WO2021039659A1 - Method for producing thrip-resistant plant - Google Patents

Method for producing thrip-resistant plant Download PDF

Info

Publication number
WO2021039659A1
WO2021039659A1 PCT/JP2020/031698 JP2020031698W WO2021039659A1 WO 2021039659 A1 WO2021039659 A1 WO 2021039659A1 JP 2020031698 W JP2020031698 W JP 2020031698W WO 2021039659 A1 WO2021039659 A1 WO 2021039659A1
Authority
WO
WIPO (PCT)
Prior art keywords
mlx56
thrips
plant
family protein
gene
Prior art date
Application number
PCT/JP2020/031698
Other languages
French (fr)
Japanese (ja)
Inventor
浩太郎 今野
光原 一朗
未果 村田
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Priority to JP2021542854A priority Critical patent/JPWO2021039659A1/ja
Publication of WO2021039659A1 publication Critical patent/WO2021039659A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates

Definitions

  • the present invention relates to a method for producing a thrips-resistant plant.
  • insect-resistant crops have been produced by breeding based on crossing between existing varieties, but developing insect-resistant crops by such traditional breeding methods requires enormous time and cost, and it takes a huge amount of time and cost. Not efficient.
  • Bt protein is derived from bacteria, there is a strong sense of resistance when it is used in genetically modified crops, and the use of plant-derived insect-resistant protein is desired.
  • Known plant-derived insect-resistant proteins include cowpea-derived protein inhibitors (Patent Document 1), green bean-derived amylase inhibitors (Non-Patent Document 1), and snowdrop-derived lectins (Patent Document 2).
  • Patent Document 1 cowpea-derived protein inhibitors
  • Non-Patent Document 1 green bean-derived amylase inhibitors
  • Snowdrop-derived lectins Patent Document 2
  • the insect-resistant effects of lectins and digestive enzyme inhibitory proteins are not always sufficient.
  • Patent Document 3 describes that when an MLX56 protein isolated from quail emulsion and having chitin-binding activity but not chitinase activity is fed to a lepidopteran insect larva, the weight gain of the larva is remarkable. It discloses that it suppressed and brought about a high growth inhibitory effect.
  • the LA-b protein contained in quail emulsion which has an amino acid sequence similar to that of the MLX56 protein but has chitinase activity, has a growth inhibitory effect and an insecticidal effect when fed to larvae of Drosophila. It is disclosed that these effects are considered to be due to the chitinase activity of the LA-b protein.
  • Non-Patent Document 2 the MLX56 family protein including MLX56 protein and LA-b is specific to the peritrophic membrane (tube-shaped, usually extremely thin membrane containing chitin as the main component) existing in the digestive tract of many insects. It has been reported that the abnormal thickening of the peritrophic membrane by binding to each other causes digestive dysfunction, resulting in a growth-inhibiting effect.
  • the MLX56 family protein is a repetitive sequence of two chitin-binding domains (Hevein-like domains) and an Extensin domain (Ser-Pro-Pro-Pro) sandwiched between them in the N-terminal region of the mature protein. It is considered that abnormal thickening of the peritrophic membrane occurs due to the binding of the hebein-like domain to chitin of the peritrophic membrane and the swelling of the extensin domain (Non-Patent Document 2).
  • Thrips (Stonefly) is not only a difficult-to-control pest, but also carries a virus, and even a small number of individuals cause great damage to plants, so the development of a more effective control method is desired. Thrips are known to lack the peritrophic membrane (Non-Patent Document 3).
  • An object of the present invention is to provide an efficient method for producing a thrips-tolerant plant.
  • the present inventors have found that the MLX56 family protein has a control effect on thrips, and have completed the present invention.
  • the present invention includes the following.
  • a method for producing a thrips-resistant transformed plant which comprises introducing a MLX56 family protein gene into a plant and testing the thrips resistance of the transformed plant into which the gene has been introduced.
  • thrips is a western flower thrips (Frankliniella occidentalis) or a western flower thrips (Thrips palmi).
  • MLX56 family protein gene Use of the MLX56 family protein gene to confer thrips resistance on plants by gene transfer.
  • Azalea resistance including mating using a transformant of Azalea resistance having an exogenous MLX56 family protein gene as a breeding parent, obtaining offspring plants, and selecting offspring plants having the MLX56 family protein gene. How to breed plants.
  • a method for controlling thrips which comprises feeding thrips a transformed plant resistant to thrips having an exogenous MLX56 family protein gene.
  • a plant having thrips resistance can be efficiently produced.
  • FIG. 1 is a schematic diagram of the structure of the T-DNA region of the binary plasmid vector pEL2 ⁇ :: MLX56.
  • FIG. 2 shows the expression level of the exogenous MLX56 gene (relative expression level compared to the actin expression level) in the transformed tomato plant.
  • FIG. 3 is a photograph showing the results of SDS-PAGE analysis of a protein extract from a transformed tomato plant and its fraction. Left: Negative control, Right: MLX56-73-30 system.
  • T crude protein extract (Total), S: unbound supernatant (Unbound sup), W: washing solution (Wash), U: urea fraction (Urea), E: chitin-binding substance elution fraction (Elute).
  • FIG. 4 shows the survival number of thrips after 2 weeks in the thrips resistance test using transformed tomato plants. A, b, and c in the figure indicate that there is a statistically significant difference between the strains.
  • FIG. 5 is a photograph showing the appearance of the transformed tomato plant after 2 weeks in the thrips resistance test. A: Overall photo of the transformed tomato plant, B: Photo of the leaves of the transformed tomato plant. The state of feeding damage by thrips of tomato plants (A) and the feeding damage marks of leaves (B) were observed.
  • FIG. 6 is a photograph showing mite damage in a transformed tomato plant. A: Control plant, B: MLX56-69, C: MLX56-73.
  • the present invention relates to the control of thrips using the MLX56 family protein. More specifically, the present invention presents a method for producing a Zamiuma-resistant plant by introducing the MLX56 family protein gene into a plant, and a transformation having the exogenous MLX56 family protein gene thus obtained (transgenic). ) Regarding the control method of thistle horse using plants.
  • a gene encoding an MLX56 family protein is referred to as an MLX56 family protein gene.
  • the MLX56 family protein according to the present invention is a general term for the natural MLX56 protein contained in mulberry emulsion, its homologue, and their functional mutants and recombinant proteins.
  • An example of the amino acid sequence of the natural MLX56 protein contained in mulberry emulsion is shown in SEQ ID NO: 2, and an example of the MLX56 gene (ORF / CDS sequence) encoding it is shown in SEQ ID NO: 1.
  • the MLX56 family protein according to the present invention may be a protein consisting of the amino acid sequence shown in SEQ ID NO: 2.
  • the MLX56 family protein according to the present invention has the amino acid sequence shown in SEQ ID NO: 2, 80% or more, 83% or more, 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, 98% or more, 99. It may be a protein consisting of an amino acid sequence having% or more, 99.5% or more, 99.7% or more, or 100% sequence identity.
  • the MLX56 family proteins according to the present invention also have 1 to 20, 1 to 10, 1 to 9, 1 to 7, 1 to 5, 1 to 3, 1 to 20 in the amino acid sequence shown in SEQ ID NO: 2. It may be a protein consisting of an amino acid sequence containing deletions, substitutions, insertions, and / or additions of two or one amino acid residue.
  • the above MLX56 family protein preferably has a signal peptide (for example, the 1st to 21st amino acid sequences shown in SEQ ID NO: 2) at the N-terminal as a protein encoded by the MLX56 family protein gene.
  • the MLX56 family protein may consist of, for example, the 22nd to 415th sequences of the amino acid sequence shown in SEQ ID NO: 2 in the form of a mature protein in which the signal peptide is cleaved.
  • the MLX56 family protein according to the present invention has thrips control activity.
  • "having a thrips control activity” means that a protein having a signal peptide at the N-terminal exhibits thrips control activity at least in the state of a mature protein.
  • the MLX56 family protein according to the present invention may have chitin-binding activity.
  • a protein having a signal peptide at the N-terminal “has chitin-binding activity” means that it exhibits chitin-binding activity at least in the state of a mature protein.
  • the MLX56 family protein preferably has a characteristic structure of two chitin-binding domains (hebein-like domains) and an extensin domain sandwiched between them in the N-terminal region of the mature protein.
  • the chitin-binding domain (hebein-like domain) is a region showing homology to the amino acid sequence of hebein, which is a rubber latex, and is the 27th to 65th positions in the amino acid sequence shown in SEQ ID NO: 2 (SEQ ID NO: 9; It corresponds to the 127th to 165th (SEQ ID NO: 11; the second chitin-binding domain on the C-terminal side of the extensin domain) at the N-terminal side (first chitin-binding domain).
  • the MLX56 family protein may have a domain consisting of the amino acid sequence shown in SEQ ID NO: 9 as the N-terminal chitin-binding domain, or 80% or more, 85% or more, 90 with the amino acid sequence shown in SEQ ID NO: 9. It may consist of an amino acid sequence having% or more, 93% or more, 95% or more, or 100% sequence identity, and may have a domain having chitin-binding activity.
  • the MLX56 family protein may have a domain consisting of the amino acid sequence shown in SEQ ID NO: 11 as the C-terminal chitin-binding domain, or 80% or more, 85% or more, 90 with the amino acid sequence shown in SEQ ID NO: 11.
  • the extendin domain in the MLX56 family of proteins is preferably composed of repetitive sequences with Ser-Pro-Pro-Pro-Pro- (Pro) n as the repetitive unit.
  • Ser-Pro-Pro-Pro-Pro- (Pro) n is an integer of 0 or 1 or more, preferably 0 to 10, more preferably 0 to 3, for example, independently for each iteration unit. It can be 0, 1 or 2.
  • the extender domain may include a Ser-Pro-Pro-Pro-Pro repetitive sequence, i.e.
  • (Ser-Pro-Pro-Pro-Pro-Pro) m where m in the equation is, for example, an integer greater than or equal to 2, 3 to 15, more preferably 4 to 13, for example 4, 5, 6, 7, 8, 9 or 10.
  • the integer domain is, for example, Ser-Pro-Pro-Pro-Pro-Ser-Pro-Pro-Pro-Pro-Pro-Pro- (Ser-Pro-Pro-Pro) m'.
  • M'in the equation may be an integer greater than or equal to 1, preferably 2 to 10, more preferably 3 to 8, for example 4, 5, 6, 7 or 8.
  • the extendin domain in the MLX56 family protein corresponds to positions 67 to 118 (SEQ ID NO: 10) in the amino acid sequence shown in SEQ ID NO: 2.
  • the extendin domain can be swellable.
  • the MLX56 family protein may also have a chitinase-like domain, preferably on the C-terminal side of the second chitin binding domain. However, the MLX56 family protein may or may not have chitinase activity, i.e., the chitinase-like domain in the MLX56 family protein may, in some cases, not have chitinase activity.
  • the LA-b protein which is a homologue of the MLX56 protein, typically has chitinase activity.
  • the amino acid sequence of the LA-b protein has about 92.8% sequence identity with the amino acid sequence shown in SEQ ID NO: 2.
  • amino acid changes such as deletion, substitution, insertion, or addition in the MLX56 family protein as compared with the amino acid sequence shown in SEQ ID NO: 2 can retain the functionality of the MLX56 family protein.
  • Substitutions of amino acids compared to the amino acid sequence shown in SEQ ID NO: 2 are preferably, but not limited to, conservative substitutions.
  • Conservative substitutions include, for example, polar uncharged amino acids (serine, threonine, glutamine, aspartic acid, or cysteine), aromatic amino acids (phenylalanine, tyrosine, or tryptophan), acidic amino acids (polar charge; glutamic acid, or aspartic acid), bases.
  • Sexual amino acids (polar charge; lysine, arginine, or histidine), hydrophobic amino acids (alanine, valine, leucine, isoleucine, methionine, proline, phenylalanine, tryptophan), aliphatic amino acids (hydrophobicity; alanin or glycine), branched amino acids Within similar groups of (hydrophobic; valine, leucine, or isoleucine) or hydrophilic amino acids (serine, threonine, aspartic acid, glutamine, tyrosine, tryptophan, cysteine, lysine, arginine, histidine, aspartic acid and glutamic acid). It can be a replacement.
  • the MLX56 family protein is deleted in the above signal peptide in the first chitin binding domain, in the second chitin binding domain and / or in the extendin domain as compared to the amino acid sequence shown in SEQ ID NO: 2. , Substitution, insertion, or addition, preferably not including amino acid changes.
  • the MLX56 family protein is deleted, substituted, in all of the above signal peptides, as well as the two chitin-binding domains and the extensin domain sandwiched therein, as compared to the amino acid sequence shown in SEQ ID NO: 2. Does not include amino acid changes such as insertions or additions.
  • the MLX56 family protein gene according to the present invention encodes the above MLX56 family protein.
  • the MLX56 family protein gene according to the present invention may be a gene consisting of the nucleotide sequence shown in SEQ ID NO: 1.
  • the MLX56 family protein gene according to the present invention contains the nucleotide sequence shown in SEQ ID NO: 1 and 80% or more, 83% or more, 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, 98% or more, It may be a gene consisting of a base sequence having 99% or more, 99.5% or more, 99.7% or more, 99.8% or more, 99.9% or more, or 100% sequence identity.
  • the MLX56 family protein gene according to the present invention may be a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 2, the amino acid sequence shown in SEQ ID NO: 2 or the 22nd to 415th amino acids of SEQ ID NO: 2. Sequence and 80% or more, 83% or more, 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, 98% or more, 99% or more, 99.5% or more, 99.7% or more, or 100% It may be a gene encoding a protein consisting of an amino acid sequence having sequence identity.
  • the MLX56 family protein gene according to the present invention also has 1 to 20, 1 to 10, 1 to 9, and 1 to 7 in the amino acid sequence shown in SEQ ID NO: 2 or the 22nd to 415th amino acid sequences of SEQ ID NO: 2.
  • the proteins encoded by these MLX56 family protein genes (MLX56 family proteins) have thrips control activity.
  • the protein encoded by the MLX56 family protein gene may also have chitin-binding activity.
  • the above description of the MLX56 family protein also applies to proteins encoded by the MLX56 family protein gene.
  • the MLX56 family protein genes are, for example, the following a) to c) :.
  • sequence identity (%) with respect to a specific amino acid sequence or base sequence means the sequence identity (%) with respect to the total length of the specific amino acid sequence or base sequence.
  • the MLX56 family protein gene can be prepared by a conventional method. For example, a region containing the full length of the open reading frame (ORF) or protein coding sequence (CDS) of the MLX56 family protein gene using cDNA reverse-transcribed from total mRNA derived from mulberry (for example, Morus alba L.) as a template.
  • mulberry means a plant of the genus Morus unless otherwise specified.
  • mulberries are Mulberry (Morus alba L.), Yamagwa (Morus australis Poir.), Kegwa (Morus cathayana Hemsl.), Ogasawara rugwa (Morus boninensis Koidz.), Hachijogwa (Morus kagayamae Koidz.), Yamabe folia.
  • the introduction of mutations into the MLX56 family protein gene can be performed by a conventional method.
  • a short oligonucleotide in which the desired mutation is introduced into a sequence homologous to the target gene (such as the MLX56 family protein gene consisting of the nucleotide sequence shown in SEQ ID NO: 1) is introduced into a plant cell, and the mismatch repair mechanism of the cell is used.
  • Oligonucleotide-Directed Mutagenesis which induces the desired mutation on the genome, or a short oligo in which the desired mutation is introduced into a sequence homologous to the zinc finger nuclease (ZFN) and the target gene.
  • a site-specific mutagenesis method such as a ZFN-mediated mutagenesis method using nucleotides can be used.
  • the above mutation may be introduced into a target gene via homologous recombination by introducing the MLX56 family protein gene or a nucleic acid fragment containing a mutation site thereof into a plant cell as a template DNA.
  • the isolated MLX56 family protein gene may be modified by an arbitrary mutagenesis method such as the Kunkel method or the Gapped duplex method. Mutation transfer into a gene can also be carried out using, for example, a commercially available site-specific mutagenesis kit.
  • the "gene” in the present specification may be DNA, RNA (mRNA, etc.), a chimeric nucleic acid of DNA and RNA, or an artificial base-containing nucleic acid.
  • the gene may consist of a protein coding sequence (start codon to stop codon; CDS), a 5'untranslated region including a translation start site, a polyadenilation signal, and an RNA degradability control region. 3'Untranslated region including, etc. may be further included.
  • the present invention relates to a method for producing a thrips-resistant transformed plant, which comprises introducing the MLX56 family protein gene into a plant and examining the thrips resistance of the transformed plant into which the gene has been introduced.
  • the MLX56 family protein gene is preferably exogenous to the plant to be introduced.
  • the "foreign" or “foreign MLX56 family protein gene" for an MLX56 family protein gene is whether the MLX56 family protein gene is (i) not naturally present in the genome of the species of the host plant to which the gene is introduced. (ii) Even if the gene is naturally occurring in the species, it does not exist in the genome of the host plant line or individual to which the gene is introduced, or (iii) in the genome of the species, line or individual of the host plant to which the gene is introduced. It means that the MLX56 family protein gene is in a state of being excised or isolated from a naturally occurring site.
  • a plant having an exogenous MLX56 family protein gene is a transformed plant having a heterologous MLX56 family protein gene or having an additional MLX56 family protein gene.
  • the exogenous MLX56 family protein gene can be introduced into plants by genetic engineering.
  • any method used for plant transformation for example, Agrobacterium method, particle gun method, electroporation method, whisker method, polyethylene glycol (PEG).
  • Method, microinjection method, protoplast fusion method and the like can be used. Details of these plant transformation methods can be found in general textbooks such as “Transformation Protocol” (2012) edited by Yutaka Tabei, and Horsch et al., "A Simple and General Method for Transferring Genes into”. Plants. "Science, (1985) 227 (4691): 1229-1231, and Sun et al.," A highly Efficient Transformation Protocol for Micro-Tom, a Model Cultivar for Tomato Functional Genomics. "Plant Cell Physiol., 2006 ) 47, 426-431, etc. can be referred to.
  • a vector in which the MLX56 family protein gene is incorporated in the T-DNA region of a vector suitable for the Agrobacterium method (usually a binary vector) is used as an appropriate Agrobacterium, for example, Agrobacterium.
  • Agrobacterium for example, Agrobacterium.
  • -It may be introduced into Agrobacterium tumefaciens by an electroporation method or the like, and Agrobacterium carrying the vector may be inoculated into plant cells, curls, leaf sections, leaflets and the like to infect them.
  • the T-DNA region is a region sandwiched between the right border sequence (RB) and the left border sequence (LB) existing in the extrachromosomal vector of Agrobacterium, and is a plant transformation by Agrobacterium.
  • Suitable Agrobacterium includes, but is not limited to, strains such as LBA4404, GV3101, C58, C58C1Rif (R) , EHA101, EHA105, and AGL1.
  • the MLX56 family protein gene in the T-DNA region is integrated into the genome in the plant cell, and transformed plant cells can be obtained.
  • the term "genome” simply means a nuclear genome in principle.
  • sections such as plant leaves may be used, or protoplasts may be prepared and used (Christou P, et al., Bio / technology (1991) 9: 957-962).
  • a gene transfer device for example, PDS-1000 (BIO-RAD), etc.
  • PDS-1000 BIO-RAD
  • the operating conditions can usually be performed at a pressure of about 450 to 2000 psi and a distance of about 4 to 12 cm.
  • the MLX56 family protein gene is preferably introduced into the plant genome (nuclear genome).
  • the MLX56 family protein gene may be introduced into the chloroplast genome of a plant.
  • a transformation vector or expression cassette suitable for introduction into the chloroplast genome it is preferable to use a transformation vector or expression cassette suitable for introduction into the chloroplast genome.
  • Such transformation vectors or expression cassettes preferably contain the MLX56 family protein gene under the control of promoters and terminators suitable for expression in the chloroplast.
  • Promoters suitable for expression in chloroplasts include, but are not limited to, rrn promoter, psbA promoter, rrn-T7g10 and the like.
  • terminators suitable for expression in chloroplasts include, but are not limited to, psbA terminator, rsp16 terminator, and rbcL terminator.
  • Such a transformation vector or expression cassette preferably contains two homologous sequences derived from the chloroplast genome (eg, the region around trnI-trnA) so as to sandwich the introduction sequence of the MLX56 family protein gene or the like.
  • the gene of interest can be efficiently introduced into the chloroplast genome by homologous recombination with the chloroplast genome based on their homologous sequence in the transformation vector or expression cassette. Numerous combinations of homologous sequences from the chloroplast genome have been reported that can be used for such transformation.
  • the MLX56 family protein gene is introduced into plants in an expressible state.
  • the MLX56 family protein gene is preferably under the control of a plant-functioning promoter (plant expression promoter) in the T-DNA region and in the integrated plant.
  • the MLX56 family protein gene is preferably operably linked to a plant expression promoter (typically downstream of the plant expression promoter).
  • the plant expression promoter is not limited to the following, but may be a constitutive promoter, a tissue-specific promoter, a time-specific promoter, an injury (eg, disease or insect damage) -inducible promoter, or the like. It may be an inducible promoter. Constitutive promoters can constitutively induce systemic gene expression.
  • a tissue-specific promoter or a time-specific promoter can induce gene expression specifically in a specific tissue or time, and in the present invention, it is particularly preferable to be able to induce gene expression in leaves.
  • Injury-inducing promoters can induce gene expression depending on injury stimuli such as insect damage.
  • a constitutive promoter for the purpose of constantly imparting thrips resistance to plants.
  • the "promoter” means a DNA sequence capable of inducing the expression of a gene under its control, and may further include an enhancer sequence or the like.
  • the plant expression promoter used to induce the expression of the MLX56 family protein gene is not limited to the following, but is, for example, the E12 ⁇ promoter (Mitsuhara et al. (1996) Plant Cell Physiol. 37: 49-59). , CaMV35S promoter, ubiquitin promoter, tobacco PR1a promoter, tobacco PI2 promoter, NCR promoter, ADH promoter, NOS promoter, CaMV35Sp / ADH5'-UTR and the like.
  • the E12 ⁇ promoter, CaMV35S promoter, ubiquitin promoter, NCR promoter, ADH promoter, NOS promoter, and CaMV35Sp / ADH5'-UTR are constitutive promoters.
  • the tobacco PR1a promoter is a disease-inducing promoter
  • the tobacco PI2 promoter is a pest-inducing promoter.
  • the E12 ⁇ promoter is the El2 enhancer (5'upstream region of cauliflower mosaic virus 35S promoter -419 to -90 sequence)-(cauliflower mosaic virus 35S promoter -1 to -90 sequence)- ⁇ (tobacco mosaic virus genome). It is a highly expressed promoter having the composition of ⁇ sequence) in the 5'untranslated region of RNA.
  • the promoter for plant expression is a high expression promoter (overexpression promoter).
  • the promoter for plant expression for inducing the expression of the MLX56 family protein gene is preferably not a natural promoter of the MLX56 family protein gene, and may be a heterologous promoter for the MLX56 family protein gene.
  • the plant expression promoter may be used in combination with various terminators (although not limited to, a plant expression terminator is more preferable).
  • the vector or expression cassette used to introduce the MLX56 family protein gene into plants is the expression-stabilizing sequence ASR (anti-silencing region; Kishimoto et al., PLoS One. 2013; 8 (1): e54670. Doi: 10.1371 / journal.pone.0054670) may be included.
  • the MLX56 family protein gene may be introduced into plants with the expression stabilizing sequence ASR. In that case, the MLX56 family protein gene is preferably introduced into the plant under the control of ASR, and the MLX56 family protein gene is preferably operably linked to ASR.
  • the plant into which the MLX56 family protein gene is introduced may be any plant that thrips feeds (thrips parasite).
  • the plant into which the MLX56 family protein gene is introduced may be a monocotyledonous plant or a dicotyledonous plant.
  • Examples of plants into which the MLX56 family protein gene is introduced include, but are not limited to: Gramineae plants (wheat such as wheat and barley, rice, corn, grass, etc.) Legumes (dice, green beans, sardines, adzuki beans, pea, broad beans, chickpeas, etc.) Solanaceae plants (tomatoes, eggplants, peppers, peppers, tobacco, potatoes, etc.) Cucurbitaceae plants (cucumber, melon, pumpkin, watermelon, etc.) Cruciferous plants (cabbage, rapeseed, rapeseed, mustard (Brassica), etc.) Malvaceae plants (cotton, okra, etc.) Amaryllidaceae plants (onions, leeks, garlic, etc.) Rosaceae plants (strawberry, pear, peach, apple, apricot, plum, plum, cherry, rose, etc.) Rutaceae plants (citrus fruits such as
  • the plant into which the MLX56 family protein gene is introduced is not a mulberry plant (mulberry).
  • Plant cells, callus, leaf sections, or leaflets into which the MLX56 family protein gene has been introduced are cultured in a selective medium according to, for example, a conventionally known plant tissue culture method, and the surviving callus is subjected to a redifferentiation medium (appropriate concentration).
  • plant hormones including auxin, cytokinin, gibberellin, absidic acid, ethylene, or brushnolide
  • plants transformed by the introduction of the MLX56 family protein gene can be regenerated.
  • a transformed (transgenic) plant into which the MLX56 family protein gene has been introduced can be produced as described above.
  • Whether or not the MLX56 family protein gene has been reliably introduced into the plant may be confirmed by using a nucleic acid amplification method such as PCR method, a Southern hybridization method, a Northern hybridization method, a Western blotting method, or the like.
  • a nucleic acid amplification method such as PCR method, a Southern hybridization method, a Northern hybridization method, a Western blotting method, or the like.
  • genomic DNA extracted from the leaves of transformed plants or cDNA reverse-transcribed from total RNA may be amplified by PCR or the like using a primer specific to the MLX56 family protein gene.
  • the amplified product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with ethidium bromide, SYBR Green solution, etc., and the amplified product is detected as a clear band to the plant.
  • the introduction of the MLX56 family protein gene can be confirmed. It is also possible to bind the amplification product to a solid phase such as a microplate and detect the amplification product by fluorescence, enzymatic reaction or the like.
  • thrips resistance can be imparted to the plant.
  • the present invention also provides a method for conferring thrips resistance on a plant, which comprises introducing the MLX56 family protein gene into the plant described above.
  • the present invention also provides the use of the MLX56 family protein gene to confer thrips resistance on plants by gene transfer.
  • the transformed plant into which the MLX56 family protein gene has been introduced After introducing the MLX56 family protein gene into the plant, to determine whether the transformed plant into which the MLX56 family protein gene has been introduced has thrips resistance and, in some cases, to determine the degree of thrips resistance acquired. It is preferable to test the thrips resistance of the transformed plant. Azamiuma resistance in transformed plants into which the MLX56 family protein gene has been introduced is enhanced (preferably statistically significantly) compared to comparable control plants except that they have not been introduced with the MLX56 family protein gene. If so, the test plant (transformed plant) is shown to be resistant to thistle horse.
  • Azamiuma resistance can be tested using a plant after the introduction of the MLX56 family protein gene, for example, a transformed plant cell or a transformed plant obtained by the gene transfer, or a part thereof.
  • a plant into which the MLX56 family protein gene has been introduced and regenerated or a progeny plant thereof is maintained for a certain period of time (for example, 2 weeks) in the presence of the azalea under conditions in which the azalea cannot escape.
  • the level of thrips feeding damage to the test plant was observed and improved (preferably statistically significantly) compared to the thrips feeding damage level in the control plant. If so, it can be determined that the test plant (transformed plant) has thrips resistance.
  • the feeding damage level may be judged from the appearance when there is a large difference, but may be judged by comparing the feeding damage areas in the leaves, for example.
  • the surviving number of thrips is counted and compared to the surviving number of thrips in control plants.
  • the test plant can reduce the survival number of thrips that feed on it, i.e. it is determined to be thrips resistant. be able to. For example, 20 thrips were released in a closed space containing plants and maintained at 25 ⁇ 1 ° C for 2 weeks under the conditions of 14 hours light period / 10 hours dark period, and then thrips (larvae, pupae, adults) in the test plants. If the surviving number of (including) is reduced by 10% or more, preferably 20% or more, as compared with the surviving number of thrips in the control plant, it can be judged that the test plant has thrips resistance.
  • the thrips resistance of the transformed plant obtained by gene transfer can be tested, and the transformed plant having thrips resistance can be selected.
  • Thrips means an insect belonging to the order Thrips (Thysanoptera).
  • Thrips Thysanoptera
  • Thripidae are Thripidae, Thripidae (Aeolothripidae), Thripidae (Merothripidae), Thripidae (Phlaeothripidae), Thripidae (Fauriellidae), Thripidae (Fauriellidae), Thripidae (Fauriellidae) It may be a family (Uzelothripidae), but is not limited to these.
  • Thrips include, for example, Thrips, Anaphothrips, Chirothrips, Frankliniella, Fulmekiola, Hydatothrips, and Syltoslips.
  • Sericothrips Taeniothrips, Yoshinothrips, Helionothrips, Arrhenothrips, Ecacanthothrips, Ecacanthothrips
  • the genus Haplothrips the genus Holothrips, the genus Liothrips, the genus Litotetothrips, the genus Mychiothrips, the genus Oidanothrips, the genus Pentagonothrips.
  • Ponticulothrips Psalidothrips, Bactrothrips, or Gastrothrips, but is not limited to these.
  • thrips examples include Thrips flavus, Thrips tabaci, Thrips nigropilosus, Thrips coloratus, Thrips coloratus, Thrips thrips, Thrips thrips, Thrips thrips, Thrips thrips, Thrips thrips, Thrips thrips, Thrips thrips, Thrips thrips ), Thrips thrips (Thrips setosus), Thrips alliorum, Thrips thrips (Anaphothrips obscurus), Thrips palmi Karny (Chirothrips manicatus), Thrips palmi Karny (Chirothrips manicatus), Thrips palmi Karny ), Kahonkahana thrips (Frankliniella tenuicornis), Satoukibichibia thrips (Fulmekiola serrata), Haraobia thrips (Hydatoth
  • Transformed plants (P generation) into which the MLX56 family protein gene has been introduced and confirmed to have thrips resistance are self-mated, seeds are collected, and next-generation plants (F1 plants or later generation plants) are cultivated. You may.
  • Next-generation plants may have the MLX56 family protein gene heterozygous or homozygous in the nuclear genome.
  • next-generation plants may have some chloroplasts transformed with the MLX56 family protein gene (heteroplasmy), all or most. All chloroplasts may be transformed with the MLX56 family protein gene (homoplasmy).
  • the MLX56 family protein genes, whether heterozygous or homozygous, can result in thrips resistance.
  • Transformed plants carrying the MLX56 family protein gene can be propagated by sexual reproduction (autologous or allogeneic) or asexual reproduction (vegetative reproduction, clonal reproduction, etc.).
  • sexual reproduction autologous or allogeneic
  • asexual reproduction vegetative reproduction, cloning
  • a plant directly obtained by introducing the MLX56 family protein gene using a transformation technique.
  • a plant produced by (cultivation, etc.) is called a progeny plant.
  • Offspring plants that inherit the exogenous MLX56 family protein gene from P generation plants are also included in the range of transformed plants that carry the MLX56 family protein gene, and the exogenous MLX56 family protein gene introduced into P generation plants is , It is also called an exogenous MLX56 family protein gene in offspring plants that inherit it.
  • the present invention comprises mating using a lizard-resistant transformed plant having an exogenous MLX56 family protein gene as a breeding parent to obtain a progeny plant and selecting a progeny plant having the MLX56 family protein gene. Breeding methods for resistant plants are also provided.
  • "Mating using a transformed plant according to the present invention as a breeding parent” means that the transformed plant according to the present invention is used for the purpose of introducing an exogenous MLX56 family protein gene in a transformed plant resistant to horse mackerel into a progeny plant. It means that plants are crossed with each other (self-mating), or the transformed plant according to the present invention is crossed with a plant of the same species, a different strain or a closely related species. Mating may be performed once or repeatedly.
  • the transformed plant according to the present invention is crossed with a plant of the same species or a closely related species (repeated parent), the progeny plant is mated with the repetitive parent (backcross), and the progeny plant is further mated with the repetitive parent. May be repeated (continuous backcrossing).
  • the transformed plant according to the present invention may be crossed with a plant of the same species or a closely related species, and the progeny plant thereof may be crossed with another plant of the same species or a closely related species.
  • Selection of progeny plants having the MLX56 family protein gene can be performed by detecting the MLX56 family protein gene or its gene product (mRNA or MLX56 family protein) in the plant.
  • progeny plants having the MLX56 family protein gene it is also preferable to test thrips resistance of progeny plants having the MLX56 family protein gene and select progeny plants having thrips resistance.
  • By obtaining offspring plants in this way and selecting offspring plants having the MLX56 family protein gene it is possible to breed plants having the Azamiuma resistance conferred by the MLX56 family protein gene.
  • the present invention also provides a method for controlling thrips, which comprises feeding thrips a transformed plant resistant to thrips having an exogenous MLX56 family protein gene.
  • the present invention also relates to a method for controlling thrips, which comprises cultivating a thrips-resistant transformed plant having a exogenous MLX56 family protein gene in a thrips distribution area.
  • the thrips-resistant transformed plant having the exogenous MLX56 family protein gene according to the present invention can also be used as a counter plant for thrips control.
  • the present invention also provides a thrips control agent containing a thrips-resistant transformed plant having an exogenous MLX56 family protein gene or an MLX56 family protein isolated from the transformed plant.
  • the thrips control agent containing the plant body or seed of the transformed plant according to the present invention can be used as a counter plant for controlling thrips by reducing the population of thrips.
  • the thrips control agent containing the transformed plant according to the present invention for example, a part of the plant body (leaves, stems, etc.) or the MLX56 family protein isolated from the plant, can be thrips by a method such as sowing on farmland. It can be used to reduce the abundance of thrips.
  • the MLX56 family protein may be extracted from the transformed plant according to the present invention.
  • the MLX56 family protein expressed and accumulated in the transformed plant according to the present invention is sugar chain-modified.
  • the thrips control activity of the MLX56 family protein according to the present invention is preferably 10% or more, more preferably 10% or more, in terms of the number of thrips inhabiting the thrips by feeding the protein, as compared with the control group not given the MLX56 family protein. Can result in a reduction of 20% or more.
  • the term "plant” refers to various growth stages and parts of a plant, such as plant body (whole plant), stem, leaf, root, flower, bud, fruit (flesh, pericarp), shoot, seed, tissue, cell, And crows etc. are basically included.
  • the transformed plant according to the present invention may be a transformed plant cell, a transformed plant, or a part thereof (leaves, etc.).
  • the term "plant” in the present invention may refer to a plant, a part of a plant, or a cell or tissue depending on the context, but those skilled in the art can easily understand the meaning. ..
  • the present invention by introducing the MLX56 family protein gene into a plant, it is possible to efficiently enhance the thrips resistance of the plant as compared with the conventional breeding method.
  • Example 1 Construction of MLX56 expression plasmid vector and introduction into Agrobacterium
  • the binary vector pEL2 ⁇ -MCS (Ohtsubo, N., et al., (1999) Plant Cell) Physiol. 40: 808-817) was used.
  • pEL2 ⁇ -MCS contains a multicloning site (MCS) downstream of the E12 ⁇ promoter (Mitsuhara et al. (1996) Plant Cell Physiol. 37: 49-59) and contains a kanamycin resistance gene as a selectable marker gene.
  • the petiole of the mulberry variety Shinichinose (Morus alba L, cv. Shin-Ichinose) (produced in Tsukuba City, Ibaraki Prefecture) was cut, the emulsion secreted from the wound was recovered, and the total RNA was isolated from the emulsion.
  • CDNA was synthesized from total RNA (1 ⁇ g) using oligo-dT-Adapter primers (Takara Bio Inc., Kyoto, Japan) and TaKaRa One Step RNA PCR Kit (AMV) (Takara Bio Inc.).
  • nucleic acid amplification is performed by PCR using primers MLX56 ORF51 (5'-aattTCTAGAatgaagtttagaactcttttaatc-3'; SEQ ID NO: 3) and MLX56 ORF31 (5'-tataGAGCTCttacattcgagcaacttccga-3'; SEQ ID NO: 4).
  • MLX56 ORF51 5'-aattTCTAGAatgaagtttagaactctttttaatc-3'; SEQ ID NO: 3
  • MLX56 ORF31 5'-tataGAGCTCttacattcgagcaacttccga-3'; SEQ ID NO: 4
  • the obtained amplified fragment and the binary vector pEL2 ⁇ -MCS were cleaved with Xba1 and Sac1, and the cleaved ends were ligated with DNA ligase and introduced into competent cells of Escherichia coli JM109 strain.
  • E. coli colonies carrying the recombinant plasmid were selected based on kanamycin resistance, the plasmid was isolated, the inserts in the plasmid were sequenced, and the MLX56 gene ORF sequence (SEQ ID NO: 1) under the control of the E12 ⁇ promoter in the vector. Selected clones that were correctly inserted.
  • the MLX56 expression binary plasmid vector thus obtained was named pEL2 ⁇ :: MLX56.
  • the MLX56 gene containing the nucleotide sequence shown in SEQ ID NO: 1 encodes the MLX56 protein consisting of the amino acid sequence shown in SEQ ID NO: 2.
  • a schematic diagram of the structure of the T-DNA region of pEL2 ⁇ :: MLX56 is shown in FIG.
  • Example 2 Preparation of transgenic tomatoes The transformation in this example was obtained from the National Bio-Resource Center (NITE (NBRC); Japan), an independent administrative agency. Tomatoes (Solanum lycopersicum; variety name Micro-Tom) were used.
  • NITE National Bio-Resource Center
  • Micro-Tom Micro-Tom
  • the seeds are placed in a seeding medium and placed in a culture room at 25 ° C. for 7 to 10 days under 16-hour light period / 8-hour dark period conditions. It was cultured, germinated and grown. The cotyledon was cut out using a sterilized scalpel, the petiole and the tip were removed, and the cotyledon was divided into two parts perpendicular to the middle rib (cotyledon section) and subjected to subsequent transformation.
  • the cotyledon slices were picked up from the bacterial cell suspension with tweezers, placed on a sterile Kim towel to absorb the bacterial solution, placed in a coexisting medium, and co-cultured with Agrobacterium at 25 ° C in the dark. went.
  • the cotyledon slices were transplanted into a callus-inducing medium containing an antibiotic and cultured at 25 ° C. under 16-hour light period / 8-hour dark period conditions.
  • the medium was changed every 7 to 14 days, and the callus formed from the cotyledon section was transplanted to shoot-forming medium 1 in about 3 weeks, and the culture was continued for another 10 to 14 days, and then transplanted to new shoot-forming medium 1 again. Incubated for 10-14 days. Then, it was transplanted to shoot-forming medium 2, the medium was changed every 10 to 14 days, and when adventitious buds grew, it was transplanted to rooting medium. Plants whose rooting was observed by culturing in a rooting medium were extracted from the medium, transplanted to culture soil, and grown in a culture room. In this way, the transformed tomato plant could be regenerated.
  • the medium composition used is shown in Table 1 below.
  • Example 3 Confirmation of expression of transgene The confirmation of expression of the transgene (MLX56 gene) in the transformed tomato plant is carried out according to the method described in Kawazu et al. (2012) Arthropod-Plant Interactions, 6: 221-230. It was conducted. Specifically, first, about 100 mg of upper-developed leaves were cut from the plant individuals regenerated according to Example 2, and frozen in liquid nitrogen. Frozen leaf samples were crushed using a mortar and pestle cooled with liquid nitrogen, and then total RNA was extracted. Extraction of total RNA was performed using the TRIzol (R) reagent (Thermo Fisher Scientific) and according to the manufacturer's instructions. After extraction, the RNA-containing pellet obtained by isopropanol precipitation was dissolved in TE buffer.
  • RNA was obtained total RNA as a template.
  • a reverse transcription reaction was carried out using the iScript TM cDNA synthesis kit (Bio-Rad) according to the manufacturer's instructions, and complementary DNA (cDNA) was synthesized (first-strand DNA).
  • cDNA complementary DNA
  • qRT-PCR and fluorescence detection were performed using a CFX96 real-time PCR analysis system (Bio-Rad) using first-stranded DNA as a template.
  • MLX56RT51 5'-CCAAGTCCACCTCCACCAAGTC-3'(SEQ ID NO: 5) and MLX56RT31: 5'-TTTCCGAGGGCTCTTCCACATC-3' (SEQ ID NO: 6), and premix iQ TM SuperMix (Bio) -Rad) was used.
  • QRT-PCR and fluorescence detection using tomato actin gene sequence detection primers (LeActinRT51: 5'-CCAGGTATTGCTGATAGAATGAG-3'(SEQ ID NO: 7) and LeActinRT31: 5'-GAGCCTCCAATCCAGACAC-3' (SEQ ID NO: 8)) as internal standards.
  • the relative value of the MLX56 gene measurement to the actin gene measurement was calculated, thereby expressing the amount of MLX56 mRNA in the leaf sample.
  • MLX56-69 Two lines of transformed tomatoes expressing the introduced MLX56 gene particularly strongly were obtained and named MLX56-69 and MLX56-73.
  • MLX56-69 the expression level of MLX56 mRNA was about 3 times that of the tomato actin gene
  • MLX56-73 the expression level of MLX56 mRNA was about 5 times that of the tomato actin gene (Fig. 2). ..
  • the expression level of the MLX56 gene was also confirmed in the plurality of next-generation plant individuals acquired in Example 4 described later.
  • Example 4 Detection of MLX56 protein
  • the accumulation of MLX56 protein in transformed tomato plants was confirmed by utilizing the chitin binding property of MLX56 protein.
  • the transformed tomato MLX56-73 obtained in Example 3 was self-mated to obtain a next-generation plant.
  • an extract solution (20 mM Tris-HCl (pH 9.5) and protease inhibitors cOmplete, Mini (Roche).
  • Addition in the amount according to the above; the same applies hereinafter in this example) 800 ⁇ L was added and ground with a dairy pot and a dairy stick.
  • the obtained grinding solution was centrifuged at 12,000 rpm for 5 minutes to remove insoluble matter, and the supernatant was collected to prepare a crude protein extract (Total).
  • transformed tomatoes variants of microtoms having the firefly luciferin gene under the control of the same promoter E12 ⁇ (Ueda et al., (2016) Journal of Plant Interactions, Vol.14, No.1, 73-78) 200 mg of the upper-developed leaves of Tomato was collected, and a crude protein extract was obtained in the same manner. Unless otherwise specified, leaf samples and extracts were treated in an ice-cooled state.
  • Example 5 Thrips resistance test The thrips resistance of the next-generation plant individuals of the transformed tomato strains MLX56-69 and MLX56-73 obtained in Examples 2 and 3 was examined. As a control, a transformed tomato (cultivar Microtom) having the firefly luciferin gene under the control of the promoter E12 ⁇ , which was the same as that used in Example 4, was used. Fifteen individuals were tested for each transformed tomato strain.
  • FIG. 5 shows a representative photograph of the appearance of the transformed tomato after the test period of 2 weeks.
  • the control plants were significantly damaged by thrips, but the MLX56-69 and MLX56-73 strains were clearly less damaged. It was shown that by introducing the MLX56 gene into plants, the resistance of thrips in plants can be significantly increased and the feeding damage caused by thrips can be reduced.
  • Example 6 Tick resistance test (comparative example) The tick resistance of transformed tomato strains MLX56-69 and MLX56-73, as well as the same control transformed tomato plants used in Example 5, was examined.
  • FIG. 6 shows a representative photograph of the appearance of the transformed tomato 26 days after inoculation.
  • MLX56-69, MLX56-73, and control plants were all found to be severely harmed by spider mites. Transduction of the MLX56 gene into plants has been shown to result in mite resistance.
  • Example 7 Conferring resistance to Thrips palmi Karny by transient expression of MLX56 gene in cucumber
  • transient expression of MLX56 gene in cucumber was induced to thrips thrips. We examined whether or not resistance could be imparted to cucumbers.
  • the plasmid vectors include pBE2113-GUS (control vector; Mitsuhara et al. 1996 Plant Cell Physiol. 37: 49-59) and pEL2 ⁇ -MCS (Ohtsubo, N. et al.,) Which is a modified vector of pBE2113-GUS. (1999)
  • Each plasmid vector was introduced into the Agrobacterium tumefaciens C58C1 strain by the electroporation method to prepare two types of Agrobacterium. Culturing of Agrobacterium, induction of infectivity, infection to plants, and transient expression were basically carried out according to the method described in Kawazu et al., Plant Biotechnology 29, 495-499 (2012).
  • the two types of Agrobacterium produced were cultured overnight, and after collecting each of them, the acetosyringone-containing buffer solution described in Kawazu et al., Plant Biotechnology 29, 495-499 (2012).
  • Suspension in (10 mM MES (pH 5.6), 10 mM MgCl 2 , 20 ⁇ M acetosyringone) at OD 600 0.2 and allowing to stand at room temperature for 3 hours induces infectivity of Agrobacterium and agro A bacterial suspension was prepared.
  • the unfolded 3rd leaf of cucumber (variety name: ZQ-7, growth stage: 5 weeks old) was cut out, and after cutting out a leaf piece with a diameter of 1.5 cm, the surface was washed and immersed in the above Agrobacterium suspension. ..
  • the Agrobacterium suspension was infiltrated into the intercellular spaces of the leaf pieces by lowering the atmospheric pressure of the suspension and the soaked leaf pieces and then returning the pressure to normal pressure. Then, the leaf pieces were taken out, the surface Agrobacterium suspension was absorbed by a paper towel to remove it, and then air-dried at room temperature to evaporate the excess water in the intercellular spaces.
  • the above leaf pieces were placed one by one in a manger cell, and one adult female Thrips palmi was encapsulated, and then bred at 25 ° C in the light period for 16 hours and the dark period for 8 hours. Eggs laid after 3 days were visualized by trypan blue staining, and the number of eggs laid per leaf was counted. The results are shown in Table 2.
  • the group using pBE2113-GUS-introduced leaf pieces is called the control group
  • the group using pEl2Omega :: MLX56-introduced leaf pieces is called the MLX56 group.
  • a plant having thrips resistance can be produced.
  • SEQ ID NO: 1 MLX56 ORF
  • SEQ ID NO: 2 MLX56 protein
  • SEQ ID NO: 3 Primer SEQ ID NO: 4: Primer SEQ ID NO: 5: Primer SEQ ID NO: 6: Primer SEQ ID NO: 7: Primer SEQ ID NO: 8: Primer SEQ ID NO: 9: First chitin binding domain
  • SEQ ID NO: 10 Extending Domain
  • SEQ ID NO: 11 Second Chitin Binding Domain

