G (green), and B (blue) emitting one color according to an embodiment, and in an embodiment of the present invention, the separation substrate 10
- the micro LED 20 disposed in is implemented in any one of R, G, and B.
- the separation substrate 10 may be implemented with a thermal peeling tape or a UV peeling tape.
- the separation substrate 10 when the separation substrate 10 is implemented as a thermal release tape, when heat is applied to the thermal release tape, it may be separated from the contacted object, the micro LED 20. .
- the separating substrate 10 when the separating substrate 10 is a UV release tape, when UV is applied to the UV release tape, it may be separated from the micro LED 20 which is a contacted object.
- the preparation step (S11) is a diode formation step (S111) of stacking the n-layer 23, the light-emitting layer 25, and the p-layer 27 on the growth substrate 30 to form a diode (S111).
- the n-layer 23, the light-emitting layer 25, and the p-layer 27 are stacked on the growth substrate 30 to form a diode.
- the growth substrate 30 may be implemented as a sapphire substrate or a silicon substrate, but the embodiment is not limited thereto.
- the n-layer 23 and p-layer 27 are an n-type semiconductor layer and a p-type semiconductor layer, respectively.
- the light-emitting layer 25 is an active layer, and is a region in which electrons and holes are recombined. As the electrons and holes recombine, the light-emitting layer 25 may transition to a low energy level and generate light having a wavelength corresponding thereto.
- the n-layer 23, the light-emitting layer 25, and the p-layer 27 are sequentially stacked on the growth substrate 30.
- the diode formed of the n-layer 23, the light-emitting layer 25, and the p-layer 27 may be formed by a known technique.
- the diode can be fabricated into a micro LED 20, as described below.
- the separating substrate 10 is stacked on the p-layer 27 as shown in FIG. 2A.
- the separation substrate 10 may be stacked on the upper surface of the p-layer 27.
- Separation substrate 10 may be implemented as a thermal peeling tape or UV peeling tape as described above.
- the growth substrate 30 is separated from the diode, and the separation substrate 10 is inverted.
- the growth substrate 30 may be separated from the diode.
- the growth substrate 30 may be separated from the diode by a known method.
- LLO laser lift off
- the growth substrate 30 is a sapphire substrate
- it may be performed by a laser lift off (LLO) method of separating the sapphire substrate by irradiating a laser between the sapphire substrate and the n-layer 23.
- LLO laser lift off
- the growth substrate 30 is a silicon substrate
- CLO chemical lift off
- the separation substrate 10 is inverted.
- the separator plate 10 is positioned at the bottom, and the diode is positioned at the top.
- a p-layer 27, a light-emitting layer 25, and an n-layer 23 are arranged on the upper surface based on the separation substrate 10 in this order.
- the separation substrate 10 in the step of separating the growth substrate (S113), the separation substrate 10 may be inverted and the growth substrate 30 may be separated from the diode.
- the diode is processed into the micro LED 20.
- an electrode part 21 is formed on the diode.
- the electrode part 21 may be formed on the upper surfaces of the n-layer 23 and p-layer 27 by a known method.
- the n-layer 23 and the light-emitting layer 25 are partially etched, and the p-layer 27 remains in its original state, so that the electrode part 21 is formed on the upper surfaces of the n-layer 23 and the p-layer 27. Can be formed.
- the lower surface of the p-layer 27 is a surface to which the separator plate 10 is in contact, and a non-electrode surface on which no electrode is formed is formed.
- the p-layer 27 is diced as shown in FIG. 2(d).
- the p-layer 27 may be diced by a known method such as wet etching, dry etching, or laser cutting. In this case, it may be diced by a plasma dry etching method.
- the diode is processed into the micro LED 20. Accordingly, a plurality of micro LEDs 20 are disposed on the separation substrate 10 to be spaced apart from each other. At this time, the micro LED 20 may have a side length of 1 to 100 um.
- a plurality of micro LEDs 20 are disposed to be spaced apart on the separation substrate 10. Further, the electrode portion 21 is disposed on the upper surface of the n-layer 23 and the upper surface of the p-layer 27, and the electrode portion 21 is disposed on the upper surface of the micro LED 20.
- the separation substrate 10 is reversed to load the micro LED 20 so that the electrode part 21 faces the loading substrate 40, and the micro LED 20 is removed from the separation substrate 10. Separate.
- the separation substrate 10 so that the separation substrate 10 is located at the top and the micro LED 20 is located at the bottom, Reverse.
- the electrode portion 21 of the micro LED 20 is disposed to face the mounting substrate 40.
- the electrode part 21 of the micro LED 20 is disposed toward the loading substrate 40, it is located at the lower side.
- the micro LED 20 is in contact with the loading substrate 40.
- the electrode part 21 is in contact with the loading substrate 40. Accordingly, the micro LED 20 is loaded on the loading substrate 40.
- the micro LED 20 is separated from the separating substrate 10.
- the micro LED 20 may be separated in various ways according to the embodiment of the loading substrate 40.
- the separating substrate 10 is separated and the micro LED 20 is completely seated and loaded on the loading substrate 40. Accordingly, the micro LED 20 can be provided on the loading substrate 40.
- the loading substrate 40 may be implemented with a PDMS film 41 or an elastomer film 41.
- the PDMS film 41 is made of polydimethyl siloxane (PDMS), has low surface tension, excellent surface smoothness, high chemical stability, excellent heat resistance, and moldability.
- PDMS polydimethyl siloxane
- the elastomer film 41 is a polymer material exhibiting rubber elasticity at room temperature, and includes at least one of a thermoplastic elastomer, an elastic fiber, and a foam in addition to vulcanized natural rubber and synthetic rubber.
- the loading substrate 40 is implemented with the PDMS film 41 or the elastomer film 41, the micro LED 20 can be stably loaded on the loading substrate 40.
- the electrode part 21 is loaded on the non-conductive and elastic PDMS film 41 or the elastomer film 41, the electrode part 21 can be protected from static electricity or physical impact.
- the loading substrate 40 may be implemented by any one of a polymer tape, a glass substrate, a polymer coated glass substrate, a SiC substrate, a GaAs substrate, a Si substrate, and a sapphire substrate. have. Accordingly, the micro LED 20 on the loading substrate 40 can be stably loaded on the loading substrate 40.
- the loading step (S12) is a micro LED arranging step (S121) in which the electrode portion 21 of the micro LED 20 is placed in contact with the loading substrate 40 (S121), and the separating substrate It includes a micro LED separation step (S122) of separating the micro LED 20 from the separation substrate 10 by applying heat or UV to (10).
- the micro LED 20 is disposed on the loading substrate 40. At this time, as described above, the electrode portion 21 of the micro LED 20 is disposed to be in contact with the loading substrate 40.
- heat or UV is applied to the separation substrate 10.
- the separation substrate 10 is implemented with a thermal release tape
- heat is applied
- UV release tape UV is applied.
- Heat or UV may be applied between the separator plate 10 and the micro LED 20. At this time, heat or UV may be applied to the non-electrode surface of the p-layer 27.
- the micro LED 20 is separated from the separating substrate 10, and the micro LED 20 is completely seated and loaded on the loading substrate 40 as shown in FIG. 3(b). Finally, the loading substrate 40 on which the micro LED 20 is loaded is provided.
- the loading substrate 40 has a plurality of receiving grooves 431 for accommodating one micro LED 20 as shown in FIG. 4, and a first chamber 435 therein
- the formed loading die 43, the first through hole 433 formed in the receiving groove 431, communicated with the first chamber 435, and a vacuum module 437 for applying a negative pressure to the first chamber 435 Includes.
- a plurality of receiving grooves 431 are formed in the stacking die 43 as shown in FIGS. 4A and 4B.
- One receiving groove 431 accommodates one micro LED (20).
- the receiving groove 431 is formed by being recessed.
- the receiving groove 431 is formed to correspond to the size of the micro LED 20.
- a first chamber 435 of a cavity is formed in the loading die 43.
- the first chamber 435 communicates with the first through hole 433.
- a first through hole 433 is formed in the receiving groove 431.
- a first through hole 433 is formed for each receiving groove 431.
- the first through hole 433 communicates with the first chamber 435.
- the receiving groove 431 and the first through hole 433 may be processed by MEMS, laser, or precision machining, but the embodiment is not limited thereto.
- the vacuum module 437 creates a negative pressure in the first chamber 435.
- a vacuum is formed in the first chamber 435.
- a suction force is generated in the first through hole 433 communicated with the first chamber 435, and the micro LED 20 loaded in the receiving groove 431 is adsorbed into the receiving groove 431.
- the micro LED 20 is adsorbed in the receiving groove 431, the micro LED 20 is fixed to the receiving groove 431.
- the loading step (S12) is a micro LED arranging step of arranging the electrode part 21 of the micro LED 20 to be seated in the receiving groove 431 of the loading die 43 (S121), and by applying a negative pressure to the first chamber 435 to fix the micro LED 20 in the receiving groove 431, and then applying heat or UV to the separation substrate 10 It includes a micro LED separation step (S122) for separating the LED 20.
- the micro LED 20 is disposed to be seated in the receiving groove 431 of the loading die 43.
- the electrode part 21 of the micro LED 20 is disposed to be seated in the receiving groove 431.
- the electrode portion 21 of the micro LED 20 may be disposed to be in contact with the loading die 43.
- a negative pressure is applied to the first chamber 435.
- the vacuum module 437 creates a negative pressure in the first chamber 435 so that a vacuum is formed in the first chamber 435.
- the negative pressure applied to the first chamber 435 is not released and the applied state can be maintained.
- a suction force is generated in the first through hole 433 communicated with the first chamber 435, so that the micro LED 20 loaded in the receiving groove 431 is sucked into the receiving groove 431 and fixed.
- the micro LED 20 is separated from the separating substrate 10, and the micro LED 20 is completely seated and loaded on the loading die 43, as shown in FIG. 4(b).
- the upper surface of the micro LED 20 loaded on the loading substrate 40 is adsorbed by the transfer head 50 as shown in FIGS. 5A and 6A, and the micro LED 20 ) Is separated from the loading substrate 40.
- the transfer head 50 adsorbs the upper surface of the micro LED 20 loaded on the loading substrate 40.
- the p-layer 27 is positioned on the upper surface of the micro LED 20 in a state loaded on the loading substrate 40. That is, since the electrode part 21 is disposed downward in the loading step (S12), the n-layer 23 and the p-layer 27 on which the electrode part 21 is formed are located on the lower surface, and the p-layer 27 is formed on the upper surface. The non-electrode surface is located.
- the transfer head 50 adsorbs the non-electrode surface of the micro LED 20 on which the electrode part 21 is not formed, it does not give an electric or physical impact to the electrode part 21, so that the transfer quality of the micro LED Improves.
- the transfer head 50 according to an embodiment of the present invention may be manufactured by known 3D printing.
- the material of the transfer head 50 according to an embodiment of the present invention may be made of plastic or silicon.
- the modulus of elasticity of the transfer head 50 may be 0.00036 to 5.5 GPa.
- the material of the transfer head 50 is polycarbonate (PC), polyurethane, urethane acrylate, isobornyl acrylate. , Epoxy (Epoxy) and PDMS (polydimethylsiloxane, polydimethylsiloxane) may be selected and carried out at least one of.
- the modulus of elasticity of polycarbonate (PC) is 2.0 to 2.6 GPa
- the modulus of polyurethane is 0.5 to 5.5 GPa
- the modulus of urethane acrylate is 2.5 to 3.0 GPa
- the modulus of elasticity of Isobornyl Acrylate may be 0.25 to 0.35 GPa
- the modulus of elasticity of Epoxy is 3 GPa
- the modulus of elasticity of PDMS may be 0.00036 to 0.00087 GPa.
- the transfer head 50 can be elastically deformed, the transfer head 50 can be in close contact with the surface of the micro LED when the micro LED is adsorbed, and pick-up yield compared to the transfer head made of inelastic material. Can improve.
- the transfer head 50 separates the micro LED 20 from the loading substrate 40 in a state in which the micro LED 20 is adsorbed. That is, the transfer head 50 moves while the micro LEDs 20 are adsorbed to the adsorption head, so that the micro LEDs 20 are separated from the loading substrate 40.
- the transfer head 50 is provided to protrude a plurality of the transfer head body 531 and the transfer head body 531 in which the second chamber 535 is formed, and the micro LED 20
- the pressure to apply negative or positive pressure to the gripper 539 in contact with the gripper 539, the second through hole 533 communicated with the second chamber 535 and formed to penetrate the gripper 539, and the second chamber 535 It includes an application module 537.
- the transfer head body 531 forms an exterior.
- a second chamber 535 of a cavity is formed inside the transfer head body 531.
- the second chamber 535 communicates with a second through hole 533 to be described later.
- the gripper 539 is provided on the transfer head body 531. A plurality of grippers 539 are formed. The gripper 539 is formed to protrude from the transfer head body 531. The gripper 539 is in contact with the micro LED 20. In this case, the gripper 539 may contact the non-electrode surface of the p-layer 27 of the micro LED 20 in the pickup step S20.
- the second through hole 533 is formed to penetrate through the gripper 539.
- a second through hole 533 may be formed for each gripper 539.
- the second through hole 533 communicates with the second chamber 535.
- the second through hole 533 may have a micro size.
- the size of the second through hole 533 is formed to have a length smaller than the length of the side of the micro LED 20.
- the gripper 539 and the second through hole 533 may be processed by MEMS, laser, or precision machining, but the embodiment is not limited thereto.
- the pressure applying module 537 forms a negative pressure or a positive pressure in the second chamber 535.
- the transfer head 50 absorbs the non-electrode surface of the micro LED 20 on which the electrode portion 21 is not formed by vacuum, so that an electric shock is not applied to the electrode portion 21, and the transfer quality of the micro LED Improves.
- a negative pressure is applied to the second chamber 535 to adsorb the micro LED 20 by the gripper 539.
- the second chamber 535 forms a vacuum
- the micro LED 20 in contact with the gripper 539 is in the second through hole 533. It is adsorbed to the gripper 539 by the generated suction force.
- the gripper 539 may adsorb the non-electrode surface of the p-layer 27 that is the opposite surface of the electrode part 21 of the micro LED 20.
- the transfer head 50 adsorbs one micro LED 20 among a plurality of micro LEDs 20 loaded on the loading substrate 40, and the adsorbed micro LED 20 Other micro LEDs 20 adjacent to are placed on the loading substrate 40.
- the transfer head 50 may adsorb only the odd-numbered micro LEDs 20, and the even-numbered micro LEDs 20 may remain.
- the transfer head 50 may adsorb only the even-numbered micro LEDs 20, and the odd-numbered micro LEDs 20 may remain.
- each pixel area P In the micro LED display 1, R, G, and B micro LEDs 20 that emit monochromatic light in each pixel area P must be mounted on the target substrate 60. Each pixel area P is formed to be physically spaced apart. At this time, since only one type of the R, G, and B micro LEDs 20 that emit light, for example, the R micro LEDs 20, is loaded on the loading substrate 40 of the present invention, each pixel area P is equipped with R micro LEDs. Only (20) can be transferred.
