WO2021039693A1 - Solar cell for watch - Google Patents

Solar cell for watch Download PDF

Info

Publication number
WO2021039693A1
WO2021039693A1 PCT/JP2020/031778 JP2020031778W WO2021039693A1 WO 2021039693 A1 WO2021039693 A1 WO 2021039693A1 JP 2020031778 W JP2020031778 W JP 2020031778W WO 2021039693 A1 WO2021039693 A1 WO 2021039693A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength region
reflectance
transmittance
power generation
region
Prior art date
Application number
PCT/JP2020/031778
Other languages
French (fr)
Japanese (ja)
Inventor
善一 金丸
耕平 中西
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2021039693A1 publication Critical patent/WO2021039693A1/en

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • G04C10/02Arrangements of electric power supplies in time pieces the power supply being a radioactive or photovoltaic source
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G19/00Electric power supply circuits specially adapted for use in electronic time-pieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell for a watch, and more particularly to a solar cell used in combination with a display panel of a watch.
  • FIG. 3 of Patent Document 1 proposes a method of covering the surface of the solar cell with a paint layer.
  • Patent Document 1 since the paint layer having the blue pigment is provided on the surface of the power generation layer in which the reflected light is blue, the reflected light obtained as a result is reduced in yellow and red, and is more blue. Becomes stronger. Therefore, when the solar cell described in Patent Document 1 is used in combination with a display panel such as a dial, the color of the display panel is limited to blue, and it is not possible to give an arbitrary color or pattern to the display panel. There was a problem.
  • an object of the present invention is to increase the degree of freedom in the color and pattern of the display panel in the solar cell used in combination with the display panel of the timepiece.
  • the solar cell for a clock includes a power generation layer and a colored layer covering the light receiving surface of the power generation layer, and the power generation layer has a first light transmittance in a first wavelength region including a green region.
  • the second wavelength is shorter than the first wavelength region, and the light transmittance in the second wavelength region including the blue region is higher than the first reflectance, and the wavelength is higher than the first wavelength region.
  • the light transmittance is the first transmittance, the light transmittance in the fifth wavelength region overlapping the second wavelength region is lower than the first transmittance, and the third wavelength. It is characterized in that the light transmittance in the sixth wavelength region overlapping the region is a third light transmittance lower than the first transmittance.
  • the saturation of the reflected light obtained from the power generation layer via the colored layer is lowered. Therefore, by arranging a display panel such as a dial or a decorative plate so as to overlap the solar cell, it is possible to give an arbitrary color or pattern to the display panel.
  • the present invention even if the first wavelength region and the fourth wavelength region coincide with each other, the second wavelength region and the fifth wavelength region coincide with each other, and the third wavelength region and the sixth wavelength region coincide with each other. I do not care. According to this, it becomes possible to lower the saturation of the reflected light obtained from the power generation layer via the colored layer.
  • the third reflectance may be higher than the second reflectance, and the third transmittance may be lower than the second transmittance.
  • the power generation layer alone has a reddish appearance, but the redness is reduced by making the third transmittance lower than the second transmittance. Or, it becomes possible to eliminate the redness.
  • the first wavelength region may include the entire wavelength region of 500 nm to 600 nm.
  • the power generation layer is made of silicon, the power generation efficiency for light in the wavelength region of 500 nm to 600 nm is high. Therefore, by increasing the light transmittance in this region, it is possible to suppress a decrease in power generation efficiency.
  • the reflected light obtained from the power generation layer via the colored layer has a value of a * defined in JIS Z 8781-4 in the range of -1 to +2 and a value of b * of -4 to 0. It may be a range. If the chromaticity of the reflected light is within this range, the degree of freedom in the color and pattern of the display panel can be sufficiently increased.
  • FIG. 1 is a schematic cross-sectional view for explaining the configuration of the solar cell 10 according to the embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the reflectance and the wavelength of the power generation layer 11.
  • FIG. 3 is a graph showing the ideal transmittance of the colored layer 12.
  • FIG. 4 is a graph showing a preferable transmittance of the colored layer 12.
  • FIG. 5 is a graph showing the transmittance of the colored layer 12 colored black.
  • FIG. 6 is a graph showing the transmittance of the colored layer 12 colored in blue.
  • FIG. 7 is a graph showing the transmittance of the colored layer 12 colored in green.
  • FIG. 1 is a schematic cross-sectional view for explaining the configuration of the solar cell 10 according to the embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the reflectance and the wavelength of the power generation layer 11.
  • FIG. 3 is a graph showing the ideal transmittance of the colored layer 12.
  • FIG. 4 is a graph showing a
  • FIG. 8 is a diagram illustrating a change in chromaticity when the power generation layer 11 is covered with various colored layers 12 by using a color space defined in JIS Z 8781-4.
  • FIG. 9 is a graph showing the transmittance of the colored layer 12 colored black.
  • FIG. 10 is a graph showing the transmittance of the colored layer 12 colored in blue.
  • FIG. 11 is a graph showing the transmittance of the colored layer 12 colored in green.
  • FIG. 12 is a diagram in which the spectra shown in FIGS. 9 to 11 are plotted on the color space defined in JIS Z8781-4.
  • FIG. 1 is a schematic cross-sectional view for explaining the configuration of the solar cell 10 according to the embodiment of the present invention.
  • the solar cell 10 includes a power generation layer 11 made of silicon or the like, and a colored layer 12 covering a light receiving surface 11a of the power generation layer 11.
  • the power generation layer 11 is a semiconductor element that receives incident light A incident through the colored layer 12 and performs photoelectric conversion, and the electric power generated by the power generation layer 11 is supplied to a movement or an electronic circuit (not shown).
  • the solar cell 10 according to the present embodiment is a solar cell for a clock, and a display panel 20 is arranged between the solar cell 10 and the light source.
  • the display panel 20 is composed of a dial, a decorative plate, a liquid crystal panel, and the like, and plays a role of displaying the current time and the like. Not only is the display panel 20 required to have a good design, but it is also required to have light transmission so that light can sufficiently reach the power generation layer 11.
  • the colored layer 12 plays a role of adjusting the color of the solar cell 10 by covering the power generation layer 11.
  • a sealing resin covering the power generation layer 11 to which a pigment or dye is added can be used.
  • the power generation layer 11 is made of silicon, the power generation layer 11 itself often has a reddish purple color. Therefore, when the colored layer 12 does not exist, the reflected light B that reaches the user is also reddish purple, which limits the design.
  • the power generation layer 11 has a reddish-purple color in a wavelength region having good photoelectric conversion efficiency of 450 nm to 600 nm, particularly a wavelength region of 500 nm to 600 nm, and absorbs a large amount of components in this wavelength region. Because it is done.
  • a method of lowering the light transmittance of the display panel 20 can be considered, but in this case, the amount of power generated by the power generation layer 11 is reduced. Therefore, in the present embodiment, the saturation of the reflected light B is reduced by covering the power generation layer 11 with the coloring layer 12 having a color complementary to the power generation layer 11.
  • FIG. 2 is a graph showing the relationship between the reflectance of the power generation layer 11 and the wavelength, and shows the reflectance in the wavelength region of 400 nm to 700 nm.
  • the reason why the lower limit is 400 nm and the upper limit is 700 nm is that light in a wavelength region shorter than 400 nm and light in a wavelength region longer than 700 nm have almost no effect on color when viewed from the human eye.