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention pertains to a method for producing a thrip-resistant transformed plant, the method comprising: introducing a MLX56 family protein gene into a plant; and assaying the thrip resistance of the transformed plant into which the gene has been introduced.

Description

アザミウマ耐性植物の作出方法How to create thrips-resistant plants
 本発明は、アザミウマ耐性植物の作出方法に関する。 The present invention relates to a method for producing a thrips-resistant plant.
 作物生産において虫害による損失は極めて大きく、防除のために大きなコストが必要となっている。従来、耐虫性作物の作出は既存品種間の交配に基づく育種によって行われてきたが、このような伝統的な育種方法で耐虫性作物を開発するには膨大な時間とコストがかかり、効率的とはいえない。 The loss due to insect damage is extremely large in crop production, and a large cost is required for control. Traditionally, insect-resistant crops have been produced by breeding based on crossing between existing varieties, but developing insect-resistant crops by such traditional breeding methods requires enormous time and cost, and it takes a huge amount of time and cost. Not efficient.
 近年では耐虫性タンパク質をコードする遺伝子が害虫防除に利用されるようになってきている。耐虫性タンパク質としてはグラム陰性細菌であるバチルス・チューリンゲンシス(Bacillus thuringiensis; Bt)が産生するBt毒素がよく知られている。Bt遺伝子を用いた耐虫性遺伝子組換え作物の成功は、遺伝子導入による耐虫性品種作出の経済的有効性を明確に証明しているが、Btタンパク質は有効な昆虫の範囲が狭い。多くの害虫には有効な耐虫性タンパク質が未だ見つかっておらず、それらの害虫に対して耐虫性の遺伝子組換え作物を作出するのは容易ではない。 In recent years, genes encoding insect-resistant proteins have come to be used for pest control. As an insect-resistant protein, Bt toxin produced by Bacillus thuringiensis (Bt), which is a gram-negative bacterium, is well known. The success of insect-resistant genetically modified crops using the Bt gene clearly demonstrates the economic effectiveness of gene transfer to produce insect-resistant varieties, but the Bt protein has a narrow range of effective insects. Effective insect-resistant proteins have not yet been found for many pests, and it is not easy to produce GM crops that are resistant to these pests.
 またBtタンパク質は細菌由来であるため、遺伝子組換え作物に使用する上では根強い抵抗感があり、植物由来の耐虫性タンパク質の使用が望まれている。植物由来の耐虫性タンパク質として、ササゲ由来のプロテインインヒビター(特許文献1)、インゲン由来のアミラーゼインヒビター(非特許文献1)、スノードロップ由来のレクチン(特許文献2)などが知られている。しかしレクチンや消化酵素阻害タンパク質の耐虫効果は必ずしも十分ではない。 In addition, since Bt protein is derived from bacteria, there is a strong sense of resistance when it is used in genetically modified crops, and the use of plant-derived insect-resistant protein is desired. Known plant-derived insect-resistant proteins include cowpea-derived protein inhibitors (Patent Document 1), green bean-derived amylase inhibitors (Non-Patent Document 1), and snowdrop-derived lectins (Patent Document 2). However, the insect-resistant effects of lectins and digestive enzyme inhibitory proteins are not always sufficient.
 特許文献3は、クワ乳液から単離された、キチン結合活性を有するがキチナーゼ活性を有さないMLX56タンパク質が、チョウ目昆虫の幼虫に摂食させたときに、当該幼虫の体重増加を顕著に抑制し、高い成長阻害効果をもたらしたことを開示している。 Patent Document 3 describes that when an MLX56 protein isolated from quail emulsion and having chitin-binding activity but not chitinase activity is fed to a lepidopteran insect larva, the weight gain of the larva is remarkable. It discloses that it suppressed and brought about a high growth inhibitory effect.
 特許文献4は、クワ乳液に含まれる、MLX56タンパク質と類似するアミノ酸配列を有するがキチナーゼ活性を有するLA-bタンパク質が、ショウジョウバエの幼虫に摂食させたときに成長阻害効果と殺虫効果をもたらしたこと、それらの効果はLA-bタンパク質のキチナーゼ活性によるものと考えられることを開示している。 According to Patent Document 4, the LA-b protein contained in quail emulsion, which has an amino acid sequence similar to that of the MLX56 protein but has chitinase activity, has a growth inhibitory effect and an insecticidal effect when fed to larvae of Drosophila. It is disclosed that these effects are considered to be due to the chitinase activity of the LA-b protein.
 非特許文献2は、MLX56タンパク質やLA-bを含むMLX56ファミリータンパク質が、多くの昆虫の消化管内に存在する囲食膜(キチンを主成分とするチューブ状の、通常は極めて薄い膜)に特異的に結合して囲食膜を異常に肥厚させることにより、消化機能不全を引き起こし、その結果として成長阻害効果をもたらすことを報告している。MLX56ファミリータンパク質は、その成熟タンパク質のN末端領域に2つのキチン結合ドメイン(ヘベイン(Hevein)様ドメイン)とそれに挟まれたエクステンシン(Extensin)ドメイン(Ser-Pro-Pro-Pro-Proの反復配列を含む)を有し、ヘベイン様ドメインが囲食膜のキチンに結合し、エクステンシンドメインが膨潤することにより、囲食膜の異常な肥厚が生じると考えられている(非特許文献2)。 In Non-Patent Document 2, the MLX56 family protein including MLX56 protein and LA-b is specific to the peritrophic membrane (tube-shaped, usually extremely thin membrane containing chitin as the main component) existing in the digestive tract of many insects. It has been reported that the abnormal thickening of the peritrophic membrane by binding to each other causes digestive dysfunction, resulting in a growth-inhibiting effect. The MLX56 family protein is a repetitive sequence of two chitin-binding domains (Hevein-like domains) and an Extensin domain (Ser-Pro-Pro-Pro-Pro) sandwiched between them in the N-terminal region of the mature protein. It is considered that abnormal thickening of the peritrophic membrane occurs due to the binding of the hebein-like domain to chitin of the peritrophic membrane and the swelling of the extensin domain (Non-Patent Document 2).
 しかし全ての昆虫が囲食膜を有しているわけではない。また、クワを餌とするカイコは囲食膜を有しているが、MLX56ファミリータンパク質はカイコの囲食膜にはほとんど結合せず、カイコに対する耐虫作用を示さない。 However, not all insects have a peritrophic membrane. In addition, although mulberry-fed silk moths have a peritrophic membrane, the MLX56 family protein hardly binds to the peritrophic membrane of silk moths and does not show insect resistance to silk moths.
 アザミウマ(総翅目)は難防除害虫であるだけでなく、ウイルスを媒介し、また少数個体でも植物に大きな被害を与えることから、より有効な防除方法の開発が望まれている。アザミウマは囲食膜を欠くことが知られている(非特許文献3)。 Thrips (Stonefly) is not only a difficult-to-control pest, but also carries a virus, and even a small number of individuals cause great damage to plants, so the development of a more effective control method is desired. Thrips are known to lack the peritrophic membrane (Non-Patent Document 3).
米国特許第4,640,836号明細書U.S. Pat. No. 4,640,836 米国特許第5,545,820号明細書U.S. Pat. No. 5,545,820 米国特許出願公開第2010/0146668号明細書U.S. Patent Application Publication No. 2010/014666 国際公開第WO 2012/063338号International Publication No. WO 2012/063333
 本発明は、アザミウマ耐性植物の効率的な作出方法を提供することを課題とする。 An object of the present invention is to provide an efficient method for producing a thrips-tolerant plant.
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、MLX56ファミリータンパク質がアザミウマに対する防除効果をもたらすことを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have found that the MLX56 family protein has a control effect on thrips, and have completed the present invention.
 すなわち、本発明は以下を包含する。
[1] MLX56ファミリータンパク質遺伝子を植物に導入し、前記遺伝子が導入された形質転換植物のアザミウマ耐性を検定することを含む、アザミウマ耐性形質転換植物を作出する方法。
[2] MLX56ファミリータンパク質遺伝子が構成的プロモーターの制御下で植物に導入される、上記[1]に記載の方法。
[3] アザミウマがアザミウマ科(Thripidae)に属する、上記[1]又は[2]に記載の方法。
[4] アザミウマがミカンキイロアザミウマ(Frankliniella occidentalis)又はミナミキイロアザミウマ(Thrips palmi)である、上記[1]~[3]のいずれかに記載の方法。
[5] 遺伝子導入により植物にアザミウマ耐性を付与するための、MLX56ファミリータンパク質遺伝子の使用。
[6] 外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物を育種親として用いて交配を行い、子孫植物を取得し、MLX56ファミリータンパク質遺伝子を有する子孫植物を選抜することを含む、アザミウマ耐性植物の育種方法。
[7] 外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物を、アザミウマに食べさせることを含む、アザミウマの防除方法。
[8] 外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物又はそこから単離されたMLX56ファミリータンパク質を含む、アザミウマ防除剤。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2019-153277号の開示内容を包含する。
That is, the present invention includes the following.
[1] A method for producing a thrips-resistant transformed plant, which comprises introducing a MLX56 family protein gene into a plant and testing the thrips resistance of the transformed plant into which the gene has been introduced.
[2] The method according to [1] above, wherein the MLX56 family protein gene is introduced into a plant under the control of a constitutive promoter.
[3] The method according to [1] or [2] above, wherein the thripidae belongs to the family Thripidae.
[4] The method according to any one of the above [1] to [3], wherein the thrips is a western flower thrips (Frankliniella occidentalis) or a western flower thrips (Thrips palmi).
[5] Use of the MLX56 family protein gene to confer thrips resistance on plants by gene transfer.
[6] Azalea resistance, including mating using a transformant of Azalea resistance having an exogenous MLX56 family protein gene as a breeding parent, obtaining offspring plants, and selecting offspring plants having the MLX56 family protein gene. How to breed plants.
[7] A method for controlling thrips, which comprises feeding thrips a transformed plant resistant to thrips having an exogenous MLX56 family protein gene.
[8] A thrips control agent containing a thrips-resistant transformed plant having a exogenous MLX56 family protein gene or an MLX56 family protein isolated from the transformed plant.
This specification includes the disclosure of Japanese Patent Application No. 2019-153277, which is the basis of the priority of the present application.
 本発明によれば、アザミウマ耐性を有する植物を効率よく作出することができる。 According to the present invention, a plant having thrips resistance can be efficiently produced.
図1はバイナリープラスミドベクターpEL2Ω::MLX56のT-DNA領域の構造の概略図である。FIG. 1 is a schematic diagram of the structure of the T-DNA region of the binary plasmid vector pEL2Ω :: MLX56. 図2は形質転換トマト植物における外来性MLX56遺伝子の発現量(アクチン発現量と比較した相対発現量)を示す。FIG. 2 shows the expression level of the exogenous MLX56 gene (relative expression level compared to the actin expression level) in the transformed tomato plant. 図3は形質転換トマト植物からのタンパク質抽出物及びその画分のSDS-PAGE解析結果を示す写真である。左: ネガティブコントロール、右: MLX56-73-30系統。T: タンパク質粗抽出液(Total)、S: 非結合上清(Unbound sup)、W: 洗浄液(Wash)、U: 尿素画分(Urea)、E: キチン結合物質溶出画分(Elute)。矢じり印は、MLX56-73-30のみに認められたおよそ56kDaのタンパク質のバンドを指す。FIG. 3 is a photograph showing the results of SDS-PAGE analysis of a protein extract from a transformed tomato plant and its fraction. Left: Negative control, Right: MLX56-73-30 system. T: crude protein extract (Total), S: unbound supernatant (Unbound sup), W: washing solution (Wash), U: urea fraction (Urea), E: chitin-binding substance elution fraction (Elute). The arrowhead marks a band of approximately 56 kDa protein found only in MLX56-73-30. 図4は形質転換トマト植物を用いたアザミウマ耐性検定における2週間後のアザミウマの生存数を示す。図中のa、b、cは系統間で互いに統計学的な有意差があることを示す。FIG. 4 shows the survival number of thrips after 2 weeks in the thrips resistance test using transformed tomato plants. A, b, and c in the figure indicate that there is a statistically significant difference between the strains. 図5はアザミウマ耐性検定における2週間後の形質転換トマト植物の外観を示す写真である。A: 形質転換トマト植物の全体写真、B: 形質転換トマト植物の葉の写真。トマト植物のアザミウマによる食害状態(A)、及び葉の食害痕(B)が観察された。FIG. 5 is a photograph showing the appearance of the transformed tomato plant after 2 weeks in the thrips resistance test. A: Overall photo of the transformed tomato plant, B: Photo of the leaves of the transformed tomato plant. The state of feeding damage by thrips of tomato plants (A) and the feeding damage marks of leaves (B) were observed. 図6は形質転換トマト植物におけるダニ被害を示す写真である。A: コントロール植物、B: MLX56-69、C: MLX56-73。FIG. 6 is a photograph showing mite damage in a transformed tomato plant. A: Control plant, B: MLX56-69, C: MLX56-73.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明は、MLX56ファミリータンパク質を用いたアザミウマの防除に関する。より具体的には、本発明は、MLX56ファミリータンパク質遺伝子を植物に導入することによる、アザミウマ耐性植物の作出方法、及びそのようにして得られた外来性MLX56ファミリータンパク質遺伝子を有する形質転換(トランスジェニック)植物を用いたアザミウマの防除方法に関する。本発明は、MLX56ファミリータンパク質をコードする遺伝子をMLX56ファミリータンパク質遺伝子と称する。 The present invention relates to the control of thrips using the MLX56 family protein. More specifically, the present invention presents a method for producing a Zamiuma-resistant plant by introducing the MLX56 family protein gene into a plant, and a transformation having the exogenous MLX56 family protein gene thus obtained (transgenic). ) Regarding the control method of thistle horse using plants. In the present invention, a gene encoding an MLX56 family protein is referred to as an MLX56 family protein gene.
 本発明に係るMLX56ファミリータンパク質は、クワ乳液に含まれる天然のMLX56タンパク質及びそのホモログ、並びにそれらの機能性変異体及び組換えタンパク質の総称である。クワ乳液に含まれる天然のMLX56タンパク質のアミノ酸配列の例を配列番号2に、それをコードするMLX56遺伝子(ORF/CDS配列)の例を配列番号1に示す。 The MLX56 family protein according to the present invention is a general term for the natural MLX56 protein contained in mulberry emulsion, its homologue, and their functional mutants and recombinant proteins. An example of the amino acid sequence of the natural MLX56 protein contained in mulberry emulsion is shown in SEQ ID NO: 2, and an example of the MLX56 gene (ORF / CDS sequence) encoding it is shown in SEQ ID NO: 1.
 本発明に係るMLX56ファミリータンパク質は、配列番号2に示すアミノ酸配列からなるタンパク質であってよい。本発明に係るMLX56ファミリータンパク質は、配列番号2に示すアミノ酸配列と80%以上、83%以上、85%以上、90%以上、93%以上、95%以上、97%以上、98%以上、99%以上、99.5%以上、99.7%以上、又は100%の配列同一性を有するアミノ酸配列からなるタンパク質であってよい。 The MLX56 family protein according to the present invention may be a protein consisting of the amino acid sequence shown in SEQ ID NO: 2. The MLX56 family protein according to the present invention has the amino acid sequence shown in SEQ ID NO: 2, 80% or more, 83% or more, 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, 98% or more, 99. It may be a protein consisting of an amino acid sequence having% or more, 99.5% or more, 99.7% or more, or 100% sequence identity.
 本発明に係るMLX56ファミリータンパク質はまた、配列番号2に示すアミノ酸配列において1~20個、1~10個、1~9個、1~7個、1~5個、1~3個、1~2個、又は1個のアミノ酸残基の欠失、置換、挿入、及び/又は付加を含むアミノ酸配列からなるタンパク質であってよい。 The MLX56 family proteins according to the present invention also have 1 to 20, 1 to 10, 1 to 9, 1 to 7, 1 to 5, 1 to 3, 1 to 20 in the amino acid sequence shown in SEQ ID NO: 2. It may be a protein consisting of an amino acid sequence containing deletions, substitutions, insertions, and / or additions of two or one amino acid residue.
 上記のMLX56ファミリータンパク質は、MLX56ファミリータンパク質遺伝子にコードされたタンパク質としては、N末端にシグナルペプチド(例えば、配列番号2に示すアミノ酸配列の1番目~21番目)を有することが好ましい。一方、MLX56ファミリータンパク質はシグナルペプチドが切断された成熟タンパク質の形態では、例えば、配列番号2に示すアミノ酸配列の22番目~415番目の配列からなるものであってよい。本発明に係るMLX56ファミリータンパク質は、アザミウマ防除活性を有する。なお本発明において、シグナルペプチドをN末端に有するタンパク質が「アザミウマ防除活性を有する」とは、少なくとも成熟タンパク質の状態でアザミウマ防除活性を示すことを意味する。本発明に係るMLX56ファミリータンパク質は、キチン結合活性を有するものであり得る。本発明において、シグナルペプチドをN末端に有するタンパク質が「キチン結合活性を有する」とは、少なくとも成熟タンパク質の状態でキチン結合活性を示すことを意味する。 The above MLX56 family protein preferably has a signal peptide (for example, the 1st to 21st amino acid sequences shown in SEQ ID NO: 2) at the N-terminal as a protein encoded by the MLX56 family protein gene. On the other hand, the MLX56 family protein may consist of, for example, the 22nd to 415th sequences of the amino acid sequence shown in SEQ ID NO: 2 in the form of a mature protein in which the signal peptide is cleaved. The MLX56 family protein according to the present invention has thrips control activity. In the present invention, "having a thrips control activity" means that a protein having a signal peptide at the N-terminal exhibits thrips control activity at least in the state of a mature protein. The MLX56 family protein according to the present invention may have chitin-binding activity. In the present invention, a protein having a signal peptide at the N-terminal "has chitin-binding activity" means that it exhibits chitin-binding activity at least in the state of a mature protein.
 MLX56ファミリータンパク質は、その成熟タンパク質のN末端領域に2つのキチン結合ドメイン(ヘベイン様ドメイン)とそれに挟まれたエクステンシンドメインという特徴的な構造を有することが好ましい。キチン結合ドメイン(ヘベイン様ドメイン)は、ゴムラテックスであるヘベインのアミノ酸配列に対する相同性を示す領域であり、配列番号2に示すアミノ酸配列中では27番目~65番目(配列番号9; エクステンシンドメインのN末端側にある第1のキチン結合ドメイン)及び127番目~165番目(配列番号11; エクステンシンドメインのC末端側にある第2のキチン結合ドメイン)に相当する。MLX56ファミリータンパク質は、N末端側のキチン結合ドメインとして、配列番号9に示すアミノ酸配列からなるドメインを有していてもよいし、配列番号9に示すアミノ酸配列と80%以上、85%以上、90%以上、93%以上、95%以上、又は100%の配列同一性を有するアミノ酸配列からなり、かつキチン結合活性を有するドメインを有していてもよい。MLX56ファミリータンパク質は、C末端側のキチン結合ドメインとして、配列番号11に示すアミノ酸配列からなるドメインを有していてもよいし、配列番号11に示すアミノ酸配列と80%以上、85%以上、90%以上、93%以上、95%以上、又は100%の配列同一性を有するアミノ酸配列からなり、かつキチン結合活性を有するドメインを有していてもよい。MLX56ファミリータンパク質中のエクステンシンドメインは、好ましくは、Ser-Pro-Pro-Pro-Pro-(Pro)nを反復単位とする反復配列から構成される。Ser-Pro-Pro-Pro-Pro-(Pro)nの式中のnは、反復単位毎に独立して、0又は1以上の整数、好ましくは0~10、より好ましくは0~3、例えば0、1若しくは2であってよい。エクステンシンドメインは、Ser-Pro-Pro-Pro-Proの反復配列、すなわち、(Ser-Pro-Pro-Pro-Pro)mを含んでもよく、式中のmは例えば2以上の整数、3~15、より好ましくは4~13、例えば4、5、6、7、8、9又は10であってよい。一実施形態では、エクステンシンドメインは、例えば、Ser-Pro-Pro-Pro-Pro-Ser-Pro-Pro-Pro-Pro-Pro-Pro-(Ser-Pro-Pro-Pro-Pro)m'であってよく、式中のm'は1以上の整数、好ましくは2~10、より好ましくは3~8、例えば4、5、6、7又は8であってよい。MLX56ファミリータンパク質中のエクステンシンドメインは、配列番号2に示すアミノ酸配列中では67番目~118番目(配列番号10)に相当する。エクステンシンドメインは膨潤性を有し得る。 The MLX56 family protein preferably has a characteristic structure of two chitin-binding domains (hebein-like domains) and an extensin domain sandwiched between them in the N-terminal region of the mature protein. The chitin-binding domain (hebein-like domain) is a region showing homology to the amino acid sequence of hebein, which is a rubber latex, and is the 27th to 65th positions in the amino acid sequence shown in SEQ ID NO: 2 (SEQ ID NO: 9; It corresponds to the 127th to 165th (SEQ ID NO: 11; the second chitin-binding domain on the C-terminal side of the extensin domain) at the N-terminal side (first chitin-binding domain). The MLX56 family protein may have a domain consisting of the amino acid sequence shown in SEQ ID NO: 9 as the N-terminal chitin-binding domain, or 80% or more, 85% or more, 90 with the amino acid sequence shown in SEQ ID NO: 9. It may consist of an amino acid sequence having% or more, 93% or more, 95% or more, or 100% sequence identity, and may have a domain having chitin-binding activity. The MLX56 family protein may have a domain consisting of the amino acid sequence shown in SEQ ID NO: 11 as the C-terminal chitin-binding domain, or 80% or more, 85% or more, 90 with the amino acid sequence shown in SEQ ID NO: 11. It may consist of an amino acid sequence having% or more, 93% or more, 95% or more, or 100% sequence identity, and may have a domain having chitin-binding activity. The extendin domain in the MLX56 family of proteins is preferably composed of repetitive sequences with Ser-Pro-Pro-Pro-Pro- (Pro) n as the repetitive unit. In the formula of Ser-Pro-Pro-Pro-Pro- (Pro) n, n is an integer of 0 or 1 or more, preferably 0 to 10, more preferably 0 to 3, for example, independently for each iteration unit. It can be 0, 1 or 2. The extender domain may include a Ser-Pro-Pro-Pro-Pro repetitive sequence, i.e. (Ser-Pro-Pro-Pro-Pro) m, where m in the equation is, for example, an integer greater than or equal to 2, 3 to 15, more preferably 4 to 13, for example 4, 5, 6, 7, 8, 9 or 10. In one embodiment, the integer domain is, for example, Ser-Pro-Pro-Pro-Pro-Ser-Pro-Pro-Pro-Pro-Pro-Pro- (Ser-Pro-Pro-Pro-Pro) m'. M'in the equation may be an integer greater than or equal to 1, preferably 2 to 10, more preferably 3 to 8, for example 4, 5, 6, 7 or 8. The extendin domain in the MLX56 family protein corresponds to positions 67 to 118 (SEQ ID NO: 10) in the amino acid sequence shown in SEQ ID NO: 2. The extendin domain can be swellable.
 MLX56ファミリータンパク質はまた、キチナーゼ様ドメインを、好ましくは第2のキチン結合ドメインのC末端側に、有していてもよい。しかしMLX56ファミリータンパク質は、キチナーゼ活性を有してもよいが、有さなくてもよく、すなわちMLX56ファミリータンパク質中のキチナーゼ様ドメインは場合によりキチナーゼ活性を有していなくてもよい。なおMLX56タンパク質のホモログであるLA-bタンパク質は、典型的にはキチナーゼ活性を有する。LA-bタンパク質のアミノ酸配列は配列番号2に示すアミノ酸配列と約92.8%の配列同一性を有する。 The MLX56 family protein may also have a chitinase-like domain, preferably on the C-terminal side of the second chitin binding domain. However, the MLX56 family protein may or may not have chitinase activity, i.e., the chitinase-like domain in the MLX56 family protein may, in some cases, not have chitinase activity. The LA-b protein, which is a homologue of the MLX56 protein, typically has chitinase activity. The amino acid sequence of the LA-b protein has about 92.8% sequence identity with the amino acid sequence shown in SEQ ID NO: 2.
