WO2021039648A1 - Composition - Google Patents

Composition Download PDF

Info

Publication number
WO2021039648A1
WO2021039648A1 PCT/JP2020/031685 JP2020031685W WO2021039648A1 WO 2021039648 A1 WO2021039648 A1 WO 2021039648A1 JP 2020031685 W JP2020031685 W JP 2020031685W WO 2021039648 A1 WO2021039648 A1 WO 2021039648A1
Authority
WO
WIPO (PCT)
Prior art keywords
wood
weight
resin
composition
cellulose
Prior art date
Application number
PCT/JP2020/031685
Other languages
French (fr)
Japanese (ja)
Inventor
潤一 中村
浩三 田尻
準 仙頭
和樹 古性
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2021039648A1 publication Critical patent/WO2021039648A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/02Staining or dyeing wood; Bleaching wood
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse

Definitions

  • the present invention relates to a composition.
  • Wood is widely used as a raw material for building materials, furniture, acoustic materials and paper. Woody biomass is also used from the viewpoint of biorefinery such as bioethanol production. In particular, when wood is used from the viewpoint of biorefinery, lignin, which is a constituent of wood, is removed to extract cellulose and hemicellulose. Generally, the treatment for removing lignin is called pretreatment. So far, various pretreatment techniques that destroy cells and wall layers have been reported.
  • Examples of the pretreatment method for removing lignin include physicochemical methods typified by steam explosion treatment, acid treatment and alkali treatment, and biological methods using lignin-degrading enzymes or lignin-degrading microorganisms.
  • pretreatment methods for example, physical pulverization, steaming, ozone oxidation, ⁇ -ray irradiation and the like have been studied.
  • Non-Patent Document 1 finds a condition that the weight percentage of lignin becomes a single digit by crushing a kind of wood of bridal wreath and treating it with a mixed solvent of ethanol and sulfuric acid at 195 ° C. for 1 hour. Further, in Non-Patent Document 2, when the tissue of the sample after the pretreatment was observed, it was clarified that the lignin in the intercellular layer (the layer between the cells) was preferentially removed. From the above results, it is concluded that the pretreatment methods described in Non-Patent Document 1 and Non-Patent Document 2 are highly effective in pulping, which removes lignin and at the same time promotes isolation between cells.
  • organic solvents such as acetic acid, ethanol, high-boiling alcohol, and phenol
  • Patent Document 1 discloses that a lignin-removed wood chip is produced by immersing a sugi wood chip in a soap-soda ash mixed water and treating it with a hydrogen peroxide solution.
  • Patent Document 2 discloses a method of treating lignocellulosic fleaiomas with an ethylene glycol solution by heat extraction and solid-liquid separation in one step to separate a liquid component containing lignin and a solid component containing cellulose.
  • wood flour obtained by crushing wood chips is degreased, lignin-treated, dehemicellulose-treated, and bleached, and then treated with a cellulase-based enzyme, and then finely divided.
  • Non-Patent Document 3 also discloses that delignin treatment is performed using a sodium chlorite solution in which acetic acid is added to adjust the pH to 3.8-4.0.
  • Patent Document 1 discloses a method for removing lignin that maintains the honeycomb structure of the wood chip, it is not a process that can maintain the shape of the wood chip itself.
  • the lignin component of the wood is sufficiently reduced so that it becomes white wood when viewed from the outside. By adding various functions to such wood, it is expected to develop into new uses.
  • an object of the present invention is to impart a new function to wood having reduced lignin while maintaining the structure as wood.
  • the present invention comprises a wood-based structure having a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a hemicellulose content of 0.01% by weight or more and 15% by weight or less, and a curable compound, a resin, and the like.
  • a composition comprising at least one selected from the group consisting of inorganic substances (including inorganic compounds, the same shall apply hereinafter), dyes, and pigments.
  • another embodiment of the present invention comprises a wood-based structure having a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a viscosity average degree of polymerization DPv of the cellulose of 300 or more, and curing.
  • a composition comprising at least one selected from the group consisting of sex compounds, resins, inorganic substances, dyes, and pigments.
  • X to Y indicating a range means “X or more and Y or less”, and unless otherwise specified, operation and measurement of physical properties are performed at room temperature (20 to 25 ° C.) / relative humidity of 45 to 55% RH. Perform under the conditions of.
  • the expression "(meth) acrylic” means “acrylic and / or methacrylic”
  • the expression “(meth) acrylate” means “acrylate and / or”. Or methacrylate ".
  • acid (salt) is used in the present specification, it means “acid and / or a salt thereof".
  • One embodiment of the present invention comprises a wood-based structure having a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a hemicellulose content of 0.01% by weight or more and 15% by weight or less, and curability.
  • a composition comprising at least one selected from the group consisting of compounds, resins, inorganic substances, dyes, and pigments.
  • another embodiment of the present invention comprises a wood-based structure having a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a viscosity average degree of polymerization DPv of the cellulose of 300 or more, and curing.
  • a composition comprising at least one selected from the group consisting of sex compounds, resins, inorganic substances, dyes, and pigments.
  • the wood-based structure has a lignin content of less than 3% by weight and a cellulose content of 65% by weight or more.
  • the wood-based structure exhibits a white appearance while maintaining the outer shape and dimensions of the wood.
  • a resin By combining such a wood-based structure with, for example, a resin, it can be applied to fields requiring higher strength such as building materials. Then, by combining with a resin, a new function of improving strength can be imparted.
  • the appearance may become transparent by coating the surface of the wood-based structure with resin.
  • transparent wood gives new functions in terms of aesthetics and design.
  • the wood-based structure maintains a structure composed of cellulose and hemicellulose, which are constituents of wood raw materials. Therefore, the wood-based structure is a porous material (mesoporous material) in which nano-order micropores between polysaccharides are formed in addition to micrometer-order pores formed by the cell lumen. Materials with nano-order micropores are called mesoporous materials (porous materials with pore diameters of several nanometers to several tens of nanometers). Examples of applications as mesoporous materials include gas adsorbents, heat insulating materials, gas separators, and microbial media. In addition, an inorganic substance can be supported using such a porous material as a base material.
  • the composition is a porous body. Since the composition is a porous body, the surface area per unit incident area and per unit space volume can be improved, and the effects of various supporting materials can be enhanced.