  • the power generation layer 11 has low reflectance in a wavelength region (green region) of about 500 nm to 600 nm, and has a shorter wavelength region (blue region) and a longer wavelength region (red region). ) Has high reflectance. In particular, the reflectance in the red region is the highest, resulting in a reddish-purple color as a whole.
  • the average reflectance C0 of the spectrum shown in FIG. 2 is about 10%, and based on this, it can be divided into a wavelength region in which the reflectance is lower than the average reflectance C0 and a wavelength region in which the reflectance is higher.
  • the reflectance is lower than the average reflectance C0 in the wavelength region R1 of 440 nm to 630 nm, and the reflectance is lower than the average reflectance C0 in the wavelength region R2 of less than 440 nm and the wavelength region R3 of more than 630 nm. high. Further, when the average reflectance in the wavelength regions R1 to R3 is C1 to C3, respectively, C1 ⁇ C2 ⁇ C3 Meet.
  • the spectrum of the transmitted light is the reflection shown in FIG. It may be completely opposite to the spectrum of light. That is, the transmittance is high in the wavelength region R1 of 440 nm to 630 nm, the transmittance is low in the wavelength region R2 of less than 440 nm and the wavelength region R3 of more than 630 nm, and the spectrum completely inverts the spectrum shown in FIG. Ideally, it should be. If the transmitted light of the colored layer 12 has such a spectrum, the color disappears almost completely from the reflected light B shown in FIG. Actually, it is difficult to prepare such a colored layer 12, and it is not realistic, but by using the colored layer 12 having a spectrum close to this, the saturation of the reflected light B is significantly reduced. It is possible to make it.
  • the wavelength region R1 completely includes a wavelength region of 500 nm to 600 nm, preferably 450 nm to 600 nm, which has good photoelectric conversion efficiency, and the colored layer 12 has high transmittance in this wavelength region. It is also possible to minimize the decrease in the amount of power generated by the power generation layer 11.
  • FIG. 5 to 7 are graphs showing the transmittances of various colored layers 12, FIG. 5 shows a spectrum when the colored layer 12 is colored black, and FIG. 6 is a graph when the colored layer 12 is colored blue. The spectrum is shown, and FIG. 7 shows the spectrum when the colored layer 12 is colored green.
  • the transmittance has almost no wavelength dependence and a flat spectrum is obtained.
  • the saturation of the reflected light B is lowered, but the power generation efficiency is greatly lowered.
  • the transmittance in the wavelength region R3 is low (D1> D3), so that the redness disappears, but the transmittance in the wavelength region R1 is high (D1 ⁇ D2) Therefore, the bluish color becomes stronger.
  • the transmittance in the wavelength regions R1 to R3 satisfies D1> D2> D3, so that the color of the power generation layer 11 is effective. It is possible to significantly reduce the saturation of the reflected light B.
  • the wavelengths that define the wavelength regions R1 to R3 do not necessarily have to be defined with reference to the spectrum of the reflected light of the power generation layer 11, and may be defined with reference to the spectrum of the transmittance of the colored layer 12. In the example shown in FIG.
  • the average transmittance D0 is about 58%, and based on this, the region having a higher transmittance than the average transmittance D0 is defined as the wavelength region R1, and the transmittance is lower than the average transmittance D0. Further, a region having a shorter wavelength than the wavelength region R1 may be designated as the wavelength region R2, and a region having a lower transmittance than the average transmittance D0 and a longer wavelength than the wavelength region R1 may be designated as the wavelength region R3. As described above, it is not essential that the wavelength regions R1 to R3 defined by the reflectance spectrum of the power generation layer 11 and the wavelength regions R1 to R3 defined by the transmittance spectrum of the colored layer 12 completely match. , It is enough if each part overlaps.
  • FIG. 8 is a diagram illustrating a change in chromaticity when the power generation layer 11 is covered with various colored layers 12 by using a color space defined in JIS Z 8781-4.
  • B 0 shown in FIG. 8 is the color of the power generation layer 11 not covered with the colored layer 12, and the value of a * is about +4 and the value of b * is about -4. This value in the color space indicates a purplish reddish color.
  • the value of a * is decreased, the value of b * is increased.
  • the change in a * and b * increases as the amount of black pigment added to the coloring layer 12 increases. If the amount of the black pigment added to the coloring layer 12 is sufficiently large, the chromaticity approaches the origin (0,0), but in this case, the overall light transmittance is significantly lowered.
  • the value of a * is decreased, the value of b * is increased. That is, the tendency of change in the color space is the same as the sign B 1.
  • the change in a * and b * increases as the amount of green pigment added to the coloring layer 12 increases, but unlike the case where the black pigment is used, the change in a * and b * is suppressed while suppressing the decrease in the overall light transmittance.
  • the value of * can be changed significantly.
  • the amount of green pigment to be added to the colored layer 12 is in the range value of a * of -1 to +2, as the value of b * is in the range of -4 to 0, it is preferable to adjust. When the values of a * and b * are within this range, the saturation of the reflected light B becomes sufficiently low, and it is possible to give an arbitrary color or pattern to the display panel.
  • FIG. 9 shows a spectrum when Ebonic Deguza Japan's special black is added as a black pigment to the colored layer 12
  • FIG. 10 shows a spectrum when DIC's FASTOGEN BLUE PA5380 is added as a blue pigment to the colored layer 12.
  • FIG. 11 shows a spectrum when cyanine green 5370 manufactured by Dainichi Seika Kogyo is added as a green pigment to the colored layer 12.
  • the spectrum B 0 shown in FIG. 9 is the spectrum of the power generation layer 11 itself, and the amount of the black pigment added in the order of the spectra B 11 to B 14 is increased. As shown in FIG. 9, it can be seen that increasing the amount of the black pigment results in a flatter spectrum, but the overall light transmittance is significantly reduced.
  • the spectrum B 0 shown in FIG. 10 is the spectrum of the power generation layer 11 itself, and the amount of the blue pigment added in the order of the spectra B 21 to B 23 is increased. As shown in FIG. 10, it can be seen that when the amount of the blue pigment is increased, the reflectance in the red region is significantly reduced, but the reflectance in the blue region is not significantly reduced.
  • the spectrum B 0 shown in FIG. 11 is the spectrum of the power generation layer 11 itself, and the amount of the green pigment added in the order of the spectra B 31 to B 34 is increased. As shown in FIG. 11, it can be seen that when the amount of the green pigment is increased, the reflectance in the red region and the blue region decreases, but the reflectance in the green region does not decrease significantly.
  • FIG. 12 is a diagram in which the spectra shown in FIGS. 9 to 11 are plotted on the color space defined in JIS Z 8781-4. Further, at each plot point, the power generation efficiency is also displayed with the case where the colored layer 12 is not provided as 100%. As shown in FIG. 12, when the green pigment is added, the value of a * is in the range of -1 to +2 and the value of b * is in the range of -4 to 0 while maintaining the power generation efficiency at 80% or more. Can be adjusted to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[Problem] To provide a solar cell used in superposition with a display panel of a watch, the solar cell enhancing the colors and the freedom of pattern of the display panel. [Solution] A solar cell 10 for a watch is provided with a colored layer 12 covering a light-receiving surface 11a of an electric power generation layer 11. In the electric power generation layer 11, the optical reflectance in a green region is a first reflectance, the optical reflectance in a blue region is a second reflectance higher than the first reflectance, and the optical reflectance in a red region is a third reflectance higher than the first reflectance. In the colored layer 12, the optical transmittance in the green region is a first transmittance, the optical transmittance in the blue region is a second optical transmittance lower than the first transmittance, and the optical transmittance in the red region is a third optical transmittance lower than the first transmittance. Thus, the colors of the electric power generation layer 11 and the colors of the colored layer 12 are in a complementary relationship with each other, whereby the chroma of reflected light B obtained from the electric power generation layer 11 through the colored layer 12 is decreased.

