WO2021039727A1 - Semiconductor nanoparticles, production method for same, and light-emitting device - Google Patents

Semiconductor nanoparticles, production method for same, and light-emitting device Download PDF

Info

Publication number
WO2021039727A1
WO2021039727A1 PCT/JP2020/031860 JP2020031860W WO2021039727A1 WO 2021039727 A1 WO2021039727 A1 WO 2021039727A1 JP 2020031860 W JP2020031860 W JP 2020031860W WO 2021039727 A1 WO2021039727 A1 WO 2021039727A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
less
shell
semiconductor nanoparticles
group
Prior art date
Application number
PCT/JP2020/031860
Other languages
French (fr)
Japanese (ja)
Inventor
鳥本 司
達矢 亀山
千恵 宮前
桑畑 進
太郎 上松
大祐 小谷松
Original Assignee
国立大学法人東海国立大学機構
国立大学法人大阪大学
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構, 国立大学法人大阪大学, 日亜化学工業株式会社 filed Critical 国立大学法人東海国立大学機構
Priority to JP2021542896A priority Critical patent/JPWO2021039727A1/ja
Publication of WO2021039727A1 publication Critical patent/WO2021039727A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present disclosure relates to semiconductor nanoparticles, a method for producing the same, and a light emitting device.
  • quantum dots also called semiconductor quantum dots.
  • the quantum size effect is a phenomenon in which the bands of the valence band and the conduction band, which are considered to be continuous in bulk particles, become discrete when the particle size is nano-sized, and the band gap energy changes according to the particle size. Point to.
  • the quantum dots can absorb light and convert the wavelength into light corresponding to the band gap energy
  • a white light emitting device utilizing the light emission of the quantum dots has been proposed (for example, Japanese Patent Application Laid-Open No. 2012-212862). (See Japanese Patent Application Laid-Open No. 2010-177656). Further, core-shell type semiconductor nanoparticles capable of emitting band-end light and having a low toxicity composition and a method for producing the same have been proposed (see, for example, Japanese Patent Application Laid-Open No. 2018-0414242).
  • One aspect of the present disclosure is to provide a method for producing semiconductor nanoparticles capable of band-end emission and having excellent luminous efficiency.
  • the first aspect is a method for producing core-shell type semiconductor nanoparticles.
  • the production method is a core containing a semiconductor containing M 1 , M 2 and Z, wherein M 1 is at least one element selected from the group consisting of Ag, Cu, Au and an alkali metal, and at least Ag. Is included, M 2 is at least one element selected from the group consisting of Al, Ga, In and Tl, and contains at least one of In and Ga, and Z is from the group consisting of S, Se and Te.
  • the mixture is a compound containing the first element and a simple substance of the second element or a compound containing the second element, and the total atoms of the first element relative to the total number of atoms of the first element and the total number of atoms of the second element. Include in a mixed ratio where the ratio of numbers is greater than 0.5.
  • the second aspect is a core-shell type semiconductor nanoparticle having a core and a shell arranged on the surface of the core and emitting light by irradiation with light.
  • the core comprises a semiconductor containing M 1 , M 2 and Z, where M 1 is at least one element selected from the group consisting of Ag, Cu, Au and alkali metals, containing at least Ag and M 2 Is at least one element selected from the group consisting of Al, Ga, In and Tl, contains at least one of In and Ga, and Z is at least one element selected from the group consisting of S, Se and Te. Contains the elements of.
  • the core has a total M 1 content of 10 mol% or more and 30 mol% or less, a total M 2 content of 15 mol% or more and 35 mol% or less, and a total Z content of 35. It is more than mol% and less than 55 mol%.
  • the shell is substantially composed of a first element, which is at least one selected from the group consisting of Al, Ga, In and Tl, and a second element, which is at least one selected from the group consisting of S, Se and Te. , O element.
  • the third aspect is a light emitting device including a light conversion member containing the core-shell type semiconductor nanoparticles and a semiconductor light emitting element.
  • the term "process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • embodiments of the present invention will be described in detail. However, the embodiments shown below exemplify core-shell type semiconductor nanoparticles, a method for producing the same, and a light emitting device for embodying the technical idea of the present invention, and the present invention is the core-shell type shown below. It is not limited to semiconductor nanoparticles, their manufacturing methods, and light emitting devices.
  • the method for producing core-shell type semiconductor nanoparticles includes a preparatory step for preparing a core, a mixing step for obtaining a mixture containing a core and a shell-forming material, and a heat treatment of the mixture for core-shell type semiconductor nanoparticles. Includes a heat treatment step to obtain.
  • the core contains a semiconductor containing element M 1 , element M 2 and element Z.
  • the element M 1 contains at least one selected from the group consisting of silver (Ag), copper (Cu), gold (Au) and alkali metals, and contains at least Ag.
  • the element M 2 contains at least one selected from the group consisting of aluminum (Al), gallium (Ga), indium (In) and thallium (Tl), and contains at least one of In and Ga.
  • Element Z comprises at least one selected from the group consisting of sulfur (S), selenium (Se) and tellurium (Te).
  • the mixture is selected from the group consisting of the core and at least one compound containing the first element, which is at least one selected from the group consisting of Al, Ga, In and Tl as the shell-forming material, and the group consisting of S, Se and Te. It contains at least one element of the second element and at least one compound containing the second element.
  • the mixture comprises a compound containing the first element (hereinafter, also referred to as a first element source) and a simple substance of the second element or a compound containing a second element (hereinafter, also referred to as a second element source). It is included in a mixing ratio in which the ratio of the total number of atoms of the first element to the total number of total atoms of the element and the total number of atoms of the second element is greater than 0.5.
  • a compound containing the first element hereinafter, also referred to as a first element source
  • a simple substance of the second element or a compound containing a second element (hereinafter, also referred to as a second element source). It is included in a mixing ratio in which the ratio of the total number of atoms of the first element to the total number of total atoms of the element and the total number of atoms of the second element is greater than 0.5.
  • core-shell type semiconductor nanoparticles when forming a shell on the core surface, the first element source and the second element source, which are shell-forming materials, are used, and the content of the first element is changed to the second element.
  • core-shell type semiconductor nanoparticles having excellent light emission efficiency can be produced by heat-treating the mixture contained in an excess amount on a molar basis. This can be considered, for example, because the first element contained in excess reacts with an element other than the second element, for example, oxygen to form a shell.
  • Core preparation step In the core preparation step, a core containing a semiconductor containing element M 1 , element M 2 and element Z is prepared.
  • the core may be semiconductor nanoparticles.
  • the core may be appropriately selected from commercially available semiconductor nanoparticles and prepared, or semiconductor nanoparticles having a desired composition may be produced and prepared.
  • the element M 1 constituting the core contains Ag and may further contain at least one element selected from the group consisting of Cu, Au and alkali metals.
  • the alkali metal in the element M 1 includes lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and the like. Since the alkali metal can be a monovalent cation like Ag, it can replace a part of Ag in the composition of the semiconductor nanoparticles. In particular, Li has an ionic radius similar to that of Ag and is preferably used. In the composition of semiconductor nanoparticles, for example, by substituting a part of Ag with an alkali metal, for example, the band gap is widened and the emission peak wavelength is shifted to a short wavelength.
  • the element M 2 contains at least one of In and Ga, and may further contain at least one element selected from the group consisting of Al and Tl.
  • the element Z contains at least one element selected from the group consisting of S, Se and Te, and may contain at least S.
  • the core may be, for example, semiconductor nanoparticles containing Ag as the element M 1 , at least one of In and Ga as the element M 2, and S as the element Z. Further, the core may be, for example, semiconductor nanoparticles having a composition represented by the following formula (1). M 1 q M 2 Z (q + 3) / 2 (1) Here, 0.2 ⁇ q ⁇ 1.2.
  • the core semiconductor nanoparticles can be manufactured by the following manufacturing method.
  • the first core production method includes a raw material preparation step for obtaining a first raw material mixture containing a salt containing the element M 1 , a salt containing the element M 2, a source of the element Z, and an organic solvent. It may include a heat treatment step of heat-treating the first raw material mixture to obtain semiconductor nanoparticles.
  • the second core production method comprises a raw material preparation step for obtaining a second raw material mixture containing a salt containing the element M 1 , a salt containing the element M 2, and an organic solvent, and a predetermined raw material mixture. It may include a heating step of heating to a temperature and an addition step of adding a source of element Z to the heated second raw material mixture.
  • a salt containing the element M 1 , a salt containing the element M 2 , and a source of the element Z are simultaneously charged into an organic solvent to prepare a first raw material mixture.
  • the core may be manufactured by heat-treating. According to this method, semiconductor nanoparticles as a core can be synthesized in one pot with good reproducibility by a simple operation. Further, the organic solvent and the salt containing the element M 1 are reacted to form a complex, and then the organic solvent and the salt containing the element M 2 are reacted to form a complex, and these complexes and the element Z are formed.
  • the core may be produced by a method of reacting with the source of the above and growing the obtained reaction product into crystals. In this case, the heat treatment may be carried out at the stage of reacting with the source of element Z.
  • the salt containing the element M 1 and the salt containing the element M 2 may be either an organic acid salt or an inorganic acid salt.
  • the inorganic acid salt include nitrates, sulfates, hydrochlorides, sulfonates and the like.
  • the organic acid salt include formate, acetate, oxalic acid, and acetylacetonate salt.
  • the salt containing the element M 1 and the salt containing the element M 2 are preferably at least one selected from the group consisting of these, and more preferably organic acid salts such as acetate and acetylacetonate. It is considered that the organic acid salt has a high solubility in an organic solvent and the reaction can be easily carried out more uniformly.
  • examples of the source of S include elemental sulfur and sulfur-containing compounds.
  • Specific examples of the urea-containing compound include ⁇ -dithiones such as 2,4-pentanedithione; dithiols such as 1,2-bis (trifluoromethyl) ethylene-1,2-dithiol; diethyldithiocarbamide acid.
  • Dialkyldithiocarbamide salts such as salts; thiourea, monoalkylthiourea, 1,3-dialkylthiourea, 1,1-dialkylthiourea, 1,1,3-trialkylthiourea, 1,1,3,3- Examples thereof include alkylthiourea having an alkyl group having 1 to 18 carbon atoms such as tetraalkylthiourea.
  • Se supply source examples include elemental selenium; Se-containing compounds such as selenourea, selenoacetamide, and alkylselenol.
  • Te supply source examples include tellurium simple substance, Te-phosphine complex, and alkyltelrol.
  • organic solvent examples include amines having a hydrocarbon group having 4 to 20 carbon atoms, for example, alkylamines having 4 to 20 carbon atoms or alkenylamines, for example, thiols having a hydrocarbon group having 4 to 20 carbon atoms, for example, 4 carbon atoms.
  • 20 alkylthiols or alkenylthiols, such as phosphines having a hydrocarbon group having 4 to 20 carbon atoms, such as alkylphosphine or alkenylphosphine having 4 to 20 carbon atoms, are selected from the group consisting of these. It is preferable to contain at least one type.
  • organic solvents may, for example, surface-modify the resulting semiconductor nanoparticles, for example.
  • the organic solvent may be used in combination of two or more, for example, at least one selected from thiols having a hydrocarbon group having 4 to 20 carbon atoms and an amine having a hydrocarbon group having 4 to 20 carbon atoms. A mixed solvent in combination with at least one of the above is used. These organic solvents may be mixed with other organic solvents and used.
  • the organic solvent contains the thiol and the amine
  • the volume ratio of the thiol to the amine is, for example, greater than 0 and 1 or less, preferably 0.007 or more and 0.2 or less.
  • the first raw material mixture comprises at least one salt containing the element M 1 , at least one salt containing the element M 2, and at least one source of the element Z without reacting with each other. It may be contained, or may be contained as a complex formed from these. Further, the first raw material mixture contains an M 1 complex formed from a salt containing the element M 1 , an M 2 complex formed from a salt containing the element M 2 , a complex formed from a source of the element Z, and the like. It may be a thing. Complex formation is carried out, for example, by mixing a salt containing the element M 1 , a salt containing the element M 2 , and a source of the element Z in a suitable organic solvent. Further, the mixed atmosphere may be an inert gas atmosphere, for example, an argon atmosphere, a nitrogen atmosphere, or the like. By creating an inert gas atmosphere, by-production of oxides can be reduced or prevented.
  • the ratio of the total number of atoms of the element M 1 (M 1 / M 2 ) to the total number of atoms of the element M 2 contained in the composition is, for example, 0.1 or more and 2.5 or less. It is preferably 0.2 or more and 2.0 or less, and more preferably 0.3 or more and 1.5 or less. Further, in the composition of the first raw material mixture, the ratio of the number of atoms of In to the total number of atoms of In and Ga (In / (In + Ga)) is, for example, 0.1 or more and 1.0 or less, preferably 0.1 or more. It is 0.25 or more and 0.99 or less.
  • the ratio (M 1 / Z) of the total number of atoms of the element M 1 to the total number of atoms of the element Z is, for example, 0.27 or more and 1.0 or less. It is preferably 0.35 or more and 0.5 or less.
  • the heat treatment step in the first production method is a one-step heat treatment step in which the first raw material mixture is heat-treated at a predetermined temperature, but after the heat treatment at the first temperature, the heat treatment is performed at a second temperature higher than the first temperature. It may be a two-step heat treatment step of heat treatment. By performing the heat treatment in two steps, for example, semiconductor nanoparticles having better reproducibility and relatively high intensity of band-end emission can be produced.
  • the heat treatment at the first temperature and the heat treatment at the second temperature may be continuously performed, or the heat treatment may be performed by lowering the temperature after the heat treatment at the first temperature and then raising the temperature to the second temperature. Good.
  • the heat treatment temperature may be, for example, 180 ° C. or higher, preferably 200 ° C. or higher or 260 ° C. or higher.
  • the heat treatment temperature may be, for example, 370 ° C. or lower, preferably 350 ° C. or lower or 320 ° C. or lower.
  • the heat treatment time may be, for example, 1 minute or longer, preferably 5 minutes or longer, and more preferably 7 minutes or longer.
  • the heat treatment time may be, for example, 120 minutes or less, preferably 60 minutes or less, more preferably 30 minutes or less, or 20 minutes or less.
  • the first temperature may be, for example, 30 ° C. or higher, preferably 100 ° C. or higher.
  • the first temperature may be, for example, 200 ° C. or lower, preferably 180 ° C. or lower.
  • the heat treatment time at the first temperature may be, for example, 1 minute or longer, preferably 5 minutes or longer, and more preferably 10 minutes or longer.
  • the heat treatment time at the first temperature may be, for example, 120 minutes or less, preferably 60 minutes or less, and more preferably 30 minutes or less.
  • the second temperature may be, for example, 180 ° C. or higher, preferably 200 ° C. or higher.
  • the second temperature may be, for example, 370 ° C or lower, preferably 350 ° C or lower.
  • the heat treatment time at the second temperature may be, for example, 1 minute or longer, preferably 5 minutes or longer, and more preferably 10 minutes or longer.
  • the heat treatment time at the second temperature may be, for example, 120 minutes or less, preferably 60 minutes or less, and more preferably 30 minutes or less.
  • the heat treatment time is defined as the start time of the heat treatment when the temperature reaches a predetermined temperature, and the end time of the heat treatment at the predetermined temperature when the operation for lowering or raising the temperature is performed.
  • the rate of temperature rise until reaching a predetermined temperature may be, for example, 1 ° C./min or more and 100 ° C./min or less, or 1 ° C./min or more and 50 ° C./min or less.
  • the temperature lowering rate after the heat treatment is, for example, 1 ° C./min or more and 100 ° C./min or less, and may be cooled if necessary, or the heat source may be stopped and allowed to cool.
  • the atmosphere in the heat treatment step is preferably a rare gas atmosphere such as argon or an inert atmosphere such as a nitrogen atmosphere.
  • a rare gas atmosphere such as argon
  • an inert atmosphere such as a nitrogen atmosphere.
  • the preparation process of the second core manufacturing method to prepare at least one salt containing the element M 1, and at least one salt containing the element M 2, the second raw material mixture containing an organic solvent.
  • the second raw material mixture can be prepared by mixing a salt containing the element M 1 and a salt containing the element M 2 with an organic solvent. Further, the second raw material mixture may be prepared by mixing a salt containing the element M 1 or a salt containing the element M 2 with an organic solvent, and then mixing the remaining components.
  • the obtained second raw material mixture may be in a solution state without undissolved substances in a heated state.
  • the mixed atmosphere may be an inert gas atmosphere, for example, an argon atmosphere, a nitrogen atmosphere, or the like. By creating an inert gas atmosphere, by-production of oxides can be reduced or prevented.
  • the salt containing the element M 1 used in the second core manufacturing method, the salt containing the element M 2 and the organic solvent are the same as those used in the first core manufacturing method.
  • the second raw material mixture may contain at least one salt containing the element M 1 and at least one salt containing the element M 2 without reacting with each other, and is formed from these. It may be contained as a complex. Further, the second raw material mixture may contain an M 1 complex formed from a salt containing the element M 1 , an M 2 complex formed from a salt containing the element M 2, and the like. The complex formation is carried out, for example, by mixing a salt containing the element M 1 and a salt containing the element M 2 in a suitable organic solvent.
  • the ratio of the total number of atoms of the element M 1 (M 1 / M 2 ) to the total number of atoms of the element M 2 contained in the composition is, for example, 0.1 or more and 2.5 or less. It is preferably 0.2 or more and 2.0 or less, and more preferably 0.3 or more and 1.5 or less. Further, in the composition of the second raw material mixture, the ratio of the number of atoms of In to the total number of atoms of In and Ga (In / (In + Ga)) is, for example, 0.1 or more and 1.0 or less, preferably 0.1 or more. It is 0.25 or more and 0.99 or less.
  • the prepared second raw material mixture is heated to a temperature in the range of, for example, 120 ° C. or higher and 300 ° C. or lower.
  • the temperature reached by raising the temperature is preferably 125 ° C. or higher, more preferably 130 ° C. or higher, further preferably 135 ° C. or higher, and preferably 175 ° C. or lower, more preferably 160 ° C. or lower, still more preferably 150 ° C. or lower.
  • the rate of temperature rise is, for example, 1 ° C./min or more and 50 ° C./min or less, preferably 10 ° C./min or more and 50 ° C./min or less.
  • the atmosphere in the step of raising the temperature of the second raw material mixture is preferably an inert gas atmosphere, for example, an argon atmosphere, a nitrogen atmosphere, or the like.
  • an inert gas atmosphere for example, an argon atmosphere, a nitrogen atmosphere, or the like.
  • the adding step in the second core manufacturing method the second raw material mixture is heated to a predetermined temperature, while maintaining a predetermined temperature, for the number of atoms of the element M 1 in the mixture supply source of the element Z
  • the elements are gradually added so that the rate of increase in the ratio of the number of atoms of element Z is, for example, 10 / min or less.
  • the rate of increase in the ratio of the number of Z atoms to the number of M 1 atoms in the mixture (Z / M 1 ratio) is, for example, the Z / M 1 ratio at a given time subtracted from the Z / M 1 ratio after that unit time. , Calculated by dividing the unit time by the minute conversion value.
  • the unit time is arbitrarily selected from, for example, 1 second to 1 minute.
  • the rate of increase in the ratio of the number of Z atoms to the number of M 1 atoms in the second raw material mixture is preferably 0.0001 / min or more and 2 / min or less from the viewpoint of controlling the particle growth of the generated particles. More preferably 0.0001 / min or more and 1 / min or less, further preferably 0.001 / min or more and 0.2 / min or less, and particularly preferably 0.001 / min or more and 0.1 / min or less. is there. Further, it is preferably 0.0002 / min or more and 2 / min or less, and more preferably 0.002 / min or more and 0.2 / min or less.
  • the total amount of the source of the element Z is the amount of atomic ratio of the element Z on the final atomic number of the element M 1 in the resulting mixture becomes 0.1 to 5.0, preferably The amount is 1.0 or more and 2.5 or less.
  • the time required for adding the source of element Z may be, for example, 1 minute or longer, preferably 5 minutes or longer, more preferably 15 minutes or longer, still more preferably 20 minutes or longer, and preferably 120 minutes or longer. Below, it is more preferably 60 minutes or less, still more preferably 40 minutes or less.
  • the total amount of the source of the element Z is, when the amount of atomic ratio of the element Z for atomic elements M 1 in the mixture is 0.1 or more and 2.5 or less, an increase in Z / M 1 ratio
  • the rate is, for example, 0.0001 / min or more and 1 / min or less, preferably 0.001 / min or more and 0.1 / min or less.
  • the total amount of the source of the element Z is, when the amount of atomic ratio of the element Z for atomic elements M 1 in the mixture is 5.0 or less beyond 2.5, Z / M
  • the rate of increase of 1 ratio is, for example, 0.0002 / min or more and 2 / min or less, preferably 0.002 / min or more and 0.2 / min or less.
  • the source of element Z may be added so that the amount added per unit time is substantially the same over the required time. That is, the unit amount obtained by dividing the total addition amount of the source of the element Z by the number obtained by dividing the required time by the unit time may be added as the addition amount per unit time.
  • the unit time can be, for example, 1 second, 5 seconds, 10 seconds, 30 seconds or 1 minute.
  • the source of element Z may be added continuously or stepwise.
  • the source of element Z may also be added to the mixture, for example, under an inert gas atmosphere.
  • the source of element Z is the same as the source of element Z used in the first core manufacturing method.
  • a sulfur-containing compound soluble in an organic solvent is preferable as a source of element Z, and alkylthiourea is preferably used from the viewpoint of solubility and reactivity, and 1,3-alkylthio is used. Urea is more preferably used.
  • the alkyl group of the alkylthiourea preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, and even more preferably 1 to 3 carbon atoms. If the alkylthiourea has multiple alkyl groups, they may be the same or different.
  • the source of element Z may be added to a second raw material mixture that has been heated as a simple substance of element Z or a solution in which a compound containing element Z is dispersed or dissolved in an organic solvent. Since the source of the element Z is a solution of a compound containing the element Z, the amount of the element Z added per unit time in the addition step can be easily controlled, and the semiconductor nanoparticles having a narrower particle size distribution can be easily controlled. Can be efficiently manufactured.
  • Examples of the organic solvent for dissolving the compound containing the element Z, which is the source of the element Z include the same as the above-mentioned organic solvent.
  • an amine having a hydrocarbon group having 4 or more and 20 or less carbon atoms. can be used.
  • the concentration of the compound containing the element Z is, for example, 1 mmol / L or more and 500 mmol / L or less, preferably 10 mmol / L or more and 50 mmol / L or less.
  • the second core manufacturing method may further include a heat treatment step of heat-treating the mixture after the addition of the source of element Z is completed at a temperature in the range of 120 ° C. or higher and 300 ° C. or lower.
  • the temperature of the heat treatment may be the same as or different from the temperature at which the mixture is heated.
  • the heat treatment temperature is, for example, 120 ° C. or higher and 300 ° C. or lower, preferably 125 ° C. or higher and 175 ° C. or lower, more preferably 130 ° C. or higher and 160 ° C. or lower, and further preferably 135 ° C. or higher and 150 ° C. or lower. Is.
  • the heat treatment time is, for example, 3 seconds or more, preferably 5 minutes or more, 10 minutes or more, or 20 minutes or more from the viewpoint of the quantum efficiency of the semiconductor nanoparticles.
  • the upper limit of the heat treatment time is not particularly limited, but can be, for example, 60 minutes or less.
  • the time for heat treatment is defined as the start time of the heat treatment when the temperature reaches a predetermined temperature (for example, the time when the temperature reaches 140 ° C. in the case of 140 ° C.), and the end time of the heat treatment when the operation for lowering the temperature is performed.
  • the atmosphere of the heat treatment is preferably an inert gas atmosphere, for example, an argon atmosphere or a nitrogen atmosphere.
  • an inert gas atmosphere By creating an inert gas atmosphere, by-production of oxides can be reduced or prevented.
  • the second core manufacturing method may include a cooling step of lowering the temperature of the solution containing the semiconductor nanoparticles following the above-mentioned step.
  • the cooling step starts when the operation for lowering the temperature is performed and ends when the temperature is cooled to 50 ° C. or lower.
  • the cooling step may include a period in which the temperature lowering rate is 50 ° C./min or more from the viewpoint of suppressing the production of silver sulfide from the unreacted Ag salt.
  • the temperature can be set to 50 ° C./min or more at the time when the lowering of the temperature starts.
  • the atmosphere of the cooling step is preferably an inert gas atmosphere, for example, an argon atmosphere or a nitrogen atmosphere.
  • an inert gas atmosphere for example, an argon atmosphere or a nitrogen atmosphere.
  • the first core manufacturing method or the second core manufacturing method may further include a separation step of separating the obtained semiconductor nanoparticles from the solution, and may further include a purification step, if necessary.
  • the separation step for example, the solution containing the semiconductor nanoparticles may be subjected to centrifugation to take out the supernatant liquid containing the semiconductor nanoparticles.
  • the purification step for example, the supernatant obtained in the separation step may be subjected to centrifugation by adding an appropriate organic solvent such as alcohol, and the semiconductor nanoparticles may be taken out as a precipitate.
  • the semiconductor nanoparticles can also be taken out by volatilizing the organic solvent from the supernatant liquid.
  • the removed precipitate may be dried by, for example, vacuum degassing or natural drying, or a combination of vacuum degassing and natural drying. Natural drying may be carried out, for example, by leaving it in the air at normal temperature and pressure, and in that case, it may be left for 20 hours or more, for example, about 30 hours. Moreover, the taken-out precipitate may be dispersed in a suitable organic solvent.
  • the purification step by adding an organic solvent such as alcohol and centrifuging may be carried out a plurality of times as necessary.
  • an organic solvent such as alcohol and centrifuging
  • a lower alcohol having 1 to 4 carbon atoms such as methanol, ethanol and n-propyl alcohol may be used.
  • a halogen-based solvent such as chloroform
  • a hydrocarbon solvent such as toluene, cyclohexane, hexane, pentane, or octane may be used as the organic solvent.
  • the prepared core contains a compound containing at least one first element selected from the group consisting of Al, Ga, In and Tl (first element source). ), And at least one element of the second element selected from the group consisting of S, Se and Te, and at least one compound containing the second element (second element source), which are the total atoms of the first element.
  • the shell is mixed at a mixing ratio in which the ratio of the total number of atoms of the first element to the total number of the total number of atoms of the second element (hereinafter, also referred to as the first element ratio) is greater than 0.5, for example.
  • the first element ratio in the shell-forming mixture is preferably 0.6 or more, or 0.7 or more.
  • the upper limit of the first element ratio is, for example, less than 1, preferably 0.98 or less or 0.95 or less.
  • the shell-forming mixture may be obtained by mixing the prepared core, the first element source, and the second element source in an organic solvent.
  • the organic solvent can be at least one selected from nitrogen-containing compounds having a hydrocarbon group having 4 or more and 20 or less carbon atoms, or a sulfur-containing compound having a hydrocarbon group having 4 or more and 20 or less carbon atoms. It can be at least one selected and may be a mixture thereof.
  • the prepared core may form a shell-forming mixture as a dispersion.
  • a liquid in which a core of semiconductor nanoparticles is dispersed scattered light is not generated, so that the dispersion liquid is generally obtained as transparent (colored or colorless).
  • the solvent for dispersing the core can be any organic solvent as in the case of producing the core.
  • the organic solvent can be at least one selected from nitrogen-containing compounds having a hydrocarbon group having 4 or more and 20 or less carbon atoms, or a sulfur-containing compound having a hydrocarbon group having 4 or more and 20 or less carbon atoms.
  • It can be at least one selected from, or a sulfur-containing compound having at least one selected from a nitrogen-containing compound having a hydrocarbon group having 4 or more and 20 or less carbon atoms and a hydrocarbon group having 4 or more and 20 or less carbon atoms. It can be combined with at least one selected from.
  • the nitrogen-containing compound is preferably higher than the reaction temperature because it is easily available and has a boiling point of more than 290 ° C.
  • Specific organic solvents include oleylamine and n-tetra. Examples thereof include decylamine, dodecanethiol, or a combination thereof.
  • the concentration of particles in the dispersion is, for example, 5.0 ⁇ 10-8 mol / liter or more and 5.0 ⁇ 10 -4 mol / liter or less, particularly 1.0 ⁇ 10-7 mol / liter. It may be prepared so as to be liter or more and 5.0 ⁇ 10 -5 mol / liter or less.
  • the proportion of particles in the dispersion is 5.0 ⁇ 10-8 mol / liter or more, the product tends to be easily recovered by the aggregation / precipitation process with a poor solvent.
  • the particle concentration is calculated based on the number of particles contained in the dispersion liquid divided by the Avogadro's number.
  • the first element source is a compound containing at least one of Group 13 elements selected from the group consisting of Al, Ga, In and Tl, and is, for example, an organic acid salt, an inorganic acid salt, or an organic metal compound of the first element. And so on.
  • Specific examples of the first element source include inorganic acid salts such as nitrates, sulfates, hydrochlorides and sulfonates; and organic acid salts such as acetates and acetylacetonate complexes, preferably acetates and acetylacetates. It is an organic acid salt such as a nat complex. It is considered that the organic acid salt has a high solubility in an organic solvent and the reaction can be easily carried out more uniformly.
  • the first element source may be a salt containing at least one of In and Ga.
  • the salt containing at least one of In and Ga may be an organic acid salt such as an acetate or an acetylacetonate complex, an inorganic acid salt such as a sulfate, a hydrochloride or a sulfonate, or the like. It may preferably be an acetate, an acetylacetonate complex or the like.
  • the second element source is a simple substance of a group 16 element selected from the group consisting of S, Se and Te, or a compound containing a group 16 element.
  • the sulfur source is a single sulfur such as high-purity sulfur, or n-butanethiol, isobutanethiol, n-pentanethiol, n-hexanethiol, octane.
  • Thiols such as thiols, decanethiols, dodecanethiols, hexadecanethiols and octadecanethiols, disulfides such as dibenzyl sulfide, thioureas, alkylthioureas such as 1,3-dimethylthiourea, and sulfur-containing compounds such as thiocarbonyl compounds.
  • thiourea, alkylthiourea or the like is used as a sulfur source, a shell is sufficiently formed and core-shell type semiconductor nanoparticles that give strong band-end emission can be easily obtained.
  • Se is a constituent element of the shell as the second element
  • selenium alone or a compound such as selenium phosphine oxide, an organic selenium compound (dibenzyl diselenide, diphenyl diselenide, etc.) or a hydride is used. It may be used as a second element source.
  • Te is a constituent element of the shell as the second element
  • tellurium alone, tellurium phosphine oxide, or hydride may be used as the second element source.
  • the shell-forming mixture may contain an alkali metal salt in addition to the first element source and the second element source.
  • Alkali metals include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and the like.
  • the alkali metal salt may be either an organic acid salt or an inorganic acid salt.
  • examples of the salt include nitrates, acetates, sulfates, hydrochlorides, sulfonates, acetylacetonate salts and the like, and preferably at least one selected from the group consisting of these. More preferably, it is an organic acid salt such as acetate.
  • the charging ratio of the alkali metal salt to the first element source may be, for example, 0.1 or more and 5 or less, or 0.2 or more and 4 or less.
