WO2021039669A1 - Functional film, functional film laminate, composition for forming functional film, method for producing composition for forming functional film, and method for producing functional film laminate - Google Patents

Functional film, functional film laminate, composition for forming functional film, method for producing composition for forming functional film, and method for producing functional film laminate Download PDF

Info

Publication number
WO2021039669A1
WO2021039669A1 PCT/JP2020/031716 JP2020031716W WO2021039669A1 WO 2021039669 A1 WO2021039669 A1 WO 2021039669A1 JP 2020031716 W JP2020031716 W JP 2020031716W WO 2021039669 A1 WO2021039669 A1 WO 2021039669A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional film
functional
film
forming
composition
Prior art date
Application number
PCT/JP2020/031716
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 光史
裕己 永井
Original Assignee
学校法人工学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人工学院大学 filed Critical 学校法人工学院大学
Priority to JP2021542860A priority Critical patent/JP7477889B2/en
Publication of WO2021039669A1 publication Critical patent/WO2021039669A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present disclosure relates to a functional film, a functional film laminate, a composition for forming a functional film, a method for producing a composition for forming a functional film, and a method for producing a functional film laminate.
  • Heat treatment is often required to form a conductive film, and a resin substrate that is not suitable for heating, a conductive material such as carbon nanotubes that is not suitable for heating, and lithium such as lithium hexafluorophosphate (LiPF 6). It is difficult to use a solid electrolyte raw material or the like, and there is a demand for a method for producing a functional membrane that does not require heat treatment.
  • the methods for forming a metal film and a metal oxide film useful for a conductive film are roughly classified into a vapor phase method and a wet method, and any of them can form a thin film containing a metal atom. Since the vapor phase method requires large-scale equipment, it is not suitable for producing a general-purpose metal film and a metal oxide film that require a film having a desired area at low cost. Therefore, the wet method is attracting attention. To. Among them, the molecular precursor method, which is one of the wet methods, is attracting attention.
  • a metal-containing film can be formed on a substrate by the coating method using a precursor solution containing a solvent suitable for coating and a metal complex soluble in the solvent. Therefore, the degree of freedom in selecting the composition of the metal film, the base material, and the like is high as compared with the method of depositing the metal film on the base material by another wet method such as the plating method.
  • a method for forming a metal film using the precursor method a method of applying a metal film forming composition containing a specific cationic metal complex and heating to form a metal film is disclosed, and energy is applied instead of heating. It is described that ultraviolet rays are used in (see International Publication No. 2017/135330).
  • hydrophilic film As a hydrophilic film, it contains a metal oxide and a hydrophilic compound such as polyoxyalkylene glycol, which are useful for forming a hydrophilic antifogging coating film, and in elemental analysis of the surface, element C and a metal derived from the metal oxide.
  • a coating film having an element concentration ratio of 10 or more to an element has been proposed.
  • the metal oxide that imparts hydrophilicity due to the photocatalytic reaction anatase-type, rutile-type, and brookite-type titanium oxides are cited as preferable examples (see JP-A-2018-172566).
  • the coating film and coating composition described in JP-A-2018-172566 are useful for forming an anti-fog film on a hard substrate.
  • the film formation depends on the hydrophilic compound and preferably the isocyanate compound used in combination with the hydrophilic compound, there is still room for improvement in the strength and durability of the coating film.
  • An object of an embodiment of the present invention is a functional film having functions such as hydrophilicity, surface protection, and ultraviolet absorption, a functional film laminate having a functional film on a substrate, and a functional film laminate. It is to provide a manufacturing method.
  • An object of another embodiment of the present invention is to provide a composition for forming a functional film containing a complex compound useful for forming a functional film, and a method for producing the same.
  • the disclosure includes the following embodiments: ⁇ 1> A functional film containing amorphous titanium oxide, wherein the content of oxygen atoms per 1 mol of titanium atoms contained in the functional film is in the range of 0.5 mol to 1.9 mol. Sexual membrane. ⁇ 2> After irradiating with ultraviolet light under the conditions of ultraviolet light with a wavelength of 254 nm, intensity: 4 mW / cm 2 , and irradiation time: 10 minutes, the pure water contact angle of the surface measured at 25 ° C is 10 ° or less ⁇ 1>. The functional membrane described.
  • the ultraviolet transmittance of a wavelength of 350 nm or less is 10% or less
  • the near-ultraviolet transmittance of a wavelength of more than 350 nm and 400 nm or less is less than 80%
  • the visible light transmittance of a wavelength of more than 400 nm and 750 nm or less is 80.
  • Functional membrane ⁇ 5> The functional film according to ⁇ 4>, which is a protective film for a base material.
  • ⁇ 6> Further, 0.1 parts by mass to 10 parts by mass of a conductive material selected from the group consisting of carbon nanotubes, carbon black, and conductive metal particles with respect to 1 part by mass of titanium or silicon contained in the functional film.
  • the four-probe electrical conductivity as measured by the needle method is 10 6 [Omega] cm or less ⁇ 1> to ⁇ 5> functional film according to any one of.
  • the functional membrane according to ⁇ 4> which further contains a lithium compound and is a lithium solid electrolyte membrane.
  • the base material is a base material selected from the group consisting of a fluorine-doped tin oxide base material, an indium-doped tin oxide base material, a resin base material, a blue plate glass base material, a metal base material, and a ceramic base material. 8> The functional film laminate according to 8.
  • composition for forming a functional film which comprises a solvent containing an alcohol and an anionic titanium complex or an anionic silicon complex.
  • anionic titanium complex or the anionic silicon complex is a complex having oxalic acid or ethylenediaminetetraacetic acid as a ligand.
  • a method for producing a composition for forming a functional film which comprises a step of adding water or hydrogen peroxide to the mixture and refluxing the mixture.
  • a method for producing a functional film laminate which comprises a step of irradiating the functional film-forming composition layer with ultraviolet rays to remove organic substances from the functional film-forming composition to obtain a functional film.
  • a functional film having functions such as hydrophilicity, surface protection, and ultraviolet absorption a functional film laminate having a functional film on a substrate, and a functional film laminate.
  • a manufacturing method can be provided.
  • FIG. A functional film I 2 , a functional film I 4 , a functional film I 8 or a functional film I 16 was formed on the quartz glass substrate (control example) and the quartz glass substrate obtained in Example 1, respectively. It is a graph which shows the absorption spectrum of a laminated body.
  • the functional film I 2 , the functional film I 4 , the functional film I 8 , and the functional film I 16 by X-ray diffraction (XRD). It is a graph which shows the XRD pattern obtained by this.
  • the surface image and the cross-sectional image of the functional film (I) obtained in Example 1 observed by FE-SEM (a) is the surface image and the cross-sectional image of the functional film I 2, and (b) is the function. It is a surface image and a cross-sectional image of the sex film I 4 , (c) is a surface image and a cross-sectional image of the functional film I 8 , and (d) is a surface image and a cross-sectional image of the functional film I 16.
  • the numerical range described by using "-" in the present disclosure represents a numerical range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the term “process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the first aspect of the functional film of the present disclosure is a functional film containing amorphous titanium oxide, wherein the content of oxygen atoms per 1 mol of titanium atoms contained in the functional film is 0.5 mol. It is in the range of ⁇ 1.9 mol.
  • the first aspect of the functional film of the present disclosure containing amorphous titanium oxide may be referred to as the functional film (I) of the present disclosure.
  • the content of oxygen atoms per 1 mol of titanium atoms contained in the functional film (I) of the present disclosure is in the range of 0.5 mol to 1.9 mol, and is in the range of 1.0 mol to 1.7 mol.
  • the molar ratio of titanium atoms to oxygen atoms contained in the functional film (I) was analyzed by X-ray Photoelectron Spectroscopy as described in detail in the following examples. It can be calculated from the XPS spectrum.
  • the functional film (I) of the present disclosure exhibits good hydrophilicity and ultraviolet absorption by setting the content of oxygen atoms per 1 mol of titanium atoms to 1.9 mol or less.
  • the content of oxygen atoms per 1 mol of titanium atoms exceeds 1.9 mol, even a metal film containing amorphous titanium oxide has high hydrophilicity as in the functional film (I) of the present disclosure. Is difficult to express.
  • the functional membrane (I) of the present disclosure is formed by irradiating a functional membrane precursor layer composed of a composition for forming a functional membrane (I) containing an anionic titanium complex with ultraviolet rays. Is preferable.
  • a functional membrane precursor layer composed of a composition for forming a functional membrane (I) containing an anionic titanium complex with ultraviolet rays. Is preferable.
  • oxygen is easily removed by the reaction, and the content of oxygen atoms per 1 mol of titanium atoms in the functional membrane (I) is generally high. It is smaller than a typical titanium dioxide film.
  • the titanium atom in the functional film (I) has a bond (dangling bond) formed by removing oxygen and occupied by electrons (unpaired electrons) that are not involved in the bond.
  • the functional film (I) is easily bonded to water due to the dangling bond contained in the titanium atom, and exhibits higher hydrophilicity than a general titanium dioxide film.
  • the functional film (I) is exposed to ultraviolet light having a wavelength of 254 nm, an intensity of 4 mW / cm 2 , and an irradiation time of 10 minutes, and then measured at 25 ° C. with a pure water contact angle of 10 ° or less. It is preferably a functional membrane. The method for measuring the pure water contact angle on the surface of the functional membrane will be described later.
  • composition for forming a functional film is hereinafter referred to as the composition for forming the functional film (I).
  • the composition for forming the functional film (I) contains a solvent containing an alcohol and an anionic titanium complex, and may contain other components if desired.
  • the anionic titanium complex is preferably a complex having oxalic acid or ethylenediaminetetraacetic acid as a ligand from the viewpoint of better photodegradability when irradiated with ultraviolet rays.
  • composition for forming the functional film (I) is obtained by mixing a solvent containing alcohol, at least one selected from the group consisting of an oxalic acid compound, an amine compound and an aminocarboxylic acid, and a titanium compound to obtain a mixture. It is obtained by a method for producing a composition for forming a functional film, which comprises a step and a step of adding water or hydrogen peroxide to the obtained mixture and refluxing the mixture.
  • the mixture used in the method for producing the composition for forming the functional film (I) is, for example, a solvent containing alcohol, an oxalic acid compound such as oxalic acid or oxalic acid dihydrate, and titanium tetraisopropoxide or the like. Titanium compounds can be obtained by mixing.
  • the solvent include alcohols having 1 to 5 carbon atoms such as methanol, ethanol and propanol, water, ether and the like, and the obtained functional film (I) forming composition has better coatability on the substrate. Ethanol is preferable from the viewpoint of the presence.
  • a oxalic acid compound such as oxalic acid dihydrate is added to a solvent containing an alcohol such as ethanol, and butylamine is optionally added.
  • An amine compound such as the above is further added, and the mixture is refluxed for about 0.5 to 2 hours and cooled to room temperature (25 ° C .: the same applies hereinafter).
  • a titanium compound such as titanium tetraisopropoxide is added, and the mixture is further refluxed for 2 to 4 hours and cooled to room temperature to obtain a mixture.
  • a composition for forming a functional film (I) containing a complex can be obtained.
  • the obtained functional film (I) forming composition contains a solvent and a titanium complex having oxalic acid or ethylenediaminetetraacetic acid as a ligand. It is presumed that the titanium complex having oxalic acid as a ligand exhibits the following structure.
  • ethylenediaminetetraacetic acid is used in place of the oxalic acid compound contained in the composition for forming the functional membrane (I) in the step of obtaining the mixture. It may be used.
  • the functional film (I) forming composition containing the above-mentioned alcohol-containing solvent and anionic titanium complex is applied to a base material to provide the functional film (I).
  • the step of forming the composition layer for formation and the functional film-forming composition layer formed on the substrate are irradiated with ultraviolet rays to remove organic substances from the functional film-forming composition and have functionality. Includes the step of obtaining a film.
  • the composition layer for forming the functional film (I) formed on the surface of the base material by applying the composition for forming the functional film (I) to an arbitrary base material is hereinafter referred to as the composition layer (I). Sometimes.
  • composition layer (I) formed on the base material By irradiating the composition layer (I) formed on the base material with ultraviolet rays, organic substances and the like in the composition layer (I) are removed, and a functional film (I) is formed on the surface of the base material. , A functional film (I) laminate can be obtained.
  • the composition for forming the functional film (I) can be applied to the base material by a known method, for example, a coating method or a dipping method. From the viewpoint that a uniform composition layer (I) can be easily formed, it is preferable to apply the coating method.
  • a known coating method such as spray coating or spin coating can be applied.
  • the composition layer (I) may be dried for the purpose of reducing the amount of the solvent contained in the composition layer (I) prior to the irradiation with ultraviolet rays. Drying can be performed by a known method. Examples of the drying method include a method of drying in a drying zone of 50 ° C. to 80 ° C. for 5 to 10 minutes, a method of blowing warm air, a method of naturally drying at room temperature, and the like, and the composition layer (I). From the viewpoint of uniformity, the method of drying in the drying zone is preferable.
  • the organic substances contained in the composition layer (I) are removed, and as a result, a functional film containing titanium derived from the titanium complex and oxygen is formed.
  • the irradiation intensity of ultraviolet rays can be appropriately selected according to the purpose.
  • the ultraviolet irradiation conditions effective for removing organic substances can be 1 mW / cm 2 (1 mJ / cm 2 ) or more with ultraviolet rays having a wavelength of 380 nm or less.
  • ultraviolet rays ultraviolet rays having a wavelength of 150 nm to 380 nm are preferable.
  • the irradiation intensity may be a 1 mW / cm 2 or more, preferably 3 mW / cm 2 or more, 4 mW / cm 2 or more is more preferable. There is no particular limitation on the upper limit of the irradiation intensity. Considering the irradiation intensity and the effect of removing organic substances, it can be set to 10 mW / cm 2 or less.
  • the ultraviolet irradiation for example, in the examples shown below, ultraviolet rays having a wavelength of 254 nm (intensity 4 mW / cm 2 : 4 mJ / cm 2 ) are irradiated for 2 hours to 16 hours, and good results are obtained. As described above, it is one of the advantages of the method for producing a functional film of the present disclosure that a functional film can be formed by irradiation with low-energy ultraviolet rays.
  • the temperature of the base material is set to 30 ° C. to 40 ° C. from the viewpoint of improving the film forming efficiency of the functional film.
  • a resin composition containing a cross-linking agent is cured by ultraviolet irradiation
  • ultraviolet irradiation is used.
  • an atmosphere in which oxygen is present for example, an atmosphere. UV irradiation inside is possible.
  • the ultraviolet irradiation is performed in a clean space such as a clean bench.
  • a clean space such as a clean bench.
  • a laminate having the composition layer (I) is placed on a base material in a clean bench equipped with a germicidal lamp, and the germicidal lamp is used. It may be irradiated with ultraviolet rays.
  • the humidity in the clean bench is preferably in the range of 40% RH to 60% RH in consideration of antistatic properties and the like.
  • composition for forming functional film (I) and physical properties of functional film (I) has an ultraviolet absorbing ability due to the titanium of the anionic titanium complex having oxalic acid as a ligand, which exists dissolved in a solvent.
  • the functional film (I) of the present disclosure has an ultraviolet transmittance of 10% or less at a wavelength of 350 nm or less, a near-ultraviolet transmittance of more than 350 nm and 400 nm or less of less than 80%, and a wavelength of more than 400 nm and 750 nm.
  • the following visible light transmittance is preferably 80% or more.
  • the light transmittance of each wavelength of the functional film (I) is 200 nm-in the double beam mode of the device using a spectrophotometer (Hitachi U-2800: trade name) manufactured by Hitachi, Ltd. with reference to quartz glass. It is measured by measuring the wavelength range of 1100 nm.
  • the functional film (I) has high visible light transmittance, is visually transparent, and has good ultraviolet blocking property. Therefore, for example, a resin material and a resin molded body that are easily deteriorated by ultraviolet rays are exposed to ultraviolet rays. It is useful as an ultraviolet protective film for resins such as resin molded bodies because it can be protected from UV rays and does not easily affect the appearance and hue.
  • the functional film (I) exhibits good hydrophilicity when the composition layer (I) containing titanium oxide, which is a raw material, becomes an amorphous titania film by irradiation with ultraviolet rays.
  • the composition for forming a functional film (I) containing an anionic titanium complex having oxalic acid as a ligand contains an oxalate ligand, a peroxo ligand, and a butylammonium salt of a Ti (IV) complex and functions.
  • composition layer (I) composed of the composition for forming the sex film (I) with ultraviolet rays
  • an amorphous titania film is formed, and the hydrophilicity equal to or higher than the hydrophilicity shown by the crystalline TiO 2 is obtained.
  • the anionic titanium complex containing oxalic acid as a ligand contained in the composition layer (I) is efficiently decomposed, and the organic component which is the ligand of the complex is removed.
  • oxygen atoms remaining in the titanium complex from which the organic components have been removed deprive the water contained in the air of oxygen atoms to become oxygen (O 2 ), which is removed from the composition layer (I).
  • the composition layer (I) has a lower oxygen content per titanium atom than general titania, that is, titanium dioxide.
  • titanium dioxide has 2 oxygen atoms per mol of titanium atoms.
  • the content of oxygen atoms per 1 mol of titanium atoms is in the range of 0.5 mol to 1.9 mol, whereas it is mol. Therefore, the titanium atom in the composition layer (I) has a bond (dangling bond) formed by removing oxygen and occupied by electrons (unpaired electrons) that are not involved in the bond.
  • the present inventors believe that the ring bond makes it easier to bond with water and exhibits higher hydrophilicity than a general titania film.
  • the functional film (I) obtained by irradiating the composition layer (I) with ultraviolet rays has an ultraviolet light having a wavelength of 254 nm, an intensity of 4 mW / cm 2 , and an irradiation time of 10 minutes.
  • the pure water contact angle of the surface measured at 25 ° C. after irradiation with ultraviolet rays under the conditions is preferably 10 ° or less, and more preferably 5 ° or less.
  • the pure water contact angle is measured at 25 ° C. using a contact angle meter in accordance with the method described in JIS R3257 (1999).
  • the arithmetic mean value of the values obtained by measuring 5 times is adopted as the pure water contact angle.
  • the second aspect of the functional film of the present disclosure is a functional film containing amorphous silicon oxide, in which the content of oxygen atoms per 1 mol of silicon atoms contained in the functional film is 1.0 mol or more. It is in the range of less than 2.0 mol.
  • the content of oxygen atoms per 1 mol of silicon atoms is preferably in the range of 1.0 mol to 1.95 mol, more preferably in the range of 1.2 mol to 1.9 mol.
  • the functional film (II) of the present disclosure is useful as a protective film for the base material.
  • the substrate to which the functional film (II) can be applied as the protective film is not particularly limited as long as it is a solid substrate.
  • the functional film (II) of the present disclosure is applied to any of a glass base material, a ceramic base material, a metal base material, a resin base material, a fiber reinforced resin base material, and a composite material base material of each of the above materials. it can.
  • the functional film (II) can be formed by a coating method, it can also be applied as a protective film for a base material that is not on a flat plate, such as a resin molded product. Among them, the functional film (II) has good adhesion to a silicon-containing base material such as glass due to the amorphous silicon contained in the functional film (II).