Description

時計用ソーラーセルSolar cell for watches
 本発明は時計用ソーラーセルに関し、特に、時計の表示パネルと重ねて使用するソーラーセルに関する。 The present invention relates to a solar cell for a watch, and more particularly to a solar cell used in combination with a display panel of a watch.
 近年、ソーラーセルを内蔵するソーラー発電式の時計が広く普及している。ソーラー発電式の時計は、電池の交換やゼンマイの巻き上げ動作が不要であるという利点を有している一方、ソーラーセルを表示パネルと重ねて配置すると、表示パネルの美観に影響を与えることがあった。 In recent years, solar-powered watches with built-in solar cells have become widespread. While solar-powered watches have the advantage of not requiring battery replacement or royal fern winding, placing solar cells on top of the display panel can affect the aesthetics of the display panel. It was.
 ソーラー発電式の時計において美観を確保する方法として、特許文献1の図3には、ソーラーセルの表面を塗料層によって覆う方法が提案されている。 As a method of ensuring the aesthetic appearance of a solar-powered timepiece, FIG. 3 of Patent Document 1 proposes a method of covering the surface of the solar cell with a paint layer.
特開2001-217444号公報Japanese Unexamined Patent Publication No. 2001-217444
 しかしながら、特許文献1においては、反射光が青色である発電層の表面に青色顔料を有する塗料層を設けていることから、結果的に得られる反射光は、黄色および赤色が減少し、より青色が強くなる。このため、特許文献1に記載されたソーラーセルを文字盤などの表示パネルと重ねて使用すると、表示パネルの色彩が青色に限定されてしまい、表示パネルに任意の色彩や模様を与えることができないという問題があった。 However, in Patent Document 1, since the paint layer having the blue pigment is provided on the surface of the power generation layer in which the reflected light is blue, the reflected light obtained as a result is reduced in yellow and red, and is more blue. Becomes stronger. Therefore, when the solar cell described in Patent Document 1 is used in combination with a display panel such as a dial, the color of the display panel is limited to blue, and it is not possible to give an arbitrary color or pattern to the display panel. There was a problem.
 したがって、本発明の目的は、時計の表示パネルと重ねて使用するソーラーセルにおいて、表示パネルの色彩や模様の自由度を高めることを目的とする。 Therefore, an object of the present invention is to increase the degree of freedom in the color and pattern of the display panel in the solar cell used in combination with the display panel of the timepiece.
 本発明よる時計用ソーラーセルは、発電層と、発電層の受光面を覆う着色層を備え、発電層は、緑色領域を含む第1の波長領域における光反射率が第1の反射率であり、第1の波長領域よりも波長が短く、青色領域を含む第2の波長領域における光反射率が第1の反射率よりも高い第2の反射率であり、第1の波長領域よりも波長が長く、赤色領域を含む第3の波長領域における光反射率が第1の反射率よりも高い第3の反射率であり、着色層は、第1の波長領域と重なる第4の波長領域における光透過率が第1の透過率であり、第2の波長領域と重なる第5の波長領域における光透過率が第1の透過率よりも低い第2の光透過率であり、第3の波長領域と重なる第6の波長領域における光透過率が第1の透過率よりも低い第3の光透過率であることを特徴とする。 The solar cell for a clock according to the present invention includes a power generation layer and a colored layer covering the light receiving surface of the power generation layer, and the power generation layer has a first light transmittance in a first wavelength region including a green region. , The second wavelength is shorter than the first wavelength region, and the light transmittance in the second wavelength region including the blue region is higher than the first reflectance, and the wavelength is higher than the first wavelength region. Is a third reflectance in which the light transmittance in the third wavelength region including the red region is higher than that of the first reflectance, and the colored layer is in the fourth wavelength region overlapping the first wavelength region. The light transmittance is the first transmittance, the light transmittance in the fifth wavelength region overlapping the second wavelength region is lower than the first transmittance, and the third wavelength. It is characterized in that the light transmittance in the sixth wavelength region overlapping the region is a third light transmittance lower than the first transmittance.
 本発明によれば、発電層の色彩と着色層の色彩が相補の関係を有していることから、着色層を介して発電層から得られる反射光の彩度が低くなる。このため、ソーラーセルと重なるよう、文字盤や化粧板などの表示パネルを配置することにより、表示パネルに任意の色彩又は模様を与えることが可能となる。 According to the present invention, since the color of the power generation layer and the color of the colored layer have a complementary relationship, the saturation of the reflected light obtained from the power generation layer via the colored layer is lowered. Therefore, by arranging a display panel such as a dial or a decorative plate so as to overlap the solar cell, it is possible to give an arbitrary color or pattern to the display panel.
 本発明において、第1の波長領域と第4の波長領域が一致し、第2の波長領域と第5の波長領域が一致し、第3の波長領域と第6の波長領域が一致しても構わない。これによれば、着色層を介して発電層から得られる反射光の彩度をより低くすることが可能となる。 In the present invention, even if the first wavelength region and the fourth wavelength region coincide with each other, the second wavelength region and the fifth wavelength region coincide with each other, and the third wavelength region and the sixth wavelength region coincide with each other. I do not care. According to this, it becomes possible to lower the saturation of the reflected light obtained from the power generation layer via the colored layer.
 本発明において、第3の反射率は第2の反射率よりも高く、第3の透過率は第2の透過率よりも低くても構わない。第3の反射率が第2の反射率よりも高い場合、発電層単体では赤みを帯びた外観となるが、第3の透過率を第2の透過率よりも低くすることにより、赤みを薄くする、或いは、赤みを消すことが可能となる。 In the present invention, the third reflectance may be higher than the second reflectance, and the third transmittance may be lower than the second transmittance. When the third reflectance is higher than the second reflectance, the power generation layer alone has a reddish appearance, but the redness is reduced by making the third transmittance lower than the second transmittance. Or, it becomes possible to eliminate the redness.
 本発明において、第1の波長領域は、500nm~600nmの波長領域を全て含んでいても構わない。発電層がシリコンからなる場合、500nm~600nmの波長領域の光に対する発電効率が高いため、この領域の光の透過率を高めることにより、発電効率の低下を抑えることが可能となる。 In the present invention, the first wavelength region may include the entire wavelength region of 500 nm to 600 nm. When the power generation layer is made of silicon, the power generation efficiency for light in the wavelength region of 500 nm to 600 nm is high. Therefore, by increasing the light transmittance in this region, it is possible to suppress a decrease in power generation efficiency.
 本発明において、着色層を介して発電層から得られる反射光は、JIS Z 8781-4に規定するaの値が-1~+2の範囲であり、bの値が-4~0の範囲であっても構わない。反射光の色度がこの範囲であれば、表示パネルの色彩や模様の自由度を十分に高めることが可能となる。 In the present invention, the reflected light obtained from the power generation layer via the colored layer has a value of a * defined in JIS Z 8781-4 in the range of -1 to +2 and a value of b * of -4 to 0. It may be a range. If the chromaticity of the reflected light is within this range, the degree of freedom in the color and pattern of the display panel can be sufficiently increased.
 このように、本発明によれば、時計の表示パネルと重ねて使用するソーラーセルにおいて、表示パネルの色彩や模様の自由度を高めることが可能となる。 As described above, according to the present invention, it is possible to increase the degree of freedom in the color and pattern of the display panel in the solar cell used in combination with the display panel of the timepiece.