  • the surface of the porous body refers to a surface in contact with external air (exposed to the outside), and in the case of a porous body, not only the surface but also the surface inside the inner hole (vacancy) (the surface (vacancy)). It is a concept that also includes the inner surface).
  • the composition preferably retains the three-dimensional shape of the wood-based structure, and the composition can be said to be a molded product.
  • the composition preferably has a transmittance (also referred to as visible light transmittance) at a wavelength of 500 nm of 30% or more.
  • a transmittance also referred to as visible light transmittance
  • the visible light transmittance is more preferably 50% or more, more preferably 60% or more, more preferably 70% or more, more preferably 80% or more, and 88% or more. Is more preferable.
  • Such a composition having a high transmittance can be obtained by using it in combination with a resin (including a cured product of a curable compound) as described later.
  • the lower limit of the average refractive index of the composition is preferably 1.43 or more, more preferably 1.45 or more, and preferably 1.47 or more. Even more preferably, it is 1.49 or more, and particularly preferably 1.49 or more.
  • the upper limit of the average refractive index of the composition is preferably less than 1.61, more preferably less than 1.58, and even more preferably less than 1.55.
  • the refractive index a value measured at 25 ° C. and a wavelength of 589 nm using an Abbe refractive index meter (DR-M2 manufactured by Atago Co., Ltd.) is used.
  • the value calculated by the method described in the examples is adopted as the transmittance at a wavelength of 500 nm.
  • the maximum bending load of the composition is 50 MPa or more, 80 MPa or more, 100 MPa or more, more preferably 150 MPa or more, more preferably 200 MPa or more, and further preferably 300 MPa or more, in the order of preference. More preferably, it is particularly preferably 400 MPa or more, and most preferably 500 MPa or more. When the maximum bending load is 150 MPa or more, sufficient mechanical strength can be obtained. Further, the maximum bending load of the composition is preferably higher than the maximum bending load of the wood-based structure. The upper limit of the maximum bending load is not particularly limited, but is usually 2000 MPa or less.
  • Such a composition having a high maximum bending load can be obtained by subjecting a wood-based structure to a pressure (compression) treatment; impregnating a high-strength material; or the like, as described later.
  • the pressurization (compression) treatment of the wood-based structure includes a curing treatment (for example, heat treatment) in which the wood-based structure is impregnated with a resin composition containing a curable compound described later and then the curable compound is cured. It may be done at the same time.
  • the pressure, time, etc. in the pressurization (compression) treatment are appropriately set according to the type, shape, surface texture, thickness, etc. of the wood-based structure.
  • the pressure is preferably 0.01 to 20 MPa, more preferably 0.05 to 10 MPa, even more preferably 0.1 to 5 MPa, and the time is preferably 1 to 2400 minutes. 5 to 1200 minutes is more preferable, and 10 to 300 minutes is even more preferable.
  • the surface of the composition has a grain of wood. Since the composition has a grain of wood, it is excellent in design. A composition having such a grain can be obtained by utilizing the structures of the early wood portion and the late wood portion of the white wood. The wood grain does not have to be entirely wood grain, and may be partially wood grain. The white wood-based structure has a grain, which can be utilized.
  • the wood-based structure has a lignin content of less than 3% by weight and a cellulose content of 65% by weight or more. According to such an embodiment, cellulose is the main component and the lignin component is sufficiently reduced.
  • Cellulose is a major component of cell walls and plays an important role in ensuring the strength of wood.
  • lignin plays a role of adhering between cells or between microfibrils in the cell wall, and has been considered to play an important role in maintaining the structure of wood. For this reason, it was very difficult to maintain the structure as wood while reducing lignin. According to the wood-based structure, the three-dimensional structure as wood is maintained even though the lignin component is sufficiently reduced.
  • lignin is removed by producing wood by the production method described later. It is considered that the shape as a three-dimensional structure is maintained by replacing the water in the portion and maintaining the cellulose structure (cellulose microfibrils, etc.) of the original wood without being destroyed. Be done.
  • the above discussion does not limit the technical scope of the present invention.
  • the above-mentioned wood-based structure has a sufficiently reduced lignin component, so that it becomes white wood when visually recognized from the outside. Therefore, it can be widely used as a new material.
  • wood-based structure in the present specification is a structure derived from wood.
  • wood refers to a structure (tissue) in which cells are regularly arranged. Wood is clearly distinguished from pulp. It can be observed by using an X-ray CT image or the like that the cells are regularly arranged to form a tissue. In wood, adjacent cells are arranged in order without dissociation from each other.
  • the wood-based structure means that a plurality of diffraction spots are present in a concentric diffraction image in an X-ray fiber diagram obtained by X-ray diffraction. Such diffraction spots can be visually recognized as black spots in the X-ray fiber diagram. The presence of multiple diffraction spots indicates that the orientation of the cellulose microfibrils within the cell wall is undisturbed. Therefore, the wood-based structure also maintains the structure of cellulosic microfibrils in the cell wall and is therefore superior in strength.
  • the plurality may be two or more.
  • the number of X-ray diffraction spots is preferably the same as the number of spots observed in the same type of raw wood.
  • the X-ray fiber diagram is measured as follows. First, a radiation section is prepared, and a sample wound in a tubular shape about the L direction is set and measured. The measurement conditions are as follows.
  • the half-value full width (FWHM) of X-ray diffraction (200 planes) is from the viewpoint that the amount of lignin is reduced, the orientation of cellulose is improved, and the strength in the fiber direction is excellent. It is preferably 3 or less, more preferably 2.8 or less, and further preferably 2.6 or less. Further, from the viewpoint that a transparent molded product (composition) can be obtained by impregnating with a transparent resin, and coloring such as dyeing becomes possible, it is preferably 1 or more, preferably 1.6 or more. Is preferable, and 2 or more is most preferable. It can be said that the crystal structure of natural cellulose is maintained when the full width at half maximum (FWHM) of the X-ray diffraction (200 planes) of cellulose is in such a range. Therefore, wood has excellent strength.
  • FWHM full width at half maximum
  • the crystal structure of cellulose is measured as follows.
  • X-ray equipment Fully automatic horizontal multipurpose X-ray diffractometer (SmartLab, manufactured by Rigaku)
  • X-ray source Cu
  • the lignin content in the target wood-based structure is less than 2% by weight, less than 1% by weight, less than 0.5% by weight, and less than 0.1% by weight in the preferred order. When the lignin content is in such a range, the whiteness is improved.