- the transfer head 50 of the present invention adsorbs one micro LED 20, and the micro LED 20 adjacent to the adsorbed micro LED 20 remains on the loading substrate 40, and the loading substrate ( The micro LEDs 20 adjacent to the micro LEDs 20 residing on 40 are adsorbed again, so that one type of micro LEDs 20 is transferred to each pixel area P of the target substrate 60.
- the absolute value of the sound pressure applied to the second chamber 535 is the first chamber 435 It should be applied with a value greater than the absolute value of the sound pressure applied to.
- the micro LED 20 in the pickup step (S20) In order to disengage from the loading die 43, the adsorption force applied to the transfer head 50 must be greater than the adsorption force applied to the receiving groove 431.
- the absolute value of the sound pressure applied to the second chamber 535 is applied to a value greater than the absolute value of the sound pressure applied to the first chamber 435, so that the adsorption force applied to the transfer head 50 is applied to the receiving groove. It is to be formed larger than the adsorption force applied to (431). Accordingly, the micro LED 20 is adsorbed to the gripper 539, adsorbed to the transfer head 50, and separated from the loading die 43.
- the transfer head 50 places the electrode part 21 of the micro LED 20 on the terminal part 61 of the target substrate 60, and applies a positive pressure to the transfer head 50 to obtain the micro LED. Place (20) on the target substrate (60).
- the micro LED 20 is adsorbed on the transfer head 50.
- the transfer head 50 positions the micro LED 20 as the target substrate 60. At this time, the transfer head 50 adsorbs the upper surface on which the non-electrode surface of the micro LED 20 loaded on the loading substrate 40 is positioned as described above, so that the electrode part 21 of the micro LED 20 is placed on the lower side. Transfer to a position.
- the target substrate 60 may be implemented as a glass or flexible substrate, but the embodiment is not limited thereto.
- the target substrate 60 is a TFT array substrate, in which a plurality of pixel regions P are formed, and thin film transistors and wires for driving the micro LEDs 20 disposed in the pixel region P may be formed. .
- the transfer head 50 positions the electrode portion 21 of the micro LED 20 on the terminal portion 61 of the target substrate 60.
- the terminal portion 61 of the target substrate 60 is electrically connected to the electrode portion 21 of the micro LED 20.
- an electrically conductive ink may be applied to the terminal portion 61 of the target substrate 60.
- the electroconductive ink may bond the electrode portion 21 of the micro LED 20 and the terminal portion 61 of the target substrate 60.
- the electroconductive ink can electrically connect the electrode portion 21 and the terminal portion 61.
- the electrically conductive ink according to an embodiment of the present invention may be implemented with an epoxy resin to which silver particles are added.
- the electrically conductive ink may be implemented with a viscous resin to which silver particles are added, but embodiments are not limited thereto.
- the medium of the electroconductive ink is formed of an epoxy resin, the epoxy resin is a thermosetting resin and is cured after drying to have a large adhesive strength.
- the electroconductive ink can re-contact the terminal portion 61 with the electrode portion 21 before drying. At this time, before drying of the electroconductive ink, the defective micro LED 20 is removed from the target substrate 60, and the normal micro LED 20 can be mounted on the target substrate 60.
- the micro LED 20 in the pixel area P in which the defective pixels are generated is removed from the target substrate 60, and a normal micro LED 20 can be mounted thereon. Accordingly, it is possible to reduce the process cost for the final product and reduce the defect rate.
- the micro LED 20 is formed in a micro size, as described above, and may be affected by a van der waals force. That is, in the case of the micro LED 20, the mass is very small due to the micro size, so that it can be attached to a specific object or maintain a contact state even with a small attraction. In particular, the larger the contact area with a specific object, the greater the Van der Waals force acting between the micro LEDs 20 may act.
- van der Waals force may also act between the transfer head 50 and the micro LED 20. At this time, only by releasing the negative pressure on the transfer head 50, the micro LED 20 is not separated from the transfer head 50 and the adsorption state can be maintained.
- the micro LED 20 is separated from the transfer head 50. Accordingly, the micro LED 20 can be disposed on the target substrate 60.
- the transfer head 50 since the transfer head 50 applies positive pressure when placing the micro LEDs 20 on the target substrate 60, it does not give an electric shock to the micro LEDs 20, thereby improving the transfer quality of the micro LEDs. Improve.
- the micro LED 20 can be quickly, accurately and stably transferred to the target substrate 60.
- the gripper 539 according to an embodiment of the present invention is formed to protrude from the transfer head body 531.
- the micro LED 20 is formed in a micro size as described above, and may be affected by van der waals force. In this case, the micro LED 20 may not be easily separated from the transfer head 50 in the arrangement step S30.
- the gripper 539 of the present invention is formed to protrude from the transfer head body 531, so that the micro LED 20 is maximally separated from the transfer head body 531. Accordingly, the van der Waals force that can act on the micro LED 20 from the transfer head body 531 is reduced.
- the gripper 539 may be formed in a cylindrical shape in which a second through hole 533 is formed, as shown in FIG. 8A.
- the gripper 539 may be formed in a square mold instead of a cylindrical shape, but the embodiment is not limited thereto.
- the gripper 539 may have an inclined surface formed on the outer circumferential surface, as shown in FIG. 8B. That is, as described above, the van der Waals force may be applied to the micro LED 20, and the van der Waals force may increase as the area of the end of the gripper 539 in contact with the micro LED 20 increases. .
- an inclined surface is formed on the outer circumferential surface 539a of the gripper 539 to reduce the area of the end portion 539b of the gripper 539. Accordingly, the van der Waals force acting on the end portion 539b of the gripper 539 can be reduced.
- a PDMS coating film may be formed on the end 539b of the gripper 539 in contact with the micro LED 20.
- the PDMS coating film adsorbs the micro LED 20 to the gripper 539 in the pickup step S20, the adsorption force of the micro LED 20 and the gripper 539 may be increased.
- the PDMS coating film seals between the micro LED 20 and the end portion 539b of the gripper 539 so that the micro LED 20 can be stably adsorbed onto the gripper 539.
- FIG 9 is an embodiment of a micro LED display 1 manufactured according to embodiments of the present invention.
- the target substrate 60 may be implemented as a glass or flexible substrate, but the embodiment is not limited thereto.
- the target substrate 60 is a TFT array substrate, in which a plurality of pixel regions P are formed, and thin film transistors and wires for driving the micro LEDs 20 disposed in the pixel region P may be formed. .
- a driving signal input from the outside through wiring is applied to the micro LED 20 so that the micro LED 20 emits light, thereby implementing an image.
- the present invention relates to a micro LED manufacturing method, a micro LED manufacturing apparatus, a manufacturing method and a manufacturing apparatus thereof, and can be used in various technical fields such as a micro LED display.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Device Packages (AREA)
Abstract
A micro LED transfer method according to an embodiment of the present invention comprises: a micro LED preparation step of preparing a loading substrate on which a micro LED is loaded; a pick-up step of adsorbing the top surface of the micro LED loaded on the loading substrate by a transfer head and separating the micro LED from the loading substrate; and an arrangement step of positioning the electrode part of the micro LED on a terminal part of a target substrate by the transfer head and arranging the micro LED on the target substrate by applying positive pressure to the transfer head.
Description
본 발명은 마이크로 LED 전사방법에 관한 것으로, 마이크로 LED를 목표기판에 신속하고 안정적으로 전사하는 마이크로 LED 전사방법에 관한 것이다. The present invention relates to a micro LED transfer method, and relates to a micro LED transfer method for quickly and stably transferring the micro LED to a target substrate.
발광다이오드(LED)는 작은 표시소자 기능에서, 조명, 전광판, 신호등, 가전분야의 고휘도, 고출력 발광기능을 갖는 제품으로 널리 사용되고 있으며, 조명용으로 사용되는 일반적인 LED는 1000 um * 1000 um의 사이즈를 갖는다.Light-emitting diodes (LEDs) are widely used as products with high luminance and high power emission functions in the fields of lighting, electric signboards, traffic lights, and home appliances in the function of small display devices, and general LEDs used for lighting have a size of 1000 um * 1000 um. .
이러한 LED의 면적을 1/100으로 축소하면 머리카락 두께 정도의 100 um * 100 um 사이즈가 되는데 이를 마이크로 LED(micro LED)라고 하며, 차세대 디스플레이로서 부상하고 있다.When the area of these LEDs is reduced to 1/100, they become 100 um * 100 um in size about the thickness of a hair. This is called micro LED, and it is emerging as a next-generation display.
마이크로 LED는 변의 길이가 1 ~ 100 um를 형성할 수 있으며, 이러한 사이즈의 마이크로 LED를 유연기판에 전사(transfer)하면 플렉서블 디스플레이의 구현이 가능하고, 웨어러블 디스플레이, 인체삽입용 의료기기 등 다양한 산업분야에 응용할 수 있다.Micro LED can form a side length of 1 to 100 um, and a flexible display can be implemented by transferring a micro LED of this size to a flexible substrate, and various industrial fields such as wearable displays and medical devices for human body insertion. It can be applied to.
마이크로 LED 디스플레이를 제작하려면 마이크로 LED를 유연기판 등 목표기판(target substrate)에 전사(transfer)하여야 하는데, 마이크로 LED 디스플레이를 4K UHD(3840 * 2160)로 구현하는 경우 약 25백만개의 마이크로 LED를 목표기판에 전사하여 실장시켜야 하므로, 전사 공정의 신속성, 정확도, 안정성이 마이크로 LED 디스플레이 제품에 큰 영향을 미친다.In order to manufacture a micro LED display, micro LEDs must be transferred to a target substrate such as a flexible substrate. When implementing a micro LED display in 4K UHD (3840 * 2160), approximately 25 million micro LEDs are used as the target substrate. Since it must be transferred to and mounted, the speed, accuracy, and stability of the transfer process have a great influence on micro LED display products.
마이크로 LED를 목표기판에 전사하기 위한 전사방법으로 미국 Luxvue社에서 개발한 정전헤드(Electrostatic Head)를 이용하는 방법이 있는데, 해당 방법에서는 정전헤드 마이크로 LED를 위치시키고, 정전헤드에 전압을 걸어 마이크로 LED를 픽업(pick up)하여 목표기판에 이송한다. 해당 방법의 경우 정전헤드에 전압이 인가되므로 마이크로 LED에 손상이 발생하는 문제가 있다.As a transfer method to transfer the micro LED to the target substrate, there is a method using an electrostatic head developed by Luxvue, USA. In this method, a micro LED is placed on the electrostatic head and a voltage is applied to the electrostatic head to connect the micro LED. Pick up and transfer to the target substrate. In the case of this method, since voltage is applied to the electrostatic head, there is a problem that damage to the micro LED occurs.
또 다른 전사방법으로, 미국 X-Celeprint社에서 개발한 고분자물질을 프린트헤드로 이용하여 마이크로 LED를 스탬핑(stamping)하여 픽업한 후 전사하는 방법이 있는데, 이 경우 마이크로 LED를 픽업시키는 접착층이 필요하고, 전사방법의 반복 시 접착력이 감소하는 문제가 있다.As another transfer method, there is a method of stamping micro LEDs using a high molecular material developed by X-Celeprint in the US as a printhead, picking up, and transferring. In this case, an adhesive layer to pick up the micro LEDs is required. , When repeating the transfer method, there is a problem that the adhesive strength decreases.
따라서, 상술한 문제점들을 개선하고, 전사 공정의 신속성, 정확도, 안정성을 확보할 수 있는 마이크로 LED 전사방법의 개발이 필요한 실정이다.Accordingly, there is a need to develop a micro LED transfer method capable of improving the above-described problems and securing speed, accuracy, and stability of the transfer process.
본 발명이 해결하고자 하는 과제는 마이크로 LED를 목표기판에 신속하고 안정적으로 전사하는 마이크로 LED 전사방법을 제공하는데 있다.The problem to be solved by the present invention is to provide a micro LED transfer method for quickly and stably transferring a micro LED to a target substrate.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 마이크로 LED 전사방법은 마이크로 LED가 적재된 적재기판을 마련하는 마이크로 LED 마련단계; 상기 적재기판에 적재된 상기 마이크로 LED의 상면을 전사헤드로 흡착하고, 상기 마이크로 LED를 상기 적재기판으로부터 이탈시키는 픽업단계; 및 상기 전사헤드가 상기 마이크로 LED의 상기 전극부를 목표기판의 단자부에 위치시키고, 상기 전사헤드에 양압을 인가하여 상기 마이크로 LED를 상기 목표기판에 배치하는 배치단계; 를 포함하고, 상기 전사헤드의 탄성계수는 0.00036 ~ 5.5 GPa로 실시될 수 있다. Micro LED transfer method according to an embodiment of the present invention for solving the above problem is a micro LED preparing step of preparing a loading substrate on which the micro LED is loaded; A pickup step of adsorbing the upper surface of the micro LED loaded on the loading substrate with a transfer head and separating the micro LED from the loading substrate; And an arrangement step in which the transfer head locates the electrode portion of the micro LED at a terminal portion of a target substrate, and applies a positive pressure to the transfer head to place the micro LED on the target substrate. Including, the elastic modulus of the transfer head may be implemented in 0.00036 ~ 5.5 GPa.
또한, 상기 마이크로 LED 마련단계는, 전극부가 상면에 위치된 복수개의 마이크로 LED를 분리기판에 서로 이격되게 배치시키는 준비단계; 및 상기 분리기판을 반전시켜 상기 전극부가 적재기판에 대향되게 상기 마이크로 LED를 적재하고, 상기 분리기판으로부터 상기 마이크로 LED를 분리시키는 적재단계; 를 포함할 수 있다.In addition, the step of preparing the micro LED may include a preparation step of disposing a plurality of micro LEDs located on an upper surface of the electrode unit to be spaced apart from each other on a separation substrate; And a loading step of inverting the separation substrate to load the micro LED so that the electrode part faces the loading substrate, and separating the micro LED from the separation substrate. It may include.
또한, 상기 준비단계는, 성장기판에 n층, 발광층, p층을 적층하여 다이오드를 형성하는 다이오드 형성단계; 상기 p층에 상기 분리기판을 적층하는 분리기판 적층단계; 상기 성장기판을 상기 다이오드로부터 분리하고, 상기 분리기판을 반전시키는 성장기판 분리단계; 및 상기 다이오드를 마이크로 LED로 가공하는 마이크로 LED 가공단계; 를 포함할 수 있다.In addition, the preparation step may include a diode forming step of forming a diode by laminating an n layer, a light emitting layer, and a p layer on a growth substrate; A separating substrate laminating step of laminating the separating substrate on the p-layer; A growth substrate separation step of separating the growth substrate from the diode and inverting the separation substrate; And a micro LED processing step of processing the diode into a micro LED. It may include.
또한, 상기 분리기판은 열 박리 테이프 또는 UV 박리 테이프로 실시될 수 있다.In addition, the separation substrate may be implemented as a thermal peeling tape or a UV peeling tape.
또한, 상기 적재기판은 PDMS 필름 또는 탄성중합체 필름으로 실시될 수 있다.In addition, the loading substrate may be implemented as a PDMS film or an elastomer film.