図1は、本発明の一実施形態によるソーラーセル10の構成を説明するための模式的な断面図である。FIG. 1 is a schematic cross-sectional view for explaining the configuration of the solar cell 10 according to the embodiment of the present invention. 図2は、発電層11の反射率と波長との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the reflectance and the wavelength of the power generation layer 11. 図3は、着色層12の理想的な透過率を示すグラフである。FIG. 3 is a graph showing the ideal transmittance of the colored layer 12. 図4は、着色層12の好ましい透過率を示すグラフである。FIG. 4 is a graph showing a preferable transmittance of the colored layer 12. 図5は、黒色に着色した着色層12の透過率を示すグラフである。FIG. 5 is a graph showing the transmittance of the colored layer 12 colored black. 図6は、青色に着色した着色層12の透過率を示すグラフである。FIG. 6 is a graph showing the transmittance of the colored layer 12 colored in blue. 図7は、緑色に着色した着色層12の透過率を示すグラフである。FIG. 7 is a graph showing the transmittance of the colored layer 12 colored in green. 図8は、発電層11を種々の着色層12によって覆った場合における色度の変化をJIS Z 8781-4に規定する色空間を用いて説明する図である。FIG. 8 is a diagram illustrating a change in chromaticity when the power generation layer 11 is covered with various colored layers 12 by using a color space defined in JIS Z 8781-4. 図9は、黒色に着色した着色層12の透過率を示すグラフである。FIG. 9 is a graph showing the transmittance of the colored layer 12 colored black. 図10は、青色に着色した着色層12の透過率を示すグラフである。FIG. 10 is a graph showing the transmittance of the colored layer 12 colored in blue. 図11は、緑色に着色した着色層12の透過率を示すグラフである。FIG. 11 is a graph showing the transmittance of the colored layer 12 colored in green. 図12は、図9~図11に示すスペクトルをJIS Z 8781-4に規定する色空間上にプロットした図である。FIG. 12 is a diagram in which the spectra shown in FIGS. 9 to 11 are plotted on the color space defined in JIS Z8781-4.
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の一実施形態によるソーラーセル10の構成を説明するための模式的な断面図である。 FIG. 1 is a schematic cross-sectional view for explaining the configuration of the solar cell 10 according to the embodiment of the present invention.
 図1に示すように、本実施形態によるソーラーセル10は、シリコンなどからなる発電層11と、発電層11の受光面11aを覆う着色層12からなる。発電層11は、着色層12を介して入射する入射光Aを受けて光電変換する半導体素子であり、発電層11によって生成された電力は図示しないムーブメント又は電子回路に供給される。本実施形態によるソーラーセル10は時計用のソーラーセルであり、ソーラーセル10と光源の間には表示パネル20が配置される。表示パネル20は、文字盤、化粧板、液晶パネルなどからなり、現在時刻などを表示する役割を果たす。表示パネル20にはデザイン性が求められるだけでなく、発電層11に光が十分届くよう、光透過性も求められる。 As shown in FIG. 1, the solar cell 10 according to the present embodiment includes a power generation layer 11 made of silicon or the like, and a colored layer 12 covering a light receiving surface 11a of the power generation layer 11. The power generation layer 11 is a semiconductor element that receives incident light A incident through the colored layer 12 and performs photoelectric conversion, and the electric power generated by the power generation layer 11 is supplied to a movement or an electronic circuit (not shown). The solar cell 10 according to the present embodiment is a solar cell for a clock, and a display panel 20 is arranged between the solar cell 10 and the light source. The display panel 20 is composed of a dial, a decorative plate, a liquid crystal panel, and the like, and plays a role of displaying the current time and the like. Not only is the display panel 20 required to have a good design, but it is also required to have light transmission so that light can sufficiently reach the power generation layer 11.
 着色層12は、発電層11を覆うことによってソーラーセル10の色彩を調整する役割を果たす。着色層12としては、発電層11を覆う封止樹脂に顔料又は染料を添加したものを用いることができる。発電層11がシリコンからなる場合、発電層11自体は赤紫系の色彩を有していることが多い。このため、着色層12が存在しない場合、使用者に届く反射光Bも赤紫系となり、デザインに制限が生じる。発電層11が赤紫系の色彩を有しているのは、光電変換効率の良い波長領域が450nm~600nmの波長領域、特に500nm~600nmの波長領域であり、この波長領域における成分が多く吸収されるためである。逆に、500nmよりも低い青色領域の成分、特に450nmよりも低い青色領域の成分や、600nmよりも高い赤色領域の成分の多くは、光電変換されることなく反射するため、全体として赤紫系の色彩となる。 The colored layer 12 plays a role of adjusting the color of the solar cell 10 by covering the power generation layer 11. As the colored layer 12, a sealing resin covering the power generation layer 11 to which a pigment or dye is added can be used. When the power generation layer 11 is made of silicon, the power generation layer 11 itself often has a reddish purple color. Therefore, when the colored layer 12 does not exist, the reflected light B that reaches the user is also reddish purple, which limits the design. The power generation layer 11 has a reddish-purple color in a wavelength region having good photoelectric conversion efficiency of 450 nm to 600 nm, particularly a wavelength region of 500 nm to 600 nm, and absorbs a large amount of components in this wavelength region. Because it is done. On the contrary, most of the components in the blue region lower than 500 nm, especially the components in the blue region lower than 450 nm and the components in the red region higher than 600 nm are reflected without being photoelectrically converted, and thus are reddish purple as a whole. It becomes the color of.
 赤紫系の色彩を目立たなくする方法としては、表示パネル20の光透過率を低くする方法が考えられるが、この場合、発電層11による発電量が低下してしまう。そこで、本実施形態においては、発電層11に対して相補の色彩を有する着色層12によって発電層11を覆うことにより、反射光Bの彩度を低下させている。 As a method of making the reddish purple color inconspicuous, a method of lowering the light transmittance of the display panel 20 can be considered, but in this case, the amount of power generated by the power generation layer 11 is reduced. Therefore, in the present embodiment, the saturation of the reflected light B is reduced by covering the power generation layer 11 with the coloring layer 12 having a color complementary to the power generation layer 11.
 図2は、発電層11の反射率と波長との関係を示すグラフであり、400nm~700nmの波長領域における反射率を示している。400nmを下限とし、700nmを上限としているのは、400nmよりも短い波長領域の光や、700nmよりも長い波長領域の光は、人間の目から見て色彩にほとんど影響を与えないからである。 FIG. 2 is a graph showing the relationship between the reflectance of the power generation layer 11 and the wavelength, and shows the reflectance in the wavelength region of 400 nm to 700 nm. The reason why the lower limit is 400 nm and the upper limit is 700 nm is that light in a wavelength region shorter than 400 nm and light in a wavelength region longer than 700 nm have almost no effect on color when viewed from the human eye.
 図2に示すように、発電層11は、約500nm~600nmの波長領域(緑色領域)において反射率が低く、これよりも短い波長領域(青色領域)や、これよりも長い波長領域(赤色領域)における反射率が高い。特に、赤色領域における反射率が最も高く、その結果、全体として赤紫系の色彩となる。ここで、図2に示すスペクトルの平均反射率C0は約10%であり、これを基準とすると、反射率が平均反射率C0より低い波長領域と高い波長領域に分けることができる。 As shown in FIG. 2, the power generation layer 11 has low reflectance in a wavelength region (green region) of about 500 nm to 600 nm, and has a shorter wavelength region (blue region) and a longer wavelength region (red region). ) Has high reflectance. In particular, the reflectance in the red region is the highest, resulting in a reddish-purple color as a whole. Here, the average reflectance C0 of the spectrum shown in FIG. 2 is about 10%, and based on this, it can be divided into a wavelength region in which the reflectance is lower than the average reflectance C0 and a wavelength region in which the reflectance is higher.