  • the charging ratio of the second element source to the total sum of the alkali metal salt and the first element source may be, for example, 0.3 or more and 3 or less, or 0.5 or more and 2 or less.
  • the amount of the first element source and the second element source charged in the shell-forming mixture takes into consideration the amount of core contained in the dispersion liquid so that a shell having a desired thickness is formed in the core existing in the dispersion liquid. You may select it.
  • a semiconductor compound having a stoichiometric composition composed of the first element and the second element is produced in an amount of 0.1 ⁇ mol or more and 10 mmol or less, particularly 5 ⁇ mol or more and 1 mmol or less, based on a substance amount of 10 nmol as core particles.
  • the amount of the 1-element source and the 2nd element source may be determined.
  • the content of the first element source with respect to the amount of substance of the core in the shell-forming mixture is, for example, 1.6 or more, preferably 1.6 ⁇ , as the molar ratio of the first element source to the number of particles (mol) of the core. is 10 3 or more, more preferably 1 ⁇ 10 4 or more, and for example 2.5 ⁇ 10 5 or less, preferably 1.3 ⁇ 10 5 or less.
  • the content of the second element source to the content of the core, as the molar ratio of the second element sources for the number of particles of the core (moles) for example, at 5.3 ⁇ 10 or more, preferably 5.3 ⁇ 10 2 or more , and the addition is for example 8.5 ⁇ 10 4 or less, preferably 4.3 ⁇ 10 4 or less.
  • the shell-forming mixture is heat-treated at a predetermined temperature to form a semiconductor layer as a shell on the surface of the semiconductor nanoparticles as a core.
  • heat treatment-up method the shell-forming mixture is gradually heated so that its peak temperature is 200 ° C. or higher and 310 ° C. or lower, held at the peak temperature for a predetermined time, and then gradually lowered. You can.
  • the heating rate may be, for example, 1 ° C./min or more and 50 ° C./min or less, but 50 ° C./min or more and 100 ° C.
  • the temperature is preferably 1 ° C./min or higher and 5 ° C./min or lower thereafter.
  • the temperature lowering rate may be, for example, 1 ° C./min or more and 50 ° C./min or less.
  • the time for maintaining the peak temperature can be, for example, 1 minute or more and 300 minutes or less, particularly 10 minutes or more and 120 minutes or less.
  • the peak temperature retention time is selected in relation to the peak temperature, with a longer retention time when the peak temperature is lower and a shorter retention time when the peak temperature is higher, a better shell layer. Is easy to form.
  • Another aspect of the heat treatment step in the method for producing core-shell type semiconductor nanoparticles is that even in a one-step heat treatment step in which the shell-forming mixture is heat-treated at a predetermined temperature, the heat treatment is performed at the first temperature and then from the first temperature. It may be a two-step heat treatment step in which the heat treatment is performed at a high second temperature. By performing the heat treatment in two steps, for example, core-shell type semiconductor nanoparticles having better reproducibility and high intensity of band-end emission can be produced.
  • the heat treatment at the first temperature and the heat treatment at the second temperature may be continuously performed, or the heat treatment may be performed by lowering the temperature after the heat treatment at the first temperature and then raising the temperature to the second temperature. Good.
  • the first temperature may be, for example, 30 ° C. or higher, preferably 100 ° C. or higher.
  • the first temperature may be, for example, 200 ° C. or lower, preferably 180 ° C. or lower.
  • the heat treatment time at the first temperature may be, for example, 1 minute or longer, preferably 5 minutes or longer, and more preferably 7 minutes or longer.
  • the heat treatment time at the first temperature may be, for example, 120 minutes or less, preferably 60 minutes or less, more preferably 30 minutes or less, or 20 minutes or less.
  • the second temperature may be, for example, 180 ° C. or higher, preferably 200 ° C. or higher.
  • the second temperature may be, for example, 350 ° C. or lower, preferably 330 ° C. or lower or 310 ° C. or lower.
  • the time of the heat treatment at the second temperature may be, for example, 1 minute or longer, preferably 5 minutes or longer, more preferably 10 minutes or longer or 20 minutes or longer.
  • the heat treatment time at the second temperature may be, for example, 120 minutes or less, preferably 90 minutes or less, more preferably 60 minutes or less, or 40 minutes or less.
  • the heat treatment time is defined as the start time of the heat treatment when the temperature reaches a predetermined temperature, and the end time of the heat treatment at the predetermined temperature when the operation for lowering or raising the temperature is performed.
  • the rate of temperature rise until the temperature reaches a predetermined temperature is, for example, 1 ° C./min or more and 100 ° C./min or less, or 1 ° C./min or more and 50 ° C./min or less.
  • the temperature lowering rate after the heat treatment is, for example, 1 ° C./min or more and 100 ° C./min or less, and may be cooled if necessary, or the heat source may be stopped and allowed to cool.
  • the atmosphere of the heat treatment is preferably an inert gas atmosphere, for example, an argon atmosphere or a nitrogen atmosphere.
  • an inert gas atmosphere By creating an inert gas atmosphere, by-production of oxides can be reduced or prevented.
  • a shell is formed to form core-shell type semiconductor nanoparticles having a core-shell structure.
  • the resulting core-shell semiconductor nanoparticles may be separated from the solvent and, if necessary, further purified and dried. Since the methods of separation, purification, and drying are as described above in relation to the method for producing cores of semiconductor nanoparticles, detailed description thereof will be omitted here.
  • the method for producing core-shell type semiconductor nanoparticles may include a step of adding an oxygen source to the shell-forming mixture. That is, the method for producing core-shell type semiconductor nanoparticles may include a core preparation step, a mixing step, and a heat treatment step, and the mixing step may include obtaining a shell-forming mixture containing an oxygen source. When the shell-forming mixture subjected to the heat treatment step contains an oxygen source, core-shell type semiconductor nanoparticles having higher luminous efficiency can be produced.
  • the shell-forming mixture obtained in the mixing step contains an oxygen source.
  • the prepared core is mixed with the first element source, the second element source and the oxygen source to obtain a shell-forming mixture.
  • the method for producing core-shell type semiconductor nanoparticles may include a step of adding an oxygen source to the shell-forming mixture in the heat treatment step. That is, the method for producing core-shell type semiconductor nanoparticles may include a core preparation step, a mixing step, and a heat treatment step, and the heat treatment step may include adding an oxygen source to the shell-forming mixture. By adding an oxygen source to the mixture for forming a shell in a heated state, core-shell type semiconductor nanoparticles having higher luminous efficiency can be produced.
  • an oxygen source is added while heat-treating the shell-forming mixture obtained in the mixing step.
  • the oxygen source may be added during the heat treatment at the peak temperature, during the temperature rise to the peak temperature, or during the temperature decrease from the peak temperature. ..
  • an oxygen source may be added during the heat treatment at the first temperature
  • an oxygen source may be added after the heat treatment at the first temperature
  • An oxygen source may be added.
  • the shell-forming mixture before the heat treatment may contain the oxygen source in advance.
  • the method for producing core-shell type semiconductor nanoparticles may include a step of bringing an oxygen source into contact with the core-shell type semiconductor nanoparticles obtained in the heat treatment step. That is, the method for producing core-shell type semiconductor nanoparticles includes a core preparation step, a mixing step, and a heat treatment step, and even if the core-shell type semiconductor nanoparticles obtained after the heat treatment step are brought into contact with an oxygen source. Good. By bringing an oxygen source into contact with the core-shell type semiconductor nanoparticles obtained from the shell-forming mixture and introducing oxygen atoms into the shell, core-shell type semiconductor nanoparticles having higher luminous efficiency can be produced.
  • an oxygen source is brought into contact with the core-shell type semiconductor nanoparticles obtained in the heat treatment step to introduce oxygen atoms into the shell.
  • the core-shell type semiconductor nanoparticles that are brought into contact with the oxygen source may be unrefined after the heat treatment step, or may be purified. Further, the core-shell type semiconductor nanoparticles that are brought into contact with the oxygen source may be obtained from a shell-forming mixture containing the oxygen source, and may be obtained by adding the oxygen source to the shell-forming mixture in the heat treatment step. You can.
  • the oxygen source is not particularly limited as long as oxygen atoms can be introduced into the composition of the shell.
  • the oxygen source include a compound containing an oxygen atom and a gas containing an oxygen atom.
  • the compound containing an oxygen atom include water, alcohol and the like, and at least one selected from the group consisting of these is preferable.
  • the gas containing an oxygen atom include oxygen gas and ozone gas, and at least one selected from the group consisting of these is preferable.
  • the oxygen source may be added by dissolving or dispersing a compound containing an oxygen atom in the shell-forming mixture, or by blowing a gas containing an oxygen atom into the shell-forming mixture.
  • the amount of oxygen source added or used is 6000 ppm or less, preferably 3000 ppm or less, or 1000 ppm or less with respect to the weight of the solvent.
  • the core-shell type semiconductor nanoparticles obtained by the above production method may be subjected to the modification step.
  • the core-shell type semiconductor nanoparticles are brought into contact with a specific modifier containing phosphorus (P) having a negative oxidation number to modify the shell surface of the core-shell particles.
  • P phosphorus
  • the contact between the core-shell type semiconductor nanoparticles and the specific modifier can be performed, for example, by mixing the dispersion liquid of the core-shell type semiconductor nanoparticles and the specific modifier. Further, the core-shell particles may be mixed with a liquid specific modifier. The solution may be used as the specific modifier.
  • the dispersion liquid of the core-shell type semiconductor nanoparticles is obtained by mixing the core-shell type semiconductor nanoparticles with an appropriate organic solvent. Examples of the organic solvent used for dispersion include halogen solvents such as chloroform; aromatic hydrocarbon solvents such as toluene; and aliphatic hydrocarbon solvents such as cyclohexane, hexane, pentane, and octane.
  • the concentration of the amount of substance in the dispersion liquid of the core-shell type semiconductor nanoparticles is, for example, 1 ⁇ 10 -7 mol / L or more and 1 ⁇ 10 -3 mol / L or less, preferably 1 ⁇ 10 -6 mol / L or more 1 ⁇ 10 -4 mol / L or less.
  • the amount of the specific modifier used for the core-shell type semiconductor nanoparticles is, for example, 1-fold or more and 50,000-fold or less in terms of molar ratio. Further, a dispersion liquid of core-shell type semiconductor nanoparticles having a concentration of a substance amount of 1.0 ⁇ 10 -7 mol / L or more and 1.0 ⁇ 10 -3 mol / L or less in the dispersion liquid of core-shell type semiconductor nanoparticles is used. In this case, the dispersion liquid and the specific modifier may be mixed in a volume ratio of 1: 1000 to 1000: 1.
  • the temperature at the time of contact between the core-shell type semiconductor nanoparticles and the specific modifier is, for example, ⁇ 100 ° C. or higher and 100 ° C. or lower, or 30 ° C. or higher and 75 ° C. or lower.
  • the contact time may be appropriately selected according to the amount of the specific modifier used, the concentration of the dispersion liquid, and the like.
  • the contact time is, for example, 1 minute or more, preferably 1 hour or more, 100 hours or less, preferably 48 hours or less.
  • the atmosphere at the time of contact is, for example, an atmosphere of an inert gas such as nitrogen gas or rare gas.
  • the core-shell type semiconductor nanoparticles include a core and a shell arranged on the surface of the core, and emit light when irradiated with light.
  • the core may be semiconductor nanoparticles containing element M 1 , element M 2 and element Z.
  • M 1 is at least one element selected from the group consisting of silver (Ag), copper (Cu), gold (Au) and alkali metals, and contains at least Ag.
  • M 2 is at least one element selected from the group consisting of aluminum (Al), gallium (Ga), indium (In) and thallium (Tl), and contains at least one of In and Ga.
  • Z contains at least one element selected from the group consisting of sulfur (S), selenium (Se) and tellurium (Te).
  • the composition of the core is such that the total content of M 1 is 10 mol% or more and 30 mol% or less, the total content of M 2 is 15 mol% or more and 35 mol% or less, and the total content of Z is. Is 35 mol% or more and 55 mol% or less.
  • the shell is substantially composed of a first element, which is at least one selected from the group consisting of Al, Ga, In and Tl, and a second element, which is at least one selected from the group consisting of S, Se and Te. , Oxygen (O) element.
  • the core-shell type semiconductor nanoparticles the core itself contains semiconductor nanoparticles, and the shell is composed of oxygen elements in addition to the first and second elements, so that excellent light emission efficiency can be achieved. it can.
  • the core-shell type semiconductor nanoparticles have an emission peak wavelength in the range of 500 nm or more and 1000 nm or less by irradiation with light having a wavelength in the range of 200 nm or more and less than 500 nm, and the half width in the emission spectrum is, for example, 250 meV or less. It emits light.
  • the half width is preferably 200 meV or less, more preferably 150 meV or less. The lower limit of this half width is, for example, 30 meV or more.
  • the half-value width is 250 meV or less
  • the half-value width is 73 nm or less when the emission peak wavelength is 600 nm
  • the half-value width is 100 nm or less
  • the emission peak wavelength is 800 nm.
  • the full width at half maximum is 130 nm or less
  • the core-shell type semiconductor nanoparticles emit light at the band end.
  • Core-shell type semiconductor nanoparticles containing Ag, at least one of In and Ga, S, Se or Te in the composition of the core and the first element, the second element and the oxygen element in the composition of the shell have the shape and shape. Due to its size, it gives band edge emission. Further, the core-shell type semiconductor nanoparticles can have a composition that does not contain Cd and Pb, which are considered to be highly toxic, and can be applied to products and the like whose use of Cd and the like is prohibited. Therefore, the semiconductor nanoparticles can be suitably used as a wavelength conversion substance for a light emitting device used in a liquid crystal display device, as a biomolecule marker, or the like.
  • the total content of Ag, Cu, Au and alkali metals in the composition of the core is, for example, 10 mol% or more and 30 mol% or less, preferably 15 mol% or more and 25 mol% or less.
  • the total content of Al, Ga, In and Tl in the composition of the core is, for example, 15 mol% or more and 35 mol% or less, preferably 20 mol% or more and 30 mol% or less.
  • the total content of S, Se and Te in the composition of the core is, for example, 35 mol% or more and 55 mol% or less, preferably 40 mol% or more and 55 mol% or less.
  • the ratio of the number of atoms of In to the sum of the number of atoms of In and Ga in the composition is, for example, 0.01 or more and 1.0 or less, which is preferable. Is 0.1 or more and 0.99 or less.
  • the ratio of the sum of the atomic numbers of Ag to the sum of the atomic numbers of In and Ga in the core composition (Ag / (In + Ga)) is, for example, 0.3 or more and 1.2 or less, preferably 0.5. It is 1.1 or less.
  • the ratio of the number of atoms of S to the sum of the numbers of atoms of Ag, In and Ga in the composition of the core is, for example, 0.8 or more and 1.5 or less. It is preferably 0.9 or more and 1.2 or less.
  • the composition of the core is identified by, for example, energy dispersive X-ray analysis (EDX), fluorescent X-ray analysis (XRF), inductively coupled plasma (ICP) emission spectroscopy, and the like.
  • EDX energy dispersive X-ray analysis
  • XRF fluorescent X-ray analysis
  • ICP inductively coupled plasma
  • the composition ratio of (Ag) / (In + Ga), S / (Ag + In + Ga) and the like is calculated based on the composition identified by any of these methods.
  • Ag may be partially substituted and contain at least one element of Cu and Au, but it is preferably composed substantially of Ag.
  • substantially means that the ratio of elements other than Ag to Ag is, for example, 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less.
  • the alkali metal content is, for example, less than 30 mol%, preferably 1 mol% or more and 25 mol% or less.
  • the atomic number ratio of alkali metal to the atomic sum of Ag in an atomic and alkali metal in the composition of the core (M a) (M a) (M a / (Ag + M a)) , for example, less than 1 Yes, preferably 0.8 or less, more preferably 0.4 or less, still more preferably 0.2 or less.
  • the ratio is, for example, greater than 0, preferably 0.05 or more, and more preferably 0.1 or more.
  • the alkali metal preferably contains at least Li, and is preferably substantially Li.
  • substantially means that the ratio of the alkali metal other than Li to Li is, for example, 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less. ..
  • At least one of In and Ga may be partially substituted to contain at least one element of Al and Tl, but is substantially composed of at least one of In and Ga. Is preferable.
  • substantially means that the ratio of elements other than In or Ga to In and Ga is, for example, 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less. Means.
  • S When the core contains S, S may be partially substituted and contain at least one element of Se and Te, or may be substantially composed of S.
  • substantially means that the ratio of the element other than S to S is, for example, 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less.
  • the core may consist substantially of at least one of Ag, In and Ga, and only S.
  • the term "substantially” is used in consideration of the fact that elements other than Ag, In, Ga and S are inevitably contained due to the mixing of impurities and the like.
  • the crystal structure of the core may include at least one selected from the group consisting of tetragonal, hexagonal and orthorhombic crystals.
  • semiconductor nanoparticles containing Ag, In, and S and whose crystal structure is tetragonal, hexagonal, or orthorhombic are generally represented by the composition formula of AgInS 2 in the literature. Etc. are introduced.
  • the core according to the present embodiment can be considered, for example, in which a part of In, which is a Group 13 element, is replaced with Ga, which is also a Group 13 element.
  • the composition of the core may be represented by, for example, Ag-In-Ga-S or the like.
  • Semiconductor nanoparticles represented by a composition formula such as Ag-In-Ga-S having a hexagonal crystal structure are of the wurtzite type, and semiconductors having a tetragonal crystal structure are calcopyrite. It is a type.
  • the crystal structure is identified, for example, by measuring the XRD pattern obtained by X-ray diffraction (XRD) analysis.
  • XRD X-ray diffraction
  • the XRD pattern obtained from the semiconductor nanoparticles is a known XRD pattern assuming that the semiconductor nanoparticles are represented by the composition of AgInS 2, or an XRD pattern obtained by simulating from crystal structure parameters. Compare. If any of the known patterns and simulation patterns match the pattern of the semiconductor nanoparticles, it can be said that the crystal structure of the semiconductor nanoparticles is the crystal structure of the matching known or simulation pattern.
  • some cores having different crystal structures may be mixed. In that case, in the XRD pattern, peaks derived from a plurality of crystal structures are observed.
  • the core may have, for example, an average particle size of 50 nm or less.
  • the average particle size of the core may be, for example, 20 nm or less, 10 nm or less, or less than 10 nm.
  • the lower limit of the average particle size of the core is, for example, 1 nm.
  • the particle size of the core can be determined from, for example, a TEM image taken with a transmission electron microscope (TEM). Specifically, it is a line segment connecting arbitrary two points on the outer circumference of a particle observed in a TEM image of a certain particle, and is the length of the longest line segment passing through the inside of the particle. Let it be the particle size of the particles.
  • TEM transmission electron microscope
  • the length of the minor axis is regarded as the particle size.
  • the rod-shaped particles have a minor axis and a major axis orthogonal to the minor axis in the TEM image, and the ratio of the length of the major axis to the length of the minor axis is larger than 1.2. ..
  • the rod-shaped particles are observed in a TEM image as, for example, a rectangular shape including a rectangular shape, an elliptical shape, a polygonal shape, or the like.
  • the shape of the cross section which is a plane orthogonal to the long axis of the rod shape, may be, for example, a circle, an ellipse, or a polygon.
  • the length of the major axis refers to the length of the longest line segment connecting any two points on the outer circumference of the particle in the case of an elliptical shape.
  • Rectangular or polygonal refers to the length of the longest line segment that is parallel to the longest side that defines the outer circumference and connects any two points on the outer circumference of the particle.
  • the length of the minor axis refers to the length of the longest line segment that is orthogonal to the line segment that defines the length of the major axis among the line segments connecting arbitrary two points on the outer circumference.
  • the average particle size of the core is measured by measuring the particle size of all measurable particles observed in the TEM image of 50,000 times or more and 150,000 times or less, and used as the arithmetic mean of those particle sizes.
  • the measurable particles are those in which the entire particles can be observed in the TEM image. Therefore, in the TEM image, a part of the TEM image is not included in the imaging range, and particles that are cut off are not measurable.
  • the average particle size is obtained using the TEM image.
  • the imaging location is changed to further acquire the TEM image, and 100 or more measurable particles included in two or more TEM images are possible.
  • the particle size of the particles is measured to obtain the average particle size.
  • the core which is a semiconductor nanoparticle, may be capable of emitting light at the band end.
  • the core may emit light having an emission peak wavelength in the range of 500 nm or more and 650 nm or less by irradiating light having a wavelength in the range of 200 nm or more and less than 500 nm.
  • the full width at half maximum in the emission spectrum of the core is 250 meV or less, preferably 200 meV or less, and more preferably 150 meV or less. The lower limit of this half width is, for example, 30 meV or more.
  • the half-value width is 250 meV or less
  • the half-value width is 73 nm or less when the emission peak wavelength is 600 nm
  • the half-value width is 100 nm or less and the emission peak wavelength is 800 nm.
  • the half width is 130 nm or less, and it means that the semiconductor nanoparticles emit light at the band end.
  • the core may give other light emission, for example, defective light emission, in addition to the band end light emission.
  • Defect emission generally has a long emission lifetime, has a broad spectrum, and has a peak on the longer wavelength side than band-end emission.
  • the intensity of band-end emission is larger than the intensity of defect emission.
  • the peak position of the band end emission of the core can be changed by changing at least one of the shape of the core and the average particle size, particularly by changing the average particle size. For example, if the average particle size of the core is made smaller, the bandgap energy becomes larger due to the quantum size effect, and the peak wavelength of the band edge emission can be shifted to the short wavelength side.
  • the emission peak wavelength can be changed by changing the composition of the core. For example, shifting the emission peak wavelength of band-end emission to the short wavelength side by increasing the Ga ratio (Ga / (In + Ga)), which is the ratio of the number of atoms of Ga to the sum of the number of atoms of In and Ga in the composition. Can be done. Further, for example, select the Li or the like as an alkali metal, M a ratio (M a / a atomic ratio of alkali metal (M a) with respect to the atomic sum of Ag and alkali metal (M a) in the composition ( Ag + M a)) it is possible to shift the emission peak wavelength of the band edge emission to the short wavelength side by the increase.
  • Ga ratio Ga ratio
  • M a ratio M a / a atomic ratio of alkali metal (M a) with respect to the atomic sum of Ag and alkali metal (M a) in the composition ( Ag + M a)
  • the band end emission is emitted.
  • the emission peak wavelength of is can be shifted to the short wavelength side.
  • the absorption spectrum of the core may show exciton peaks.
  • the exciton peak is a peak obtained by exciton generation, and the fact that it is expressed in the absorption spectrum means that the core particle group is composed of particles suitable for band-end emission with a small particle size distribution and few crystal defects. It means that it has been done. Further, the steeper the exciton peak, the more particles having the same particle size and less crystal defects are contained in the aggregate of core particles. Therefore, if the exciton peak is steep, the half width of light emission is expected to be narrowed, and the luminous efficiency is expected to be improved. In the absorption spectrum of the core, exciton peaks are observed, for example, in the range of 350 nm or more and 900 nm or less.
  • the core may emit light having an emission peak wavelength on the longer wavelength side than the exciton peak of the absorption spectrum by Stokes shift.
  • the energy difference between the exciton peak and the emission peak wavelength is, for example, 300 meV or less.
  • the core-shell type semiconductor nanoparticles have a core-shell structure in which the semiconductors constituting the shell are arranged on the surface of the core.
  • the shell is a semiconductor having a band gap energy larger than that of the semiconductor constituting the core, and is composed of at least one first element selected from the group consisting of Group 13 elements Al, Ga, In and Tl, and the first element. It is composed of a semiconductor containing at least one second element selected from the group consisting of Group 16 elements S, Se and Te, and an oxygen element.
  • the semiconductor constituting the shell may contain only one type or two or more types of Group 13 elements, and may contain only one type or two or more types of Group 16 elements.
  • the shell may be substantially composed of a semiconductor composed of a first element, a second element and an oxygen element.
  • substantially means that the ratio of elements other than the first element, the second element and the oxygen element is, for example, 10% when the total number of atoms of all the elements contained in the shell is 100%.
  • it is shown that it is preferably 5% or less, more preferably 1% or less.
  • the shell may be configured by selecting its composition or the like according to the bandgap energy of the semiconductor constituting the core described above.
  • the core may be designed so that the bandgap energy of the semiconductor constituting the core is smaller than that of the shell.
  • a semiconductor made of Ag—In—S has a bandgap energy of about 1.8 eV or more and 1.9 eV or less.
  • the semiconductor constituting the shell may have, for example, a bandgap energy of 2.0 eV or more and 5.0 eV or less, or 2.5 eV or more and 5.0 eV or less.
  • the bandgap energy of the shell is, for example, 0.1 eV or more and 3.0 eV or less, 0.3 eV or more and 3.0 eV or less, or 0.5 eV or more and 1.0 eV or less larger than the band gap energy of the core. It may be.
  • the difference between the bandgap energy of the semiconductors constituting the shell and the bandgap energy of the semiconductors constituting the core is equal to or greater than the above lower limit value, the proportion of light emitted from the core other than the band edge light emission decreases, and the band The rate of edge emission tends to be large.
  • the bandgap energy of the semiconductors constituting the core and the shell is selected so that the bandgap energy of the shell provides the bandgap energy of type-I that sandwiches the bandgap energy of the core in the heterojunction of the core and the shell.
  • a barrier of at least 0.1 eV is formed between the band gap of the core and the band gap of the shell, for example, a barrier of 0.2 eV or more, or 0.3 eV or more. May be formed.
  • the upper limit of the barrier is, for example, 1.8 eV or less, and particularly 1.1 eV or less.
  • the semiconductor constituting the shell may contain In or Ga as the first element. Further, the semiconductor constituting the shell may contain S as a second element. Further, the semiconductor constituting the shell may contain an oxygen (O) element. Semiconductors containing In or Ga, S and O tend to be semiconductors having a bandgap energy larger than that of the core described above.
  • the crystal system of the semiconductor of the shell may be familiar to the crystal system of the semiconductor of the core, and the lattice constant of the shell may be the same as or close to that of the semiconductor of the core.
  • a shell made of semiconductors, which is familiar to the crystal system and has a close lattice constant (here, a multiple of the shell's lattice constant is close to the core's lattice constant but also has a close lattice constant), has a good circumference of the core. May be covered. Further, the shell may be amorphous.
  • an amorphous shell is formed by observing semiconductor nanoparticles having a core-shell structure with HAADF-STEM.
  • a portion having a regular pattern for example, a striped pattern, a dot pattern, etc.
  • a regular pattern is observed around the portion.
  • a portion that is not observed as having a pattern is observed in HAADF-STEM.
  • a substance having a regular structure such as a crystalline substance is observed as an image having a regular pattern, and a substance having no regular structure such as an amorphous substance is observed. It is not observed as an image with a regular pattern. Therefore, when the shell is amorphous, the shell is observed as a part clearly different from the core (which has a crystal structure such as a tetragonal system as described above) observed as an image having a regular pattern. be able to.
  • the shell is composed of Ga—SO
  • the shell is observed as a darker image than the core in the image obtained by HAADF-STEM because Ga is an element lighter than Ag and In contained in the core. Tend to be.
  • Whether or not an amorphous shell is formed can also be confirmed by observing the semiconductor nanoparticles having the core-shell structure of the present embodiment with a high-resolution transmission electron microscope (HRTEM).
  • HRTEM high-resolution transmission electron microscope
  • the core part is observed as a crystal lattice image (an image having a regular pattern)
  • the shell part is not observed as a crystal lattice image, and black and white contrast is observed, but it is regular.
  • the pattern is observed as an invisible part.
  • the shell is preferably made of a semiconductor that does not form a core and a solid solution.
  • the shell forms a solid solution with the core, the two become one, and the mechanism of obtaining band-end emission by covering the core with the shell and changing the surface state of the core may not be obtained.
  • the shell may include, but is not limited to, a combination of In and S, a combination of Ga and S, or a combination of In and Ga and S as combinations of the first and second elements. ..
  • the combination of In and S may have a shell containing indium sulfide, and the combination of Ga and S may have a shell containing gallium sulfide, and the combination of In, Ga and S.
  • the combination may be in the form of a shell containing indium gallium sulfide.
  • indium sulfide that can constitute the shell does not have to have a stoichiometric composition (In 2 S 3 ), and in that sense, indium sulfide is the formula InS x (x is any number not limited to an integer, for example 0. It may be represented by (8 or more and 1.5 or less).
  • gallium sulfide does not have to have a stoichiometric composition (Ga 2 S 3 ), and in that sense, gallium sulfide has the formula GaS x (x is any number not limited to an integer, for example 0.8 or more. It may be represented by (1.5 or less).
  • Indium gallium sulfide may have a composition represented by In 2 (1-y) Ga 2y S 3 (y is any number greater than 0 and less than 1), or In a Ga 1-. It may be represented by a S b (a is any number greater than 0 and less than 1 and b is any number not limited to an integer).
  • the form of the oxygen element constituting the shell is not clear, but may be, for example, Ga-OS, Ga 2 O 3, or the like.
  • the bandgap energy of indium sulfide is 2.0 eV or more and 2.4 eV or less, and the lattice constant of indium sulfide having a cubic crystal system is 1.0775 nm.
  • the bandgap energy of gallium sulfide is about 2.5 eV or more and 2.6 eV or less, and the lattice constant of gallium sulfide having a tetragonal crystal system is 0.5215 nm.
  • the crystal systems and the like described here are all reported values, and in the semiconductor nanoparticles having an actual core-shell structure, the shell does not necessarily include a semiconductor satisfying these reported values.
  • the thickness of the shell may be in the range of 0.1 nm or more and 50 nm or less, in the range of 0.1 nm or more and 10 nm or less, and particularly in the range of 0.3 nm or more and 3 nm or less.
  • the thickness of the shell is at least the above lower limit value, the effect of covering the core with the shell can be sufficiently obtained, and band-end light emission with excellent luminous efficiency can be easily obtained.
  • the surface of the core-shell type semiconductor nanoparticles may be modified with any compound.
  • Compounds that modify the surface of semiconductor nanoparticles are also called surface modifiers.
  • the surface modifier has, for example, a function of stabilizing core-shell type semiconductor nanoparticles to prevent particle aggregation or growth, a function of improving the dispersibility of core-shell type semiconductor nanoparticles in a solvent, and a function of core-shell type semiconductor nanoparticles. It has at least one function of compensating for surface defects and improving light emission efficiency.
  • the surface modifier is, for example, a nitrogen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, a sulfur-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, and an oxygen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms. It may be a compound, a phosphorus-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, or the like.
  • hydrocarbon group having 4 to 20 carbon atoms examples include saturated aliphatic hydrocarbon groups such as a butyl group, an isobutyl group, a pentyl group, a hexyl group, an octyl group, an ethylhexyl group, a decyl group, a dodecyl group, a hexadecyl group and an octadecyl group; Unsaturated aliphatic hydrocarbon group such as oleyl group; alicyclic hydrocarbon group such as cyclopentyl group and cyclohexyl group; aromatic hydrocarbon group having 6 to 10 carbon atoms such as phenyl group and naphthyl group; benzyl group and naphthylmethyl Examples thereof include an arylalkyl group such as a group, of which a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferable.