또한, 상기 적재기판은 폴리머 테이프, 유리기판, 폴리머가 코팅된 유리기판, SiC기판, GaAs기판, Si기판 또는 사파이어기판 중 어느 하나로 실시될 수 있다.In addition, the loading substrate may be implemented by any one of a polymer tape, a glass substrate, a polymer coated glass substrate, a SiC substrate, a GaAs substrate, a Si substrate, or a sapphire substrate.
또한, 상기 적재단계는, 상기 적재기판에 상기 마이크로 LED의 상기 전극부가 접촉되게 배치되는 마이크로 LED 배치단계; 및 상기 분리기판에 열 또는 UV를 인가하여 상기 분리기판으로부터 상기 마이크로 LED를 분리시키는 마이크로 LED 분리단계; 를 포함할 수 있다.In addition, the loading step may include a micro LED arranging step in which the electrode portion of the micro LED is in contact with the loading substrate; And a micro LED separating step of separating the micro LED from the separating substrate by applying heat or UV to the separating substrate. It may include.
또한, 상기 적재기판은, 하나의 마이크로 LED칩을 수용하는 수용홈이 복수개 형성되고, 내부에 제1챔버가 형성된 형성된 적재 다이; 상기 수용홈에 형성되어, 상기 제1챔버에 연통되는 제1관통홀; 및 상기 제1챔버에 음압을 인가하는 진공모듈; 을 포함할 수 있다. In addition, the loading substrate includes: a loading die having a plurality of receiving grooves for accommodating one micro LED chip, and having a first chamber formed therein; A first through hole formed in the receiving groove and communicating with the first chamber; And a vacuum module for applying a negative pressure to the first chamber. It may include.
또한, 상기 적재단계는, 상기 적재 다이의 상기 수용홈에 상기 마이크로 LED의 상기 전극부가 안착되게 배치하는 마이크로 LED 배치단계; 및 상기 제1챔버에 음압을 인가하여 상기 마이크로 LED를 상기 수용홈에 고정시킨 후 상기 분리기판에 열 또는 UV를 인가하여 상기 분리기판으로부터 상기 마이크로 LED를 분리시키는 마이크로 LED 분리단계; 를 포함할 수 있다.In addition, the loading step may include a micro LED arranging step of arranging the electrode part of the micro LED to be seated in the receiving groove of the loading die; And a micro LED separating step of separating the micro LED from the separating substrate by applying a negative pressure to the first chamber to fix the micro LED in the receiving groove and then applying heat or UV to the separating substrate. It may include.
또한, 상기 전사헤드는, 내부에 제2챔버가 형성된 형성된 전사헤드 바디; 상기 전사헤드 바디에 돌출되게 구비되어 상기 마이크로 LED에 접촉되는 그리퍼; 상기 그리퍼에 관통되게 형성되어, 상기 제2챔버에 연통되는 제2관통홀; 및 상기 제2챔버에 음압 또는 양압을 인가하는 압력인가모듈; 을 포함할 수 있다.In addition, the transfer head may include a transfer head body having a second chamber formed therein; A gripper provided to protrude from the transfer head body to contact the micro LED; A second through hole formed to pass through the gripper and communicating with the second chamber; And a pressure applying module for applying a negative or positive pressure to the second chamber. It may include.
또한, 상기 픽업단계는 상기 제2챔버에 음압을 인가하여, 상기 그리퍼로 상기 마이크로 LED를 흡착할 수 있다.In addition, in the pickup step, a negative pressure is applied to the second chamber, so that the micro LED may be adsorbed by the gripper.
또한, 상기 전사헤드는 상기 적재기판에 적재된 복수개의 상기 마이크로 LED 중 하나의 마이크로 LED를 흡착하고, 상기 흡착된 마이크로 LED에 인접한 다른 마이크로 LED는 상기 적재기판에 존치시킬 수 있다.In addition, the transfer head may adsorb one micro LED of the plurality of micro LEDs loaded on the loading substrate, and other micro LEDs adjacent to the adsorbed micro LEDs may remain on the loading substrate.
또한, 상기 적재단계는 상기 제1챔버에 음압을 인가하여 상기 마이크로 LED를 상기 수용홈에 고정시킨 후 상기 분리기판에 열 또는 UV를 인가하여 상기 분리기판으로부터 상기 마이크로 LED를 분리시키는 마이크로 LED 분리단계를 포함할 수 있다. In addition, the loading step is a micro LED separating step of separating the micro LED from the separating substrate by applying a negative pressure to the first chamber to fix the micro LED in the receiving groove and then applying heat or UV to the separating substrate. It may include.
또한, 상기 픽업단계는 상기 제2챔버에 인가된 상기 음압의 절대값이 상기 제1챔버에 인가된 상기 음압의 절대값보다 큰 값으로 인가될 수 있다.In addition, in the pickup step, an absolute value of the sound pressure applied to the second chamber may be applied to a value greater than an absolute value of the sound pressure applied to the first chamber.
또한, 상기 목표기판의 단자부에는 전기전도성 잉크가 도포될 수 있다.In addition, an electrically conductive ink may be applied to the terminal portion of the target substrate.
또한, 상기 그리퍼는 외주면에 경사면이 형성될 수 있다.In addition, the gripper may have an inclined surface formed on the outer circumferential surface.
또한, 상기 전사헤드는 폴리카보네이트, 폴리우레탄, 우레탄 아크릴레이트, 이소보르닐 아크릴레이트, 에폭시 또는 PDMS 중 적어도 어느 하나의 재질로 제조될 수 있다. In addition, the transfer head may be made of at least one of polycarbonate, polyurethane, urethane acrylate, isobornyl acrylate, epoxy, and PDMS.
본 발명의 일 실시예에 의한 마이크로 LED 전사방법에 따르면, 마이크로 LED(20)를 신속하고, 정확하며, 안정적으로 목표기판(60)에 전사할 수 있다. According to the micro LED transfer method according to an embodiment of the present invention, the micro LED 20 can be quickly, accurately and stably transferred to the target substrate 60.
도 1은 본 발명의 일 실시예에 다른 마이크로 LED 전사방법의 순서도이다.1 is a flow chart of a micro LED transfer method according to an embodiment of the present invention.
도 2는 본 발명에 따른 준비단계(S11)의 일 실시예이다.2 is an embodiment of a preparation step (S11) according to the present invention.
도 3은 본 발명에 따른 적재단계(S12)의 일 실시예이다.3 is an embodiment of the loading step (S12) according to the present invention.
도 4는 본 발명에 따른 적재단계(S12)의 또 다른 실시예이다. Figure 4 is another embodiment of the loading step (S12) according to the present invention.
도 5는 본 발명에 따른 픽업단계(S20)의 일 실시예이다.5 is an embodiment of a pickup step (S20) according to the present invention.
도 6은 본 발명에 따른 픽업단계(S20)의 또 다른 실시예이다. 6 is another embodiment of the pickup step (S20) according to the present invention.
도 7은 본 발명에 따른 배치단계(S30)의 일 실시예이다.7 is an embodiment of the arrangement step (S30) according to the present invention.
도 8의 (a)는 본 발명의 일 실시예에 따른 그리퍼(539)이며, 도 8의 (b)는 본 발명의 또 다른 실시예에 따른 그리퍼(539)이다.Figure 8 (a) is a gripper 539 according to an embodiment of the present invention, Figure 8 (b) is a gripper 539 according to another embodiment of the present invention.
도 9는 본 발명의 실시예들에 따라 제조된 마이크로 LED 디스플레이(1)의 일 실시예이다.9 is an embodiment of a micro LED display 1 manufactured according to embodiments of the present invention.
이하에서 첨부된 도면을 참조하여, 본 발명의 바람직한 실시예를 상세히 설명한다. 각 도면에 제시된 동일한 도면부호는 동일한 부재를 나타낸다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The same reference numerals shown in each drawing indicate the same member.
이하, 도 1 내지 도 8을 참조하여, 본 발명의 일 실시예에 따른 마이크로 LED 전사방법에 대하여 설명한다.Hereinafter, a micro LED transfer method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 8.
도 1은 본 발명의 일 실시예에 다른 마이크로 LED 전사방법의 순서도이고, 도 2는 본 발명에 따른 준비단계(S11)의 일 실시예이며, 도 3은 본 발명에 따른 적재단계(S12)의 일 실시예이고, 도 4는 본 발명에 따른 적재단계(S12)의 또 다른 실시예이며, 도 5는 본 발명에 따른 픽업단계(S20)의 일 실시예이고, 도 6은 본 발명에 따른 픽업단계(S20)의 또 다른 실시예이며, 도 7은 본 발명에 따른 배치단계(S30)의 일 실시예이고, 도 8의 (a)는 본 발명의 일 실시예에 따른 그리퍼(539)이며, 도 8의 (b)는 본 발명의 또 다른 실시예에 따른 그리퍼(539)이다.Figure 1 is a flow chart of a micro LED transfer method according to an embodiment of the present invention, Figure 2 is an embodiment of a preparation step (S11) according to the present invention, Figure 3 is a loading step (S12) according to the present invention In one embodiment, Figure 4 is another embodiment of the loading step (S12) according to the present invention, Figure 5 is an embodiment of the pickup step (S20) according to the present invention, Figure 6 is a pickup according to the present invention It is another embodiment of step (S20), Figure 7 is an embodiment of the arrangement step (S30) according to the present invention, Figure 8 (a) is a gripper 539 according to an embodiment of the present invention, 8B is a gripper 539 according to another embodiment of the present invention.
도 1 내지 도 8을 참조하면, 본 발명의 일 실시예에 따른 마이크로 LED 전사방법은, 마이크로 LED(20)가 적재된 적재기판(40)을 마련하는 마이크로 LED 마련단계(S10), 적재기판(40)에 적재된 마이크로 LED(20)의 상면을 전사헤드(50)로 흡착하고, 마이크로 LED(20)를 적재기판(40)으로부터 이탈시키는 픽업단계(S20), 및 전사헤드(50)가 마이크로 LED(20)의 전극부(21)를 목표기판(60)의 단자부(61)에 위치시키고, 전사헤드(50)에 양압을 인가하여 마이크로 LED(20)를 목표기판(60)에 배치하는 배치단계(S30)를 포함한다. Referring to Figures 1 to 8, the micro LED transfer method according to an embodiment of the present invention, a micro LED preparation step (S10) of preparing a loading substrate 40 on which the micro LED 20 is loaded, a loading substrate ( 40) A pickup step (S20) of adsorbing the upper surface of the micro LEDs 20 loaded on the transfer head 50 and separating the micro LEDs 20 from the loading substrate 40, and the transfer head 50 Arrangement in which the electrode part 21 of the LED 20 is placed on the terminal part 61 of the target substrate 60, and the micro LED 20 is placed on the target substrate 60 by applying positive pressure to the transfer head 50 It includes step S30.
마이크로 LED 마련단계(S10)에서는 마이크로 LED(20)가 적재된 적재기판(40)을 마련한다.In the micro LED preparation step (S10), the loading substrate 40 on which the micro LED 20 is loaded is prepared.
마이크로 LED(20)는 Al, Ga, N, P, As In 등의 무기물재료를 사파이어 기판 또는 실리콘 기판 위에 복수개 박막 성장시킨 후, 사파이어 기판 또는 실리콘 기판을 절단 분리하여 형성될 수 있다. 여기서, 사파이어 기판 또는 실리콘 기판은 성장기판(30)으로 기능한다. The micro LED 20 may be formed by growing a plurality of thin films of inorganic materials such as Al, Ga, N, P, and As In on a sapphire substrate or a silicon substrate, and then cutting and separating a sapphire substrate or a silicon substrate. Here, the sapphire substrate or the silicon substrate functions as the growth substrate 30.
마이크로 LED(20)는 최대 100 um * 100 um의 크기로 형성될 수 있다. 마이크로 LED(20)는 정사각형 또는 직사각형으로 형성될 수 있다. 이때, 마이크로 LED(20)의 변의 길이는 1 ~ 100 um로 형성될 수 있다.The micro LED 20 may be formed in a maximum size of 100 um * 100 um. The micro LED 20 may be formed in a square or rectangular shape. At this time, the length of the side of the micro LED 20 may be formed of 1 ~ 100 um.
이와 같이, 마이크로 LED(20)는 미세한 크기로 형성되므로, 플라스틱과 같이 플렉서블한 기판에 전사할 수 있게 되어 플렉서블한 표시장치의 제작이 가능하게 된다.As described above, since the micro LED 20 is formed in a fine size, it can be transferred to a flexible substrate such as plastic, and thus a flexible display device can be manufactured.
또한, 마이크로 LED(20)는 유기발광층과는 달리 무기물질을 박막 성장시켜 형성하므로, 제조공정이 단순하고 수율이 향상된다. 또한, 낱개로 분리된 마이크로 LED(20)를 대면적 기판 상에 전사하므로, 대면적 표시장치의 제작이 가능하게 된다.In addition, unlike the organic light emitting layer, the micro LED 20 is formed by growing a thin film of an inorganic material, so that the manufacturing process is simple and the yield is improved. In addition, since the micro LEDs 20 separated individually are transferred onto a large-area substrate, it is possible to manufacture a large-area display device.
마이크로 LED 마련단계(S10)에서는 마이크로 LED(20)가 표면에 적재된 적재기판(40)을 마련할 수 있다. 이 경우, 이 경우, 마이크로 LED 마련단계(S10)에서는 적재기판(40)에 복수개의 마이크로 LED(20)가 서로 이격되게 배치된 상태로 마련될 수 있다. 또한, 마이크로 LED 마련단계(S10)에서는 마이크로 LED(20)를 적재기판(40)의 표면에 적재시켜, 마이크로 LED가 적재된 적재기판(40)을 마련할 수도 있다. 마이크로 LED 마련단계(S10)에서 적재기판(40)에 마련된 마이크로 LED(20)는 후술하는 픽업단계(S20)에서 픽업될 수 있다.In the micro LED preparation step (S10), the loading substrate 40 on which the micro LED 20 is mounted on the surface may be provided. In this case, in this case, in the micro LED preparation step (S10), a plurality of micro LEDs 20 may be provided on the loading substrate 40 in a state in which the plurality of micro LEDs 20 are disposed to be spaced apart from each other. In addition, in the micro LED preparation step (S10), the micro LED 20 may be loaded on the surface of the loading substrate 40 to prepare the loading substrate 40 on which the micro LED is loaded. The micro LED 20 provided on the loading substrate 40 in the micro LED preparation step S10 may be picked up in the pickup step S20 to be described later.
여기서, 본 발명의 일 실시예에 따른 마이크로 LED 마련단계(S10)는 전극부(21)가 상면에 위치된 복수개의 마이크로 LED(20)를 분리기판(10)에 서로 이격되게 배치시키는 준비단계(S11), 분리기판(10)을 반전시켜 전극부(21)가 적재기판(40)에 대향되게 마이크로 LED(20)를 적재하고, 분리기판(10)으로부터 마이크로 LED(20)를 분리시키는 적재단계(S12)를 포함한다.Here, the micro LED preparation step (S10) according to an embodiment of the present invention is a preparation step of disposing the plurality of micro LEDs 20 on which the electrode part 21 is located on the upper surface to be spaced apart from each other ( S11), a loading step of inverting the separation substrate 10 to load the micro LEDs 20 so that the electrode part 21 faces the loading substrate 40, and to separate the micro LEDs 20 from the separation substrate 10 (S12) is included.