 MLX56ファミリータンパク質における、配列番号2に示すアミノ酸配列と比較した、欠失、置換、挿入、又は付加などのアミノ酸の変化は、MLX56ファミリータンパク質の機能性を保持できるものであることが好ましい。配列番号2に示すアミノ酸配列と比較したアミノ酸の置換は、保存的置換であることが好ましいが、それに限定されない。保存的置換は、例えば、極性非電荷アミノ酸(セリン、トレオニン、グルタミン、アスパラギン、若しくはシステイン)、芳香族アミノ酸(フェニルアラニン、チロシン、若しくはトリプトファン)、酸性アミノ酸(極性電荷;グルタミン酸、若しくはアスパラギン酸)、塩基性アミノ酸(極性電荷;リジン、アルギニン、若しくはヒスチジン)、疎水性アミノ酸(アラニン、バリン、ロイシン、イソロイシン、メチオニン、プロリン、フェニルアラニン、トリプトファン)、脂肪族アミノ酸(疎水性;アラニン若しくはグリシン)、分枝アミノ酸(疎水性;バリン、ロイシン、若しくはイソロイシン)、又は親水性アミノ酸(セリン、トレオニン、アスパラギン、グルタミン、チロシン、トリプトファン、システイン、リジン、アルギニン、ヒスチジン、アスパラギン酸およびグルタミン酸)のそれぞれの類似群内での置換であり得る。 It is preferable that the amino acid changes such as deletion, substitution, insertion, or addition in the MLX56 family protein as compared with the amino acid sequence shown in SEQ ID NO: 2 can retain the functionality of the MLX56 family protein. Substitutions of amino acids compared to the amino acid sequence shown in SEQ ID NO: 2 are preferably, but not limited to, conservative substitutions. Conservative substitutions include, for example, polar uncharged amino acids (serine, threonine, glutamine, aspartic acid, or cysteine), aromatic amino acids (phenylalanine, tyrosine, or tryptophan), acidic amino acids (polar charge; glutamic acid, or aspartic acid), bases. Sexual amino acids (polar charge; lysine, arginine, or histidine), hydrophobic amino acids (alanine, valine, leucine, isoleucine, methionine, proline, phenylalanine, tryptophan), aliphatic amino acids (hydrophobicity; alanin or glycine), branched amino acids Within similar groups of (hydrophobic; valine, leucine, or isoleucine) or hydrophilic amino acids (serine, threonine, aspartic acid, glutamine, tyrosine, tryptophan, cysteine, lysine, arginine, histidine, aspartic acid and glutamic acid). It can be a replacement.
 MLX56ファミリータンパク質は、上記のシグナルペプチドにおいて、第1のキチン結合ドメインにおいて、第2のキチン結合ドメインにおいて、及び/又は、エクステンシンドメインにおいて、配列番号2に示すアミノ酸配列と比較して、欠失、置換、挿入、又は付加などのアミノ酸の変化を含まないことが好ましい。一実施形態では、MLX56ファミリータンパク質は、上記のシグナルペプチド、並びに2つのキチン結合ドメインとそれに挟まれたエクステンシンドメインの全てにおいて、配列番号2に示すアミノ酸配列と比較して、欠失、置換、挿入、又は付加などのアミノ酸の変化を含まない。 The MLX56 family protein is deleted in the above signal peptide in the first chitin binding domain, in the second chitin binding domain and / or in the extendin domain as compared to the amino acid sequence shown in SEQ ID NO: 2. , Substitution, insertion, or addition, preferably not including amino acid changes. In one embodiment, the MLX56 family protein is deleted, substituted, in all of the above signal peptides, as well as the two chitin-binding domains and the extensin domain sandwiched therein, as compared to the amino acid sequence shown in SEQ ID NO: 2. Does not include amino acid changes such as insertions or additions.
 本発明に係るMLX56ファミリータンパク質遺伝子は、上記のMLX56ファミリータンパク質をコードする。本発明に係るMLX56ファミリータンパク質遺伝子は、配列番号1に示す塩基配列からなる遺伝子であってよい。本発明に係るMLX56ファミリータンパク質遺伝子は、配列番号1に示す塩基配列と80%以上、83%以上、85%以上、90%以上、93%以上、95%以上、97%以上、98%以上、99%以上、99.5%以上、99.7%以上、99.8%以上、99.9%以上、又は100%の配列同一性を有する塩基配列からなる遺伝子であってよい。あるいは本発明に係るMLX56ファミリータンパク質遺伝子は、配列番号2に示すアミノ酸配列からなるタンパク質をコードする遺伝子であってよいし、配列番号2に示すアミノ酸配列又は配列番号2の22番目~415番目のアミノ酸配列と80%以上、83%以上、85%以上、90%以上、93%以上、95%以上、97%以上、98%以上、99%以上、99.5%以上、99.7%以上、又は100%の配列同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子であってもよい。本発明に係るMLX56ファミリータンパク質遺伝子はまた、配列番号2に示すアミノ酸配列又は配列番号2の22番目~415番目のアミノ酸配列において1~20個、1~10個、1~9個、1~7個、1~5個、1~3個、1~2個、又は1個のアミノ酸残基の欠失、置換、挿入、及び/又は付加を含むアミノ酸配列からなるタンパク質をコードする遺伝子であってよい。これらのMLX56ファミリータンパク質遺伝子にコードされたタンパク質(MLX56ファミリータンパク質)は、アザミウマ防除活性を有する。MLX56ファミリータンパク質遺伝子にコードされたタンパク質はまた、キチン結合活性を有し得る。MLX56ファミリータンパク質に関する上記の説明は、MLX56ファミリータンパク質遺伝子にコードされたタンパク質にも適用される。 The MLX56 family protein gene according to the present invention encodes the above MLX56 family protein. The MLX56 family protein gene according to the present invention may be a gene consisting of the nucleotide sequence shown in SEQ ID NO: 1. The MLX56 family protein gene according to the present invention contains the nucleotide sequence shown in SEQ ID NO: 1 and 80% or more, 83% or more, 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, 98% or more, It may be a gene consisting of a base sequence having 99% or more, 99.5% or more, 99.7% or more, 99.8% or more, 99.9% or more, or 100% sequence identity. Alternatively, the MLX56 family protein gene according to the present invention may be a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 2, the amino acid sequence shown in SEQ ID NO: 2 or the 22nd to 415th amino acids of SEQ ID NO: 2. Sequence and 80% or more, 83% or more, 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, 98% or more, 99% or more, 99.5% or more, 99.7% or more, or 100% It may be a gene encoding a protein consisting of an amino acid sequence having sequence identity. The MLX56 family protein gene according to the present invention also has 1 to 20, 1 to 10, 1 to 9, and 1 to 7 in the amino acid sequence shown in SEQ ID NO: 2 or the 22nd to 415th amino acid sequences of SEQ ID NO: 2. A gene encoding a protein consisting of an amino acid sequence containing deletions, substitutions, insertions, and / or additions of 1, 1 to 5, 1 to 3, 1 to 2, or 1 amino acid residues. Good. The proteins encoded by these MLX56 family protein genes (MLX56 family proteins) have thrips control activity. The protein encoded by the MLX56 family protein gene may also have chitin-binding activity. The above description of the MLX56 family protein also applies to proteins encoded by the MLX56 family protein gene.
 MLX56ファミリータンパク質遺伝子は、例えば、以下のa)~c):
a) 配列番号1に示す塩基配列と80%以上の配列同一性を有する塩基配列からなる遺伝子、
b) 配列番号2に示すアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなるタンパク質をコードする遺伝子、及び
c) 配列番号2に示すアミノ酸配列において1~20個のアミノ酸残基の欠失、置換、挿入、及び/又は付加を含むアミノ酸配列からなるタンパク質をコードする遺伝子、
からなる群から選択される遺伝子であってよい。
The MLX56 family protein genes are, for example, the following a) to c) :.
a) A gene consisting of a base sequence having 80% or more sequence identity with the base sequence shown in SEQ ID NO: 1.
b) A gene encoding a protein consisting of an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 2 and
c) A gene encoding a protein consisting of an amino acid sequence containing deletions, substitutions, insertions, and / or additions of 1 to 20 amino acid residues in the amino acid sequence shown in SEQ ID NO: 2.
It may be a gene selected from the group consisting of.
 なお本発明に関して特定のアミノ酸配列又は塩基配列に対する配列同一性(%)は、その特定のアミノ酸配列又は塩基配列の全長に対する配列同一性(%)を意味する。 Regarding the present invention, the sequence identity (%) with respect to a specific amino acid sequence or base sequence means the sequence identity (%) with respect to the total length of the specific amino acid sequence or base sequence.
 MLX56ファミリータンパク質遺伝子は、常法により調製することができる。例えば、クワ(例えば、マグワ(Morus alba L.))由来のトータルmRNAから逆転写したcDNAを鋳型として、MLX56ファミリータンパク質遺伝子のオープンリーディングフレーム(ORF)又はタンパク質コード配列(CDS)の全長を含む領域を常法により核酸増幅することによって、調製することができる。そのような核酸増幅(例えばPCR)には、目的とするMLX56ファミリータンパク質遺伝子に特異的であってそのORF/CDS全長を増幅可能なプライマーペアを用いることが好ましい。そのようなプライマーペアとしては、以下に限定するものではないが、例えば配列番号3に示す塩基配列からなるプライマーと配列番号4に示す塩基配列からなるプライマーのペアが挙げられる。 The MLX56 family protein gene can be prepared by a conventional method. For example, a region containing the full length of the open reading frame (ORF) or protein coding sequence (CDS) of the MLX56 family protein gene using cDNA reverse-transcribed from total mRNA derived from mulberry (for example, Morus alba L.) as a template. Can be prepared by amplifying nucleic acid by a conventional method. For such nucleic acid amplification (for example, PCR), it is preferable to use a primer pair that is specific to the target MLX56 family protein gene and capable of amplifying the entire ORF / CDS. Examples of such a primer pair include, but are not limited to, a primer consisting of the nucleotide sequence shown in SEQ ID NO: 3 and a primer pair consisting of the nucleotide sequence shown in SEQ ID NO: 4.
 本発明に関して、クワとは、特に記載しない限り、クワ属(Morus)植物を意味する。クワの例として、マグワ(Morus alba L.)、ヤマグワ(Morus australis Poir.)、ケグワ(Morus cathayana Hemsl.)、オガサワラグワ(Morus boninensis Koidz.)、ハチジョウグワ(Morus kagayamae Koidz.)、ヤマベグワ(Morus corylifolia Kunth)、アマクサグワ(Morus miyabeana Hotta)、モウコグワ(Morus mongolica (Bureau) C.K.Schneid.)、エノキグワ(Morus celtidifolia Kunth)、インドグワ(Morus indica L.)、クロミグワ(Morus nigra L.)、アカミグワ(Morus rubra L.)、マレイグワ(Morus macroura Miq.)、アフリカグワ(Morus mesozygia Stapf)、マルバグワ(Morus notabilis C.K. Schneid)、テンジクグワ(Morus serrata Roxb.)、ミドリグワ(Morus wittiorum Hand.-Mazz)等が挙げられるが、これらに限定されない。 Regarding the present invention, mulberry means a plant of the genus Morus unless otherwise specified. Examples of mulberries are Mulberry (Morus alba L.), Yamagwa (Morus australis Poir.), Kegwa (Morus cathayana Hemsl.), Ogasawara rugwa (Morus boninensis Koidz.), Hachijogwa (Morus kagayamae Koidz.), Yamabe folia. Kunth, Morus miyabeana Hotta, Morus mongolica (Bureau) CKSchneid., Morus certidifolia Kunth, Morus indica L., Morus indica L., Morus nigra L., Morus nigra L. .), Male mulberry (Morus macroura Miq.), African mulberry (Morus mezosygia Stapf), Malva mulberry (Morus notabilis CK Schneid), Tenji mulberry (Morus serrata Roxb.), Midori mulberry (Morus wittiorum Hand.-Mazz), etc. Not limited to.
 MLX56ファミリータンパク質遺伝子への変異の導入は、常法により行うことができる。例えば、標的遺伝子(配列番号1に示す塩基配列からなるMLX56ファミリータンパク質遺伝子など)に相同な配列に目的の変異を導入した短いオリゴヌクレオチドを植物細胞に導入し、細胞のミスマッチ修復機構を利用してゲノム上で目的の変異を誘発する、オリゴヌクレオチド指向性突然変異誘発法(Oligonucleotide-Directed Mutagenesis;ODM)や、ジンクフィンガーヌクレアーゼ(ZFN)と標的遺伝子に相同な配列に目的の変異を導入した短いオリゴヌクレオチドを用いたZFN媒介突然変異誘発法等の部位特異的変異導入法などを用いることができる。あるいは、MLX56ファミリータンパク質遺伝子又はその変異部位含有核酸断片を鋳型DNAとして植物細胞に導入することにより、相同組換えを介して標的遺伝子に上記変異を導入してもよい。あるいは、単離したMLX56ファミリータンパク質遺伝子を、Kunkel法、Gapped duplex法等の任意の変異導入法によって改変してもよい。遺伝子への変異導入は、例えば市販の部位特異的突然変異誘発キットを用いて行うこともできる。 The introduction of mutations into the MLX56 family protein gene can be performed by a conventional method. For example, a short oligonucleotide in which the desired mutation is introduced into a sequence homologous to the target gene (such as the MLX56 family protein gene consisting of the nucleotide sequence shown in SEQ ID NO: 1) is introduced into a plant cell, and the mismatch repair mechanism of the cell is used. Oligonucleotide-Directed Mutagenesis (ODM), which induces the desired mutation on the genome, or a short oligo in which the desired mutation is introduced into a sequence homologous to the zinc finger nuclease (ZFN) and the target gene. A site-specific mutagenesis method such as a ZFN-mediated mutagenesis method using nucleotides can be used. Alternatively, the above mutation may be introduced into a target gene via homologous recombination by introducing the MLX56 family protein gene or a nucleic acid fragment containing a mutation site thereof into a plant cell as a template DNA. Alternatively, the isolated MLX56 family protein gene may be modified by an arbitrary mutagenesis method such as the Kunkel method or the Gapped duplex method. Mutation transfer into a gene can also be carried out using, for example, a commercially available site-specific mutagenesis kit.
 本明細書における「遺伝子」は、DNA、RNA(mRNA等)、DNAとRNAのキメラ核酸、又は人工塩基含有核酸であってよい。本発明において遺伝子は、タンパク質コード配列(開始コドン~終止コドン; CDS)からなるものであってもよいし、翻訳開始部位等を含む5'非翻訳領域、ポリアデニレーションシグナルやRNA分解性制御領域等を含む3'非翻訳領域などをさらに含んでもよい。 The "gene" in the present specification may be DNA, RNA (mRNA, etc.), a chimeric nucleic acid of DNA and RNA, or an artificial base-containing nucleic acid. In the present invention, the gene may consist of a protein coding sequence (start codon to stop codon; CDS), a 5'untranslated region including a translation start site, a polyadenilation signal, and an RNA degradability control region. 3'Untranslated region including, etc. may be further included.
 本発明は、MLX56ファミリータンパク質遺伝子を植物に導入し、前記遺伝子が導入された形質転換植物のアザミウマ耐性を調べることを含む、アザミウマ耐性形質転換植物を作出する方法に関する。 The present invention relates to a method for producing a thrips-resistant transformed plant, which comprises introducing the MLX56 family protein gene into a plant and examining the thrips resistance of the transformed plant into which the gene has been introduced.
 MLX56ファミリータンパク質遺伝子は、導入する植物にとって外来性であることが好ましい。MLX56ファミリータンパク質遺伝子に関する「外来性」、又は「外来性MLX56ファミリータンパク質遺伝子」とは、そのMLX56ファミリータンパク質遺伝子が、(i)遺伝子導入する宿主植物の種のゲノム中には天然に存在しないか、(ii)当該種に天然に存在する遺伝子であるとしても遺伝子導入する宿主植物系統又は個体のゲノム中には存在しないか、又は(iii)遺伝子導入する宿主植物の種、系統又は個体のゲノム中でMLX56ファミリータンパク質遺伝子が天然に存在する部位から切り出された又は単離された状態にあることを意味する。すなわち、外来性MLX56ファミリータンパク質遺伝子を有する植物は、異種性のMLX56ファミリータンパク質遺伝子を有するか、又は追加のMLX56ファミリータンパク質遺伝子を有する形質転換植物である。外来性MLX56ファミリータンパク質遺伝子は遺伝子工学(genetic engineering)により植物に導入することができる。 The MLX56 family protein gene is preferably exogenous to the plant to be introduced. The "foreign" or "foreign MLX56 family protein gene" for an MLX56 family protein gene is whether the MLX56 family protein gene is (i) not naturally present in the genome of the species of the host plant to which the gene is introduced. (ii) Even if the gene is naturally occurring in the species, it does not exist in the genome of the host plant line or individual to which the gene is introduced, or (iii) in the genome of the species, line or individual of the host plant to which the gene is introduced. It means that the MLX56 family protein gene is in a state of being excised or isolated from a naturally occurring site. That is, a plant having an exogenous MLX56 family protein gene is a transformed plant having a heterologous MLX56 family protein gene or having an additional MLX56 family protein gene. The exogenous MLX56 family protein gene can be introduced into plants by genetic engineering.
 本発明に係るMLX56ファミリータンパク質遺伝子を植物に導入する方法としては、植物の形質転換に用いられる任意の方法、例えばアグロバクテリウム法、パーティクルガン法、エレクトロポレーション法、ウィスカー法、ポリエチレングリコール(PEG)法、マイクロインジェクション法、プロトプラスト融合法などを用いることができる。これらの植物形質転換法の詳細は、『田部井豊 編 「形質転換プロトコール」(2012) 化学同人』などの一般的な教科書の記載や、Horsch et al., "A Simple and General Method for Transferring Genes into Plants." Science, (1985) 227(4691):1229-1231、及びSun et al., "A highly Efficient Transformation Protocol for Micro-Tom, a Model Cultivar for Tomato Functional Genomics." Plant Cell Physiol., (2006) 47, 426-431等の各種文献を参照することができる。 As a method for introducing the MLX56 family protein gene according to the present invention into a plant, any method used for plant transformation, for example, Agrobacterium method, particle gun method, electroporation method, whisker method, polyethylene glycol (PEG). ) Method, microinjection method, protoplast fusion method and the like can be used. Details of these plant transformation methods can be found in general textbooks such as "Transformation Protocol" (2012) edited by Yutaka Tabei, and Horsch et al., "A Simple and General Method for Transferring Genes into". Plants. "Science, (1985) 227 (4691): 1229-1231, and Sun et al.," A highly Efficient Transformation Protocol for Micro-Tom, a Model Cultivar for Tomato Functional Genomics. "Plant Cell Physiol., 2006 ) 47, 426-431, etc. can be referred to.
 アグロバクテリウム法を用いる場合は、アグロバクテリウム法に適したベクター(通常はバイナリーベクター)のT-DNA領域内にMLX56ファミリータンパク質遺伝子を組み込んだベクターを、適当なアグロバクテリウム、例えばアグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)にエレクトロポレーション法などにより導入し、そのベクターを保持するアグロバクテリウムを植物細胞、カルス、葉切片、又は子葉切片等に接種して感染させればよい。T-DNA領域とは、アグロバクテリウムが有する染色体外ベクター中に存在する、右側ボーダー配列(RB)と左側ボーダー配列(LB)で挟まれた領域であって、アグロバクテリウム菌による植物形質転換の際にベクターから切り出されて植物ゲノム(核ゲノム)中に組み込まれる領域である。好適なアグロバクテリウムとしては、限定するものではないが、LBA4404、GV3101、C58、C58C1Rif(R)、EHA101、EHA105、AGL1等の株を利用することができる。アグロバクテリウムの感染により、T-DNA領域内のMLX56ファミリータンパク質遺伝子が植物細胞中のゲノムに組み込まれ、形質転換植物細胞を得ることができる。なお本発明において単に「ゲノム」と言う場合には、原則として核ゲノムを意味する。 When the Agrobacterium method is used, a vector in which the MLX56 family protein gene is incorporated in the T-DNA region of a vector suitable for the Agrobacterium method (usually a binary vector) is used as an appropriate Agrobacterium, for example, Agrobacterium. -It may be introduced into Agrobacterium tumefaciens by an electroporation method or the like, and Agrobacterium carrying the vector may be inoculated into plant cells, curls, leaf sections, leaflets and the like to infect them. The T-DNA region is a region sandwiched between the right border sequence (RB) and the left border sequence (LB) existing in the extrachromosomal vector of Agrobacterium, and is a plant transformation by Agrobacterium. It is a region that is cut out from the vector and integrated into the plant genome (nuclear genome) at the time of. Suitable Agrobacterium includes, but is not limited to, strains such as LBA4404, GV3101, C58, C58C1Rif (R) , EHA101, EHA105, and AGL1. Upon infection with Agrobacterium, the MLX56 family protein gene in the T-DNA region is integrated into the genome in the plant cell, and transformed plant cells can be obtained. In the present invention, the term "genome" simply means a nuclear genome in principle.
 パーティクルガン法やエレクトロポレーション法には、植物の葉などの切片を使用してもよく、プロトプラストを調製して使用してもよい(Christou P, et al., Bio/technology (1991) 9: 957-962)。例えばパーティクルガン法では、遺伝子導入装置(例えばPDS-1000(BIO-RAD社)等)を製造業者の説明書に従って使用して、MLX56ファミリータンパク質遺伝子を含む発現ベクターや発現カセットなどの核酸をまぶした金属粒子をこのような試料に打ち込むことにより、植物細胞内に導入させ、形質転換植物細胞を得ることができる。操作条件は、通常は450~2000psi程度の圧力、4~12cm程度の距離で行うことができる。 For the particle gun method and the electroporation method, sections such as plant leaves may be used, or protoplasts may be prepared and used (Christou P, et al., Bio / technology (1991) 9: 957-962). For example, in the particle gun method, a gene transfer device (for example, PDS-1000 (BIO-RAD), etc.) was used according to the manufacturer's instructions and sprinkled with nucleic acids such as expression vectors and expression cassettes containing MLX56 family protein genes. By driving metal particles into such a sample, it can be introduced into plant cells to obtain transformed plant cells. The operating conditions can usually be performed at a pressure of about 450 to 2000 psi and a distance of about 4 to 12 cm.
 本発明においてMLX56ファミリータンパク質遺伝子は、植物のゲノム(核ゲノム)中に導入されることが好ましい。この点でMLX56ファミリータンパク質遺伝子の導入には、ゲノム中への安定した遺伝子導入を可能にするアグロバクテリウム法を用いることがより好ましい。 In the present invention, the MLX56 family protein gene is preferably introduced into the plant genome (nuclear genome). In this respect, it is more preferable to use the Agrobacterium method that enables stable gene transfer into the genome for the introduction of the MLX56 family protein gene.