  • the functional film (II) can be a lithium solid electrolyte membrane.
  • the lithium compound include lithium hexafluorophosphate (LiPF 6 ), lithium tetrachloride (LiCl 4 ), lithium iodide (LiI) and the like.
  • LiPF 6 used as a lithium compound has poor heat resistance, and it is difficult to include it in a film that requires heating at 100 ° C. or higher for film formation.
  • the functional film (II) of the present disclosure can be formed by irradiating with ultraviolet rays at room temperature, LiPF 6 can be stably contained and a high-purity lithium solid can be contained.
  • the room temperature refers to an environmental temperature in which temperature control such as heating or cooling is not performed.
  • the functional film (II) can be formed by, for example, irradiating with ultraviolet rays under a temperature condition in the range of 10 ° C. to 40 ° C.
  • Functional film (II) is, the content of LiPF 6 in a functional film (II) in the case of containing LiPF 6 can be appropriately selected depending on the purpose.
  • composition for forming a functional film is hereinafter referred to as the composition for forming the functional film (II).
  • the composition for forming the functional film (II) contains a solvent containing an alcohol and an anionic silicon complex, and may contain other components if desired.
  • the anionic silicon complex is preferably a complex having oxalic acid as a ligand from the viewpoint of better photodegradability of the organic component when irradiated with ultraviolet rays.
  • composition for forming a functional membrane (II) is prepared by mixing a solvent containing an alcohol, a oxalic acid compound, and a silicon compound to obtain a mixture, and adding water or hydrogen peroxide to the obtained mixture.
  • the step of refluxing is included.
  • a oxalic acid compound such as oxalic acid or oxalic acid dihydrate and a silicon compound such as tetraethyl orthosilicate (TEOS) are added to a solvent containing alcohol.
  • TEOS tetraethyl orthosilicate
  • a silicon compound such as tetraethyl orthosilicate (TEOS) and oxalic acid are added to a solvent containing an alcohol such as ethanol, and 0. Reflux for about 5 to 2 hours and cool to room temperature (25 ° C .: the same applies hereinafter) to obtain a mixture, and then add 1 mass of pure water to 1 part by mass of silicon oxide contained in the obtained mixture.
  • TEOS tetraethyl orthosilicate
  • oxalic acid oxalic acid
  • the obtained functional film (II) forming composition contains a solvent containing an alcohol and a silicon complex having oxalic acid as a ligand.
  • a thyrium compound such as LiPF 6 described above or an additive such as a conductive material described later is added to the composition for forming a functional membrane (II), for example, TEOS and oxalic acid are added. After refluxing the containing liquid, it may be added and stirring may be continued.
  • a composition for forming a functional film (II) containing the above-mentioned solvent containing alcohol and an anionic silicon complex is applied to a substrate to provide functionality.
  • the step of forming the film-forming composition layer and the functional film-forming composition layer formed on the substrate are irradiated with ultraviolet rays to remove organic substances from the functional film-forming composition and function. Includes the step of obtaining a sex film.
  • composition for forming the functional film (II) may be applied to an arbitrary base material, and the surface of the base material may be referred to as a composition layer for forming the functional film (II) (hereinafter referred to as a composition layer (II)).
  • a composition layer for forming the functional film (II) hereinafter referred to as a composition layer (II)
  • By irradiating the formed composition layer for forming the functional film (II) with ultraviolet rays, organic substances and the like in the composition layer (II) are removed, and the functional film is formed on the surface of the substrate.
  • (II) is formed, and a functional film (II) laminate having a base material and a functional film (II) formed on the base material can be obtained.
  • the composition for forming the functional film (II) is used instead of the composition for forming the functional film (I) used in the above-mentioned functional film (I). It can be carried out in the same manner except that it is used, and the preferred embodiment is also the same.
  • composition for forming a functional film The functional film (I) forming composition and the functional film (II) forming composition of the present disclosure have an effect in addition to a solvent containing an alcohol and an anionic titanium complex or an anionic silicon complex, respectively.
  • Various other components may be further included depending on the purpose, as long as they are not impaired.
  • both or at least one of the composition for forming a functional film (I) and the composition for forming a functional film (II) may be collectively referred to as a "composition for forming a functional film”.
  • examples of other components include conductive materials, non-conductive inorganic or organic particles, surfactants, ionic conductors, and the like, in addition to the above-mentioned lithium compounds.
  • the composition for forming a functional film contains a conductive material, it is possible to impart electrical conductivity to the obtained functional film (I) or functionality (II).
  • the conductive material known materials can be used without limitation. Examples of the conductive material include one or more conductive materials selected from the group consisting of carbon nanotubes, carbon black, and conductive metal particles.
  • the composition for forming a functional film contains a conductive material, the obtained functional film (I) or functional film (II) has conductivity.
  • the measure of conductivity the electric resistance value measured by the four probe method is preferably at 10 6 [Omega] cm or less.
  • the electric resistance value of the functional membrane (I) or the functional membrane (II) can be measured by the following method.
  • the measurement is performed using a digital multimeter: Iwatsu Electric Co., Ltd .: formerly manufactured by Iwatsu Electric Co., Ltd., VOAC7512, KEITHLEY, and Model2010 Multimeter (all trade names).
  • the electricity of the functional membrane (I) or the functional membrane (II) is obtained by measuring 5 points by the four-probe method and calculating the average value at 3 points excluding the maximum and minimum values of the measured values. Let it be the resistance value.
  • the four-probe method the volume resistivity of the conductive material can be measured.
  • the influence of contact resistance can be reduced as in the two-terminal method.
  • the electric resistance value by the two-terminal method is affected by the contact resistance, and the value is larger than the electric resistance value by the four-probe method.
  • the two long electrical resistance by terminal method is less 10 6 Omega, since the electrical resistance lower value by the four probe method, if it is an electric resistance value 10 6 [Omega] cm or less according to four-probe method Can be estimated.
  • the two-probe resistance method applied to the measurement of the electric resistance value in the examples described later is substantially synonymous with the two-terminal method except that the measurement terminals are different, and the measurement results are almost the same.
  • the functional film (I) and the functional film (II) of the present disclosure can be produced only by irradiating ultraviolet rays at room temperature without heating, and therefore, they are heated in addition to conductive metal particles and the like. Therefore, carbon nanotubes, carbon black, and the like, which are conductive materials that are easily deteriorated, can also be preferably used.
  • the content of the conductive material is 0.1 part by mass to 10 parts by mass with respect to 1 part by mass of titanium atom or silicon atom contained in the composition for forming a functional film. It is preferably parts by mass, and more preferably 1 part to 5 parts by mass.
  • the composition for forming a functional film can contain a surfactant.
  • the coating surface property can be improved at the time of forming the composition layer (I) or the composition layer (II).
  • the composition for forming a functional film contains a solid component such as the conductive material described above, the dispersibility of the solid component is further improved by containing the surfactant.
  • the functional film laminate of the present disclosure (hereinafter, may be simply referred to as a laminate) is a functional film laminate having a base material and at least one of the above-mentioned functional films on the base material. Is. That is, the laminate of the present disclosure has a base material and at least one of the functional film (I) and the functional film (II) on the base material. Since the functional film (I) or the functional film (II) of the present disclosure does not require heating and can be produced only by irradiation with ultraviolet rays at room temperature, the laminate in the functional film laminate may be a metal substrate or the like. In addition, a laminated body can be formed by using a base material having low heat resistance.
  • the base material of the laminate is not particularly limited, and either an inorganic base material or an organic base material can be used.
  • the base material is a base material selected from the group consisting of a fluorine-doped tin oxide (FTO) substrate, an indium-doped tin oxide (ITO) base material, a resin base material, a blue plate glass base material, a metal base material, and a ceramic base material.
  • FTO fluorine-doped tin oxide
  • ITO indium-doped tin oxide
  • resin substrate a blue plate glass base material
  • a metal base material and a ceramic base material.
  • a fluorine-doped tin oxide (FTO) substrate, an indium-doped tin oxide (ITO) substrate, a resin substrate, etc. which are known as a substrate having low heat resistance and are difficult to form a metal film, were used. In some cases, the effect of this disclosure can be said to be significant.
  • the functional film (I) of the present disclosure is useful as a protective film (ultraviolet protective film) from ultraviolet rays such as a resin material because it has good visible light transmittance, excellent transparency, and high ultraviolet shielding property. Further, since the surface has good hydrophilicity, it can be applied to various applications requiring an antifogging function. Among them, since it has good light transmission, resin protection, and anti-fog property, it is useful as a protective layer for vehicle lights, lighting fixtures used outdoors, and its versatility.
  • the film thickness of the functional film (I) can be appropriately selected depending on the intended purpose.
  • the functional film (I) When the functional film (I) is applied to an ultraviolet protective film of a molded product made of a resin material, it can be, for example, in the range of 10 nm to 1 ⁇ m, preferably in the range of 100 nm to 1 ⁇ m.
  • the functional film (I) When the functional film (I) is applied to an ultraviolet protective film that requires transparency, it can be in the range of, for example, 10 nm to 1 ⁇ m, preferably in the range of 50 nm to 300 nm.
  • the functional film (I) When the functional film (I) is applied to an application for imparting an antifogging function to a vehicle light, a lighting fixture, or the like, it can be in the range of, for example, 10 nm to 1 ⁇ m, preferably in the range of 50 nm to 300 nm. ..
  • the film thickness of the functional film can be measured by a known method. Measurement methods include non-contact optical measurement methods such as ellipsometers and reflection spectroscopic film thickness meters, stylus step meters, three-dimensional shape measuring instruments, interatomic force microscopes (AMFs), and field emission scanning electron microscopes (Field Emissions).
  • FE-SEM Scanning Electron Microscope
  • a method of observing and measuring a cross section by FE-SEM and a method of measuring using a stylus type step meter DEKTAK-3 (Veeco) are adopted according to the characteristics of the film.
  • the functional film (II) of the present disclosure is useful as a protective film for various substrates because it has good visible light transmittance, excellent transparency, and good adhesion to various substrates such as glass substrates. Is. Further, it can be applied to a transparent conductive film containing a conductive material such as carbon nanotube, a lithium solid electrolyte membrane containing a lithium compound such as LiPF 6, and the like.
  • the film thickness of the functional film (II) can be appropriately selected depending on the intended purpose.
  • the functional film (II) is applied to a protective film of various substrates such as those described in glass, it can be in the range of 10 nm to 1 ⁇ m, preferably in the range of 50 nm to 300 nm.
  • the functional film (II) When the functional film (II) is applied to a transparent isoelectric film, it can be in the range of 10 nm to 1 ⁇ m, preferably in the range of 50 nm to 300 nm.
  • the functional membrane (II) When the functional membrane (II) is applied to a lithium solid electrolyte membrane application, it can be in the range of, for example, 10 nm to 1 ⁇ m, preferably in the range of 50 nm to 800 nm.
  • Example 1 (Production of composition for forming functional film (I)) 1.
  • 1. Synthesis of butylammonium hydrogen oxalate hemihydrate 19.6 g (156 mmol (mmol)) of oxalic acid and 11.4 g (156 mmol) of butylamine were added to 100 mL of ethanol and refluxed for 1 hour. The solution was cooled to room temperature, and the resulting white powder was filtered under reduced pressure to isolate it, and then air-dried overnight (12 hours) to obtain butylammonium hydrogen oxalate hemihydrate.
  • composition layer for forming functional film (I) and formation of functional film (I) by irradiation with ultraviolet rays 100 ⁇ L (microliter) of the composition for forming the functional film (I) obtained above was dropped onto a quartz glass substrate (20 ⁇ 20 mm 2) as a base material with a micropipette. Then, by a two-step spin coating method (first step: 500 rpm (rotation / minute, the same applies hereinafter) for 5 seconds, second step: 2000 rpm for 30 seconds), the composition layer for forming the functional film (I) is made of quartz glass. Formed on a substrate. The formed functional film (I) forming composition layer was dried at 70 ° C. for 10 minutes to form a film.
  • a dried film made of a composition for forming a functional film (I) and uncured before irradiation with ultraviolet rays is referred to as a functional film precursor layer.
  • the functional film precursor layer composed of the obtained functional film (I) forming composition was subjected to ultraviolet light (intensity: 4 mW / cm) at 254 nm in a clean bench having a humidity of 40% RH to 60% RH. 2 ) was irradiated to obtain a functional membrane (I).
  • the irradiation time was 2 hours, 4 hours, 8 hours and 16 hours.
  • the functional membranes (I) were designated as functional membranes I 2 , functional membranes I 4 , functional membranes I 8 and functional membranes I 16 , respectively, according to the ultraviolet irradiation time.
  • composition for forming functional film (I) and evaluation of each functional film (I) 1.
  • Ultraviolet Absorption of Functional Film (I) Forming Composition
  • the absorption spectrum of the obtained functional film (I) forming composition diluted 40-fold with ethanol was measured. The measurement was carried out using the spectrophotometer described above, using a quartz glass cell as a cell, and having an optical path length of 1 mm. The results are shown in FIG. FIG. 1 is a graph showing an absorption spectrum of the functional film (I) forming composition obtained in Example 1. As shown in FIG. 1, an absorption band characteristic of a central wavelength of 377 nm was observed in the wavelength range of 350 nm to 550 nm.
  • the composition for forming the functional film (I) has an ultraviolet absorbing ability and has a good visible light transmittance of a wavelength of 450 nm or more.
  • FIG. 2 shows a functional film in which a functional film I 2 , a functional film I 4 , a functional film I 8 or a functional film I 16 is formed on a quartz glass substrate (control example) and the quartz glass substrate, respectively. It is a graph which shows the absorption spectrum of a laminated body.
  • the absorption spectrum of the untapped cured functional film precursor layer formed on the quartz glass substrate is also shown.
  • the absorption spectrum of the quartz glass substrate as a control example is shown by a thick solid line.
  • the absorption spectrum of the uncured functional membrane precursor layer is shown by a fine solid line.
  • the absorption spectrum of the laminate having the functional film I 2 on the quartz glass substrate which is the functional film (I) laminate of the present disclosure is shown by a broken line, and the absorption spectrum of the laminate having the functional film I 4 is thickened.
  • the absorption spectrum of the laminated body having the functional film I 8 is shown by a broken line, and the absorption spectrum of the laminated body having the functional film I 16 is shown by a dashed line.
  • the graphs of the absorption spectra of the laminated body having the functional film I 2 and the laminated body having the functional film I 4 are substantially overlapped. Therefore, the absorption spectrum of the laminated body having the functional film I 2 is confirmed by the graph of the absorption spectrum of the laminated body having the functional film I 4 shown by the thick broken line.
  • each laminate having the functional film (I) of the present disclosure absorbs light in the ultraviolet region having a wavelength shorter than about 275 nm, and the light transmittance in the wavelength in the visible light region exceeds 80%.
  • the functional membrane (I) having short wavelength ultraviolet absorption can be obtained by irradiating the functional membrane precursor layer with ultraviolet rays. It turns out that it can be done.
  • composition layer for forming the functional film (I) and the XRD pattern of the functional film I 2 , the functional film I 4 , the functional film I 8 and the functional film I 16 The composition for forming the functional film (I).
  • the layer (the above-mentioned functional film precursor layer which is an uncured film after drying and before irradiation with ultraviolet rays), the functional film I 2 , the functional film I 4 , the functional film I 8 and the like.
  • the functional membrane I 16 was analyzed by X-ray division (XRD). The device is as shown below.
  • the obtained XRD pattern is shown in FIG. Data of a quartz glass substrate as a control example (described as "Quarts glass” in FIG. 3) is also shown. In FIG.
  • F 0 represents the XRD pattern of the functional film precursor layer composed of the composition layer for forming the functional film (I)
  • F 2 represents the XRD pattern of the functional film I 2
  • F 4 represents the function.
  • the XRD pattern of the sex membrane I 4 is represented
  • F 8 represents the XRD pattern of the functional membrane I 8
  • F 16 represents the XRD pattern of the functional membrane I 16 .
  • no obvious peak was observed other than the halo peak of the quartz glass substrate. Therefore, the composition layer for forming the functional film (I), the functional film I 2 , the functional film I 4 , It can be seen that both the functional film I 8 and the functional film I 16 are amorphous.
  • a functional film I ratio functional film I 4 of each element was calculated from the XPS spectrum of 4, was analyzed by X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy), were measured by the following methods XPS spectra.
  • the XPS spectrum was measured using a photoelectron spectrometer JPS-9030 (trade name: manufactured by JEOL Ltd.) and Mg K ⁇ (1253.6 eV) rays as an X-ray source.
  • the O / Ti ratio of the Ti—O bond having a binding energy of 528.4 eV was calculated to be about 1.53, and the content of oxygen atoms per 1 mol of titanium atoms was 1.53 mol.
  • FIG. 4 is a surface image and a cross-sectional image of the functional film (I) obtained in Example 1 observed by FE-SEM
  • FIG. 4A is a surface image and a cross-sectional image of the functional film I 2.
  • b) is a surface image and a cross-sectional image of the functional film I 4
  • (c) is a surface image and a cross-sectional image of the functional film I 8
  • (d) is a surface image and a cross-sectional image of the functional film I 16.
  • the film thicknesses measured from the cross-sectional images were functional film I 2 : 170 nm, functional film I 4 : 170 nm, functional film I 8 : 160 nm, and functional film I 16 : 160 nm, respectively.
  • the pencil hardness of the surface of the functional film is 6H for all of the functional film I 2 , the functional film I 4 , the functional film I 8 and the functional film I 16 :, which means that the surface is hard. all right.
  • the contact angle of the functional membrane precursor layer and the pure water immediately after irradiation with ultraviolet rays was similarly measured for the titanium dioxide film (Ti: O molar ratio of 1: 2). After leaving it in a dark place for 1 hour, it was irradiated with ultraviolet rays again under the same conditions, and then the pure water contact angle was measured again (in the table, "immediately after re-irradiation with ultraviolet rays" is described). The results are shown in Table 1 below.
  • Example 2 (Production of composition for forming functional membrane (II-CTN))
  • a functional film (II) containing carbon nanotubes was prepared and evaluated.
  • the functional membrane (II) containing carbon nanotubes is referred to as a functional membrane (II-CTN)
  • the composition for producing the functional membrane (II-CTN) is a composition for forming a functional membrane (II-CTN). It is called.
  • the electrical resistance of the membrane measured by the two-probe resistance method of the functional membrane (II-CTN) was 3.73 M ⁇ cm.
  • the electric resistance value by the two-probe resistance method was measured using a digital multimeter (Iwatsu Electric Co., Ltd .: former Iwatsu Electric Co., Ltd., VOAC7523H: trade name). Five points were measured at a distance of 1 cm between the two probes, and the average value of the three points excluding the minimum and maximum values was taken as the electrical resistance value.
  • the electric resistance of the film measured by a two-probe resistance method is that it is 3.73Emuomegacm, it is clear that at 10 6 [Omega] cm or less in electric resistance was measured by four-point probe method.
  • the wavelength range of 200 nm to 1100 nm was measured using quartz glass as a control example.
  • the transmittance in the ultraviolet light region of less than 450 nm is 80% or more
  • the transmittance in the visible light region of 450 nm or more is 90% or more
  • the functional film (II-CTN) is ultraviolet light and visible light. It can be seen that the transmittance of the light is excellent. From the above evaluation, it can be seen that the functional film (II-CTN) is a transparent electrically conductive film having excellent transparency of ultraviolet light and visible light.