준비단계(S11)에서는 전극부(21)가 상면에 위치된 복수개의 마이크로 LED(20)를 분리기판(10)에 서로 이격되게 배치시킨다.In the preparation step (S11), the plurality of micro LEDs 20 on which the electrode part 21 is located on the upper surface are arranged to be spaced apart from each other on the separation substrate 10.
준비단계(S11)에서 복수개의 마이크로 LED(20)는 분리기판(10)에 배치된다. 마이크로 LED(20)는 복수개가 분리기판(10)에 배치될 수 있다. 복수개의 마이크로 LED(20)는 서로 이격되게 배치될 수 있다. 마이크로 LED(20)는 전극부(21)가 상면에 위치되게 배치될 수 있다. 이 경우, 도 2의 (d)와 같이, 분리기판(10)에 마이크로 LED(20)의 전극부(21)가 상면에 위치된다. 이에 대하여는 후술한다. In the preparation step (S11), a plurality of micro LEDs 20 are disposed on the separation substrate 10. A plurality of micro LEDs 20 may be disposed on the separation substrate 10. The plurality of micro LEDs 20 may be disposed to be spaced apart from each other. The micro LED 20 may be disposed such that the electrode part 21 is positioned on the upper surface. In this case, as shown in (d) of FIG. 2, the electrode portion 21 of the micro LED 20 is positioned on the upper surface of the separator plate 10. This will be described later.
마이크로 LED(20)는 분리기판(10)에 한 종류가 배치된다. 마이크로 LED(20)는 실시예에 따라 하나의 색을 발광하는 R(red), G(green), B(blue) 중 어느 하나로 실시될 수 있으며, 본 발명의 일 실시예에서 분리기판(10)에 배치된 마이크로 LED(20)는 R, G, B 중 어느 하나로 실시된다. One type of micro LED 20 is disposed on the separator plate 10. The micro LED 20 may be implemented in any one of R (red), G (green), and B (blue) emitting one color according to an embodiment, and in an embodiment of the present invention, the separation substrate 10 The micro LED 20 disposed in is implemented in any one of R, G, and B.
분리기판(10)은 열 박리 테이프 또는 UV 박리 테이프로 실시될 수 있다. 후술하는 적재단계(S12)에서, 분리기판(10)이 열 박리 테이프(thermal release tape)로 실시되는 경우, 열 박리 테이프에 열이 인가되면 접촉된 물체인 마이크로 LED(20)로부터 분리될 수 있다. 분리기판(10)이 UV 박리 테이프(UV release tape)인 경우, UV 박리 테이프에 UV가 인가되면 접촉된 물체인 마이크로 LED(20)로부터 분리될 수 있다.The separation substrate 10 may be implemented with a thermal peeling tape or a UV peeling tape. In the loading step (S12) to be described later, when the separation substrate 10 is implemented as a thermal release tape, when heat is applied to the thermal release tape, it may be separated from the contacted object, the micro LED 20. . When the separating substrate 10 is a UV release tape, when UV is applied to the UV release tape, it may be separated from the micro LED 20 which is a contacted object.
여기서, 본 발명의 일 실시예에 따른 준비단계(S11)는 성장기판(30)에 n층(23), 발광층(25), p층(27)을 적층하여 다이오드를 형성하는 다이오드 형성단계(S111), p층(27)에 분리기판(10)을 적층하는 분리기판 적층단계(S112), 성장기판(30)을 다이오드로부터 분리하고, 분리기판(10)을 반전시키는 성장기판 분리단계(S113), 및 다이오드를 마이크로 LED(20)로 가공하는 마이크로 LED 가공단계(S114)를 포함한다.Here, the preparation step (S11) according to an embodiment of the present invention is a diode formation step (S111) of stacking the n-layer 23, the light-emitting layer 25, and the p-layer 27 on the growth substrate 30 to form a diode (S111). ), a separation substrate lamination step (S112) of stacking the separation substrate 10 on the p-layer 27, a growth substrate separation step (S113) of separating the growth substrate 30 from the diode and inverting the separation substrate 10 (S113) , And a micro LED processing step (S114) of processing the diode into the micro LED (20).
먼저, 도 2의 (a)와 같이, 다이오드 형성단계(S111)에서는 성장기판(30)에 n층(23), 발광층(25), p층(27)을 적층하여 다이오드를 형성한다.First, as shown in FIG. 2A, in the diode formation step S111, the n-layer 23, the light-emitting layer 25, and the p-layer 27 are stacked on the growth substrate 30 to form a diode.
성장기판(30)은 사파이어 기판 또는 실리콘 기판으로 실시될 수 있으나, 이에 실시예가 한정되지 않는다.The growth substrate 30 may be implemented as a sapphire substrate or a silicon substrate, but the embodiment is not limited thereto.
n층(23) 및 p층(27)은 각각 n형 반도체층 및 p형 반도체층이다. 발광층(25)은 활성층으로 전자와 정공이 재결합되는 영역이며, 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하고 그에 상응하는 파장을 가지는 빛을 생성할 수 있다.The n-layer 23 and p-layer 27 are an n-type semiconductor layer and a p-type semiconductor layer, respectively. The light-emitting layer 25 is an active layer, and is a region in which electrons and holes are recombined. As the electrons and holes recombine, the light-emitting layer 25 may transition to a low energy level and generate light having a wavelength corresponding thereto.
n층(23), 발광층(25), p층(27)은 성장기판(30)에 순차적으로 적층된다. n층(23), 발광층(25), p층(27)으로 형성된 다이오드는 공지의 기술로 형성될 수 있다. 다이오드는 후술하는 것과 같이, 마이크로 LED(20)로 가공될 수 있다.The n-layer 23, the light-emitting layer 25, and the p-layer 27 are sequentially stacked on the growth substrate 30. The diode formed of the n-layer 23, the light-emitting layer 25, and the p-layer 27 may be formed by a known technique. The diode can be fabricated into a micro LED 20, as described below.
분리기판 적층단계(S112)에서는 도 2의 (a)와 같이 p층(27)에 분리기판(10)을 적층한다. 분리기판(10)은 p층(27)의 상면에 적층될 수 있다. 분리기판(10)은 상술한 것과 같이 열 박리 테이프 또는 UV 박리 테이프로 실시될 수 있다.In the separating substrate stacking step (S112), the separating substrate 10 is stacked on the p-layer 27 as shown in FIG. 2A. The separation substrate 10 may be stacked on the upper surface of the p-layer 27. Separation substrate 10 may be implemented as a thermal peeling tape or UV peeling tape as described above.
성장기판 분리단계(S113)에서는 성장기판(30)을 다이오드로부터 분리하고, 분리기판(10)을 반전시킨다. 먼저, 본 다이오드로부터 성장기판(30)을 분리할 수 있다. 이 경우, 성장기판(30)은 공지의 방법으로 다이오드로부터 분리될 수 있다. 예를 들어, 성장기판(30)이 사파이어 기판인 경우, 레이저를 사파이어 기판과 n층(23) 사이에 조사하여 사파이어 기판을 분리하는 LLO(Laser Lift Off) 방법으로 실시될 수 있다. 또한, 성장기판(30)이 실리콘 기판인 경우, 실리콘 기판과 n층(23) 사이를 에칭(etching)하여 분리하는 CLO(Chemical Lift Off) 방법으로 실시될 수도 있다.In the growth substrate separation step (S113), the growth substrate 30 is separated from the diode, and the separation substrate 10 is inverted. First, the growth substrate 30 may be separated from the diode. In this case, the growth substrate 30 may be separated from the diode by a known method. For example, when the growth substrate 30 is a sapphire substrate, it may be performed by a laser lift off (LLO) method of separating the sapphire substrate by irradiating a laser between the sapphire substrate and the n-layer 23. In addition, when the growth substrate 30 is a silicon substrate, it may be performed by a chemical lift off (CLO) method in which the silicon substrate and the n-layer 23 are separated by etching.
성장기판(30)이 다이오드로부터 분리되면, 분리기판(10)을 반전시킨다. 이 경우, 도 2의 (b)와 같이 분리기판(10)이 하부에 위치하고, 다이오드가 상부에 위치된다. 이때, 분리기판(10)을 기준으로 상면에 p층(27), 발광층(25), n층(23) 순서로 배치된다. When the growth substrate 30 is separated from the diode, the separation substrate 10 is inverted. In this case, as shown in (b) of FIG. 2, the separator plate 10 is positioned at the bottom, and the diode is positioned at the top. In this case, a p-layer 27, a light-emitting layer 25, and an n-layer 23 are arranged on the upper surface based on the separation substrate 10 in this order.
실시예에 따라, 성장기판 분리단계(S113)에서는 분리기판(10)을 반전시키고, 성장기판(30)을 다이오드로부터 분리할 수도 있다.Depending on the embodiment, in the step of separating the growth substrate (S113), the separation substrate 10 may be inverted and the growth substrate 30 may be separated from the diode.
마이크로 LED 가공단계(S114)에서는 다이오드를 마이크로 LED(20)로 가공한다. 이 경우, 도 2의 (c)와 같이, 다이오드에 전극부(21)를 형성한다.In the micro LED processing step (S114), the diode is processed into the micro LED 20. In this case, as shown in Fig. 2(c), an electrode part 21 is formed on the diode.
이때, 전극부(21)는 공지의 방법으로 n층(23) 및 p층(27)의 상면에 형성될 수 있다. 여기서, n층(23) 및 발광층(25)은 일부가 식각되고, p층(27)은 기존 상태로 존치되어, n층(23) 및 p층(27)의 상면에 전극부(21)가 형성될 수 있다. 이때, p층(27)의 하면은 분리기판(10)이 접촉된 면으로 전극이 형성되지 않은 비전극면이 형성된다. In this case, the electrode part 21 may be formed on the upper surfaces of the n-layer 23 and p-layer 27 by a known method. Here, the n-layer 23 and the light-emitting layer 25 are partially etched, and the p-layer 27 remains in its original state, so that the electrode part 21 is formed on the upper surfaces of the n-layer 23 and the p-layer 27. Can be formed. At this time, the lower surface of the p-layer 27 is a surface to which the separator plate 10 is in contact, and a non-electrode surface on which no electrode is formed is formed.
n층(23) 및 p층(27)의 상면에 전극부(21)가 형성된 후, 도 2의 (d)와 같이 p층(27)이 다이싱(dicing)된다. p층(27)은 습식 식각, 건식 식각, 레이저 절단 등 공지의 방법으로 다이싱될 수 있다. 이 경우, 플라즈마 건식 식각 방법으로 다이싱될 수 있다. p층(27)이 다이싱되면 다이오드가 마이크로 LED(20)로 가공된다. 이에 따라, 마이크로 LED(20)는 분리기판(10)에 복수개가 서로 이격되게 배치된다. 이때, 마이크로 LED(20)는 변의 길이가 1 ~ 100 um로 형성될 수 있다. After the electrode portions 21 are formed on the upper surfaces of the n-layer 23 and p-layer 27, the p-layer 27 is diced as shown in FIG. 2(d). The p-layer 27 may be diced by a known method such as wet etching, dry etching, or laser cutting. In this case, it may be diced by a plasma dry etching method. When the p-layer 27 is diced, the diode is processed into the micro LED 20. Accordingly, a plurality of micro LEDs 20 are disposed on the separation substrate 10 to be spaced apart from each other. At this time, the micro LED 20 may have a side length of 1 to 100 um.
이상, 상술한 공정에 따라 준비단계(S11)에서는 복수개의 마이크로 LED(20)가 분리기판(10)에 이격되게 배치된다. 또한, n층(23)의 상면 및 p층(27)의 상면에 전극부(21)가 배치되어, 마이크로 LED(20)의 상면에 전극부(21)가 배치된다. Above, in the preparation step (S11) according to the above-described process, a plurality of micro LEDs 20 are disposed to be spaced apart on the separation substrate 10. Further, the electrode portion 21 is disposed on the upper surface of the n-layer 23 and the upper surface of the p-layer 27, and the electrode portion 21 is disposed on the upper surface of the micro LED 20.
적재단계(S12)에서는, 분리기판(10)을 반전시켜 전극부(21)가 적재기판(40)에 대향되게 마이크로 LED(20)를 적재하고, 분리기판(10)으로부터 마이크로 LED(20)를 분리시킨다.In the loading step (S12), the separation substrate 10 is reversed to load the micro LED 20 so that the electrode part 21 faces the loading substrate 40, and the micro LED 20 is removed from the separation substrate 10. Separate.
적재단계(S12)에서, 도 3의 (a) 및 도 4의 (a)를 기준으로, 분리기판(10)이 상부에 위치하고 마이크로 LED(20)가 하부에 위치되도록, 분리기판(10)을 반전시킨다. 이 경우, 마이크로 LED(20)의 전극부(21)는 적재기판(40)에 대향되게 배치된다. 이때, 마이크로 LED(20)의 전극부(21)는 적재기판(40)을 향해 배치되므로 하측에 위치된다.In the loading step (S12), based on Figures 3 (a) and 4 (a), the separation substrate 10 so that the separation substrate 10 is located at the top and the micro LED 20 is located at the bottom, Reverse. In this case, the electrode portion 21 of the micro LED 20 is disposed to face the mounting substrate 40. At this time, since the electrode part 21 of the micro LED 20 is disposed toward the loading substrate 40, it is located at the lower side.
이후, 마이크로 LED(20)는 적재기판(40)에 접촉된다. 이때, 전극부(21)는 적재기판(40)에 접촉된다. 이에 따라, 마이크로 LED(20)가 적재기판(40)에 적재된다. Thereafter, the micro LED 20 is in contact with the loading substrate 40. At this time, the electrode part 21 is in contact with the loading substrate 40. Accordingly, the micro LED 20 is loaded on the loading substrate 40.
마이크로 LED(20)가 적재기판(40)에 적재된 후, 분리기판(10)으로부터 마이크로 LED(20)가 분리된다. 마이크로 LED(20)는 적재기판(40)의 실시예에 따라 다양한 방법으로 분리될 수 있다. 마이크로 LED(20)가 분리기판(10)으로부터 분리되면, 분리기판(10)이 이탈되고 적재기판(40)에 마이크로 LED(20)가 완전히 안착되어 적재된다. 이에 따라, 마이크로 LED(20)가 적재기판(40)에 마련될 수 있게 된다.After the micro LED 20 is loaded on the loading substrate 40, the micro LED 20 is separated from the separating substrate 10. The micro LED 20 may be separated in various ways according to the embodiment of the loading substrate 40. When the micro LED 20 is separated from the separating substrate 10, the separating substrate 10 is separated and the micro LED 20 is completely seated and loaded on the loading substrate 40. Accordingly, the micro LED 20 can be provided on the loading substrate 40.