 あるいは、MLX56ファミリータンパク質遺伝子は、植物の葉緑体ゲノム中に導入してもよい。葉緑体ゲノム中への導入には、葉緑体ゲノムへの導入に適した形質転換ベクター又は発現カセットを用いることが好ましい。そのような形質転換ベクター又は発現カセットは、葉緑体内での発現に適したプロモーター及びターミネーターの制御下にMLX56ファミリータンパク質遺伝子を含むことが好ましい。葉緑体内での発現に適したプロモーターとしては、以下に限定するものではないが、rrnプロモーター、psbAプロモーター、rrn-T7g10などが挙げられる。葉緑体内での発現に適したターミネーターとしては、以下に限定するものではないが、psbAターミネーター、rsp16ターミネーター、rbcLターミネーターなどが挙げられる。そのような形質転換ベクター又は発現カセットは、MLX56ファミリータンパク質遺伝子等の導入配列を挟むように、葉緑体ゲノム由来の2つの相同配列(例えば、trnI-trnA周辺領域)を含むことが好ましい。形質転換ベクター又は発現カセット中のそれらの相同配列に基づく葉緑体ゲノムとの相同組換えにより、目的の遺伝子を葉緑体ゲノム中に効率良く導入することができる。そのような形質転換に利用可能な、葉緑体ゲノム由来の相同配列の組み合わせは多数報告されている。 Alternatively, the MLX56 family protein gene may be introduced into the chloroplast genome of a plant. For introduction into the chloroplast genome, it is preferable to use a transformation vector or expression cassette suitable for introduction into the chloroplast genome. Such transformation vectors or expression cassettes preferably contain the MLX56 family protein gene under the control of promoters and terminators suitable for expression in the chloroplast. Promoters suitable for expression in chloroplasts include, but are not limited to, rrn promoter, psbA promoter, rrn-T7g10 and the like. Examples of terminators suitable for expression in chloroplasts include, but are not limited to, psbA terminator, rsp16 terminator, and rbcL terminator. Such a transformation vector or expression cassette preferably contains two homologous sequences derived from the chloroplast genome (eg, the region around trnI-trnA) so as to sandwich the introduction sequence of the MLX56 family protein gene or the like. The gene of interest can be efficiently introduced into the chloroplast genome by homologous recombination with the chloroplast genome based on their homologous sequence in the transformation vector or expression cassette. Numerous combinations of homologous sequences from the chloroplast genome have been reported that can be used for such transformation.
 MLX56ファミリータンパク質遺伝子は発現可能な状態で植物に導入される。その目的のため、MLX56ファミリータンパク質遺伝子は、T-DNA領域中、及び組み込まれた植物中で、植物で機能するプロモーター(植物発現用プロモーター)の制御下にあることが好ましい。MLX56ファミリータンパク質遺伝子は、植物発現用プロモーター(典型的には、植物発現用プロモーターの下流)に作動可能に連結されていることが好ましい。植物発現用プロモーターは、以下に限定されないが、構成的プロモーターであってもよいし、組織特異的プロモーター又は時期特異的プロモーターであってもよいし、傷害(例えば病害又は虫害)誘導性プロモーター等の誘導性プロモーターであってもよい。構成的プロモーターは、恒常的に全身性の遺伝子発現を誘導することができる。組織特異的プロモーター又は時期特異的プロモーターは、特定の組織又は時期に特異的に遺伝子発現を誘導することができ、本発明においては、特に葉での遺伝子発現を誘導できることが好ましい。傷害誘導性プロモーターは、虫害などの傷害刺激に依存して遺伝子発現を誘導することができる。本発明において植物に恒常的にアザミウマ耐性を付与する目的では、構成的プロモーターを用いることがより好ましい。本発明において「プロモーター」とは、その制御下にある遺伝子の発現を誘導できるDNA配列を意味し、エンハンサー配列等をさらに含んでもよい。MLX56ファミリータンパク質遺伝子の発現を誘導するために用いる植物発現用プロモーターとしては、以下に限定するものではないが、例えば、E12Ωプロモーター(Mitsuhara et al. (1996) Plant Cell Physiol. 37: 49-59)、CaMV 35Sプロモーター、ユビキチンプロモーター、タバコPR1aプロモーター、タバコPI2プロモーター、NCRプロモーター、ADHプロモーター、NOSプロモーター、CaMV35Sp/ADH 5'-UTR等が挙げられる。E12Ωプロモーター、CaMV 35Sプロモーター、ユビキチンプロモーター、NCRプロモーター、ADHプロモーター、NOSプロモーター、及びCaMV35Sp/ADH 5'-UTRは構成的プロモーターである。タバコPR1aプロモーターは病害誘導性プロモーター、タバコPI2プロモーターは虫害誘導性プロモーターである。なおE12Ωプロモーターは、El2エンハンサー(カリフラワーモザイクウイルス35Sプロモーターの5'上流領域-419~-90の配列)-(カリフラワーモザイクウイルス35Sプロモーターの-1~-90の配列)-Ω(タバコモザイクウイルスのゲノムRNAの5'非翻訳領域中にあるΩ配列)の構成を有する高発現プロモーターである。MLX56ファミリータンパク質遺伝子の発現量をより高めるために、植物発現用プロモーターは高発現プロモーター(過剰発現プロモーター)であることがさらに好ましい。本発明においてMLX56ファミリータンパク質遺伝子の発現を誘導するための植物発現用プロモーターは、MLX56ファミリータンパク質遺伝子の天然のプロモーターではないことが好ましく、MLX56ファミリータンパク質遺伝子にとって異種プロモーターであってよい。 The MLX56 family protein gene is introduced into plants in an expressible state. For that purpose, the MLX56 family protein gene is preferably under the control of a plant-functioning promoter (plant expression promoter) in the T-DNA region and in the integrated plant. The MLX56 family protein gene is preferably operably linked to a plant expression promoter (typically downstream of the plant expression promoter). The plant expression promoter is not limited to the following, but may be a constitutive promoter, a tissue-specific promoter, a time-specific promoter, an injury (eg, disease or insect damage) -inducible promoter, or the like. It may be an inducible promoter. Constitutive promoters can constitutively induce systemic gene expression. A tissue-specific promoter or a time-specific promoter can induce gene expression specifically in a specific tissue or time, and in the present invention, it is particularly preferable to be able to induce gene expression in leaves. Injury-inducing promoters can induce gene expression depending on injury stimuli such as insect damage. In the present invention, it is more preferable to use a constitutive promoter for the purpose of constantly imparting thrips resistance to plants. In the present invention, the "promoter" means a DNA sequence capable of inducing the expression of a gene under its control, and may further include an enhancer sequence or the like. The plant expression promoter used to induce the expression of the MLX56 family protein gene is not limited to the following, but is, for example, the E12Ω promoter (Mitsuhara et al. (1996) Plant Cell Physiol. 37: 49-59). , CaMV35S promoter, ubiquitin promoter, tobacco PR1a promoter, tobacco PI2 promoter, NCR promoter, ADH promoter, NOS promoter, CaMV35Sp / ADH5'-UTR and the like. The E12Ω promoter, CaMV35S promoter, ubiquitin promoter, NCR promoter, ADH promoter, NOS promoter, and CaMV35Sp / ADH5'-UTR are constitutive promoters. The tobacco PR1a promoter is a disease-inducing promoter, and the tobacco PI2 promoter is a pest-inducing promoter. The E12Ω promoter is the El2 enhancer (5'upstream region of cauliflower mosaic virus 35S promoter -419 to -90 sequence)-(cauliflower mosaic virus 35S promoter -1 to -90 sequence)-Ω (tobacco mosaic virus genome). It is a highly expressed promoter having the composition of Ω sequence) in the 5'untranslated region of RNA. In order to further increase the expression level of the MLX56 family protein gene, it is more preferable that the promoter for plant expression is a high expression promoter (overexpression promoter). In the present invention, the promoter for plant expression for inducing the expression of the MLX56 family protein gene is preferably not a natural promoter of the MLX56 family protein gene, and may be a heterologous promoter for the MLX56 family protein gene.
 植物発現用プロモーターは、各種ターミネーター(限定するものではないが、植物発現用ターミネーターがより好ましい)と組み合わせて用いてもよい。 The plant expression promoter may be used in combination with various terminators (although not limited to, a plant expression terminator is more preferable).
 MLX56ファミリータンパク質遺伝子を植物に導入するために用いるベクター又は発現カセットは、発現安定化配列ASR(anti-silencing region; Kishimoto et al., PLoS One. 2013;8(1):e54670. doi: 10.1371/journal.pone.0054670)を含んでいてもよい。MLX56ファミリータンパク質遺伝子は発現安定化配列ASRと共に植物に導入されてもよい。その場合、MLX56ファミリータンパク質遺伝子はASRの制御下で植物に導入されることが好ましく、MLX56ファミリータンパク質遺伝子はASRに作動可能に連結されていることが好ましい。 The vector or expression cassette used to introduce the MLX56 family protein gene into plants is the expression-stabilizing sequence ASR (anti-silencing region; Kishimoto et al., PLoS One. 2013; 8 (1): e54670. Doi: 10.1371 / journal.pone.0054670) may be included. The MLX56 family protein gene may be introduced into plants with the expression stabilizing sequence ASR. In that case, the MLX56 family protein gene is preferably introduced into the plant under the control of ASR, and the MLX56 family protein gene is preferably operably linked to ASR.
 MLX56ファミリータンパク質遺伝子を導入する植物は、アザミウマが摂食する任意の植物(アザミウマ寄生植物)であってよい。MLX56ファミリータンパク質遺伝子を導入する植物は、単子葉植物であっても、双子葉植物であってもよい。MLX56ファミリータンパク質遺伝子を導入する植物の例として、以下が挙げられるが、これらに限定されるものではない。
イネ科植物(コムギ、オオムギなどのムギ類、イネ、トウモロコシ、牧草等)
マメ科植物(ダイス、インゲン、ササゲ、アズキ、エンドウ、ソラマメ、ヒヨコマメ等)ナス科植物(トマト、ナス、トウガラシ、ピーマン、タバコ、ジャガイモ等)
ウリ科植物(キュウリ、メロン、カボチャ、スイカ等)
アブラナ科植物(キャベツ、ナタネ、ツケナ類、カラシナ類(Brassica属)等)
アオイ科植物(ワタ、オクラ等)
ヒガンバナ科植物(タマネギ、ネギ、ニンニク等)
バラ科植物(イチゴ、ナシ、桃、リンゴ、アンズ、ウメ、スモモ、オウトウ、バラ等)
ミカン科植物(温州ミカン、オレンジなどの柑橘類)
キク科植物(レタス、ヒマワリ、キク、ガーベラ、グアユール、マリーゴールド等)
バショウ科植物(バナナ等)
ブドウ科植物(栽培ブドウ諸品種等)
カキノキ科(カキ等)
マタタビ科(キウイフルーツ等)
ツバキ科植物(チャノキ等)
セリ科植物(セリ、ニンジン、セロリ等)
ナデシコ科植物(カーネーション等)
リンドウ科植物(トルコギキョウ等)
サクラソウ科植物(シクラメン等)
ヒユ科(ホウレンソウ等)
The plant into which the MLX56 family protein gene is introduced may be any plant that thrips feeds (thrips parasite). The plant into which the MLX56 family protein gene is introduced may be a monocotyledonous plant or a dicotyledonous plant. Examples of plants into which the MLX56 family protein gene is introduced include, but are not limited to:
Gramineae plants (wheat such as wheat and barley, rice, corn, grass, etc.)
Legumes (dice, green beans, sardines, adzuki beans, pea, broad beans, chickpeas, etc.) Solanaceae plants (tomatoes, eggplants, peppers, peppers, tobacco, potatoes, etc.)
Cucurbitaceae plants (cucumber, melon, pumpkin, watermelon, etc.)
Cruciferous plants (cabbage, rapeseed, rapeseed, mustard (Brassica), etc.)
Malvaceae plants (cotton, okra, etc.)
Amaryllidaceae plants (onions, leeks, garlic, etc.)
Rosaceae plants (strawberry, pear, peach, apple, apricot, plum, plum, cherry, rose, etc.)
Rutaceae plants (citrus fruits such as Satsuma mandarin and orange)
Asteraceae plants (lettuce, sunflower, chrysanthemum, gerbera, guayule, marigold, etc.)
Musaceae plants (bananas, etc.)
Grapes (cultivated grape varieties, etc.)
Ebenaceae (Ebenaceae, etc.)
Actinidiaceae (kiwifruit, etc.)
Theaceae plants (tea plants, etc.)
Umbelliferae plants (seri, carrots, celery, etc.)
Dianthus family plants (carnation, etc.)
Gentianaceae plants (Texa bluebell, etc.)
Primrose family plants (cyclamen, etc.)
Amaranthaceae (spinach, etc.)
 一実施形態では、MLX56ファミリータンパク質遺伝子を導入する植物は、クワ属植物(クワ)ではない。 In one embodiment, the plant into which the MLX56 family protein gene is introduced is not a mulberry plant (mulberry).
 MLX56ファミリータンパク質遺伝子を導入した植物細胞、カルス、葉切片、又は子葉切片等を、例えば従来知られている植物組織培養法に従って選択培地で培養し、生存したカルスを再分化培地(適当な濃度の植物ホルモン(オーキシン、サイトカイニン、ジベレリン、アブシジン酸、エチレン、又はブラシノライド等)を含む)で培養することにより、MLX56ファミリータンパク質遺伝子の導入により形質転換された植物体を再生することができる。本発明では、上記のようにして、MLX56ファミリータンパク質遺伝子が導入された形質転換(トランスジェニック)植物を作製することができる。 Plant cells, callus, leaf sections, or leaflets into which the MLX56 family protein gene has been introduced are cultured in a selective medium according to, for example, a conventionally known plant tissue culture method, and the surviving callus is subjected to a redifferentiation medium (appropriate concentration). By culturing with plant hormones (including auxin, cytokinin, gibberellin, absidic acid, ethylene, or brushnolide), plants transformed by the introduction of the MLX56 family protein gene can be regenerated. In the present invention, a transformed (transgenic) plant into which the MLX56 family protein gene has been introduced can be produced as described above.
 MLX56ファミリータンパク質遺伝子が植物中に確実に導入されたか否かの確認は、PCR法等の核酸増幅法、サザンハイブリダイゼーション法、ノーザンハイブリダイゼーション法、ウェスタンブロット法等を利用して行ってもよい。例えば、形質転換植物の葉から抽出したゲノムDNA又はトータルRNAから逆転写したcDNAについて、MLX56ファミリータンパク質遺伝子に特異的なプライマーを用いてPCR等による核酸増幅を行えばよい。その増幅産物についてアガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動又はキャピラリー電気泳動等を行い、臭化エチジウム、SYBR Green液等により染色し、そして増幅産物を明瞭なバンドとして検出することにより、植物へのMLX56ファミリータンパク質遺伝子の導入を確認することができる。マイクロプレート等の固相に増幅産物を結合させ、蛍光又は酵素反応等により増幅産物を検出することもできる。 Whether or not the MLX56 family protein gene has been reliably introduced into the plant may be confirmed by using a nucleic acid amplification method such as PCR method, a Southern hybridization method, a Northern hybridization method, a Western blotting method, or the like. For example, genomic DNA extracted from the leaves of transformed plants or cDNA reverse-transcribed from total RNA may be amplified by PCR or the like using a primer specific to the MLX56 family protein gene. The amplified product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with ethidium bromide, SYBR Green solution, etc., and the amplified product is detected as a clear band to the plant. The introduction of the MLX56 family protein gene can be confirmed. It is also possible to bind the amplification product to a solid phase such as a microplate and detect the amplification product by fluorescence, enzymatic reaction or the like.
 本発明では、上記のようにしてMLX56ファミリータンパク質遺伝子を植物に導入し、形質転換(トランスジェニック)植物を作製することにより、その植物にアザミウマ耐性を付与することができる。本発明は、MLX56ファミリータンパク質遺伝子を上記の植物に導入することを含む、植物にアザミウマ耐性を付与する方法も提供する。本発明はまた、遺伝子導入により植物にアザミウマ耐性を付与するための、MLX56ファミリータンパク質遺伝子の使用も提供する。 In the present invention, by introducing the MLX56 family protein gene into a plant as described above to prepare a transformed (transgenic) plant, thrips resistance can be imparted to the plant. The present invention also provides a method for conferring thrips resistance on a plant, which comprises introducing the MLX56 family protein gene into the plant described above. The present invention also provides the use of the MLX56 family protein gene to confer thrips resistance on plants by gene transfer.
 MLX56ファミリータンパク質遺伝子が導入された形質転換植物がアザミウマ耐性を有するかどうかを確認するため、また場合により、獲得したアザミウマ耐性の程度を決定するため、MLX56ファミリータンパク質遺伝子を植物に導入した後、得られた形質転換植物のアザミウマ耐性を検定することが好ましい。MLX56ファミリータンパク質遺伝子が導入された形質転換植物におけるアザミウマ耐性が、MLX56ファミリータンパク質遺伝子を導入していないこと以外は同等の対照植物と比較して、(好ましくは統計学的に有意に)強化されている場合には、その被験植物(形質転換植物)はアザミウマ耐性を有することが示される。 After introducing the MLX56 family protein gene into the plant, to determine whether the transformed plant into which the MLX56 family protein gene has been introduced has thrips resistance and, in some cases, to determine the degree of thrips resistance acquired. It is preferable to test the thrips resistance of the transformed plant. Azamiuma resistance in transformed plants into which the MLX56 family protein gene has been introduced is enhanced (preferably statistically significantly) compared to comparable control plants except that they have not been introduced with the MLX56 family protein gene. If so, the test plant (transformed plant) is shown to be resistant to thistle horse.
 アザミウマ耐性は、MLX56ファミリータンパク質遺伝子導入後の植物、例えば、遺伝子導入により得られた形質転換植物細胞若しくは形質転換植物体、又はその一部を用いて検定することができる。一実施形態では、MLX56ファミリータンパク質遺伝子を導入し再生させた植物体又はその子孫植物(被験植物)を、アザミウマの存在下、アザミウマが逃げられない条件下で一定期間(例えば2週間)にわたり維持し、MLX56ファミリータンパク質遺伝子を導入していないこと以外は同等の対照植物における同様の試験結果と比較することにより、MLX56ファミリータンパク質遺伝子が導入された植物のアザミウマ耐性を検定することができる。例えば、アザミウマの存在下で被験植物を一定期間維持した後、アザミウマによる被験植物の食害レベルを観察し、対照植物でのアザミウマによる食害レベルと比較して(好ましくは統計学的に有意に)改善されていれば、その被験植物(形質転換植物)はアザミウマ耐性を有すると判断することができる。食害レベルは、大きな差がある場合には外観から判断してもよいが、例えば葉における食害面積を比較して判断してもよい。あるいは、又はそれに加えて、アザミウマの存在下で被験植物を一定期間維持した後、アザミウマ(幼虫、蛹、成虫を含む)の生存数を計数し、対照植物でのアザミウマの生存数と比較して(好ましくは統計学的に有意に)減少していれば、その被験植物(形質転換植物)は、それを摂食したアザミウマの生存数を減少させることができ、すなわちアザミウマ耐性を有すると判断することができる。例えば、植物を入れた閉鎖空間にアザミウマ20匹を放飼し、25±1℃、14時間明期/10時間暗期条件で2週間維持した後、被験植物におけるアザミウマ(幼虫、蛹、成虫を含む)の生存数が、対照植物におけるアザミウマの生存数と比較して10%以上、好ましくは20%以上減少している場合、被験植物はアザミウマ耐性を有すると判断することができる。 Azamiuma resistance can be tested using a plant after the introduction of the MLX56 family protein gene, for example, a transformed plant cell or a transformed plant obtained by the gene transfer, or a part thereof. In one embodiment, a plant into which the MLX56 family protein gene has been introduced and regenerated or a progeny plant thereof (test plant) is maintained for a certain period of time (for example, 2 weeks) in the presence of the azalea under conditions in which the azalea cannot escape. By comparing with the same test results in the same control plants except that the MLX56 family protein gene has not been introduced, the resistance to horse mackerel in the plant into which the MLX56 family protein gene has been introduced can be tested. For example, after maintaining the test plant for a period of time in the presence of thrips, the level of thrips feeding damage to the test plant was observed and improved (preferably statistically significantly) compared to the thrips feeding damage level in the control plant. If so, it can be determined that the test plant (transformed plant) has thrips resistance. The feeding damage level may be judged from the appearance when there is a large difference, but may be judged by comparing the feeding damage areas in the leaves, for example. Alternatively, or in addition, after maintaining the test plant for a period of time in the presence of thrips, the surviving number of thrips (including larvae, pupae, and adults) is counted and compared to the surviving number of thrips in control plants. If there is a (preferably statistically significant) decrease, the test plant (transformed plant) can reduce the survival number of thrips that feed on it, i.e. it is determined to be thrips resistant. be able to. For example, 20 thrips were released in a closed space containing plants and maintained at 25 ± 1 ° C for 2 weeks under the conditions of 14 hours light period / 10 hours dark period, and then thrips (larvae, pupae, adults) in the test plants. If the surviving number of (including) is reduced by 10% or more, preferably 20% or more, as compared with the surviving number of thrips in the control plant, it can be judged that the test plant has thrips resistance.
 以上のようにして、遺伝子導入により得られた形質転換植物のアザミウマ耐性を検定し、アザミウマ耐性を有する形質転換植物を選抜することができる。 As described above, the thrips resistance of the transformed plant obtained by gene transfer can be tested, and the transformed plant having thrips resistance can be selected.
 本発明において「アザミウマ」とは、アザミウマ目(総翅目; Thysanoptera)に属する昆虫を意味する。アザミウマは、アザミウマ科(Thripidae)、シマアザミウマ科(Aeolothripidae)、メロアザミウマ科(Merothripidae)、クダアザミウマ科(Phlaeothripidae)、フラウリエリダエ科(Fauriellidae)、ヘテロスリピダエ科(Heterothripidae)、メランスリピダエ科(Melanthripidae)、又はウゼロスリピダエ科(Uzelothripidae)であってよいが、これらに限定されない。アザミウマは、例えば、スリップス属(Thrips)、アナホスリップス属(Anaphothrips)、チロスリップス属(Chirothrips)、フランクリニエラ属(Frankliniella)、フルメキオラ属(Fulmekiola)、ヒダトスリップス属(Hydatothrips)、シルトスリップス属(Scirtothrips)、セリコスリップス属(Sericothrips)、テニオスリップス属(Taeniothrips)、ヨシノスリップス属(Yoshinothrips)、ヘリノスリップス属(Helionothrips)、アルヘノスリップス属(Arrhenothrips)、エカカントスリップス属(Ecacanthothrips)、ハプロスリップス属(Haplothrips)、ホロスリップス属(Holothrips)、リノスリップス属(Liothrips)、リトテトスリップス属(Litotetothrips)、ミキオスリップス属(Mychiothrips)、オイダノスリップス属(Oidanothrips)、ペンタゴノスリップス属(Pentagonothrips)、ポンチキュロスリップス属(Ponticulothrips)、サリドスリップス属(Psalidothrips)、バクトロスリップス属(Bactrothrips)、又はガストロスリップス属(Gastrothrips)に属するものであってよいが、これらに限定されない。 In the present invention, "Thrips" means an insect belonging to the order Thrips (Thysanoptera). Thripidae are Thripidae, Thripidae (Aeolothripidae), Thripidae (Merothripidae), Thripidae (Phlaeothripidae), Thripidae (Fauriellidae), Thripidae (Fauriellidae), Thripidae (Fauriellidae) It may be a family (Uzelothripidae), but is not limited to these. Thrips include, for example, Thrips, Anaphothrips, Chirothrips, Frankliniella, Fulmekiola, Hydatothrips, and Syltoslips. (Scirtothrips), Sericothrips, Taeniothrips, Yoshinothrips, Helionothrips, Arrhenothrips, Ecacanthothrips, Ecacanthothrips The genus Haplothrips, the genus Holothrips, the genus Liothrips, the genus Litotetothrips, the genus Mychiothrips, the genus Oidanothrips, the genus Pentagonothrips. ), Ponticulothrips, Psalidothrips, Bactrothrips, or Gastrothrips, but is not limited to these.