  • Example 3 (Production of composition for forming functional film (II-Li))
  • a functional film (II) containing LiPF 6 was prepared and evaluated.
  • the functional film (II) containing LiPF 6 is referred to as a functional film (II-Li)
  • the composition for producing the functional film (II-Li) is a composition for forming the functional film (II-Li). Called a thing.
  • 1. Preparation of Composition for Forming Functional Membrane (II-Li) To 10.0 g of ethanol, 1.3 g of tetraethyl orthosilicate (TEOS) and 1.1 g of oxalic acid were added, refluxed for 1 hour, and Si.
  • TEOS tetraethyl orthosilicate
  • a mixed solution containing 0.5 mmol / g of 4+ was obtained. Then, 0.05 g of LiPF 6 powder was mixed with 2.2 g of the obtained mixed solution to obtain a composition for forming a functional film (II-Li) having a Li + ion concentration of 0.15 mmol / g. ..
  • a composition layer for forming a functional film (II-Li) and formation of a functional film (II-Li) by irradiation with ultraviolet rays First, an FTO glass substrate (manufactured by AGC) is etched with zinc and hydrochloric acid to mask areas other than the etched region, and 25 ⁇ L of the functional film (II-Li) forming composition obtained above is applied to FTO glass. Dropped onto the substrate. Then, a composition layer for forming a functional film (II-Li) was formed on the FTO substrate by a two-step spin coating method (first step: 500 rpm for 5 seconds, second step: 2000 rpm for 30 seconds).
  • the film made of the composition for forming the functional film (II-Li) is irradiated with ultraviolet rays at the same intensity as in Example 1 for 2 hours and 16 hours to obtain the functional film (II-Li) 2 and the functionality.
  • Membrane (II-Li) 16 was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

A functional film containing amorphous titanium oxide, wherein the content of oxygen atoms is in the 0.5-1.9 mol range per mol of titanium atoms contained in the functional film, a functional film containing amorphous silicon oxide, and the use thereof.

Description

機能性膜、機能性膜積層体、機能性膜形成用組成物、機能性膜形成用組成物の製造方法及び機能性膜積層体の製造方法A method for producing a functional film, a functional film laminate, a composition for forming a functional film, a method for producing a composition for forming a functional film, and a method for producing a functional film laminate.
 本開示は、機能性膜、機能性膜積層体、機能性膜形成用組成物、機能性膜形成用組成物の製造方法及び機能性膜積層体の製造方法に関する。 The present disclosure relates to a functional film, a functional film laminate, a composition for forming a functional film, a method for producing a composition for forming a functional film, and a method for producing a functional film laminate.
 基材に対して、表面に親水性を付与する、ガラス等の硬質基材表面を保護する、所望の波長の紫外線を遮蔽する、電気伝導性を付与する等の機能を与える機能性膜が種々検討されている。
 例えば、車両の窓、建造物の窓、鏡、建造物の外壁等に親水性を付与することで、基材表面にセルフクリーニング性、くもり防止等の効果を有する機能性膜とすることができる。
 また、機能性膜の一つとして、透明導電性膜が種々開発されている。導電性膜の形成には加熱処理が必要とされる場合が多く、加熱に適さない樹脂基板、加熱に適さないカーボンナノチューブ等の導電性材料、六フッ化リン酸リチウム(LiPF)等のリチウム固体電解質原料等は使用し難く、加熱処理を必要としない機能性膜の製造方法が求められている。
There are various functional films that impart functions such as imparting hydrophilicity to the surface of the substrate, protecting the surface of a hard substrate such as glass, shielding ultraviolet rays of a desired wavelength, and imparting electrical conductivity. It is being considered.
For example, by imparting hydrophilicity to the windows of vehicles, windows of buildings, mirrors, outer walls of buildings, etc., it is possible to obtain a functional film having effects such as self-cleaning property and anti-fog on the surface of the base material. ..
Further, various transparent conductive films have been developed as one of the functional films. Heat treatment is often required to form a conductive film, and a resin substrate that is not suitable for heating, a conductive material such as carbon nanotubes that is not suitable for heating, and lithium such as lithium hexafluorophosphate (LiPF 6). It is difficult to use a solid electrolyte raw material or the like, and there is a demand for a method for producing a functional membrane that does not require heat treatment.
 導電性膜に有用な金属膜及び金属酸化物膜の形成方法は、気相法と湿式法に大別され、いずれも金属原子を含む薄膜を形成しうる。気相法は、大がかりな設備を必要とすることから、低コストで、所望の面積の膜を必要とする汎用の金属膜及び金属酸化物膜の製造には適さないため、湿式法が注目される。
 なかでも、湿式法の一つである分子プレカーサー法が注目されている。
The methods for forming a metal film and a metal oxide film useful for a conductive film are roughly classified into a vapor phase method and a wet method, and any of them can form a thin film containing a metal atom. Since the vapor phase method requires large-scale equipment, it is not suitable for producing a general-purpose metal film and a metal oxide film that require a film having a desired area at low cost. Therefore, the wet method is attracting attention. To.
Among them, the molecular precursor method, which is one of the wet methods, is attracting attention.
 分子プレカーサー法によれば、塗布に好適な溶媒と、その溶媒に可溶な金属錯体とを含むプレカーサー溶液を用いて、塗布法により基材上に金属を含有する膜を形成することができる。このため、メッキ法の如き他の湿式法によって基材上に金属膜を析出させる方法に比較して、金属膜の組成、基材等の選択の自由度が高い。
 プレカーサー法を用いた金属膜の形成方法として、特定のカチオン性金属錯体を含む金属膜形成用組成物を付与し、加熱して金属膜を形成する方法が開示され、加熱に代えて、エネルギー付与に紫外線を用いることが記載されている(国際公開第2017/135330号参照)。
 親水性膜として、親水性の防曇塗膜形成に有用な、金属酸化物とポリオキシアルキレングリコール等の親水性化合物とを含み、表面の元素分析において、C元素と、金属酸化物由来の金属元素に対する元素濃度比が10以上の塗膜が提案されている。光触媒反応に起因する親水性を付与する金属酸化物として、アナターゼ型、ルチル型、及びブルッカイト型の酸化チタンが好ましい例として挙げられている(特開2018-172566号公報参照)。
According to the molecular precursor method, a metal-containing film can be formed on a substrate by the coating method using a precursor solution containing a solvent suitable for coating and a metal complex soluble in the solvent. Therefore, the degree of freedom in selecting the composition of the metal film, the base material, and the like is high as compared with the method of depositing the metal film on the base material by another wet method such as the plating method.
As a method for forming a metal film using the precursor method, a method of applying a metal film forming composition containing a specific cationic metal complex and heating to form a metal film is disclosed, and energy is applied instead of heating. It is described that ultraviolet rays are used in (see International Publication No. 2017/135330).
As a hydrophilic film, it contains a metal oxide and a hydrophilic compound such as polyoxyalkylene glycol, which are useful for forming a hydrophilic antifogging coating film, and in elemental analysis of the surface, element C and a metal derived from the metal oxide. A coating film having an element concentration ratio of 10 or more to an element has been proposed. As the metal oxide that imparts hydrophilicity due to the photocatalytic reaction, anatase-type, rutile-type, and brookite-type titanium oxides are cited as preferable examples (see JP-A-2018-172566).
 国際公開第2017/135330号に記載の技術は、緻密な金属膜及び金属酸化物膜の形成に有用である。しかし、国際公開第2017/135330号に記載の方法によっても、金属錯体を含む金属膜形成用組成物から金属膜を形成するには、ある程度の加熱が必要である。また、紫外線による硬化膜の形成についての言及はあるが、その詳細、及び得られた硬化膜の物性の検討まではなされていないのが現状である。 The technique described in International Publication No. 2017/135330 is useful for forming dense metal films and metal oxide films. However, even by the method described in International Publication No. 2017/135330, some heating is required to form a metal film from the composition for forming a metal film containing a metal complex. In addition, although there is a reference to the formation of a cured film by ultraviolet rays, the details and the physical characteristics of the obtained cured film have not been examined at present.
 特開2018-172566号公報に記載の塗膜及びコーティング組成物は、硬質基材に防曇膜を形成するのに有用ではある。しかし、膜形成を親水性化合物及び好ましくは親水性化合物と併用されるイソシアネート化合物に依存することから、塗膜の強度、及び耐久性には、なお改良の余地がある。 The coating film and coating composition described in JP-A-2018-172566 are useful for forming an anti-fog film on a hard substrate. However, since the film formation depends on the hydrophilic compound and preferably the isocyanate compound used in combination with the hydrophilic compound, there is still room for improvement in the strength and durability of the coating film.
 本発明のある実施形態の課題は、親水性、表面保護性、紫外線吸収性などの機能を有する機能性膜、基材上に機能性膜を備える機能性膜積層体及び機能性膜積層体の製造方法を提供することである。
 本発明の別の実施形態の課題は、機能性膜の形成に有用な錯体化合物を含む機能性膜形成用組成物及びその製造方法を提供することである。
An object of an embodiment of the present invention is a functional film having functions such as hydrophilicity, surface protection, and ultraviolet absorption, a functional film laminate having a functional film on a substrate, and a functional film laminate. It is to provide a manufacturing method.
An object of another embodiment of the present invention is to provide a composition for forming a functional film containing a complex compound useful for forming a functional film, and a method for producing the same.
 本開示は、以下の実施形態を含む。
<1> 非晶質酸化チタンを含む機能性膜であって、前記機能性膜に含まれるチタン原子1モルに対する酸素原子の含有量が、0.5モル~1.9モルの範囲である機能性膜。
<2> 波長254nmの紫外光、強度:4mW/cm、照射時間:10分の条件で紫外線照射した後、25℃において測定した表面の純水接触角が10°以下である<1>に記載の機能性膜。
<3> 波長350nm以下の紫外線透過率が10%以下であり、波長350nmを超え400nm以下の近紫外線透過率が80%未満であり、且つ、波長400nmを超え750nm以下の可視光透過率が80%以上である<1>又は<2>に記載の機能性膜。
The disclosure includes the following embodiments:
<1> A functional film containing amorphous titanium oxide, wherein the content of oxygen atoms per 1 mol of titanium atoms contained in the functional film is in the range of 0.5 mol to 1.9 mol. Sexual membrane.
<2> After irradiating with ultraviolet light under the conditions of ultraviolet light with a wavelength of 254 nm, intensity: 4 mW / cm 2 , and irradiation time: 10 minutes, the pure water contact angle of the surface measured at 25 ° C is 10 ° or less <1>. The functional membrane described.
<3> The ultraviolet transmittance of a wavelength of 350 nm or less is 10% or less, the near-ultraviolet transmittance of a wavelength of more than 350 nm and 400 nm or less is less than 80%, and the visible light transmittance of a wavelength of more than 400 nm and 750 nm or less is 80. The functional membrane according to <1> or <2>, which is% or more.
<4> 非晶質酸化ケイ素を含む機能性膜であって、前記機能性膜に含まれるケイ素原子1モルに対する酸素原子の含有量が、1.0モル以上2.0モル未満の範囲である機能性膜。
<5> 基材の保護膜である<4>に記載の機能性膜。
<4> A functional film containing amorphous silicon oxide, wherein the content of oxygen atoms per 1 mol of silicon atoms contained in the functional film is in the range of 1.0 mol or more and less than 2.0 mol. Functional membrane.
<5> The functional film according to <4>, which is a protective film for a base material.
<6> さらに、カーボンナノチューブ、カーボンブラック、及び導電性金属粒子からなる群より選択される導電性材料を、機能性膜に含まれるチタン又はケイ素1質量部に対し、0.1質量部~10質量部含み、四探針法により測定した電気伝導性が、10Ωcm以下である<1>~<5>のいずれか1つに記載の機能性膜。
<7> さらに、リチウム化合物を含み、リチウム固体電解質膜である<4>に記載の機能性膜。
<6> Further, 0.1 parts by mass to 10 parts by mass of a conductive material selected from the group consisting of carbon nanotubes, carbon black, and conductive metal particles with respect to 1 part by mass of titanium or silicon contained in the functional film. wherein parts by weight, the four-probe electrical conductivity as measured by the needle method is 10 6 [Omega] cm or less <1> to <5> functional film according to any one of.
<7> The functional membrane according to <4>, which further contains a lithium compound and is a lithium solid electrolyte membrane.
<8> 基材と、前記基材上に、<1>~<7>のいずれか1つに記載の機能性膜と、を有する機能性膜積層体。
<9> 前記基材がフッ素ドープ酸化スズ基材、インジウムドープ酸化スズ基材、樹脂基材、青板ガラス基材、金属基材、及びセラミックス基材からなる群より選択される基材である<8>に記載の機能性膜積層体。
<8> A functional film laminate having a base material and the functional film according to any one of <1> to <7> on the base material.
<9> The base material is a base material selected from the group consisting of a fluorine-doped tin oxide base material, an indium-doped tin oxide base material, a resin base material, a blue plate glass base material, a metal base material, and a ceramic base material. 8> The functional film laminate according to 8.
<10> アルコールを含む溶媒と、アニオン性チタン錯体又はアニオン性ケイ素錯体と、を含む機能性膜形成用組成物。
<11> 前記アニオン性チタン錯体又はアニオン性ケイ素錯体は、シュウ酸又はエチレンジアミン四酢酸を配位子とする錯体である<10>に記載の機能性膜形成用組成物。
<10> A composition for forming a functional film, which comprises a solvent containing an alcohol and an anionic titanium complex or an anionic silicon complex.
<11> The composition for forming a functional film according to <10>, wherein the anionic titanium complex or the anionic silicon complex is a complex having oxalic acid or ethylenediaminetetraacetic acid as a ligand.
<12> アルコールを含む溶媒と、シュウ酸化合物、アミン化合物及びアミノカルボン酸からなる群より選択される少なくとも1種と、チタン化合物又は酸化ケイ素化合物とを混合して混合物を得る工程、及び、得られた混合物に、水又は過酸化水素を加えて、還流する工程を含む機能性膜形成用組成物の製造方法。
<13> <10>又は<11>に記載の機能性膜形成用組成物を基材に付与して、機能性膜形成用組成物層を形成する工程、及び、基材上に形成された前記機能性膜形成用組成物層に紫外線を照射して、機能性膜形成用組成物から有機物を除去し、機能性膜を得る工程、を含む機能性膜積層体の製造方法。
<12> A step of mixing a solvent containing an alcohol, at least one selected from the group consisting of an oxalic acid compound, an amine compound and an aminocarboxylic acid, and a titanium compound or a silicon oxide compound to obtain a mixture. A method for producing a composition for forming a functional film, which comprises a step of adding water or hydrogen peroxide to the mixture and refluxing the mixture.
<13> The step of applying the functional film-forming composition according to <10> or <11> to a base material to form a functional film-forming composition layer, and forming on the base material. A method for producing a functional film laminate, which comprises a step of irradiating the functional film-forming composition layer with ultraviolet rays to remove organic substances from the functional film-forming composition to obtain a functional film.
 本発明のある実施形態によれば、親水性、表面保護性、紫外線吸収性などの機能を有する機能性膜、基材上に機能性膜を備える機能性膜積層体及び機能性膜積層体の製造方法を提供することができる。
 本発明の別の実施形態によれば、機能性膜の形成に有用な錯体化合物を含む機能性膜形成用組成物及びその製造方法を提供することができる。
According to an embodiment of the present invention, a functional film having functions such as hydrophilicity, surface protection, and ultraviolet absorption, a functional film laminate having a functional film on a substrate, and a functional film laminate. A manufacturing method can be provided.
According to another embodiment of the present invention, it is possible to provide a composition for forming a functional film containing a complex compound useful for forming a functional film, and a method for producing the same.
実施例1で得た機能性膜(I)形成用組成物の吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of the composition for forming a functional film (I) obtained in Example 1. FIG. 石英ガラス基板(対照例)、実施例1で得た、石英ガラス基板上に、それぞれ機能性膜I、機能性膜I、機能性膜I、又は機能性膜I16が形成された積層体の吸収スペクトルを示すグラフである。 A functional film I 2 , a functional film I 4 , a functional film I 8 or a functional film I 16 was formed on the quartz glass substrate (control example) and the quartz glass substrate obtained in Example 1, respectively. It is a graph which shows the absorption spectrum of a laminated body. 機能性膜(I)形成用組成物層、機能性膜I、機能性膜I、機能性膜I、及び機能性膜I16のX線回折法(X-ray diffraction:XRD)にて得られたXRDパターンを示すグラフである。For the composition layer for forming the functional film (I), the functional film I 2 , the functional film I 4 , the functional film I 8 , and the functional film I 16 by X-ray diffraction (XRD). It is a graph which shows the XRD pattern obtained by this. 実施例1で得た機能性膜(I)のFE-SEMで観察した表面像及び断面像であり、(a)は機能性膜Iの表面像及び断面像であり、(b)は機能性膜Iの表面像及び断面像であり、(c)は機能性膜Iの表面像及び断面像であり、(d)は機能性膜I16の表面像及び断面像である。The surface image and the cross-sectional image of the functional film (I) obtained in Example 1 observed by FE-SEM, (a) is the surface image and the cross-sectional image of the functional film I 2, and (b) is the function. It is a surface image and a cross-sectional image of the sex film I 4 , (c) is a surface image and a cross-sectional image of the functional film I 8 , and (d) is a surface image and a cross-sectional image of the functional film I 16.
 以下、本開示の機能性膜、機能性膜積層体、機能性膜形成用組成物、機能性膜形成用組成物の製造方法及び機能性膜積層体の製造方法について、具体的な実施形態を挙げて詳細に説明する。本開示は、以下の実施形態に限定されず、その主旨に反しない限りにおいて、種々の変型例により実施することができる。 Hereinafter, specific embodiments of the functional film, the functional film laminate, the functional film-forming composition, the method for producing the functional film-forming composition, and the method for producing the functional film laminate of the present disclosure will be described. It will be described in detail. The present disclosure is not limited to the following embodiments, and can be carried out by various modified examples as long as it does not contradict the gist thereof.
 本開示において「~」を用いて記載した数値範囲は、「~」の前後の数値を下限値及び上限値として含む数値範囲を表す。
 本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本開示中に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
The numerical range described by using "-" in the present disclosure represents a numerical range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the present disclosure, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes.
In the present disclosure, the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
Further, in the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
<機能性膜>
〔1.機能性膜:第1の態様〕
 本開示の機能性膜の第1の態様は、非晶質酸化チタンを含む機能性膜であって、前記機能性膜に含まれるチタン原子1モルに対する酸素原子の含有量が、0.5モル~1.9モルの範囲である。
 以下、非晶質酸化チタンを含む、本開示の機能性膜の第1の態様を、本開示の機能性膜(I)と称することがある。
 本開示の機能性膜(I)に含まれるチタン原子1モルに対する酸素原子の含有量は、0.5モル~1.9モルの範囲であり、1.0モル~1.7モルの範囲が好ましく、1.2モル~1.7モルの範囲がより好ましい。
 なお、機能性膜(I)中に含まれるチタン原子と酸素原子とのモル比は、以下の実施例で詳述するように、X線光電子分光法(X-ray Photoelectron Spectroscopy)により分析し、XPSスペクトルから算出することができる。
<Functional membrane>
[1. Functional membrane: first aspect]
The first aspect of the functional film of the present disclosure is a functional film containing amorphous titanium oxide, wherein the content of oxygen atoms per 1 mol of titanium atoms contained in the functional film is 0.5 mol. It is in the range of ~ 1.9 mol.