여기서, 본 발명의 일 실시예에 따른 적재기판(40)은 PDMS 필름(41) 또는 탄성중합체(elastomer) 필름(41)으로 실시될 수 있다.Here, the loading substrate 40 according to an embodiment of the present invention may be implemented with a PDMS film 41 or an elastomer film 41.
PDMS 필름(41)은 폴리디메틸실록산(Polydimethyl siloxane, PDMS)으로, 표면장력이 낮아 표면평활성이 우수하고 높은 화학 안정성과 우수한 내열성 및 성형성을 갖는다.The PDMS film 41 is made of polydimethyl siloxane (PDMS), has low surface tension, excellent surface smoothness, high chemical stability, excellent heat resistance, and moldability.
탄성중합체 필름(41)은 상온에서 고무 탄성을 나타내는 고분자 물질로, 가황한 천연 고무, 합성 고무 외에 열가소성 엘라스토머, 탄성 섬유, 발포체 중 적어도 어느 하나를 포함한다.The elastomer film 41 is a polymer material exhibiting rubber elasticity at room temperature, and includes at least one of a thermoplastic elastomer, an elastic fiber, and a foam in addition to vulcanized natural rubber and synthetic rubber.
적재기판(40)이 PDMS 필름(41) 또는 탄성중합체 필름(41)으로 실시되어, 마이크로 LED(20)가 적재기판(40)에 안정적으로 적재될 수 있다. Since the loading substrate 40 is implemented with the PDMS film 41 or the elastomer film 41, the micro LED 20 can be stably loaded on the loading substrate 40.
또한, 전극부(21)가 비전도성이며 탄성력이 있는 PDMS 필름(41) 또는 탄성중합체 필름(41)에 적재되므로, 전극부(21)가 정전기나 물리적 충격으로부터 보호될 수 있다.In addition, since the electrode part 21 is loaded on the non-conductive and elastic PDMS film 41 or the elastomer film 41, the electrode part 21 can be protected from static electricity or physical impact.
또한, 본 발명의 일 실시예에 따른 적재기판(40)은 폴리머 테이프(polymer tape), 유리기판, 폴리머가 코팅된 유리기판, SiC기판, GaAs기판, Si기판, 사파이어기판 중 어느 하나로 실시될 수도 있다. 이에 따라, 적재기판(40)에 마이크로 LED(20)가 적재기판(40)에 안정적으로 적재될 수 있다. In addition, the loading substrate 40 according to an embodiment of the present invention may be implemented by any one of a polymer tape, a glass substrate, a polymer coated glass substrate, a SiC substrate, a GaAs substrate, a Si substrate, and a sapphire substrate. have. Accordingly, the micro LED 20 on the loading substrate 40 can be stably loaded on the loading substrate 40.
이 경우, 본 발명의 일 실시예에 따른 적재단계(S12)는 적재기판(40)에 마이크로 LED(20)의 전극부(21)가 접촉되게 배치되는 마이크로 LED 배치단계(S121), 및 분리기판(10)에 열 또는 UV를 인가하여 분리기판(10)으로부터 마이크로 LED(20)를 분리시키는 마이크로 LED 분리단계(S122)를 포함한다.In this case, the loading step (S12) according to an embodiment of the present invention is a micro LED arranging step (S121) in which the electrode portion 21 of the micro LED 20 is placed in contact with the loading substrate 40 (S121), and the separating substrate It includes a micro LED separation step (S122) of separating the micro LED 20 from the separation substrate 10 by applying heat or UV to (10).
마이크로 LED 배치단계(S121)에서, 적재기판(40)에 마이크로 LED(20)가 배치된다. 이때, 상술한 것과 같이 마이크로 LED(20)의 전극부(21)가 적재기판(40)에 접촉되게 배치된다. In the micro LED arranging step (S121), the micro LED 20 is disposed on the loading substrate 40. At this time, as described above, the electrode portion 21 of the micro LED 20 is disposed to be in contact with the loading substrate 40.
이후, 마이크로 LED 분리단계(S122)에서는 분리기판(10)에 열 또는 UV를 인가한다. 여기서, 분리기판(10)이 열 박리 테이프로 실시되는 경우 열을 인가하고, UV 박리 테이프로 실시되는 경우 UV를 인가한다. 열 또는 UV는 분리기판(10)과 마이크로 LED(20) 사이에 인가될 수 있다. 이때, 열 또는 UV는 p층(27)의 비전극면에 인가될 수 있다. Thereafter, in the micro LED separation step (S122), heat or UV is applied to the separation substrate 10. Here, when the separation substrate 10 is implemented with a thermal release tape, heat is applied, and when implemented with a UV release tape, UV is applied. Heat or UV may be applied between the separator plate 10 and the micro LED 20. At this time, heat or UV may be applied to the non-electrode surface of the p-layer 27.
이에 따라, 분리기판(10)으로부터 마이크로 LED(20)가 분리되고, 도 3의 (b)와 같이 적재기판(40)에 마이크로 LED(20)가 완전히 안착되어 적재된다. 최종적으로, 마이크로 LED(20)가 적재된 적재기판(40)이 마련된다. Accordingly, the micro LED 20 is separated from the separating substrate 10, and the micro LED 20 is completely seated and loaded on the loading substrate 40 as shown in FIG. 3(b). Finally, the loading substrate 40 on which the micro LED 20 is loaded is provided.
한편, 본 발명의 또 다른 실시예에 따른 적재기판(40)은 도 4와 같이 하나의 마이크로 LED(20)을 수용하는 수용홈(431)이 복수개 형성되고, 내부에 제1챔버(435)가 형성된 적재 다이(43), 수용홈(431)에 형성되어, 제1챔버(435)에 연통되는 제1관통홀(433), 및 제1챔버(435)에 음압을 인가하는 진공모듈(437)을 포함한다.Meanwhile, the loading substrate 40 according to another embodiment of the present invention has a plurality of receiving grooves 431 for accommodating one micro LED 20 as shown in FIG. 4, and a first chamber 435 therein The formed loading die 43, the first through hole 433 formed in the receiving groove 431, communicated with the first chamber 435, and a vacuum module 437 for applying a negative pressure to the first chamber 435 Includes.
적재 다이(43)는, 도 4의 (a) 및 (b)와 같이, 적재 다이(43)에 수용홈(431)이 복수개 형성된다. 하나의 수용홈(431)은 하나의 마이크로 LED(20)를 수용한다. 수용홈(431)은 함몰되어 형성된다. 수용홈(431)은 마이크로 LED(20)의 크기에 대응되게 형성된다.As for the stacking die 43, a plurality of receiving grooves 431 are formed in the stacking die 43 as shown in FIGS. 4A and 4B. One receiving groove 431 accommodates one micro LED (20). The receiving groove 431 is formed by being recessed. The receiving groove 431 is formed to correspond to the size of the micro LED 20.
적재 다이(43)의 내부에는 공동(cavity)의 제1챔버(435)가 형성된다. 제1챔버(435)는 제1관통홀(433)에 연통된다.A first chamber 435 of a cavity is formed in the loading die 43. The first chamber 435 communicates with the first through hole 433.
수용홈(431)에는 제1관통홀(433)이 형성된다. 이 경우, 각 수용홈(431)마다 제1관통홀(433)이 형성된다. 제1관통홀(433)은 제1챔버(435)와 연통된다.A first through hole 433 is formed in the receiving groove 431. In this case, a first through hole 433 is formed for each receiving groove 431. The first through hole 433 communicates with the first chamber 435.
실시예에 따라, 수용홈(431) 및 제1관통홀(433)은 MEMS, 레이저 또는 정밀 기계가공으로 가공될 수 있으나, 이에 실시예가 한정되지 않는다.Depending on the embodiment, the receiving groove 431 and the first through hole 433 may be processed by MEMS, laser, or precision machining, but the embodiment is not limited thereto.
진공모듈(437)은 제1챔버(435)에 음압(negative pressure)을 형성한다. 제1챔버(435)에 음압이 형성되면, 제1챔버(435)에 진공(vacuum)이 형성된다. 이 경우, 제1챔버(435)에 연통된 제1관통홀(433)에 흡입력이 발생하여, 수용홈(431)에 적재된 마이크로 LED(20)를 수용홈(431)에 흡착한다. 수용홈(431)에 마이크로 LED(20)가 흡착되면, 마이크로 LED(20)가 수용홈(431)에 고정된다. The vacuum module 437 creates a negative pressure in the first chamber 435. When negative pressure is formed in the first chamber 435, a vacuum is formed in the first chamber 435. In this case, a suction force is generated in the first through hole 433 communicated with the first chamber 435, and the micro LED 20 loaded in the receiving groove 431 is adsorbed into the receiving groove 431. When the micro LED 20 is adsorbed in the receiving groove 431, the micro LED 20 is fixed to the receiving groove 431.
이 경우, 본 발명의 또 다른 실시예에 따른 적재단계(S12)는 적재 다이(43)의 수용홈(431)에 마이크로 LED(20)의 전극부(21)가 안착되게 배치하는 마이크로 LED 배치단계(S121), 및 제1챔버(435)에 음압을 인가하여 마이크로 LED(20)를 수용홈(431)에 고정시킨 후 분리기판(10)에 열 또는 UV를 인가하여 분리기판(10)으로부터 마이크로 LED(20)를 분리시키는 마이크로 LED 분리단계(S122)를 포함한다.In this case, the loading step (S12) according to another embodiment of the present invention is a micro LED arranging step of arranging the electrode part 21 of the micro LED 20 to be seated in the receiving groove 431 of the loading die 43 (S121), and by applying a negative pressure to the first chamber 435 to fix the micro LED 20 in the receiving groove 431, and then applying heat or UV to the separation substrate 10 It includes a micro LED separation step (S122) for separating the LED 20.
마이크로 LED 배치단계(S121)에서는, 적재 다이(43)의 수용홈(431)에 마이크로 LED(20)가 안착되게 배치된다. 이때, 마이크로 LED(20)의 전극부(21)가 수용홈(431)에 안착되게 배치된다. 이 경우, 마이크로 LED(20)의 전극부(21)는 적재 다이(43)에 접촉되게 배치될 수 있다. In the micro LED arranging step (S121), the micro LED 20 is disposed to be seated in the receiving groove 431 of the loading die 43. At this time, the electrode part 21 of the micro LED 20 is disposed to be seated in the receiving groove 431. In this case, the electrode portion 21 of the micro LED 20 may be disposed to be in contact with the loading die 43.
마이크로 LED 분리단계(S122)에서는 제1챔버(435)에 음압을 인가한다. 이 경우, 상술한 것과 같이, 진공모듈(437)이 제1챔버(435)에 음압(negative pressure)을 형성하여, 제1챔버(435)에 진공(vacuum)이 형성되도록 한다. 제1챔버(435)에 인가된 음압은 해제되지 않고 인가된 상태를 유지할 수 있다. 이 경우, 제1챔버(435)에 연통된 제1관통홀(433)에 흡입력이 발생하여, 수용홈(431)에 적재된 마이크로 LED(20)를 수용홈(431)에 흡착하여 고정시킨다.In the micro LED separation step (S122), a negative pressure is applied to the first chamber 435. In this case, as described above, the vacuum module 437 creates a negative pressure in the first chamber 435 so that a vacuum is formed in the first chamber 435. The negative pressure applied to the first chamber 435 is not released and the applied state can be maintained. In this case, a suction force is generated in the first through hole 433 communicated with the first chamber 435, so that the micro LED 20 loaded in the receiving groove 431 is sucked into the receiving groove 431 and fixed.
이후, 분리기판(10)에 열 또는 UV를 인가한다. 여기서, 분리기판(10)이 열 박리 테이프로 실시되는 경우 열을 인가하고, UV 박리 테이프로 실시되는 경우 UV를 인가한다. 이때, 제1관통홀(433)에 흡입력이 발생하여 수용홈(431)에 마이크로 LED(20)를 고정시키므로, 분리기판(10)으로부터 마이크로 LED(20)가 분리될 때 위치 변화나 각도 변화가 발생되지 않게 된다.Thereafter, heat or UV is applied to the separation substrate 10. Here, when the separation substrate 10 is implemented with a thermal release tape, heat is applied, and when implemented with a UV release tape, UV is applied. At this time, since a suction force is generated in the first through hole 433 to fix the micro LED 20 in the receiving groove 431, the position change or angle change when the micro LED 20 is separated from the separation substrate 10 It will not occur.
이에 따라, 분리기판(10)으로부터 마이크로 LED(20)가 분리되고, 도 4의 (b)와 같이, 적재 다이(43)에 마이크로 LED(20)가 완전히 안착되어 적재된다.Accordingly, the micro LED 20 is separated from the separating substrate 10, and the micro LED 20 is completely seated and loaded on the loading die 43, as shown in FIG. 4(b).
픽업단계(S20)에서는 도 5의 (a) 및 도 6의 (a)와 같이 적재기판(40)에 적재된 마이크로 LED(20)의 상면을 전사헤드(50)로 흡착하고, 마이크로 LED(20)를 적재기판(40)으로부터 이탈시킨다.In the pickup step (S20), the upper surface of the micro LED 20 loaded on the loading substrate 40 is adsorbed by the transfer head 50 as shown in FIGS. 5A and 6A, and the micro LED 20 ) Is separated from the loading substrate 40.
전사헤드(50)는 적재기판(40)에 적재된 마이크로 LED(20)의 상면을 흡착한다. 이 경우, 적재기판(40)에 적재된 상태의 마이크로 LED(20)의 상면은 p층(27)이 위치된다. 즉, 적재단계(S12)에서 전극부(21)가 하측으로 배치되므로, 전극부(21)가 형성된 n층(23) 및 p층(27)이 하면에 위치하고, 상면에는 p층(27)의 비전극면이 위치된다. The transfer head 50 adsorbs the upper surface of the micro LED 20 loaded on the loading substrate 40. In this case, the p-layer 27 is positioned on the upper surface of the micro LED 20 in a state loaded on the loading substrate 40. That is, since the electrode part 21 is disposed downward in the loading step (S12), the n-layer 23 and the p-layer 27 on which the electrode part 21 is formed are located on the lower surface, and the p-layer 27 is formed on the upper surface. The non-electrode surface is located.
이에 따라, 전사헤드(50)가 전극부(21)가 형성되지 않은 마이크로 LED(20)의 비전극면을 흡착하므로, 전극부(21)에 전기적 또는 물리적 충격을 주지 않게 되어, 마이크로 LED의 전사품질을 향상시킨다. Accordingly, since the transfer head 50 adsorbs the non-electrode surface of the micro LED 20 on which the electrode part 21 is not formed, it does not give an electric or physical impact to the electrode part 21, so that the transfer quality of the micro LED Improves.
본 발명의 일 실시예에 따른 전사헤드(50)는 공지의 3D 프린팅으로 제조될 수 있다. 이 경우, 본 발명의 일 실시예에 따른 전사헤드(50)의 재질은 플라스틱 또는 실리콘 재질로 실시될 수 있다.The transfer head 50 according to an embodiment of the present invention may be manufactured by known 3D printing. In this case, the material of the transfer head 50 according to an embodiment of the present invention may be made of plastic or silicon.