  • nitrogen-containing compound examples include amines and amides
  • examples of the sulfur-containing compound include thiols and the like
  • examples of the oxygen-containing compound include fatty acids and the like
  • examples of the phosphorus-containing compound include phosphines and phosphine oxides. Kind and the like.
  • a nitrogen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms is preferable.
  • nitrogen-containing compounds include alkylamines such as butylamine, isobutylamine, pentylamine, hexylamine, octylamine, ethylhexylamine, decylamine, dodecylamine, hexadecylamine and octadecylamine, and alkenylamines such as oleylamine. ..
  • a sulfur-containing compound having a hydrocarbon group having 4 to 20 carbon atoms is also preferable.
  • sulfur-containing compounds include butanethiol, isobutanethiol, pentanethiol, hexanethiol, octanethiol, ethylhexanethiol, decanethiol, dodecanethiol, hexadecanethiol, octadecanethiol and the like.
  • the surface modifier may be used alone or in combination of two or more different ones.
  • one compound selected from the nitrogen-containing compounds exemplified above for example, oleylamine
  • one compound selected from the sulfur-containing compounds exemplified above for example, dodecanethiol
  • one compound selected from the nitrogen-containing compounds exemplified above for example, oleylamine
  • one compound selected from the sulfur-containing compounds exemplified above for example, dodecanethiol
  • the shell surface of the core-shell type semiconductor nanoparticles may be modified with a surface modifier containing phosphorus (P) having a negative oxidation number (hereinafter, also referred to as “specific modifier”). Since the surface modifier of the shell contains the specific modifier, the quantum efficiency in band-end emission of the semiconductor nanoparticles of the core-shell structure is further improved.
  • P phosphorus
  • specific modifier a negative oxidation number
  • the specific modifier contains P having a negative oxidation number as a Group 15 element.
  • the oxidation number of P becomes -1 when one hydrogen atom or hydrocarbon group is bonded to P, and becomes +1 when one oxygen atom is bonded by a single bond, and changes in the substitution state of P.
  • the oxidation number of P in trialkylphosphine and triarylphosphine is -3, and that in trialkylphosphine oxide and triarylphosphine oxide is -1.
  • the specific modifier may contain other Group 15 elements in addition to P having a negative oxidation number.
  • Examples of other Group 15 elements include N, As, Sb and the like.
  • the specific modifier may be, for example, a phosphorus-containing compound containing a hydrocarbon group having 4 or more and 20 or less carbon atoms.
  • the hydrocarbon group having 4 to 20 carbon atoms includes n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, octyl group, ethylhexyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group and octadecyl group.
  • Linear or branched saturated aliphatic hydrocarbon groups such as groups; Linear or branched unsaturated aliphatic hydrocarbon groups such as oleyl groups; Alicyclic hydrocarbon groups such as cyclopentyl groups and cyclohexyl groups; Aromatic hydrocarbon groups such as a phenyl group and a naphthyl group; arylalkyl groups such as a benzyl group and a naphthylmethyl group may be mentioned, and among these, a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferable.
  • the specific modifier has a plurality of hydrocarbon groups, they may be the same or different.
  • tributylphosphine triisobutylphosphine, tripentylphosphine, trihexylphosphine, trioctylphosphine, tris (ethylhexyl) phosphine, tridecylphosphine, tridodecylphosphine, tritetradecylphosphine, trihexadecyl Phosphine, trioctadecylphosphine, triphenylphosphine, tributylphosphine oxide, triisobutylphosphine oxide, trypentylphosphine oxide, trihexylphosphine oxide, trioctylphosphine oxide, tris (ethylhexyl) phosphine oxide, tridecylphosphine oxide, tridodecylphosphine oxide , Tritetradecylphosphine
  • the light-emitting device includes an optical conversion member and a semiconductor light-emitting element, and the optical conversion member includes the core-shell type semiconductor nanoparticles described above. According to this light emitting device, for example, a part of the light emitted from the semiconductor light emitting element is absorbed by the core-shell type semiconductor nanoparticles to emit light having a longer wavelength. Then, the light from the core-shell type semiconductor nanoparticles and the rest of the light emitted from the semiconductor light emitting element are mixed, and the mixed light can be used as the light emission of the light emitting device.
  • a semiconductor light emitting device that emits bluish purple light or blue light having a peak wavelength of about 400 nm or more and 490 nm or less is used, and a semiconductor nanoparticle that absorbs blue light and emits yellow light is used.
  • a light emitting device that emits white light can be obtained.
  • a white light emitting device can also be obtained by using two types of semiconductor nanoparticles, one that absorbs blue light and emits green light, and one that absorbs blue light and emits red light.
  • the white light emitting device is used. Can be obtained. In this case, it is desirable that all the light from the light emitting element is absorbed by the semiconductor nanoparticles and converted so that the ultraviolet rays emitted from the light emitting element do not leak to the outside.
  • a semiconductor light emitting device that emits bluish green light having a peak wavelength of about 490 nm or more and 510 nm or less is used, and if the semiconductor nanoparticles that absorb the above bluish green light and emit red light are used, white light is emitted. You can get the device.
  • a semiconductor light emitting element that emits red light having a wavelength of 700 nm or more and 780 nm or less is used, and if semiconductor nanoparticles that absorb red light and emit near infrared rays are used, a light emitting device that emits near infrared rays is used. You can also get.
  • Core-shell semiconductor nanoparticles may be used in combination with other semiconductor quantum dots, or may be used in combination with other non-quantum dot phosphors (eg, organic or inorganic phosphors).
  • the other semiconductor quantum dots are, for example, the dual-system semiconductor quantum dots described in the background technology section.
  • a garnet-based phosphor such as an aluminum garnet-based phosphor can be used.
  • the garnet phosphor include a cerium-activated yttrium-aluminum-garnet-based phosphor and a cerium-activated lutetium-aluminum-garnet-based phosphor.
  • a nitrogen-containing calcium aluminosilicate-based phosphor activated with europium and / or chromium a silicate-based phosphor activated with europium, a ⁇ -SiAlON-based phosphor, a nitride-based phosphor such as CASN-based or SCASN-based, Rare earth nitride-based phosphors such as LnSi 3 N 11 series or LnSi AlON series, BaSi 2 O 2 N 2 : Eu series or Ba 3 Si 6 O 12 N 2 : Acid nitride based phosphors such as Eu series, CaS series, SrGa 2 S 4 type, SrAl2O4 based, sulfide-based phosphor of ZnS-based, etc., chloro silicate-based phosphor, SrLiAl 3 N 4: Eu phosphor, SrMg 3 SiN 4: Eu phosphor, activated with manganese fluor
  • the light conversion member containing the core-shell type semiconductor nanoparticles may be, for example, a sheet or a plate-shaped member, or a member having a three-dimensional shape.
  • a member having a three-dimensional shape is that in a surface mount type light emitting diode, when a semiconductor light emitting element is arranged on the bottom surface of a recess formed in a package, the recess is formed to seal the light emitting element. It is a sealing member formed by filling with a resin.
  • the light conversion member is a resin member formed so as to surround the upper surface and the side surface of the semiconductor light emitting device with a substantially uniform thickness when the semiconductor light emitting element is arranged on a flat substrate. is there.
  • another example of the light conversion member is the case where a resin member containing a reflective material is filled around the semiconductor light emitting device so that the upper end forms the same plane as the semiconductor light emitting device. It is a resin member formed in a flat plate shape with a predetermined thickness on the upper part of the resin member including the semiconductor light emitting element and the reflective material.
  • the light conversion member may be in contact with the semiconductor light emitting element or may be provided away from the semiconductor light emitting element.
  • the light conversion member may be a pellet-shaped member, a sheet member, a plate-shaped member, or a rod-shaped member arranged apart from the semiconductor light-emitting element, or a member provided in contact with the semiconductor light-emitting element, for example.
  • the two or more types of semiconductor nanoparticles may be mixed in one light conversion member.
  • two or more optical conversion members containing only one type of quantum dot may be used in combination.
  • the two or more types of light conversion members may form a laminated structure, or may be arranged as a dot-shaped or striped pattern on a plane.
  • the semiconductor light emitting element examples include an LED chip.
  • the LED chip may include one or more semiconductor layers selected from the group consisting of GaN, GaAs, InGaN, AlInGaP, GaP, SiC, ZnO and the like.
  • the semiconductor light emitting device that emits blue-violet light, blue light, or ultraviolet light is, for example, a GaN-based device whose composition is represented by In X Al Y Ga 1-XY N (0 ⁇ X, 0 ⁇ Y, X + Y ⁇ 1). It is provided with a compound as a semiconductor layer.
  • the light emitting device is preferably incorporated in a liquid crystal display device as a light source. Since band-end emission by core-shell type semiconductor nanoparticles has a short emission lifetime, a emission device using this is suitable as a light source for a liquid crystal display device that requires a relatively fast response speed. Further, the core-shell type semiconductor nanoparticles of the present embodiment may exhibit an emission peak having a small half-value width as band-end emission.
  • the blue semiconductor light emitting element is used to obtain blue light having a peak wavelength in the range of 420 nm or more and 490 nm or less, and the semiconductor nanoparticles have a peak wavelength in the range of 510 nm or more and 550 nm or less, preferably 530 nm or more and 540 nm or less.
  • the green light inside and the red light having a peak wavelength in the range of 600 nm or more and 680 nm or less, preferably 630 nm or more and 650 nm or less are obtained.
  • the semiconductor light emitting element is used to obtain ultraviolet light having a peak wavelength of 400 nm or less, and the semiconductor nanoparticles have a peak wavelength of 430 nm or more and 470 nm or less, preferably 440 nm or more and 460 nm or less. It is intended to obtain green light of 510 nm or more and 550 nm or less, preferably 530 nm or more and 540 nm or less, and red light having a peak wavelength in the range of 600 nm or more and 680 nm or less, preferably 630 nm or more and 650 nm or less. As a result, a liquid crystal display device having good color reproducibility can be obtained without using a dark color filter.
  • the light emitting device is used, for example, as a direct type backlight or an edge type backlight.
  • a sheet, plate-shaped member, or rod made of resin, glass, or the like containing core-shell type semiconductor nanoparticles may be incorporated in the liquid crystal display device as an optical conversion member independent of the light emitting device.
  • Example 1 Preparation of semiconductor nanoparticles (core) 0.0833 mmol of silver acetate ( AgOAc), 0.05 mmol of acetylacetonatoindium (In (acac) 3 )), 0.075 mmol of acetylacetonatogallium (Ga (acac) 3 ) ) And 0.2292 mmol of sulfur powder were added to a mixed solution of 0.25 cm 3 of 1-dodecanethiol and 2.75 cm 3 of oleylamine and dispersed. The dispersion was placed in a test tube together with a stirrer, subjected to nitrogen substitution, and then heat-treated at 300 ° C.
  • the precipitate was removed by centrifugation (4000 rpm, 5 minutes). The supernatant was filtered through a membrane filter having a pore size of 0.20 ⁇ m. Methanol was added and centrifuged (4000 rpm, 5 minutes), and ethanol was added to the obtained precipitate and centrifuged (4000 rpm, 5 minutes) to obtain core-shell type semiconductor nanoparticles as a precipitate.
  • Example 1 Core-shell type semiconductor nanoparticles were obtained in the same manner as in Example 1 except that the preparation composition at the time of producing the core-shell type semiconductor nanoparticles and the heating time in the second stage were changed as shown in Table 1.
  • the shapes of the core-shell type semiconductor nanoparticles obtained in Examples 1 to 4 and Comparative Example 1 were observed using a transmission electron microscope (TEM, manufactured by Hitachi High-Technologies Corporation, trade name H-7650), and were also observed.
  • the average particle size was measured from a TEM image of 80,000 to 200,000 times.
  • the TEM grid the trade name high resolution carbon HRC-C10 STEM Cu100P grid (Oken Shoji Co., Ltd.) was used.
  • the shape of the obtained particles was spherical or polygonal.
  • select 3 or more TEM images, and among the nanoparticles contained in these, a total of 100 or more particle sizes excluding those in which the image of the particles is cut off at the edge of the image. was measured, and the arithmetic mean was calculated.
  • the absorption spectrum and the emission spectrum of the core-shell type semiconductor nanoparticles obtained in Examples 1 to 4 and Comparative Example 1 were measured.
  • the absorption spectrum was measured using a diode array spectrophotometer (manufactured by Agilent Technologies, trade name Agent 8453A) with a wavelength of 190 nm or more and 1100 nm or less.
  • the emission spectrum was measured at an excitation wavelength of 365 nm using a multi-channel spectroscope (manufactured by Hamamatsu Photonics, trade name PMA11).
  • the absorption spectrum is shown in FIG. 1 and the emission spectrum is shown in FIG.
  • Example 5 Preparation of core-shell type semiconductor nanoparticles
  • the semiconductor nanoparticles dispersion obtained in Example 1 was separated so as to contain 1 ⁇ 10-5 mmol of semiconductor nanoparticles, and dried under reduced pressure.
  • 0.16 mmol of acetylacetonatogallium (Ga (acac) 3) and 0.0533 mmol of thiourea were weighed, and 3.0 mL of dehydrated oleylamine (water value 50 ppm) was added to replace the inside of the test tube with nitrogen. After performing nitrogen substitution, heat treatment at 150 ° C.
  • Examples 6 to 9, Comparative Example 2 A core-shell type semiconductor nanoparticle dispersion liquid was obtained in the same manner as in Example 1 except that the amount of pure water added was changed as shown in Table 3.
  • Example 5 to 9 The average particle size and light emission characteristics of the core-shell type semiconductor nanoparticles obtained in Examples 5 to 9 and Comparative Example 2 were measured in the same manner as in Example 1. The results are shown in Table 4. Further, FIG. 3 shows an absorption spectrum and FIG. 4 shows an emission spectrum. From Table 3, it was confirmed that the core-shell type semiconductor nanoparticles obtained in Examples 5 to 9 had a higher band-end emission quantum yield than Comparative Example 2.
  • Example 10 The core-shell type semiconductor nanoparticles obtained in Example 7 were dispersed in chloroform to prepare a dispersion. Subsequently, the same amount of trioctylphosphine (TOP) as the dispersion was added and mixed, and then allowed to stand at room temperature for 24 hours to obtain a dispersion of TOP-modified core-shell type semiconductor nanoparticles.
  • TOP trioctylphosphine

Abstract

Provided is a production method for core/shell-type semiconductor nanoparticles that are capable of band-edge light emission and have excellent light emission efficiency. The production method for the core/shell-type semiconductor nanoparticles involves: obtaining a mixture that includes cores, at least one compound that includes at least one first element selected from the group that consists of Al, Ga, In, and Tl, and at least one simple substance of or compound that includes at least one second element selected from the group that consists of S, Se, and Te; and performing a heat treatment on the mixture to produce the core/shell-type semiconductor nanoparticles. The mixture includes the compound(s) that include the first element(s) and the simple substance(s) of or compound(s) that include the second element(s) such that the ratio of the total number of atoms of the first element(s) to the sum of the total number of atoms of the first element(s) and the total number of atoms of the second element(s) is greater than 0.5.

Description

半導体ナノ粒子及びその製造方法並びに発光デバイスSemiconductor nanoparticles and their manufacturing methods and light emitting devices
 本開示は、半導体ナノ粒子及びその製造方法並びに発光デバイスに関する。 The present disclosure relates to semiconductor nanoparticles, a method for producing the same, and a light emitting device.
 半導体粒子はその粒径が例えば10nm以下になると、量子サイズ効果を発現することが知られており、そのようなナノ粒子は量子ドット(半導体量子ドットとも呼ばれる)と呼ばれる。量子サイズ効果とは、バルク粒子では連続とみなされる価電子帯と伝導帯のそれぞれのバンドが、粒径をナノサイズとしたときに離散的となり、粒径に応じてバンドギャップエネルギーが変化する現象を指す。 It is known that semiconductor particles exhibit a quantum size effect when the particle size is, for example, 10 nm or less, and such nanoparticles are called quantum dots (also called semiconductor quantum dots). The quantum size effect is a phenomenon in which the bands of the valence band and the conduction band, which are considered to be continuous in bulk particles, become discrete when the particle size is nano-sized, and the band gap energy changes according to the particle size. Point to.
 量子ドットは、光を吸収して、そのバンドギャップエネルギーに対応する光に波長変換可能であるため、量子ドットの発光を利用した白色発光デバイスが提案されている(例えば、特開2012-212862号公報及び特開2010-177656号公報参照)。またバンド端発光が可能で低毒性の組成とし得るコアシェル型半導体ナノ粒子及びその製造方法が提案されている(例えば、特開2018-044142号公報参照)。 Since the quantum dots can absorb light and convert the wavelength into light corresponding to the band gap energy, a white light emitting device utilizing the light emission of the quantum dots has been proposed (for example, Japanese Patent Application Laid-Open No. 2012-212862). (See Japanese Patent Application Laid-Open No. 2010-177656). Further, core-shell type semiconductor nanoparticles capable of emitting band-end light and having a low toxicity composition and a method for producing the same have been proposed (see, for example, Japanese Patent Application Laid-Open No. 2018-0414242).
 バンド端発光を示す量子ドットとして、発光効率により優れる半導体ナノ粒子が求められている。本開示の一態様は、バンド端発光が可能で、発光効率に優れる半導体ナノ粒子の製造方法を提供することを目的とする。 Semiconductor nanoparticles with higher luminous efficiency are required as quantum dots that exhibit band-end emission. One aspect of the present disclosure is to provide a method for producing semiconductor nanoparticles capable of band-end emission and having excellent luminous efficiency.
 第一態様は、コアシェル型半導体ナノ粒子の製造方法である。製造方法は、M、M及びZを含む半導体を含むコアであって、Mが、Ag、Cu、Au及びアルカリ金属からなる群より選ばれる少なくとも1種の元素であって、少なくともAgを含み、Mが、Al、Ga、In及びTlからなる群より選ばれる少なくとも1種の元素であって、In及びGaの少なくとも一方を含み、Zが、S、Se及びTeからなる群より選ばれる少なくとも1種の元素を含むコアを準備することと、コアと、Al、Ga、In及びTlからなる群より選ばれる少なくとも1種である第1元素を含む化合物の少なくとも1種と、S、Se及びTeからなる群より選ばれる少なくとも1種である第2元素の単体及び第2元素を含む化合物の少なくとも1種とを含む混合物を得ることと、混合物を熱処理してコアシェル型半導体ナノ粒子を得ることとを含む。混合物は、第1元素を含む化合物と、第2元素の単体または第2元素を含む化合物とを第1元素の総原子数と第2元素の総原子数との合計に対する第1元素の総原子数の比が0.5より大きい値になる混合比で含む。 The first aspect is a method for producing core-shell type semiconductor nanoparticles. The production method is a core containing a semiconductor containing M 1 , M 2 and Z, wherein M 1 is at least one element selected from the group consisting of Ag, Cu, Au and an alkali metal, and at least Ag. Is included, M 2 is at least one element selected from the group consisting of Al, Ga, In and Tl, and contains at least one of In and Ga, and Z is from the group consisting of S, Se and Te. Preparing a core containing at least one selected element, a core, at least one compound containing at least one selected element from the group consisting of Al, Ga, In and Tl, and S. , Se and Te to obtain a mixture containing at least one element of the second element selected from the group consisting of Se and Te and at least one compound containing the second element, and heat-treating the mixture to obtain core-shell type semiconductor nanoparticles. Including to get. The mixture is a compound containing the first element and a simple substance of the second element or a compound containing the second element, and the total atoms of the first element relative to the total number of atoms of the first element and the total number of atoms of the second element. Include in a mixed ratio where the ratio of numbers is greater than 0.5.
 第二態様は、コアと、コアの表面に配置されるシェルとを備え、光の照射により発光するコアシェル型半導体ナノ粒子である。コアは、M、M及びZを含む半導体を含み、Mが、Ag、Cu、Au及びアルカリ金属からなる群より選ばれる少なくとも1種の元素であって、少なくともAgを含み、Mが、Al、Ga、In及びTlからなる群より選ばれる少なくとも1種の元素であって、In及びGaの少なくとも一方を含み、Zが、S、Se及びTeからなる群より選ばれる少なくとも1種の元素を含む。コアは、Mの総含有率が10モル%以上30モル%以下であり、Mの総含有率の総含有率が15モル%以上35モル%以下であり、Zの総含有率が35モル%以上55モル%以下である。シェルは、実質的に、Al、Ga、In及びTlからなる群より選ばれる少なくとも1種である第1元素と、S、Se及びTeからなる群より選ばれる少なくとも1種である第2元素と、O元素とからなる。 The second aspect is a core-shell type semiconductor nanoparticle having a core and a shell arranged on the surface of the core and emitting light by irradiation with light. The core comprises a semiconductor containing M 1 , M 2 and Z, where M 1 is at least one element selected from the group consisting of Ag, Cu, Au and alkali metals, containing at least Ag and M 2 Is at least one element selected from the group consisting of Al, Ga, In and Tl, contains at least one of In and Ga, and Z is at least one element selected from the group consisting of S, Se and Te. Contains the elements of. The core has a total M 1 content of 10 mol% or more and 30 mol% or less, a total M 2 content of 15 mol% or more and 35 mol% or less, and a total Z content of 35. It is more than mol% and less than 55 mol%. The shell is substantially composed of a first element, which is at least one selected from the group consisting of Al, Ga, In and Tl, and a second element, which is at least one selected from the group consisting of S, Se and Te. , O element.
 第三態様は、前記コアシェル型半導体ナノ粒子を含む光変換部材と、半導体発光素子とを備える発光デバイスである。 The third aspect is a light emitting device including a light conversion member containing the core-shell type semiconductor nanoparticles and a semiconductor light emitting element.
 本開示の一態様によれば、バンド端発光が可能で、発光効率に優れる半導体ナノ粒子の製造方法を提供することができる。 According to one aspect of the present disclosure, it is possible to provide a method for producing semiconductor nanoparticles capable of band-end emission and having excellent luminous efficiency.
コアシェル型半導体ナノ粒子の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the core-shell type semiconductor nanoparticles. コアシェル型半導体ナノ粒子の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the core-shell type semiconductor nanoparticles. コアシェル型半導体ナノ粒子の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the core-shell type semiconductor nanoparticles. コアシェル型半導体ナノ粒子の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the core-shell type semiconductor nanoparticles.
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。以下、本発明の実施形態を詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための、コアシェル型半導体ナノ粒子及びその製造方法並びに発光デバイスを例示するものであって、本発明は、以下に示すコアシェル型半導体ナノ粒子及びその製造方法並びに発光デバイスに限定されない。 In the present specification, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. .. Further, the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. Hereinafter, embodiments of the present invention will be described in detail. However, the embodiments shown below exemplify core-shell type semiconductor nanoparticles, a method for producing the same, and a light emitting device for embodying the technical idea of the present invention, and the present invention is the core-shell type shown below. It is not limited to semiconductor nanoparticles, their manufacturing methods, and light emitting devices.
コアシェル型半導体ナノ粒子の製造方法
 コアシェル型半導体ナノ粒子の製造方法は、コアを準備する準備工程と、コア及びシェル形成材料を含む混合物を得る混合工程と、混合物を熱処理してコアシェル型半導体ナノ粒子を得る熱処理工程とを含む。コアは、元素M、元素M及び元素Zを含む半導体を含む。元素Mは、銀(Ag)、銅(Cu)、金(Au)及びアルカリ金属からなる群より選ばれる少なくとも1種を含み、少なくともAgを含む。元素Mは、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)及びタリウム(Tl)からなる群より選ばれる少なくとも1種含み、In及びGaの少なくとも一方を含む。元素Zは、硫黄(S)、セレン(Se)及びテルル(Te)からなる群より選ばれる少なくとも1種を含む。混合物は、コアと、シェル形成材料としてAl、Ga、In及びTlからなる群より選ばれる少なくとも1種である第1元素を含む化合物の少なくとも1種、並びにS、Se及びTeからなる群より選ばれる少なくとも1種である第2元素の単体及び第2元素を含む化合物の少なくとも1種とを含む。混合物は、第1元素を含む化合物(以下、第1元素源ともいう)と、第2元素の単体または第2元素を含む化合物(以下、併せて第2元素源ともいう)とを、第1元素の総原子数と第2元素の総原子数との合計に対する第1元素の総原子数の比が0.5より大きい値になる混合比で含む。
Method for producing core-shell type semiconductor nanoparticles The method for producing core-shell type semiconductor nanoparticles includes a preparatory step for preparing a core, a mixing step for obtaining a mixture containing a core and a shell-forming material, and a heat treatment of the mixture for core-shell type semiconductor nanoparticles. Includes a heat treatment step to obtain. The core contains a semiconductor containing element M 1 , element M 2 and element Z. The element M 1 contains at least one selected from the group consisting of silver (Ag), copper (Cu), gold (Au) and alkali metals, and contains at least Ag. The element M 2 contains at least one selected from the group consisting of aluminum (Al), gallium (Ga), indium (In) and thallium (Tl), and contains at least one of In and Ga. Element Z comprises at least one selected from the group consisting of sulfur (S), selenium (Se) and tellurium (Te). The mixture is selected from the group consisting of the core and at least one compound containing the first element, which is at least one selected from the group consisting of Al, Ga, In and Tl as the shell-forming material, and the group consisting of S, Se and Te. It contains at least one element of the second element and at least one compound containing the second element. The mixture comprises a compound containing the first element (hereinafter, also referred to as a first element source) and a simple substance of the second element or a compound containing a second element (hereinafter, also referred to as a second element source). It is included in a mixing ratio in which the ratio of the total number of atoms of the first element to the total number of total atoms of the element and the total number of atoms of the second element is greater than 0.5.
 コアシェル型半導体ナノ粒子の製造方法においては、コア表面にシェルを形成する際に、シェル形成材料である第1元素源と、第2元素源とを、第1元素の含有量が第2元素に対してモル基準で過剰量となるように含む混合物を熱処理することで、発光効率に優れるコアシェル型半導体ナノ粒子を生成することができる。これは例えば、過剰に含まれる第1元素が、第2元素以外の元素、例えば、酸素と反応してシェルを構成するためと考えることができる。 In the method for producing core-shell type semiconductor nanoparticles, when forming a shell on the core surface, the first element source and the second element source, which are shell-forming materials, are used, and the content of the first element is changed to the second element. On the other hand, core-shell type semiconductor nanoparticles having excellent light emission efficiency can be produced by heat-treating the mixture contained in an excess amount on a molar basis. This can be considered, for example, because the first element contained in excess reacts with an element other than the second element, for example, oxygen to form a shell.
コア準備工程
 コア準備工程では、元素M、元素M及び元素Zを含む半導体を含むコアを準備する。コアは半導体ナノ粒子であってよい。コアは、市販の半導体ナノ粒子から適宜選択して準備してもよく、所望の組成を有する半導体ナノ粒子を製造して準備してもよい。
Core preparation step In the core preparation step, a core containing a semiconductor containing element M 1 , element M 2 and element Z is prepared. The core may be semiconductor nanoparticles. The core may be appropriately selected from commercially available semiconductor nanoparticles and prepared, or semiconductor nanoparticles having a desired composition may be produced and prepared.
 コアを構成する元素Mは、Agを含み、Cu、Au及びアルカリ金属からなる群より選ばれる少なくとも1種の元素をさらに含んでいてもよい。元素Mにおけるアルカリ金属には、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等が含まれる。アルカリ金属は、Agと同じく1価の陽イオンとなり得るため、半導体ナノ粒子の組成におけるAgの一部を置換することができる。特にLiはAgとイオン半径が同程度であり、好ましく用いられる。半導体ナノ粒子の組成において、例えば、Agの一部がアルカリ金属に置換されることで、例えば、バンドギャップが広がって発光ピーク波長が短波長にシフトする。元素Mは、In及びGaの少なくとも一方を含み、Al及びTlからなる群より選ばれる少なくとも1種の元素をさらに含んでいてもよい。元素Zは、S、Se及びTeからなる群より選ばれる少なくとも1種の元素を含み、少なくともSを含んでいてよい。 The element M 1 constituting the core contains Ag and may further contain at least one element selected from the group consisting of Cu, Au and alkali metals. The alkali metal in the element M 1 includes lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and the like. Since the alkali metal can be a monovalent cation like Ag, it can replace a part of Ag in the composition of the semiconductor nanoparticles. In particular, Li has an ionic radius similar to that of Ag and is preferably used. In the composition of semiconductor nanoparticles, for example, by substituting a part of Ag with an alkali metal, for example, the band gap is widened and the emission peak wavelength is shifted to a short wavelength. The element M 2 contains at least one of In and Ga, and may further contain at least one element selected from the group consisting of Al and Tl. The element Z contains at least one element selected from the group consisting of S, Se and Te, and may contain at least S.
 コアは例えば、元素MとしてAgと、元素MとしてIn及びGaの少なくとも一方と、元素ZとしてSとを含む半導体ナノ粒子であってよい。またコアは例えば、以下の式(1)で表される組成を有する半導体ナノ粒子であってよい。
  M (q+3)/2  (1)
 ここで、0.2<q≦1.2である。
The core may be, for example, semiconductor nanoparticles containing Ag as the element M 1 , at least one of In and Ga as the element M 2, and S as the element Z. Further, the core may be, for example, semiconductor nanoparticles having a composition represented by the following formula (1).
M 1 q M 2 Z (q + 3) / 2 (1)
Here, 0.2 <q ≦ 1.2.
 コアとなる半導体ナノ粒子は、以下のような製造方法で製造することができる。例えば、第1のコア製造方法は、元素Mを含む塩と、元素Mを含む塩と、元素Zの供給源と、有機溶剤とを含む第1の原料混合物を得る原料準備工程と、第1の原料混合物を熱処理して半導体ナノ粒子を得る熱処理工程とを含んでいてよい。また第2のコア製造方法は、元素Mを含む塩と、元素Mを含む塩と、有機溶剤とを含む第2の原料混合物を得る原料準備工程と、第2の原料混合物を所定の温度に加熱する昇温工程と、昇温された第2の原料混合物に元素Zの供給源を添加する添加工程とを含んでいてよい。 The core semiconductor nanoparticles can be manufactured by the following manufacturing method. For example, the first core production method includes a raw material preparation step for obtaining a first raw material mixture containing a salt containing the element M 1 , a salt containing the element M 2, a source of the element Z, and an organic solvent. It may include a heat treatment step of heat-treating the first raw material mixture to obtain semiconductor nanoparticles. Further, the second core production method comprises a raw material preparation step for obtaining a second raw material mixture containing a salt containing the element M 1 , a salt containing the element M 2, and an organic solvent, and a predetermined raw material mixture. It may include a heating step of heating to a temperature and an addition step of adding a source of element Z to the heated second raw material mixture.