 図2に示す例では、440nm~630nmの波長領域R1において反射率が平均反射率C0よりも低く、440nm未満の波長領域R2や、630nm超の波長領域R3において反射率が平均反射率C0よりも高い。さらに、波長領域R1~R3における平均反射率をそれぞれC1~C3とした場合、
  C1<C2<C3
を満たしている。
In the example shown in FIG. 2, the reflectance is lower than the average reflectance C0 in the wavelength region R1 of 440 nm to 630 nm, and the reflectance is lower than the average reflectance C0 in the wavelength region R2 of less than 440 nm and the wavelength region R3 of more than 630 nm. high. Further, when the average reflectance in the wavelength regions R1 to R3 is C1 to C3, respectively,
C1 <C2 <C3
Meet.
 反射光がこのようなスペクトルを有する発電層11に対し、着色層12によって相補の色彩を与えるためには、理想的には、図3に示すように、透過光のスペクトルが図2に示す反射光のスペクトルとは完全に逆であればよい。つまり、440nm~630nmの波長領域R1において透過率が高く、440nm未満の波長領域R2や、630nm超の波長領域R3において透過率が低く、且つ、そのスペクトルが図2に示すスペクトルを完全に反転させたものであることが理想である。仮に、着色層12の透過光がこのようなスペクトルを有している場合、図1に示す反射光Bからはほぼ完全に色彩が消える。実際には、このような着色層12を作製することは困難であり、現実的ではないが、これに近いスペクトルを持った着色層12を用いることにより、反射光Bの彩度を大幅に低減させることが可能である。 In order for the reflected light to give complementary colors to the power generation layer 11 having such a spectrum by the colored layer 12, ideally, as shown in FIG. 3, the spectrum of the transmitted light is the reflection shown in FIG. It may be completely opposite to the spectrum of light. That is, the transmittance is high in the wavelength region R1 of 440 nm to 630 nm, the transmittance is low in the wavelength region R2 of less than 440 nm and the wavelength region R3 of more than 630 nm, and the spectrum completely inverts the spectrum shown in FIG. Ideally, it should be. If the transmitted light of the colored layer 12 has such a spectrum, the color disappears almost completely from the reflected light B shown in FIG. Actually, it is difficult to prepare such a colored layer 12, and it is not realistic, but by using the colored layer 12 having a spectrum close to this, the saturation of the reflected light B is significantly reduced. It is possible to make it.
 つまり、図4に示すように、波長領域R1~R3における着色層12の平均透過率をそれぞれD1~D3とした場合、
  D1>D2、且つ
  D1>D3
を満たし、好ましくは、
  D1>D2>D3
を満たすよう、着色層12に添加する顔料又は染料の種類及び量を調整する。これにより、反射光Bの彩度が低下し、赤みが薄くなる。つまり、使用者から見て反射光Bの色彩が薄く見えることから、表示パネル20に任意の色彩又は模様を与えることが可能となり、デザイン性が向上する。しかも、波長領域R1は、光電変換効率の良い500nm~600nmの波長領域、好ましくは、450nm~600nmの波長領域を完全に含んでおり、着色層12はこの波長領域における透過率が高いことから、発電層11による発電量の低下を最小限に抑えることも可能となる。
That is, as shown in FIG. 4, when the average transmittance of the colored layers 12 in the wavelength regions R1 to R3 is D1 to D3, respectively.
D1> D2 and D1> D3
Meet, preferably
D1>D2> D3
The type and amount of the pigment or dye added to the coloring layer 12 are adjusted so as to satisfy the above conditions. As a result, the saturation of the reflected light B is reduced and the redness is reduced. That is, since the color of the reflected light B looks faint to the user, it is possible to give an arbitrary color or pattern to the display panel 20, and the design is improved. Moreover, the wavelength region R1 completely includes a wavelength region of 500 nm to 600 nm, preferably 450 nm to 600 nm, which has good photoelectric conversion efficiency, and the colored layer 12 has high transmittance in this wavelength region. It is also possible to minimize the decrease in the amount of power generated by the power generation layer 11.
 図5~図7は種々の着色層12の透過率を示すグラフであり、図5は着色層12を黒色に着色した場合のスペクトルを示し、図6は着色層12を青色に着色した場合のスペクトルを示し、図7は着色層12を緑色に着色した場合のスペクトルを示している。 5 to 7 are graphs showing the transmittances of various colored layers 12, FIG. 5 shows a spectrum when the colored layer 12 is colored black, and FIG. 6 is a graph when the colored layer 12 is colored blue. The spectrum is shown, and FIG. 7 shows the spectrum when the colored layer 12 is colored green.
 図5に示すように、着色層12を黒色に着色した場合、透過率に波長依存性はほとんどなく、フラットなスペクトルとなる。このような着色層12を用いた場合、反射光Bの彩度は低下するものの、発電効率が大きく低下してしまう。また、図6に示すように、着色層12を青色に着色した場合、波長領域R3における透過率が低い(D1>D3)ことから赤みは消えるものの、波長領域R1における透過率が高い(D1<D2)ことから青みが強くなってしまう。 As shown in FIG. 5, when the colored layer 12 is colored black, the transmittance has almost no wavelength dependence and a flat spectrum is obtained. When such a colored layer 12 is used, the saturation of the reflected light B is lowered, but the power generation efficiency is greatly lowered. Further, as shown in FIG. 6, when the colored layer 12 is colored blue, the transmittance in the wavelength region R3 is low (D1> D3), so that the redness disappears, but the transmittance in the wavelength region R1 is high (D1 < D2) Therefore, the bluish color becomes stronger.
 これに対し、図7に示すように、着色層12を緑色に着色した場合、波長領域R1~R3における透過率がD1>D2>D3を満たしていることから、発電層11の色彩が効果的に相殺され、反射光Bの彩度を大幅に低下させることが可能となる。尚、波長領域R1~R3を定義する波長については、必ずしも発電層11の反射光のスペクトルを基準として定義する必要はなく、着色層12の透過率のスペクトルを基準として定義しても構わない。図7に示す例では平均透過率D0は約58%であり、これを基準として、平均透過率D0よりも透過率の高い領域を波長領域R1とし、平均透過率D0よりも透過率が低く、且つ、波長領域R1よりも波長の短い領域を波長領域R2とし、平均透過率D0よりも透過率が低く、且つ、波長領域R1よりも波長の長い領域を波長領域R3としても構わない。このように、発電層11の反射率スペクトルによって定義される波長領域R1~R3と、着色層12の透過率スペクトルによって定義される波長領域R1~R3が完全に一致していることは必須でなく、それぞれが部分的に重複していれば足りる。 On the other hand, as shown in FIG. 7, when the colored layer 12 is colored green, the transmittance in the wavelength regions R1 to R3 satisfies D1> D2> D3, so that the color of the power generation layer 11 is effective. It is possible to significantly reduce the saturation of the reflected light B. The wavelengths that define the wavelength regions R1 to R3 do not necessarily have to be defined with reference to the spectrum of the reflected light of the power generation layer 11, and may be defined with reference to the spectrum of the transmittance of the colored layer 12. In the example shown in FIG. 7, the average transmittance D0 is about 58%, and based on this, the region having a higher transmittance than the average transmittance D0 is defined as the wavelength region R1, and the transmittance is lower than the average transmittance D0. Further, a region having a shorter wavelength than the wavelength region R1 may be designated as the wavelength region R2, and a region having a lower transmittance than the average transmittance D0 and a longer wavelength than the wavelength region R1 may be designated as the wavelength region R3. As described above, it is not essential that the wavelength regions R1 to R3 defined by the reflectance spectrum of the power generation layer 11 and the wavelength regions R1 to R3 defined by the transmittance spectrum of the colored layer 12 completely match. , It is enough if each part overlaps.