Hereinafter, the first aspect of the functional film of the present disclosure containing amorphous titanium oxide may be referred to as the functional film (I) of the present disclosure.
The content of oxygen atoms per 1 mol of titanium atoms contained in the functional film (I) of the present disclosure is in the range of 0.5 mol to 1.9 mol, and is in the range of 1.0 mol to 1.7 mol. It is preferably in the range of 1.2 mol to 1.7 mol, more preferably.
The molar ratio of titanium atoms to oxygen atoms contained in the functional film (I) was analyzed by X-ray Photoelectron Spectroscopy as described in detail in the following examples. It can be calculated from the XPS spectrum.
 チタン原子1モルに対する酸素原子の含有量が0.5モル未満の場合、均一な膜の製造が困難である。
 なお、公知の二酸化チタン膜におけるチタン原子1モルに対する酸素原子の含有量は2.0である。本開示の機能性膜(I)は、チタン原子1モルに対する酸素原子の含有量を1.9モル以下とすることで、良好な親水性、及び紫外線吸収性を発現する。一方、チタン原子1モルに対する酸素原子の含有量が、1.9モルを超えると、非晶質酸化チタンを含む金属膜であっても、本開示の機能性膜(I)の如き高い親水性を発現し難くなる。
 後述のように、本開示の機能性膜(I)は、アニオン性チタン錯体を含む機能性膜(I)形成用組成物からなる機能性膜前駆体層に紫外線を照射することにより形成することが好ましい。紫外線照射により、機能性膜前駆体層から機能性膜となる際に、反応により酸素が除去され易くなり、機能性膜(I)中では、チタン原子1モルに対する酸素原子の含有量は、一般的な二酸化チタン膜よりも小さくなる。その結果、機能性膜(I)中のチタン原子は、酸素が除去されてできた、結合に関与しない電子(不対電子)で占められた結合手(タングリングボンド)を有することになる。機能性膜(I)は、チタン原子が有するタングリングボンドに起因して、水と結合しやすくなり、一般的な二酸化チタン膜に比較して、より高い親水性を示すと考えられる。
 機能性膜(I)は、波長254nmの紫外光、強度:4mW/cm、照射時間:10分の条件で紫外線照射した後、25℃において測定した表面の純水接触角が10°以下である機能性膜であることが好ましい。
 機能性膜表面の純水接触角の測定方法については、後述する。
When the content of oxygen atoms per 1 mol of titanium atoms is less than 0.5 mol, it is difficult to produce a uniform film.
The content of oxygen atoms per mole of titanium atoms in a known titanium dioxide film is 2.0. The functional film (I) of the present disclosure exhibits good hydrophilicity and ultraviolet absorption by setting the content of oxygen atoms per 1 mol of titanium atoms to 1.9 mol or less. On the other hand, when the content of oxygen atoms per 1 mol of titanium atoms exceeds 1.9 mol, even a metal film containing amorphous titanium oxide has high hydrophilicity as in the functional film (I) of the present disclosure. Is difficult to express.
As will be described later, the functional membrane (I) of the present disclosure is formed by irradiating a functional membrane precursor layer composed of a composition for forming a functional membrane (I) containing an anionic titanium complex with ultraviolet rays. Is preferable. When the functional membrane is changed from the functional membrane precursor layer to the functional membrane by irradiation with ultraviolet rays, oxygen is easily removed by the reaction, and the content of oxygen atoms per 1 mol of titanium atoms in the functional membrane (I) is generally high. It is smaller than a typical titanium dioxide film. As a result, the titanium atom in the functional film (I) has a bond (dangling bond) formed by removing oxygen and occupied by electrons (unpaired electrons) that are not involved in the bond. It is considered that the functional film (I) is easily bonded to water due to the dangling bond contained in the titanium atom, and exhibits higher hydrophilicity than a general titanium dioxide film.
The functional film (I) is exposed to ultraviolet light having a wavelength of 254 nm, an intensity of 4 mW / cm 2 , and an irradiation time of 10 minutes, and then measured at 25 ° C. with a pure water contact angle of 10 ° or less. It is preferably a functional membrane.
The method for measuring the pure water contact angle on the surface of the functional membrane will be described later.
〔2.機能性膜形成用組成物:第1の態様〕
 本開示においては、機能性膜(I)を形成するための組成物を、以下、機能性膜(I)形成用組成物と称する。機能性膜(I)形成用組成物は、アルコールを含む溶媒と、アニオン性チタン錯体と、を含み、所望によりその他の成分を含んでもよい。
 アニオン性チタン錯体は、シュウ酸又はエチレンジアミン四酢酸を配位子とする錯体であることが、紫外線照射時の光分解性がより良好であるという観点から好ましい。
[2. Composition for forming a functional film: first aspect]
In the present disclosure, the composition for forming the functional film (I) is hereinafter referred to as the composition for forming the functional film (I). The composition for forming the functional film (I) contains a solvent containing an alcohol and an anionic titanium complex, and may contain other components if desired.
The anionic titanium complex is preferably a complex having oxalic acid or ethylenediaminetetraacetic acid as a ligand from the viewpoint of better photodegradability when irradiated with ultraviolet rays.
〔3.機能性膜(I)形成用組成物の製造方法〕
 機能性膜(I)形成用組成物は、アルコールを含む溶媒と、シュウ酸化合物、アミン化合物及びアミノカルボン酸からなる群より選択される少なくとも1種と、チタン化合物とを混合して混合物を得る工程、及び、得られた混合物に、水又は過酸化水素を加えて、還流する工程、を含む機能性膜形成用組成物の製造方法により得られる。
 機能性膜(I)形成用組成物の製造方法に用いられる混合物は、例えば、アルコールを含む溶媒に、シュウ酸、シュウ酸二水和物等のシュウ酸化合物と、チタンテトライソプロポキシド等のチタン化合物を、混合して得ることができる。
 溶媒としては、メタノール、エタノール、プロパノールなどの炭素数1~5のアルコール、水、エーテル等が挙げられ、得られる機能性膜(I)形成用組成物の基材への塗布性がより良好であるという観点から、エタノールが好ましい。
[3. Method for Producing Composition for Forming Functional Film (I)]
The composition for forming the functional film (I) is obtained by mixing a solvent containing alcohol, at least one selected from the group consisting of an oxalic acid compound, an amine compound and an aminocarboxylic acid, and a titanium compound to obtain a mixture. It is obtained by a method for producing a composition for forming a functional film, which comprises a step and a step of adding water or hydrogen peroxide to the obtained mixture and refluxing the mixture.
The mixture used in the method for producing the composition for forming the functional film (I) is, for example, a solvent containing alcohol, an oxalic acid compound such as oxalic acid or oxalic acid dihydrate, and titanium tetraisopropoxide or the like. Titanium compounds can be obtained by mixing.
Examples of the solvent include alcohols having 1 to 5 carbon atoms such as methanol, ethanol and propanol, water, ether and the like, and the obtained functional film (I) forming composition has better coatability on the substrate. Ethanol is preferable from the viewpoint of the presence.
 機能性膜(I)形成用組成物の一例を挙げれば、詳細には、例えば、エタノールなどのアルコールを含む溶媒に、シュウ酸二水和物の如きシュウ酸化合物を加え、また、所望によりブチルアミンの如きアミン化合物をさらに加え、0.5時間~2時間程度還流し、室温(25℃:以下、同様)まで冷却する。
 その後、チタンテトライソプロポキシド等のチタン化合物を加え、さらに2時間~4時間、還流し、室温まで冷却して混合物を得る。
 得られた混合物に、31質量%過酸化水素水を加えてさらに0.3時間~1時間、還流し、室温まで冷却することで、アニオン性チタン錯体であるシュウ酸を配位子とするチタン錯体を含む機能性膜(I)形成用組成物を得ることができる。
To give an example of a composition for forming a functional film (I), specifically, a oxalic acid compound such as oxalic acid dihydrate is added to a solvent containing an alcohol such as ethanol, and butylamine is optionally added. An amine compound such as the above is further added, and the mixture is refluxed for about 0.5 to 2 hours and cooled to room temperature (25 ° C .: the same applies hereinafter).
Then, a titanium compound such as titanium tetraisopropoxide is added, and the mixture is further refluxed for 2 to 4 hours and cooled to room temperature to obtain a mixture.
To the obtained mixture, 31 mass% hydrogen peroxide solution is added, the mixture is further refluxed for 0.3 hours to 1 hour, and cooled to room temperature to obtain titanium having oxalic acid as a ligand, which is an anionic titanium complex. A composition for forming a functional film (I) containing a complex can be obtained.
 得られた機能性膜(I)形成用組成物は、溶媒と、シュウ酸又はエチレンジアミン四酢酸を配位子とするチタン錯体とを含む。
 シュウ酸を配位子とするチタン錯体は、以下の構造を示すと推定される。
The obtained functional film (I) forming composition contains a solvent and a titanium complex having oxalic acid or ethylenediaminetetraacetic acid as a ligand.
It is presumed that the titanium complex having oxalic acid as a ligand exhibits the following structure.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、エチレンジアミン四酢酸を配位子とする錯体を得るためには、前記混合物を得る工程において、機能性膜(I)形成用組成物に含有させる前記シュウ酸化合物に代えて、エチレンジアミン四酢酸を用いればよい。 In order to obtain a complex having ethylenediaminetetraacetic acid as a ligand, ethylenediaminetetraacetic acid is used in place of the oxalic acid compound contained in the composition for forming the functional membrane (I) in the step of obtaining the mixture. It may be used.
〔4.機能性膜(I)積層体の製造方法〕
 機能性膜(I)積層体の製造方法は、上記したアルコールを含む溶媒と、アニオン性チタン錯体とを含む機能性膜(I)形成用組成物を、基材に付与して、機能性膜形成用組成物層を形成する工程、及び、基材上に形成された前記機能性膜形成用組成物層に紫外線を照射して、機能性膜形成用組成物から有機物を除去し、機能性膜を得る工程を含む。
 機能性膜(I)形成用組成物を、任意の基材に付与して、基材表面に形成した機能性膜(I)形成用組成物層を、以下、組成物層(I)と称することがある。基材上に形成された組成物層(I)に、紫外線を照射することで、組成物層(I)中の有機物等が除去され、基材表面に機能性膜(I)が形成されて、機能性膜(I)積層体を得ることができる。
[4. Method for manufacturing functional film (I) laminate]
In the method for producing the functional film (I) laminate, the functional film (I) forming composition containing the above-mentioned alcohol-containing solvent and anionic titanium complex is applied to a base material to provide the functional film (I). The step of forming the composition layer for formation and the functional film-forming composition layer formed on the substrate are irradiated with ultraviolet rays to remove organic substances from the functional film-forming composition and have functionality. Includes the step of obtaining a film.
The composition layer for forming the functional film (I) formed on the surface of the base material by applying the composition for forming the functional film (I) to an arbitrary base material is hereinafter referred to as the composition layer (I). Sometimes. By irradiating the composition layer (I) formed on the base material with ultraviolet rays, organic substances and the like in the composition layer (I) are removed, and a functional film (I) is formed on the surface of the base material. , A functional film (I) laminate can be obtained.
 基材への機能性膜(I)形成用組成物の付与は、公知の方法、例えば、塗布法、浸漬法などにより行うことができる。均一な組成物層(I)を形成しやすいという観点からは、塗布法を適用することが好ましい。塗布法としては、スプレーコート、スピンコート等の公知の塗布法を適用できる。
 得られた組成物層(I)は、紫外線照射に先だって、組成物層(I)に含まれる溶媒の量を減少させる目的で、組成物層(I)の乾燥を行ってもよい。乾燥は公知の方法で行うことができる。
 乾燥方法としては、例えば、50℃~80℃の乾燥ゾーンで5分間~10分間乾燥する方法、温風を吹き付ける方法、室温での自然乾燥する方法などが挙げられ、組成物層(I)の均一性の観点からは、乾燥ゾーン内で乾燥する方法が好ましい。
The composition for forming the functional film (I) can be applied to the base material by a known method, for example, a coating method or a dipping method. From the viewpoint that a uniform composition layer (I) can be easily formed, it is preferable to apply the coating method. As the coating method, a known coating method such as spray coating or spin coating can be applied.
In the obtained composition layer (I), the composition layer (I) may be dried for the purpose of reducing the amount of the solvent contained in the composition layer (I) prior to the irradiation with ultraviolet rays. Drying can be performed by a known method.
Examples of the drying method include a method of drying in a drying zone of 50 ° C. to 80 ° C. for 5 to 10 minutes, a method of blowing warm air, a method of naturally drying at room temperature, and the like, and the composition layer (I). From the viewpoint of uniformity, the method of drying in the drying zone is preferable.
 組成物層(I)に紫外線を照射することで、組成物層(I)に含まれる有機物が除去され、その結果、チタン錯体由来のチタンと酸素とを含む機能性膜が形成される。
 紫外線の照射強度については、目的に応じて適宜選択することができる。有機物の除去に有効な紫外線照射条件としては、波長380nm以下の紫外線で、1mW/cm(1mJ/cm)以上とすることができる。紫外線としては、波長150nm~380nmの紫外線が好ましい。照射強度は、1mW/cm以上とすることができ、3mW/cm以上が好ましく、4mW/cm以上がより好ましい。照射強度の上限値には特に制限はない。照射強度と、有機物の除去効果とを考慮すれば、10mW/cm以下とすることができる。
 紫外線照射は、例えば、以下に示す実施例では、波長254nmの紫外線(強度4mW/cm:4mJ/cm)を2時間~16時間に亘り照射して、良好な結果を得ている。
 このように、低エネルギーの紫外線照射により、機能性膜を形成しうることも、本開示の機能性膜の製造方法の利点の一つである。
By irradiating the composition layer (I) with ultraviolet rays, the organic substances contained in the composition layer (I) are removed, and as a result, a functional film containing titanium derived from the titanium complex and oxygen is formed.
The irradiation intensity of ultraviolet rays can be appropriately selected according to the purpose. The ultraviolet irradiation conditions effective for removing organic substances can be 1 mW / cm 2 (1 mJ / cm 2 ) or more with ultraviolet rays having a wavelength of 380 nm or less. As the ultraviolet rays, ultraviolet rays having a wavelength of 150 nm to 380 nm are preferable. The irradiation intensity may be a 1 mW / cm 2 or more, preferably 3 mW / cm 2 or more, 4 mW / cm 2 or more is more preferable. There is no particular limitation on the upper limit of the irradiation intensity. Considering the irradiation intensity and the effect of removing organic substances, it can be set to 10 mW / cm 2 or less.
As for the ultraviolet irradiation, for example, in the examples shown below, ultraviolet rays having a wavelength of 254 nm (intensity 4 mW / cm 2 : 4 mJ / cm 2 ) are irradiated for 2 hours to 16 hours, and good results are obtained.
As described above, it is one of the advantages of the method for producing a functional film of the present disclosure that a functional film can be formed by irradiation with low-energy ultraviolet rays.
 紫外線照射中においては、基材の温度を30℃~40℃とすることが、機能性膜の製膜効率がより良好となるという観点から好ましい。
 例えば、架橋剤を含む樹脂組成物を紫外線照射によって硬化させる際には、空気中の酸素による硬化阻害が懸念されるが、本開示の機能性膜(I)の製膜では、紫外線照射により、組成物層(I)に含まれる配位子成分、残存する溶媒由来の成分などの有機物を分解除去して金属を主成分とする膜を形成するため、酸素が存在する雰囲気下、例えば、大気中における紫外線照射が可能である。
During irradiation with ultraviolet rays, it is preferable to set the temperature of the base material to 30 ° C. to 40 ° C. from the viewpoint of improving the film forming efficiency of the functional film.
For example, when a resin composition containing a cross-linking agent is cured by ultraviolet irradiation, there is a concern that curing may be inhibited by oxygen in the air. However, in the film formation of the functional film (I) of the present disclosure, ultraviolet irradiation is used. In order to form a film containing metal as a main component by decomposing and removing organic substances such as a ligand component contained in the composition layer (I) and a component derived from a residual solvent, an atmosphere in which oxygen is present, for example, an atmosphere. UV irradiation inside is possible.
 なお、機能性膜(I)への埃等の混入を防ぐため、紫外線照射は、クリーンベンチ等の清浄な空間で行うことも好ましい態様である。実験的に機能性膜(I)を形成する際には、殺菌灯を備えたクリーンベンチ内に、基材上に組成物層(I)を備えた積層体を配置し、殺菌灯を用いて紫外線を照射してもよい。クリーンベンチ内の湿度は、帯電防止性などを考慮すれば、40%RH~60%RHの範囲であることが好ましい。 In order to prevent dust and the like from being mixed into the functional membrane (I), it is also preferable that the ultraviolet irradiation is performed in a clean space such as a clean bench. When the functional film (I) is experimentally formed, a laminate having the composition layer (I) is placed on a base material in a clean bench equipped with a germicidal lamp, and the germicidal lamp is used. It may be irradiated with ultraviolet rays. The humidity in the clean bench is preferably in the range of 40% RH to 60% RH in consideration of antistatic properties and the like.
〔5.機能性膜(I)形成用組成物及び機能性膜(I)の物性〕
 機能性膜(I)形成用組成物は、溶媒に溶解して存在するシュウ酸を配位子とするアニオン性チタン錯体のチタンに起因して紫外線吸収能を有する。
 シュウ酸を配位子とするアニオン性チタン(IV)錯体を含み、組成物中に含まれるTi4+の濃度を0.4mmol(ミリモル)/gとした、後述の実施例1で得た機能性膜(I)形成用組成物をエタノールで40倍に希釈した溶液の吸収スペクトルを測定したところ、波長350nm~550nmの範囲において、377nmに特徴的な吸収帯を有し、300nm以下の紫外線領域で強い吸収を有することがわかった。
 このことから、機能性膜(I)形成用組成物を用いて得られる機能性膜(I)は、優れた紫外線遮蔽能を有することが期待できる。
[5. Composition for forming functional film (I) and physical properties of functional film (I)]
The composition for forming the functional film (I) has an ultraviolet absorbing ability due to the titanium of the anionic titanium complex having oxalic acid as a ligand, which exists dissolved in a solvent.
Functionality obtained in Example 1 described later, which contains an anionic titanium (IV) complex having oxalic acid as a ligand and has a concentration of Ti 4+ contained in the composition of 0.4 mmol (mmol) / g. When the absorption spectrum of a solution obtained by diluting the film (I) forming composition 40-fold with ethanol was measured, it had an absorption band characteristic of 377 nm in the wavelength range of 350 nm to 550 nm, and in the ultraviolet region of 300 nm or less. It was found to have strong absorption.
From this, it can be expected that the functional film (I) obtained by using the composition for forming the functional film (I) has an excellent ultraviolet shielding ability.