 第1のコア製造方法においては、元素Mを含む塩と、元素Mを含む塩と、元素Zの供給源とを一度に有機溶剤に投入して第1の原料混合物を調製し、これを熱処理することでコアを製造してもよい。この方法によれば、簡便な操作によりワンポットで再現性よくコアとしての半導体ナノ粒子を合成できる。また、有機溶剤と元素Mを含む塩とを反応させて錯体を形成し、次に、有機溶媒と元素Mを含む塩とを反応させて錯体を形成するとともに、これらの錯体と元素Zの供給源とを反応させ、得られた反応物を結晶成長させる方法でコアを製造してもよい。この場合、熱処理は元素Zの供給源と反応させる段階にて実施してよい。 In the first core production method, a salt containing the element M 1 , a salt containing the element M 2 , and a source of the element Z are simultaneously charged into an organic solvent to prepare a first raw material mixture. The core may be manufactured by heat-treating. According to this method, semiconductor nanoparticles as a core can be synthesized in one pot with good reproducibility by a simple operation. Further, the organic solvent and the salt containing the element M 1 are reacted to form a complex, and then the organic solvent and the salt containing the element M 2 are reacted to form a complex, and these complexes and the element Z are formed. The core may be produced by a method of reacting with the source of the above and growing the obtained reaction product into crystals. In this case, the heat treatment may be carried out at the stage of reacting with the source of element Z.
 元素Mを含む塩及び元素Mを含む塩は、有機酸塩又は無機酸塩のいずれであってもよい。具体的には、無機酸塩としては、硝酸塩、硫酸塩、塩酸塩、スルホン酸塩等を挙げることができる。また有機酸塩としては、ギ酸塩、酢酸塩、シュウ酸、アセチルアセトナート塩等を挙げることができる。元素Mを含む塩及び元素Mを含む塩は、好ましくはこれらからなる群から選択される少なくとも一種であり、より好ましくは酢酸塩、アセチルアセトナート塩等の有機酸塩である。有機酸塩は有機溶剤への溶解度が高く、反応をより均一に進行させやすいことによると考えられる。 The salt containing the element M 1 and the salt containing the element M 2 may be either an organic acid salt or an inorganic acid salt. Specifically, examples of the inorganic acid salt include nitrates, sulfates, hydrochlorides, sulfonates and the like. Examples of the organic acid salt include formate, acetate, oxalic acid, and acetylacetonate salt. The salt containing the element M 1 and the salt containing the element M 2 are preferably at least one selected from the group consisting of these, and more preferably organic acid salts such as acetate and acetylacetonate. It is considered that the organic acid salt has a high solubility in an organic solvent and the reaction can be easily carried out more uniformly.
 元素Zの供給源のうちSの供給源としては、例えば、硫黄単体及び含硫化合物を挙げることができる。含硫化合物としては、具体的には、2,4-ペンタンジチオンなどのβ-ジチオン類;1,2-ビス(トリフルオロメチル)エチレン-1,2-ジチオールなどのジチオール類;ジエチルジチオカルバミド酸塩等のジアルキルジチオカルバミド酸塩;チオ尿素、モノアルキルチオ尿素、1,3-ジアルキルチオ尿素、1,1-ジアルキルチオ尿素、1,1,3-トリアルキルチオ尿素、1,1,3,3-テトラアルキルチオ尿素等の炭素数1から18のアルキル基を有するアルキルチオ尿素などが挙げられる。 Among the sources of element Z, examples of the source of S include elemental sulfur and sulfur-containing compounds. Specific examples of the urea-containing compound include β-dithiones such as 2,4-pentanedithione; dithiols such as 1,2-bis (trifluoromethyl) ethylene-1,2-dithiol; diethyldithiocarbamide acid. Dialkyldithiocarbamide salts such as salts; thiourea, monoalkylthiourea, 1,3-dialkylthiourea, 1,1-dialkylthiourea, 1,1,3-trialkylthiourea, 1,1,3,3- Examples thereof include alkylthiourea having an alkyl group having 1 to 18 carbon atoms such as tetraalkylthiourea.
 Se供給源としては、例えば、セレン単体;セレノ尿素、セレノアセトアミド、アルキルセレノール等の含Se化合物などを挙げることができる。Te供給源としては、例えば、テルル単体、Te-ホスフィン錯体、アルキルテルロールなどを挙げることができる。 Examples of the Se supply source include elemental selenium; Se-containing compounds such as selenourea, selenoacetamide, and alkylselenol. Examples of the Te supply source include tellurium simple substance, Te-phosphine complex, and alkyltelrol.
 有機溶剤としては、例えば炭素数4から20の炭化水素基を有するアミン、例えば炭素数4から20のアルキルアミンもしくはアルケニルアミン、例えば炭素数4から20の炭化水素基を有するチオール、例えば炭素数4から20のアルキルチオールもしくはアルケニルチオール、例えば炭素数4から20の炭化水素基を有するホスフィン、例えば炭素数4から20のアルキルホスフィンもしくはアルケニルホスフィン等を挙げることができ、これらからなる群から選択される少なくとも1種を含むことが好ましい。これらの有機溶媒は、例えば、最終的には、得られる半導体ナノ粒子を表面修飾してもよい。有機溶剤は2種以上を組み合わせて使用してよく、例えば炭素数4から20の炭化水素基を有するチオールから選択される少なくとも1種と、炭素数4から20の炭化水素基を有するアミンから選択される少なくとも1種とを組み合わせた混合溶媒を使用してよい。これらの有機溶媒は他の有機溶剤と混合して用いてもよい。有機溶剤が前記チオールと前記アミンとを含む場合、アミンに対するチオールの含有体積比(チオール/アミン)は、例えば、0より大きく1以下であり、好ましくは0.007以上0.2以下である。 Examples of the organic solvent include amines having a hydrocarbon group having 4 to 20 carbon atoms, for example, alkylamines having 4 to 20 carbon atoms or alkenylamines, for example, thiols having a hydrocarbon group having 4 to 20 carbon atoms, for example, 4 carbon atoms. 20 alkylthiols or alkenylthiols, such as phosphines having a hydrocarbon group having 4 to 20 carbon atoms, such as alkylphosphine or alkenylphosphine having 4 to 20 carbon atoms, are selected from the group consisting of these. It is preferable to contain at least one type. These organic solvents may, for example, surface-modify the resulting semiconductor nanoparticles, for example. The organic solvent may be used in combination of two or more, for example, at least one selected from thiols having a hydrocarbon group having 4 to 20 carbon atoms and an amine having a hydrocarbon group having 4 to 20 carbon atoms. A mixed solvent in combination with at least one of the above is used. These organic solvents may be mixed with other organic solvents and used. When the organic solvent contains the thiol and the amine, the volume ratio of the thiol to the amine (thiol / amine) is, for example, greater than 0 and 1 or less, preferably 0.007 or more and 0.2 or less.
 第1の原料混合物は、元素Mを含む塩の少なくとも1種と、元素Mを含む塩の少なくとも1種と、元素Zの供給源の少なくとも1種とを、これらが互いに反応することなく含んでいてもよく、これらから形成される錯体として含んでいてもよい。また、第1の原料混合物は、元素Mを含む塩から形成されるM錯体、元素Mを含む塩から形成されるM錯体、元素Zの供給源から形成される錯体等を含むものであってもよい。錯体形成は、例えば、適当な有機溶剤中で、元素Mを含む塩と、元素Mを含む塩と、元素Zの供給源とを混合することで実施される。また、混合の雰囲気は、不活性ガス雰囲気、例えばアルゴン雰囲気、窒素雰囲気等であってもよい。不活性ガス雰囲気とすることで、酸化物の副生を、低減又は防止することができる。 The first raw material mixture comprises at least one salt containing the element M 1 , at least one salt containing the element M 2, and at least one source of the element Z without reacting with each other. It may be contained, or may be contained as a complex formed from these. Further, the first raw material mixture contains an M 1 complex formed from a salt containing the element M 1 , an M 2 complex formed from a salt containing the element M 2 , a complex formed from a source of the element Z, and the like. It may be a thing. Complex formation is carried out, for example, by mixing a salt containing the element M 1 , a salt containing the element M 2 , and a source of the element Z in a suitable organic solvent. Further, the mixed atmosphere may be an inert gas atmosphere, for example, an argon atmosphere, a nitrogen atmosphere, or the like. By creating an inert gas atmosphere, by-production of oxides can be reduced or prevented.
 第1の原料混合物では、その組成として含まれる元素Mの原子数の合計に対する元素Mの原子数の合計の比(M/M)が、例えば、0.1以上2.5以下であり、好ましくは0.2以上2.0以下、より好ましくは0.3以上1.5以下である。また、第1の原料混合物の組成では、In及びGaの原子数の合計に対するInの原子数の比(In/(In+Ga))が、例えば、0.1以上1.0以下であり、好ましくは0.25以上0.99以下である。更に、第1の原料混合物の組成では、元素Zの原子数の合計に対する元素Mの原子数の合計の比(M/Z)が、例えば、0.27以上1.0以下であり、好ましくは0.35以上0.5以下である。第1の原料混合物の組成がこれらの条件を満たすように各元素の供給源を用いることにより、バンド端発光を与えやすい半導体ナノ粒子を生成することができる。 In the first raw material mixture, the ratio of the total number of atoms of the element M 1 (M 1 / M 2 ) to the total number of atoms of the element M 2 contained in the composition is, for example, 0.1 or more and 2.5 or less. It is preferably 0.2 or more and 2.0 or less, and more preferably 0.3 or more and 1.5 or less. Further, in the composition of the first raw material mixture, the ratio of the number of atoms of In to the total number of atoms of In and Ga (In / (In + Ga)) is, for example, 0.1 or more and 1.0 or less, preferably 0.1 or more. It is 0.25 or more and 0.99 or less. Further, in the composition of the first raw material mixture, the ratio (M 1 / Z) of the total number of atoms of the element M 1 to the total number of atoms of the element Z is, for example, 0.27 or more and 1.0 or less. It is preferably 0.35 or more and 0.5 or less. By using the source of each element so that the composition of the first raw material mixture satisfies these conditions, it is possible to generate semiconductor nanoparticles that easily give band-end emission.
 第1の製造方法における熱処理工程は、第1の原料混合物を所定の温度で熱処理する1段階の熱処理工程であっても、第1温度で熱処理した後、第1温度よりも高い第2温度で熱処理する2段階の熱処理工程であってもよい。熱処理を2段階で実施することにより、例えば、より良好な再現性で、バンド端発光の強度が比較的高い半導体ナノ粒子を製造することができる。ここで、第1温度での熱処理と第2温度での熱処理とは、連続して行ってもよく、第1温度での熱処理後に降温し、次いで第2温度に昇温して熱処理してもよい。 The heat treatment step in the first production method is a one-step heat treatment step in which the first raw material mixture is heat-treated at a predetermined temperature, but after the heat treatment at the first temperature, the heat treatment is performed at a second temperature higher than the first temperature. It may be a two-step heat treatment step of heat treatment. By performing the heat treatment in two steps, for example, semiconductor nanoparticles having better reproducibility and relatively high intensity of band-end emission can be produced. Here, the heat treatment at the first temperature and the heat treatment at the second temperature may be continuously performed, or the heat treatment may be performed by lowering the temperature after the heat treatment at the first temperature and then raising the temperature to the second temperature. Good.
 第1の原料混合物の熱処理を1段階の熱処理工程で行う場合、熱処理温度は、例えば180℃以上であってよく、好ましくは200℃以上又は260℃以上である。また、熱処理温度は、例えば370℃以下であってよく、好ましくは350℃以下又は320℃以下である。熱処理の時間は、例えば、1分以上であってよく、好ましくは5分以上、より好ましくは7分以上である。また、熱処理の時間は、例えば、120分以下であってよく、好ましくは60分以下、より好ましくは30分以下又は20分以下である。 When the heat treatment of the first raw material mixture is performed in a one-step heat treatment step, the heat treatment temperature may be, for example, 180 ° C. or higher, preferably 200 ° C. or higher or 260 ° C. or higher. The heat treatment temperature may be, for example, 370 ° C. or lower, preferably 350 ° C. or lower or 320 ° C. or lower. The heat treatment time may be, for example, 1 minute or longer, preferably 5 minutes or longer, and more preferably 7 minutes or longer. The heat treatment time may be, for example, 120 minutes or less, preferably 60 minutes or less, more preferably 30 minutes or less, or 20 minutes or less.
 また、第1の原料混合物の熱処理を2段階の熱処理工程で行う場合、第1温度は、例えば30℃以上であってよく、好ましくは100℃以上である。また、第1温度は、例えば200℃以下であってよく、好ましくは180℃以下である。第1温度での熱処理の時間は、例えば、1分以上であってよく、好ましくは5分以上、より好ましくは10分以上である。また、第1温度での熱処理の時間は、例えば、120分以下であってよく、好ましくは60分以下、より好ましくは30分以下である。 Further, when the heat treatment of the first raw material mixture is performed in a two-step heat treatment step, the first temperature may be, for example, 30 ° C. or higher, preferably 100 ° C. or higher. The first temperature may be, for example, 200 ° C. or lower, preferably 180 ° C. or lower. The heat treatment time at the first temperature may be, for example, 1 minute or longer, preferably 5 minutes or longer, and more preferably 10 minutes or longer. The heat treatment time at the first temperature may be, for example, 120 minutes or less, preferably 60 minutes or less, and more preferably 30 minutes or less.
 第2温度は、例えば180℃以上であってよく、好ましくは200℃以上である。また、第2温度は、例えば370℃以下であってよく、好ましくは350℃以下である。第2温度での熱処理の時間は、例えば、1分以上であってよく、好ましくは5分以上、より好ましくは10分以上である。また、第2温度での熱処理の時間は、例えば、120分以下であってよく、好ましくは60分以下、より好ましくは30分以下である。 The second temperature may be, for example, 180 ° C. or higher, preferably 200 ° C. or higher. The second temperature may be, for example, 370 ° C or lower, preferably 350 ° C or lower. The heat treatment time at the second temperature may be, for example, 1 minute or longer, preferably 5 minutes or longer, and more preferably 10 minutes or longer. The heat treatment time at the second temperature may be, for example, 120 minutes or less, preferably 60 minutes or less, and more preferably 30 minutes or less.
 なお、熱処理の時間は、所定の温度に到達した時点を熱処理の開始時間とし、降温又は昇温のための操作を行った時点をその所定温度における熱処理の終了時点とする。また所定の温度に到達するまでの昇温速度は、例えば、1℃/分以上100℃/分以下であってよく、又は1℃/分以上50℃/分以下であってよい。また、熱処理後における降温速度は、例えば1℃/分以上100℃/分以下であり、必要に応じて冷却してもよく、熱源を停止して放冷するだけでもよい。 The heat treatment time is defined as the start time of the heat treatment when the temperature reaches a predetermined temperature, and the end time of the heat treatment at the predetermined temperature when the operation for lowering or raising the temperature is performed. The rate of temperature rise until reaching a predetermined temperature may be, for example, 1 ° C./min or more and 100 ° C./min or less, or 1 ° C./min or more and 50 ° C./min or less. The temperature lowering rate after the heat treatment is, for example, 1 ° C./min or more and 100 ° C./min or less, and may be cooled if necessary, or the heat source may be stopped and allowed to cool.
 熱処理工程における雰囲気は、アルゴン等の希ガス雰囲気、窒素雰囲気等の不活性雰囲気が好ましい。不活性雰囲気下で熱処理することで、酸化物の副生を抑制することができる。 The atmosphere in the heat treatment step is preferably a rare gas atmosphere such as argon or an inert atmosphere such as a nitrogen atmosphere. By heat treatment in an inert atmosphere, by-production of oxides can be suppressed.
 第2のコア製造方法における準備工程では、元素Mを含む塩の少なくとも1種と、元素Mを含む塩の少なくとも1種と、有機溶剤とを含む第2の原料混合物を準備する。第2の原料混合物は、元素Mを含む塩と、元素Mを含む塩とを有機溶剤と混合することで調製できる。また第2の原料混合物は元素Mを含む塩又は元素Mを含む塩を有機溶剤と混合し、次いで残りの成分を混合して調製してもよい。得られる第2の原料混合物は、昇温された状態で未溶解物のない溶液状態であってよい。また、混合の雰囲気は、不活性ガス雰囲気、例えばアルゴン雰囲気、窒素雰囲気等であってもよい。不活性ガス雰囲気とすることで、酸化物の副生を、低減又は防止することができる。 The preparation process of the second core manufacturing method, to prepare at least one salt containing the element M 1, and at least one salt containing the element M 2, the second raw material mixture containing an organic solvent. The second raw material mixture can be prepared by mixing a salt containing the element M 1 and a salt containing the element M 2 with an organic solvent. Further, the second raw material mixture may be prepared by mixing a salt containing the element M 1 or a salt containing the element M 2 with an organic solvent, and then mixing the remaining components. The obtained second raw material mixture may be in a solution state without undissolved substances in a heated state. Further, the mixed atmosphere may be an inert gas atmosphere, for example, an argon atmosphere, a nitrogen atmosphere, or the like. By creating an inert gas atmosphere, by-production of oxides can be reduced or prevented.
 第2のコア製造方法に用いられる元素Mを含む塩、元素Mを含む塩、及び有機溶剤は第1のコア製造方法に用いられるそれらと同様である。 The salt containing the element M 1 used in the second core manufacturing method, the salt containing the element M 2 and the organic solvent are the same as those used in the first core manufacturing method.
 第2の原料混合物は、元素Mを含む塩の少なくとも1種と、元素Mを含む塩の少なくとも1種とを、これらが互いに反応することなく含んでいてもよく、これらから形成される錯体として含んでいてもよい。また、第2の原料混合物は、元素Mを含む塩から形成されるM錯体、元素Mを含む塩から形成されるM錯体等を含むものであってもよい。錯体形成は、例えば、適当な有機溶剤中で、元素Mを含む塩と、元素Mを含む塩とを混合することで実施される。 The second raw material mixture may contain at least one salt containing the element M 1 and at least one salt containing the element M 2 without reacting with each other, and is formed from these. It may be contained as a complex. Further, the second raw material mixture may contain an M 1 complex formed from a salt containing the element M 1 , an M 2 complex formed from a salt containing the element M 2, and the like. The complex formation is carried out, for example, by mixing a salt containing the element M 1 and a salt containing the element M 2 in a suitable organic solvent.
 第2の原料混合物では、その組成として含まれる元素Mの原子数の合計に対する元素Mの原子数の合計の比(M/M)が、例えば、0.1以上2.5以下であり、好ましくは0.2以上2.0以下、より好ましくは0.3以上1.5以下である。また、第2の原料混合物の組成では、In及びGaの原子数の合計に対するInの原子数の比(In/(In+Ga))が、例えば、0.1以上1.0以下であり、好ましくは0.25以上0.99以下である。混合物の組成がこれらの条件を満たすように各元素の供給源を用いることにより、バンド端発光を与えやすい半導体ナノ粒子を生成することができる。 In the second raw material mixture, the ratio of the total number of atoms of the element M 1 (M 1 / M 2 ) to the total number of atoms of the element M 2 contained in the composition is, for example, 0.1 or more and 2.5 or less. It is preferably 0.2 or more and 2.0 or less, and more preferably 0.3 or more and 1.5 or less. Further, in the composition of the second raw material mixture, the ratio of the number of atoms of In to the total number of atoms of In and Ga (In / (In + Ga)) is, for example, 0.1 or more and 1.0 or less, preferably 0.1 or more. It is 0.25 or more and 0.99 or less. By using the source of each element so that the composition of the mixture satisfies these conditions, it is possible to generate semiconductor nanoparticles that easily give band-end emission.
 第2のコア製造方法における昇温工程では、準備した第2の原料混合物を例えば、120℃以上300℃以下の範囲にある温度に昇温する。昇温によって到達する温度は、好ましくは125℃以上、より好ましくは130℃以上、更に好ましくは135℃以上であり、また好ましくは175℃以下、より好ましくは160℃以下、更に好ましくは150℃以下である。昇温速度は、例えば1℃/分以上50℃/分以下であり、好ましくは10℃/分以上50℃/分以下である。 In the temperature raising step in the second core manufacturing method, the prepared second raw material mixture is heated to a temperature in the range of, for example, 120 ° C. or higher and 300 ° C. or lower. The temperature reached by raising the temperature is preferably 125 ° C. or higher, more preferably 130 ° C. or higher, further preferably 135 ° C. or higher, and preferably 175 ° C. or lower, more preferably 160 ° C. or lower, still more preferably 150 ° C. or lower. Is. The rate of temperature rise is, for example, 1 ° C./min or more and 50 ° C./min or less, preferably 10 ° C./min or more and 50 ° C./min or less.
 第2の原料混合物の昇温工程における雰囲気は、不活性ガス雰囲気、例えばアルゴン雰囲気、窒素雰囲気等が好ましい。不活性ガス雰囲気とすることで、酸化物の副生を、低減又は防止することができる。 The atmosphere in the step of raising the temperature of the second raw material mixture is preferably an inert gas atmosphere, for example, an argon atmosphere, a nitrogen atmosphere, or the like. By creating an inert gas atmosphere, by-production of oxides can be reduced or prevented.
 第2のコア製造方法における添加工程では、所定の温度に昇温された第2の原料混合物に、所定の温度を維持しながら、元素Zの供給源を混合物中の元素Mの原子数に対する元素Zの原子数の比の増加率が、例えば、10/分以下となるように徐々に添加する。混合物中のMの原子数に対するZの原子数の比(Z/M比)の増加率は、例えば、ある時点におけるZ/M比をその単位時間後におけるZ/M比から差し引き、単位時間を分換算した値で除して算出される。単位時間は例えば、1秒から1分の間で任意に選択される。第2の原料混合物中のMの原子数に対するZの原子数の比の増加率は、生成する粒子の粒子成長制御の点より、好ましくは0.0001/分以上2/分以下であり、より好ましくは0.0001/分以上1/分以下であり、さらに好ましくは0.001/分以上0.2/分以下であり、特に好ましくは0.001/分以上0.1/分以下である。また、好ましくは0.0002/分以上2/分以下であり、より好ましくは0.002/分以上0.2/分以下である。 The adding step in the second core manufacturing method, the second raw material mixture is heated to a predetermined temperature, while maintaining a predetermined temperature, for the number of atoms of the element M 1 in the mixture supply source of the element Z The elements are gradually added so that the rate of increase in the ratio of the number of atoms of element Z is, for example, 10 / min or less. The rate of increase in the ratio of the number of Z atoms to the number of M 1 atoms in the mixture (Z / M 1 ratio) is, for example, the Z / M 1 ratio at a given time subtracted from the Z / M 1 ratio after that unit time. , Calculated by dividing the unit time by the minute conversion value. The unit time is arbitrarily selected from, for example, 1 second to 1 minute. The rate of increase in the ratio of the number of Z atoms to the number of M 1 atoms in the second raw material mixture is preferably 0.0001 / min or more and 2 / min or less from the viewpoint of controlling the particle growth of the generated particles. More preferably 0.0001 / min or more and 1 / min or less, further preferably 0.001 / min or more and 0.2 / min or less, and particularly preferably 0.001 / min or more and 0.1 / min or less. is there. Further, it is preferably 0.0002 / min or more and 2 / min or less, and more preferably 0.002 / min or more and 0.2 / min or less.
 元素Zの供給源の総添加量は、最終的に得られる混合物中の元素Mの原子数に対する元素Zの原子数の比が0.1以上5.0以下となる量であり、好ましくは1.0以上2.5以下となる量である。元素Zの供給源の添加に要する所用時間は、例えば、1分間以上であればよく、好ましくは5分間以上、より好ましくは15分間以上、更に好ましくは20分間以上であり、また好ましくは120分間以下、より好ましくは60分間以下、更に好ましくは40分間以下である。 The total amount of the source of the element Z is the amount of atomic ratio of the element Z on the final atomic number of the element M 1 in the resulting mixture becomes 0.1 to 5.0, preferably The amount is 1.0 or more and 2.5 or less. The time required for adding the source of element Z may be, for example, 1 minute or longer, preferably 5 minutes or longer, more preferably 15 minutes or longer, still more preferably 20 minutes or longer, and preferably 120 minutes or longer. Below, it is more preferably 60 minutes or less, still more preferably 40 minutes or less.
 元素Zの供給源の総添加量が、混合物中の元素Mの原子数に対する元素Zの原子数の比が0.1以上2.5以下となる量の場合、Z/M比の増加率は、例えば、0.0001/分以上1/分以下であり、好ましくは0.001/分以上0.1/分以下である。また、元素Zの供給源の総添加量が、混合物中の元素Mの原子数に対する元素Zの原子数の比が2.5を越えて5.0以下となる量の場合、Z/M比の増加率は、例えば、0.0002/分以上2/分以下であり、好ましくは0.002/分以上0.2/分以下である。 The total amount of the source of the element Z is, when the amount of atomic ratio of the element Z for atomic elements M 1 in the mixture is 0.1 or more and 2.5 or less, an increase in Z / M 1 ratio The rate is, for example, 0.0001 / min or more and 1 / min or less, preferably 0.001 / min or more and 0.1 / min or less. The total amount of the source of the element Z is, when the amount of atomic ratio of the element Z for atomic elements M 1 in the mixture is 5.0 or less beyond 2.5, Z / M The rate of increase of 1 ratio is, for example, 0.0002 / min or more and 2 / min or less, preferably 0.002 / min or more and 0.2 / min or less.
 元素Zの供給源の添加は、単位時間当たりの添加量が所要時間にわたって略同一になるように行ってよい。すなわち、元素Zの供給源の総添加量を、所要時間を単位時間で除した数で除して得られる単位量を単位時間当たりの添加量として添加してよい。単位時間は、例えば、1秒間、5秒間、10秒間、30秒間又は1分間とすることができる。元素Zの供給源は、連続的に添加されてもよく、段階的に添加されてもよい。また元素Zの供給源は、例えば、不活性ガス雰囲気下で混合物に添加されてよい。 The source of element Z may be added so that the amount added per unit time is substantially the same over the required time. That is, the unit amount obtained by dividing the total addition amount of the source of the element Z by the number obtained by dividing the required time by the unit time may be added as the addition amount per unit time. The unit time can be, for example, 1 second, 5 seconds, 10 seconds, 30 seconds or 1 minute. The source of element Z may be added continuously or stepwise. The source of element Z may also be added to the mixture, for example, under an inert gas atmosphere.
 元素Zの供給源としては、第1のコア製造方法に用いられる元素Zの供給源と同様である。特に第2のコア製造方法においては、元素Zの供給源として、有機溶剤に溶解可能な含硫化合物が好ましく、溶解性と反応性の観点から、アルキルチオ尿素が好ましく用いられ、1,3-アルキルチオ尿素がより好ましく用いられる。アルキルチオ尿素のアルキル基は、炭素数が1から12であることが好ましく、1から8がより好ましく、1から6がより好ましく、1から4がより好ましく、1から3がさらに好ましい。アルキルチオ尿素が複数のアルキル基を有する場合、それらは同一でも異なっていてもよい。 The source of element Z is the same as the source of element Z used in the first core manufacturing method. In particular, in the second core production method, a sulfur-containing compound soluble in an organic solvent is preferable as a source of element Z, and alkylthiourea is preferably used from the viewpoint of solubility and reactivity, and 1,3-alkylthio is used. Urea is more preferably used. The alkyl group of the alkylthiourea preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, and even more preferably 1 to 3 carbon atoms. If the alkylthiourea has multiple alkyl groups, they may be the same or different.
 元素Zの供給源は、元素Zの単体、又は元素Zを含む化合物を有機溶剤に分散又は溶解した溶液として昇温された第2の原料混合物に添加されてよい。元素Zの供給源が元素Zを含む化合物の溶液であることで、添加工程における元素Zの供給源の単位時間当たりの添加量を容易に制御することができ、粒度分布のより狭い半導体ナノ粒子を効率的に製造することができる。 The source of element Z may be added to a second raw material mixture that has been heated as a simple substance of element Z or a solution in which a compound containing element Z is dispersed or dissolved in an organic solvent. Since the source of the element Z is a solution of a compound containing the element Z, the amount of the element Z added per unit time in the addition step can be easily controlled, and the semiconductor nanoparticles having a narrower particle size distribution can be easily controlled. Can be efficiently manufactured.
 元素Zの供給源となる元素Zを含む化合物を溶解する有機溶剤としては、上述した有機溶剤と同様のものを例示することができ、例えば、炭素数4以上20以下の炭化水素基を有するアミンを用いることができる。 Examples of the organic solvent for dissolving the compound containing the element Z, which is the source of the element Z, include the same as the above-mentioned organic solvent. For example, an amine having a hydrocarbon group having 4 or more and 20 or less carbon atoms. Can be used.
 元素Zの供給源が元素Zを含む化合物の溶液の場合、元素Zを含む化合物の濃度は、例えば1mmol/L以上500mmol/L以下であり、好ましくは10mmol/L以上50mmol/L以下である。 When the source of the element Z is a solution of a compound containing the element Z, the concentration of the compound containing the element Z is, for example, 1 mmol / L or more and 500 mmol / L or less, preferably 10 mmol / L or more and 50 mmol / L or less.
 第2のコア製造方法は、元素Zの供給源の添加が終了した後の混合物を120℃以上300℃以下の範囲にある温度で熱処理する熱処理工程をさらに含んでいてもよい。熱処理の温度は、混合物が昇温された温度と同一であってもよく、異なっていてもよい。熱処理の温度は、量子収率の点から、例えば120℃以上300℃以下であり、好ましくは125℃以上175℃以下、より好ましくは130℃以上160℃以下、更に好ましくは135℃以上150℃以下である。 The second core manufacturing method may further include a heat treatment step of heat-treating the mixture after the addition of the source of element Z is completed at a temperature in the range of 120 ° C. or higher and 300 ° C. or lower. The temperature of the heat treatment may be the same as or different from the temperature at which the mixture is heated. From the viewpoint of quantum yield, the heat treatment temperature is, for example, 120 ° C. or higher and 300 ° C. or lower, preferably 125 ° C. or higher and 175 ° C. or lower, more preferably 130 ° C. or higher and 160 ° C. or lower, and further preferably 135 ° C. or higher and 150 ° C. or lower. Is.
 熱処理の時間は、半導体ナノ粒子の量子効率の点から、例えば3秒以上であり、好ましくは5分間以上、10分間以上、又は20分間以上である。熱処理時間の上限については特に限定はないが、例えば、60分以下とすることができる。熱処理する時間は所定の温度に到達した時点(例えば140℃の場合は140℃に到達した時間)を熱処理の開始時間とし、降温のための操作を行う時点を熱処理の終了時間とする。 The heat treatment time is, for example, 3 seconds or more, preferably 5 minutes or more, 10 minutes or more, or 20 minutes or more from the viewpoint of the quantum efficiency of the semiconductor nanoparticles. The upper limit of the heat treatment time is not particularly limited, but can be, for example, 60 minutes or less. The time for heat treatment is defined as the start time of the heat treatment when the temperature reaches a predetermined temperature (for example, the time when the temperature reaches 140 ° C. in the case of 140 ° C.), and the end time of the heat treatment when the operation for lowering the temperature is performed.
 熱処理の雰囲気は、不活性ガス雰囲気、例えば、アルゴン雰囲気又は窒素雰囲気が好ましい。不活性ガス雰囲気とすることで、酸化物の副生を、低減ないしは防止することができる。 The atmosphere of the heat treatment is preferably an inert gas atmosphere, for example, an argon atmosphere or a nitrogen atmosphere. By creating an inert gas atmosphere, by-production of oxides can be reduced or prevented.