  • the lower the lignin content, the more preferable, and the lower limit is 0% by weight.
  • 0% by weight means that the content of each of the following components is below the detection limit when measured by HPLC.
  • the content of cellulose in the wood-based structure is 65% by weight or more, and in the preferred order, 75% by weight or more, 80% by weight or more, 85% by weight or more, 90% by weight or more, and 95% by weight or more.
  • the upper limit of the cellulose content is usually 99.9% by weight or less, preferably 99.5% or less, considering the production limit from the viewpoint of maintaining the wood structure.
  • the viscosity average degree of polymerization DPv of cellulose contained in the wood-based structure is preferably 300 or more. That is, in a preferable form, the wood-based structure has a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a cellulose viscosity average degree of polymerization DPv of 300 or more.
  • the viscosity average degree of polymerization DPv of cellulose is 300 or more, it becomes close to the fibrous state of cellulose possessed by the original tree, and the strength of wood is improved, which is preferable.
  • some kind of chemical treatment is performed, the viscosity average degree of polymerization of cellulose is significantly reduced.
  • the viscosity average degree of polymerization DPv of cellulose is more preferably 500 or more, further preferably 800 or more, and particularly preferably 1,000 or more.
  • the upper limit of the viscosity average degree of polymerization DPv of cellulose is preferably close to that of cellulose originally present in trees, and from such a viewpoint, it is usually preferably 10,000 or less, preferably 5,000 or less. More preferably, it is 3,000 or less.
  • the viscosity average degree of polymerization of cellulose is measured by the following method, and the viscosity average degree of polymerization is used including substances that cannot be removed by treatment. In the case of the composition, the woody structure is extracted by a general method.
  • the viscosity average degree of polymerization of cellulose can be measured by the following measuring method.
  • ⁇ Measuring method of viscosity average degree of polymerization> Cellulose is extracted by repeating the Wise method using sodium chlorite and acetic acid on the wood-based structure, and then boiling treatment with a 5% aqueous sodium hydroxide solution. After dissolving cellulose in copper ethylenediamine, the degree of polymerization is measured from the falling rate with a Canon-Fenceke viscometer. Specifically, it is measured as follows.
  • a 0.5 M copper ethylenediamine solution is prepared and the viscosity ⁇ 0 is measured using a Canon-Fenceke viscometer. Further, a solution in which cellulose is dissolved in a 0.5 M copper ethylenediamine solution (cellulose concentration is c (g / dL)) is prepared, and the viscosity ⁇ is measured using a Canon-Fenceke viscometer.
  • the intrinsic viscosity (sometimes referred to as "extreme viscosity”) [ ⁇ ] of the cellulose solution is determined by the following formula 1.
  • Intrinsic viscosity [ ⁇ ] ( ⁇ 0 / ⁇ ) / ⁇ c (1 + A ⁇ ⁇ / ⁇ 0 ) ⁇ Equation 1
  • A represents a unique value depending on the type of solution. For a 0.5 M copper ethylenediamine solution, "A" is 0.28.
  • the viscosity average degree of polymerization DPv is obtained by the following formula 2 (Mark-Houwink-Sakurada formula).
  • Intrinsic viscosity [ ⁇ ] K ⁇ DPv ⁇ a Equation 2
  • K and a represent unique values depending on the type of polymer. In the case of cellulose, “K” is 0.57 ⁇ 10 -3 and “a” is 1.
  • the content of hemicellulose in the wood-based structure is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, still more preferably 0.5% by weight or more. It is even more preferably 1% by weight or more, and particularly preferably 2% by weight or more. That is, in a preferred embodiment of the present invention, the wood-based structure has a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a hemicellulose content of 0.01% by weight or more and 15% by weight or less. is there. When the content of hemicellulose is at least the above lower limit, the amount is sufficient to bind the celluloses to each other, and the three-dimensional structure is easily maintained.
  • the upper limit of hemicellulose is not particularly limited, and since the cellulose content is 65% by weight or more, it is 35% by weight or less, preferably 25% by weight or less, and 20% by weight or less. It is more preferably 15% by weight or less, further preferably less than 10% by weight, and particularly preferably less than 5% by weight. In a preferred embodiment, the hemicellulose content is 0.01% by weight or more and 15% by weight or less.
  • Detection conditions RF-AXL detector
  • the amount of cellulose is defined as the value obtained by multiplying the amount of glucose (% by weight) measured by the above HPLC by 0.9.
  • the amount of hemicellulose is calculated from the following formula;
  • the maximum load of the wood-based structure is preferably 0.1 N or more, more preferably 1 N or more, and 5 N or more from the viewpoint of maintaining the crystal structure and ensuring the mechanical strength. More preferably, it is even more preferably 10 N or more.
  • the upper limit of the maximum load of the wood-based structure is not particularly limited, but is preferably 1,000 N or less, and more preferably 500 N or less. When the maximum load of the wood-based structure is not more than the above upper limit, it is easy to adopt a porous structure.
  • the L * of the wood-based structure is preferably 88 or more, more preferably 90 or more, further preferably 92 or more, and most preferably 93 or more.
  • the a * of wood is preferably 5 or less, more preferably 3 or less, most preferably 1 or less, further preferably -5 or more, and more preferably -3 or more. , Most preferably -1 or more.
  • the b * of the wood is preferably 5 or less, more preferably 3 or less, and most preferably 2 or less.
  • the average value of the values measured at 5 points on the wood surface using a color difference meter (SE-6000 manufactured by Nippon Denshoku Kogyo Co., Ltd.) is adopted.
  • cellulose and hemicellulose can be stained by PAS staining (polysaccharide staining method) to qualitatively confirm the presence of cellulose and hemicellulose. It is also possible to quantify the amount of cellulose and hemicellulose by the dyed area ratio or the like.
  • PAS staining polysaccharide staining method
  • the measurement conditions are as follows.
  • Such a wood-based structure can be obtained, for example, by the following manufacturing method.
  • the production conditions may be appropriately set according to the size of the wood, the type of wood, etc., but can be controlled by the immersion time and the number of times in the first step, the immersion time and the number of times in the second step, and the like. In particular, by lengthening the soaking time in the second step and increasing the number of times, it becomes easy to obtain wood having a reduced amount of lignin as described above.