 本開示の機能性膜(I)は、波長350nm以下の紫外線透過率が10%以下であり、波長350nmを超え400nm以下の近紫外線透過率が80%未満であり、且つ、波長400nmを超え750nm以下の可視光透過率が80%以上であることが好ましい。
 機能性膜(I)の各波長の光透過率は、石英ガラスをリファレンスとして、日立製作所(株)、分光光度計(Hitachi U-2800:商品名)を用い、装置のダブルビームモードで200nm-1100nmの波長範囲を測定することで測定する。
 本開示では、光透過率は、上記方法にて測定した値を用いる。
 機能性膜(I)は、可視光線透過性が高く、目視にて透明であり、且つ、紫外線の遮断性が良好であることで、例えば、紫外線により劣化しやすい樹脂材料及び樹脂成形体を紫外線から保護することができ、外観及び色相への影響を与え難いため、樹脂成形体等の樹脂の紫外線保護膜として有用である。
The functional film (I) of the present disclosure has an ultraviolet transmittance of 10% or less at a wavelength of 350 nm or less, a near-ultraviolet transmittance of more than 350 nm and 400 nm or less of less than 80%, and a wavelength of more than 400 nm and 750 nm. The following visible light transmittance is preferably 80% or more.
The light transmittance of each wavelength of the functional film (I) is 200 nm-in the double beam mode of the device using a spectrophotometer (Hitachi U-2800: trade name) manufactured by Hitachi, Ltd. with reference to quartz glass. It is measured by measuring the wavelength range of 1100 nm.
In the present disclosure, the value measured by the above method is used as the light transmittance.
The functional film (I) has high visible light transmittance, is visually transparent, and has good ultraviolet blocking property. Therefore, for example, a resin material and a resin molded body that are easily deteriorated by ultraviolet rays are exposed to ultraviolet rays. It is useful as an ultraviolet protective film for resins such as resin molded bodies because it can be protected from UV rays and does not easily affect the appearance and hue.
 機能性膜(I)は、原料である酸化チタンを含む組成物層(I)が紫外線照射により非晶質チタニア膜となることで、良好な親水性を発現すると考えられる。
 シュウ酸を配位子とするアニオン性チタン錯体を含む機能性膜(I)形成用組成物は、オキサラト配位子、ペルオキソ配位子、及びTi(IV)錯体のブチルアンモニウム塩を含み、機能性膜(I)形成用組成物からなる組成物層(I)に紫外線照射を照射することにより、非晶質チタニア膜となり、結晶性のTiOが示す親水性と同等以上の高い親水性を示す。
 紫外線照射により、組成物層(I)に含まれるシュウ酸を配位子とするアニオン性チタン錯体が効率的に分解して、錯体の配位子である有機成分が除去される。また、有機成分が除去されたチタン錯体に残存する酸素原子は、空気中に含まれる水からも酸素原子を奪って酸素(O)となって、組成物層(I)中からが除去される。従って、組成物層(I)は、一般的なチタニア、即ち、二酸化チタンに比較して、チタン原子に対する酸素の含有量が少なくなり、例えば、二酸化チタンは、チタン原子1モルに対する酸素原子が2モルであるのに対し、チタン原子1モルに対する酸素原子の含有量が、0.5モル~1.9モルの範囲となる。
 このため、組成物層(I)におけるチタン原子は、酸素が除去されてできた、結合に関与しない電子(不対電子)で占められた結合手(タングリングボンド)を有することになり、タングリングボンドに起因して、水と結合しやすくなり、一般的なチタニア膜に比較して、より高い親水性を示すと本発明者らは考えている。
It is considered that the functional film (I) exhibits good hydrophilicity when the composition layer (I) containing titanium oxide, which is a raw material, becomes an amorphous titania film by irradiation with ultraviolet rays.
The composition for forming a functional film (I) containing an anionic titanium complex having oxalic acid as a ligand contains an oxalate ligand, a peroxo ligand, and a butylammonium salt of a Ti (IV) complex and functions. By irradiating the composition layer (I) composed of the composition for forming the sex film (I) with ultraviolet rays, an amorphous titania film is formed, and the hydrophilicity equal to or higher than the hydrophilicity shown by the crystalline TiO 2 is obtained. Shown.
By ultraviolet irradiation, the anionic titanium complex containing oxalic acid as a ligand contained in the composition layer (I) is efficiently decomposed, and the organic component which is the ligand of the complex is removed. In addition, the oxygen atoms remaining in the titanium complex from which the organic components have been removed deprive the water contained in the air of oxygen atoms to become oxygen (O 2 ), which is removed from the composition layer (I). To. Therefore, the composition layer (I) has a lower oxygen content per titanium atom than general titania, that is, titanium dioxide. For example, titanium dioxide has 2 oxygen atoms per mol of titanium atoms. The content of oxygen atoms per 1 mol of titanium atoms is in the range of 0.5 mol to 1.9 mol, whereas it is mol.
Therefore, the titanium atom in the composition layer (I) has a bond (dangling bond) formed by removing oxygen and occupied by electrons (unpaired electrons) that are not involved in the bond. The present inventors believe that the ring bond makes it easier to bond with water and exhibits higher hydrophilicity than a general titania film.
 本発明者らの検討によれば、組成物層(I)に紫外線照射して得た機能性膜(I)について、波長254nmの紫外光、強度:4mW/cm、照射時間:10分の条件で紫外線照射した後、25℃にて測定した表面の純水接触角は、10°以下であることが好ましく、5°以下であることがより好ましい。
 本開示において、純水接触角は、JIS R3257(1999年)に記載の方法に準拠して、接触角計を用いて、25℃にて測定する。本開示では、5回測定して得た値の算術平均値を純水接触角として採用している。
According to the study by the present inventors, the functional film (I) obtained by irradiating the composition layer (I) with ultraviolet rays has an ultraviolet light having a wavelength of 254 nm, an intensity of 4 mW / cm 2 , and an irradiation time of 10 minutes. The pure water contact angle of the surface measured at 25 ° C. after irradiation with ultraviolet rays under the conditions is preferably 10 ° or less, and more preferably 5 ° or less.
In the present disclosure, the pure water contact angle is measured at 25 ° C. using a contact angle meter in accordance with the method described in JIS R3257 (1999). In the present disclosure, the arithmetic mean value of the values obtained by measuring 5 times is adopted as the pure water contact angle.
〔6.機能性膜:第2の態様〕
 本開示の機能性膜の第2の態様は、非晶質酸化ケイ素含む機能性膜であって、前記機能性膜に含まれるケイ素原子1モルに対する酸素原子の含有量が、1.0モル以上2.0モル未満の範囲である。ケイ素原子1モルに対する酸素原子の含有量は、1.0モル~1.95モルの範囲が好ましく、1.2モル~1.9モルの範囲がより好ましい。
[6. Functional membrane: second aspect]
The second aspect of the functional film of the present disclosure is a functional film containing amorphous silicon oxide, in which the content of oxygen atoms per 1 mol of silicon atoms contained in the functional film is 1.0 mol or more. It is in the range of less than 2.0 mol. The content of oxygen atoms per 1 mol of silicon atoms is preferably in the range of 1.0 mol to 1.95 mol, more preferably in the range of 1.2 mol to 1.9 mol.
 以下、非晶質酸化ケイ素を含む、本開示の機能性膜の第2の態様を、本開示の機能性膜(II)と称することがある。
 機能性膜(II)は、基材の保護膜として有用である。
 機能性膜(II)を保護膜として適用できる基材は、固体基材であれば特に制限はない。例えば、ガラス基材、セラミック基材、金属基材、樹脂基材、繊維強化樹脂基材、及び上記各材料の複合材料基材などのいずれにも、本開示の機能性膜(II)は適用できる。
 また、機能性膜(II)は、塗布法により形成しうることから、樹脂成形体など、平板上ではない基材の保護膜として適用することもできる。
 なかでも、機能性膜(II)は、機能性膜(II)中に含まれる非晶質ケイ素に起因して、ガラスなどのケイ素含有基材との密着性が良好である。
Hereinafter, the second aspect of the functional film of the present disclosure containing amorphous silicon oxide may be referred to as the functional film (II) of the present disclosure.
The functional film (II) is useful as a protective film for the base material.
The substrate to which the functional film (II) can be applied as the protective film is not particularly limited as long as it is a solid substrate. For example, the functional film (II) of the present disclosure is applied to any of a glass base material, a ceramic base material, a metal base material, a resin base material, a fiber reinforced resin base material, and a composite material base material of each of the above materials. it can.
Further, since the functional film (II) can be formed by a coating method, it can also be applied as a protective film for a base material that is not on a flat plate, such as a resin molded product.
Among them, the functional film (II) has good adhesion to a silicon-containing base material such as glass due to the amorphous silicon contained in the functional film (II).
 前記非晶質酸化ケイ素膜が、さらにリチウム化合物を含むことで、機能性膜(II)は、リチウム固体電解質膜とすることができる。
 リチウム化合物としては、例えば、六フッ化リン酸リチウム(LiPF)、四塩化リチウム(LiCl)、ヨウ化リチウム(LiI)等が挙げられる。
 例えば、リチウム化合物として用いられるLiPFは、耐熱性に乏しく、製膜に100℃以上の加熱を必要とする膜に含有させることは困難である。しかし、後述するように、本開示の機能性膜(II)は、常温にて紫外線照射することで製膜が可能であるため、LiPFを安定に含有させることができ、純度の高いリチウム固体電解質膜となる。
 なお、ここで、常温とは、加熱又は冷却などの温度制御を行わない環境温度を指す。本発明者らの検討によれば、機能性膜(II)は、例えば、10℃~40℃の範囲の温度条件下で紫外線照射することにより製膜できる。
 機能性膜(II)が、LiPFを含む場合の、機能性膜(II)におけるLiPFの含有量は、目的に応じて適宜選択できる。なかでも、固体電解質としての機能の発現しやすさの観点からは、機能性膜(II)に含まれるケイ素原子1モルに対し、LiPFを1モル~2モル含むことが好適である。
When the amorphous silicon oxide film further contains a lithium compound, the functional film (II) can be a lithium solid electrolyte membrane.
Examples of the lithium compound include lithium hexafluorophosphate (LiPF 6 ), lithium tetrachloride (LiCl 4 ), lithium iodide (LiI) and the like.
For example, LiPF 6 used as a lithium compound has poor heat resistance, and it is difficult to include it in a film that requires heating at 100 ° C. or higher for film formation. However, as will be described later, since the functional film (II) of the present disclosure can be formed by irradiating with ultraviolet rays at room temperature, LiPF 6 can be stably contained and a high-purity lithium solid can be contained. It becomes an electrolyte membrane.
Here, the room temperature refers to an environmental temperature in which temperature control such as heating or cooling is not performed. According to the study by the present inventors, the functional film (II) can be formed by, for example, irradiating with ultraviolet rays under a temperature condition in the range of 10 ° C. to 40 ° C.
Functional film (II) is, the content of LiPF 6 in a functional film (II) in the case of containing LiPF 6 can be appropriately selected depending on the purpose. Among them, from the viewpoint of easiness of expressing the function as a solid electrolyte, it is preferable to contain 1 mol to 2 mol of LiPF 6 with respect to 1 mol of silicon atoms contained in the functional membrane (II).
〔7.機能性膜形成用組成物:第2の態様〕
 機能性膜(II)を形成するための組成物を、以下、機能性膜(II)形成用組成物と称する。機能性膜(II)形成用組成物は、アルコールを含む溶媒と、アニオン性ケイ素錯体と、を含み、所望によりその他の成分を含んでもよい。
 アニオン性ケイ素錯体は、シュウ酸を配位子とする錯体であることが、紫外線照射時の有機成分の光分解性がより良好であるという観点から好ましい。
[7. Composition for forming a functional film: second aspect]
The composition for forming the functional film (II) is hereinafter referred to as the composition for forming the functional film (II). The composition for forming the functional film (II) contains a solvent containing an alcohol and an anionic silicon complex, and may contain other components if desired.
The anionic silicon complex is preferably a complex having oxalic acid as a ligand from the viewpoint of better photodegradability of the organic component when irradiated with ultraviolet rays.
〔8.機能性膜(II)形成用組成物の製造方法〕
 機能性膜(II)形成用組成物は、アルコールを含む溶媒と、シュウ酸化合物と、ケイ素化合物とを混合して混合物を得る工程、及び、得られた混合物に、水又は過酸化水素を加えて、還流する工程と、を含む。
 機能性膜(II)形成用組成物は、例えば、アルコールを含む溶媒に、シュウ酸、シュウ酸二水和物等のシュウ酸化合物と、オルトケイ酸テトラエチル(TEOS)等のケイ素化合物とを、添加、混合して混合物を得て、得られた混合物に水又は過酸化水素水を加えて還流することにより得ることができる。
 機能性膜(II)形成用組成物の製造方法としては、詳細には、例えば、エタノールなどのアルコールを含む溶媒に、オルトケイ酸テトラエチル(TEOS)等のケイ素化合物とシュウ酸とを加え、0.5時間~2時間程度、還流し、室温(25℃:以下、同様)まで冷却して混合物を得ること、その後、得られた混合物に含まれる酸化ケイ素1質量部に対し、純水を1質量部加え、さらに0.5時間~2時間撹拌することを含む方法が挙げられる。このようにして、アニオン性ケイ素錯体を含む機能性膜(II)形成用組成物を得ることができる。
[8. Method for Producing Composition for Forming Functional Film (II)]
The composition for forming a functional membrane (II) is prepared by mixing a solvent containing an alcohol, a oxalic acid compound, and a silicon compound to obtain a mixture, and adding water or hydrogen peroxide to the obtained mixture. The step of refluxing is included.
In the composition for forming the functional film (II), for example, a oxalic acid compound such as oxalic acid or oxalic acid dihydrate and a silicon compound such as tetraethyl orthosilicate (TEOS) are added to a solvent containing alcohol. , Mix to obtain a mixture, and water or hydrogen peroxide solution is added to the obtained mixture to reflux the mixture.
Specifically, as a method for producing a composition for forming a functional film (II), for example, a silicon compound such as tetraethyl orthosilicate (TEOS) and oxalic acid are added to a solvent containing an alcohol such as ethanol, and 0. Reflux for about 5 to 2 hours and cool to room temperature (25 ° C .: the same applies hereinafter) to obtain a mixture, and then add 1 mass of pure water to 1 part by mass of silicon oxide contained in the obtained mixture. A method including addition of a portion and further stirring for 0.5 to 2 hours can be mentioned. In this way, a composition for forming a functional membrane (II) containing an anionic silicon complex can be obtained.
 得られた機能性膜(II)形成用組成物は、アルコールを含む溶媒と、シュウ酸を配位子とするケイ素錯体とを含む。
 なお、既述のLiPF等のチリウム化合物、又は、後述の導電性材料等の添加物を、機能性膜(II)形成用組成物に添加する場合には、例えば、TEOSとシュウ酸とを含む液を還流した後、添加して、撹拌を継続すればよい。
The obtained functional film (II) forming composition contains a solvent containing an alcohol and a silicon complex having oxalic acid as a ligand.
When a thyrium compound such as LiPF 6 described above or an additive such as a conductive material described later is added to the composition for forming a functional membrane (II), for example, TEOS and oxalic acid are added. After refluxing the containing liquid, it may be added and stirring may be continued.
〔9.機能性膜(II)積層体の製造方法〕
 機能性膜(II)積層体の製造方法は、上記したアルコールを含む溶媒と、アニオン性ケイ素錯体と、を含む機能性膜(II)形成用組成物を、基材に付与して、機能性膜形成用組成物層を形成する工程、及び、基材上に形成された前記機能性膜形成用組成物層に紫外線を照射して、機能性膜形成用組成物から有機物を除去し、機能性膜を得る工程を含む。
 機能性膜(II)形成用組成物を、任意の基材に付与して、基材表面に、機能性膜(II)形成用組成物層(以下、組成物層(II)と称することがある)を形成し、形成された機能性膜(II)形成用組成物層に、紫外線を照射することで、組成物層(II)中の有機物等が除去され、基材表面に機能性膜(II)が形成されて、基材と、基材上に形成された機能性膜(II)と、を有する機能性膜(II)積層体を得ることができる。
 なお、機能性膜(II)の製造方法は、既述の機能性膜(I)において用いた機能性膜(I)形成用組成物に代えて、機能性膜(II)形成用組成物を用いる以外は同様に行うことができ、好ましい態様も同様である。
[9. Method for manufacturing functional film (II) laminate]
In the method for producing a functional film (II) laminate, a composition for forming a functional film (II) containing the above-mentioned solvent containing alcohol and an anionic silicon complex is applied to a substrate to provide functionality. The step of forming the film-forming composition layer and the functional film-forming composition layer formed on the substrate are irradiated with ultraviolet rays to remove organic substances from the functional film-forming composition and function. Includes the step of obtaining a sex film.
The composition for forming the functional film (II) may be applied to an arbitrary base material, and the surface of the base material may be referred to as a composition layer for forming the functional film (II) (hereinafter referred to as a composition layer (II)). By irradiating the formed composition layer for forming the functional film (II) with ultraviolet rays, organic substances and the like in the composition layer (II) are removed, and the functional film is formed on the surface of the substrate. (II) is formed, and a functional film (II) laminate having a base material and a functional film (II) formed on the base material can be obtained.
In addition, in the method for producing the functional film (II), instead of the composition for forming the functional film (I) used in the above-mentioned functional film (I), the composition for forming the functional film (II) is used. It can be carried out in the same manner except that it is used, and the preferred embodiment is also the same.
〔10.機能性膜形成用組成物が含みうる他の成分)
 本開示の機能性膜(I)形成用組成物及び機能性膜(II)形成用組成物は、それぞれ、アルコールを含む溶媒と、アニオン性チタン錯体又はアニオン性ケイ素錯体と、に加え、効果を損なわない限りにおいて、目的に応じて種々のその他の成分をさらに含むことができる。以下、機能性膜(I)形成用組成物及び機能性膜(II)形成用組成物の、双方又は少なくともいずれかを「機能性膜形成用組成物」と総称することがある。
 その他の成分としては、既述のリチウム化合物の他、導電性材料、非導電性の無機粒子又は有機粒子、界面活性剤、イオン伝導体等が挙げられる。
[10. Other components that may be contained in the composition for forming a functional film)
The functional film (I) forming composition and the functional film (II) forming composition of the present disclosure have an effect in addition to a solvent containing an alcohol and an anionic titanium complex or an anionic silicon complex, respectively. Various other components may be further included depending on the purpose, as long as they are not impaired. Hereinafter, both or at least one of the composition for forming a functional film (I) and the composition for forming a functional film (II) may be collectively referred to as a "composition for forming a functional film".
Examples of other components include conductive materials, non-conductive inorganic or organic particles, surfactants, ionic conductors, and the like, in addition to the above-mentioned lithium compounds.