 アザミウマの例としては、キイロハナアザミウマ(Thrips flavus)、ネギアザミウマ(Thrips tabaci)、クロゲハナアザミウマ(Thrips nigropilosus)、ビワハナアザミウマ(Thrips coloratus)、ハナアザミウマ(Thrips hawaiiensis)、ミナミキイロアザミウマ(Thrips palmi)、ダイズウスイロアザミウマ(Thrips setosus)、ネギクロアザミウマ(Thrips alliorum)、クサキイロアザミウマ(Anaphothrips obscurus)、ヒゲブトアザミウマ(Chirothrips manicatus)、ミカンキイロアザミウマ(Frankliniella occidentalis)、ヒラヅハナアザミウマ(Frankliniella intonsa)、カホンカハナアザミウマ(Frankliniella tenuicornis)、サトウキビチビアザミウマ(Fulmekiola serrata)、ハラオビアザミウマ(Hydatothrips abdominalis)、チャノキイロアザミウマ(Scirtothrips dorsalis)、フチドリキヌゲアザミウマ(Sericothrips marginalis)、ナシアザミウマ(Taeniothrips inconsequens)、ヨシノアザミウマ(Yoshinothrips pasekamui)、クロトンアザミウマ(Helionothrips haemorrhoidalis)、モモブトクダアザミウマ(Arrhenothrips lewisi)、トゲナシクダアザミウマ(Ecacanthothrips inarmatus)、イネクダアザミウマ(Haplothrips aculeatus)、クチキクダアザミウマ(Holothrips japonicus)、フウトウカズラクダアザミウマ(Liothrips kuwanai)、シイマルクダアザミウマ(Litotetothrips pasaniae)、ミキオクダアザミウマ(Mychiothrips fruticola)、オオコブクダアザミウマ(Oidanothrips frontalis)、ゴカククダアザミウマ(Pentagonothrips antennalis)、カキクダアザミウマ(Ponticulothrips diospyrosi)、オチバクダアザミウマ(Psalidothrips lewisi)、キアシツノオオアザミウマ(Bactrothrips pictipes)、ガストロオオアザミウマ(Gastrothrips acutulus)等が挙げられるが、これらに限定されない。 Examples of thrips include Thrips flavus, Thrips tabaci, Thrips nigropilosus, Thrips coloratus, Thrips coloratus, Thrips thrips, Thrips thrips, Thrips thrips, Thrips thrips, Thrips thrips, Thrips thrips, Thrips thrips ), Thrips thrips (Thrips setosus), Thrips alliorum, Thrips thrips (Anaphothrips obscurus), Thrips palmi Karny (Chirothrips manicatus), Thrips palmi Karny (Chirothrips manicatus), Thrips palmi Karny ), Kahonkahana thrips (Frankliniella tenuicornis), Satoukibichibia thrips (Fulmekiola serrata), Haraobia thrips (Hydatothrips abdominalis), Chanokiiro thrips (Scirtothrips thrips) thrips (Scirtothrips thrips) Thrips thrips (Yoshinothrips thrips), Thrips palmi Karny (Helionothrips haemorrhoidalis), Thrips palmi Karny (Arrhenothrips lewisi), Thrips palmi Karny (Ecacanthothrips thrips thrips) Thrips thrips (Thrips thrips) Thrips palmi Karny (Liothrips kuwanai), Thrips palmi Karny (Litotetothrips pasaniae), Thrips palmi Karny (Mychiothrips thripticola), Thrips palmi Karny (Pruticola), Thrips palmi Karny (Oidanothrips thrips) ulothrips diospyrosi), Thrips palmi Karny (Psalidothrips lewisi), Thrips palmi Karny (Bactrothrips pictipes), Thrips palmi Karny (Gastrothrips acutulus), etc., but not limited to these.
 MLX56ファミリータンパク質遺伝子が導入され、アザミウマ耐性を有することが確認された形質転換植物(P世代)を自家交配し、種子を採取し、次世代植物(F1植物又はそれ以降の世代の植物)を育成してもよい。次世代植物は、MLX56ファミリータンパク質遺伝子を核ゲノム中にヘテロ接合又はホモ接合で有していてもよい。MLX56ファミリータンパク質遺伝子が葉緑体ゲノムに導入された場合には、次世代植物は、一部の葉緑体がMLX56ファミリータンパク質遺伝子で形質転換されていてもよく(ヘテロプラスミー)、全て又はほとんど全ての葉緑体がMLX56ファミリータンパク質遺伝子で形質転換されていてもよい(ホモプラスミー)。MLX56ファミリータンパク質遺伝子はヘテロ接合であっても又はホモ接合であっても、アザミウマ耐性をもたらすことができる。 Transformed plants (P generation) into which the MLX56 family protein gene has been introduced and confirmed to have thrips resistance are self-mated, seeds are collected, and next-generation plants (F1 plants or later generation plants) are cultivated. You may. Next-generation plants may have the MLX56 family protein gene heterozygous or homozygous in the nuclear genome. When the MLX56 family protein gene is introduced into the chloroplast genome, next-generation plants may have some chloroplasts transformed with the MLX56 family protein gene (heteroplasmy), all or most. All chloroplasts may be transformed with the MLX56 family protein gene (homoplasmy). The MLX56 family protein genes, whether heterozygous or homozygous, can result in thrips resistance.
 MLX56ファミリータンパク質遺伝子を有する形質転換植物は、有性生殖(自家交配若しくは他家交配)又は無性生殖(栄養生殖、クローン培養など)により繁殖させることができる。 Transformed plants carrying the MLX56 family protein gene can be propagated by sexual reproduction (autologous or allogeneic) or asexual reproduction (vegetative reproduction, clonal reproduction, etc.).
 本発明では、形質転換技術を用いたMLX56ファミリータンパク質遺伝子の導入によって直接的に得られた植物(P世代)から、有性生殖(自家交配若しくは他家交配)又は無性生殖(栄養生殖、クローン培養など)により生成した植物を、子孫植物と称する。P世代の植物から外来性MLX56ファミリータンパク質遺伝子を受け継いだ子孫植物も、MLX56ファミリータンパク質遺伝子を有する形質転換植物の範囲に含まれるものとし、P世代の植物に導入された外来性MLX56ファミリータンパク質遺伝子は、それを受け継いだ子孫植物においても外来性MLX56ファミリータンパク質遺伝子と称する。 In the present invention, sexual reproduction (autologous or allogeneic) or asexual reproduction (vegetative reproduction, cloning) is performed from a plant (P generation) directly obtained by introducing the MLX56 family protein gene using a transformation technique. A plant produced by (cultivation, etc.) is called a progeny plant. Offspring plants that inherit the exogenous MLX56 family protein gene from P generation plants are also included in the range of transformed plants that carry the MLX56 family protein gene, and the exogenous MLX56 family protein gene introduced into P generation plants is , It is also called an exogenous MLX56 family protein gene in offspring plants that inherit it.
 本発明は、外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物を育種親として用いて交配を行い、子孫植物を取得し、MLX56ファミリータンパク質遺伝子を有する子孫植物を選抜することを含む、アザミウマ耐性植物の育種方法も提供する。本発明に係る形質転換植物を「育種親として用いて交配を行う」とは、アザミウマ耐性の形質転換植物中の外来性MLX56ファミリータンパク質遺伝子を子孫植物に導入する目的で、本発明に係る形質転換植物同士(自家交配)、又は、本発明に係る形質転換植物と同種異系統又は近縁種の植物とを交配することを意味する。交配は1回でもよいし、繰り返し行ってもよい。例えば、本発明に係る形質転換植物を同種異系統又は近縁種の植物(反復親)と交配し、その子孫植物を反復親と交配し(戻し交配)、その子孫植物をさらに反復親と交配することを繰り返してもよい(連続戻し交配)。あるいは、本発明に係る形質転換植物を同種異系統又は近縁種の植物と交配し、その子孫植物を別の同種異系統又は近縁種の植物と交配してもよい。MLX56ファミリータンパク質遺伝子を有する子孫植物の選抜は、当該植物中のMLX56ファミリータンパク質遺伝子又はその遺伝子産物(mRNA又はMLX56ファミリータンパク質)を検出することによって行うことができる。さらに、MLX56ファミリータンパク質遺伝子を有する子孫植物についてアザミウマ耐性を検定し、アザミウマ耐性を有する子孫植物を選抜することも好ましい。そのようにして子孫植物を取得し、MLX56ファミリータンパク質遺伝子を有する子孫植物を選抜することにより、MLX56ファミリータンパク質遺伝子により付与されたアザミウマ耐性を有する植物の育種を行うことができる。 The present invention comprises mating using a lizard-resistant transformed plant having an exogenous MLX56 family protein gene as a breeding parent to obtain a progeny plant and selecting a progeny plant having the MLX56 family protein gene. Breeding methods for resistant plants are also provided. "Mating using a transformed plant according to the present invention as a breeding parent" means that the transformed plant according to the present invention is used for the purpose of introducing an exogenous MLX56 family protein gene in a transformed plant resistant to horse mackerel into a progeny plant. It means that plants are crossed with each other (self-mating), or the transformed plant according to the present invention is crossed with a plant of the same species, a different strain or a closely related species. Mating may be performed once or repeatedly. For example, the transformed plant according to the present invention is crossed with a plant of the same species or a closely related species (repeated parent), the progeny plant is mated with the repetitive parent (backcross), and the progeny plant is further mated with the repetitive parent. May be repeated (continuous backcrossing). Alternatively, the transformed plant according to the present invention may be crossed with a plant of the same species or a closely related species, and the progeny plant thereof may be crossed with another plant of the same species or a closely related species. Selection of progeny plants having the MLX56 family protein gene can be performed by detecting the MLX56 family protein gene or its gene product (mRNA or MLX56 family protein) in the plant. Furthermore, it is also preferable to test thrips resistance of progeny plants having the MLX56 family protein gene and select progeny plants having thrips resistance. By obtaining offspring plants in this way and selecting offspring plants having the MLX56 family protein gene, it is possible to breed plants having the Azamiuma resistance conferred by the MLX56 family protein gene.
 本発明で得られた外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物を、アザミウマの存在下で栽培することにより、アザミウマによるその植物の食害を低減することができるだけでなく、その植物を摂食したアザミウマの成長阻害及び/又は生存能力低下をもたらし、それによりアザミウマの生息数を減少させることができる。したがって本発明は、外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物を、アザミウマに食べさせることを含む、アザミウマの防除方法も提供する。本発明はまた、外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物を、アザミウマ分布地域で栽培することを含む、アザミウマの防除方法にも関する。本発明に係る、外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物は、アザミウマ防除のための対抗植物として用いることもできる。 By cultivating a thrips-resistant transformed plant having the exogenous MLX56 family protein gene obtained in the present invention in the presence of thrips, it is possible not only to reduce the feeding damage of the plant by thrips, but also to produce the plant. It can result in growth inhibition and / or reduced viability of the thrips that have been eaten, thereby reducing the abundance of thrips. Therefore, the present invention also provides a method for controlling thrips, which comprises feeding thrips a transformed plant resistant to thrips having an exogenous MLX56 family protein gene. The present invention also relates to a method for controlling thrips, which comprises cultivating a thrips-resistant transformed plant having a exogenous MLX56 family protein gene in a thrips distribution area. The thrips-resistant transformed plant having the exogenous MLX56 family protein gene according to the present invention can also be used as a counter plant for thrips control.
 本発明は、外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物又はそこから単離されたMLX56ファミリータンパク質を含む、アザミウマ防除剤も提供する。例えば、本発明に係る形質転換植物の植物体又は種子を含むアザミウマ防除剤は、アザミウマの生息数を減少させることによりアザミウマを防除するための対抗植物として用いることができる。あるいは本発明に係る形質転換植物、例えばその植物体の一部(葉や茎など)、又はそこから単離されたMLX56ファミリータンパク質を含む、アザミウマ防除剤は、農地に播くなどの方法により、アザミウマの生息数を減少させるために用いることができる。MLX56ファミリータンパク質は本発明に係る形質転換植物から抽出されたものであってよい。なお本発明に係る形質転換植物中で発現・蓄積されたMLX56ファミリータンパク質は糖鎖修飾されている。本発明に係るMLX56ファミリータンパク質のアザミウマ防除活性は、アザミウマに当該タンパク質を摂食させることによりそのアザミウマの生息数について、MLX56ファミリータンパク質を与えない対照群と比較して好ましくは10%以上、より好ましくは20%以上の減少をもたらすことができる。 The present invention also provides a thrips control agent containing a thrips-resistant transformed plant having an exogenous MLX56 family protein gene or an MLX56 family protein isolated from the transformed plant. For example, the thrips control agent containing the plant body or seed of the transformed plant according to the present invention can be used as a counter plant for controlling thrips by reducing the population of thrips. Alternatively, the thrips control agent containing the transformed plant according to the present invention, for example, a part of the plant body (leaves, stems, etc.) or the MLX56 family protein isolated from the plant, can be thrips by a method such as sowing on farmland. It can be used to reduce the abundance of thrips. The MLX56 family protein may be extracted from the transformed plant according to the present invention. The MLX56 family protein expressed and accumulated in the transformed plant according to the present invention is sugar chain-modified. The thrips control activity of the MLX56 family protein according to the present invention is preferably 10% or more, more preferably 10% or more, in terms of the number of thrips inhabiting the thrips by feeding the protein, as compared with the control group not given the MLX56 family protein. Can result in a reduction of 20% or more.
 本発明において用語「植物」は、植物の各種生育段階や部分、例えば植物体(植物全体)、茎、葉、根、花、蕾、果実(果肉、果皮)、シュート、種子、組織、細胞、及びカルス等を基本的に包含する。本発明に係る形質転換植物は、形質転換植物細胞であってもよいし、形質転換植物体又はその一部(葉など)であってもよい。本発明における用語「植物」は、文脈によっては植物体を指すこと、植物体の一部を指すこと、又は細胞若しくは組織を指すこともあるが、当業者であればその意味は容易に理解できる。 In the present invention, the term "plant" refers to various growth stages and parts of a plant, such as plant body (whole plant), stem, leaf, root, flower, bud, fruit (flesh, pericarp), shoot, seed, tissue, cell, And crows etc. are basically included. The transformed plant according to the present invention may be a transformed plant cell, a transformed plant, or a part thereof (leaves, etc.). The term "plant" in the present invention may refer to a plant, a part of a plant, or a cell or tissue depending on the context, but those skilled in the art can easily understand the meaning. ..
 本発明では、MLX56ファミリータンパク質遺伝子を植物に導入することにより、従来の育種法と比較して、植物のアザミウマ耐性を効率良く強化することができる。 In the present invention, by introducing the MLX56 family protein gene into a plant, it is possible to efficiently enhance the thrips resistance of the plant as compared with the conventional breeding method.
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the technical scope of the present invention is not limited to these examples.
[実施例1]MLX56発現プラスミドベクターの構築及びアグロバクテリウム菌への導入
 MLX56発現プラスミド構築には、後述のとおり、バイナリーベクターpEL2Ω-MCS(Ohtsubo, N., et al., (1999) Plant Cell Physiol. 40: 808-817)を使用した。pEL2Ω-MCSは、E12Ωプロモーター(Mitsuhara et al. (1996) Plant Cell Physiol. 37: 49-59)の下流にマルチクローニングサイト(MCS)を含み、かつ選択マーカー遺伝子としてカナマイシン耐性遺伝子を含む。
[Example 1] Construction of MLX56 expression plasmid vector and introduction into Agrobacterium For the construction of MLX56 expression plasmid vector, the binary vector pEL2Ω-MCS (Ohtsubo, N., et al., (1999) Plant Cell) Physiol. 40: 808-817) was used. pEL2Ω-MCS contains a multicloning site (MCS) downstream of the E12Ω promoter (Mitsuhara et al. (1996) Plant Cell Physiol. 37: 49-59) and contains a kanamycin resistance gene as a selectable marker gene.
 クワ品種しんいちのせ(Morus alba L, cv. Shin-Ichinose)(茨城県つくば市産)の葉柄を切断し、その傷口から分泌された乳液を回収し、乳液から全RNAを単離した。オリゴ-dT-Adapterプライマー(タカラバイオ株式会社、京都、日本)及びTaKaRa One Step RNA PCR Kit (AMV)(タカラバイオ株式会社)を使用して、全RNA(1μg)からcDNAを合成した。 The petiole of the mulberry variety Shinichinose (Morus alba L, cv. Shin-Ichinose) (produced in Tsukuba City, Ibaraki Prefecture) was cut, the emulsion secreted from the wound was recovered, and the total RNA was isolated from the emulsion. CDNA was synthesized from total RNA (1 μg) using oligo-dT-Adapter primers (Takara Bio Inc., Kyoto, Japan) and TaKaRa One Step RNA PCR Kit (AMV) (Takara Bio Inc.).
 合成されたcDNAを鋳型とし、プライマーMLX56 ORF51(5'-aattTCTAGAatgaagtttagaactcttttaatc-3'; 配列番号3)及びMLX56 ORF31(5'-tataGAGCTCttacattcgagcaacttccga-3'; 配列番号4)を用いてPCR法により核酸増幅を行うことにより、5'末端にXba1部位、3'末端にSac1部位(制限酵素部位)が付加されたMLX56遺伝子ORF(オープンリーディングフレーム)全長の増幅断片をPCR産物として取得した。 Using the synthesized cDNA as a template, nucleic acid amplification is performed by PCR using primers MLX56 ORF51 (5'-aattTCTAGAatgaagtttagaactcttttaatc-3'; SEQ ID NO: 3) and MLX56 ORF31 (5'-tataGAGCTCttacattcgagcaacttccga-3'; SEQ ID NO: 4). As a result, an amplified fragment of the full length of the MLX56 gene ORF (open reading frame) with the Xba1 site added to the 5'end and the Sac1 site (restriction enzyme site) added to the 3'end was obtained as a PCR product.
 得られた増幅断片とバイナリーベクターpEL2Ω-MCSとを、Xba1及びSac1で切断し、切断末端同士をDNAリガーゼによって連結し、大腸菌JM109株のコンピテントセルに導入した。組換えプラスミドを保持する大腸菌のコロニーをカナマイシン耐性に基づいて選抜し、プラスミドを単離し、プラスミド中のインサートを配列決定し、ベクター中のE12Ωプロモーターの制御下にMLX56遺伝子ORF配列(配列番号1)が正しく挿入されたクローンを選抜した。このようにして得られたMLX56発現バイナリープラスミドベクターをpEL2Ω::MLX56と名付けた。配列番号1で示される塩基配列を含むMLX56遺伝子は、配列番号2で示されるアミノ酸配列からなるMLX56タンパク質をコードする。pEL2Ω::MLX56のT-DNA領域の構造の概略図を図1に示す。 The obtained amplified fragment and the binary vector pEL2Ω-MCS were cleaved with Xba1 and Sac1, and the cleaved ends were ligated with DNA ligase and introduced into competent cells of Escherichia coli JM109 strain. E. coli colonies carrying the recombinant plasmid were selected based on kanamycin resistance, the plasmid was isolated, the inserts in the plasmid were sequenced, and the MLX56 gene ORF sequence (SEQ ID NO: 1) under the control of the E12Ω promoter in the vector. Selected clones that were correctly inserted. The MLX56 expression binary plasmid vector thus obtained was named pEL2Ω :: MLX56. The MLX56 gene containing the nucleotide sequence shown in SEQ ID NO: 1 encodes the MLX56 protein consisting of the amino acid sequence shown in SEQ ID NO: 2. A schematic diagram of the structure of the T-DNA region of pEL2Ω :: MLX56 is shown in FIG.
[実施例2]形質転換(トランスジェニック)トマトの作製
 本実施例における形質転換には、独立行政法人製品評価技術基盤機構バイオテクノロジーセンター(National Bio-Resource Center, NITE(NBRC); 日本)から入手したトマト(Solanum lycopersicum; 品種名マイクロトム(Micro-Tom))を用いた。
[Example 2] Preparation of transgenic tomatoes The transformation in this example was obtained from the National Bio-Resource Center (NITE (NBRC); Japan), an independent administrative agency. Tomatoes (Solanum lycopersicum; variety name Micro-Tom) were used.
 形質転換は、後述のとおり、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)LBA4404株を使用し、リーフディスク法(Horsch et al., Science, (1985) 227(4691):1229-1231)に従い、Sun et al., Plant Cell Physiol., (2006) 47, 426-431に記載の改変法を適用して行った。 For transformation, as described later, Agrobacterium tumefaciens LBA4404 strain was used, and according to the leaf disk method (Horsch et al., Science, (1985) 227 (4691): 1229-1231), Sun et The modification method described in al., Plant Cell Physiol., (2006) 47, 426-431 was applied.
 具体的には、まず、トマト品種マイクロトムの種子を表面殺菌した後、播種用培地に置床し、培養室で、16時間明期/8時間暗期条件下で25℃にて7~10日間培養して、発芽及び生育させた。滅菌したメスを用いて子葉を切り取り、葉柄と先端部分を取り除き、中肋に対し垂直方向に2分割したもの(子葉切片)を、その後の形質転換に供した。 Specifically, first, after surface sterilizing the seeds of the tomato variety Microtom, the seeds are placed in a seeding medium and placed in a culture room at 25 ° C. for 7 to 10 days under 16-hour light period / 8-hour dark period conditions. It was cultured, germinated and grown. The cotyledon was cut out using a sterilized scalpel, the petiole and the tip were removed, and the cotyledon was divided into two parts perpendicular to the middle rib (cotyledon section) and subjected to subsequent transformation.
 実施例1で作製したバイナリーベクターpEL2Ω::MLX56は、エレクトロポレーション法により、アグロバクテリウム・ツメファシエンスLBA4404株に導入した。pEL2Ω::MLX56を有するアグロバクテリウム・ツメファシエンスLBA4404株をLB液体培地で一昼夜培養した後、高速遠心機を用いて菌体を回収し、アグロバクテリウム感染用培地にO.D. = 0.8程度になるように懸濁した。この菌体懸濁液40mlに、上記の子葉切片およそ100切片を加えて攪拌した後、約10分間静置した。次いで、菌体懸濁液から子葉切片をピンセットでつまんで取り出し、滅菌キムタオル上に置いて菌液を吸収させた後、共存培地に置床し、暗黒下25℃でアグロバクテリウムとの共存培養を行った。 The binary vector pEL2Ω :: MLX56 prepared in Example 1 was introduced into the Agrobacterium tumefaciens LBA4404 strain by the electroporation method. After culturing the Agrobacterium tumefaciens LBA4404 strain having pEL2Ω :: MLX56 in LB liquid medium for a whole day and night, collect the cells using a high-speed centrifuge so that the medium for Agrobacterium infection has OD = 0.8. Suspended. Approximately 100 cotyledon sections described above were added to 40 ml of this bacterial cell suspension, stirred, and then allowed to stand for about 10 minutes. Next, the cotyledon slices were picked up from the bacterial cell suspension with tweezers, placed on a sterile Kim towel to absorb the bacterial solution, placed in a coexisting medium, and co-cultured with Agrobacterium at 25 ° C in the dark. went.
 3日後、子葉切片を抗生物質を含むカルス誘導培地に移植し、16時間明期/8時間暗期条件下で25℃で培養した。7~14日毎に培地を交換し、3週間程度で子葉切片から形成されたカルスをシュート形成培地1に移植しさらに10~14日間培養を続けた後、再度新しいシュート形成培地1に移植し、10~14日間培養した。その後、シュート形成培地2に移植し、10~14日毎に培地を交換し、不定芽が成長してきたら発根培地に移植した。発根培地での培養により発根が認められた植物個体を培地から抜き取り、培養土に移植し、培養室で育成した。このようにして形質転換トマトの植物体を再生させることができた。 Three days later, the cotyledon slices were transplanted into a callus-inducing medium containing an antibiotic and cultured at 25 ° C. under 16-hour light period / 8-hour dark period conditions. The medium was changed every 7 to 14 days, and the callus formed from the cotyledon section was transplanted to shoot-forming medium 1 in about 3 weeks, and the culture was continued for another 10 to 14 days, and then transplanted to new shoot-forming medium 1 again. Incubated for 10-14 days. Then, it was transplanted to shoot-forming medium 2, the medium was changed every 10 to 14 days, and when adventitious buds grew, it was transplanted to rooting medium. Plants whose rooting was observed by culturing in a rooting medium were extracted from the medium, transplanted to culture soil, and grown in a culture room. In this way, the transformed tomato plant could be regenerated.
 用いた培地組成を以下の表1に示す。 The medium composition used is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例3]導入遺伝子の発現確認