 図8は、発電層11を種々の着色層12によって覆った場合における色度の変化をJIS Z 8781-4に規定する色空間を用いて説明する図である。 FIG. 8 is a diagram illustrating a change in chromaticity when the power generation layer 11 is covered with various colored layers 12 by using a color space defined in JIS Z 8781-4.
 図8に示すBは、着色層12で覆われていない発電層11の色彩であり、aの値が約+4、bの値が約-4である。色空間におけるこの値は、赤紫系の色彩を示す。そして、図5に示す黒色に着色された着色層12によって発電層11を覆うと、符号Bで示すように、aの値が減少し、bの値が増加する。a及びbの変化は、着色層12に添加する黒色顔料が多いほど大きくなる。着色層12に添加する黒色顔料を十分に多くすれば、色度は原点(0,0)に近づくが、この場合、全体的な光透過率が大幅に低くなってしまう。一方、図6に示す青色に着色された着色層12によって発電層11を覆うと、符号Bで示すように、a及びbの値がいずれも減少する。a及びbの変化は、着色層12に添加する青色顔料が多いほど大きくなる。着色層12に添加する青色顔料を多くすれば、aの値の減少により赤みは薄くなるが、bの値の減少により青みが強くなる。 B 0 shown in FIG. 8 is the color of the power generation layer 11 not covered with the colored layer 12, and the value of a * is about +4 and the value of b * is about -4. This value in the color space indicates a purplish reddish color. When covering the power generation layer 11 by a colored layer 12 that is colored black as shown in FIG. 5, as shown at B 1, the value of a * is decreased, the value of b * is increased. The change in a * and b * increases as the amount of black pigment added to the coloring layer 12 increases. If the amount of the black pigment added to the coloring layer 12 is sufficiently large, the chromaticity approaches the origin (0,0), but in this case, the overall light transmittance is significantly lowered. On the other hand, when covering the power generation layer 11 by a colored layer 12 that it is colored blue as shown in FIG. 6, as shown at B 2, the values of a * and b * decreases both. The change in a * and b * increases as the amount of blue pigment added to the coloring layer 12 increases. If the amount of the blue pigment added to the colored layer 12 is increased, the redness becomes lighter as the value of a * decreases, but the blueness becomes stronger as the value of b * decreases.
 これに対し、図7に示す緑色に着色された着色層12によって発電層11を覆うと、符号Bで示すように、aの値が減少し、bの値が増加する。つまり、色空間における変化の傾向は、符号Bと同じである。a及びbの変化は、着色層12に添加する緑色顔料が多いほど大きくなるが、黒色顔料を用いた場合とは異なり、全体的な光透過率の減少を抑えつつ、a及びbの値を大きく変化させることがでる。着色層12に添加する緑色顔料の量は、aの値が-1~+2の範囲であり、bの値が-4~0の範囲となるよう、調整することが好ましい。a及びbの値がこの範囲内であれば、反射光Bの彩度が十分に低くなり、表示パネルに任意の色彩又は模様を与えることが可能となる。 In contrast, when covering the power generation layer 11 by a colored layer 12 colored in green as shown in FIG. 7, as indicated at B 3, the value of a * is decreased, the value of b * is increased. That is, the tendency of change in the color space is the same as the sign B 1. The change in a * and b * increases as the amount of green pigment added to the coloring layer 12 increases, but unlike the case where the black pigment is used, the change in a * and b * is suppressed while suppressing the decrease in the overall light transmittance. The value of * can be changed significantly. The amount of green pigment to be added to the colored layer 12 is in the range value of a * of -1 to +2, as the value of b * is in the range of -4 to 0, it is preferable to adjust. When the values of a * and b * are within this range, the saturation of the reflected light B becomes sufficiently low, and it is possible to give an arbitrary color or pattern to the display panel.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention, and these are also the present invention. It goes without saying that it is included in the range.
 図2に示すスペクトルを有する発電層11を種々の着色層12で覆い、その反射光Bのスペクトルを測定した。結果を図9~図11に示す。図9は、着色層12に黒色顔料としてエボニックデグザジャパン社製スペシャルブラックを添加した場合のスペクトルを示し、図10は、着色層12に青色顔料としてDIC社製FASTOGEN BLUE PA5380を添加した場合のスペクトルを示し、図11は、着色層12に緑色顔料として大日精化工業製シアニングリーン5370を添加した場合のスペクトルを示している。 The power generation layer 11 having the spectrum shown in FIG. 2 was covered with various colored layers 12, and the spectrum of the reflected light B was measured. The results are shown in FIGS. 9 to 11. FIG. 9 shows a spectrum when Ebonic Deguza Japan's special black is added as a black pigment to the colored layer 12, and FIG. 10 shows a spectrum when DIC's FASTOGEN BLUE PA5380 is added as a blue pigment to the colored layer 12. The spectrum is shown, and FIG. 11 shows a spectrum when cyanine green 5370 manufactured by Dainichi Seika Kogyo is added as a green pigment to the colored layer 12.
 図9に示すスペクトルBは、発電層11そのもののスペクトルであり、スペクトルB11~B14の順に添加する黒色顔料の量を増やしている。図9に示すように、黒色顔料の量を増やすと、よりフラットなスペクトルとなるが、全体的な光透過率が大幅に低下することが分かる。 The spectrum B 0 shown in FIG. 9 is the spectrum of the power generation layer 11 itself, and the amount of the black pigment added in the order of the spectra B 11 to B 14 is increased. As shown in FIG. 9, it can be seen that increasing the amount of the black pigment results in a flatter spectrum, but the overall light transmittance is significantly reduced.
 図10に示すスペクトルBは、発電層11そのもののスペクトルであり、スペクトルB21~B23の順に添加する青色顔料の量を増やしている。図10に示すように、青色顔料の量を増やすと、赤色領域における反射率が大幅に低下するが、青色領域における反射率があまり低下しないことが分かる。 The spectrum B 0 shown in FIG. 10 is the spectrum of the power generation layer 11 itself, and the amount of the blue pigment added in the order of the spectra B 21 to B 23 is increased. As shown in FIG. 10, it can be seen that when the amount of the blue pigment is increased, the reflectance in the red region is significantly reduced, but the reflectance in the blue region is not significantly reduced.
 図11に示すスペクトルBは、発電層11そのもののスペクトルであり、スペクトルB31~B34の順に添加する緑色顔料の量を増やしている。図11に示すように、緑色顔料の量を増やすと、赤色領域及び青色領域における反射率が低下する一方、緑色領域における反射率については大きく低下しないことが分かる。 The spectrum B 0 shown in FIG. 11 is the spectrum of the power generation layer 11 itself, and the amount of the green pigment added in the order of the spectra B 31 to B 34 is increased. As shown in FIG. 11, it can be seen that when the amount of the green pigment is increased, the reflectance in the red region and the blue region decreases, but the reflectance in the green region does not decrease significantly.
 図12は、図9~図11に示すスペクトルをJIS Z 8781-4に規定する色空間上にプロットした図である。また、各プロット点には、着色層12を設けない場合を100%とした発電効率も表示されている。図12に示すように、緑色顔料を添加した場合、発電効率を80%以上に維持しつつ、aの値が-1~+2の範囲であり、bの値が-4~0の範囲に調整することができる。 FIG. 12 is a diagram in which the spectra shown in FIGS. 9 to 11 are plotted on the color space defined in JIS Z 8781-4. Further, at each plot point, the power generation efficiency is also displayed with the case where the colored layer 12 is not provided as 100%. As shown in FIG. 12, when the green pigment is added, the value of a * is in the range of -1 to +2 and the value of b * is in the range of -4 to 0 while maintaining the power generation efficiency at 80% or more. Can be adjusted to.
10  時計用ソーラーセル
11  発電層
11a  受光面
12  着色層
20  表示パネル
A  入射光
B  反射光
10 Solar cell for watch 11 Power generation layer 11a Light receiving surface 12 Colored layer 20 Display panel A Incident light B Reflected light