(導電性材料)
 機能性膜形成用組成物が、導電性材料を含むことで、得られる機能性膜(I)又は機能性(II)に電気伝導性を与えることができる。
 導電性材料は、公知の材料を制限なく使用することができる。導電性材料としては、例えば、カーボンナノチューブ、カーボンブラック、及び導電性金属粒子からなる群より選択される1種又は2種以上の導電性材料が挙げられる。
 機能性膜形成用組成物が導電性材料を含むことで、得られる機能性膜(I)又は機能性膜(II)は導電性を有する。導電性の目安としては、四探針法により測定した電気抵抗値が、10Ωcm以下であることが好ましい。
 機能性膜(I)又は機能性膜(II)の電気抵抗値は、以下の方法で測定することができる。電気抵抗値が小さいほど、電気伝導性が良好であることを示す。
 測定は、デジタルマルチメーター:岩崎通信機(株):旧岩通計測(株)製、VOAC7512及びKEITHLEY、Model2010 Multimeter(いずれも商品名)を用いて行なう。四探針法によって、5点計測し、測定値の最大値と最小値を除いた3点で平均値を算出して得た値を機能性膜(I)又は機能性膜(II)の電気抵抗値とする。
 なお、四探針法によれば、導電性材料の体積抵抗率を測定することができる。より簡易な電気抵抗の測定方法に二端子法があり、二端子法では、2つの端子の間の抵抗値が測定される。四探針法は、4つの針が、それぞれ一対の電流端子と電圧端子の機能を果たすために、二端子法における如き、接触抵抗の影響を低減することができる。
 一般に、二端子法による電気抵抗値は、接触抵抗の影響を受け、四探針法による電気抵抗値よりも値が大きくなる。従って、二端子法による電気抵抗値が10Ω以下であれば、四探針法による電気抵抗値はより低い値となるため、四探針法による電気抵抗値も10Ωcm以下であると推定できる。後述の実施例で電気抵抗値の測定に適用される二探針抵抗法は、測定端子が異なる以外は二端子法と略同義であり、測定結果もほぼ同様である。
(Conductive material)
When the composition for forming a functional film contains a conductive material, it is possible to impart electrical conductivity to the obtained functional film (I) or functionality (II).
As the conductive material, known materials can be used without limitation. Examples of the conductive material include one or more conductive materials selected from the group consisting of carbon nanotubes, carbon black, and conductive metal particles.
When the composition for forming a functional film contains a conductive material, the obtained functional film (I) or functional film (II) has conductivity. The measure of conductivity, the electric resistance value measured by the four probe method is preferably at 10 6 [Omega] cm or less.
The electric resistance value of the functional membrane (I) or the functional membrane (II) can be measured by the following method. The smaller the electric resistance value, the better the electric conductivity.
The measurement is performed using a digital multimeter: Iwatsu Electric Co., Ltd .: formerly manufactured by Iwatsu Electric Co., Ltd., VOAC7512, KEITHLEY, and Model2010 Multimeter (all trade names). The electricity of the functional membrane (I) or the functional membrane (II) is obtained by measuring 5 points by the four-probe method and calculating the average value at 3 points excluding the maximum and minimum values of the measured values. Let it be the resistance value.
According to the four-probe method, the volume resistivity of the conductive material can be measured. There is a two-terminal method as a simpler method for measuring electrical resistance, and in the two-terminal method, the resistance value between the two terminals is measured. In the four-probe method, since each of the four needles functions as a pair of current terminals and a voltage terminal, the influence of contact resistance can be reduced as in the two-terminal method.
In general, the electric resistance value by the two-terminal method is affected by the contact resistance, and the value is larger than the electric resistance value by the four-probe method. Thus, the two long electrical resistance by terminal method is less 10 6 Omega, since the electrical resistance lower value by the four probe method, if it is an electric resistance value 10 6 [Omega] cm or less according to four-probe method Can be estimated. The two-probe resistance method applied to the measurement of the electric resistance value in the examples described later is substantially synonymous with the two-terminal method except that the measurement terminals are different, and the measurement results are almost the same.
 本開示の機能性膜(I)及び機能性膜(II)は、既述のように、常温にて紫外線照射のみにより、加熱を行うことなく製造できることから、導電性金属粒子等に加え、加熱により変質し易い導電性材料であるカーボンナノチューブ、カーボンブラック等も好適に使用することができる。
 機能性膜形成用組成物が導電性材料を含む場合の導電性材料の含有量は、機能性膜形成用組成物が含むチタン原子又はケイ素原子1質量部に対し、0.1質量部~10質量部であることが好ましく、1質量部~5質量部であることがより好ましい。
As described above, the functional film (I) and the functional film (II) of the present disclosure can be produced only by irradiating ultraviolet rays at room temperature without heating, and therefore, they are heated in addition to conductive metal particles and the like. Therefore, carbon nanotubes, carbon black, and the like, which are conductive materials that are easily deteriorated, can also be preferably used.
When the composition for forming a functional film contains a conductive material, the content of the conductive material is 0.1 part by mass to 10 parts by mass with respect to 1 part by mass of titanium atom or silicon atom contained in the composition for forming a functional film. It is preferably parts by mass, and more preferably 1 part to 5 parts by mass.
(界面活性剤)
 機能性膜形成用組成物は、界面活性剤を含むことができる。機能性膜形成用組成物が、界面活性剤を含むことで組成物層(I)又は組成物層(II)の形成時に、塗布面状性を向上することができる。また、機能性膜形成用組成物が、既述の導電性材料などの固体成分を含有する場合、界面活性剤を含むことで固体成分の分散性がより向上する。
(Surfactant)
The composition for forming a functional film can contain a surfactant. When the composition for forming a functional film contains a surfactant, the coating surface property can be improved at the time of forming the composition layer (I) or the composition layer (II). Further, when the composition for forming a functional film contains a solid component such as the conductive material described above, the dispersibility of the solid component is further improved by containing the surfactant.
〔11.機能性膜積層体〕
 本開示の機能性膜積層体(以下、単に積層体と称することがある)は、基材と、前記基材上に、既述の機能性膜の少なくともいずれかと、を有する機能性膜積層体である。
 即ち、本開示の積層体は、基材と、基材上に前記機能性膜(I)又は前記機能性膜(II)の少なくともいずれかと、を有する。
 本開示の機能性膜(I)又は機能性膜(II)は、加熱を必要とせず、常温の紫外線照射のみで製造しうるため、機能性膜積層体における積層体は、金属基材などに加え、耐熱性の低い基材を用いて積層体とすることができる。
[11. Functional membrane laminate]
The functional film laminate of the present disclosure (hereinafter, may be simply referred to as a laminate) is a functional film laminate having a base material and at least one of the above-mentioned functional films on the base material. Is.
That is, the laminate of the present disclosure has a base material and at least one of the functional film (I) and the functional film (II) on the base material.
Since the functional film (I) or the functional film (II) of the present disclosure does not require heating and can be produced only by irradiation with ultraviolet rays at room temperature, the laminate in the functional film laminate may be a metal substrate or the like. In addition, a laminated body can be formed by using a base material having low heat resistance.
(基材)
 積層体の基材としては、特に制限は無く、無機基材、有機基材のいずれも使用することができる。
 基材は、フッ素ドープ酸化スズ(FTO)基板、インジウムドープ酸化スズ(ITO)基材、樹脂基材、青板ガラス基材、金属基材及びセラミックス基材からなる群より選択される基材とすることができる。
 なかでも、耐熱性の低い基材として知られ、金属膜の形成が困難とされる、フッ素ドープ酸化スズ(FTO)基材、インジウムドープ酸化スズ(ITO)基材、樹脂基材等を用いた場合に、本開示の効果が著しいと言える。
(Base material)
The base material of the laminate is not particularly limited, and either an inorganic base material or an organic base material can be used.
The base material is a base material selected from the group consisting of a fluorine-doped tin oxide (FTO) substrate, an indium-doped tin oxide (ITO) base material, a resin base material, a blue plate glass base material, a metal base material, and a ceramic base material. be able to.
Among them, a fluorine-doped tin oxide (FTO) substrate, an indium-doped tin oxide (ITO) substrate, a resin substrate, etc., which are known as a substrate having low heat resistance and are difficult to form a metal film, were used. In some cases, the effect of this disclosure can be said to be significant.
 本開示の機能性膜(I)は、可視光線透過率が良好で透明性に優れ、紫外線遮蔽性が高いことから、樹脂材料などの紫外線からの保護膜(紫外線保護膜)として有用である。
 さらに、表面の親水性が良好であることから、防曇機能を必要とする種々の用途に適用することができる。なかでも、光透過性、樹脂の保護性、及び防曇性が良好であることから、車両のライト、屋外で用いる照明器具などの保護層として有用であり、その用途は広い。
The functional film (I) of the present disclosure is useful as a protective film (ultraviolet protective film) from ultraviolet rays such as a resin material because it has good visible light transmittance, excellent transparency, and high ultraviolet shielding property.
Further, since the surface has good hydrophilicity, it can be applied to various applications requiring an antifogging function. Among them, since it has good light transmission, resin protection, and anti-fog property, it is useful as a protective layer for vehicle lights, lighting fixtures used outdoors, and its versatility.
 機能性膜(I)の膜厚は、目的に応じて適宜選択することができる。機能性膜(I)を、樹脂材料からなる成形体の紫外線保護膜に適用する場合には、例えば、10nm~1μmの範囲とすることができ、100nm~1μmの範囲が好ましい。機能性膜(I)を、透明性を必要とする紫外線保護膜に適用する場合には、例えば、10nm~1μmの範囲とすることができ、50nm~300nmの範囲が好ましい。
 機能性膜(I)を、車両のライト、照明器具などに防曇機能を付与する用途に適用する場合には、例えば、10nm~1μmの範囲とすることができ、50nm~300nmの範囲が好ましい。
 機能性膜の膜厚は、公知の方法で測定することができる。測定方法としては、エリプソメータ、反射分光式膜厚計等の非接触光学式測定方法、触針式段差計 三次元形状測定器、原子間力顕微鏡(AMF)、電界放出型走査電子顕微鏡(Field Emission-Scanning Electron Microscope:FE-SEM)等の電子顕微による断面観察などの接触式測定方法などが挙げられる。
 本開示では、膜の特性に応じて、FE-SEMにより断面を観察して測定する方法及び触針式段差計DEKTAK-3(Veeco社)を用いて測定する方法を採用している。
The film thickness of the functional film (I) can be appropriately selected depending on the intended purpose. When the functional film (I) is applied to an ultraviolet protective film of a molded product made of a resin material, it can be, for example, in the range of 10 nm to 1 μm, preferably in the range of 100 nm to 1 μm. When the functional film (I) is applied to an ultraviolet protective film that requires transparency, it can be in the range of, for example, 10 nm to 1 μm, preferably in the range of 50 nm to 300 nm.
When the functional film (I) is applied to an application for imparting an antifogging function to a vehicle light, a lighting fixture, or the like, it can be in the range of, for example, 10 nm to 1 μm, preferably in the range of 50 nm to 300 nm. ..
The film thickness of the functional film can be measured by a known method. Measurement methods include non-contact optical measurement methods such as ellipsometers and reflection spectroscopic film thickness meters, stylus step meters, three-dimensional shape measuring instruments, interatomic force microscopes (AMFs), and field emission scanning electron microscopes (Field Emissions). -A contact-type measurement method such as cross-sectional observation by electron microscopy such as Scanning Electron Microscope (FE-SEM) can be mentioned.
In the present disclosure, a method of observing and measuring a cross section by FE-SEM and a method of measuring using a stylus type step meter DEKTAK-3 (Veeco) are adopted according to the characteristics of the film.
 本開示の機能性膜(II)は、可視光線透過率が良好で透明性に優れ、ガラス基材等の種々の基材との密着性が良好であるため、各種基材の保護膜として有用である。さらには、カーボンナノチューブなどの導電性材料を含む透明導電膜、LiPF等のリチウム化合物を含むリチウム固体電解質膜等に応用することも可能である。
 機能性膜(II)の膜厚は、目的に応じて適宜選択することができる。機能性膜(II)を、ガラス記載など、各種基材の保護膜に適用する場合には、例えば、10nm~1μmの範囲とすることができ、50nm~300nmの範囲が好ましい。機能性膜(II)を、透明等電膜に適用する場合には、例えば、10nm~1μmの範囲とすることができ、50nm~300nmの範囲が好ましい。
 機能性膜(II)を、リチウム固体電解質膜用途に適用する場合には、例えば、10nm~1μmの範囲とすることができ、50nm~800nmの範囲が好ましい。
The functional film (II) of the present disclosure is useful as a protective film for various substrates because it has good visible light transmittance, excellent transparency, and good adhesion to various substrates such as glass substrates. Is. Further, it can be applied to a transparent conductive film containing a conductive material such as carbon nanotube, a lithium solid electrolyte membrane containing a lithium compound such as LiPF 6, and the like.
The film thickness of the functional film (II) can be appropriately selected depending on the intended purpose. When the functional film (II) is applied to a protective film of various substrates such as those described in glass, it can be in the range of 10 nm to 1 μm, preferably in the range of 50 nm to 300 nm. When the functional film (II) is applied to a transparent isoelectric film, it can be in the range of 10 nm to 1 μm, preferably in the range of 50 nm to 300 nm.
When the functional membrane (II) is applied to a lithium solid electrolyte membrane application, it can be in the range of, for example, 10 nm to 1 μm, preferably in the range of 50 nm to 800 nm.
 以下、本開示の機能性膜をその製造方法とともに実施例を挙げて具体的に説明するが、本開示は以下の実施例に制限されず、その主旨を超えない限りにおいて種々の変型例にて実施することができる。 Hereinafter, the functional membrane of the present disclosure will be specifically described with reference to examples thereof together with a method for producing the same, but the present disclosure is not limited to the following examples, and various modified examples are used as long as the gist is not exceeded. Can be carried out.
〔実施例1〕
(機能性膜(I)形成用組成物の製造)
1.シュウ酸水素ブチルアンモニウム半水和物の合成
 シュウ酸19.6g(156mmol(ミリモル))と、ブチルアミン11.4g(156mmol)とを、100mLのエタノールに加えて、1時間還流した。その溶液を室温まで冷却して生じた白色粉末を減圧ろ過して単離後、一晩(12時間)風乾させて、シュウ酸水素ブチルアンモニウム半水和物を得た。
[Example 1]
(Production of composition for forming functional film (I))
1. 1. Synthesis of butylammonium hydrogen oxalate hemihydrate 19.6 g (156 mmol (mmol)) of oxalic acid and 11.4 g (156 mmol) of butylamine were added to 100 mL of ethanol and refluxed for 1 hour. The solution was cooled to room temperature, and the resulting white powder was filtered under reduced pressure to isolate it, and then air-dried overnight (12 hours) to obtain butylammonium hydrogen oxalate hemihydrate.
2.機能性(I)膜形成用組成物の調製
 5.00gのエタノール中に、Ti(IV)イソプロポキシド1.13 g(3.96 mmol)と、前記で得られたシュウ酸水素ブチルアンモニウム半水和物1.37g(7.92mmol)とを加えて、3時間還流した。その後、溶液を室温まで冷却して混合物を得た。得られた混合物に、さらに、31質量%過酸化水素水0.44g(3.96mmol)を加えて0.5時間還流して、機能性膜(I)形成用組成物を得た。得られた機能性膜(I)形成用組成物のTi4+の濃度は、0.4mmol/gとした。
2. 2. Functionality (I) Preparation of Membrane-Forming Composition In 5.00 g of ethanol, 1.13 g (3.96 mmol) of Ti (IV) isopropoxide and half butylammonium hydrogen oxalate obtained above were added. 1.37 g (7.92 mmol) of hydrate was added, and the mixture was refluxed for 3 hours. The solution was then cooled to room temperature to give a mixture. Further, 0.44 g (3.96 mmol) of 31 mass% hydrogen peroxide solution was added to the obtained mixture, and the mixture was refluxed for 0.5 hours to obtain a composition for forming a functional membrane (I). The concentration of Ti 4+ in the obtained functional film (I) forming composition was 0.4 mmol / g.
(機能性膜(I)形成用組成物層の形成と、紫外線照射による機能性膜(I)の形成)
 上記で得た機能性膜(I)形成用組成物100μL(マイクロリットル)を、マイクロピペットで、基材である石英ガラス基板(20×20mm2 )上に滴下した。
 その後、2段階スピンコート法(第1段階:500rpm(回転/分、以下同様)で5秒、第2段階:2000rpmで30秒)により、機能性膜(I)形成用組成物層を石英ガラス基板上に形成した。形成された機能性膜(I)形成用組成物層を、70℃で10分間乾燥し、膜を形成した。
 実施例においては、機能性膜(I)形成用組成物からなる乾燥後の膜であって、紫外線照射前の未硬化の膜を機能性膜前駆体層と称する。
 その後、得られた機能性膜(I)形成用組成物からなる機能性膜前駆体層に対し、湿度40%RH~60%RHのクリーンベンチ内で、254nmの紫外光(強度:4mW/cm)を、照射して機能性膜(I)を得た。なお、照射時間は、2時間、4時間、8時間及び16時間とした。紫外線照射時間に応じて、機能性膜(I)を、それぞれ、機能性膜I、機能性膜I、機能性膜I、及び機能性膜I16とした。
(Formation of composition layer for forming functional film (I) and formation of functional film (I) by irradiation with ultraviolet rays)
100 μL (microliter) of the composition for forming the functional film (I) obtained above was dropped onto a quartz glass substrate (20 × 20 mm 2) as a base material with a micropipette.
Then, by a two-step spin coating method (first step: 500 rpm (rotation / minute, the same applies hereinafter) for 5 seconds, second step: 2000 rpm for 30 seconds), the composition layer for forming the functional film (I) is made of quartz glass. Formed on a substrate. The formed functional film (I) forming composition layer was dried at 70 ° C. for 10 minutes to form a film.
In the examples, a dried film made of a composition for forming a functional film (I) and uncured before irradiation with ultraviolet rays is referred to as a functional film precursor layer.
Then, the functional film precursor layer composed of the obtained functional film (I) forming composition was subjected to ultraviolet light (intensity: 4 mW / cm) at 254 nm in a clean bench having a humidity of 40% RH to 60% RH. 2 ) was irradiated to obtain a functional membrane (I). The irradiation time was 2 hours, 4 hours, 8 hours and 16 hours. The functional membranes (I) were designated as functional membranes I 2 , functional membranes I 4 , functional membranes I 8 and functional membranes I 16 , respectively, according to the ultraviolet irradiation time.
(機能性膜(I)形成用組成物と、各機能性膜(I)の評価)
1.機能性膜(I)形成用組成物の紫外線吸収性
 得られた機能性膜(I)形成用組成物をエタノールで40倍に希釈した溶液の吸収スペクトルを測定した。
 測定は、既述の分光光度計を用い、セルとして石英ガラスセルを用いて、光路長1mmにて行った。
 結果を図1に示す。図1は、実施例1で得た機能性膜(I)形成用組成物の吸収スペクトルを示すグラフである。
 図1に示すように、波長350nm~550nmの範囲で、中心波長377nmに特徴的な吸収帯が観察された。さらに紫外線領域(例えば、250nm~350nm)で強い吸収が観察された。一方、波長450nm以上においては吸収が低下し、550nm以上では、吸収が殆ど認められなかった。
 このことから、機能性膜(I)形成用組成物は、紫外線吸収能を有し、波長450nm以上の可視光線透過率が良好であることがわかる。
(Composition for forming functional film (I) and evaluation of each functional film (I))
1. 1. Ultraviolet Absorption of Functional Film (I) Forming Composition The absorption spectrum of the obtained functional film (I) forming composition diluted 40-fold with ethanol was measured.