 形質転換トマト植物体における導入遺伝子(MLX56遺伝子)の発現確認は、Kawazu et al. (2012) Arthropod-Plant Interactions, 6: 221-230に記載された方法に従って行われた。具体的には、まず、実施例2に従って再生した植物個体から上位展開葉およそ100 mgを切り取り、液体窒素で凍結した。凍結葉サンプルを液体窒素で冷却した乳鉢・乳棒を用いて粉砕した後、トータルRNAを抽出した。トータルRNAの抽出は、TRIzol(R)試薬(Thermo Fisher Scientific)を使用し、製造業者の指示書に従って行った。抽出後、イソプロパノール沈殿によって得られたRNA含有ペレットをTEバッファーに溶解した。
[Example 3] Confirmation of expression of transgene The confirmation of expression of the transgene (MLX56 gene) in the transformed tomato plant is carried out according to the method described in Kawazu et al. (2012) Arthropod-Plant Interactions, 6: 221-230. It was conducted. Specifically, first, about 100 mg of upper-developed leaves were cut from the plant individuals regenerated according to Example 2, and frozen in liquid nitrogen. Frozen leaf samples were crushed using a mortar and pestle cooled with liquid nitrogen, and then total RNA was extracted. Extraction of total RNA was performed using the TRIzol (R) reagent (Thermo Fisher Scientific) and according to the manufacturer's instructions. After extraction, the RNA-containing pellet obtained by isopropanol precipitation was dissolved in TE buffer.
 得られたトータルRNAを鋳型とし、iScriptTMcDNA合成キット(Bio-Rad)を用いて製造業者の指示書に従って逆転写反応を行い、相補DNA(cDNA)を合成した(第一鎖DNA)。続いて、MLX56 mRNAを定量するため、第一鎖DNAを鋳型とし、CFX96リアルタイムPCR解析システム(Bio-Rad)を用いてqRT-PCR及び蛍光検出を行った。qRT-PCRには、MLX56遺伝子配列検出用プライマー MLX56RT51: 5'-CCAAGTCCACCTCCACCAAGTC-3'(配列番号5)及びMLX56RT31: 5'-TTTCCGAGGGCTCTTCCACATC-3'(配列番号6)、並びにプレミックスiQTM SuperMix(Bio-Rad)を用いた。内部標準としてトマトアクチン遺伝子配列検出用プライマー(LeActinRT51: 5'-CCAGGTATTGCTGATAGAATGAG-3'(配列番号7)及びLeActinRT31: 5'-GAGCCTCCAATCCAGACAC-3'(配列番号8))を用いたqRT-PCR及び蛍光検出を並行して行った。アクチン遺伝子の測定値に対するMLX56遺伝子の測定値の相対値を算出し、それにより葉サンプル中のMLX56 mRNAの量を表した。 Using the obtained total RNA as a template, a reverse transcription reaction was carried out using the iScript TM cDNA synthesis kit (Bio-Rad) according to the manufacturer's instructions, and complementary DNA (cDNA) was synthesized (first-strand DNA). Subsequently, in order to quantify MLX56 mRNA, qRT-PCR and fluorescence detection were performed using a CFX96 real-time PCR analysis system (Bio-Rad) using first-stranded DNA as a template. For qRT-PCR, MLX56RT51: 5'-CCAAGTCCACCTCCACCAAGTC-3'(SEQ ID NO: 5) and MLX56RT31: 5'-TTTCCGAGGGCTCTTCCACATC-3' (SEQ ID NO: 6), and premix iQ TM SuperMix (Bio) -Rad) was used. QRT-PCR and fluorescence detection using tomato actin gene sequence detection primers (LeActinRT51: 5'-CCAGGTATTGCTGATAGAATGAG-3'(SEQ ID NO: 7) and LeActinRT31: 5'-GAGCCTCCAATCCAGACAC-3' (SEQ ID NO: 8)) as internal standards. Was done in parallel. The relative value of the MLX56 gene measurement to the actin gene measurement was calculated, thereby expressing the amount of MLX56 mRNA in the leaf sample.
 この結果、形質転換トマト植物体において導入したMLX56遺伝子の発現が確認された。導入したMLX56遺伝子を特に強く発現する形質転換トマトが2系統得られ、MLX56-69及びMLX56-73と名付けた。MLX56-69はMLX56 mRNAの発現量がトマトアクチン遺伝子の発現量に比べ約3倍、MLX56-73はMLX56 mRNAの発現量がトマトアクチン遺伝子の発現量に比べ約5倍であった(図2)。 As a result, the expression of the MLX56 gene introduced in the transformed tomato plant was confirmed. Two lines of transformed tomatoes expressing the introduced MLX56 gene particularly strongly were obtained and named MLX56-69 and MLX56-73. In MLX56-69, the expression level of MLX56 mRNA was about 3 times that of the tomato actin gene, and in MLX56-73, the expression level of MLX56 mRNA was about 5 times that of the tomato actin gene (Fig. 2). ..
 なお後述の実施例4で取得した複数の次世代植物個体についても同様にMLX56遺伝子の発現量を確認した。 The expression level of the MLX56 gene was also confirmed in the plurality of next-generation plant individuals acquired in Example 4 described later.
[実施例4]MLX56タンパク質の検出
 本実施例では、MLX56タンパク質のキチン結合性を利用して、形質転換トマト植物体におけるMLX56タンパク質の蓄積の確認を行った。
[Example 4] Detection of MLX56 protein In this example, the accumulation of MLX56 protein in transformed tomato plants was confirmed by utilizing the chitin binding property of MLX56 protein.
 実施例3で得られた形質転換トマトMLX56-73を自家交配し、次世代植物を得た。次世代植物の1個体であるMLX56-73-30から採取した上位展開葉200mgに抽出溶液(20 mMのTris-HCl(pH 9.5)にプロテアーゼ阻害剤cOmplete, Mini(Roche)を製造業者の指示書に従った量で加えたもの;本実施例において以下同じ)800μLを加えて乳鉢と乳棒で磨砕した。得られた磨砕液を12,000 rpmで5分間遠心して不溶物を取り除き、上清を回収してタンパク質粗抽出液(Total)とした。ネガティブコントロールとして、同じプロモーターE12Ωの制御下にホタルルシフェリン遺伝子を有する形質転換トマト(品種マイクロトム)(Ueda et al., (2018) Journal of Plant Interactions, Vol.14, No.1, 73-78)の上位展開葉200mgを採取し、同様にしてタンパク質粗抽出液を得た。なお、特に記載しない限り葉サンプルや抽出液は氷冷した状態で処理した。 The transformed tomato MLX56-73 obtained in Example 3 was self-mated to obtain a next-generation plant. Manufacturer's instructions for 200 mg of upper-developed leaves collected from one of the next-generation plants, MLX56-73-30, with an extract solution (20 mM Tris-HCl (pH 9.5) and protease inhibitors cOmplete, Mini (Roche). Addition in the amount according to the above; the same applies hereinafter in this example) 800 μL was added and ground with a dairy pot and a dairy stick. The obtained grinding solution was centrifuged at 12,000 rpm for 5 minutes to remove insoluble matter, and the supernatant was collected to prepare a crude protein extract (Total). As a negative control, transformed tomatoes (varieties of microtoms) having the firefly luciferin gene under the control of the same promoter E12Ω (Ueda et al., (2018) Journal of Plant Interactions, Vol.14, No.1, 73-78) 200 mg of the upper-developed leaves of Tomato was collected, and a crude protein extract was obtained in the same manner. Unless otherwise specified, leaf samples and extracts were treated in an ice-cooled state.
 キチンビーズ(New England BioLabs)1mlスラリーを5倍容の抽出溶液で3回洗浄することで平衡化し、得られたスラリーに対して2倍容の抽出溶液を加えて懸濁した。このキチン懸濁液200μLと、上記で得られたタンパク質粗抽出液200μLを混合し、室温で10分置いた後、12,000 rpmで5分間遠心することにより、懸濁液を上清とキチンビーズを含む沈殿とに分離した。この上清を採取して非結合上清(Unbound sup)と名付けた。沈殿は抽出溶液で3回洗浄し、洗浄液(Wash)を回収した。抽出溶液で洗浄後の沈殿を200μLの8M尿素溶液で洗浄することにより、キチンビーズと弱く相互作用しているタンパク質を遊離させた。8M尿素溶液による洗浄後に遠心分離して上清を回収し、尿素画分(Urea)と名付けた。さらに、8M尿素溶液での洗浄後の遠心分離で得られたペレット約200μLに、1倍容の2x SDSサンプルバッファーを加え、それを含むチューブを5分間沸騰水中につけることによりキチン結合タンパク質を変性させ、遠心分離し、上清を回収し、キチン結合物質溶出画分(Elute)と名付けた。さらに、上記で得られたタンパク質粗抽出液、非結合上清、洗浄液、及び尿素画分にも1倍容の2x SDSサンプルバッファーを加えて変性タンパク質溶液とした。 1 ml slurry of chitin beads (New England BioLabs) was equilibrated by washing with a 5-fold volume extract solution 3 times, and a 2-fold volume extract solution was added to the obtained slurry and suspended. 200 μL of this chitin suspension and 200 μL of the crude protein extract obtained above are mixed, left at room temperature for 10 minutes, and then centrifuged at 12,000 rpm for 5 minutes to give the suspension the supernatant and chitin beads. Separated into a containing precipitate. This supernatant was collected and named as unbound sup. The precipitate was washed with the extract solution three times, and the washing liquid (Wash) was collected. After washing with the extract solution, the precipitate was washed with 200 μL of 8M urea solution to release proteins that are weakly interacting with the chitin beads. After washing with an 8M urea solution, the supernatant was collected by centrifugation and named as a urea fraction. Furthermore, 1x volume of 2x SDS sample buffer is added to about 200 μL of pellets obtained by centrifugation after washing with 8M urea solution, and the tube containing it is immersed in boiling water for 5 minutes to denature the chitin-binding protein. The protein was centrifuged, the supernatant was collected, and the residue was named the chitin-binding substance-eluting fraction (Elute). Further, a 1-fold volume of 2xSDS sample buffer was added to the crude protein extract, unbound supernatant, washing solution, and urea fraction obtained above to prepare a denatured protein solution.
 それぞれの画分(変性タンパク質溶液)の10 mg新鮮葉相当量を、10% SDS-PAGE(SDS-ポリアクリルアミドゲル電気泳動)にアプライしてタンパク質を分離した後、CBB(クーマシーブリリアントブルー)によって染色し、タンパク質をバンドとして検出した。 Apply 10 mg of fresh leaf equivalent of each fraction (denatured protein solution) to 10% SDS-PAGE (SDS-polyacrylamide gel electrophoresis) to separate proteins, and then use CBB (Coomassie Brilliant Blue). Staining was performed and the protein was detected as a band.
 結果を図3に示す。形質転換トマト葉からのタンパク質粗抽出液由来の画分のうち、キチン結合物質溶出画分において、ネガティブコントロールの対応する画分に含まれない56kDa前後のタンパク質(キチン結合タンパク質)が検出された。このタンパク質がMLX56タンパク質と考えられる。したがってMLX56遺伝子が導入された形質転換トマト植物体において、MLX56タンパク質が発現され、蓄積されていることが実証された。 The results are shown in Fig. 3. Among the fractions derived from the crude protein extract from transformed tomato leaves, a protein (chitin-binding protein) of about 56 kDa, which was not included in the corresponding fraction of the negative control, was detected in the chitin-binding substance-eluting fraction. This protein is considered the MLX56 protein. Therefore, it was demonstrated that the MLX56 protein was expressed and accumulated in the transformed tomato plant into which the MLX56 gene was introduced.
[実施例5]アザミウマ耐性検定
 実施例2及び3で得られた形質転換トマト系統MLX56-69及びMLX56-73の次世代植物個体についてアザミウマ耐性を調べた。コントロールとして、実施例4で使用したものと同じ、プロモーターE12Ωの制御下にホタルルシフェリン遺伝子を有する形質転換トマト(品種マイクロトム)を使用した。各形質転換トマト系統について15個体ずつ供試した。
[Example 5] Thrips resistance test The thrips resistance of the next-generation plant individuals of the transformed tomato strains MLX56-69 and MLX56-73 obtained in Examples 2 and 3 was examined. As a control, a transformed tomato (cultivar Microtom) having the firefly luciferin gene under the control of the promoter E12Ω, which was the same as that used in Example 4, was used. Fifteen individuals were tested for each transformed tomato strain.
 蒸留水を少量入れた容器(底面直径8.5cm、蓋直径10.5cm、高さ14cm)に、ポットで栽培した3~4週齢の形質転換トマトを1容器につき1個体ずつ静置し、アザミウマ科(Thripidae)に属するミカンキイロアザミウマ(Frankliniella occidentalis)の雌成虫を1容器につき20匹放飼した。容器の蓋には換気用の窓を開け、アザミウマが逃げないように目の細かいメッシュを貼り付けた。なお、体が褐色のアザミウマと土との識別を容易にするため、ポットの土表面には白い石英砂を敷いた。この容器を、25±1℃、14時間明期/10時間暗期に制御した恒温室内で維持した。検定期間中にトマト植物が枯れないように、数回、容器蓋のメッシュを通して蒸留水を容器内に注いだ。 In a container (bottom diameter 8.5 cm, lid diameter 10.5 cm, height 14 cm) containing a small amount of distilled water, one 3-4 week old transformed tomato cultivated in a pot was allowed to stand in each container, and thripidae Twenty adult females of the Western flower thrips (Frankliniella occidentalis) belonging to (Thripidae) were released per container. A ventilation window was opened on the lid of the container, and a fine mesh was attached to prevent thrips from escaping. In order to facilitate the distinction between thrips with brown bodies and soil, white quartz sand was laid on the soil surface of the pot. The vessel was maintained in a homeothermic controlled room at 25 ± 1 ° C. for 14 hours light and 10 hours dark. Distilled water was poured into the container several times through the mesh of the container lid so that the tomato plants did not die during the test period.
 2週間後、容器内のアザミウマ(トマト植物上のアザミウマ及び土の上のアザミウマ)の生存数(成虫、蛹、及び幼虫)を計数した。図4に示すとおり、MLX56-69及びMLX56-73系統上で放飼したアザミウマの生存数(成虫、蛹、及び幼虫の総数)はコントロール植物よりも統計学的に有意に少なかった。そしてMLX56-69及びMLX56-73系統において実施例3で示されたMLX56 mRNAの発現量とアザミウマの生存数の間に逆相関が見られた。これらの結果から、MLX56タンパク質がアザミウマの生存率低下をもたらすことが示された。 Two weeks later, the surviving numbers (adults, pupae, and larvae) of thrips (thrips on tomato plants and thrips on soil) in the container were counted. As shown in FIG. 4, the survival number of thrips released on the MLX56-69 and MLX56-73 strains (total number of adults, pupae, and larvae) was statistically significantly lower than that of the control plant. An inverse correlation was found between the expression level of MLX56 mRNA shown in Example 3 and the survival number of thrips in the MLX56-69 and MLX56-73 strains. These results indicate that the MLX56 protein results in reduced survival of thrips.
 図5に、2週間の検定期間後の形質転換トマトの外観の代表的な写真を示す。コントロール植物はアザミウマにより顕著な食害を受けたが、MLX56-69及びMLX56-73系統の食害の程度は明らかに少なかった。MLX56遺伝子を植物に導入することにより、植物のアザミウマ耐性を顕著に高め、アザミウマによる食害を低減できることが示された。 FIG. 5 shows a representative photograph of the appearance of the transformed tomato after the test period of 2 weeks. The control plants were significantly damaged by thrips, but the MLX56-69 and MLX56-73 strains were clearly less damaged. It was shown that by introducing the MLX56 gene into plants, the resistance of thrips in plants can be significantly increased and the feeding damage caused by thrips can be reduced.
 なお供試したMLX56-69及びMLX56-73系統の15個体(次世代植物個体)にはMLX56遺伝子のヘテロ接合体とホモ接合体が混在していたと考えられるが、いずれの個体も高いアザミウマ耐性を示した。 It is probable that the 15 individuals (next-generation plant individuals) of the MLX56-69 and MLX56-73 strains tested contained a mixture of heterozygotes and homozygotes of the MLX56 gene, but all of them showed high thrips resistance. Indicated.
[実施例6]ダニ耐性検定(比較例)
 形質転換トマト系統MLX56-69及びMLX56-73、並びに実施例5で使用したものと同じであるコントロールの形質転換トマト植物のダニ耐性を調べた。
[Example 6] Tick resistance test (comparative example)
The tick resistance of transformed tomato strains MLX56-69 and MLX56-73, as well as the same control transformed tomato plants used in Example 5, was examined.
 4週齢の形質転換トマトを1容器につき1個体ずつ静置し、トマト1個体当たり10個体のミツユビハダニ(Tetranychus evansi Baker & Pritchard)を接種した。接種の26日後、各トマト個体のダニ被害の状況を観察した。図6に、接種26日後の形質転換トマトの外観の代表的な写真を示す。MLX56-69、MLX56-73、及びコントロール植物にはいずれも、ミツユビハダニによる激しい加害が認められた。植物へのMLX56遺伝子の導入はダニ耐性をもたらさないことが示された。 Four-week-old transformed tomatoes were allowed to stand one by one in each container, and 10 individuals of Tetranychus evansi Baker & Pritchard were inoculated per tomato. Twenty-six days after inoculation, the status of tick damage to each tomato individual was observed. FIG. 6 shows a representative photograph of the appearance of the transformed tomato 26 days after inoculation. MLX56-69, MLX56-73, and control plants were all found to be severely harmed by spider mites. Transduction of the MLX56 gene into plants has been shown to result in mite resistance.
[実施例7]キュウリにおけるMLX56遺伝子の一過性発現によるミナミキイロアザミウマ耐性の付与
 本実施例では、キュウリ(Cucumis sativus)においてMLX56遺伝子の一過性発現を誘導することにより、ミナミキイロアザミウマへの耐性をキュウリに付与できるか否かを検討した。
[Example 7] Conferring resistance to Thrips palmi Karny by transient expression of MLX56 gene in cucumber In this example, transient expression of MLX56 gene in cucumber (Cucumis sativus) was induced to thrips thrips. We examined whether or not resistance could be imparted to cucumbers.
 プラスミドベクターとしては、pBE2113-GUS(コントロールベクター; Mitsuhara et al. 1996 Plant Cell Physiol. 37: 49-59)、及び、pBE2113-GUSの改変ベクターであるpEL2Ω-MCS(Ohtsubo, N. et al., (1999) Plant Cell Physiol. 40: 808-817)にMLX56オープンリーディングフレーム(ORF)(配列番号1; Wasano et al 2009)を挿入した発現ベクターpEL2Ω::MLX56(実施例1に記載)を用いた。 The plasmid vectors include pBE2113-GUS (control vector; Mitsuhara et al. 1996 Plant Cell Physiol. 37: 49-59) and pEL2Ω-MCS (Ohtsubo, N. et al.,) Which is a modified vector of pBE2113-GUS. (1999) An expression vector pEL2Ω :: MLX56 (described in Example 1) in which an MLX56 open reading frame (ORF) (SEQ ID NO: 1; Wasano et al 2009) was inserted into Plant Cell Physiol. 40: 808-817 was used. ..
 それぞれのプラスミドベクターをエレクトロポレーション法によりアグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)C58C1株に導入して、2種類のアグロバクテリウムを作製した。アグロバクテリウムの培養、感染性誘導、植物体への感染及び一過的発現については、基本的にKawazu et al., Plant Biotechnology 29, 495-499 (2012)に記載の方法に従って行った。 Each plasmid vector was introduced into the Agrobacterium tumefaciens C58C1 strain by the electroporation method to prepare two types of Agrobacterium. Culturing of Agrobacterium, induction of infectivity, infection to plants, and transient expression were basically carried out according to the method described in Kawazu et al., Plant Biotechnology 29, 495-499 (2012).
 具体的には、作製した2種類のアグロバクテリウムを終夜培養し、それぞれを集菌した後、Kawazu et al., Plant Biotechnology 29, 495-499 (2012)に記載されたアセトシリンゴン含有緩衝液(10mM MES(pH 5.6)、10 mM MgCl2、20μM アセトシリンゴン)にO.D. 600 = 0.2となるように懸濁し、室温で3時間静置することによりアグロバクテリウムの感染性を誘導し、アグロバクテリウム懸濁液を調製した。 Specifically, the two types of Agrobacterium produced were cultured overnight, and after collecting each of them, the acetosyringone-containing buffer solution described in Kawazu et al., Plant Biotechnology 29, 495-499 (2012). Suspension in (10 mM MES (pH 5.6), 10 mM MgCl 2 , 20 μM acetosyringone) at OD 600 = 0.2 and allowing to stand at room temperature for 3 hours induces infectivity of Agrobacterium and agro A bacterial suspension was prepared.
 キュウリ(品種名: ZQ-7、生育ステージ: 5週齢)の展開した3位葉を切り取り、直径1.5 cmの葉片を切り出した後、表面を洗浄し、上記アグロバクテリウム懸濁液に浸漬した。懸濁液及び浸漬した葉片を吸引することにより、葉片と懸濁液の気圧を下げその後常圧に戻すことにより、葉片の細胞間隙にアグロバクテリウム懸濁液を浸透させた。次いで、葉片を取り出し、表面のアグロバクテリウム懸濁液をペーパータオルに吸収させて取り除いた後、室温で風乾させて細胞間隙の過剰な水分を蒸散させた。 The unfolded 3rd leaf of cucumber (variety name: ZQ-7, growth stage: 5 weeks old) was cut out, and after cutting out a leaf piece with a diameter of 1.5 cm, the surface was washed and immersed in the above Agrobacterium suspension. .. The Agrobacterium suspension was infiltrated into the intercellular spaces of the leaf pieces by lowering the atmospheric pressure of the suspension and the soaked leaf pieces and then returning the pressure to normal pressure. Then, the leaf pieces were taken out, the surface Agrobacterium suspension was absorbed by a paper towel to remove it, and then air-dried at room temperature to evaporate the excess water in the intercellular spaces.
 上記葉片をマンジャーセルに1枚ずつ配置し、ミナミキイロアザミウマ(Thrips palmi)の雌成虫1匹を封入した後、16時間明期/8時間暗期で25℃で飼育した。3日後に産卵された卵をトリパンブルー染色によって可視化し、葉当たりの産卵数を計数した。その結果を表2に示す。pBE2113-GUSを導入した葉片を用いた群を対照(コントロール)群、pEl2Omega::MLX56を導入した葉片を用いた群をMLX56群と称する。 The above leaf pieces were placed one by one in a manger cell, and one adult female Thrips palmi was encapsulated, and then bred at 25 ° C in the light period for 16 hours and the dark period for 8 hours. Eggs laid after 3 days were visualized by trypan blue staining, and the number of eggs laid per leaf was counted. The results are shown in Table 2. The group using pBE2113-GUS-introduced leaf pieces is called the control group, and the group using pEl2Omega :: MLX56-introduced leaf pieces is called the MLX56 group.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 2回の試験とも産卵数の平均がMLX56発現株(MLX56群)ではコントロール株(対照群)と比較して約半分程度であった(表2)。MLX56遺伝子を発現させたキュウリ葉(MLX56群)では対照群と比べてミナミキイロアザミウマの産卵数が少ない傾向が認められた。 In both tests, the average number of eggs laid was about half that of the MLX56 expressing strain (MLX56 group) compared to the control strain (control group) (Table 2). In the cucumber leaves expressing the MLX56 gene (MLX56 group), the number of eggs laid by Thrips palmi Karny tended to be smaller than that in the control group.
 本発明によれば、アザミウマ耐性を有する植物を作製することができる。 According to the present invention, a plant having thrips resistance can be produced.
 配列番号1:MLX56 ORF
 配列番号2:MLX56タンパク質
 配列番号3:プライマー
 配列番号4:プライマー
 配列番号5:プライマー
 配列番号6:プライマー
 配列番号7:プライマー
 配列番号8:プライマー
 配列番号9:第1のキチン結合ドメイン
 配列番号10:エクステンシンドメイン
 配列番号11:第2のキチン結合ドメイン
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
SEQ ID NO: 1: MLX56 ORF
SEQ ID NO: 2: MLX56 protein SEQ ID NO: 3: Primer SEQ ID NO: 4: Primer SEQ ID NO: 5: Primer SEQ ID NO: 6: Primer SEQ ID NO: 7: Primer SEQ ID NO: 8: Primer SEQ ID NO: 9: First chitin binding domain SEQ ID NO: 10: Extending Domain SEQ ID NO: 11: Second Chitin Binding Domain All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (8)