본 발명의 일 실시예에 따른 전사헤드(50)의 탄성계수는 0.00036 ~ 5.5 GPa로 실시될 수 있다.The modulus of elasticity of the transfer head 50 according to an embodiment of the present invention may be 0.00036 to 5.5 GPa.
구체적으로, 본 발명의 일 실시예에 따른 전사헤드(50)의 재질은 폴리카보네이트(Polycarbonate, PC), 폴리우레탄(Polyurethane), 우레탄 아크릴레이트(Urethan Acrylate), 이소보르닐 아크릴레이트(Isobornyl Acrylate), 에폭시(Epoxy) 및 PDMS(폴리디메틸실록산, polydimethylsiloxane) 중 적어도 어느 하나로 선택되어 실시될 수 있다.Specifically, the material of the transfer head 50 according to an embodiment of the present invention is polycarbonate (PC), polyurethane, urethane acrylate, isobornyl acrylate. , Epoxy (Epoxy) and PDMS (polydimethylsiloxane, polydimethylsiloxane) may be selected and carried out at least one of.
이때, 폴리카보네이트(Polycarbonate, PC)의 탄성계수는 2.0 ~ 2.6 GPa, 폴리우레탄(Polyurethane)의 탄성계수는 0.5 ~ 5.5 GPa, 우레탄 아크릴레이트(Urethan Acrylate)의 탄성계수는 2.5 ~ 3.0 GPa, 이소보르닐 아크릴레이트(Isobornyl Acrylate)의 탄성계수는 0.25 ~ 0.35 GPa, 에폭시(Epoxy)의 탄성계수는 3 GPa, PDMS의 탄성계수는 0.00036 ~ 0.00087 GPa로 실시될 수 있다.At this time, the modulus of elasticity of polycarbonate (PC) is 2.0 to 2.6 GPa, the modulus of polyurethane is 0.5 to 5.5 GPa, the modulus of urethane acrylate is 2.5 to 3.0 GPa, isobor The modulus of elasticity of Isobornyl Acrylate may be 0.25 to 0.35 GPa, the modulus of elasticity of Epoxy is 3 GPa, and the modulus of elasticity of PDMS may be 0.00036 to 0.00087 GPa.
이에 따라, 전사헤드(50)가 탄성 변형이 가능하므로, 마이크로 LED를 흡착 시 전사헤드(50)가 마이크로 LED의 표면에 밀착이 가능하여, 비탄성 재질의 전사헤드에 비해 픽업(pick-up) 수율을 향상시킬 수 있다. Accordingly, since the transfer head 50 can be elastically deformed, the transfer head 50 can be in close contact with the surface of the micro LED when the micro LED is adsorbed, and pick-up yield compared to the transfer head made of inelastic material. Can improve.
이후, 도 5의 (b) 및 도 6의 (b)와 같이, 전사헤드(50)는 마이크로 LED(20)를 흡착한 상태에서 마이크로 LED(20)를 적재기판(40)으로부터 이탈시킨다. 즉, 흡착헤드에 마이크로 LED(20)가 흡착된 상태로 전사헤드(50)가 이동하여, 마이크로 LED(20)가 적재기판(40)으로부터 이탈된다.Thereafter, as shown in FIGS. 5B and 6B, the transfer head 50 separates the micro LED 20 from the loading substrate 40 in a state in which the micro LED 20 is adsorbed. That is, the transfer head 50 moves while the micro LEDs 20 are adsorbed to the adsorption head, so that the micro LEDs 20 are separated from the loading substrate 40.
여기서, 본 발명의 일 실시예에 따른 전사헤드(50)는 내부에 제2챔버(535)가 형성된 전사헤드 바디(531), 전사헤드 바디(531)에 복수개 돌출되게 구비되어 마이크로 LED(20)에 접촉되는 그리퍼(539), 그리퍼(539)에 관통되게 형성되어, 제2챔버(535)에 연통되는 제2관통홀(533), 및 제2챔버(535)에 음압 또는 양압을 인가하는 압력인가모듈(537)을 포함한다. Here, the transfer head 50 according to an embodiment of the present invention is provided to protrude a plurality of the transfer head body 531 and the transfer head body 531 in which the second chamber 535 is formed, and the micro LED 20 The pressure to apply negative or positive pressure to the gripper 539 in contact with the gripper 539, the second through hole 533 communicated with the second chamber 535 and formed to penetrate the gripper 539, and the second chamber 535 It includes an application module 537.
전사헤드 바디(531)는 외관을 형성한다. 전사헤드 바디(531)의 내부에는 공동(cavity)의 제2챔버(535)가 형성된다. 제2챔버(535)는 후술하는 제2관통홀(533)에 연통된다.The transfer head body 531 forms an exterior. A second chamber 535 of a cavity is formed inside the transfer head body 531. The second chamber 535 communicates with a second through hole 533 to be described later.
그리퍼(539)는 전사헤드 바디(531)에 구비된다. 그리퍼(539)는 복수개 형성된다. 그리퍼(539)는 전사헤드 바디(531)에 돌출되게 형성된다. 그리퍼(539)는 마이크로 LED(20)에 접촉된다. 이 경우, 픽업단계(S20)에서 그리퍼(539)는 마이크로 LED(20)의 p층(27)의 비전극면에 접촉될 수 있다.The gripper 539 is provided on the transfer head body 531. A plurality of grippers 539 are formed. The gripper 539 is formed to protrude from the transfer head body 531. The gripper 539 is in contact with the micro LED 20. In this case, the gripper 539 may contact the non-electrode surface of the p-layer 27 of the micro LED 20 in the pickup step S20.
제2관통홀(533)은 그리퍼(539)에 관통되게 형성된다. 이때, 각 그리퍼(539)마다 제2관통홀(533)이 형성될 수 있다. 제2관통홀(533)은 제2챔버(535)에 연통된다.The second through hole 533 is formed to penetrate through the gripper 539. In this case, a second through hole 533 may be formed for each gripper 539. The second through hole 533 communicates with the second chamber 535.
제2관통홀(533)은 직경이 마이크로 사이즈로 형성될 수 있다. 이 경우, 제2관통홀(533)의 크기는 마이크로 LED(20)의 변의 길이보다 작은 길이로 형성된다.The second through hole 533 may have a micro size. In this case, the size of the second through hole 533 is formed to have a length smaller than the length of the side of the micro LED 20.
실시예에 따라, 그리퍼(539) 및 제2관통홀(533)은 MEMS, 레이저 또는 정밀 기계가공으로 가공될 수 있으나, 이에 실시예가 한정되지 않는다.Depending on the embodiment, the gripper 539 and the second through hole 533 may be processed by MEMS, laser, or precision machining, but the embodiment is not limited thereto.
압력인가모듈(537)은 제2챔버(535)에 음압(negative pressure) 또는 양압(positive pressure)을 형성한다.The pressure applying module 537 forms a negative pressure or a positive pressure in the second chamber 535.
압력인가모듈(537)에 의해 제2챔버(535)에 음압이 형성되면, 제2챔버(535)에 진공(vacuum)이 형성된다. 이 경우, 제2챔버(535)에 연통된 제2관통홀(533)에 흡입력이 발생하여, 그리퍼(539)에 접촉된 마이크로 LED(20)를 흡착한다. 그리퍼(539)에 마이크로 LED(20)가 흡착되면, 마이크로 LED(20)가 전사헤드(50)에 흡착된다. When negative pressure is formed in the second chamber 535 by the pressure applying module 537, a vacuum is formed in the second chamber 535. In this case, a suction force is generated in the second through hole 533 communicated with the second chamber 535, and the micro LED 20 in contact with the gripper 539 is adsorbed. When the micro LED 20 is adsorbed on the gripper 539, the micro LED 20 is adsorbed on the transfer head 50.
이에 따라, 전사헤드(50)가 전극부(21)가 형성되지 않은 마이크로 LED(20)의 비전극면을 진공으로 흡착하므로, 전극부(21)에 전기적 충격을 주지 않게 되어, 마이크로 LED의 전사품질을 향상시킨다. Accordingly, the transfer head 50 absorbs the non-electrode surface of the micro LED 20 on which the electrode portion 21 is not formed by vacuum, so that an electric shock is not applied to the electrode portion 21, and the transfer quality of the micro LED Improves.
반대로, 압력인가모듈(537)에 의해 제2챔버(535)에 양압이 형성되면, 그리퍼(539)로부터 마이크로 LED(20)가 이탈된다. 이에 대하여는 후술한다.Conversely, when positive pressure is formed in the second chamber 535 by the pressure applying module 537, the micro LED 20 is separated from the gripper 539. This will be described later.
여기서, 본 발명의 일 실시예에 따른 픽업단계(S20)는 제2챔버(535)에 음압을 인가하여, 그리퍼(539)로 마이크로 LED(20)를 흡착한다. 상술한 것과 같이, 제2챔버(535)에 음압이 인가되면, 제2챔버(535)가 진공을 형성하고, 그리퍼(539)에 접촉된 마이크로 LED(20)는 제2관통홀(533)에 발생한 흡입력에 의해 그리퍼(539)에 흡착된다. 이때, 그리퍼(539)는 마이크로 LED(20)의 전극부(21)의 반대면인 p층(27)의 비전극면을 흡착할 수 있다. Here, in the pickup step (S20) according to an embodiment of the present invention, a negative pressure is applied to the second chamber 535 to adsorb the micro LED 20 by the gripper 539. As described above, when a negative pressure is applied to the second chamber 535, the second chamber 535 forms a vacuum, and the micro LED 20 in contact with the gripper 539 is in the second through hole 533. It is adsorbed to the gripper 539 by the generated suction force. At this time, the gripper 539 may adsorb the non-electrode surface of the p-layer 27 that is the opposite surface of the electrode part 21 of the micro LED 20.
한편, 본 발명의 일 실시예에 따른 전사헤드(50)는 적재기판(40)에 적재된 복수개의 마이크로 LED(20) 중 하나의 마이크로 LED(20)를 흡착하고, 흡착된 마이크로 LED(20)에 인접한 다른 마이크로 LED(20)는 적재기판(40)에 존치시킨다.On the other hand, the transfer head 50 according to an embodiment of the present invention adsorbs one micro LED 20 among a plurality of micro LEDs 20 loaded on the loading substrate 40, and the adsorbed micro LED 20 Other micro LEDs 20 adjacent to are placed on the loading substrate 40.
즉, 도 5의 (a) 또는 도 6의 (a)와 같이, 전사헤드(50)는 적재기판(40)에 적재된 복수개의 마이크로 LED(20)를 흡착 시, 하나의 마이크로 LED(20)를 흡착하고, 흡착된 마이크로 LED(20)에 인접한 다른 마이크로 LED(20)는 건너 띄어(jump over) 적재기판(40)에 그대로 존치된다.That is, as shown in (a) of FIG. 5 or (a) of FIG. 6, when the transfer head 50 adsorbs a plurality of micro LEDs 20 loaded on the loading substrate 40, one micro LED 20 By adsorbing, the other micro LEDs 20 adjacent to the adsorbed micro LEDs 20 jump over and remain on the loading substrate 40 as they are.
예를 들어, 도 5의 (a) 또는 도 6의 (a)의 제1마이크로 LED(20a)를 흡착할 경우, 흡착된 제1마이크로 LED(20a)에 인접한 제2마이크로 LED(20b)는 적재기판(40)에 그대로 존치시키고, 제3마이크로 LED(20c)를 흡착한다. 이 경우, 전사헤드(50)는 홀수번째 마이크로 LED(20)만 흡착하고, 짝수번째 마이크로 LED(20)는 존치시킬 수 있다. 또한, 실시예에 따라, 전사헤드(50)는 짝수번째 마이크로 LED(20)만 흡착하고, 홀수번째 마이크로 LED(20)는 존치시킬 수도 있다.For example, when adsorbing the first micro LED 20a of FIG. 5 (a) or 6 (a), the second micro LED 20b adjacent to the adsorbed first micro LED 20a is loaded It remains on the substrate 40 as it is, and the third micro LED 20c is adsorbed. In this case, the transfer head 50 may adsorb only the odd-numbered micro LEDs 20, and the even-numbered micro LEDs 20 may remain. In addition, according to an embodiment, the transfer head 50 may adsorb only the even-numbered micro LEDs 20, and the odd-numbered micro LEDs 20 may remain.
마이크로 LED 디스플레이(1)에는 각 화소영역(P)에는 단색광을 발광하는 R, G, B 마이크로 LED(20)가 목표기판(60)에 실장되어야 한다. 각 화소영역(P)은 물리적으로 이격되게 형성되어 있다. 이때, 본 발명의 적재기판(40)에는 발광하는 R, G, B 마이크로 LED(20) 중 한 종류, 예를 들어 R 마이크로 LED(20)만 적재되어 있으므로 각 화소영역(P)마다 R 마이크로 LED(20)만 전사시킬 수 있다.In the micro LED display 1, R, G, and B micro LEDs 20 that emit monochromatic light in each pixel area P must be mounted on the target substrate 60. Each pixel area P is formed to be physically spaced apart. At this time, since only one type of the R, G, and B micro LEDs 20 that emit light, for example, the R micro LEDs 20, is loaded on the loading substrate 40 of the present invention, each pixel area P is equipped with R micro LEDs. Only (20) can be transferred.
이 경우, 본 발명의 전사헤드(50)는 하나의 마이크로 LED(20)를 흡착하고, 흡착된 마이크로 LED(20)에 인접한 마이크로 LED(20)는 적재기판(40)에 존치시키며, 적재기판(40)에 존치된 마이크로 LED(20)에 인접한 마이크로 LED(20)는 다시 흡착하여, 목표기판(60)의 각 화소영역(P)에 한 종류의 마이크로 LED(20)가 전사되게 한다.In this case, the transfer head 50 of the present invention adsorbs one micro LED 20, and the micro LED 20 adjacent to the adsorbed micro LED 20 remains on the loading substrate 40, and the loading substrate ( The micro LEDs 20 adjacent to the micro LEDs 20 residing on 40 are adsorbed again, so that one type of micro LEDs 20 is transferred to each pixel area P of the target substrate 60.
실시예에 따라, 본 발명의 적재기판(40)이 도 4의 실시예로 실시되는 경우, 픽업단계(S20)에서는 제2챔버(535)에 인가된 음압의 절대값이 제1챔버(435)에 인가된 음압의 절대값보다 큰 값으로 인가되게 한다.According to an embodiment, when the loading substrate 40 of the present invention is implemented in the embodiment of FIG. 4, in the pickup step (S20), the absolute value of the sound pressure applied to the second chamber 535 is the first chamber 435 It should be applied with a value greater than the absolute value of the sound pressure applied to.
즉, 제1챔버(435)에 음압이 인가되어 적재 다이(43)의 수용홈(431)에 마이크로 LED(20)가 흡착되어 고정된 상태일 경우, 픽업단계(S20)에서 마이크로 LED(20)를 적재 다이(43)로부터 이탈시키기 위해서는 전사헤드(50)에 인가된 흡착력이 수용홈(431)에 인가된 흡착력보다 커야 한다.That is, when negative pressure is applied to the first chamber 435 and the micro LED 20 is adsorbed and fixed to the receiving groove 431 of the loading die 43, the micro LED 20 in the pickup step (S20) In order to disengage from the loading die 43, the adsorption force applied to the transfer head 50 must be greater than the adsorption force applied to the receiving groove 431.