Claims (5)

  1.  発電層と、前記発電層の受光面を覆う着色層を備える時計用ソーラーセルであって、
     前記発電層は、
      緑色領域を含む第1の波長領域における光反射率が第1の反射率であり、
      前記第1の波長領域よりも波長が短く、青色領域を含む第2の波長領域における光反射率が前記第1の反射率よりも高い第2の反射率であり、
      前記第1の波長領域よりも波長が長く、赤色領域を含む第3の波長領域における光反射率が前記第1の反射率よりも高い第3の反射率であり、
     前記着色層は、
     前記第1の波長領域と重なる第4の波長領域における光透過率が第1の透過率であり、
     前記第2の波長領域と重なる第5の波長領域における光透過率が前記第1の透過率よりも低い第2の光透過率であり、
     前記第3の波長領域と重なる第6の波長領域における光透過率が前記第1の透過率よりも低い第3の光透過率である、
    ことを特徴とする時計用ソーラーセル。
    A solar cell for a watch having a power generation layer and a colored layer covering the light receiving surface of the power generation layer.
    The power generation layer
    The light reflectance in the first wavelength region including the green region is the first reflectance.
    It is a second reflectance having a shorter wavelength than the first wavelength region and having a higher light reflectance in the second wavelength region including the blue region than the first reflectance region.
    A third reflectance having a longer wavelength than the first wavelength region and having a higher light reflectance in the third wavelength region including the red region than the first reflectance region.
    The colored layer is
    The light transmittance in the fourth wavelength region that overlaps with the first wavelength region is the first transmittance.
    A second light transmittance in which the light transmittance in the fifth wavelength region overlapping the second wavelength region is lower than the first transmittance.
    A third light transmittance in which the light transmittance in the sixth wavelength region overlapping the third wavelength region is lower than the first transmittance.
    A solar cell for watches that is characterized by that.
  2.  前記第1の波長領域と前記第4の波長領域が一致し、前記第2の波長領域と前記第5の波長領域が一致し、前記第3の波長領域と前記第6の波長領域が一致することを特徴とする請求項1に記載の時計用ソーラーセル。 The first wavelength region and the fourth wavelength region coincide with each other, the second wavelength region and the fifth wavelength region coincide with each other, and the third wavelength region and the sixth wavelength region coincide with each other. The solar cell for a watch according to claim 1.
  3.  前記第3の反射率が前記第2の反射率よりも高く、前記第3の透過率が前記第2の透過率よりも低いことを特徴とする請求項1又は2に記載の時計用ソーラーセル。 The watch solar cell according to claim 1 or 2, wherein the third reflectance is higher than the second reflectance, and the third transmittance is lower than the second transmittance. ..
  4.  前記第1の波長領域は、500nm~600nmの波長領域を全て含むことを特徴とする請求項1乃至3のいずれか一項に記載の時計用ソーラーセル。 The solar cell for a watch according to any one of claims 1 to 3, wherein the first wavelength region includes the entire wavelength region of 500 nm to 600 nm.
  5.  前記着色層を介して前記発電層から得られる反射光は、JIS Z 8781-4に規定するaの値が-1~+2の範囲であり、bの値が-4~0の範囲であることを特徴とする請求項1乃至4のいずれか一項に記載の時計用ソーラーセル。 The reflected light obtained from the power generation layer through the colored layer has a value of a * in the range of -1 to +2 and a value of b * in the range of -4 to 0 as defined in JIS Z 8781-4. The solar cell for a watch according to any one of claims 1 to 4, wherein the solar cell is provided.
PCT/JP2020/031778 2019-08-30 2020-08-24 Solar cell for watch WO2021039693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019158047A JP2021036566A (en) 2019-08-30 2019-08-30 Solar cell for watch
JP2019-158047 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021039693A1 true WO2021039693A1 (en) 2021-03-04