The measurement was carried out using the spectrophotometer described above, using a quartz glass cell as a cell, and having an optical path length of 1 mm.
The results are shown in FIG. FIG. 1 is a graph showing an absorption spectrum of the functional film (I) forming composition obtained in Example 1.
As shown in FIG. 1, an absorption band characteristic of a central wavelength of 377 nm was observed in the wavelength range of 350 nm to 550 nm. Further, strong absorption was observed in the ultraviolet region (for example, 250 nm to 350 nm). On the other hand, absorption decreased at a wavelength of 450 nm or more, and almost no absorption was observed at a wavelength of 550 nm or more.
From this, it can be seen that the composition for forming the functional film (I) has an ultraviolet absorbing ability and has a good visible light transmittance of a wavelength of 450 nm or more.
2.機能性膜I、機能性膜I、機能性膜I、及び機能性膜I16の紫外線吸収性
 石英ガラス基板上に、それぞれ機能性膜I、機能性膜I、機能性膜I、又は機能性膜I16が形成された積層体の紫外線吸収性及び石英ガラス基板の紫外線吸収性を、上記と同様の装置で測定した。
 結果を図2に示す。図2は、石英ガラス基板(対照例)、石英ガラス基板上に、それぞれ機能性膜I、機能性膜I、機能性膜I、又は機能性膜I16が形成された機能性膜積層体の吸収スペクトルを示すグラフである。なお、参考例として、石英ガラス基板上に英形成した未効硬化の機能性膜前駆体層の吸収スペクトルを併記する。
 図2中、対照例としての石英ガラス基板の吸収スペクトルを太実線で示す。また、参考例として、未硬化の機能性膜前駆体層の吸収スペクトルを細実線で示す。
2. 2. Functional film I 2 , functional film I 4 , functional film I 8 and functional film I 16 on an ultraviolet-absorbing quartz glass substrate, respectively, functional film I 2 , functional film I 4 , and functional film I 2. The ultraviolet absorption of the laminate on which the functional film I 8 or the functional film I 16 was formed and the ultraviolet absorption of the quartz glass substrate were measured by the same apparatus as above.
The results are shown in FIG. FIG. 2 shows a functional film in which a functional film I 2 , a functional film I 4 , a functional film I 8 or a functional film I 16 is formed on a quartz glass substrate (control example) and the quartz glass substrate, respectively. It is a graph which shows the absorption spectrum of a laminated body. As a reference example, the absorption spectrum of the untapped cured functional film precursor layer formed on the quartz glass substrate is also shown.
In FIG. 2, the absorption spectrum of the quartz glass substrate as a control example is shown by a thick solid line. In addition, as a reference example, the absorption spectrum of the uncured functional membrane precursor layer is shown by a fine solid line.
 本開示の機能性膜(I)積層体である石英ガラス基板上に機能性膜Iを有する積層体の吸収スペクトルを細破線で示し、機能性膜Iを有する積層体の吸収スペクトルを太破線で示し、機能性膜Iを有する積層体の吸収スペクトルを細一点破線で示し、機能性膜I16を有する積層体の吸収スペクトルを太一点破線で示す。なお、図2のグラフでは、機能性膜Iを有する積層体と、機能性膜Iを有する積層体との吸収スペクトルのグラフは、ほぼ重なっている。従って、太破線で示される機能性膜Iを有する積層体の吸収スペクトルのグラフにより、機能性膜Iを有する積層体の吸収スペクトルが確認される。 The absorption spectrum of the laminate having the functional film I 2 on the quartz glass substrate which is the functional film (I) laminate of the present disclosure is shown by a broken line, and the absorption spectrum of the laminate having the functional film I 4 is thickened. The absorption spectrum of the laminated body having the functional film I 8 is shown by a broken line, and the absorption spectrum of the laminated body having the functional film I 16 is shown by a dashed line. In the graph of FIG. 2, the graphs of the absorption spectra of the laminated body having the functional film I 2 and the laminated body having the functional film I 4 are substantially overlapped. Therefore, the absorption spectrum of the laminated body having the functional film I 2 is confirmed by the graph of the absorption spectrum of the laminated body having the functional film I 4 shown by the thick broken line.
 図2に示すように、石英ガラス基板自体は、目視で透明であり、紫外~可視域の光透過性が良好であることがわかる。
 本開示の機能性膜(I)を有する各積層体は、いずれも波長約275nmより短波長の紫外線領域の光を吸収し、可視光領域の波長の光透過率は80%を超えることが確認された。
 参考例と、各機能性膜(I)積層体の吸収スペクトルとの対比より、機能性膜前駆体層に紫外線照射を行うことで短波長の紫外線吸収性を有する機能性膜(I)が得られることがわかる。
As shown in FIG. 2, it can be seen that the quartz glass substrate itself is visually transparent and has good light transmission in the ultraviolet to visible region.
It was confirmed that each laminate having the functional film (I) of the present disclosure absorbs light in the ultraviolet region having a wavelength shorter than about 275 nm, and the light transmittance in the wavelength in the visible light region exceeds 80%. Was done.
From the comparison between the reference example and the absorption spectrum of each functional membrane (I) laminate, the functional membrane (I) having short wavelength ultraviolet absorption can be obtained by irradiating the functional membrane precursor layer with ultraviolet rays. It turns out that it can be done.
 また、各機能性膜(I)積層体の屈折率を、レーザーエリプソメーター(MARY-102:商品名、ファイブラボ(株))を用いて測定したところ、機能性膜I積層体、機能性膜I積層体、機能性膜I積層体、及び機能性膜I16積層体のいずれも、屈折率は1.78~1.79の範囲であることが確認された。 Further, when the refractive index of each functional film (I) laminate was measured using a laser ellipsometer (MARY-102: trade name, Fibrabo Co., Ltd.), the functional membrane I 2 laminate, functionality It was confirmed that the refractive index of all of the Membrane I 4 laminate, the Functional Membrane I 8 laminate, and the Functional Membrane I 16 laminate was in the range of 1.78 to 1.79.
3.機能性膜(I)形成用組成物層と、機能性膜I、機能性膜I、機能性膜I、及び機能性膜I16のXRDパターン
 機能性膜(I)形成用組成物層(既述の、乾燥後であって、紫外線照射前の未硬化の膜である機能性膜前駆体層)と、機能性膜I、機能性膜I、機能性膜I、及び機能性膜I16をX線回折法(X-ray diffraction:XRD)にて分析した。装置は以下に示すとおりである。
 得られたXRDパターンを図3に示す。対照例である石英ガラス基板のデータ(図3中、「Quarts glass」と記載)を併記する。図3中、Fが機能性膜(I)形成用組成物層からなる機能性膜前駆体層のXRDパターンを表し、Fが機能性膜IのXRDパターンを表し、Fが機能性膜IのXRDパターンを表し、Fが機能性膜IのXRDパターンを表し、及びF16が機能性膜I16のXRDパターンを表す。
 図3に示すように、石英ガラス基板のハローピーク以外に明らかなピークは観察されなかったことから、機能性膜(I)形成用組成物層、機能性膜I、機能性膜I、機能性膜I、及び機能性膜I16はいずれも非晶質であることがわかる。
3. 3. The composition layer for forming the functional film (I) and the XRD pattern of the functional film I 2 , the functional film I 4 , the functional film I 8 and the functional film I 16 The composition for forming the functional film (I). The layer (the above-mentioned functional film precursor layer which is an uncured film after drying and before irradiation with ultraviolet rays), the functional film I 2 , the functional film I 4 , the functional film I 8 and the like. The functional membrane I 16 was analyzed by X-ray division (XRD). The device is as shown below.
The obtained XRD pattern is shown in FIG. Data of a quartz glass substrate as a control example (described as "Quarts glass" in FIG. 3) is also shown. In FIG. 3, F 0 represents the XRD pattern of the functional film precursor layer composed of the composition layer for forming the functional film (I), F 2 represents the XRD pattern of the functional film I 2 , and F 4 represents the function. The XRD pattern of the sex membrane I 4 is represented, F 8 represents the XRD pattern of the functional membrane I 8 , and F 16 represents the XRD pattern of the functional membrane I 16 .
As shown in FIG. 3, no obvious peak was observed other than the halo peak of the quartz glass substrate. Therefore, the composition layer for forming the functional film (I), the functional film I 2 , the functional film I 4 , It can be seen that both the functional film I 8 and the functional film I 16 are amorphous.
4、機能性膜IのXPSスペクトルから算出した各元素の割合
 機能性膜Iを、X線光電子分光法(X-ray Photoelectron Spectroscopy)により分析し、XPSスペクトルを以下の方法により測定した。
 XPSスペクトルは、光電子分光装置 JPS-9030(商品名:日本電子(JEOL)(株)製)を用いて、X線源として、Mg Kα(1253.6 eV)線を用いて測定した。
 分析結果より、機能性膜IにおけるXPSスペクトルにおいて、5つの元素:Ti、O、C、N、及びSiの各ピークエリアと感度因子から計算した相対的な元素の割合は、モル基準にて、Ti:12.0%、O:53.8%、C:32.5%、N:0.9%及びSi:0.9%である。また、結合エネルギー528.4eVのTi-O結合について、O/Tiの比率を計算すると約1.53であり、チタン原子1モルに対する酸素原子の含有量は1.53モルであった。
4, a functional film I ratio functional film I 4 of each element was calculated from the XPS spectrum of 4, was analyzed by X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy), were measured by the following methods XPS spectra.
The XPS spectrum was measured using a photoelectron spectrometer JPS-9030 (trade name: manufactured by JEOL Ltd.) and Mg Kα (1253.6 eV) rays as an X-ray source.
From analysis results, the XPS spectrum of functional film I 4, 5 one element: at Ti, O, C, N, and the ratio of the relative element calculated from each peak area and the sensitivity factor of Si, molar basis , Ti: 12.0%, O: 53.8%, C: 32.5%, N: 0.9% and Si: 0.9%. The O / Ti ratio of the Ti—O bond having a binding energy of 528.4 eV was calculated to be about 1.53, and the content of oxygen atoms per 1 mol of titanium atoms was 1.53 mol.
5.機能性膜I、機能性膜I、機能性膜I、及び機能性膜I16の膜厚及び膜硬度の評価
 得られた機能性膜I、機能性膜I、機能性膜I、及び機能性膜I16の表面及び側面を、電界放出型走査電子顕微鏡(Field Emission-Scanning Electron Microscope:FE-SEM)で観察した。図4は、実施例1で得た機能性膜(I)のFE-SEMで観察した表面像及び断面像であり、(a)は機能性膜Iの表面像及び断面像であり、(b)は機能性膜Iの表面像及び断面像であり、(c)は機能性膜Iの表面像及び断面像であり、(d)は機能性膜I16の表面像及び断面像である。
 各機能性膜(I)の表面像からは、10nm~20nmのチタンを含む微粒子が緻密に充填しているのが観察され、表面像からはクラックの発生は確認されなかった。
 断面像から測定した膜厚は、それぞれ、機能性膜I:170nm、機能性膜I:170nm、機能性膜I:160nm、及び機能性膜I16:160nmであった。
 また、機能性膜表面の鉛筆硬度は、機能性膜I、機能性膜I、機能性膜I、及び機能性膜I16:のいずれも6Hであり、硬質な表面であることがわかった。
5. Evaluation of the film thickness and film hardness of the functional film I 2 , the functional film I 4 , the functional film I 8 and the functional film I 16 The obtained functional film I 2 , the functional film I 4 , and the functional film The surfaces and sides of I 8 and the functional membrane I 16 were observed with a field emission scanning electron microscope (FE-SEM). FIG. 4 is a surface image and a cross-sectional image of the functional film (I) obtained in Example 1 observed by FE-SEM, and FIG. 4A is a surface image and a cross-sectional image of the functional film I 2. b) is a surface image and a cross-sectional image of the functional film I 4 , (c) is a surface image and a cross-sectional image of the functional film I 8 , and (d) is a surface image and a cross-sectional image of the functional film I 16. Is.
From the surface image of each functional film (I), it was observed that fine particles containing titanium of 10 nm to 20 nm were densely packed, and no cracks were confirmed from the surface image.
The film thicknesses measured from the cross-sectional images were functional film I 2 : 170 nm, functional film I 4 : 170 nm, functional film I 8 : 160 nm, and functional film I 16 : 160 nm, respectively.
The pencil hardness of the surface of the functional film is 6H for all of the functional film I 2 , the functional film I 4 , the functional film I 8 and the functional film I 16 :, which means that the surface is hard. all right.
6.機能性膜I、機能性膜I、機能性膜I、及び機能性膜I16の純水接触角
 既述の方法で、各機能性膜(I)の25℃における純水接触角を測定した。
 測定は、紫外線照射前(機能性膜前駆体層)、紫外線照射(254nmの紫外光、強度:4mW/cm、照射時間:10分)を行った直後(0hr)、紫外線照射後に1時間暗所中放置した後(1hr)に行った。
 また、比較機能性膜として、二酸化チタン膜(Ti:Oのモル比が1:2)についても、同様に、機能性膜前駆体層及び紫外線照射直後の純水接触角を測定した。
 また、1時間暗所中放置後、再度、同じ条件で紫外線照射し、その後、純水接触角を再度測定した(表には、「紫外線再照射直後」と記載)。結果を、下記表1に示す。
6. Pure water contact angle of functional membrane I 2 , functional membrane I 4 , functional membrane I 8 and functional membrane I 16 Pure water contact angle of each functional membrane (I) at 25 ° C. by the method described above. Was measured.
The measurement was performed before irradiation with ultraviolet rays (functional membrane precursor layer), immediately after irradiation with ultraviolet rays (UV light of 254 nm, intensity: 4 mW / cm 2 , irradiation time: 10 minutes) (0 hr), and dark for 1 hour after irradiation with ultraviolet rays. After leaving it in the place (1 hr), it went.
Further, as the comparative functional membrane, the contact angle of the functional membrane precursor layer and the pure water immediately after irradiation with ultraviolet rays was similarly measured for the titanium dioxide film (Ti: O molar ratio of 1: 2).
After leaving it in a dark place for 1 hour, it was irradiated with ultraviolet rays again under the same conditions, and then the pure water contact angle was measured again (in the table, "immediately after re-irradiation with ultraviolet rays" is described). The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1で得た機能性膜(I)はいずれも、比較機能性膜である二酸化チタン膜(Ti:O モル比が1:2)に比較して、親水性が良好であることがわかる。
 また、機能性膜に、再度、紫外線照射を行うことにより、親水性が著しく向上することがわかる。即ち、各機能性膜を暗所中に放置すると、経時によりわずかに親水性が低下するが、再度、紫外線照射することで、親水性がより向上することがわかる。このため、本開示の機能性膜は、紫外線に暴露される環境に配置した場合、親水性が高い状態が継続されることが期待できる。
It can be seen that all of the functional membranes (I) obtained in Example 1 have better hydrophilicity than the titanium dioxide membrane (Ti: O molar ratio of 1: 2) which is a comparative functional membrane. ..
Further, it can be seen that the hydrophilicity is remarkably improved by irradiating the functional membrane with ultraviolet rays again. That is, it can be seen that when each functional film is left in a dark place, the hydrophilicity is slightly lowered with time, but the hydrophilicity is further improved by irradiating with ultraviolet rays again. Therefore, when the functional membrane of the present disclosure is placed in an environment exposed to ultraviolet rays, it can be expected that the highly hydrophilic state will continue.
〔実施例2〕
(機能性膜(II-CTN)形成用組成物の製造)
 実施例2では、機能性膜(II)であって、カーボンナノチューブを含有する機能性膜を作製し、評価した。カーボンナノチューブを含む機能性膜(II)を機能性膜(II-CTN)と称し、機能性膜(II-CTN)を製造するための組成物を機能性膜(II-CTN)形成用組成物と称する。
[Example 2]
(Production of composition for forming functional membrane (II-CTN))
In Example 2, a functional film (II) containing carbon nanotubes was prepared and evaluated. The functional membrane (II) containing carbon nanotubes is referred to as a functional membrane (II-CTN), and the composition for producing the functional membrane (II-CTN) is a composition for forming a functional membrane (II-CTN). It is called.
1.機能性膜(II-CTN)形成用組成物の調製
 10.0gのエタノール中に、オルトケイ酸テトラエチル(TEOS)1.3gと、シュウ酸1.1gとを加えて、1時間還流し、Si4+を0.5mmol/g含有するケイ酸錯体溶液を得た。
 その後、得られたケイ酸錯体溶液に対し、純水で20倍に希釈したカーボンナノチューブの水分散液(MWCNT水溶液、MWNT-INKを、炭素(C)とケイ素(Si)との質量比が8:1となる量で加えて、機能性膜(II-CTN)形成用組成物を得た。即ち、得られた機能性膜(II-CTN)形成用組成物に含まれる炭素とSi4+との含有比率は、質量比でC:Si4+=8:1である。
1. 1. Preparation of Composition for Forming Functional Membrane (II-CTN) To 10.0 g of ethanol, 1.3 g of tetraethyl orthosilicate (TEOS) and 1.1 g of oxalic acid were added, and the mixture was refluxed for 1 hour and Si 4+. A silicic acid complex solution containing 0.5 mmol / g was obtained.
Then, the mass ratio of carbon (C) and silicon (Si) of the aqueous dispersion of carbon nanotubes (MWCNT aqueous solution, MWNT-INK) diluted 20-fold with pure water to the obtained silicic acid complex solution was 8. A composition for forming a functional film (II-CTN) was obtained by adding an amount of 1: 1. That is, carbon and Si 4+ contained in the obtained composition for forming a functional film (II-CTN) The content ratio of C: Si 4+ = 8: 1 in terms of mass ratio.
(機能性膜(II-CTN)形成用組成物層の形成と、紫外線照射による機能性膜(II-CTN)の形成)
 上記で得た機能性膜(II-CTN)形成用組成物100μL(マイクロリットル)を、マイクロピペットで、基材である石英ガラス基板(20×20mm2 )上に滴下した。
 その後、2段階スピンコート法(第1段階:500rpmで5秒、第2段階:2000rpmで30秒)で、機能性膜(II-CTN)形成用組成物層を石英ガラス基板上に形成し、70℃で10分間乾燥して、この機能性膜(II-CTN)前駆体層を形成した。
 得られ機能性膜(II-CTN)前駆体層に、紫外線を、実施例1と同じ波長及び同じ強度で6時間照射して、機能性膜(II-CTN)を得た。
(Formation of a composition layer for forming a functional film (II-CTN) and formation of a functional film (II-CTN) by irradiation with ultraviolet rays)
100 μL (microliter) of the functional film (II-CTN) forming composition obtained above was dropped onto a quartz glass substrate (20 × 20 mm 2) as a base material with a micropipette.
Then, a composition layer for forming a functional film (II-CTN) was formed on a quartz glass substrate by a two-step spin coating method (first step: 500 rpm for 5 seconds, second step: 2000 rpm for 30 seconds). It was dried at 70 ° C. for 10 minutes to form this functional membrane (II-CTN) precursor layer.
The obtained functional membrane (II-CTN) precursor layer was irradiated with ultraviolet rays at the same wavelength and intensity as in Example 1 for 6 hours to obtain a functional membrane (II-CTN).