 第2のコア製造方法は、上述の工程に続いて半導体ナノ粒子を含む溶液の温度を降温する冷却工程を有していてもよい。冷却工程は、降温のための操作を行った時点を開始とし、50℃以下まで冷却された時点を終了とする。 The second core manufacturing method may include a cooling step of lowering the temperature of the solution containing the semiconductor nanoparticles following the above-mentioned step. The cooling step starts when the operation for lowering the temperature is performed and ends when the temperature is cooled to 50 ° C. or lower.
 冷却工程は、未反応のAg塩からの硫化銀の生成を抑制する点から、降温速度が50℃/分以上である期間を含んでいてもよい。例えば、降温のための操作を行った後、降温が開始した時点において50℃/分以上とすることができる。 The cooling step may include a period in which the temperature lowering rate is 50 ° C./min or more from the viewpoint of suppressing the production of silver sulfide from the unreacted Ag salt. For example, after performing the operation for lowering the temperature, the temperature can be set to 50 ° C./min or more at the time when the lowering of the temperature starts.
 冷却工程の雰囲気は、不活性ガス雰囲気、例えば、アルゴン雰囲気又は窒素雰囲気が好ましい。不活性ガス雰囲気とすることで、酸化物の副生を低減ないしは防止することができる。 The atmosphere of the cooling step is preferably an inert gas atmosphere, for example, an argon atmosphere or a nitrogen atmosphere. By creating an inert gas atmosphere, by-production of oxides can be reduced or prevented.
 第1のコア製造方法又は第2のコア製造方法は、得られる半導体ナノ粒子を溶液から分離する分離工程を更に含んでいてもよく、必要に応じて、さらに精製工程を含んでいてよい。分離工程では、例えば、半導体ナノ粒子を含む溶液を遠心分離に付して、半導体ナノ粒子を含む上澄み液を取り出してよい。精製工程では、例えば、分離工程で得られる上澄み液に、アルコール等の適当な有機溶剤を添加して遠心分離に付し、半導体ナノ粒子を沈殿物として取り出してよい。なお、上澄み液から有機溶剤を揮発させることによっても、半導体ナノ粒子を取り出すことができる。取り出した沈殿物は、例えば、真空脱気、もしくは自然乾燥、または真空脱気と自然乾燥との組み合わせにより、乾燥させてよい。自然乾燥は、例えば、大気中に常温常圧にて放置することにより実施してよく、その場合、20時間以上、例えば、30時間程度放置してよい。また、取り出した沈殿物は、適当な有機溶剤に分散させてよい。 The first core manufacturing method or the second core manufacturing method may further include a separation step of separating the obtained semiconductor nanoparticles from the solution, and may further include a purification step, if necessary. In the separation step, for example, the solution containing the semiconductor nanoparticles may be subjected to centrifugation to take out the supernatant liquid containing the semiconductor nanoparticles. In the purification step, for example, the supernatant obtained in the separation step may be subjected to centrifugation by adding an appropriate organic solvent such as alcohol, and the semiconductor nanoparticles may be taken out as a precipitate. The semiconductor nanoparticles can also be taken out by volatilizing the organic solvent from the supernatant liquid. The removed precipitate may be dried by, for example, vacuum degassing or natural drying, or a combination of vacuum degassing and natural drying. Natural drying may be carried out, for example, by leaving it in the air at normal temperature and pressure, and in that case, it may be left for 20 hours or more, for example, about 30 hours. Moreover, the taken-out precipitate may be dispersed in a suitable organic solvent.
 第1のコア製造方法又は第2のコア製造方法では、アルコール等の有機溶剤の添加と遠心分離による精製工程を必要に応じて複数回実施してよい。精製に用いるアルコールとして、メタノール、エタノール、n-プロピルアルコール等の炭素数1から4の低級アルコールを用いてよい。沈殿を有機溶剤に分散させる場合、有機溶剤として、クロロホルム等のハロゲン系溶剤、トルエン、シクロヘキサン、ヘキサン、ペンタン、オクタン等の炭化水素系溶剤等を用いてよい。 In the first core manufacturing method or the second core manufacturing method, the purification step by adding an organic solvent such as alcohol and centrifuging may be carried out a plurality of times as necessary. As the alcohol used for purification, a lower alcohol having 1 to 4 carbon atoms such as methanol, ethanol and n-propyl alcohol may be used. When the precipitate is dispersed in an organic solvent, a halogen-based solvent such as chloroform, a hydrocarbon solvent such as toluene, cyclohexane, hexane, pentane, or octane may be used as the organic solvent.
混合工程
 コアシェル型半導体ナノ粒子の製造方法における混合工程では、準備されるコアに、Al、Ga、In及びTlからなる群より選ばれる少なくとも1種である第1元素を含む化合物(第1元素源)と、S、Se及びTeからなる群より選ばれる少なくとも1種である第2元素の単体及び第2元素を含む化合物の少なくとも1種(第2元素源)とを、第1元素の総原子数と第2元素の総原子数との合計に対する第1元素の総原子数の比(以下、第1元素比ともいう)が、例えば0.5より大きい値になる混合比で混合してシェル形成用混合物を得る。シェル形成用混合物における第1元素比は、好ましくは0.6以上、又は0.7以上である。第1元素比の上限は例えば、1未満であり、好ましくは0.98以下又は0.95以下である。
Mixing step In the mixing step in the method for producing core-shell type semiconductor nanoparticles, the prepared core contains a compound containing at least one first element selected from the group consisting of Al, Ga, In and Tl (first element source). ), And at least one element of the second element selected from the group consisting of S, Se and Te, and at least one compound containing the second element (second element source), which are the total atoms of the first element. The shell is mixed at a mixing ratio in which the ratio of the total number of atoms of the first element to the total number of the total number of atoms of the second element (hereinafter, also referred to as the first element ratio) is greater than 0.5, for example. Obtain a forming mixture. The first element ratio in the shell-forming mixture is preferably 0.6 or more, or 0.7 or more. The upper limit of the first element ratio is, for example, less than 1, preferably 0.98 or less or 0.95 or less.
 シェル形成用混合物は、準備されるコアと、第1元素源と、第2元素源とを有機溶剤中で混合することで得られてもよい。有機溶剤としては、炭素数4以上20以下の炭化水素基を有する含窒素化合物から選ばれる少なくとも1種とすることができ、あるいは、炭素数4以上20以下の炭化水素基を有する含硫黄化合物から選ばれる少なくとも1種とすることができ、これらの混合物であってもよい。 The shell-forming mixture may be obtained by mixing the prepared core, the first element source, and the second element source in an organic solvent. The organic solvent can be at least one selected from nitrogen-containing compounds having a hydrocarbon group having 4 or more and 20 or less carbon atoms, or a sulfur-containing compound having a hydrocarbon group having 4 or more and 20 or less carbon atoms. It can be at least one selected and may be a mixture thereof.
 準備されるコアは分散液としてシェル形成用混合物を構成してもよい。半導体ナノ粒子であるコアが分散した液体においては、散乱光が生じないため、分散液は一般に透明(有色又は無色)のものとして得られる。コアを分散させる溶媒は、コアを作製するときと同様、任意の有機溶剤とすることができる。例えば、有機溶剤は、炭素数4以上20以下の炭化水素基を有する含窒素化合物から選ばれる少なくとも1種とすることができ、あるいは、炭素数4以上20以下の炭化水素基を有する含硫黄化合物から選ばれる少なくとも1種とすることができ、あるいは炭素数4以上20以下の炭化水素基を有する含窒素化合物から選ばれる少なくとも1種と炭素数4以上20以下の炭化水素基を有する含硫黄化合物から選ばれる少なくとも1種との組み合わせとすることができる。含窒素化合物としては、特に、特に純度の高いものが入手しやすい点と沸点が290℃を超える点とから、反応温度より高いことが好ましく、具体的な有機溶剤としては、オレイルアミン、n-テトラデシルアミン、ドデカンチオール、又はその組み合わせが挙げられる。 The prepared core may form a shell-forming mixture as a dispersion. In a liquid in which a core of semiconductor nanoparticles is dispersed, scattered light is not generated, so that the dispersion liquid is generally obtained as transparent (colored or colorless). The solvent for dispersing the core can be any organic solvent as in the case of producing the core. For example, the organic solvent can be at least one selected from nitrogen-containing compounds having a hydrocarbon group having 4 or more and 20 or less carbon atoms, or a sulfur-containing compound having a hydrocarbon group having 4 or more and 20 or less carbon atoms. It can be at least one selected from, or a sulfur-containing compound having at least one selected from a nitrogen-containing compound having a hydrocarbon group having 4 or more and 20 or less carbon atoms and a hydrocarbon group having 4 or more and 20 or less carbon atoms. It can be combined with at least one selected from. The nitrogen-containing compound is preferably higher than the reaction temperature because it is easily available and has a boiling point of more than 290 ° C. Specific organic solvents include oleylamine and n-tetra. Examples thereof include decylamine, dodecanethiol, or a combination thereof.
 コアの分散液は、分散液に占める粒子の濃度が、例えば、5.0×10-8モル/リットル以上5.0×10-4モル/リットル以下、特に1.0×10-7モル/リットル以上5.0×10-5モル/リットル以下となるように調製してよい。分散液に占める粒子の割合が5.0×10-8モル/リットル以上であると貧溶媒による凝集・沈澱プロセスによる生成物の回収が容易になる傾向がある。また5.0×10-4モル/リットル以下であるとコアを構成する材料のオストワルド熟成、衝突による融合が抑制され、粒径分布が広くなることを抑制できる傾向がある。なお、粒子の濃度は、分散液に含まれる粒子の個数をアボガドロ数で除した値を基にして算出される。 In the core dispersion, the concentration of particles in the dispersion is, for example, 5.0 × 10-8 mol / liter or more and 5.0 × 10 -4 mol / liter or less, particularly 1.0 × 10-7 mol / liter. It may be prepared so as to be liter or more and 5.0 × 10 -5 mol / liter or less. When the proportion of particles in the dispersion is 5.0 × 10-8 mol / liter or more, the product tends to be easily recovered by the aggregation / precipitation process with a poor solvent. Further, when the content is 5.0 × 10 -4 mol / liter or less, Ostwald ripening of the materials constituting the core and fusion due to collision are suppressed, and there is a tendency that the widening of the particle size distribution can be suppressed. The particle concentration is calculated based on the number of particles contained in the dispersion liquid divided by the Avogadro's number.
 第1元素源は、Al、Ga、In及びTlからなる群より選ばれる第13族元素の少なくとも1種を含む化合物であり、例えば、第1元素の有機酸塩、無機酸塩、有機金属化合物等である。第1元素源として具体的には、硝酸塩、硫酸塩、塩酸塩、スルホン酸塩等の無機酸塩;酢酸塩、アセチルアセトナート錯体等の有機酸塩が挙げられ、好ましくは酢酸塩、アセチルアセトナート錯体等の有機酸塩である。有機酸塩は有機溶媒への溶解度が高く、反応をより均一に進行させやすいことによると考えられる。 The first element source is a compound containing at least one of Group 13 elements selected from the group consisting of Al, Ga, In and Tl, and is, for example, an organic acid salt, an inorganic acid salt, or an organic metal compound of the first element. And so on. Specific examples of the first element source include inorganic acid salts such as nitrates, sulfates, hydrochlorides and sulfonates; and organic acid salts such as acetates and acetylacetonate complexes, preferably acetates and acetylacetates. It is an organic acid salt such as a nat complex. It is considered that the organic acid salt has a high solubility in an organic solvent and the reaction can be easily carried out more uniformly.
 第1元素源は、In及びGaの少なくとも一方を含む塩であってよい。In及びGaの少なくとも一方を含む塩は、酢酸塩、アセチルアセトナート錯体等の有機酸塩、硫酸塩、塩酸塩、スルホン酸塩等の無機酸塩等であってよい。好ましくは酢酸塩、アセチルアセトナート錯体等であってよい。 The first element source may be a salt containing at least one of In and Ga. The salt containing at least one of In and Ga may be an organic acid salt such as an acetate or an acetylacetonate complex, an inorganic acid salt such as a sulfate, a hydrochloride or a sulfonate, or the like. It may preferably be an acetate, an acetylacetonate complex or the like.
 第2元素源は、S、Se及びTeからなる群より選ばれる第16族元素の単体又は第16族元素を含む化合物である。例えば、第2元素としてSをシェルの構成元素とする場合、硫黄源は、高純度硫黄のような硫黄単体、あるいは、n-ブタンチオール、イソブタンチオール、n-ペンタンチオール、n-ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオール、ヘキサデカンチオール、オクタデカンチオール等のチオール、ジベンジルスルフィドのようなジスルフィド、チオ尿素、1,3-ジメチルチオ尿素等のアルキルチオ尿素、チオカルボニル化合物等の硫黄含有化合物であってよい。中でもチオ尿素、アルキルチオ尿素等を硫黄源として用いると、シェルが十分に形成されて、強いバンド端発光を与えるコアシェル型半導体ナノ粒子が得られやすい。 The second element source is a simple substance of a group 16 element selected from the group consisting of S, Se and Te, or a compound containing a group 16 element. For example, when S is a constituent element of the shell as the second element, the sulfur source is a single sulfur such as high-purity sulfur, or n-butanethiol, isobutanethiol, n-pentanethiol, n-hexanethiol, octane. Thiols such as thiols, decanethiols, dodecanethiols, hexadecanethiols and octadecanethiols, disulfides such as dibenzyl sulfide, thioureas, alkylthioureas such as 1,3-dimethylthiourea, and sulfur-containing compounds such as thiocarbonyl compounds. Good. Among them, when thiourea, alkylthiourea or the like is used as a sulfur source, a shell is sufficiently formed and core-shell type semiconductor nanoparticles that give strong band-end emission can be easily obtained.
 第2元素として、Seをシェルの構成元素とする場合には、セレン単体、又はセレン化ホスフィンオキシド、有機セレン化合物(ジベンジルジセレニド、ジフェニルジセレニド等)もしくは水素化物等の化合物を、第2元素源として用いてよい。第2元素として、Teをシェルの構成元素とする場合には、テルル単体、テルル化ホスフィンオキシド、又は水素化物を、第2元素源として用いてよい。 When Se is a constituent element of the shell as the second element, selenium alone or a compound such as selenium phosphine oxide, an organic selenium compound (dibenzyl diselenide, diphenyl diselenide, etc.) or a hydride is used. It may be used as a second element source. When Te is a constituent element of the shell as the second element, tellurium alone, tellurium phosphine oxide, or hydride may be used as the second element source.
 シェル形成用混合物は、第1元素源及び第2元素源に加えて、アルカリ金属塩を含んでいてもよい。アルカリ金属には、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等が含まれる。アルカリ金属塩は、有機酸塩又は無機酸塩のいずれであってもよい。具体的には、塩としては、硝酸塩、酢酸塩、硫酸塩、塩酸塩、スルホン酸塩、アセチルアセトナート塩等を挙げることができ、好ましくはこれらからなる群から選択される少なくとも一種であり、より好ましくは酢酸塩等の有機酸塩である。 The shell-forming mixture may contain an alkali metal salt in addition to the first element source and the second element source. Alkali metals include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and the like. The alkali metal salt may be either an organic acid salt or an inorganic acid salt. Specifically, examples of the salt include nitrates, acetates, sulfates, hydrochlorides, sulfonates, acetylacetonate salts and the like, and preferably at least one selected from the group consisting of these. More preferably, it is an organic acid salt such as acetate.
 シェル形成用混合物がアルカリ金属塩を含む場合、第1元素源に対するアルカリ金属塩の仕込み比は、例えば0.1以上5以下、又は0.2以上4以下であってよい。またアルカリ金属塩及び第1元素源の総和に対する第2元素源の仕込み比は、例えば0.3以上3以下、又は0.5以上2以下であってよい。 When the shell-forming mixture contains an alkali metal salt, the charging ratio of the alkali metal salt to the first element source may be, for example, 0.1 or more and 5 or less, or 0.2 or more and 4 or less. The charging ratio of the second element source to the total sum of the alkali metal salt and the first element source may be, for example, 0.3 or more and 3 or less, or 0.5 or more and 2 or less.
 シェル形成用混合物における第1元素源及び第2元素源の仕込み量は、分散液中に存在するコアに所望の厚さのシェルが形成されるように、分散液に含まれるコアの量を考慮して選択してよい。例えば、コアの粒子としての物質量10nmolに対して、第1元素及び第2元素から成る化学量論組成の半導体化合物が0.1μmol以上10mmol以下、特に5μmol以上1mmol以下生成されるように、第1元素源及び第2元素源の仕込み量を決定してよい。ただし、粒子としての物質量というのは、粒子1つを巨大な分子と見なしたときのモル量であり、分散液に含まれるナノ粒子の個数を、アボガドロ数(NA=6.022×1023)で除した値に等しい。 The amount of the first element source and the second element source charged in the shell-forming mixture takes into consideration the amount of core contained in the dispersion liquid so that a shell having a desired thickness is formed in the core existing in the dispersion liquid. You may select it. For example, a semiconductor compound having a stoichiometric composition composed of the first element and the second element is produced in an amount of 0.1 μmol or more and 10 mmol or less, particularly 5 μmol or more and 1 mmol or less, based on a substance amount of 10 nmol as core particles. The amount of the 1-element source and the 2nd element source may be determined. However, the amount of substance as a particle is the molar amount when one particle is regarded as a huge molecule, and the number of nanoparticles contained in the dispersion is the Avogadro's number (NA = 6.022 × 10). Equal to the value divided by 23).
 シェル形成用混合物におけるコアの物質量に対する第1元素源の含有量は、コアの粒子数(モル)に対する第1元素源のモル比として、例えば1.6以上であり、好ましくは1.6×10以上であり、より好ましくは1×10以上であり、また例えば2.5×10以下であり、好ましくは1.3×10以下である。コアの含有量に対する第2元素源の含有量は、コアの粒子数(モル)に対する第2元素源のモル比として、例えば5.3×10以上であり、好ましくは5.3×10以上であり、また例えば8.5×10以下であり、好ましくは4.3×10以下である。 The content of the first element source with respect to the amount of substance of the core in the shell-forming mixture is, for example, 1.6 or more, preferably 1.6 ×, as the molar ratio of the first element source to the number of particles (mol) of the core. is 10 3 or more, more preferably 1 × 10 4 or more, and for example 2.5 × 10 5 or less, preferably 1.3 × 10 5 or less. The content of the second element source to the content of the core, as the molar ratio of the second element sources for the number of particles of the core (moles), for example, at 5.3 × 10 or more, preferably 5.3 × 10 2 or more , and the addition is for example 8.5 × 10 4 or less, preferably 4.3 × 10 4 or less.
熱処理工程
 コアシェル型半導体ナノ粒子の製造方法における熱処理工程の一態様では、例えば、シェル形成用混合物を所定の温度で熱処理して、シェルである半導体層をコアである半導体ナノ粒子の表面に形成してコアシェル型半導体ナノ粒子を得る(ヒーティングアップ法)。具体的には、シェル形成用混合物を徐々に昇温して、そのピーク温度が200℃以上310℃以下となるようにし、ピーク温度で所定の時間保持した後、徐々に降温させるやり方で加熱してよい。昇温速度は例えば1℃/分以上50℃/分以下としてよいが、シェルの無い状態で熱処理され続けることによって生じるコアの変質を最小限に留めるため200℃までは50℃/分以上100℃/分以下が好ましい。また、200℃以上にさらに昇温したい場合は、それ以降は1℃/分以上5℃/分以下とすることが好ましい。降温速度は、例えば1℃/分以上50℃/分以下としてよい。ピーク温度が前記温度以上であると、半導体ナノ粒子を修飾している表面修飾剤が十分に脱離し、又はシェル生成のための化学反応が十分に進行する等の理由により、半導体の層(シェル)の形成が十分に行われる傾向がある。ピーク温度が前記温度以下であると、半導体ナノ粒子に変質が生じることが抑制され、良好なバンド端発光が得られる傾向がある。ピーク温度を保持する時間は、例えば1分間以上300分間以下、特に10分間以上120分間以下とすることができる。ピーク温度の保持時間は、ピーク温度との関係で選択され、ピーク温度がより低い場合には保持時間をより長くし、ピーク温度がより高い場合には保持時間をより短くすると、良好なシェル層が形成されやすい。
Heat Treatment Step In one aspect of the heat treatment step in the method for producing core-shell type semiconductor nanoparticles, for example, the shell-forming mixture is heat-treated at a predetermined temperature to form a semiconductor layer as a shell on the surface of the semiconductor nanoparticles as a core. To obtain core-shell type semiconductor nanoparticles (heat treatment-up method). Specifically, the shell-forming mixture is gradually heated so that its peak temperature is 200 ° C. or higher and 310 ° C. or lower, held at the peak temperature for a predetermined time, and then gradually lowered. You can. The heating rate may be, for example, 1 ° C./min or more and 50 ° C./min or less, but 50 ° C./min or more and 100 ° C. up to 200 ° C. It is preferably less than / minute. Further, when it is desired to further raise the temperature to 200 ° C. or higher, the temperature is preferably 1 ° C./min or higher and 5 ° C./min or lower thereafter. The temperature lowering rate may be, for example, 1 ° C./min or more and 50 ° C./min or less. When the peak temperature is equal to or higher than the above temperature, the surface modifier that modifies the semiconductor nanoparticles is sufficiently desorbed, or the chemical reaction for shell formation proceeds sufficiently, and so on, the semiconductor layer (shell). ) Tends to be well formed. When the peak temperature is equal to or lower than the above temperature, deterioration of the semiconductor nanoparticles is suppressed, and good band-end emission tends to be obtained. The time for maintaining the peak temperature can be, for example, 1 minute or more and 300 minutes or less, particularly 10 minutes or more and 120 minutes or less. The peak temperature retention time is selected in relation to the peak temperature, with a longer retention time when the peak temperature is lower and a shorter retention time when the peak temperature is higher, a better shell layer. Is easy to form.
 コアシェル型半導体ナノ粒子の製造方法における熱処理工程の別の態様は、シェル形成用混合物を所定の温度で熱処理する1段階の熱処理工程であっても、第1温度で熱処理した後、第1温度よりも高い第2温度で熱処理する2段階の熱処理工程であってもよい。熱処理を2段階で実施することにより、例えば、より良好な再現性で、バンド端発光の強度が高いコアシェル型半導体ナノ粒子を製造することができる。ここで、第1温度での熱処理と第2温度での熱処理とは、連続して行ってもよく、第1温度での熱処理後に降温し、次いで第2温度に昇温して熱処理してもよい。 Another aspect of the heat treatment step in the method for producing core-shell type semiconductor nanoparticles is that even in a one-step heat treatment step in which the shell-forming mixture is heat-treated at a predetermined temperature, the heat treatment is performed at the first temperature and then from the first temperature. It may be a two-step heat treatment step in which the heat treatment is performed at a high second temperature. By performing the heat treatment in two steps, for example, core-shell type semiconductor nanoparticles having better reproducibility and high intensity of band-end emission can be produced. Here, the heat treatment at the first temperature and the heat treatment at the second temperature may be continuously performed, or the heat treatment may be performed by lowering the temperature after the heat treatment at the first temperature and then raising the temperature to the second temperature. Good.
 シェル形成用混合物の熱処理を2段階の熱処理工程で行う場合、第1温度は、例えば30℃以上であってよく、好ましくは100℃以上である。また、第1温度は、例えば200℃以下であってよく、好ましくは180℃以下である。第1温度での熱処理の時間は、例えば、1分以上であってよく、好ましくは5分以上、より好ましくは7分以上である。また、第1温度での熱処理の時間は、例えば、120分以下であってよく、好ましくは60分以下、より好ましくは30分以下又は20分以下である。 When the heat treatment of the shell-forming mixture is performed in a two-step heat treatment step, the first temperature may be, for example, 30 ° C. or higher, preferably 100 ° C. or higher. The first temperature may be, for example, 200 ° C. or lower, preferably 180 ° C. or lower. The heat treatment time at the first temperature may be, for example, 1 minute or longer, preferably 5 minutes or longer, and more preferably 7 minutes or longer. The heat treatment time at the first temperature may be, for example, 120 minutes or less, preferably 60 minutes or less, more preferably 30 minutes or less, or 20 minutes or less.
 第2温度は、例えば180℃以上であってよく、好ましくは200℃以上である。また、第2温度は、例えば350℃以下であってよく、好ましくは330℃以下又は310℃以下である。第2温度での熱処理の時間は、例えば、1分以上であってよく、好ましくは5分以上、より好ましくは10分以上又は20分以上である。また、第2温度での熱処理の時間は、例えば、120分以下であってよく、好ましくは90分以下、より好ましくは60分以下又は40分以下である。 The second temperature may be, for example, 180 ° C. or higher, preferably 200 ° C. or higher. The second temperature may be, for example, 350 ° C. or lower, preferably 330 ° C. or lower or 310 ° C. or lower. The time of the heat treatment at the second temperature may be, for example, 1 minute or longer, preferably 5 minutes or longer, more preferably 10 minutes or longer or 20 minutes or longer. The heat treatment time at the second temperature may be, for example, 120 minutes or less, preferably 90 minutes or less, more preferably 60 minutes or less, or 40 minutes or less.
 なお、熱処理の時間は、所定の温度に到達した時点を熱処理の開始時間とし、降温又は昇温のための操作を行った時点をその所定温度における熱処理の終了時点とする。また所定の温度に到達するまでの昇温速度は、例えば、1℃/分以上100℃/分以下、又は1℃/分以上50℃/分以下である。また、熱処理後における降温速度は、例えば1℃/分以上100℃/分以下であり、必要に応じて冷却してもよく、熱源を停止して放冷するだけでもよい。 The heat treatment time is defined as the start time of the heat treatment when the temperature reaches a predetermined temperature, and the end time of the heat treatment at the predetermined temperature when the operation for lowering or raising the temperature is performed. The rate of temperature rise until the temperature reaches a predetermined temperature is, for example, 1 ° C./min or more and 100 ° C./min or less, or 1 ° C./min or more and 50 ° C./min or less. The temperature lowering rate after the heat treatment is, for example, 1 ° C./min or more and 100 ° C./min or less, and may be cooled if necessary, or the heat source may be stopped and allowed to cool.
 熱処理の雰囲気は、不活性ガス雰囲気、例えば、アルゴン雰囲気又は窒素雰囲気が好ましい。不活性ガス雰囲気とすることで、酸化物の副生を、低減ないしは防止することができる。 The atmosphere of the heat treatment is preferably an inert gas atmosphere, for example, an argon atmosphere or a nitrogen atmosphere. By creating an inert gas atmosphere, by-production of oxides can be reduced or prevented.
 このようにして、シェルを形成してコアシェル構造を有するコアシェル型半導体ナノ粒子が形成される。得られるコアシェル型半導体ナノ粒子は、溶媒から分離してよく、必要に応じて、さらに精製及び乾燥してよい。分離、精製及び乾燥の方法は、先に半導体ナノ粒子であるコアの製造方法に関連して説明したとおりであるから、ここではその詳細な説明を省略する。 In this way, a shell is formed to form core-shell type semiconductor nanoparticles having a core-shell structure. The resulting core-shell semiconductor nanoparticles may be separated from the solvent and, if necessary, further purified and dried. Since the methods of separation, purification, and drying are as described above in relation to the method for producing cores of semiconductor nanoparticles, detailed description thereof will be omitted here.
 一実施形態において、コアシェル型半導体ナノ粒子の製造方法は、シェル形成用混合物に酸素源を添加する工程を含んでいてもよい。すなわち、コアシェル型半導体ナノ粒子の製造方法は、コア準備工程と、混合工程と、熱処理工程とを含み、混合工程が酸素源を含むシェル形成用混合物を得ることを含んでいてもよい。熱処理工程に付されるシェル形成用混合物が酸素源を含むことで、発光効率により優れるコアシェル型半導体ナノ粒子を生成することができる。 In one embodiment, the method for producing core-shell type semiconductor nanoparticles may include a step of adding an oxygen source to the shell-forming mixture. That is, the method for producing core-shell type semiconductor nanoparticles may include a core preparation step, a mixing step, and a heat treatment step, and the mixing step may include obtaining a shell-forming mixture containing an oxygen source. When the shell-forming mixture subjected to the heat treatment step contains an oxygen source, core-shell type semiconductor nanoparticles having higher luminous efficiency can be produced.
 本実施形態では、混合工程で得られるシェル形成用混合物が酸素源を含んでいる。混合工程では、準備したコアと、第1元素源、第2元素源及び酸素源とを混合してシェル形成用混合物が得られる。 In the present embodiment, the shell-forming mixture obtained in the mixing step contains an oxygen source. In the mixing step, the prepared core is mixed with the first element source, the second element source and the oxygen source to obtain a shell-forming mixture.
 一実施形態において、コアシェル型半導体ナノ粒子の製造方法は、熱処理工程において、シェル形成用混合物に酸素源を添加する工程を含んでいてもよい。すなわち、コアシェル型半導体ナノ粒子の製造方法は、コア準備工程と、混合工程と、熱処理工程とを含み、熱処理工程がシェル形成用混合物に酸素源を添加することを含んでいてもよい。加熱状態のシェル形成用混合物に酸素源を添加することで、発光効率により優れるコアシェル型半導体ナノ粒子を生成することができる。 In one embodiment, the method for producing core-shell type semiconductor nanoparticles may include a step of adding an oxygen source to the shell-forming mixture in the heat treatment step. That is, the method for producing core-shell type semiconductor nanoparticles may include a core preparation step, a mixing step, and a heat treatment step, and the heat treatment step may include adding an oxygen source to the shell-forming mixture. By adding an oxygen source to the mixture for forming a shell in a heated state, core-shell type semiconductor nanoparticles having higher luminous efficiency can be produced.
 本実施形態では、混合工程で得られるシェル形成用混合物を熱処理しながら、酸素源を添加する。シェル形成を1段階の熱処理で行う場合、酸素源の添加は、ピーク温度での熱処理中であってよく、ピーク温度への昇温中であってよく、ピーク温度からの降温中であってよい。シェル形成の熱処理を2段階で行う場合、第1温度での熱処理中に酸素源を添加してよく、第1温度での熱処理後に酸素源を添加してよく、第2温度での熱処理中に酸素源を添加してもよい。また、熱処理工程での酸素源を添加に加えて、熱処理前のシェル形成用混合物が予め酸素源を含んでいてもよい。 In the present embodiment, an oxygen source is added while heat-treating the shell-forming mixture obtained in the mixing step. When the shell formation is performed by a one-step heat treatment, the oxygen source may be added during the heat treatment at the peak temperature, during the temperature rise to the peak temperature, or during the temperature decrease from the peak temperature. .. When the heat treatment for shell formation is performed in two steps, an oxygen source may be added during the heat treatment at the first temperature, an oxygen source may be added after the heat treatment at the first temperature, and during the heat treatment at the second temperature. An oxygen source may be added. Further, in addition to the addition of the oxygen source in the heat treatment step, the shell-forming mixture before the heat treatment may contain the oxygen source in advance.