  • the raw material (origin, wood) of the wood-based structure is not particularly limited, but is preferably wood, and the preferred form is selected from the group consisting of coniferous trees, hardwoods and bamboo as the raw material of the wood-based structure. ..
  • the definition of wood in the present specification "refers to a structure (tissue) in which cells are regularly arranged", and therefore, bamboo is also included as wood in the present specification. Therefore, in this specification, the wood includes bamboo.
  • the coniferous trees are not particularly limited, but are sugi, spruce, karamatsu, black pine, todomatsu, himekomatsu, ichii, ginkgo, cat, kaya, harimomi, iramomi, inumaki, fir, sawara, togasawara, asunaro, hiba, tsuga, kometsuga.
  • the raw material for wood is preferably any of sugi, larch, and cypress.
  • Hardwoods are not particularly limited, but beech, cinnamon, white birch, walnut, poplar, eucalyptus, acacia, asada, oak, itaya maple, katsura, sennoki, chestnut, elm, kiri, hoonoki, willow, sen, ubamegashi, konara, oak. , Aesculus turbinata, willow, oak, oak, oak, oak, oak, balsa, aohada and the like.
  • the raw material for wood is preferably any of beech, balsa and elm, and preferably any of beech and elm.
  • bamboo examples include Madake, Mosouchiku (Moso bamboo), and Hachiku.
  • the raw material is sugi, larch, cypress, beech, elm, balsa or bamboo, and more preferably sugi, larch, cypress, beech, elm or bamboo.
  • the wood-based structure is composed of, for example, a first step of immersing the wood in a solution containing an acid and an alcohol under the conditions of 140 ° C. or higher and 170 ° C. or lower, and then the wood is chlorite ion or hypochlorite. It is produced through a second step of immersing it in a solution containing acid ions.
  • the lignin component contained in the wood can be reduced while maintaining the structure composed of cellulose and hemicellulose. Therefore, the wood-based structure produced by the method has a feature that the structure composed of cellulose and hemicellulose originally possessed by wood is maintained and the lignin component is reduced.
  • the reduction of the lignin component means that the lignin component in the wood is preferably less than 3% by weight, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, and less than 0.1% by weight in a preferable order. ..
  • the wood may be made by subjecting the raw material wood to a predetermined process.
  • the processing on wood is not particularly limited, and examples thereof include cutting processing, grinding processing, polishing processing, plane processing, and bending processing. According to these processes, wood as a raw material can be processed into a desired shape to obtain wood having that shape.
  • the wood may be composed of a single member or may be composed of a plurality of members.
  • a wood composed of the plurality of members can be produced.
  • the method of joining a plurality of members include a method of using an adhesive, a method of using nails and screws, a method of using metal fittings, and a method of using a mortise and tenon.
  • the shape of the wood is not particularly limited, and examples thereof include a plate shape, a rod shape, a chip shape, a box shape, and a spherical shape.
  • the shape of the wood is preferably such that the solution sufficiently permeates the inside when immersed in the solution for a predetermined time in the first step and the second step described above.
  • the wood may have any shape by adjusting the immersion time of the wood in the solution.
  • the size of the wood is not particularly limited, but it can be set so that the solution sufficiently penetrates into the inside when immersed in the solution in the first step and the second step described above. From this point of view, it can be seen that the preferred range of the size of wood varies depending on the immersion time in the solution and the type of wood used as a raw material, particularly the density of wood. For example, when sugi is used and the immersion time in the first step and the second step is 1 hour, the distance from the surface is preferably 10 cm or less at the position where the distance from the surface is the shortest inside the wood. It is more preferably 5 cm or less, further preferably 3 cm or less, and most preferably 1 cm or less and 0.5 cm or less.
  • the same size is 5 cm or less when the immersion time in the first step and the second step is 1 hour. It is more preferably 2.5 cm or less, further preferably 1.5 cm or less, and most preferably 0.5 cm or less.
  • bamboo is used instead of sugi (coniferous tree)
  • the same size when the immersion time in the first step and the second step is 1 hour is preferably 10 cm or less, preferably 5 cm or less. More preferably, it is more preferably 3 cm or less, and most preferably 1 cm or less.
  • the alkali treatment when it is difficult to whiten the wood only by the above steps, especially when the wood is bamboo, it is preferable to carry out the alkali treatment before the first step below. It is preferable to perform such a pretreatment because the lignin component can be efficiently removed.
  • the alkali used to prepare the alkaline solution is not particularly limited, and sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, calcium hydroxide, sodium hydrogencarbonate, potassium hydrogencarbonate, and hydroxide.
  • Examples include lithium and ammonia.
  • sodium hydroxide, potassium hydroxide, sodium carbonate, and calcium hydroxide are preferable, sodium hydroxide, sodium carbonate, and calcium hydroxide are more preferable, and sodium hydroxide is particularly preferable.
  • the above alkalis may be used alone or in combination of two or more.
  • the solvent for dissolving the alkali is not particularly limited, but water is preferable. That is, the alkaline solution is preferably an aqueous solution of sodium hydroxide.
  • Alkaline treatment is performed by immersing wood in the above alkaline solution.
  • the immersion time can be appropriately set according to the shape and size of the wood, the water content of the wood, and the like, and is, for example, 10 minutes to 5 hours and 30 minutes to 2 hours.
  • the immersion temperature is not particularly limited, but is preferably 135 ° C. or lower, more preferably 115 ° C. or lower.
  • the immersion temperature is preferably 55 ° C. or higher, more preferably 75 ° C. or higher. If the temperature condition is too high, the wood will peel, and if it is too low, it will be difficult to remove lignin in the subsequent process.
  • the above-mentioned wood is immersed in a solution containing an acid and alcohol under the conditions of 140 ° C. or higher and 170 ° C. or lower (first step).
  • the wood may be dried prior to this step.
  • a step of drying may not be necessary, but when wood is produced from a material having a moisture content of more than 20%, the moisture content is 20. It is preferable to dry it so that it becomes% or less.
  • the wood is immersed in a solution containing acid and alcohol under the conditions of 140 ° C or higher and 170 ° C or lower.
  • the condition of 140 ° C. or higher and 170 ° C. or lower means that the atmospheric temperature in the immersion environment is 140 ° C. or higher and 170 ° C. or lower.