Family

ID=74685490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031778 WO2021039693A1 (en) 2019-08-30 2020-08-24 Solar cell for watch

Country Status (2)

Country Link
JP (1) JP2021036566A (en)
WO (1) WO2021039693A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294575A (en) * 1988-09-30 1990-04-05 Taiyo Yuden Co Ltd Photovoltaic device
JPH098341A (en) * 1995-06-20 1997-01-10 Semiconductor Energy Lab Co Ltd Photovoltaic device
JP2001044474A (en) * 1999-08-04 2001-02-16 Tdk Corp Solar cell module
JP2001217444A (en) * 1999-12-27 2001-08-10 Asulab Sa Photocell having colored appearance especially for watch dial
JP2004508729A (en) * 2000-09-08 2004-03-18 アクゾ ノーベル ナムローゼ フェンノートシャップ Colored solar cell unit
JP2004207316A (en) * 2002-12-24 2004-07-22 Citizen Watch Co Ltd Solar cell module and electronic apparatus
JP2006196532A (en) * 2005-01-11 2006-07-27 Toppan Printing Co Ltd Color solid state imaging device
US20140261624A1 (en) * 2013-03-15 2014-09-18 Sandia Corporation Customized color patterning of photovoltaic cells
JP2018018905A (en) * 2016-07-26 2018-02-01 三菱ケミカル株式会社 Photoelectric conversion element and solar cell module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294575A (en) * 1988-09-30 1990-04-05 Taiyo Yuden Co Ltd Photovoltaic device
JPH098341A (en) * 1995-06-20 1997-01-10 Semiconductor Energy Lab Co Ltd Photovoltaic device
JP2001044474A (en) * 1999-08-04 2001-02-16 Tdk Corp Solar cell module
JP2001217444A (en) * 1999-12-27 2001-08-10 Asulab Sa Photocell having colored appearance especially for watch dial
JP2004508729A (en) * 2000-09-08 2004-03-18 アクゾ ノーベル ナムローゼ フェンノートシャップ Colored solar cell unit
JP2004207316A (en) * 2002-12-24 2004-07-22 Citizen Watch Co Ltd Solar cell module and electronic apparatus
JP2006196532A (en) * 2005-01-11 2006-07-27 Toppan Printing Co Ltd Color solid state imaging device
US20140261624A1 (en) * 2013-03-15 2014-09-18 Sandia Corporation Customized color patterning of photovoltaic cells
JP2018018905A (en) * 2016-07-26 2018-02-01 三菱ケミカル株式会社 Photoelectric conversion element and solar cell module

Also Published As

Publication number Publication date
JP2021036566A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US6731351B2 (en) Display assembly including an electro-optical cell and a photovoltaic cell
CN102947680B (en) There are the glasses that colourity strengthens
US7952662B2 (en) Transflective display device
TWI381234B (en) Method and device for manipulating color in display
CN100480747C (en) Colorful optical filter
EP3032978B1 (en) Improvements in and relating to visors
TW200931674A (en) Photovoltaic devices with integrated color interferometric film stacks
JP4990183B2 (en) Optical member and filter for display device including the same
CN111883632B (en) Display and display module thereof
US10371967B2 (en) Predefined reflective appearance eyewear lens with balance chroma enhancement visual perception
WO2021039693A1 (en) Solar cell for watch
CN107390418A (en) A kind of filtering structure, display base plate, display panel and display device
TWI813693B (en) Multi-band color vision filters and method by lp-optimization
JP2003233063A (en) Liquid crystal display device
CN209471264U (en) A kind of color gradual changing film
CN108646456B (en) Display module and display device
JP3911046B2 (en) Optical member having wavelength selectivity
US6278507B1 (en) Reflection type liquid crystal display device
JP2003302516A (en) Display device
US9914395B1 (en) Electrochromic rearview mirror
JP4503772B2 (en) Solar watch display structure
Wan et al. Ultrathin high-efficiency, variable-color filters with an adjustable bandwidth by combining a cavity resonator and a dielectric film
JP6458431B2 (en) Method for evaluating color of dark sheet for solar cell module
JP2011203213A (en) Skeleton wrist watch
WO2024080266A1 (en) Lens and game system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859248

Country of ref document: EP

Kind code of ref document: A1