 一実施形態において、コアシェル型半導体ナノ粒子の製造方法は、熱処理工程で得られるコアシェル型半導体ナノ粒子に酸素源を接触させる工程を含んでいてもよい。すなわち、コアシェル型半導体ナノ粒子の製造方法は、コア準備工程と、混合工程と、熱処理工程とを含み、熱処理工程後に得られるコアシェル型半導体ナノ粒子に、酸素源を接触させる工程を含んでいてもよい。シェル形成用混合物から得られるコアシェル型半導体ナノ粒子に、酸素源を接触させてシェルに酸素原子を導入することで、発光効率により優れるコアシェル型半導体ナノ粒子を生成することができる。 In one embodiment, the method for producing core-shell type semiconductor nanoparticles may include a step of bringing an oxygen source into contact with the core-shell type semiconductor nanoparticles obtained in the heat treatment step. That is, the method for producing core-shell type semiconductor nanoparticles includes a core preparation step, a mixing step, and a heat treatment step, and even if the core-shell type semiconductor nanoparticles obtained after the heat treatment step are brought into contact with an oxygen source. Good. By bringing an oxygen source into contact with the core-shell type semiconductor nanoparticles obtained from the shell-forming mixture and introducing oxygen atoms into the shell, core-shell type semiconductor nanoparticles having higher luminous efficiency can be produced.
 本実施形態では、熱処理工程で得られるコアシェル型半導体ナノ粒子に酸素源を接触させて、シェルに酸素原子を導入する。酸素源を接触させるコアシェル型半導体ナノ粒子は、熱処理工程後の未精製のものであってよく、精製処理されたものであってよい。また、酸素源を接触させるコアシェル型半導体ナノ粒子は、酸素源を含むシェル形成用混合物から得られるものであってよく、熱処理工程で酸素源がシェル形成用混合物に添加されて得られるものであってよい。 In this embodiment, an oxygen source is brought into contact with the core-shell type semiconductor nanoparticles obtained in the heat treatment step to introduce oxygen atoms into the shell. The core-shell type semiconductor nanoparticles that are brought into contact with the oxygen source may be unrefined after the heat treatment step, or may be purified. Further, the core-shell type semiconductor nanoparticles that are brought into contact with the oxygen source may be obtained from a shell-forming mixture containing the oxygen source, and may be obtained by adding the oxygen source to the shell-forming mixture in the heat treatment step. You can.
 酸素源は、シェルの組成に酸素原子を導入可能であれば特に制限はない。酸素源として具体的には、酸素原子を含む化合物、酸素原子を含むガス等を挙げることできる。酸素原子を含む化合物としては、水、アルコール等を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。酸素原子を含むガスとしては、酸素ガス、オゾンガス等を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。酸素源はシェル形成用混合物に酸素原子を含む化合物を溶解又は分散させて添加してもよく、シェル形成用混合物に酸素原子を含むガスを吹き込んで添加してもよい。 The oxygen source is not particularly limited as long as oxygen atoms can be introduced into the composition of the shell. Specific examples of the oxygen source include a compound containing an oxygen atom and a gas containing an oxygen atom. Examples of the compound containing an oxygen atom include water, alcohol and the like, and at least one selected from the group consisting of these is preferable. Examples of the gas containing an oxygen atom include oxygen gas and ozone gas, and at least one selected from the group consisting of these is preferable. The oxygen source may be added by dissolving or dispersing a compound containing an oxygen atom in the shell-forming mixture, or by blowing a gas containing an oxygen atom into the shell-forming mixture.
 酸素源の添加量又は使用量は、例えば水の場合、溶媒重量に対して6000ppm以下であり、好ましくは3000ppm以下、又は1000ppm以下である。 In the case of water, for example, the amount of oxygen source added or used is 6000 ppm or less, preferably 3000 ppm or less, or 1000 ppm or less with respect to the weight of the solvent.
 コアシェル型半導体ナノ粒子のシェル表面が、後述する特定修飾剤で修飾されている場合は、上記の製造方法で得られるコアシェル型半導体ナノ粒子を修飾工程に付してもよい。修飾工程では、コアシェル型半導体ナノ粒子と、酸化数が負のリン(P)を含む特定修飾剤とを接触させて、コアシェル粒子のシェル表面を修飾する。これにより、より優れた量子収率でバンド端発光を示すコアシェル型半導体ナノ粒子が製造される。 When the shell surface of the core-shell type semiconductor nanoparticles is modified with a specific modifier described later, the core-shell type semiconductor nanoparticles obtained by the above production method may be subjected to the modification step. In the modification step, the core-shell type semiconductor nanoparticles are brought into contact with a specific modifier containing phosphorus (P) having a negative oxidation number to modify the shell surface of the core-shell particles. As a result, core-shell type semiconductor nanoparticles exhibiting band-end emission with a better quantum yield are produced.
 コアシェル型半導体ナノ粒子と特定修飾剤との接触は、例えば、コアシェル型半導体ナノ粒子の分散液と特定修飾剤とを混合することで行うことができる。またコアシェル粒子を、液状の特定修飾剤と混合して行ってもよい。特定修飾剤には、その溶液を用いてもよい。コアシェル型半導体ナノ粒子の分散液は、コアシェル型半導体ナノ粒子と適当な有機溶媒とを混合することで得られる。分散に用いる有機溶剤としては、例えばクロロホルム等のハロゲン溶剤;トルエン等の芳香族炭化水素溶剤;シクロヘキサン、ヘキサン、ペンタン、オクタン等の脂肪族炭化水素溶剤などを挙げることができる。コアシェル型半導体ナノ粒子の分散液における物質量の濃度は、例えば、1×10-7mol/L以上1×10-3mol/L以下であり、好ましくは1×10-6mol/L以上1×10-4mol/L以下である。 The contact between the core-shell type semiconductor nanoparticles and the specific modifier can be performed, for example, by mixing the dispersion liquid of the core-shell type semiconductor nanoparticles and the specific modifier. Further, the core-shell particles may be mixed with a liquid specific modifier. The solution may be used as the specific modifier. The dispersion liquid of the core-shell type semiconductor nanoparticles is obtained by mixing the core-shell type semiconductor nanoparticles with an appropriate organic solvent. Examples of the organic solvent used for dispersion include halogen solvents such as chloroform; aromatic hydrocarbon solvents such as toluene; and aliphatic hydrocarbon solvents such as cyclohexane, hexane, pentane, and octane. The concentration of the amount of substance in the dispersion liquid of the core-shell type semiconductor nanoparticles is, for example, 1 × 10 -7 mol / L or more and 1 × 10 -3 mol / L or less, preferably 1 × 10 -6 mol / L or more 1 × 10 -4 mol / L or less.
 特定修飾剤のコアシェル型半導体ナノ粒子に対する使用量は、例えば、モル比で1倍以上50,000倍以下である。また、コアシェル型半導体ナノ粒子の分散液における物質量の濃度が1.0×10-7mol/L以上1.0×10-3mol/L以下であるコアシェル型半導体ナノ粒子の分散液を用いる場合、分散液と特定修飾剤とを体積比で1:1000から1000:1で混合してもよい。 The amount of the specific modifier used for the core-shell type semiconductor nanoparticles is, for example, 1-fold or more and 50,000-fold or less in terms of molar ratio. Further, a dispersion liquid of core-shell type semiconductor nanoparticles having a concentration of a substance amount of 1.0 × 10 -7 mol / L or more and 1.0 × 10 -3 mol / L or less in the dispersion liquid of core-shell type semiconductor nanoparticles is used. In this case, the dispersion liquid and the specific modifier may be mixed in a volume ratio of 1: 1000 to 1000: 1.
 コアシェル型半導体ナノ粒子と特定修飾剤との接触時の温度は、例えば、-100℃以上100℃以下又は30℃以上75℃以下である。接触時間は特定修飾剤の使用量、分散液の濃度等に応じて適宜選択すればよい。接触時間は、例えば、1分以上、好ましくは1時間以上であり、100時間以下、好ましくは48時間以下である。接触時の雰囲気は、例えば、窒素ガス、希ガス等の不活性ガス雰囲気である。 The temperature at the time of contact between the core-shell type semiconductor nanoparticles and the specific modifier is, for example, −100 ° C. or higher and 100 ° C. or lower, or 30 ° C. or higher and 75 ° C. or lower. The contact time may be appropriately selected according to the amount of the specific modifier used, the concentration of the dispersion liquid, and the like. The contact time is, for example, 1 minute or more, preferably 1 hour or more, 100 hours or less, preferably 48 hours or less. The atmosphere at the time of contact is, for example, an atmosphere of an inert gas such as nitrogen gas or rare gas.
コアシェル型半導体ナノ粒子
 コアシェル型半導体ナノ粒子は、コアと、コアの表面に配置されるシェルとを備え、光の照射により発光する。コアは、元素M、元素M及び元素Zを含む半導体ナノ粒子であってよい。Mは、銀(Ag)、銅(Cu)、金(Au)及びアルカリ金属からなる群より選ばれる少なくとも1種の元素であって、少なくともAgを含む。Mは、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)及びタリウム(Tl)からなる群より選ばれる少なくとも1種の元素であって、In及びGaの少なくとも一方を含む。Zは、硫黄(S)、セレン(Se)及びテルル(Te)からなる群より選ばれる少なくとも1種の元素を含む。コアの組成は、Mの総含有率が10モル%以上30モル%以下であり、Mの総含有率の総含有率が15モル%以上35モル%以下であり、Zの総含有率が35モル%以上55モル%以下である。シェルは、実質的に、Al、Ga、In及びTlからなる群より選ばれる少なくとも1種である第1元素と、S、Se及びTeからなる群より選ばれる少なくとも1種である第2元素と、酸素(O)元素とからなる。
Core-shell type semiconductor nanoparticles The core-shell type semiconductor nanoparticles include a core and a shell arranged on the surface of the core, and emit light when irradiated with light. The core may be semiconductor nanoparticles containing element M 1 , element M 2 and element Z. M 1 is at least one element selected from the group consisting of silver (Ag), copper (Cu), gold (Au) and alkali metals, and contains at least Ag. M 2 is at least one element selected from the group consisting of aluminum (Al), gallium (Ga), indium (In) and thallium (Tl), and contains at least one of In and Ga. Z contains at least one element selected from the group consisting of sulfur (S), selenium (Se) and tellurium (Te). The composition of the core is such that the total content of M 1 is 10 mol% or more and 30 mol% or less, the total content of M 2 is 15 mol% or more and 35 mol% or less, and the total content of Z is. Is 35 mol% or more and 55 mol% or less. The shell is substantially composed of a first element, which is at least one selected from the group consisting of Al, Ga, In and Tl, and a second element, which is at least one selected from the group consisting of S, Se and Te. , Oxygen (O) element.
 コアシェル型半導体ナノ粒子では、コア自体が半導体ナノ粒子を含んでおり、シェルが第1元素と第2元素に加えて酸素元素を含んで構成されることで、優れた発光効率を達成することができる。コアシェル型半導体ナノ粒子は、例えば200nm以上500nm未満の範囲内にある波長の光の照射により、500nm以上1000nm以下の範囲内に発光ピーク波長を有し、発光スペクトルにおける半値幅が例えば250meV以下である光を発する。半値幅は、好ましくは200meV以下、より好ましくは150meV以下である。この半値幅の下限値は例えば30meV以上である。半値幅が250meV以下であるとは、発光ピーク波長が600nmの場合には半値幅が73nm以下であり、発光ピーク波長が700nmの場合には半値幅が100nm以下であり、発光ピーク波長が800nmの場合には半値幅が130nm以下であることを意味し、コアシェル型半導体ナノ粒子がバンド端発光することを意味する。 In the core-shell type semiconductor nanoparticles, the core itself contains semiconductor nanoparticles, and the shell is composed of oxygen elements in addition to the first and second elements, so that excellent light emission efficiency can be achieved. it can. The core-shell type semiconductor nanoparticles have an emission peak wavelength in the range of 500 nm or more and 1000 nm or less by irradiation with light having a wavelength in the range of 200 nm or more and less than 500 nm, and the half width in the emission spectrum is, for example, 250 meV or less. It emits light. The half width is preferably 200 meV or less, more preferably 150 meV or less. The lower limit of this half width is, for example, 30 meV or more. When the half-value width is 250 meV or less, the half-value width is 73 nm or less when the emission peak wavelength is 600 nm, and when the emission peak wavelength is 700 nm, the half-value width is 100 nm or less and the emission peak wavelength is 800 nm. In the case, it means that the full width at half maximum is 130 nm or less, and it means that the core-shell type semiconductor nanoparticles emit light at the band end.
 コアの組成にAgと、In及びGaの少なくとも一方と、S、Se又はTeとを含み、シェルの組成に第1元素、第2元素及び酸素元素を含むコアシェル型半導体ナノ粒子は、その形状及び寸法に起因して、バンド端発光を与えるものである。また、コアシェル型半導体ナノ粒子は、毒性が高いとされているCd及びPbを含まない組成のものとすることができ、Cd等の使用が禁じられている製品等にも適用可能である。したがって、この半導体ナノ粒子は、液晶表示装置に用いる発光デバイスの波長変換物質として、また、生体分子マーカー等として好適に用いることができる。 Core-shell type semiconductor nanoparticles containing Ag, at least one of In and Ga, S, Se or Te in the composition of the core and the first element, the second element and the oxygen element in the composition of the shell have the shape and shape. Due to its size, it gives band edge emission. Further, the core-shell type semiconductor nanoparticles can have a composition that does not contain Cd and Pb, which are considered to be highly toxic, and can be applied to products and the like whose use of Cd and the like is prohibited. Therefore, the semiconductor nanoparticles can be suitably used as a wavelength conversion substance for a light emitting device used in a liquid crystal display device, as a biomolecule marker, or the like.
 コアの組成におけるAg、Cu、Au及びアルカリ金属の総含有率は、例えば、10モル%以上30モル%以下であり、好ましくは、15モル%以上25モル%以下である。コアの組成におけるAl、Ga、In及びTlの総含有率は、例えば、15モル%以上35モル%以下であり、好ましくは、20モル%以上30モル%以下である。コアの組成におけるS、Se及びTeの総含有率は、例えば、35モル%以上55モル%以下であり、好ましくは、40モル%以上55モル%以下である。  The total content of Ag, Cu, Au and alkali metals in the composition of the core is, for example, 10 mol% or more and 30 mol% or less, preferably 15 mol% or more and 25 mol% or less. The total content of Al, Ga, In and Tl in the composition of the core is, for example, 15 mol% or more and 35 mol% or less, preferably 20 mol% or more and 30 mol% or less. The total content of S, Se and Te in the composition of the core is, for example, 35 mol% or more and 55 mol% or less, preferably 40 mol% or more and 55 mol% or less.
 コアがInとGaとを含む場合、組成におけるInとGaの原子数の和に対するInの原子数の比(In/(In+Ga))は、例えば、0.01以上1.0以下であり、好ましくは0.1以上0.99以下である。また、コアの組成におけるInとGaの原子数の和に対するAgの原子数の和の比(Ag/(In+Ga))は、例えば、0.3以上1.2以下であり、好ましくは0.5以上1.1以下である。コアがSを含む場合、コアの組成におけるAg、In及びGaの原子数の和に対するSの原子数の比(S/(Ag+In+Ga))は、例えば、0.8以上1.5以下であり、好ましくは0.9以上1.2以下である。 When the core contains In and Ga, the ratio of the number of atoms of In to the sum of the number of atoms of In and Ga in the composition (In / (In + Ga)) is, for example, 0.01 or more and 1.0 or less, which is preferable. Is 0.1 or more and 0.99 or less. The ratio of the sum of the atomic numbers of Ag to the sum of the atomic numbers of In and Ga in the core composition (Ag / (In + Ga)) is, for example, 0.3 or more and 1.2 or less, preferably 0.5. It is 1.1 or less. When the core contains S, the ratio of the number of atoms of S to the sum of the numbers of atoms of Ag, In and Ga in the composition of the core (S / (Ag + In + Ga)) is, for example, 0.8 or more and 1.5 or less. It is preferably 0.9 or more and 1.2 or less.
 コアの組成は、例えば、エネルギー分散型X線分析法(EDX)、蛍光X線分析法(XRF)、誘導結合プラズマ(ICP)発光分光分析法等によって同定される。(Ag)/(In+Ga)、S/(Ag+In+Ga)等の組成比はこれらの方法のいずれかで同定される組成に基づいて算出される。 The composition of the core is identified by, for example, energy dispersive X-ray analysis (EDX), fluorescent X-ray analysis (XRF), inductively coupled plasma (ICP) emission spectroscopy, and the like. The composition ratio of (Ag) / (In + Ga), S / (Ag + In + Ga) and the like is calculated based on the composition identified by any of these methods.
 コアの組成において、Agはその一部が置換されてCu及びAuの少なくとも一方の元素を含んでいてもよいが、実質的にAgから構成されることが好ましい。ここで「実質的に」とは、Agに対するAg以外の元素の割合が、例えば、10モル%以下であり、好ましくは5モル%以下、より好ましくは1モル%以下であることを意味する。 In the composition of the core, Ag may be partially substituted and contain at least one element of Cu and Au, but it is preferably composed substantially of Ag. Here, "substantially" means that the ratio of elements other than Ag to Ag is, for example, 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less.
 コアがアルカリ金属を含む場合、アルカリ金属の含有率は、例えば、30モル%未満であり、好ましくは、1モル%以上25モル%以下である。また、コアの組成におけるAgの原子数及びアルカリ金属(M)の原子数の合計に対するアルカリ金属(M)の原子数の比(M/(Ag+M))は、例えば、1未満であり、好ましくは0.8以下、より好ましくは0.4以下、更に好ましくは0.2以下である。またその比は、例えば、0より大きく、好ましくは0.05以上、より好ましくは0.1以上である。アルカリ金属は少なくともLiを含むことが好ましく、実質的にLiであることが好ましい。ここで「実質的に」とは、Liに対するLi以外のアルカリ金属の割合が、例えば、10モル%以下であり、好ましくは5モル%以下、より好ましくは1モル%以下であることを意味する。 When the core contains an alkali metal, the alkali metal content is, for example, less than 30 mol%, preferably 1 mol% or more and 25 mol% or less. The atomic number ratio of alkali metal to the atomic sum of Ag in an atomic and alkali metal in the composition of the core (M a) (M a) (M a / (Ag + M a)) , for example, less than 1 Yes, preferably 0.8 or less, more preferably 0.4 or less, still more preferably 0.2 or less. The ratio is, for example, greater than 0, preferably 0.05 or more, and more preferably 0.1 or more. The alkali metal preferably contains at least Li, and is preferably substantially Li. Here, "substantially" means that the ratio of the alkali metal other than Li to Li is, for example, 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less. ..
 コアの組成において、In及びGaの少なくとも一方は、その一部が置換されてAl及びTlの少なくとも一方の元素を含んでいてもよいが、実質的にIn及びGaの少なくとも一方から構成されることが好ましい。ここで「実質的に」とは、In及びGaに対するIn又はGa以外の元素の割合が、例えば、10モル%以下であり、好ましくは5モル%以下、より好ましくは1モル%以下であることを意味する。 In the composition of the core, at least one of In and Ga may be partially substituted to contain at least one element of Al and Tl, but is substantially composed of at least one of In and Ga. Is preferable. Here, "substantially" means that the ratio of elements other than In or Ga to In and Ga is, for example, 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less. Means.
 コアがSを含む場合、Sはその一部が置換されてSe及びTeの少なくとも一方の元素を含んでいてもよく、実質的にSから構成されていてもよい。ここで「実質的に」とは、Sに対するS以外の元素の割合が、例えば、10モル%以下であり、好ましくは5モル%以下、より好ましくは1モル%以下であることを意味する。 When the core contains S, S may be partially substituted and contain at least one element of Se and Te, or may be substantially composed of S. Here, "substantially" means that the ratio of the element other than S to S is, for example, 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less.
 コアは、実質的にAg、In及びGaの少なくとも一方、並びにSのみから構成されてよい。ここで「実質的に」という用語は、不純物の混入等に起因して不可避的にAg、In、Ga及びS以外の元素が含まれることを考慮して使用している。 The core may consist substantially of at least one of Ag, In and Ga, and only S. Here, the term "substantially" is used in consideration of the fact that elements other than Ag, In, Ga and S are inevitably contained due to the mixing of impurities and the like.
 コアの結晶構造は、正方晶、六方晶及び斜方晶からなる群より選ばれる少なくとも1種を含んでいてよい。例えば、Ag、In及びSを含み、かつその結晶構造が正方晶、六方晶、又は斜方晶である半導体ナノ粒子は、一般的には、AgInSの組成式で表されるものとして、文献等において紹介されている。本実施形態に係るコアは、例えば、第13族元素であるInの一部を同じく第13族元素であるGaで置換したものと考えることができる。コアの組成は例えば、Ag-In-Ga-S等で表されてもよい。 The crystal structure of the core may include at least one selected from the group consisting of tetragonal, hexagonal and orthorhombic crystals. For example, semiconductor nanoparticles containing Ag, In, and S and whose crystal structure is tetragonal, hexagonal, or orthorhombic are generally represented by the composition formula of AgInS 2 in the literature. Etc. are introduced. The core according to the present embodiment can be considered, for example, in which a part of In, which is a Group 13 element, is replaced with Ga, which is also a Group 13 element. The composition of the core may be represented by, for example, Ag-In-Ga-S or the like.
 なお、Ag-In-Ga-Sなどの組成式で表される半導体ナノ粒子であって、六方晶の結晶構造を有するものはウルツ鉱型であり、正方晶の結晶構造を有する半導体はカルコパイライト型である。結晶構造は、例えば、X線回折(XRD)分析により得られるXRDパターンを測定することによって同定される。具体的には、半導体ナノ粒子から得られたXRDパターンを、AgInSの組成で表される半導体ナノ粒子と仮定して既知のXRDパターン、又は結晶構造パラメータからシミュレーションを行って求めたXRDパターンと比較する。既知のパターン及びシミュレーションのパターンの中に、半導体ナノ粒子のパターンと一致するものがあれば、当該半導体ナノ粒子の結晶構造は、その一致した既知又はシミュレーションのパターンの結晶構造であるといえる。 Semiconductor nanoparticles represented by a composition formula such as Ag-In-Ga-S having a hexagonal crystal structure are of the wurtzite type, and semiconductors having a tetragonal crystal structure are calcopyrite. It is a type. The crystal structure is identified, for example, by measuring the XRD pattern obtained by X-ray diffraction (XRD) analysis. Specifically, the XRD pattern obtained from the semiconductor nanoparticles is a known XRD pattern assuming that the semiconductor nanoparticles are represented by the composition of AgInS 2, or an XRD pattern obtained by simulating from crystal structure parameters. Compare. If any of the known patterns and simulation patterns match the pattern of the semiconductor nanoparticles, it can be said that the crystal structure of the semiconductor nanoparticles is the crystal structure of the matching known or simulation pattern.
 コアの集合体においては、異なる結晶構造のコアが一部混在していてもよい。その場合、XRDパターンにおいては、複数の結晶構造に由来するピークが観察される。 In the core aggregate, some cores having different crystal structures may be mixed. In that case, in the XRD pattern, peaks derived from a plurality of crystal structures are observed.
 コアは、例えば、50nm以下の平均粒径を有してよい。コアの平均粒径は、例えば、20nm以下、10nm以下又は10nm未満であってよい。コアの平均粒径が50nm以下であると量子サイズ効果が得られ易く、バンド端発光が得られ易い傾向がある。またコアの平均粒径の下限は例えば、1nmである。 The core may have, for example, an average particle size of 50 nm or less. The average particle size of the core may be, for example, 20 nm or less, 10 nm or less, or less than 10 nm. When the average particle size of the core is 50 nm or less, the quantum size effect tends to be easily obtained, and band-end emission tends to be easily obtained. The lower limit of the average particle size of the core is, for example, 1 nm.
 コアの粒径は、例えば、透過型電子顕微鏡(TEM)を用いて撮影されたTEM像から求めることができる。具体的には、ある粒子についてTEM像で観察される粒子の外周の任意の二点を結ぶ線分であって、当該粒子の内部を通過する線分のうち、最も長い線分の長さをその粒子の粒径とする。 The particle size of the core can be determined from, for example, a TEM image taken with a transmission electron microscope (TEM). Specifically, it is a line segment connecting arbitrary two points on the outer circumference of a particle observed in a TEM image of a certain particle, and is the length of the longest line segment passing through the inside of the particle. Let it be the particle size of the particles.
 ただし、粒子がロッド形状を有するものである場合には、短軸の長さを粒径とみなす。ここで、ロッド形状の粒子とは、TEM像において短軸と短軸に直交する長軸とを有し、短軸の長さに対する長軸の長さの比が1.2より大きいものを指す。ロッド形状の粒子は、TEM像で、例えば、長方形状を含む四角形状、楕円形状、又は多角形状等として観察される。ロッド形状の長軸に直交する面である断面の形状は、例えば、円、楕円、又は多角形であってよい。具体的にはロッド状の形状の粒子について、長軸の長さは、楕円形状の場合には、粒子の外周の任意の二点を結ぶ線分のうち、最も長い線分の長さを指し、長方形状又は多角形状の場合、外周を規定する辺の中で最も長い辺に平行であり、かつ粒子の外周の任意の二点を結ぶ線分のうち、最も長い線分の長さを指す。短軸の長さは、外周の任意の二点を結ぶ線分のうち、前記長軸の長さを規定する線分に直交し、かつ最も長さの長い線分の長さを指す。 However, if the particles have a rod shape, the length of the minor axis is regarded as the particle size. Here, the rod-shaped particles have a minor axis and a major axis orthogonal to the minor axis in the TEM image, and the ratio of the length of the major axis to the length of the minor axis is larger than 1.2. .. The rod-shaped particles are observed in a TEM image as, for example, a rectangular shape including a rectangular shape, an elliptical shape, a polygonal shape, or the like. The shape of the cross section, which is a plane orthogonal to the long axis of the rod shape, may be, for example, a circle, an ellipse, or a polygon. Specifically, for rod-shaped particles, the length of the major axis refers to the length of the longest line segment connecting any two points on the outer circumference of the particle in the case of an elliptical shape. , Rectangular or polygonal, refers to the length of the longest line segment that is parallel to the longest side that defines the outer circumference and connects any two points on the outer circumference of the particle. .. The length of the minor axis refers to the length of the longest line segment that is orthogonal to the line segment that defines the length of the major axis among the line segments connecting arbitrary two points on the outer circumference.
 コアの平均粒径は、50,000倍以上150,000倍以下のTEM像で観察される、すべての計測可能な粒子について粒径を測定し、それらの粒径の算術平均とする。ここで、計測可能な粒子は、TEM像において粒子全体が観察できるものである。したがって、TEM像において、その一部が撮像範囲に含まれておらず、切れているような粒子は計測可能なものではない。1つのTEM像に含まれる計測可能な粒子数が100以上である場合には、そのTEM像を用いて平均粒径を求める。一方、1つのTEM像に含まれる計測可能な粒子の数が100未満の場合には、撮像場所を変更して、TEM像をさらに取得し、2以上のTEM像に含まれる100以上の計測可能な粒子について粒径を測定して平均粒径を求める。 The average particle size of the core is measured by measuring the particle size of all measurable particles observed in the TEM image of 50,000 times or more and 150,000 times or less, and used as the arithmetic mean of those particle sizes. Here, the measurable particles are those in which the entire particles can be observed in the TEM image. Therefore, in the TEM image, a part of the TEM image is not included in the imaging range, and particles that are cut off are not measurable. When the number of measurable particles contained in one TEM image is 100 or more, the average particle size is obtained using the TEM image. On the other hand, when the number of measurable particles contained in one TEM image is less than 100, the imaging location is changed to further acquire the TEM image, and 100 or more measurable particles included in two or more TEM images are possible. The particle size of the particles is measured to obtain the average particle size.
 半導体ナノ粒子であるコアは、バンド端発光が可能であってよい。コアは、200nm以上500nm未満の範囲内にある波長の光を照射することにより、500nm以上650nm以下の範囲に発光ピーク波長を有して発光してよい。コアの発光スペクトルにおける半値幅は、250meV以下であり、好ましくは200meV以下、より好ましくは150meV以下である。この半値幅の下限値は例えば30meV以上である。半値幅が250meV以下であるとは、発光ピーク波長が600nmの場合には半値幅が73nm以下であり、発光ピーク波長が700nmの場合には半値幅が100nm以下であり、発光ピーク波長が800nmの場合には半値幅が130nm以下であることを意味し、半導体ナノ粒子がバンド端発光することを意味する。 The core, which is a semiconductor nanoparticle, may be capable of emitting light at the band end. The core may emit light having an emission peak wavelength in the range of 500 nm or more and 650 nm or less by irradiating light having a wavelength in the range of 200 nm or more and less than 500 nm. The full width at half maximum in the emission spectrum of the core is 250 meV or less, preferably 200 meV or less, and more preferably 150 meV or less. The lower limit of this half width is, for example, 30 meV or more. When the half-value width is 250 meV or less, the half-value width is 73 nm or less when the emission peak wavelength is 600 nm, and when the emission peak wavelength is 700 nm, the half-value width is 100 nm or less and the emission peak wavelength is 800 nm. In the case, it means that the half width is 130 nm or less, and it means that the semiconductor nanoparticles emit light at the band end.
 コアは、バンド端発光とともに、他の発光、例えば欠陥発光を与えるものであってよい。欠陥発光は一般に発光寿命が長く、またブロードなスペクトルを有し、バンド端発光よりも長波長側にそのピークを有する。バンド端発光と欠陥発光がともに得られる場合、バンド端発光の強度が欠陥発光の強度よりも大きいことが好ましい。 The core may give other light emission, for example, defective light emission, in addition to the band end light emission. Defect emission generally has a long emission lifetime, has a broad spectrum, and has a peak on the longer wavelength side than band-end emission. When both band-end emission and defect emission can be obtained, it is preferable that the intensity of band-end emission is larger than the intensity of defect emission.
 コアのバンド端発光は、コアの形状及び平均粒径の少なくとも一方、特に平均粒径を変化させることによって、そのピーク位置を変化させることができる。例えば、コアの平均粒径をより小さくすれば、量子サイズ効果により、バンドギャップエネルギーがより大きくなり、バンド端発光のピーク波長を短波長側にシフトさせることができる。 The peak position of the band end emission of the core can be changed by changing at least one of the shape of the core and the average particle size, particularly by changing the average particle size. For example, if the average particle size of the core is made smaller, the bandgap energy becomes larger due to the quantum size effect, and the peak wavelength of the band edge emission can be shifted to the short wavelength side.
 またコアのバンド端発光は、コアの組成を変化させることによって、その発光ピーク波長を変化させることができる。例えば、組成におけるInとGaの原子数の和に対するGaの原子数の比であるGa比(Ga/(In+Ga))を大きくすることでバンド端発光の発光ピーク波長を短波長側にシフトさせることができる。また、例えば、アルカリ金属としてLi等を選択し、組成におけるAgとアルカリ金属(M)の原子数の和に対するアルカリ金属(M)の原子数の比であるM比(M/(Ag+M))を大きくすることでバンド端発光の発光ピーク波長を短波長側にシフトさせることができる。また、例えば、組成におけるSの一部をSeで置換し、SとSeの原子数の和に対するSの原子数の比であるS比(S/(S+Se))を大きくすることでバンド端発光の発光ピーク波長を短波長側にシフトさせることができる。 Further, in the band end emission of the core, the emission peak wavelength can be changed by changing the composition of the core. For example, shifting the emission peak wavelength of band-end emission to the short wavelength side by increasing the Ga ratio (Ga / (In + Ga)), which is the ratio of the number of atoms of Ga to the sum of the number of atoms of In and Ga in the composition. Can be done. Further, for example, select the Li or the like as an alkali metal, M a ratio (M a / a atomic ratio of alkali metal (M a) with respect to the atomic sum of Ag and alkali metal (M a) in the composition ( Ag + M a)) it is possible to shift the emission peak wavelength of the band edge emission to the short wavelength side by the increase. Further, for example, by substituting a part of S in the composition with Se and increasing the S ratio (S / (S + Se)), which is the ratio of the number of atoms of S to the sum of the number of atoms of S and Se, the band end emission is emitted. The emission peak wavelength of is can be shifted to the short wavelength side.