  • the temperature condition is preferably 140 ° C. or higher, more preferably 145 ° C. or higher, from the viewpoint of efficiently advancing delignin. From the viewpoint of suppressing the decrease in the molecular weight of cellulose, the temperature is preferably 170 ° C. or lower, more preferably 165 ° C. or lower, and even more preferably 160 ° C. or lower.
  • the solution used in the first step is a solution containing an acid and an alcohol.
  • the acid is not particularly limited, and examples thereof include acids such as sulfuric acid, hydrochloric acid, nitric acid, and acetic acid. Of these, sulfuric acid is preferably used because the acid has low volatility.
  • the alcohol is not particularly limited, but it is preferable to use alcohol having a high boiling point, for example, because the solvent tends to remain even when heated.
  • the high boiling point alcohol means, for example, an alcohol having a boiling point of 150 ° C. or higher, preferably 160 ° C. or higher, more preferably 170 ° C.
  • alcohols that can be used in the first step include 1,2-ethanediol (ethylene glycol, boiling point: 197.2 ° C.), diethylene glycol (boiling point: 244.3 ° C.), and triethylene glycol (boiling point: 287.4 ° C.).
  • Propylene glycol is a material that can be used as a food additive, is a material that can be used as a food packaging material, and is preferable in terms of safety. It is a preferable example that the material remaining to obtain the present wood is a food additive, and it is the most preferable example that all the materials used in the reaction are food additives.
  • a preferred embodiment of the present invention is a solution containing acid and alcohol, which is a solution containing sulfuric acid and ethylene glycol or a solution containing sulfuric acid and propylene glycol.
  • the solution containing acid and alcohol is a solution containing sulfuric acid and ethylene glycol.
  • the acid concentration is 0.05% by weight or more, 0.1% by weight or more, and 0.3% by weight or more in the preferred order. , 0.5% by weight or more, and from the viewpoint that the structure composed of cellulose and hemicellulose can be easily maintained and the molecular weight of cellulose can be easily maintained, the acid concentration is 10% by weight or less and 5% by weight or less in the preferred order. 3, 3% by weight or less.
  • the solution containing the acid and alcohol has an acid concentration of 0.05 to 10% by weight.
  • the concentration of alcohol in the solution used in the first step, can be 90 to 99.5% by weight, preferably 95 to 99.5% by weight, and 97 to 99% by weight. More preferably, it is more preferably 98 to 99% by weight.
  • concentration of alcohol in the solution is in this range, it is easy to sufficiently reduce the lignin component of wood. Further, when the concentration of alcohol in the solution is in this range, the lignin component of wood can be sufficiently reduced, and the structure composed of cellulose and hemicellulose can be easily maintained.
  • the wood is immersed in the above solution and heated under a temperature condition of 140 ° C. or higher and 170 ° C. or lower.
  • the temperature condition is not particularly limited as long as it is within the above range, but it is preferably a temperature lower than the boiling point of the alcohol used, and more preferably a temperature 10 ° C. or more lower than the boiling point of the alcohol used. It is preferable that the temperature is 20 ° C. or higher lower than the boiling point of the alcohol used.
  • the immersion time in the first step is not particularly limited, but is preferably such that the solution sufficiently permeates the inside of the wood.
  • the immersion time in the first step can be appropriately set according to the shape and size of the wood, the type of wood used as the raw material of the wood, the water content of the wood, and the like.
  • a solvent having a boiling point equal to or lower than the heating temperature condition it is preferable to react under pressure from the viewpoint of reducing the amount of solvent volatilized, and it is also a preferable example to use a pressure resistant container.
  • the first step it is preferable to carry out a treatment of substituting the air or water contained in the wood with the solution while the wood is immersed in the solution.
  • the solution easily penetrates into the wood.
  • the treatment include a treatment in which the wood is immersed in the solution and sealed, and the inside of the closed space is degassed.
  • the air and water contained in the wood can be replaced with the above solution by treatments such as microwave irradiation (heating with a microwave oven) and ultrasonic irradiation.
  • the immersion time in the first step can be shortened as compared with the case where the treatment is not carried out.
  • the immersion time in the first step can be 30 minutes or more, and 45 minutes or more. It is preferably 1 hour or more, and more preferably 1 hour or more.
  • the immersion time can be appropriately set according to the shape and size of the wood, the type of wood used as the raw material of the wood, and the water content of the wood.
  • the first step since the temperature condition is set to 140 to 170 ° C. using a solution containing acid and alcohol, the structure composed of cellulose and hemicellulose is destroyed while removing the lignin component contained in the wood. Can be maintained without.
  • the first step may be performed once or a plurality of times.
  • the obtained wood may be washed.
  • the liquid used for cleaning include water and alcohol.
  • a mixture of water and alcohol may be used.
  • the alcohol include methanol, ethanol and the like, which are easy to handle in the subsequent steps.
  • the washing may be performed a plurality of times, and the liquid type used in each time may be different.
  • the second step of immersing the wood after the first step in a solution containing chlorite ions or hypochlorite ions is carried out.
  • the solution used in the second step is a solution containing at least chlorite ion or hypochlorite ion.
  • a solution containing chlorite ions is preferable.
  • the solution containing chlorite ion or hypochlorite ion can be said to be a solution of chlorite or hypochlorite (preferably an aqueous solution).
  • the chlorite is not particularly limited, and examples thereof include sodium chlorite and calcium chlorite.
  • a sodium chlorite solution is preferable as the solution containing chlorite ions because lignin can be removed more effectively.
  • the hypochlorite is not particularly limited, and examples thereof include sodium hypochlorite and calcium hypochlorite.
  • the solution containing hypochlorite ion is preferably a sodium hypochlorite solution because lignin can be removed more effectively.
  • the solution used in the second step contains a weak acid such as acetic acid so as to generate chlorine dioxide having a strong oxidizing power to promote delignin. It is preferable to do so.
  • the weak acid component that can be used in the second step include acetic acid, carbonic acid, boric acid, and the like, but acetic acid is most preferable.
  • the pH of the solution used in the second step is preferably less than 11, more preferably pH 9 or less, and even more preferably pH 8 or less.
  • the pH of the solution used in the second step is preferably 1 or more, more preferably 3 or more, and most preferably 4 or more.