(機能性膜(II-CTN)の評価)
1.膜厚測定
 得られた機能性膜(II-CTN)の膜厚を、DEKTAK-3(Sloan)を使用して測定した。測定は、先端半径2.5 μmのダイヤモンド探針で3000μm走査する触針法で行った。マスキングにより作製した基材表面との段差を5点測定し、最大と最小を除く3点の平均値を膜厚とした。分解能は10nmである。その結果、膜の厚さは100nmであった。
(Evaluation of functional membrane (II-CTN))
1. 1. Film Thickness Measurement The film thickness of the obtained functional film (II-CTN) was measured using DEKTAK-3 (Sloan). The measurement was performed by a stylus method in which a diamond probe having a tip radius of 2.5 μm was used to scan 3000 μm. The step difference from the surface of the base material produced by masking was measured at 5 points, and the average value of 3 points excluding the maximum and minimum was taken as the film thickness. The resolution is 10 nm. As a result, the thickness of the film was 100 nm.
2.電気抵抗
 機能性膜(II-CTN)の二探針抵抗法により測定した膜の電気抵抗は、3.73MΩcmであった。
 二探針抵抗法による電気抵抗値は、デジタルマルチメーター(岩崎通信機(株):旧岩通計測(株)製、VOAC7523H:商品名)を用いて測定した。二探針間距離1cmで5点測定し、最小値と最大値を除いた3点の平均値を電気抵抗値とした。
 測定の結果、機能性膜(II-CTN)は、電気伝導性が良好であることがわかる。
 また、二探針抵抗法により測定した膜の電気抵抗は、3.73MΩcmであることで、四探針法にて測定した電気抵抗値においても10Ωcm以下であることが明らかである。
2. 2. Electrical resistance The electrical resistance of the membrane measured by the two-probe resistance method of the functional membrane (II-CTN) was 3.73 MΩcm.
The electric resistance value by the two-probe resistance method was measured using a digital multimeter (Iwatsu Electric Co., Ltd .: former Iwatsu Electric Co., Ltd., VOAC7523H: trade name). Five points were measured at a distance of 1 cm between the two probes, and the average value of the three points excluding the minimum and maximum values was taken as the electrical resistance value.
As a result of the measurement, it can be seen that the functional membrane (II-CTN) has good electrical conductivity.
The electric resistance of the film measured by a two-probe resistance method is that it is 3.73Emuomegacm, it is clear that at 10 6 [Omega] cm or less in electric resistance was measured by four-point probe method.
3.光透過性の評価
 既述の装置を用い、石英ガラスを対照例として、200nm~1100nmの波長範囲を測定した。
 その結果、450nm未満の紫外光領域における透過率は80%以上であり、450nm以上の可視光領域における透過率は90%以上であり、機能性膜(II-CTN)は、紫外光、可視光の透過率に優れることがわかる。
 上記評価より、機能性膜(II-CTN)は、紫外光、可視光の透過性に優れた透明な電気伝導性の膜であることがわかる。
3. 3. Evaluation of Light Transparency Using the above-mentioned device, the wavelength range of 200 nm to 1100 nm was measured using quartz glass as a control example.
As a result, the transmittance in the ultraviolet light region of less than 450 nm is 80% or more, the transmittance in the visible light region of 450 nm or more is 90% or more, and the functional film (II-CTN) is ultraviolet light and visible light. It can be seen that the transmittance of the light is excellent.
From the above evaluation, it can be seen that the functional film (II-CTN) is a transparent electrically conductive film having excellent transparency of ultraviolet light and visible light.
〔実施例3〕
(機能性膜(II-Li)形成用組成物の製造)
 実施例3では、機能性膜(II)であって、LiPFを含有する機能性膜を作製し、評価した。LiPFを含有する機能性膜(II)を機能性膜(II-Li)と称し、機能性膜(II-Li)を製造するための組成物を機能性膜(II-Li)形成用組成物と称する。
1.機能性膜(II-Li)形成用組成物の調製
 10.0gのエタノール中に、オルトケイ酸テトラエチル(TEOS)1.3gと、シュウ酸1.1gとを加えて、1時間還流して、Si4+を0.5mmol/g含む混合液を得た。
 その後、得られた混合液2.2gに対してLiPF粉末を0.05g混合して0.15 mmol/gのLiイオン濃度の機能性膜(II-Li)形成用組成物を得た。
[Example 3]
(Production of composition for forming functional film (II-Li))
In Example 3, a functional film (II) containing LiPF 6 was prepared and evaluated. The functional film (II) containing LiPF 6 is referred to as a functional film (II-Li), and the composition for producing the functional film (II-Li) is a composition for forming the functional film (II-Li). Called a thing.
1. 1. Preparation of Composition for Forming Functional Membrane (II-Li) To 10.0 g of ethanol, 1.3 g of tetraethyl orthosilicate (TEOS) and 1.1 g of oxalic acid were added, refluxed for 1 hour, and Si. A mixed solution containing 0.5 mmol / g of 4+ was obtained.
Then, 0.05 g of LiPF 6 powder was mixed with 2.2 g of the obtained mixed solution to obtain a composition for forming a functional film (II-Li) having a Li + ion concentration of 0.15 mmol / g. ..
(機能性膜(II-Li)形成用組成物層の形成と、紫外線照射による機能性膜(II-Li)の形成)
 まず、FTOガラス基板(AGC社製)に、亜鉛と塩酸でエッチング処理を施し、エッチング領域以外をマスキングして、上記で得た機能性膜(II-Li)形成用組成物25μLを、FTOガラス基板上に滴下した。
 その後、2段階スピンコート法(第1段階:500rpmで5秒、第2段階:2000rpmで30秒)で、機能性膜(II-Li)形成用組成物層をFTO基板上に形成した。
 この機能性膜(II-Li)形成用組成物からなる膜に、紫外線を、実施例1と同じ強度で2時間及び16時間照射して、機能性膜(II-Li)、及び機能性膜(II-Li)16を得た。
(Formation of a composition layer for forming a functional film (II-Li) and formation of a functional film (II-Li) by irradiation with ultraviolet rays)
First, an FTO glass substrate (manufactured by AGC) is etched with zinc and hydrochloric acid to mask areas other than the etched region, and 25 μL of the functional film (II-Li) forming composition obtained above is applied to FTO glass. Dropped onto the substrate.
Then, a composition layer for forming a functional film (II-Li) was formed on the FTO substrate by a two-step spin coating method (first step: 500 rpm for 5 seconds, second step: 2000 rpm for 30 seconds).
The film made of the composition for forming the functional film (II-Li) is irradiated with ultraviolet rays at the same intensity as in Example 1 for 2 hours and 16 hours to obtain the functional film (II-Li) 2 and the functionality. Membrane (II-Li) 16 was obtained.
(機能性膜(II-Li)の評価)
 機能性膜(II-Li)及び機能性膜(II-Li)16をインピーダンスアナライザにより測定したイオン導電率は、それぞれ、10-4Scm-1、及び、10-3Scm-1であった。
 本開示の機能性膜の製造方法によれば、FTOガラス基板上に、加熱を伴わず、リチウム固体電解質膜の配線を形成できることがわかる。
(Evaluation of functional membrane (II-Li))
The ionic conductivity of the functional membrane (II-Li) 2 and the functional membrane (II-Li) 16 measured by an impedance analyzer was 10 -4 Scm -1 and 10 -3 Scm -1 , respectively. ..
According to the method for producing a functional membrane of the present disclosure, it can be seen that wiring of a lithium solid electrolyte membrane can be formed on an FTO glass substrate without heating.
 2019年8月28日に出願された日本国特許出願2019-156070の開示は参照により本開示に取り込まれる。
 本開示に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本開示中に参照により取り込まれる。
The disclosure of Japanese Patent Application 2019-156070 filed on August 28, 2019 is incorporated herein by reference.
All documents, patent applications, and technical standards described in this disclosure are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated by reference during disclosure.

Claims (13)

  1.  非晶質酸化チタンを含む機能性膜であって、
     前記機能性膜に含まれるチタン原子1モルに対する酸素原子の含有量が、0.5モル~1.9モルの範囲である機能性膜。
    A functional film containing amorphous titanium oxide,
    A functional film in which the content of oxygen atoms per 1 mol of titanium atoms contained in the functional film is in the range of 0.5 mol to 1.9 mol.
  2.  波長254nmの紫外光、強度:4mW/cm、照射時間:10分の条件で紫外線照射した後、25℃において測定した表面の純水接触角が10°以下である請求項1に記載の機能性膜。 The function according to claim 1, wherein the pure water contact angle of the surface measured at 25 ° C. after irradiation with ultraviolet rays under the conditions of ultraviolet light having a wavelength of 254 nm, intensity: 4 mW / cm 2, and irradiation time: 10 minutes is 10 ° or less. Sex membrane.
  3.  波長350nm以下の紫外線透過率が10%以下であり、波長350nmを超え400nm以下の近紫外線透過率が80%未満であり、且つ、波長400nmを超え750nm以下の可視光透過率が80%以上である請求項1又は請求項2に記載の機能性膜。 The ultraviolet transmittance of a wavelength of 350 nm or less is 10% or less, the near-ultraviolet transmittance of a wavelength of more than 350 nm and 400 nm or less is less than 80%, and the visible light transmittance of a wavelength of more than 400 nm and 750 nm or less is 80% or more. The functional membrane according to claim 1 or 2.
  4.  非晶質酸化ケイ素を含む機能性膜であって、
     前記機能性膜に含まれるケイ素原子1モルに対する酸素原子の含有量が、1.0モル以上2.0モル未満の範囲である機能性膜。
    A functional film containing amorphous silicon oxide,
    A functional film in which the content of oxygen atoms per 1 mol of silicon atoms contained in the functional film is in the range of 1.0 mol or more and less than 2.0 mol.
  5.  基材の保護膜である請求項4に記載の機能性膜。 The functional film according to claim 4, which is a protective film for the base material.
  6.  さらに、カーボンナノチューブ、カーボンブラック、及び導電性金属粒子からなる群より選択される導電性材料を、機能性膜に含まれるチタン又はケイ素1質量部に対し、0.1質量部~10質量部含み、
     四探針法により測定した電気抵抗値が、10Ωcm以下である請求項1~請求項5のいずれか1項に記載の機能性膜。
    Further, a conductive material selected from the group consisting of carbon nanotubes, carbon black, and conductive metal particles is contained in an amount of 0.1 part by mass to 10 parts by mass with respect to 1 part by mass of titanium or silicon contained in the functional film. ,
    Four probe electrical resistance value measured by the probe method is functional film according to any one of claims 1 to 5 is 10 6 [Omega] cm or less.
  7.  さらに、リチウム化合物を含み、リチウム固体電解質膜である請求項4に記載の機能性膜。 The functional membrane according to claim 4, further containing a lithium compound and being a lithium solid electrolyte membrane.
  8.  基材と、
     前記基材上に、請求項1~請求項7のいずれか1項に記載の機能性膜と、を有する機能性膜積層体。
    With the base material
    A functional film laminate having the functional film according to any one of claims 1 to 7 on the substrate.
  9.  前記基材が、フッ素ドープ酸化スズ基材、インジウムドープ酸化スズ基材、樹脂基材、青板ガラス基材、金属基材、及びセラミックス基材からなる群より選択される基材である請求項8に記載の機能性膜積層体。 8. The base material is a base material selected from the group consisting of a fluorine-doped tin oxide base material, an indium-doped tin oxide base material, a resin base material, a blue plate glass base material, a metal base material, and a ceramic base material. The functional film laminate according to.
  10.  アルコールを含む溶媒と、アニオン性チタン錯体又はアニオン性ケイ素錯体と、を含む機能性膜形成用組成物。 A composition for forming a functional film containing a solvent containing alcohol and an anionic titanium complex or an anionic silicon complex.
  11.  前記アニオン性チタン錯体又はアニオン性ケイ素錯体は、シュウ酸又はエチレンジアミン四酢酸を配位子とする錯体である請求項10に記載の機能性膜形成用組成物。 The functional film-forming composition according to claim 10, wherein the anionic titanium complex or anionic silicon complex is a complex having oxalic acid or ethylenediaminetetraacetic acid as a ligand.
  12.  アルコールを含む溶媒と、シュウ酸化合物、アミン化合物及びアミノカルボン酸からなる群より選択される少なくとも1種と、チタン化合物又は酸化ケイ素化合物とを混合して混合物を得る工程、及び、
     得られた混合物に、水又は過酸化水素を加えて、還流する工程を含む機能性膜形成用組成物の製造方法。
    A step of mixing a solvent containing an alcohol, at least one selected from the group consisting of an oxalic acid compound, an amine compound and an aminocarboxylic acid, and a titanium compound or a silicon oxide compound to obtain a mixture, and
    A method for producing a composition for forming a functional film, which comprises a step of adding water or hydrogen peroxide to the obtained mixture and refluxing the mixture.
  13.  請求項10又は請求項11に記載の機能性膜形成用組成物を基材に付与して、機能性膜形成用組成物層を形成する工程、及び、
     基材上に形成された前記機能性膜形成用組成物層に紫外線を照射して、機能性膜形成用組成物から有機物を除去し、機能性膜を得る工程を含む機能性膜積層体の製造方法。
    A step of applying the functional film-forming composition according to claim 10 or 11 to a substrate to form a functional film-forming composition layer, and
    A functional film laminate including a step of irradiating the functional film-forming composition layer formed on a substrate with ultraviolet rays to remove organic substances from the functional film-forming composition to obtain a functional film. Production method.
PCT/JP2020/031716 2019-08-28 2020-08-21 Functional film, functional film laminate, composition for forming functional film, method for producing composition for forming functional film, and method for producing functional film laminate WO2021039669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542860A JP7477889B2 (en) 2019-08-28 2020-08-21 Functional film, functional film laminate, composition for forming functional film, method for producing composition for forming functional film, and method for producing functional film laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019156070 2019-08-28
JP2019-156070 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021039669A1 true WO2021039669A1 (en) 2021-03-04

Family

ID=74685563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031716 WO2021039669A1 (en) 2019-08-28 2020-08-21 Functional film, functional film laminate, composition for forming functional film, method for producing composition for forming functional film, and method for producing functional film laminate

Country Status (2)

Country Link
JP (1) JP7477889B2 (en)
WO (1) WO2021039669A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129759A (en) * 1997-07-09 1999-02-02 Teikoku Chem Ind Corp Ltd Coating solution composition for forming thin titania film and formation the film
JP2007070202A (en) * 2005-09-09 2007-03-22 Tftech:Kk Method for producing multilayered titanium dioxide film having highly-efficient optically-active titanium dioxide film and visible-light-responsive interface, and method for producing solution composition for forming the film
JP2012211068A (en) * 2011-02-14 2012-11-01 Imec Electron transport titanium oxide layer
JP2013012481A (en) * 2011-01-16 2013-01-17 Nanomembrane Technologies Inc Inorganic solid ion conductor and manufacturing method therefor, and electrochemical device
JP2014088291A (en) * 2012-10-31 2014-05-15 Mitsubishi Materials Corp Method of producing silicon oxide powder
JP2019125579A (en) * 2015-07-07 2019-07-25 信越化学工業株式会社 Production method of negative electrode active material for nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845676B2 (en) 2011-07-20 2016-01-20 コニカミノルタ株式会社 Method for producing gas barrier film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129759A (en) * 1997-07-09 1999-02-02 Teikoku Chem Ind Corp Ltd Coating solution composition for forming thin titania film and formation the film
JP2007070202A (en) * 2005-09-09 2007-03-22 Tftech:Kk Method for producing multilayered titanium dioxide film having highly-efficient optically-active titanium dioxide film and visible-light-responsive interface, and method for producing solution composition for forming the film
JP2013012481A (en) * 2011-01-16 2013-01-17 Nanomembrane Technologies Inc Inorganic solid ion conductor and manufacturing method therefor, and electrochemical device
JP2012211068A (en) * 2011-02-14 2012-11-01 Imec Electron transport titanium oxide layer
JP2014088291A (en) * 2012-10-31 2014-05-15 Mitsubishi Materials Corp Method of producing silicon oxide powder
JP2019125579A (en) * 2015-07-07 2019-07-25 信越化学工業株式会社 Production method of negative electrode active material for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP7477889B2 (en) 2024-05-02
JPWO2021039669A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
TWI377176B (en)
Li et al. A hierarchically ordered TiO2 hemispherical particle array with hexagonal‐non‐close‐packed tops: synthesis and stable superhydrophilicity without UV irradiation
Orel et al. Structural and FTIR spectroscopic studies of gel-xerogel-oxide transitions of SnO2 and SnO2: Sb powders and dip-coated films prepared via inorganic sol-gel route
JP5150630B2 (en) Method for producing transparent conductive thin film
JP5326307B2 (en) Silica porous body, laminated body and composition for optical use, and method for producing silica porous body
JP2009072753A (en) Photocatalytic composition for anti-reflection and glass substrate using the composition
Ju et al. Periodic Micropillar‐Patterned FTO/BiVO4 with Superior Light Absorption and Separation Efficiency for Efficient PEC Performance
KR20100099741A (en) Hybrid vehicle systems
KR101401754B1 (en) Superhydrophobic coating solution composition and method for producing the coating composition
Zhang et al. Hydrophobic modification of ZnO nanostructures surface using silane coupling agent
Eshaghi et al. Investigation of superhydrophilic mechanism of titania nano layer thin film—Silica and indium oxide dopant effect
Mangalam et al. Modification of NiOx hole transport layers with 4-bromobenzylphosphonic acid and its influence on the performance of lead halide perovskite solar cells
Addonizio et al. Amorphous hybrid TiO2 thin films: The role of organic ligands and UV irradiation
Kim et al. Multi-purpose overcoating layers based on PVA/silane hybrid composites for highly transparent, flexible, and durable AgNW/PEDOT: PSS films
Keshavarzi et al. Improving efficiency and stability of carbon‐based perovskite solar cells by a multifunctional triple‐layer system: antireflective, uv‐protective, superhydrophobic, and self‐cleaning
Smitha et al. ORMOSIL–ZrO 2 hybrid nanocomposites and coatings on aluminium alloys for corrosion resistance; a sol–gel approach
Armelao et al. Cobalt oxide-based films: sol–gel synthesis and characterization
KR20140071226A (en) Barrier film and method of manufacturing the same
WO2021039669A1 (en) Functional film, functional film laminate, composition for forming functional film, method for producing composition for forming functional film, and method for producing functional film laminate
KR101914246B1 (en) The composition for protecting ultraviolet and method for preparing the same
JPWO2016121404A1 (en) GLASS PLATE WITH LOW-REFLECTION COATING, METHOD FOR PRODUCING SUBSTRATE WITH LOW-REFLECTION COATING, AND COATING SOLUTION FOR FORMING LOW-REFLECTION COATING OF SUBSTRATE WITH LOW-REFLECTION COATING
JP2019126785A (en) Titanium oxide film, method for production thereof, and structure thereof
JP6560210B2 (en) Low reflection coating, substrate with low reflection coating and photoelectric conversion device
Manjumol et al. A hybrid sol–gel approach for novel photoactive and hydrophobic titania coatings on aluminium metal surfaces
Khan et al. Nano gold coated hierarchically porous zinc titanium oxide sol–gel based thin film: fabrication and photoelectrochemical activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857200

Country of ref document: EP

Kind code of ref document: A1