 コアは、その吸収スペクトルがエキシトンピークを示してよい。エキシトンピークは、励起子生成により得られるピークであり、これが吸収スペクトルにおいて発現しているということは、粒径の分布が小さく、結晶欠陥の少ないバンド端発光に適した粒子からコア粒子群が構成されていることを意味する。また、エキシトンピークが急峻になるほど、粒径がそろった結晶欠陥の少ない粒子がコア粒子の集合体により多く含まれていることを意味する。したがって、エキシトンピークが急峻であると、発光の半値幅は狭くなり、発光効率が向上すると予想される。コアの吸収スペクトルにおいて、エキシトンピークは、例えば、350nm以上900nm以下の範囲内で観察される。 The absorption spectrum of the core may show exciton peaks. The exciton peak is a peak obtained by exciton generation, and the fact that it is expressed in the absorption spectrum means that the core particle group is composed of particles suitable for band-end emission with a small particle size distribution and few crystal defects. It means that it has been done. Further, the steeper the exciton peak, the more particles having the same particle size and less crystal defects are contained in the aggregate of core particles. Therefore, if the exciton peak is steep, the half width of light emission is expected to be narrowed, and the luminous efficiency is expected to be improved. In the absorption spectrum of the core, exciton peaks are observed, for example, in the range of 350 nm or more and 900 nm or less.
 コアは、ストークスシフトにより吸収スペクトルのエキシトンピークより長波長側に発光ピーク波長を有して発光してよい。コアの吸収スペクトルがエキシトンピークを示す場合、エキシトンピークと発光ピーク波長のエネルギー差は、例えば、300meV以下である。 The core may emit light having an emission peak wavelength on the longer wavelength side than the exciton peak of the absorption spectrum by Stokes shift. When the absorption spectrum of the core shows an exciton peak, the energy difference between the exciton peak and the emission peak wavelength is, for example, 300 meV or less.
 コアシェル型半導体ナノ粒子は、コアの表面にシェルを構成する半導体が配置されるコアシェル構造を有している。シェルは、コアを構成する半導体よりも大きいバンドギャップエネルギーを有する半導体であって、第13族元素であるAl、Ga、In及びTlからなる群より選ばれる少なくとも1種の第1元素と、第16族元素であるS、Se及びTeからなる群より選ばれる少なくとも1種の第2元素と、酸素元素とを含む半導体から構成される。シェルを構成する半導体には、第13族元素が1種類だけ、又は2種類以上含まれてよく、第16族元素が1種類だけ、又は2種類以上含まれていてもよい。 The core-shell type semiconductor nanoparticles have a core-shell structure in which the semiconductors constituting the shell are arranged on the surface of the core. The shell is a semiconductor having a band gap energy larger than that of the semiconductor constituting the core, and is composed of at least one first element selected from the group consisting of Group 13 elements Al, Ga, In and Tl, and the first element. It is composed of a semiconductor containing at least one second element selected from the group consisting of Group 16 elements S, Se and Te, and an oxygen element. The semiconductor constituting the shell may contain only one type or two or more types of Group 13 elements, and may contain only one type or two or more types of Group 16 elements.
 シェルは、実質的に第1元素、第2元素及び酸素元素からなる半導体から構成されていてもよい。ここで「実質的に」とは、シェルに含まれるすべての元素の原子数の合計を100%としたときに、第1元素、第2元素及び酸素元素以外の元素の割合が、例えば10%以下、好ましくは5%以下、より好ましくは1%以下であることを示す。 The shell may be substantially composed of a semiconductor composed of a first element, a second element and an oxygen element. Here, "substantially" means that the ratio of elements other than the first element, the second element and the oxygen element is, for example, 10% when the total number of atoms of all the elements contained in the shell is 100%. Hereinafter, it is shown that it is preferably 5% or less, more preferably 1% or less.
 シェルは、上述のコアを構成する半導体のバンドギャップエネルギーに応じて、その組成等を選択して構成してもよい。あるいは、シェルの組成等が先に決定されている場合には、コアを構成する半導体のバンドギャップエネルギーがシェルのそれよりも小さくなるように、コアを設計してもよい。例えば、Ag-In-Sからなる半導体は、1.8eV以上1.9eV以下程度のバンドギャップエネルギーを有する。 The shell may be configured by selecting its composition or the like according to the bandgap energy of the semiconductor constituting the core described above. Alternatively, if the composition of the shell or the like is determined in advance, the core may be designed so that the bandgap energy of the semiconductor constituting the core is smaller than that of the shell. For example, a semiconductor made of Ag—In—S has a bandgap energy of about 1.8 eV or more and 1.9 eV or less.
 具体的には、シェルを構成する半導体は、例えば2.0eV以上5.0eV以下、又は2.5eV以上5.0eV以下のバンドギャップエネルギーを有してよい。また、シェルのバンドギャップエネルギーは、コアのバンドギャップエネルギーよりも、例えば0.1eV以上3.0eV以下程度、0.3eV以上3.0eV以下程度、又は0.5eV以上1.0eV以下程度大きいものであってよい。シェルを構成する半導体のバンドギャップエネルギーとコアを構成する半導体のバンドギャップエネルギーとの差が前記下限値以上であると、コアからの発光において、バンド端発光以外の発光の割合が少なくなり、バンド端発光の割合が大きくなる傾向がある。 Specifically, the semiconductor constituting the shell may have, for example, a bandgap energy of 2.0 eV or more and 5.0 eV or less, or 2.5 eV or more and 5.0 eV or less. The bandgap energy of the shell is, for example, 0.1 eV or more and 3.0 eV or less, 0.3 eV or more and 3.0 eV or less, or 0.5 eV or more and 1.0 eV or less larger than the band gap energy of the core. It may be. When the difference between the bandgap energy of the semiconductors constituting the shell and the bandgap energy of the semiconductors constituting the core is equal to or greater than the above lower limit value, the proportion of light emitted from the core other than the band edge light emission decreases, and the band The rate of edge emission tends to be large.
 さらに、コア及びシェルを構成する半導体のバンドギャップエネルギーは、コアとシェルのヘテロ接合において、シェルのバンドギャップエネルギーがコアのバンドギャップエネルギーを挟み込むtype-Iのバンドアライメントを与えるように選択されることが好ましい。type-Iのバンドアライメントが形成されることにより、コアからのバンド端発光をより良好に得ることができる。type-Iのアライメントにおいて、コアのバンドギャップとシェルのバンドギャップとの間には、少なくとも0.1eVの障壁が形成されることが好ましく、例えば0.2eV以上、又は0.3eV以上の障壁が形成されてよい。障壁の上限は、例えば1.8eV以下であり、特に1.1eV以下である。障壁が前記下限値以上であると、コアからの発光において、バンド端発光以外の発光の割合が少なくなり、バンド端発光の割合が大きくなる傾向がある。 Further, the bandgap energy of the semiconductors constituting the core and the shell is selected so that the bandgap energy of the shell provides the bandgap energy of type-I that sandwiches the bandgap energy of the core in the heterojunction of the core and the shell. Is preferable. By forming the band alignment of type-I, the band edge emission from the core can be obtained better. In type-I alignment, it is preferable that a barrier of at least 0.1 eV is formed between the band gap of the core and the band gap of the shell, for example, a barrier of 0.2 eV or more, or 0.3 eV or more. May be formed. The upper limit of the barrier is, for example, 1.8 eV or less, and particularly 1.1 eV or less. When the barrier is at least the above lower limit value, the ratio of light emission other than band-end light emission tends to decrease and the ratio of band-end light emission tends to increase in light emission from the core.
 シェルを構成する半導体は、第1元素としてIn又はGaを含むものであってよい。またシェルを構成する半導体は、第2元素としてSを含むものであってよい。さらにシェルを構成する半導体は、酸素(O)元素を含んでいてよい。In又はGa、S及びOを含む半導体は、上述のコアよりも大きいバンドギャップエネルギーを有する半導体となる傾向にある。 The semiconductor constituting the shell may contain In or Ga as the first element. Further, the semiconductor constituting the shell may contain S as a second element. Further, the semiconductor constituting the shell may contain an oxygen (O) element. Semiconductors containing In or Ga, S and O tend to be semiconductors having a bandgap energy larger than that of the core described above.
 シェルは、その半導体の晶系がコアの半導体の晶系となじみのあるものであってよく、またその格子定数が、コアの半導体のそれと同じ又は近いものであってよい。晶系になじみがあり、格子定数が近い(ここでは、シェルの格子定数の倍数がコアの格子定数に近いものも格子定数が近いものとする)半導体からなるシェルは、コアの周囲を良好に被覆することがある。また、シェルはアモルファス(非晶質)であってもよい。 The crystal system of the semiconductor of the shell may be familiar to the crystal system of the semiconductor of the core, and the lattice constant of the shell may be the same as or close to that of the semiconductor of the core. A shell made of semiconductors, which is familiar to the crystal system and has a close lattice constant (here, a multiple of the shell's lattice constant is close to the core's lattice constant but also has a close lattice constant), has a good circumference of the core. May be covered. Further, the shell may be amorphous.
 アモルファス(非晶質)のシェルが形成されているか否かは、コアシェル構造の半導体ナノ粒子を、HAADF-STEMで観察することにより確認できる。アモルファス(非晶質)のシェルが形成されている場合、具体的には、規則的な模様(例えば、縞模様、ドット模様等)を有する部分が中心部に観察され、その周囲に規則的な模様を有するものとしては観察されない部分がHAADF-STEMにおいて観察される。HAADF-STEMによれば、結晶性物質のように規則的な構造を有するものは、規則的な模様を有する像として観察され、非晶性物質のように規則的な構造を有しないものは、規則的な模様を有する像としては観察されない。そのため、シェルがアモルファスである場合には、規則的な模様を有する像として観察されるコア(前記のとおり、正方晶系等の結晶構造を有する)とは明確に異なる部分として、シェルを観察することができる。  Whether or not an amorphous shell is formed can be confirmed by observing semiconductor nanoparticles having a core-shell structure with HAADF-STEM. When an amorphous shell is formed, specifically, a portion having a regular pattern (for example, a striped pattern, a dot pattern, etc.) is observed in the central portion, and a regular pattern is observed around the portion. A portion that is not observed as having a pattern is observed in HAADF-STEM. According to HAADF-STEM, a substance having a regular structure such as a crystalline substance is observed as an image having a regular pattern, and a substance having no regular structure such as an amorphous substance is observed. It is not observed as an image with a regular pattern. Therefore, when the shell is amorphous, the shell is observed as a part clearly different from the core (which has a crystal structure such as a tetragonal system as described above) observed as an image having a regular pattern. be able to.
 また、シェルがGa-S-Oからなる場合、Gaがコアに含まれるAg及びInよりも軽い元素であるために、HAADF-STEMで得られる像において、シェルはコアよりも暗い像として観察される傾向にある。 Further, when the shell is composed of Ga—SO, the shell is observed as a darker image than the core in the image obtained by HAADF-STEM because Ga is an element lighter than Ag and In contained in the core. Tend to be.
 アモルファスのシェルが形成されているか否かは、高解像度の透過型電子顕微鏡(HRTEM)で本実施形態のコアシェル構造の半導体ナノ粒子を観察することによっても確認できる。HRTEMで得られる画像において、コアの部分は結晶格子像(規則的な模様を有する像)として観察され、シェルの部分は結晶格子像として観察されず、白黒のコントラストは観察されるが、規則的な模様は見えない部分として観察される。 Whether or not an amorphous shell is formed can also be confirmed by observing the semiconductor nanoparticles having the core-shell structure of the present embodiment with a high-resolution transmission electron microscope (HRTEM). In the image obtained by HRTEM, the core part is observed as a crystal lattice image (an image having a regular pattern), the shell part is not observed as a crystal lattice image, and black and white contrast is observed, but it is regular. The pattern is observed as an invisible part.
 一方、シェルはコアと固溶体を構成しない半導体からなることが好ましい。シェルがコアと固溶体を形成すると両者が一体のものとなり、シェルによりコアを被覆して、コアの表面状態を変化させることによりバンド端発光を得るというメカニズムが得られなくなり得る。 On the other hand, the shell is preferably made of a semiconductor that does not form a core and a solid solution. When the shell forms a solid solution with the core, the two become one, and the mechanism of obtaining band-end emission by covering the core with the shell and changing the surface state of the core may not be obtained.
 シェルは、第1元素及び第2元素の組み合わせとして、InとSの組み合わせ、GaとSとの組み合わせ、又はInとGaとSとの組み合わせを含んでよいが、これらに限定されるものではない。InとSとの組み合わせは、シェルが硫化インジウムを含む形態であってよく、また、GaとSとの組み合わせは、シェルが硫化ガリウムを含む形態であってよく、また、InとGaとSの組み合わせは、シェルが硫化インジウムガリウムを含む形態であってよい。シェルを構成し得る硫化インジウムは、化学量論組成のもの(In)でなくてよく、その意味で、硫化インジウムは式InS(xは整数に限られない任意の数字、例えば0.8以上1.5以下)で表されてよい。同様に、硫化ガリウムは化学量論組成のもの(Ga)でなくてよく、その意味で、硫化ガリウムは式GaS(xは整数に限られない任意の数字、例えば0.8以上1.5以下)で表されてよい。硫化インジウムガリウムは、In2(1-y)Ga2y(yは0よりも大きく1未満である任意の数字)で表される組成のものであってよく、あるいは、InGa1-a(aは0よりも大きく1未満である任意の数字であり、bは整数に限られない任意の数値である)で表されてよい。 The shell may include, but is not limited to, a combination of In and S, a combination of Ga and S, or a combination of In and Ga and S as combinations of the first and second elements. .. The combination of In and S may have a shell containing indium sulfide, and the combination of Ga and S may have a shell containing gallium sulfide, and the combination of In, Ga and S. The combination may be in the form of a shell containing indium gallium sulfide. The indium sulfide that can constitute the shell does not have to have a stoichiometric composition (In 2 S 3 ), and in that sense, indium sulfide is the formula InS x (x is any number not limited to an integer, for example 0. It may be represented by (8 or more and 1.5 or less). Similarly, gallium sulfide does not have to have a stoichiometric composition (Ga 2 S 3 ), and in that sense, gallium sulfide has the formula GaS x (x is any number not limited to an integer, for example 0.8 or more. It may be represented by (1.5 or less). Indium gallium sulfide may have a composition represented by In 2 (1-y) Ga 2y S 3 (y is any number greater than 0 and less than 1), or In a Ga 1-. It may be represented by a S b (a is any number greater than 0 and less than 1 and b is any number not limited to an integer).
 シェルを構成する酸素元素の形態は明確ではないが、例えば、Ga-O-S、Ga等であってよい。 The form of the oxygen element constituting the shell is not clear, but may be, for example, Ga-OS, Ga 2 O 3, or the like.
 硫化インジウムは、そのバンドギャップエネルギーが2.0eV以上2.4eV以下であり、晶系が立方晶であるものについては、その格子定数は1.0775nmである。硫化ガリウムは、そのバンドギャップエネルギーが2.5eV以上2.6eV以下程度であり、晶系が正方晶であるものについては、その格子定数が0.5215nmである。ただし、ここに記載された晶系等は、いずれも報告値であり、実際のコアシェル構造の半導体ナノ粒子において、シェルがこれらの報告値を満たす半導体を含むとは限らない。  The bandgap energy of indium sulfide is 2.0 eV or more and 2.4 eV or less, and the lattice constant of indium sulfide having a cubic crystal system is 1.0775 nm. The bandgap energy of gallium sulfide is about 2.5 eV or more and 2.6 eV or less, and the lattice constant of gallium sulfide having a tetragonal crystal system is 0.5215 nm. However, the crystal systems and the like described here are all reported values, and in the semiconductor nanoparticles having an actual core-shell structure, the shell does not necessarily include a semiconductor satisfying these reported values.
 コアシェル構造の半導体ナノ粒子において、シェルの厚みは0.1nm以上50nm以下の範囲内、0.1nm以上10nm以下の範囲内、特に0.3nm以上3nm以下の範囲内にあってよい。シェルの厚みが前記下限値以上である場合には、シェルがコアを被覆することによる効果が十分に得られ、優れた発光効率のバンド端発光を得られ易い。 In the semiconductor nanoparticles having a core-shell structure, the thickness of the shell may be in the range of 0.1 nm or more and 50 nm or less, in the range of 0.1 nm or more and 10 nm or less, and particularly in the range of 0.3 nm or more and 3 nm or less. When the thickness of the shell is at least the above lower limit value, the effect of covering the core with the shell can be sufficiently obtained, and band-end light emission with excellent luminous efficiency can be easily obtained.
 コアシェル型半導体ナノ粒子は、その表面が任意の化合物で修飾されていてよい。半導体ナノ粒子の表面を修飾する化合物は表面修飾剤とも呼ばれる。表面修飾剤は、例えば、コアシェル型半導体ナノ粒子を安定化させて粒子の凝集又は成長を防止する機能、コアシェル型半導体ナノ粒子の溶媒中での分散性を向上させる機能、コアシェル型半導体ナノ粒子の表面欠陥を補償して発光効率を向上させる機能等の少なくとも1つを有する。 The surface of the core-shell type semiconductor nanoparticles may be modified with any compound. Compounds that modify the surface of semiconductor nanoparticles are also called surface modifiers. The surface modifier has, for example, a function of stabilizing core-shell type semiconductor nanoparticles to prevent particle aggregation or growth, a function of improving the dispersibility of core-shell type semiconductor nanoparticles in a solvent, and a function of core-shell type semiconductor nanoparticles. It has at least one function of compensating for surface defects and improving light emission efficiency.
 表面修飾剤は、例えば、炭素数4から20の炭化水素基を有する含窒素化合物、炭素数4から20の炭化水素基を有する含硫黄化合物、炭素数4から20の炭化水素基を有する含酸素化合物、炭素数4から20の炭化水素基を有する含リン化合物等であってよい。炭素数4から20の炭化水素基としては、ブチル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、エチルヘキシル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基などの飽和脂肪族炭化水素基;オレイル基などの不飽和脂肪族炭化水素基;シクロペンチル基、シクロヘキシル基などの脂環式炭化水素基;フェニル基、ナフチル基などの炭素数6から10の芳香族炭化水素基;ベンジル基、ナフチルメチル基などのアリールアルキル基などが挙げられ、このうち飽和脂肪族炭化水素基や不飽和脂肪族炭化水素基が好ましい。含窒素化合物としてはアミン類、アミド類等が挙げられ、含硫黄化合物としてはチオール類等が挙げられ、含酸素化合物としては脂肪酸類等が挙げられ、含リン化合物としては、ホスフィン類、ホスフィンオキシド類等が挙げられる。 The surface modifier is, for example, a nitrogen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, a sulfur-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, and an oxygen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms. It may be a compound, a phosphorus-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, or the like. Examples of the hydrocarbon group having 4 to 20 carbon atoms include saturated aliphatic hydrocarbon groups such as a butyl group, an isobutyl group, a pentyl group, a hexyl group, an octyl group, an ethylhexyl group, a decyl group, a dodecyl group, a hexadecyl group and an octadecyl group; Unsaturated aliphatic hydrocarbon group such as oleyl group; alicyclic hydrocarbon group such as cyclopentyl group and cyclohexyl group; aromatic hydrocarbon group having 6 to 10 carbon atoms such as phenyl group and naphthyl group; benzyl group and naphthylmethyl Examples thereof include an arylalkyl group such as a group, of which a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferable. Examples of the nitrogen-containing compound include amines and amides, examples of the sulfur-containing compound include thiols and the like, examples of the oxygen-containing compound include fatty acids and the like, and examples of the phosphorus-containing compound include phosphines and phosphine oxides. Kind and the like.
 表面修飾剤としては、炭素数4から20の炭化水素基を有する含窒素化合物が好ましい。そのような含窒素化合物としては、ブチルアミン、イソブチルアミン、ペンチルアミン、ヘキシルアミン、オクチルアミン、エチルヘキシルアミン、デシルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミンなどのアルキルアミン、オレイルアミンなどのアルケニルアミンが挙げられる。 As the surface modifier, a nitrogen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms is preferable. Examples of such nitrogen-containing compounds include alkylamines such as butylamine, isobutylamine, pentylamine, hexylamine, octylamine, ethylhexylamine, decylamine, dodecylamine, hexadecylamine and octadecylamine, and alkenylamines such as oleylamine. ..
 表面修飾剤としては、また、炭素数4から20の炭化水素基を有する含硫黄化合物が好ましい。そのような含硫黄化合物としては、ブタンチオール、イソブタンチオール、ペンタンチオール、ヘキサンチオール、オクタンチオール、エチルヘキサンチオール、デカンチオール、ドデカンチオール、ヘキサデカンチオール、オクタデカンチオール等が挙げられる。 As the surface modifier, a sulfur-containing compound having a hydrocarbon group having 4 to 20 carbon atoms is also preferable. Examples of such sulfur-containing compounds include butanethiol, isobutanethiol, pentanethiol, hexanethiol, octanethiol, ethylhexanethiol, decanethiol, dodecanethiol, hexadecanethiol, octadecanethiol and the like.
 表面修飾剤は、1種単独で用いても、異なる2種以上のものを組み合わせて用いてよい。例えば、上記において例示した含窒素化合物から選択される一つの化合物(例えば、オレイルアミン)と、上記において例示した含硫黄化合物から選択される一つの化合物(例えば、ドデカンチオール)とを組み合わせて用いてよい。 The surface modifier may be used alone or in combination of two or more different ones. For example, one compound selected from the nitrogen-containing compounds exemplified above (for example, oleylamine) and one compound selected from the sulfur-containing compounds exemplified above (for example, dodecanethiol) may be used in combination. ..
 コアシェル型半導体ナノ粒子のシェル表面は、負の酸化数を有するリン(P)を含む表面修飾剤(以下、「特定修飾剤」ともいう)で修飾されていてもよい。シェルの表面修飾剤が特定修飾剤を含んでいることで、コアシェル構造の半導体ナノ粒子のバンド端発光における量子効率がより向上する。 The shell surface of the core-shell type semiconductor nanoparticles may be modified with a surface modifier containing phosphorus (P) having a negative oxidation number (hereinafter, also referred to as “specific modifier”). Since the surface modifier of the shell contains the specific modifier, the quantum efficiency in band-end emission of the semiconductor nanoparticles of the core-shell structure is further improved.
 特定修飾剤は、第15族元素として負の酸化数を有するPを含む。Pの酸化数は、Pに水素原子又は炭化水素基が1つ結合することで-1となり、酸素原子が単結合で1つ結合することで+1となり、Pの置換状態で変化する。例えば、トリアルキルホスフィン及びトリアリールホスフィンにおけるPの酸化数は-3であり、トリアルキルホスフィンオキシド及びトリアリールホスフィンオキシドでは-1となる。 The specific modifier contains P having a negative oxidation number as a Group 15 element. The oxidation number of P becomes -1 when one hydrogen atom or hydrocarbon group is bonded to P, and becomes +1 when one oxygen atom is bonded by a single bond, and changes in the substitution state of P. For example, the oxidation number of P in trialkylphosphine and triarylphosphine is -3, and that in trialkylphosphine oxide and triarylphosphine oxide is -1.
 特定修飾剤は、負の酸化数を有するPに加えて、他の第15族元素を含んでいてもよい。他の第15族元素としては、N、As、Sb等を挙げることができる。 The specific modifier may contain other Group 15 elements in addition to P having a negative oxidation number. Examples of other Group 15 elements include N, As, Sb and the like.
 特定修飾剤は、例えば、炭素数4以上20以下の炭化水素基を含リン化合物であってよい。炭素数4以上20以下の炭化水素基としては、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、オクチル基、エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基などの直鎖又は分岐鎖状の飽和脂肪族炭化水素基;オレイル基などの直鎖又は分岐鎖状の不飽和脂肪族炭化水素基;シクロペンチル基、シクロヘキシル基などの脂環式炭化水素基;フェニル基、ナフチル基などの芳香族炭化水素基;ベンジル基、ナフチルメチル基などのアリールアルキル基などが挙げられ、このうち飽和脂肪族炭化水素基や不飽和脂肪族炭化水素基が好ましい。特定修飾剤が、複数の炭化水素基を有する場合、それらは同一であっても、異なっていてもよい。 The specific modifier may be, for example, a phosphorus-containing compound containing a hydrocarbon group having 4 or more and 20 or less carbon atoms. The hydrocarbon group having 4 to 20 carbon atoms includes n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, octyl group, ethylhexyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group and octadecyl group. Linear or branched saturated aliphatic hydrocarbon groups such as groups; Linear or branched unsaturated aliphatic hydrocarbon groups such as oleyl groups; Alicyclic hydrocarbon groups such as cyclopentyl groups and cyclohexyl groups; Aromatic hydrocarbon groups such as a phenyl group and a naphthyl group; arylalkyl groups such as a benzyl group and a naphthylmethyl group may be mentioned, and among these, a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferable. When the specific modifier has a plurality of hydrocarbon groups, they may be the same or different.
 特定修飾剤として具体的には、トリブチルホスフィン、トリイソブチルホスフィン、トリペンチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン、トリス(エチルヘキシル)ホスフィン、トリデシルホスフィン、トリドデシルホスフィン、トリテトラデシルホスフィン、トリヘキサデシルホスフィン、トリオクタデシルホスフィン、トリフェニルホスフィン、トリブチルホスフィンオキシド、トリイソブチルホスフィンオキシド、トリペンチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリス(エチルヘキシル)ホスフィンオキシド、トリデシルホスフィンオキシド、トリドデシルホスフィンオキシド、トリテトラデシルホスフィンオキシド、トリヘキサデシルホスフィンオキシド、トリオクタデシルホスフィンオキシド、トリフェニルホスフィンオキシド等を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。 Specifically, as the specific modifier, tributylphosphine, triisobutylphosphine, tripentylphosphine, trihexylphosphine, trioctylphosphine, tris (ethylhexyl) phosphine, tridecylphosphine, tridodecylphosphine, tritetradecylphosphine, trihexadecyl Phosphine, trioctadecylphosphine, triphenylphosphine, tributylphosphine oxide, triisobutylphosphine oxide, trypentylphosphine oxide, trihexylphosphine oxide, trioctylphosphine oxide, tris (ethylhexyl) phosphine oxide, tridecylphosphine oxide, tridodecylphosphine oxide , Tritetradecylphosphine oxide, trihexadecylphosphine oxide, trioctadecylphosphine oxide, triphenylphosphine oxide and the like, and at least one selected from the group consisting of these is preferable.
発光デバイス
 発光デバイスは、光変換部材及び半導体発光素子を備え、光変換部材に上記において説明したコアシェル型半導体ナノ粒子を含むものである。この発光デバイスによれば、例えば、半導体発光素子からの発光の一部を、コアシェル型半導体ナノ粒子が吸収してより長波長の光が発せられる。そして、コアシェル型半導体ナノ粒子からの光と半導体発光素子からの発光の残部とが混合され、その混合光を発光デバイスの発光として利用できる。
Light-emitting device The light-emitting device includes an optical conversion member and a semiconductor light-emitting element, and the optical conversion member includes the core-shell type semiconductor nanoparticles described above. According to this light emitting device, for example, a part of the light emitted from the semiconductor light emitting element is absorbed by the core-shell type semiconductor nanoparticles to emit light having a longer wavelength. Then, the light from the core-shell type semiconductor nanoparticles and the rest of the light emitted from the semiconductor light emitting element are mixed, and the mixed light can be used as the light emission of the light emitting device.
 具体的には、半導体発光素子としてピーク波長が400nm以上490nm以下程度の青紫色光又は青色光を発するものを用い、半導体ナノ粒子として青色光を吸収して黄色光を発光するものを用いれば、白色光を発光する発光デバイスを得ることができる。あるいは、半導体ナノ粒子として、青色光を吸収して緑色光を発光するものと、青色光を吸収して赤色光を発光するものの2種類を用いても、白色発光デバイスを得ることができる。 Specifically, if a semiconductor light emitting device that emits bluish purple light or blue light having a peak wavelength of about 400 nm or more and 490 nm or less is used, and a semiconductor nanoparticle that absorbs blue light and emits yellow light is used. A light emitting device that emits white light can be obtained. Alternatively, a white light emitting device can also be obtained by using two types of semiconductor nanoparticles, one that absorbs blue light and emits green light, and one that absorbs blue light and emits red light.
 あるいは、ピーク波長が400nm以下の紫外線を発光する半導体発光素子を用い、紫外線を吸収して青色光、緑色光、赤色光をそれぞれ発光する、3種類の半導体ナノ粒子を用いる場合でも、白色発光デバイスを得ることができる。この場合、発光素子から発せられる紫外線が外部に漏れないように、発光素子からの光をすべて半導体ナノ粒子に吸収させて変換させることが望ましい。 Alternatively, even when a semiconductor light emitting element that emits ultraviolet rays having a peak wavelength of 400 nm or less is used and three types of semiconductor nanoparticles that absorb ultraviolet rays and emit blue light, green light, and red light are used, the white light emitting device is used. Can be obtained. In this case, it is desirable that all the light from the light emitting element is absorbed by the semiconductor nanoparticles and converted so that the ultraviolet rays emitted from the light emitting element do not leak to the outside.
 あるいはまた、ピーク波長が490nm以上510nm以下程度の青緑色光を発する半導体発光素子を用い、半導体ナノ粒子として上記の青緑色光を吸収して赤色光を発するものを用いれば、白色光を発光するデバイスを得ることができる。 Alternatively, if a semiconductor light emitting device that emits bluish green light having a peak wavelength of about 490 nm or more and 510 nm or less is used, and if the semiconductor nanoparticles that absorb the above bluish green light and emit red light are used, white light is emitted. You can get the device.
 あるいはまた、半導体発光素子として波長700nm以上780nm以下の赤色光を発光するものを用い、半導体ナノ粒子として、赤色光を吸収して近赤外線を発光するものを用いれば、近赤外線を発光する発光デバイスを得ることもできる。 Alternatively, if a semiconductor light emitting element that emits red light having a wavelength of 700 nm or more and 780 nm or less is used, and if semiconductor nanoparticles that absorb red light and emit near infrared rays are used, a light emitting device that emits near infrared rays is used. You can also get.