  • the concentration of chlorite ion or hypochlorite ion is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight, and 0. 1 to 5% by weight is further preferable, 0.5 to 5% by weight is even more preferable, and 0.5 to 2% by weight is particularly preferable.
  • the concentration of chlorite ion or hypochlorite ion in the solution is within this range, the lignin component of wood can be sufficiently reduced. Further, when the concentration of chlorite ion or hypochlorite ion in the solution is within this range, the lignin component of wood can be sufficiently reduced, and the structure composed of cellulose and hemicellulose can be easily maintained.
  • the concentration of the chlorite ion or hypochlorite ion is preferably in the range at least at the time of the first addition. Further, since the reactivity of chlorite ion or hypochlorite ion is high and unstable, the above concentration is not always maintained during the reaction.
  • the concentration of the weak acid can be 0.005 to 2.0% by weight, 0.01 to 1.0% by weight, and 0.05. It is preferably about 0.8% by weight, more preferably 0.1 to 0.6% by weight, and even more preferably 0.5% by weight.
  • concentration of weak acid in the solution is in this range, the lignin component of wood can be sufficiently reduced.
  • concentration of the weak acid in the solution is in this range, the lignin component of wood can be sufficiently reduced, and the structure composed of cellulose and hemicellulose can be easily maintained.
  • the solution used in the second step is preferably an aqueous solution.
  • Being an aqueous solution allows water in the solvent to enter the structure, making it easier to maintain the three-dimensional structure.
  • aqueous solution as used herein means that 100% by weight of the solvent is not limited to water, and 0 to 30% by weight, preferably 0 to 5% by weight, of a water-soluble organic solvent (for example, alcohol) is used in combination. In the present invention, these may be treated as an aqueous solution. In the most preferred form, 100% by weight of the solvent is water.
  • the wood after the first step is immersed in the above solution.
  • the acid component and the lignin component used in the first step can be removed.
  • the immersion time in the second step is not particularly limited, but as in the first step, it is preferable that the solution sufficiently permeates the inside of the wood and the remaining lignin component can be removed. Therefore, the immersion time in the second step can be appropriately set according to the shape and size of the wood, the type of wood used as the raw material of the wood, the water content of the wood, and the like, as in the first step. However, in the second step, since the reactivity of chlorite ion or hypochlorite ion in the solution is high and unstable, the above-mentioned concentration of chlorite ion or hypochlorite ion can be maintained.
  • the second step is repeated a plurality of times.
  • the solution containing the chlorite ion or the hypochlorite ion sufficiently permeates the inside of the wood, and the remaining lignin component can be removed.
  • the plurality of times refers to 2 times or more, preferably 4 times or more, more preferably 6 times or more, and particularly preferably 8 times or more.
  • the upper limit of the number of repetitions of the second step is not particularly limited, but in consideration of productivity, it is preferably 20 times or less, more preferably 15 times or less, and 10 times or less. It is particularly preferable to have. It should be noted that, as a plurality of times, it is also a preferable example to include continuous dropping and dropping while controlling the pH in the solution.
  • the immersion time in the second step can be 5 hours or more by adding hypochlorite every hour, and is 6 hours or more. It is preferably 7 hours or more.
  • the upper limit of the immersion time is not particularly limited, but is preferably 10 hours or less in consideration of the saturation of the effect and the productivity.
  • the immersion time in the second step can be appropriately set according to the shape and size of the wood, the type of wood used as the raw material of the wood, and the water content of the wood, as in the first step. ..
  • the temperature condition in the second step is not particularly limited, but can be, for example, 50 to 90 ° C., preferably 60 to 80 ° C., and more preferably 65 to 75 ° C. By setting the temperature condition of the second step within this range, the lignin component remaining even after the first step can be sufficiently removed.
  • the wood remaining in the first step. While reliably removing the lignin component contained in, it can be maintained without destroying the structure composed of cellulose and hemicellulose. That is, by going through the second step, the lignin component originally contained in the wood can be significantly reduced.
  • the wash may be a mixture of water and alcohol.
  • the alcohol include methanol, ethanol and the like, which are easy to handle in the subsequent steps.
  • the cleaning treatment is preferable because it is possible to remove the lignin component and the excess raw material / reaction component of the second step, and it is easy to obtain wood having a maintained structure.
  • the wood according to the present invention is 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 98% by weight or more, and most preferably 99% by weight of the lignin component originally contained in the wood. % Or more can be reduced.
  • the wood according to the present invention is 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 98% by weight or more, most preferably 98% by weight or more of the lignin component originally contained in the wood. Can be said to be wood with 99% by weight or more reduced.
  • the conditions of the first step and the second step are adjusted according to the shape and size of the wood, the type of wood used as the raw material of the wood, the water content of the wood, and the like. Almost all lignin components contained in can be removed. In addition, removing almost all the lignin components contained in wood means that the lignin components contained in the wood are below the detection limit when the lignin components contained in the wood are measured by the method of quantitatively measuring the lignin in the wood. ..
  • the lignin component contained in the wood raw material can be reduced within the above range, so that the wood raw material before the treatment becomes white.
  • Whitening of wood raw materials means that the color approaches white according to the degree of reduction of the lignin component, and that the higher the reduction rate of the lignin component, the closer to white the color is.
  • the lignin component of the wood obtained by the method for producing wood according to the present invention is measured and is below the detection limit, the wood becomes white.
  • "white wood" can be produced.
  • the lignin component contained in the wood raw material can be reduced as described above, and the structure composed of cellulose and hemicellulose can be maintained.
  • maintaining the structure composed of cellulose and hemicellulose means that the cell wall structure originally possessed by the wood used as the raw material of the wood raw material is maintained, and as a result, the outer shape of the wood raw material before treatment is maintained. It means that the shape and dimensions are maintained.
  • Maintaining the outer shape and dimensions of the wood raw material before treatment means that the amount of change when measuring the dimensions of the wood raw material before and after treatment is 5% or less, preferably 3% or less, more preferably 2% or less, and further. It means that it is preferably 1% or less.
  • a wood-based structure capable of significantly reducing the lignin component contained in the untreated wood and maintaining the outer shape and dimensions of the untreated wood is manufactured. be able to.
  • Such a wood-based structure is not particularly limited as a new material that has never existed before, and can be applied to various fields.