이 경우, 제2챔버(535)에 인가된 음압의 절대값이 제1챔버(435)에 인가된 음압의 절대값보다 큰 값으로 인가되게 하여, 전사헤드(50)에 인가된 흡착력이 수용홈(431)에 인가된 흡착력보다 크게 형성되게 한다. 이에 따라, 그리퍼(539)에 마이크로 LED(20)가 흡착되어 전사헤드(50)에 흡착되고, 적재 다이(43)로부터 이탈된다. In this case, the absolute value of the sound pressure applied to the second chamber 535 is applied to a value greater than the absolute value of the sound pressure applied to the first chamber 435, so that the adsorption force applied to the transfer head 50 is applied to the receiving groove. It is to be formed larger than the adsorption force applied to (431). Accordingly, the micro LED 20 is adsorbed to the gripper 539, adsorbed to the transfer head 50, and separated from the loading die 43.
배치단계(S30)에서는 전사헤드(50)가 마이크로 LED(20)의 전극부(21)를 목표기판(60)의 단자부(61)에 위치시키고, 전사헤드(50)에 양압을 인가하여 마이크로 LED(20)를 목표기판(60)에 배치한다.In the arrangement step (S30), the transfer head 50 places the electrode part 21 of the micro LED 20 on the terminal part 61 of the target substrate 60, and applies a positive pressure to the transfer head 50 to obtain the micro LED. Place (20) on the target substrate (60).
상술한 것과 같이, 전사헤드(50)에 마이크로 LED(20)가 흡착된다. 전사헤드(50)는 마이크로 LED(20)를 목표기판(60)으로 위치시킨다. 이때, 전사헤드(50)는 상술한 것과 같이 적재기판(40)에 적재된 마이크로 LED(20)의 비전극면이 위치된 상면을 흡착하여, 마이크로 LED(20)의 전극부(21)가 하측에 위치되게 이송한다. As described above, the micro LED 20 is adsorbed on the transfer head 50. The transfer head 50 positions the micro LED 20 as the target substrate 60. At this time, the transfer head 50 adsorbs the upper surface on which the non-electrode surface of the micro LED 20 loaded on the loading substrate 40 is positioned as described above, so that the electrode part 21 of the micro LED 20 is placed on the lower side. Transfer to a position.
목표기판(60)은 유리 또는 유연기판으로 실시될 수 있으나, 이에 실시예가 한정되지 않는다. 또한, 목표기판(60)은 TFT어레이 기판으로서, 복수개의 화소영역(P)이 형성되고, 화소영역(P)에 배치된 마이크로 LED(20)를 구동하기 위한 박막트랜지스터, 배선들이 형성될 수 있다.The target substrate 60 may be implemented as a glass or flexible substrate, but the embodiment is not limited thereto. In addition, the target substrate 60 is a TFT array substrate, in which a plurality of pixel regions P are formed, and thin film transistors and wires for driving the micro LEDs 20 disposed in the pixel region P may be formed. .
배치단계(S30)에서, 전사헤드(50)는 마이크로 LED(20)의 전극부(21)를 목표기판(60)의 단자부(61)에 위치시킨다. 여기서, 목표기판(60)의 단자부(61)는 마이크로 LED(20)의 전극부(21)에 전기적으로 접속된다. In the arrangement step (S30), the transfer head 50 positions the electrode portion 21 of the micro LED 20 on the terminal portion 61 of the target substrate 60. Here, the terminal portion 61 of the target substrate 60 is electrically connected to the electrode portion 21 of the micro LED 20.
이때, 목표기판(60)의 단자부(61)에는 전기전도성 잉크가 도포될 수 있다. 전기전도성잉크는 마이크로 LED(20)의 전극부(21)와 목표기판(60)의 단자부(61)를 접착시킬 수 있다.In this case, an electrically conductive ink may be applied to the terminal portion 61 of the target substrate 60. The electroconductive ink may bond the electrode portion 21 of the micro LED 20 and the terminal portion 61 of the target substrate 60.
또한, 전기전도성 잉크는 전극부(21)와 단자부(61)를 전기적으로 접속시킬 수 있다. 본 발명의 일 실시예에 따른 전기전도성 잉크는 실버 파티클(silver particle)이 첨가된 에폭시 수지로 실시될 수 있다. 또한, 전기전도성 잉크는 실버 파티클(silver particle)이 첨가된 점성이 있는 레진으로 실시될 수도 있으나, 이에 실시예가 한정되지 않는다. 전기전도성 잉크의 매질이 에폭시 수지로 형성되는 경우, 에폭시 수지는 열경화성 수지로서 건조 후 경화되어 큰 접착력을 갖는다.In addition, the electroconductive ink can electrically connect the electrode portion 21 and the terminal portion 61. The electrically conductive ink according to an embodiment of the present invention may be implemented with an epoxy resin to which silver particles are added. In addition, the electrically conductive ink may be implemented with a viscous resin to which silver particles are added, but embodiments are not limited thereto. When the medium of the electroconductive ink is formed of an epoxy resin, the epoxy resin is a thermosetting resin and is cured after drying to have a large adhesive strength.
또한, 전기전도성 잉크는 건조 전에는 전극부(21)에 단자부(61)의 재접촉이 가능하다. 이때, 전기전도성 잉크의 건조 전, 불량이 발생된 마이크로 LED(20)를 목표기판(60)으로부터 탈거하고, 정상적인 마이크로 LED(20)를 목표기판(60)에 실장이 가능하다.In addition, the electroconductive ink can re-contact the terminal portion 61 with the electrode portion 21 before drying. At this time, before drying of the electroconductive ink, the defective micro LED 20 is removed from the target substrate 60, and the normal micro LED 20 can be mounted on the target substrate 60.
즉, 마이크로 LED 디스플레이(1)를 검사하여 불량화소가 발생하는 화소영역(P)의 마이크로 LED(20)를 목표기판(60)으로부터 탈거하고, 여기에 정상적인 마이크로 LED(20)를 실장할 수 있다. 이에 따라, 최종제품에 대한 공정비용을 감소하고, 불량률을 감소시킬 수 있다. That is, by inspecting the micro LED display 1, the micro LED 20 in the pixel area P in which the defective pixels are generated is removed from the target substrate 60, and a normal micro LED 20 can be mounted thereon. . Accordingly, it is possible to reduce the process cost for the final product and reduce the defect rate.
배치단계(S30)에서 마이크로 LED(20)의 전극부(21)가 목표기판(60)의 단자부(61)에 위치되면, 전사헤드(50)에 양압(positive)을 인가한다.When the electrode portion 21 of the micro LED 20 is positioned on the terminal portion 61 of the target substrate 60 in the arrangement step S30, a positive pressure is applied to the transfer head 50.
즉, 마이크로 LED(20)는 상술한 것과 같이 크기가 마이크로 사이즈로 형성되어, 반데르발스 힘(van der waals force)에 영향을 받을 수 있다. 즉, 마이크로 LED(20)의 경우, 마이크로 사이즈로 인하여 질량이 매우 작아 미소 인력으로도 특정 물체에 부착되거나 접촉 상태가 유지될 수 있다. 특히, 특정 물체와의 접촉 면적이 클 수록 마이크로 LED(20) 사이에 작용하는 반데르발스 힘이 크게 작용할 수 있다. That is, the micro LED 20 is formed in a micro size, as described above, and may be affected by a van der waals force. That is, in the case of the micro LED 20, the mass is very small due to the micro size, so that it can be attached to a specific object or maintain a contact state even with a small attraction. In particular, the larger the contact area with a specific object, the greater the Van der Waals force acting between the micro LEDs 20 may act.
이 경우, 전사헤드(50)와 마이크로 LED(20) 사이에도 반데르발스 힘이 작용할 수 있다. 이때, 전사헤드(50)에 음압을 해제하는 것만으로는 마이크로 LED(20)가 전사헤드(50)로부터 이탈되지 않고 흡착 상태가 유지될 수 있다.In this case, van der Waals force may also act between the transfer head 50 and the micro LED 20. At this time, only by releasing the negative pressure on the transfer head 50, the micro LED 20 is not separated from the transfer head 50 and the adsorption state can be maintained.
따라서, 전사헤드(50)에 양압을 인가하여, 마이크로 LED(20)가 전사헤드(50)로부터 분리되게 한다. 이에 따라, 마이크로 LED(20)를 목표기판(60)에 배치할 수 있게 된다.Therefore, by applying a positive pressure to the transfer head 50, the micro LED 20 is separated from the transfer head 50. Accordingly, the micro LED 20 can be disposed on the target substrate 60.
이 경우, 전사헤드(50)가 마이크로 LED(20)를 목표기판(60)에 배치할 때 양압을 인가하여 배치하므로, 마이크로 LED(20)에 전기적 충격을 주지 않게 되어, 마이크로 LED의 전사품질을 향상시킨다. In this case, since the transfer head 50 applies positive pressure when placing the micro LEDs 20 on the target substrate 60, it does not give an electric shock to the micro LEDs 20, thereby improving the transfer quality of the micro LEDs. Improve.
이상, 본 발명의 마이크로 LED 전사방법에 따르면 마이크로 LED(20)를 신속하고, 정확하며, 안정적으로 목표기판(60)에 전사할 수 있다.As described above, according to the micro LED transfer method of the present invention, the micro LED 20 can be quickly, accurately and stably transferred to the target substrate 60.
한편, 도 8을 참조하면 본 발명의 일 실시예에 따른 그리퍼(539)는 전사헤드 바디(531)로부터 돌출되게 형성된다.Meanwhile, referring to FIG. 8, the gripper 539 according to an embodiment of the present invention is formed to protrude from the transfer head body 531.
상술한 것과 같이, 마이크로 LED(20)는 상술한 것과 같이 크기가 마이크로 사이즈로 형성되어, 반데르발스 힘(van der waals force)에 영향을 받을 수 있다. 이 경우, 배치단계(S30)에서 마이크로 LED(20)가 전사헤드(50)로부터 용이하게 분리되지 않을 수 있다. As described above, the micro LED 20 is formed in a micro size as described above, and may be affected by van der waals force. In this case, the micro LED 20 may not be easily separated from the transfer head 50 in the arrangement step S30.
이 경우, 반데르발스 힘을 축소시키기 위해, 본 발명의 그리퍼(539)는 전사헤드 바디(531)로부터 돌출되게 형성되어, 마이크로 LED(20)를 전사헤드 바디(531)로부터 최대한 이격시킨다. 이에 따라, 전사헤드 바디(531)로부터 마이크로 LED(20)에 작용할 수 있는 반데르발스 힘을 축소시킨다. In this case, in order to reduce the Van der Waals force, the gripper 539 of the present invention is formed to protrude from the transfer head body 531, so that the micro LED 20 is maximally separated from the transfer head body 531. Accordingly, the van der Waals force that can act on the micro LED 20 from the transfer head body 531 is reduced.
그리퍼(539)는 도 8의 (a)와 같이, 제2관통홀(533)이 형성된 원주형으로 형성될 수 있다. 또한, 그리퍼(539)는 원주형 대신 사각주형으로 형성될 수도 있으나, 이에 실시예가 한정되지 않는다.The gripper 539 may be formed in a cylindrical shape in which a second through hole 533 is formed, as shown in FIG. 8A. In addition, the gripper 539 may be formed in a square mold instead of a cylindrical shape, but the embodiment is not limited thereto.
그리퍼(539)는 도 8의 (b)와 같이, 외주면에 경사면이 형성될 수 있다. 즉, 상술한 것과 같이, 마이크로 LED(20)에는 반데르발스 힘이 작용될 수 있는데, 마이크로 LED(20)와 접촉되는 그리퍼(539)의 단부의 면적이 커질 수록 반데르발스 힘이 커질 수 있다. The gripper 539 may have an inclined surface formed on the outer circumferential surface, as shown in FIG. 8B. That is, as described above, the van der Waals force may be applied to the micro LED 20, and the van der Waals force may increase as the area of the end of the gripper 539 in contact with the micro LED 20 increases. .
이를 해결하기 위해, 그리퍼(539)의 외주면(539a)에 경사면을 형성하여, 그리퍼(539)의 단부(539b)의 면적을 축소시킬 수 있다. 이에 따라, 그리퍼(539)의 단부(539b)에 작용하는 반데르발스 힘의 작아질 수 있다.To solve this, an inclined surface is formed on the outer circumferential surface 539a of the gripper 539 to reduce the area of the end portion 539b of the gripper 539. Accordingly, the van der Waals force acting on the end portion 539b of the gripper 539 can be reduced.
실시예에 따라, 마이크로 LED(20)와 접촉되는 그리퍼(539)의 단부(539b)에 PDMS 코팅막이 형성될 수 있다. PDMS 코팅막은 픽업단계(S20)에서 그리퍼(539)로 마이크로 LED(20)를 흡착할 때, 마이크로 LED(20)와 그리퍼(539)의 흡착력을 증가시킬 수 있다. 또한, PDMS 코팅막은 마이크로 LED(20)와 그리퍼(539)의 단부(539b) 사이를 실링하여, 마이크로 LED(20)가 그리퍼(539)에 안정적으로 흡착되게 할 수 있다.Depending on the embodiment, a PDMS coating film may be formed on the end 539b of the gripper 539 in contact with the micro LED 20. When the PDMS coating film adsorbs the micro LED 20 to the gripper 539 in the pickup step S20, the adsorption force of the micro LED 20 and the gripper 539 may be increased. In addition, the PDMS coating film seals between the micro LED 20 and the end portion 539b of the gripper 539 so that the micro LED 20 can be stably adsorbed onto the gripper 539.
도 9는 본 발명의 실시예들에 따라 제조된 마이크로 LED 디스플레이(1)의 일 실시예이다.9 is an embodiment of a micro LED display 1 manufactured according to embodiments of the present invention.
상술한 것과 같이, 목표기판(60)은 유리 또는 유연기판으로 실시될 수 있으나, 이에 실시예가 한정되지 않는다. 또한, 목표기판(60)은 TFT어레이 기판으로서, 복수개의 화소영역(P)이 형성되고, 화소영역(P)에 배치된 마이크로 LED(20)를 구동하기위한 박막트랜지스터, 배선들이 형성될 수 있다.As described above, the target substrate 60 may be implemented as a glass or flexible substrate, but the embodiment is not limited thereto. In addition, the target substrate 60 is a TFT array substrate, in which a plurality of pixel regions P are formed, and thin film transistors and wires for driving the micro LEDs 20 disposed in the pixel region P may be formed. .
박막트랜지스터가 온(on)되면, 배선을 통해 외부로부터 입력된 구동신호가 마이크로 LED(20)에 인가되어 마이크로 LED(20)가 발광하여, 화상을 구현한다.When the thin film transistor is turned on, a driving signal input from the outside through wiring is applied to the micro LED 20 so that the micro LED 20 emits light, thereby implementing an image.