  1.  MLX56ファミリータンパク質遺伝子を植物に導入し、前記遺伝子が導入された形質転換植物のアザミウマ耐性を検定することを含む、アザミウマ耐性形質転換植物を作出する方法。 A method for producing a thrips-resistant transformed plant, which comprises introducing the MLX56 family protein gene into a plant and testing the thrips resistance of the transformed plant into which the gene has been introduced.
  2.  MLX56ファミリータンパク質遺伝子が構成的プロモーターの制御下で植物に導入される、請求項1に記載の方法。 The method according to claim 1, wherein the MLX56 family protein gene is introduced into a plant under the control of a constitutive promoter.
  3.  アザミウマがアザミウマ科(Thripidae)に属する、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the thripidae belongs to the family Thripidae.
  4.  アザミウマがミカンキイロアザミウマ(Frankliniella occidentalis)又はミナミキイロアザミウマ(Thrips palmi)である、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the thrips is a western flower thrips (Frankliniella occidentalis) or a western flower thrips (Thrips palmi).
  5.  遺伝子導入により植物にアザミウマ耐性を付与するための、MLX56ファミリータンパク質遺伝子の使用。 Use of MLX56 family protein gene to confer thrips resistance on plants by gene transfer.
  6.  外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物を育種親として用いて交配を行い、子孫植物を取得し、MLX56ファミリータンパク質遺伝子を有する子孫植物を選抜することを含む、アザミウマ耐性植物の育種方法。 Breeding of azalea-resistant plants, including mating using alien MLX56 family protein gene-bearing transformants as breeding parents to obtain progeny plants and selecting progeny plants with MLX56 family protein genes. Method.
  7.  外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物を、アザミウマに食べさせることを含む、アザミウマの防除方法。 A method for controlling thrips, which comprises feeding thrips a transformed plant resistant to thrips having an exogenous MLX56 family protein gene.
  8.  外来性MLX56ファミリータンパク質遺伝子を有するアザミウマ耐性の形質転換植物又はそこから単離されたMLX56ファミリータンパク質を含む、アザミウマ防除剤。 A thrips control agent containing a thrips-resistant transformed plant having an exogenous MLX56 family protein gene or an MLX56 family protein isolated from the transformed plant.
PCT/JP2020/031698 2019-08-23 2020-08-21 Method for producing thrip-resistant plant WO2021039659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542854A JPWO2021039659A1 (en) 2019-08-23 2020-08-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-153277 2019-08-23
JP2019153277 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021039659A1 true WO2021039659A1 (en) 2021-03-04