  • white wood can be used as the basis for material development using the optimum frame structure created by the tree. .. In a harsh natural environment, it is the hierarchical structure made of woody polymers that are precisely formed and controlled by trees that guarantees the survival of a huge body over 100 m for more than 1000 years.
  • microfibrils In the conventional production of microfibrils, since the microfibrils are extracted after being processed into a pulp having a structure-free structure, only microfibrils having no orientation can be obtained regardless of the hierarchical structure of the tree. I can't. In addition, a technique for uniaxially orienting non-orientating microfibrils has not been established. However, since white wood maintains this hierarchical structure, microfibrils can be utilized while maintaining the orientation in white wood.
  • white wood-derived cellulose microfibrils are used for car bodies, tires, windowpanes, displays, battery materials, sbeekers, diapers, thickeners, food packaging materials, artificial blood vessels, artificial cartilage, food additives, etc. can do.
  • white wood swells when immersed in, for example, an aqueous solution of sodium hydroxide, and becomes a wood gel material.
  • a wood gel material When white wood is immersed in an aqueous solution of sodium hydroxide, sodium ions enter the inside of the cellulose crystals to widen the intermolecular force, partially dissolve in the aqueous solution of sodium hydroxide, and when washed with water, the celluloses form a crosslinked structure. Then, it expresses the physical properties as a gel.
  • Specific treatment conditions include conditions in which the product is immersed in an 8 to 20% aqueous sodium hydroxide solution at room temperature, treated for 12 hours, and then washed with water. Since a wood gel material using white wood becomes a functional material having elasticity by gelation, for example, it can be applied to a medical gel material such as a wound coating material or a food gel.
  • the wood-based structure may be surface-treated.
  • the surface referred to here includes the inner surface of the wood structure. That is, the "surface” refers to a surface in contact with external air (exposed to the outside), and in the case of a porous body, not only the surface but also the surface (inside) inside the inner hole (vacancy). It is a concept that also includes the surface).
  • the surface treatment is not particularly limited, but is a dry treatment such as corona treatment, plasma treatment, ozone treatment, (anhydrous) carboxylic acid, alkoxysilane (silane coupling agent), silazane, silyl, isocyanate, imine, etc.
  • Wet treatment with a substance having a skeleton (functional group) such as oxazoline and epoxy (modification by surface reaction with a wood-based structure) and the like can be mentioned.
  • one of the carboxyl groups can be bonded to wood, and the other can be bonded to, for example, an epoxy group in a curable compound described later.
  • the wood-based structure and the resin become an integrated structure, the generation of an air layer that lowers the transparency and strength is suppressed, and the transparency and strength are improved.
  • the carboxylic acid anhydride may be any of succinic anhydride; aromatic ring-type acid anhydride such as phthalic acid anhydride; and alicyclic acid anhydride. It is preferable to use an alicyclic acid anhydride because it is a low-viscosity liquid and easy to handle, and from the viewpoint of heat resistance and mechanical properties of the cured product. Specific examples of such alicyclic acid anhydrides include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyldihydronadic acid anhydride, 1,2,4,5-cyclopentanetetracarboxylic acid.
  • hydrophobicity By imparting hydrophobicity not only to such carboxylic acid anhydride but also to the surface of the wood-based structure, it is possible to reduce the surface tension of the wood-based structure and improve the affinity between the wood and the resin. .. By improving the affinity between the wood-based structure and the resin, the generation of an air layer that lowers the transparency and strength is suppressed, and the transparency and strength are improved.
  • the structure capable of imparting hydrophobicity include an alicyclic structure, an aromatic ring structure, and an alkyl group.
  • the surface treatment method for such an acid anhydride is not particularly limited, and examples thereof include a method in which a wood-based structure is immersed in the acid anhydride and then heat-treated if necessary.
  • the number of immersions is appropriately set, but may be performed a plurality of times. By repeating the dipping a plurality of times, the acid anhydride sufficiently permeates the inside of the wood, and the surface treatment can be uniformly performed.
  • the number of immersions is, for example, 1 to 10, and the immersion time is, for example, 1 to 4800 minutes.
  • the heating temperature is not particularly limited as long as the reaction proceeds, but is usually about 45 to 200 ° C. for 1 to 4800 minutes. It is preferable to immerse in an organic solvent before the acid anhydride treatment.
  • composition of the present embodiment may contain a resin in addition to the wood-based structure.
  • the wood-based structure exhibits a white color.
  • the white color is due to the difference between the refractive index of the cellulose and hemicellulose components and the refractive index of the air contained therein. Therefore, by impregnating the white wood-based structure with the resin, the refractive index of the cellulose and the hemicellulose component can be brought close to each other, and the white wood-based structure becomes colorless and transparent.
  • the composition (molded product) obtained by impregnating white wood with resin can be applied to, for example, a display or a solar cell substrate.
  • the strength of the wood-based structure can be improved by combining the wood-based structure with the resin.
  • the resin may be either a natural resin or a synthetic resin, or a mixture thereof.
  • Natural resins include proteins such as glue, gelatin, casein and albumin; natural rubbers such as arabic rubber and tragant rubber; glucosides such as saponin; alginic acid, propylene glycol alginate, triethanolamine alginate, ammonium alginate and the like.
  • alginic acids such as derivatives; cellulose derivatives such as methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl hydroxy cellulose, and acetyl cellulose; and the like.
  • Examples of the synthetic resin include curable resins such as heat and light, and thermoplastic resins.
  • the curable resin includes acrylic resin; phenol resin; xylene / formaldehyde resin, ketone / formaldehyde resin, urea resin, melamine resin, aniline resin and other resins obtained by reaction with formaldehyde; furan resin; alkyd resin; polyester resin; Epoxy resin; benzoguanamine resin; urethane resin; and the like can be mentioned.
  • thermoplastic resin examples include olefin resins such as polyethylene and polypropylene; polystyrene; polyvinyl acetate; (meth) acrylic resins such as polyacrylate and polymethacrylate; vinyl halide resins such as polyvinyl chloride and polyvinylidene chloride; poly.