 コアシェル型半導体ナノ粒子は、他の半導体量子ドットと組み合わせて用いてよく、あるいは他の量子ドットではない蛍光体(例えば、有機蛍光体又は無機蛍光体)と組み合わせて用いてよい。他の半導体量子ドットは、例えば、背景技術の欄で説明した二元系の半導体量子ドットである。量子ドットではない蛍光体として、アルミニウムガーネット系等のガーネット系蛍光体を用いることができる。ガーネット蛍光体としては、セリウムで賦活されたイットリウム・アルミニウム・ガーネット系蛍光体、セリウムで賦活されたルテチウム・アルミニウム・ガーネット系蛍光体が挙げられる。他にユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム系蛍光体、ユウロピウムで賦活されたシリケート系蛍光体、β-SiAlON系蛍光体、CASN系又はSCASN系等の窒化物系蛍光体、LnSi11系又はLnSiAlON系等の希土類窒化物系蛍光体、BaSi:Eu系又はBaSi12:Eu系等の酸窒化物系蛍光体、CaS系、SrGa系、SrAl2O4系、ZnS系等の硫化物系蛍光体、クロロシリケート系蛍光体、SrLiAl:Eu蛍光体、SrMgSiN:Eu蛍光体、マンガンで賦活されたフッ化物錯体蛍光体としてのKSiF:Mn蛍光体などを用いることができる。 Core-shell semiconductor nanoparticles may be used in combination with other semiconductor quantum dots, or may be used in combination with other non-quantum dot phosphors (eg, organic or inorganic phosphors). The other semiconductor quantum dots are, for example, the dual-system semiconductor quantum dots described in the background technology section. As a phosphor that is not a quantum dot, a garnet-based phosphor such as an aluminum garnet-based phosphor can be used. Examples of the garnet phosphor include a cerium-activated yttrium-aluminum-garnet-based phosphor and a cerium-activated lutetium-aluminum-garnet-based phosphor. In addition, a nitrogen-containing calcium aluminosilicate-based phosphor activated with europium and / or chromium, a silicate-based phosphor activated with europium, a β-SiAlON-based phosphor, a nitride-based phosphor such as CASN-based or SCASN-based, Rare earth nitride-based phosphors such as LnSi 3 N 11 series or LnSi AlON series, BaSi 2 O 2 N 2 : Eu series or Ba 3 Si 6 O 12 N 2 : Acid nitride based phosphors such as Eu series, CaS series, SrGa 2 S 4 type, SrAl2O4 based, sulfide-based phosphor of ZnS-based, etc., chloro silicate-based phosphor, SrLiAl 3 N 4: Eu phosphor, SrMg 3 SiN 4: Eu phosphor, activated with manganese fluoride As a complex phosphor, K 2 SiF 6 : Mn phosphor or the like can be used.
 発光デバイスにおいて、コアシェル型半導体ナノ粒子を含む光変換部材は、例えばシート又は板状部材であってよく、あるいは三次元的な形状を有する部材であってよい。三次元的な形状を有する部材の例は、表面実装型の発光ダイオードにおいて、パッケージに形成された凹部の底面に半導体発光素子が配置されているときに、発光素子を封止するために凹部に樹脂が充填されて形成された封止部材である。 In the light emitting device, the light conversion member containing the core-shell type semiconductor nanoparticles may be, for example, a sheet or a plate-shaped member, or a member having a three-dimensional shape. An example of a member having a three-dimensional shape is that in a surface mount type light emitting diode, when a semiconductor light emitting element is arranged on the bottom surface of a recess formed in a package, the recess is formed to seal the light emitting element. It is a sealing member formed by filling with a resin.
 光変換部材の別の例は、平面基板上に半導体発光素子が配置されている場合にあっては、前記半導体発光素子の上面及び側面を略均一な厚みで取り囲むように形成された樹脂部材である。あるいはまた、光変換部材のさらに別の例は、半導体発光素子の周囲に上端が半導体発光素子と同一平面を構成するように反射材を含む樹脂部材が充填されている場合にあっては、前記半導体発光素子及び前記反射材を含む樹脂部材の上部に、所定の厚さで平板状に形成された樹脂部材である。 Another example of the light conversion member is a resin member formed so as to surround the upper surface and the side surface of the semiconductor light emitting device with a substantially uniform thickness when the semiconductor light emitting element is arranged on a flat substrate. is there. Alternatively, another example of the light conversion member is the case where a resin member containing a reflective material is filled around the semiconductor light emitting device so that the upper end forms the same plane as the semiconductor light emitting device. It is a resin member formed in a flat plate shape with a predetermined thickness on the upper part of the resin member including the semiconductor light emitting element and the reflective material.
 光変換部材は半導体発光素子に接してよく、あるいは半導体発光素子から離れて設けられていてよい。具体的には、光変換部材は、半導体発光素子から離れて配置される、ペレット状部材、シート部材、板状部材又は棒状部材であってよく、あるいは半導体発光素子に接して設けられる部材、例えば、封止部材、コーティング部材(モールド部材とは別に設けられる発光素子を覆う部材)又はモールド部材(例えば、レンズ形状を有する部材を含む)であってよい。 The light conversion member may be in contact with the semiconductor light emitting element or may be provided away from the semiconductor light emitting element. Specifically, the light conversion member may be a pellet-shaped member, a sheet member, a plate-shaped member, or a rod-shaped member arranged apart from the semiconductor light-emitting element, or a member provided in contact with the semiconductor light-emitting element, for example. , A sealing member, a coating member (a member that covers a light emitting element provided separately from the mold member), or a mold member (including, for example, a member having a lens shape).
 また、発光デバイスにおいて、異なる波長の発光を示す2種類以上のコアシェル型半導体ナノ粒子を用いる場合には、1つの光変換部材内で前記2種類以上の半導体ナノ粒子が混合されていてもよいし、あるいは1種類の量子ドットのみを含む光変換部材を2つ以上組み合わせて用いてもよい。この場合、2種類以上の光変換部材は積層構造を成してもよいし、平面上にドット状ないしストライプ状のパターンとして配置されていてもよい。 Further, when two or more types of core-shell type semiconductor nanoparticles exhibiting light emission of different wavelengths are used in the light emitting device, the two or more types of semiconductor nanoparticles may be mixed in one light conversion member. Alternatively, two or more optical conversion members containing only one type of quantum dot may be used in combination. In this case, the two or more types of light conversion members may form a laminated structure, or may be arranged as a dot-shaped or striped pattern on a plane.
 半導体発光素子としてはLEDチップが挙げられる。LEDチップは、GaN、GaAs、InGaN、AlInGaP、GaP、SiC、及びZnO等からなる群から選択される1種又は2種以上からなる半導体層を備えたものであってよい。青紫色光、青色光、又は紫外線を発光する半導体発光素子は、例えば、組成がInAlGa1-X-YN(0≦X、0≦Y、X+Y<1)で表わされるGaN系化合物を半導体層として備えたものである。 Examples of the semiconductor light emitting element include an LED chip. The LED chip may include one or more semiconductor layers selected from the group consisting of GaN, GaAs, InGaN, AlInGaP, GaP, SiC, ZnO and the like. The semiconductor light emitting device that emits blue-violet light, blue light, or ultraviolet light is, for example, a GaN-based device whose composition is represented by In X Al Y Ga 1-XY N (0 ≦ X, 0 ≦ Y, X + Y <1). It is provided with a compound as a semiconductor layer.
 発光デバイスは、光源として液晶表示装置に組み込まれることが好ましい。コアシェル型半導体ナノ粒子によるバンド端発光は発光寿命の短いものであるため、これを用いた発光デバイスは、比較的速い応答速度が要求される液晶表示装置の光源に適している。また、本実施形態のコアシェル型半導体ナノ粒子は、バンド端発光として半値幅が小さい発光ピークを示し得る。したがって、発光デバイスにおいて青色半導体発光素子によりピーク波長が420nm以上490nm以下の範囲内にある青色光を得るようにし、半導体ナノ粒子により、ピーク波長が510nm以上550nm以下、好ましくは530nm以上540nm以下の範囲内にある緑色光、及びピーク波長が600nm以上680nm以下、好ましくは630nm以上650nm以下の範囲内にある赤色光を得るようにする。又は、発光デバイスにおいて、半導体発光素子によりピーク波長400nm以下の紫外光を得るようにし、半導体ナノ粒子によりピーク波長430nm以上470nm以下、好ましくは440nm以上460nm以下の範囲内にある青色光、ピーク波長が510nm以上550nm以下、好ましくは530nm以上540nm以下の緑色光、及びピーク波長が600nm以上680nm以下、好ましくは630nm以上650nm以下の範囲内にある赤色光を得るようにする。これらによって、濃いカラーフィルターを用いることなく、色再現性の良い液晶表示装置が得られる。発光デバイスは、例えば、直下型のバックライトとして、又はエッジ型のバックライトとして用いられる。 The light emitting device is preferably incorporated in a liquid crystal display device as a light source. Since band-end emission by core-shell type semiconductor nanoparticles has a short emission lifetime, a emission device using this is suitable as a light source for a liquid crystal display device that requires a relatively fast response speed. Further, the core-shell type semiconductor nanoparticles of the present embodiment may exhibit an emission peak having a small half-value width as band-end emission. Therefore, in the light emitting device, the blue semiconductor light emitting element is used to obtain blue light having a peak wavelength in the range of 420 nm or more and 490 nm or less, and the semiconductor nanoparticles have a peak wavelength in the range of 510 nm or more and 550 nm or less, preferably 530 nm or more and 540 nm or less. The green light inside and the red light having a peak wavelength in the range of 600 nm or more and 680 nm or less, preferably 630 nm or more and 650 nm or less are obtained. Alternatively, in the light emitting device, the semiconductor light emitting element is used to obtain ultraviolet light having a peak wavelength of 400 nm or less, and the semiconductor nanoparticles have a peak wavelength of 430 nm or more and 470 nm or less, preferably 440 nm or more and 460 nm or less. It is intended to obtain green light of 510 nm or more and 550 nm or less, preferably 530 nm or more and 540 nm or less, and red light having a peak wavelength in the range of 600 nm or more and 680 nm or less, preferably 630 nm or more and 650 nm or less. As a result, a liquid crystal display device having good color reproducibility can be obtained without using a dark color filter. The light emitting device is used, for example, as a direct type backlight or an edge type backlight.
 あるいは、コアシェル型半導体ナノ粒子を含む、樹脂もしくはガラス等からなるシート、板状部材、又はロッドが、発光デバイスとは独立した光変換部材として液晶表示装置に組み込まれていてよい。 Alternatively, a sheet, plate-shaped member, or rod made of resin, glass, or the like containing core-shell type semiconductor nanoparticles may be incorporated in the liquid crystal display device as an optical conversion member independent of the light emitting device.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
(実施例1)
半導体ナノ粒子(コア)の作製
 0.0833mmolの酢酸銀(AgOAc)、0.05mmolのアセチルアセトナートインジウム(In(acac)))、0.075mmolのアセチルアセトナートガリウム(Ga(acac)))及び0.2292mmolの硫黄粉末を、0.25cmの1-ドデカンチオールと2.75cmのオレイルアミンの混合液に投入して分散させた。分散液を、撹拌子とともに試験管に入れ、窒素置換を行った後、窒素雰囲気下で、試験管内の内容物を撹拌しながら、300℃で10分の加熱処理を実施した。加熱処理後、得られた懸濁液を放冷した後、遠心分離(半径146mm、4000rpm、5分間)に付し、沈殿物を取り出した。これにメタノール3mlを加えて、遠心分離(半径146mm、4000rpm、5分間)に付し、半導体ナノ粒子を沈殿させ、上澄みを捨てた。そこへ、さらにエタノール3mlを加えて、同じ条件で遠心分離に付し、半導体ナノ粒子を沈殿させた。沈殿物を取り出して、乾燥した後、クロロホルムに分散させて半導体ナノ粒子分散液として、コアの分散液を得た。
(Example 1)
Preparation of semiconductor nanoparticles (core) 0.0833 mmol of silver acetate ( AgOAc), 0.05 mmol of acetylacetonatoindium (In (acac) 3 )), 0.075 mmol of acetylacetonatogallium (Ga (acac) 3 ) ) And 0.2292 mmol of sulfur powder were added to a mixed solution of 0.25 cm 3 of 1-dodecanethiol and 2.75 cm 3 of oleylamine and dispersed. The dispersion was placed in a test tube together with a stirrer, subjected to nitrogen substitution, and then heat-treated at 300 ° C. for 10 minutes while stirring the contents in the test tube under a nitrogen atmosphere. After the heat treatment, the obtained suspension was allowed to cool, and then subjected to centrifugation (radius 146 mm, 4000 rpm, 5 minutes), and the precipitate was taken out. To this, 3 ml of methanol was added, and the mixture was centrifuged (radius 146 mm, 4000 rpm, 5 minutes) to precipitate semiconductor nanoparticles, and the supernatant was discarded. Further, 3 ml of ethanol was added thereto, and the mixture was centrifuged under the same conditions to precipitate semiconductor nanoparticles. The precipitate was taken out, dried, and then dispersed in chloroform to obtain a core dispersion as a semiconductor nanoparticle dispersion.
コアシェル型半導体ナノ粒子の作製
 得られた半導体ナノ粒子分散液より1×10-5mmolの半導体ナノ粒子が含まれるよう分取し、減圧乾燥した。ここに、アセチルアセトナートガリウム(Ga(acac))0.16mmolとチオ尿素0.0533mmolとを量り取り、オレイルアミン3.0mL(水分値480ppm)を加えて試験管内を窒素置換した。窒素置換を行った後、窒素雰囲気下で、試験管内の内容物を撹拌しながら、第1段階の熱処理として150℃で10分、第2段階の熱処理として300℃で30分の熱処理をし、室温まで放冷した。遠心分離(4000rpm、5分間)して沈殿物を除去した。上澄みは孔径が0.20μmのメンブレンフィルターで濾過した。メタノールを加えて遠心分離(4000rpm、5分間)をし、得られた沈殿物にエタノールを加えて遠心分離(4000rpm、5分間)をして沈殿物としてコアシェル型半導体ナノ粒子を得た。
Preparation of core-shell type semiconductor nanoparticles The obtained semiconductor nanoparticles dispersion was separated so as to contain 1 × 10-5 mmol of semiconductor nanoparticles, and dried under reduced pressure. To this, 0.16 mmol of acetylacetonatogallium (Ga (acac) 3 ) and 0.0533 mmol of thiourea were weighed, and 3.0 mL of oleylamine (moisture value of 480 ppm) was added to replace the inside of the test tube with nitrogen. After the nitrogen substitution, the contents in the test tube were stirred in a nitrogen atmosphere, and the first stage heat treatment was performed at 150 ° C. for 10 minutes, and the second stage heat treatment was performed at 300 ° C. for 30 minutes. Allowed to cool to room temperature. The precipitate was removed by centrifugation (4000 rpm, 5 minutes). The supernatant was filtered through a membrane filter having a pore size of 0.20 μm. Methanol was added and centrifuged (4000 rpm, 5 minutes), and ethanol was added to the obtained precipitate and centrifuged (4000 rpm, 5 minutes) to obtain core-shell type semiconductor nanoparticles as a precipitate.
(実施例2から4および比較例1)
 コアシェル型半導体ナノ粒子の作製時の仕込み組成および第2段階の加熱時間を表1に示すように変更したこと以外は、実施例1と同様にしてコアシェル型半導体ナノ粒子を得た。
(Examples 2 to 4 and Comparative Example 1)
Core-shell type semiconductor nanoparticles were obtained in the same manner as in Example 1 except that the preparation composition at the time of producing the core-shell type semiconductor nanoparticles and the heating time in the second stage were changed as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(平均粒径)
 実施例1から4および比較例1で得られたコアシェル型半導体ナノ粒子の形状を、透過型電子顕微鏡(TEM、(株)日立ハイテクノロジーズ製、商品名H-7650)を用いて観察するとともに、その平均粒径を8万倍から20万倍のTEM像から測定した。ここでは、TEMグリッドとして、商品名ハイレゾカーボン HRC-C10 STEM Cu100Pグリッド(応研商事(株))を用いた。得られた粒子の形状は、球状もしくは多角形状であった。平均粒径は、3か所以上のTEM画像を選択し、これらに含まれているナノ粒子のうち、画像の端において粒子の像が切れているようなものを除く合計100点以上の粒径を測定し、その算術平均を求める方法で求めた。
(Average particle size)
The shapes of the core-shell type semiconductor nanoparticles obtained in Examples 1 to 4 and Comparative Example 1 were observed using a transmission electron microscope (TEM, manufactured by Hitachi High-Technologies Corporation, trade name H-7650), and were also observed. The average particle size was measured from a TEM image of 80,000 to 200,000 times. Here, as the TEM grid, the trade name high resolution carbon HRC-C10 STEM Cu100P grid (Oken Shoji Co., Ltd.) was used. The shape of the obtained particles was spherical or polygonal. For the average particle size, select 3 or more TEM images, and among the nanoparticles contained in these, a total of 100 or more particle sizes excluding those in which the image of the particles is cut off at the edge of the image. Was measured, and the arithmetic mean was calculated.
(吸収・発光特性)
 実施例1から4および 比較例1で得られたで得られたコアシェル型半導体ナノ粒子について、吸収スペクトル及び発光スペクトルを測定した。吸収スペクトルは、ダイオードアレイ式分光光度計(アジレントテクノロジー社製、商品名Agilent 8453A)を用いて、波長を190nm以上1100nm以下として測定した。発光スペクトルは、マルチチャンネル分光器(浜松ホトニクス社製、商品名PMA11)を用いて、励起波長365nmにて測定した。吸収スペクトルを図1に、発光スペクトルを図2に示す。各発光スペクトルにて観察された急峻な発光ピークの発光ピーク波長(バンド端発光)、バンド端発光の半値幅、バンド端発光の発光量子収率及びバンド端発光のストークスシフト(吸収スペクトルから得られる吸収ピークのエネルギー値から発光スペクトルから得られる発光ピークのエネルギー値を差し引いたもの)を表2に示す。表2より実施例1から4で得られたコアシェル型半導体ナノ粒子は、比較例1と比べてバンド端発光量子収率が
高くなることを確認した。
(Absorption / light emission characteristics)
The absorption spectrum and the emission spectrum of the core-shell type semiconductor nanoparticles obtained in Examples 1 to 4 and Comparative Example 1 were measured. The absorption spectrum was measured using a diode array spectrophotometer (manufactured by Agilent Technologies, trade name Agent 8453A) with a wavelength of 190 nm or more and 1100 nm or less. The emission spectrum was measured at an excitation wavelength of 365 nm using a multi-channel spectroscope (manufactured by Hamamatsu Photonics, trade name PMA11). The absorption spectrum is shown in FIG. 1 and the emission spectrum is shown in FIG. Emission peak wavelength (band-end emission) of steep emission peaks observed in each emission spectrum, half-value width of band-end emission, emission quantum yield of band-end emission, and Stokes shift of band-end emission (obtained from absorption spectrum) Table 2 shows the energy value of the absorption peak minus the energy value of the emission peak obtained from the emission spectrum). From Table 2, it was confirmed that the core-shell type semiconductor nanoparticles obtained in Examples 1 to 4 had a higher band-end emission quantum yield than Comparative Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例5)
コアシェル型半導体ナノ粒子の作製
 実施例1で得られた半導体ナノ粒子分散液より1×10-5mmolの半導体ナノ粒子が含まれるよう分取し、減圧乾燥した。ここに、アセチルアセトナートガリウム(Ga(acac)3)0.16mmolとチオ尿素0.0533mmolとを量り取り、脱水処理したオレイルアミン3.0mL(水分値50ppm)を加えて試験管内を窒素置換した。窒素置換を行った後、窒素雰囲気下で、試験管内の内容物を撹拌しながら、第1段階の熱処理として150℃で10分の熱処理をした後、純水5.35×10-5molを添加し、続いて、第2段階の熱処理として300℃で30分の熱処理をした後、室温で45分間放冷した。 遠心分離(4000rpm、5分間)して沈殿物を除去した。上澄みは孔径が0.20μmのメンブレンフィルターで濾過した。メタノールを加えて遠心分離(4000rpm、5分間)をし、得られた沈殿物にエタノールを加えて遠心分離(4000rpm、5分間)をして沈殿としてコアシェル型半導体ナノ粒子を得た。
(Example 5)
Preparation of core-shell type semiconductor nanoparticles The semiconductor nanoparticles dispersion obtained in Example 1 was separated so as to contain 1 × 10-5 mmol of semiconductor nanoparticles, and dried under reduced pressure. To this, 0.16 mmol of acetylacetonatogallium (Ga (acac) 3) and 0.0533 mmol of thiourea were weighed, and 3.0 mL of dehydrated oleylamine (water value 50 ppm) was added to replace the inside of the test tube with nitrogen. After performing nitrogen substitution, heat treatment at 150 ° C. for 10 minutes was performed as the first stage heat treatment while stirring the contents in the test tube under a nitrogen atmosphere, and then 5.35 × 10-5 mol of pure water was added. After the addition, the heat treatment was carried out at 300 ° C. for 30 minutes as the second step heat treatment, and then allowed to cool at room temperature for 45 minutes. The precipitate was removed by centrifugation (4000 rpm, 5 minutes). The supernatant was filtered through a membrane filter having a pore size of 0.20 μm. Methanol was added and centrifuged (4000 rpm, 5 minutes), and ethanol was added to the obtained precipitate and centrifuged (4000 rpm, 5 minutes) to obtain core-shell type semiconductor nanoparticles as a precipitate.
(実施例6から9、比較例2) 
 純水の添加量を表3に示すように変更したこと以外は、実施例1と同様にしてコアシェル型半導体ナノ粒子分散液を得た。
(Examples 6 to 9, Comparative Example 2)
A core-shell type semiconductor nanoparticle dispersion liquid was obtained in the same manner as in Example 1 except that the amount of pure water added was changed as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例5から9および比較例2にて得られたコアシェル型半導体ナノ粒子について、実施例1と同様にして平均粒径と発光特性を測定した。結果を表4示す。また、図3に吸収スペクトルを、図4に発光スペクトルを示す。表3より実施例5から9で得られたコアシェル型半導体ナノ粒子は、比較例2と比べてバンド端発光量子収率が高くなることを確認した。 The average particle size and light emission characteristics of the core-shell type semiconductor nanoparticles obtained in Examples 5 to 9 and Comparative Example 2 were measured in the same manner as in Example 1. The results are shown in Table 4. Further, FIG. 3 shows an absorption spectrum and FIG. 4 shows an emission spectrum. From Table 3, it was confirmed that the core-shell type semiconductor nanoparticles obtained in Examples 5 to 9 had a higher band-end emission quantum yield than Comparative Example 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例10)
 実施例7で得られたコアシェル型半導体ナノ粒子をクロロホルムに分散して分散液を作成した。続いて、分散液と等量のトリオクチルホスフィン(TOP)を添加・混合後、室温で24時間静置し、TOP修飾されたコアシェル型半導体ナノ粒子の分散液を得た。TOP修飾されたコアシェル型半導体ナノ粒子について、実施例1と同様にして発光特性を測定したところ、バンド端発光の量子収率は、88.8%であった。
(Example 10)
The core-shell type semiconductor nanoparticles obtained in Example 7 were dispersed in chloroform to prepare a dispersion. Subsequently, the same amount of trioctylphosphine (TOP) as the dispersion was added and mixed, and then allowed to stand at room temperature for 24 hours to obtain a dispersion of TOP-modified core-shell type semiconductor nanoparticles. When the emission characteristics of the TOP-modified core-shell type semiconductor nanoparticles were measured in the same manner as in Example 1, the quantum yield of band-end emission was 88.8%.
 日本国特許出願2019-153625号(出願日:2019年8月26日)の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。 The entire disclosure of Japanese Patent Application No. 2019-153625 (filed on August 26, 2019) is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (7)

  1.  M、M及びZを含む半導体を含むコアであって、Mが、Ag、Cu、Au及びアルカリ金属からなる群より選ばれる少なくとも1種の元素であって、少なくともAgを含み、Mが、Al、Ga、In及びTlからなる群より選ばれる少なくとも1種の元素であって、In及びGaの少なくとも一方を含み、Zが、S、Se及びTeからなる群より選ばれる少なくとも1種の元素を含むコアを準備することと、
     前記コアと、Al、Ga、In及びTlからなる群より選ばれる少なくとも1種である第1元素を含む化合物の少なくとも1種と、S、Se及びTeからなる群より選ばれる少なくとも1種である第2元素の単体及び第2元素を含む化合物の少なくとも1種とを含む混合物を得ることと、
     前記混合物を熱処理してコアシェル型半導体ナノ粒子を得ることと、を含み、
     前記混合物は、前記第1元素を含む化合物と、前記第2元素の単体または第2元素を含む化合物とを、前記第1元素の総原子数と前記第2元素の総原子数との合計に対する第1元素の総原子数の比が0.5より大きい値になる混合比で含むコアシェル型半導体ナノ粒子の製造方法。
    A core containing a semiconductor containing M 1 , M 2 and Z, wherein M 1 is at least one element selected from the group consisting of Ag, Cu, Au and alkali metals, containing at least Ag and M. 2 is at least one element selected from the group consisting of Al, Ga, In and Tl, contains at least one of In and Ga, and Z is at least 1 selected from the group consisting of S, Se and Te. Preparing a core containing the seed element and
    At least one compound containing the core, at least one selected from the group consisting of Al, Ga, In and Tl, and at least one compound containing the first element, and at least one selected from the group consisting of S, Se and Te. To obtain a mixture containing a simple substance of the second element and at least one compound containing the second element,
    The mixture is heat-treated to obtain core-shell semiconductor nanoparticles.
    The mixture contains the compound containing the first element and the simple substance of the second element or the compound containing the second element with respect to the total number of atoms of the first element and the total number of atoms of the second element. A method for producing core-shell type semiconductor nanoparticles, which comprises a mixing ratio in which the ratio of the total number of atoms of the first element is greater than 0.5.
  2.  前記混合物は、添加された酸素源を含む請求項1に記載の製造方法。 The production method according to claim 1, wherein the mixture contains an added oxygen source.
  3.  前記熱処理は、前記混合物に酸素源を添加することを含む請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the heat treatment comprises adding an oxygen source to the mixture.
  4.  前記熱処理して得られるコアシェル型半導体ナノ粒子に、酸素源を接触させることを含む請求項1から3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, which comprises contacting an oxygen source with the core-shell type semiconductor nanoparticles obtained by the heat treatment.
  5.  コアと、前記コアの表面に配置されるシェルと、を備え
     前記コアが、M、M及びZを含む半導体を含み、Mが、Ag、Cu、Au及びアルカリ金属からなる群より選ばれる少なくとも1種の元素であって、少なくともAgを含み、Mが、Al、Ga、In及びTlからなる群より選ばれる少なくとも1種の元素であって、In及びGaの少なくとも一方を含み、Zが、S、Se及びTeからなる群より選ばれる少なくとも1種の元素を含み、
     前記コアは、Mの総含有率が10モル%以上30モル%以下であり、Mの総含有率の総含有率が15モル%以上35モル%以下であり、Zの総含有率が35モル%以上55モル%以下であり、
     前記シェルは、実質的に、Al、Ga、In及びTlからなる群より選ばれる少なくとも1種である第1元素と、S、Se及びTeからなる群より選ばれる少なくとも1種である第2元素と、O元素とからなり、
     光の照射により発光する、コアシェル型半導体ナノ粒子。
    The core comprises a core and a shell disposed on the surface of the core, wherein the core comprises a semiconductor containing M 1 , M 2 and Z, and M 1 is selected from the group consisting of Ag, Cu, Au and alkali metals. At least one element, containing at least Ag, and M 2 being at least one element selected from the group consisting of Al, Ga, In and Tl, containing at least one of In and Ga. Z contains at least one element selected from the group consisting of S, Se and Te.
    The core has a total M 1 content of 10 mol% or more and 30 mol% or less, a total M 2 content of 15 mol% or more and 35 mol% or less, and a total Z content of Z. 35 mol% or more and 55 mol% or less,
    The shell is substantially a first element that is at least one selected from the group consisting of Al, Ga, In and Tl, and a second element that is at least one selected from the group consisting of S, Se and Te. And O element
    Core-shell type semiconductor nanoparticles that emit light when irradiated with light.
  6.  請求項5に記載のコアシェル型半導体ナノ粒子を含む光変換部材と、半導体発光素子とを備える発光デバイス。 A light emitting device including a light conversion member containing the core-shell type semiconductor nanoparticles according to claim 5 and a semiconductor light emitting device.
  7.  前記半導体発光素子は、LEDチップである請求項6に記載の発光デバイス。 The light emitting device according to claim 6, wherein the semiconductor light emitting element is an LED chip.
PCT/JP2020/031860 2019-08-26 2020-08-24 Semiconductor nanoparticles, production method for same, and light-emitting device WO2021039727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542896A JPWO2021039727A1 (en) 2019-08-26 2020-08-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-153625 2019-08-26
JP2019153625 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021039727A1 true WO2021039727A1 (en) 2021-03-04

Family

ID=74684209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031860 WO2021039727A1 (en) 2019-08-26 2020-08-24 Semiconductor nanoparticles, production method for same, and light-emitting device

Country Status (2)

Country Link
JP (1) JPWO2021039727A1 (en)
WO (1) WO2021039727A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299567A1 (en) * 2014-04-18 2015-10-22 Los Alamos National Security, Llc Synthesis of quantum dots
JP2018044142A (en) * 2016-03-18 2018-03-22 国立大学法人大阪大学 Semiconductor nanoparticle and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299567A1 (en) * 2014-04-18 2015-10-22 Los Alamos National Security, Llc Synthesis of quantum dots
JP2018044142A (en) * 2016-03-18 2018-03-22 国立大学法人大阪大学 Semiconductor nanoparticle and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2021039727A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP7070826B2 (en) Semiconductor nanoparticles and their manufacturing methods and light emitting devices
JP7308433B2 (en) Semiconductor nanoparticles, manufacturing method thereof, and light-emitting device
JP6464215B2 (en) Semiconductor nanoparticles and method for producing the same
JP6293710B2 (en) Semiconductor nanoparticles and method for producing the same
JP7307046B2 (en) Core-shell type semiconductor nanoparticles, method for producing the same, and light-emitting device
JP7214707B2 (en) Semiconductor nanoparticles, manufacturing method thereof, and light-emitting device
JP6466979B2 (en) Semiconductor nanoparticle, method for producing semiconductor nanoparticle, and light emitting device
JP7456591B2 (en) Semiconductor nanoparticles and their manufacturing method, and light emitting devices
WO2020162622A1 (en) Semiconductor nanoparticles and method for producing same
US11757064B2 (en) Semiconductor nanoparticle, method for manufacturing same, and light emitting device
WO2021182417A1 (en) Production method for semiconductor nanoparticles
JP7319402B2 (en) Semiconductor nanoparticles, manufacturing method thereof, and light-emitting device
JP7007671B2 (en) Semiconductor nanoparticles, their manufacturing methods and light emitting devices
JP7005470B2 (en) Semiconductor nanoparticles, their manufacturing methods and light emitting devices
WO2021039727A1 (en) Semiconductor nanoparticles, production method for same, and light-emitting device
JP7316618B2 (en) Method for producing semiconductor nanoparticles and light-emitting device
JP7362077B2 (en) Method for producing semiconductor nanoparticles and light emitting device
US20220285589A1 (en) Method for producing semiconductor nanoparticles and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858544

Country of ref document: EP

Kind code of ref document: A1