Family

ID=74685480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031698 WO2021039659A1 (en) 2019-08-23 2020-08-21 Method for producing thrip-resistant plant

Country Status (2)

Country Link
JP (1) JPWO2021039659A1 (en)
WO (1) WO2021039659A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000031A (en) * 2005-06-22 2007-01-11 Matsushita Electric Works Ltd System for attracting organism and method for attracting the organism using the same
JP2011528018A (en) * 2008-07-17 2011-11-10 ビーエーエスエフ ソシエタス・ヨーロピア Azolin-2-ylamino compounds for pest control
JP2013170146A (en) * 2012-02-21 2013-09-02 Earth Chemical Co Ltd Pest-controlling agent and pest-controlling method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000031A (en) * 2005-06-22 2007-01-11 Matsushita Electric Works Ltd System for attracting organism and method for attracting the organism using the same
JP2011528018A (en) * 2008-07-17 2011-11-10 ビーエーエスエフ ソシエタス・ヨーロピア Azolin-2-ylamino compounds for pest control
JP2013170146A (en) * 2012-02-21 2013-09-02 Earth Chemical Co Ltd Pest-controlling agent and pest-controlling method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GAI, YING-PING , ZHAO YA-NAN, ZHAO HUAI-NING, YUAN CHUAN-ZHONG, YUAN SHUO-SHUO, LI SHUO, ZHU BING-SEN, JI XIAN-LING: "The Latex Protein MLX56 from Mulberry (Morus multicaulis) Protects Plants against Insect Pests and Pathogens", FRONTIERS IN PLANT SCIENCE, vol. 8, no. Article 1475, 23 August 2017 (2017-08-23), pages 1 - 11, XP055796512, DOI: 10.3389/fpls.2017.01475 *
KONNO, KOTARO ET AL.: "The peritrophic membrane as a target of proteins that play important roles in plant defense and microbial attack", JOURNAL OF INSECT PHYSIOLOGY, vol. 117, no. 103912, 10 July 2019 (2019-07-10), pages 1 - 11, XP085790028, DOI: 10.1016/j.jinsphys.2019.103912 *
KONNO, KOTARO: "MLX56 family proteins- Noveltype anti-insect defense proteins derived frommulberry latex", REGULATION OF PLANT GROWTH & DEVELOPMENT, vol. 54, no. 2, 20 December 2019 (2019-12-20), pages 156 - 162 *

Also Published As

Publication number Publication date
JPWO2021039659A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
RU2758722C2 (en) Transgenic plant and its production method
ES2711307T3 (en) Transformation of juvenile and mature citrus
US20210040493A1 (en) Root-preferential and stress inducible promoter and uses thereof
JP6967217B2 (en) How to make transformed plants
US10285333B2 (en) Pathogen resistant citrus compositions, organisms, systems, and methods
JP2020536515A (en) Tissue-preferred promoters and how to use them
JP6103607B2 (en) Plant suitable for high-density planting and use thereof
Vanjildorj et al. Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin
Ichikawa et al. Transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) carrying both insect and disease resistance
CN111088265A (en) Insect-resistant fusion gene, encoding protein thereof, expression vector thereof and application thereof
Baranski et al. Genetic engineering of carrot
ES2560806T3 (en) Expression of transcription regulators that provide heat tolerance
ES2543382T3 (en) Plant with resistance to stress due to low temperatures and its production method
WO2021039659A1 (en) Method for producing thrip-resistant plant
JPWO2006057306A1 (en) Gramineae plant with improved stress tolerance and / or productivity, and method for producing the same
US20170283813A1 (en) Systems, compositions, and methods for reducing levels of candidatus liberibacter solanacearum in potato
JP5804420B2 (en) Genes involved in promotion of plant growth and increase in biomass and methods for using the same
KR101077938B1 (en) Method for regulating cuticular wax load amounts in plant cell wall and the plant thereof
Yin et al. Transgenic cucumber—a current state
WO2011002126A1 (en) Transgenic chinese cabbage with enhanced tolerance to soft rot disease and production method thereof
US20230143932A1 (en) Pin6 proteins for the formation of nodule-like structures
WO2022134132A1 (en) Rice striped stem bore damage-inducible promoter posisa1 and application thereof in breeding smart stem borer-resistant rice
JP2006020601A (en) Sweet potato with improved stress tolerance, and method for producing the same
ABDEL-ATI TRANSFORMATION AND EXPRESSION OF GLUTAREDOXIN-2 GENE INTO TOMATO PLANTS
JP2005046036A (en) Promoter dna fragment and method for controlling expression of gene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542854

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857941

Country of ref document: EP

Kind code of ref document: A1