이때, 목표기판(60)의 각 화소영역(P)에는 R, G, B의 단색광을 각각 발광하는 3개의 마이크로 LED(20)가 실장되므로, 외부로부터의 신호인가에 의해 R, G, B 컬러의 광이 발광되어 화상을 표시할 수 있게 된다.At this time, since three micro LEDs 20 that emit monochromatic light of R, G, and B are mounted in each pixel area P of the target substrate 60, the R, G, and B colors are applied by applying a signal from the outside. Light is emitted so that an image can be displayed.
이상, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.As described above, those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features thereof. Therefore, it should be understood that the embodiments described above are illustrative and non-limiting in all respects.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the scope of the claims to be described later rather than the detailed description, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts are included in the scope of the present invention. It must be interpreted.
본 발명은 마이크로 LED 제조방법, 마이크로 LED 제조장치, 그 제조방법 및 제조장치에 관련된 것으로, 마이크로 LED 디스플레이 등 다양한 기술분야에 활용될 수 있다. The present invention relates to a micro LED manufacturing method, a micro LED manufacturing apparatus, a manufacturing method and a manufacturing apparatus thereof, and can be used in various technical fields such as a micro LED display.
Claims (18)
- 마이크로 LED가 적재된 적재기판을 마련하는 마이크로 LED 마련단계;Micro LED preparation step of preparing a loading substrate on which the micro LED is loaded;상기 적재기판에 적재된 상기 마이크로 LED의 상면을 전사헤드로 흡착하고, 상기 마이크로 LED를 상기 적재기판으로부터 이탈시키는 픽업단계; 및A pickup step of adsorbing the upper surface of the micro LED loaded on the loading substrate with a transfer head and separating the micro LED from the loading substrate; And상기 전사헤드가 상기 마이크로 LED의 상기 전극부를 목표기판의 단자부에 위치시키고, 상기 전사헤드에 양압을 인가하여 상기 마이크로 LED를 상기 목표기판에 배치하는 배치단계; 를 포함하고,An arrangement step of placing the micro LED on the target substrate by placing the electrode portion of the micro LED into a terminal portion of the target substrate by the transfer head and applying a positive pressure to the transfer head; Including,상기 전사헤드의 탄성계수는 0.00036 ~ 5.5 GPa인 마이크로 LED 전사방법.Micro LED transfer method of the elastic modulus of the transfer head is 0.00036 ~ 5.5 GPa.
- 제1항에 있어서,The method of claim 1,상기 마이크로 LED 마련단계는,The step of preparing the micro LED,전극부가 상면에 위치된 복수개의 마이크로 LED를 분리기판에 서로 이격되게 배치시키는 준비단계; 및 A preparation step of disposing a plurality of micro LEDs positioned on the upper surface of the electrode unit to be spaced apart from each other on a separation substrate; And상기 분리기판을 반전시켜 상기 전극부가 적재기판에 대향되게 상기 마이크로 LED를 적재하고, 상기 분리기판으로부터 상기 마이크로 LED를 분리시키는 적재단계;A loading step of inverting the separation substrate to load the micro LED so that the electrode portion faces the loading substrate, and separating the micro LED from the separation substrate;를 포함하는 마이크로 LED 전사방법.Micro LED transfer method comprising a.
- 제2항에 있어서,The method of claim 2,상기 준비단계는,The preparation step,성장기판에 n층, 발광층, p층을 적층하여 다이오드를 형성하는 다이오드 형성단계;A diode forming step of forming a diode by laminating an n layer, a light emitting layer, and a p layer on a growth substrate;상기 p층에 상기 분리기판을 적층하는 분리기판 적층단계;A separating substrate laminating step of laminating the separating substrate on the p-layer;상기 성장기판을 상기 다이오드로부터 분리하고, 상기 분리기판을 반전시키는 성장기판 분리단계; 및A growth substrate separation step of separating the growth substrate from the diode and inverting the separation substrate; And상기 다이오드를 마이크로 LED로 가공하는 마이크로 LED 가공단계;Micro LED processing step of processing the diode into a micro LED;를 포함하는 마이크로 LED 전사방법.Micro LED transfer method comprising a.
- 제2항에 있어서,The method of claim 2,상기 분리기판은 열 박리 테이프 또는 UV 박리 테이프인 마이크로 LED 전사방법.The separation substrate is a thermal peeling tape or a UV peeling tape micro LED transfer method.
- 제1항에 있어서,The method of claim 1,상기 적재기판은 PDMS 필름 또는 탄성중합체 필름인 마이크로 LED 전사방법.The loading substrate is a micro LED transfer method of a PDMS film or an elastomer film.
- 제1항에 있어서,The method of claim 1,상기 적재기판은 폴리머 테이프, 유리기판, 폴리머가 코팅된 유리기판, SiC기판, GaAs기판, Si기판 또는 사파이어기판 중 어느 하나인 마이크로 LED 전사방법.The loading substrate is any one of a polymer tape, a glass substrate, a polymer coated glass substrate, a SiC substrate, a GaAs substrate, a Si substrate, or a sapphire substrate.
- 제2항에 있어서,The method of claim 2,상기 적재단계는,The loading step,상기 적재기판에 상기 마이크로 LED의 상기 전극부가 접촉되게 배치되는 마이크로 LED 배치단계; 및A micro LED arranging step in which the electrode portion of the micro LED is in contact with the loading substrate; And상기 분리기판에 열 또는 UV를 인가하여 상기 분리기판으로부터 상기 마이크로 LED를 분리시키는 마이크로 LED 분리단계;A micro LED separating step of separating the micro LED from the separating substrate by applying heat or UV to the separating substrate;를 포함하는 마이크로 LED 전사방법.Micro LED transfer method comprising a.
- 제2항에 있어서,The method of claim 2,상기 적재기판은,The loading substrate,하나의 마이크로 LED칩을 수용하는 수용홈이 복수개 형성되고, 내부에 제1챔버가 형성된 형성된 적재 다이;A stacking die having a plurality of receiving grooves for accommodating one micro LED chip and having a first chamber formed therein;상기 수용홈에 형성되어, 상기 제1챔버에 연통되는 제1관통홀; 및A first through hole formed in the receiving groove and communicating with the first chamber; And상기 제1챔버에 음압을 인가하는 진공모듈;A vacuum module for applying a negative pressure to the first chamber;을 포함하는 마이크로 LED 전사방법.Micro LED transfer method comprising a.
- 제8항에 있어서,The method of claim 8,상기 적재단계는,The loading step,상기 적재 다이의 상기 수용홈에 상기 마이크로 LED의 상기 전극부가 안착되게 배치하는 마이크로 LED 배치단계; 및A micro LED arranging step of arranging the electrode part of the micro LED to be seated in the receiving groove of the loading die; And상기 제1챔버에 음압을 인가하여 상기 마이크로 LED를 상기 수용홈에 고정시킨 후 상기 분리기판에 열 또는 UV를 인가하여 상기 분리기판으로부터 상기 마이크로 LED를 분리시키는 마이크로 LED 분리단계;A micro LED separating step of separating the micro LED from the separating substrate by applying a negative pressure to the first chamber to fix the micro LED in the receiving groove and then applying heat or UV to the separating substrate;를 포함하는 마이크로 LED 전사방법.Micro LED transfer method comprising a.
- 제1항에 있어서,The method of claim 1,상기 전사헤드는,The transfer head,내부에 제2챔버가 형성된 형성된 전사헤드 바디;A transfer head body having a second chamber formed therein;상기 전사헤드 바디에 돌출되게 구비되어 상기 마이크로 LED에 접촉되는 그리퍼;A gripper provided to protrude from the transfer head body to contact the micro LED;상기 그리퍼에 관통되게 형성되어, 상기 제2챔버에 연통되는 제2관통홀; 및A second through hole formed to pass through the gripper and communicating with the second chamber; And상기 제2챔버에 음압 또는 양압을 인가하는 압력인가모듈;A pressure applying module for applying a negative or positive pressure to the second chamber;을 포함하는 마이크로 LED 전사방법.Micro LED transfer method comprising a.
- 제10항에 있어서,The method of claim 10,상기 픽업단계는 상기 제2챔버에 음압을 인가하여, 상기 그리퍼로 상기 마이크로 LED를 흡착하는 마이크로 LED 전사방법.In the pickup step, a micro LED transfer method of applying a negative pressure to the second chamber to adsorb the micro LED with the gripper.
- 제10항에 있어서,The method of claim 10,상기 전사헤드는 상기 적재기판에 적재된 복수개의 상기 마이크로 LED 중 하나의 마이크로 LED를 흡착하고, 상기 흡착된 마이크로 LED에 인접한 다른 마이크로 LED는 상기 적재기판에 존치시키는 마이크로 LED 전사방법.The transfer head is a micro LED transfer method in which one of the plurality of micro LEDs loaded on the loading substrate is adsorbed, and other micro LEDs adjacent to the adsorbed micro LEDs are placed on the loading substrate.
- 제8항에 있어서,The method of claim 8,상기 적재단계는 상기 제1챔버에 음압을 인가하여 상기 마이크로 LED를 상기 수용홈에 고정시킨 후 상기 분리기판에 열 또는 UV를 인가하여 상기 분리기판으로부터 상기 마이크로 LED를 분리시키는 마이크로 LED 분리단계를 포함하는 마이크로 LED 전사방법.The loading step includes a micro LED separating step of separating the micro LED from the separating substrate by applying a negative pressure to the first chamber to fix the micro LED in the receiving groove and then applying heat or UV to the separating substrate. Micro LED transfer method.
- 제13항에 있어서,The method of claim 13,상기 픽업단계는 상기 제2챔버에 인가된 상기 음압의 절대값이 상기 제1챔버에 인가된 상기 음압의 절대값보다 큰 값으로 인가되는 마이크로 LED 전사방법.In the pickup step, the absolute value of the sound pressure applied to the second chamber is applied to a value greater than the absolute value of the sound pressure applied to the first chamber.
- 제1항에 있어서,The method of claim 1,상기 목표기판의 단자부에는 전기전도성 잉크가 도포되는 마이크로 LED 전사방법.Micro LED transfer method in which an electrically conductive ink is applied to the terminal portion of the target substrate.
- 제10항에 있어서,The method of claim 10,상기 그리퍼는 외주면에 경사면이 형성되는 마이크로 LED 전사방법.The gripper is a micro LED transfer method in which an inclined surface is formed on an outer circumferential surface.
- 제1항에 있어서,The method of claim 1,상기 전사헤드는 폴리카보네이트, 폴리우레탄, 우레탄 아크릴레이트, 이소보르닐 아크릴레이트, 에폭시 또는 PDMS 중 적어도 어느 하나의 재질로 제조되는 마이크로 LED 전사방법.The transfer head is a micro LED transfer method made of at least one of polycarbonate, polyurethane, urethane acrylate, isobornyl acrylate, epoxy, or PDMS.
- 제1항 내지 제17항 중 어느 한 항의 방법으로 제조되는 마이크로 LED 디스플레이.A micro LED display manufactured by the method of any one of claims 1 to 17.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0106529 | 2019-08-29 | ||
KR10-2019-0106528 | 2019-08-29 | ||
KR1020190106528A KR102271033B1 (en) | 2019-08-29 | 2019-08-29 | transfer method of micro LED |
KR20190106529 | 2019-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021040391A1 true WO2021040391A1 (en) | 2021-03-04 |
Family
ID=74685598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/011362 WO2021040391A1 (en) | 2019-08-29 | 2020-08-26 | Micro led transfer method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021040391A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170024906A (en) * | 2015-08-26 | 2017-03-08 | 엘지전자 주식회사 | Transfer unit for micro device |
KR101754528B1 (en) * | 2016-03-23 | 2017-07-06 | 한국광기술원 | Transfer assembly with dry adhesion structure and method for transferring led structure assembly using the same and led structure assembly |
KR101890934B1 (en) * | 2017-12-01 | 2018-08-22 | 한국광기술원 | Process of pixel of LED display |
KR20190074551A (en) * | 2017-12-20 | 2019-06-28 | (주)포인트엔지니어링 | Trnasfer head for micro led |
US20190221466A1 (en) * | 2016-09-29 | 2019-07-18 | Toray Engineering Co., Ltd. | Transfer method, mounting method, transfer device, and mounting device |
-
2020
- 2020-08-26 WO PCT/KR2020/011362 patent/WO2021040391A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170024906A (en) * | 2015-08-26 | 2017-03-08 | 엘지전자 주식회사 | Transfer unit for micro device |
KR101754528B1 (en) * | 2016-03-23 | 2017-07-06 | 한국광기술원 | Transfer assembly with dry adhesion structure and method for transferring led structure assembly using the same and led structure assembly |
US20190221466A1 (en) * | 2016-09-29 | 2019-07-18 | Toray Engineering Co., Ltd. | Transfer method, mounting method, transfer device, and mounting device |
KR101890934B1 (en) * | 2017-12-01 | 2018-08-22 | 한국광기술원 | Process of pixel of LED display |
KR20190074551A (en) * | 2017-12-20 | 2019-06-28 | (주)포인트엔지니어링 | Trnasfer head for micro led |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019124994A1 (en) | Transfer method using deformable film | |
WO2019017670A1 (en) | Apparatus and method for manufacturing led module | |
WO2018199428A1 (en) | Micro led display device and manufacturing method therefor | |
WO2016085086A1 (en) | Quantum dot electronic device and quantum dot transfer printing method | |
WO2019124685A1 (en) | Transfer head assembly and led transfer apparatus | |
WO2017126762A1 (en) | Display device using semiconductor light emitting device | |
WO2021015407A1 (en) | Display module having led packages and manufacturing method thereof | |
WO2021075794A1 (en) | Manufacturing method of display apparatus, interposer substrate, and computer program stored in readable medium | |
WO2016056750A1 (en) | Semiconductor device and method of manufacturing the same | |
WO2020190045A1 (en) | Light-emitting device package and application thereof | |
WO2021086026A1 (en) | Led display device | |
US11810809B2 (en) | Method for transferring micro light emitting diodes | |
WO2020190046A1 (en) | Light-emitting device package and application thereof | |
WO2021125780A1 (en) | Method for restoring light emitting elements, and display panel comprising restored light emitting elements | |
WO2020080779A1 (en) | Light emitting diode and manufacturing method of light emitting diode | |
WO2020218850A1 (en) | Light-emitting diode display panel, display device having same, and method for manufacturing same | |
WO2021080311A1 (en) | Led display device | |
WO2018151381A1 (en) | Light emitting diode apparatus and manufacturing method thereof | |
WO2020096325A1 (en) | Micro-led positioning error correcting carrier and micro-led transfer system | |
WO2019177337A1 (en) | Transfer apparatus and method for transferring light-emitting diode chip | |
WO2020032394A1 (en) | Method for manufacturing display apparatus | |
WO2019190089A1 (en) | Display device and method for manufacturing same | |
WO2021040391A1 (en) | Micro led transfer method | |
WO2021117974A1 (en) | Semiconductor light-emitting element supply device and supply method | |
WO2020080603A1 (en) | Display device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20858793 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20858793 Country of ref document: EP Kind code of ref document: A1 |