  • amide resin such as aliphatic polyamide and aromatic polyamide
  • polycarbonate silicone resin
  • polyester resin such as polyethylene terephthalate and polybutylene terephthalate
  • ABS resin acrylonitrile-butadiene-styrene resin
  • ACS resin chlorinated polyethylene-acrylonitrile- Vinyl-based graft copolymer resin such as styrene resin
  • AES resin acrylonitrile-ethylene-styrene resin
  • urethane resin phenylene group-containing resin such as polyphenylene ether, polyphenylene oxide, polyphenylene sulfide; fluororesin; polyether ether ketone, Polyether resins such as polyether ketones and polyether sulfones; polyvinyl ether resins; polyvinyl ketone resins; polyxylylene resins; polysulfone resins; polylactic acid; imide resins such as polyimides, polyamideimides and maleimides
  • epoxy resin acrylic resin, cellulose derivative, polylactic acid, imide resin, cyanate ester resin, thiophenol resin and polyester resin are preferable, and epoxy resin, imide resin, cyanate ester resin, thiophenol resin and polyester are preferable.
  • Resins are more preferred, and epoxy resins are even more preferred.
  • an aliphatic epoxy resin and an aromatic epoxy resin are preferable, and among them, an aliphatic cyclic epoxy resin (alicyclic epoxy resin, hydrogenated epoxy resin) and an aromatic epoxy resin are preferable.
  • the epoxy resin means a cured, polymerized or crosslinked epoxy compound.
  • the aliphatic cyclic epoxy resin is a cured, polymerized or crosslinked alicyclic epoxy compound and / or hydrogenated compound described below. Means things. Further, as described above, it is also a preferable form to select a biodegradable resin as the resin for the purpose of improving the biodegradability. The biodegradable resin will be described later.
  • the content of the resin in the composition is preferably 0.1 to 99% by weight, preferably 10 to 90% by weight, and preferably 20 to 80% by weight. By including the resin in such a range, the desired function can be easily exhibited.
  • a curable resin is obtained by curing a curable compound.
  • a composition (before curing) containing a curable compound (containing a resin composition) and a wood-based structure is also a suitable form.
  • the preferable content ratio of the resin composition with respect to 100% by weight of the composition containing the resin composition containing the curable compound and the wood-based structure is 85% by weight from the viewpoint of not impairing the characteristics of the wood-based structure. It is preferably less than or equal to, more preferably 80% by weight or less, and further preferably 70% by weight or less.
  • the preferable content ratio of the resin composition with respect to 100% by weight of the composition is preferably 5% by weight or more, and more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. It is more preferably 20% by weight or more, and particularly preferably 30% by weight or more.
  • a preferable content ratio of the curable compound with respect to 100% by weight of the composition containing the resin composition containing the curable compound and the wood-based structure is 84 from the viewpoint of not impairing the characteristics of the wood-based structure. It is preferably 0% by weight or less, more preferably 80% by weight or less, and further preferably 70% by weight or less.
  • the preferable content ratio of the curable compound with respect to 100% by weight of the composition is preferably 4% by weight or more, more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. It is more preferably 20% by weight or more, and particularly preferably 30% by weight or more.
  • a composition in which the curable resin is attached to the surface of the wood-based structure can be obtained. Therefore, as an embodiment of the composition of the present invention, a composition obtained by mixing a resin composition containing a curable compound with a wood-based structure and then curing the composition is also a suitable form. According to this form, the fiber structure of the wood-based structure can improve the strength, and the secondary hardening can be used to impart a shape to the wood composition.
  • the amount of the resin composition when the resin composition containing the curable compound hereinafter, also simply referred to as the resin composition) is mixed with the wood-based structure is 100% by weight of the total of the resin composition and the wood-based structure.
  • the amount of the resin composition is preferably 85% by weight or less, preferably 80% by weight or less, and further preferably 70% by weight or less.
  • the amount of the resin composition is preferably 85% by weight or less, preferably 80% by weight, based on 100% by weight of the total of the resin composition and the wood-based structure. It is more preferably 70% by weight or less, and further preferably 70% by weight or less. From the viewpoint of binding the wood-based structure, it is preferably 5% by weight or more, more preferably 10% by weight or more, further preferably 20% by weight or more, and more preferably 30% by weight or more. Especially preferable.
  • the mixing method of mixing the resin composition with the wood-based structure is not particularly limited, and examples thereof include a method of immersing the wood-based structure in the resin composition.
  • the number of immersions is appropriately set, but may be performed a plurality of times. By repeating the dipping a plurality of times, the resin composition sufficiently permeates the inside of the wood, and the resin can be uniformly coated.
  • ultrasonic treatment should be performed under reduced pressure. Is preferable.
  • the heating temperature (curing temperature) when the curing is thermosetting is appropriately set depending on the type of the curable compound and the like, but is preferably 45 to 200 ° C, more preferably 100 to 190 ° C, and further preferably 100 to 100. It is 180 ° C.
  • the heating time (curing time) at the time of curing is not particularly limited, but is preferably 10 to 300 minutes, more preferably 20 to 100 minutes. If the curing temperature is too low and / or the curing time is too short, curing may be insufficient. On the other hand, if the curing temperature is too high and / or the curing time is too long, decomposition of the resin component may occur.
  • the curing conditions depend on various conditions, but can be appropriately adjusted by shortening the curing time when the curing temperature is high and lengthening the curing time when the curing temperature is low.
  • the resin is a curable resin
  • the curable resin is an epoxy resin and / or an acrylic resin
  • the curable resin is an epoxy resin.
  • epoxy resin and acrylic resin which are suitable forms of the curable resin, will be described.
  • the epoxy resin is a cured product of an epoxy resin composition containing an epoxy compound which is a curable compound.
  • the epoxy resin composition may include an epoxy compound, a curing agent, a curing catalyst and an organic solvent.
  • the epoxy resin composition preferably contains at least an epoxy compound, a curing agent and / or a curing catalyst.
  • Examples of the epoxy compound include an aliphatic epoxy compound (aliphatic chain epoxy compound, an aliphatic cyclic epoxy compound) and an aromatic epoxy compound.
  • an aliphatic glycidyl ether type epoxy compound is preferable, and for example, polyhydroxy compounds (ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol (PEG600), propylene glycol, dipropylene glycol) are preferable.
  • polyhydroxy compounds ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol (PEG600), propylene glycol, dipropylene glycol
  • PPG polypropylene glycol
  • glycerol diglycerol, tetraglycerol, polyglycerol, trimethylolpropane and its multimers, pentaerythritol and its multimers, glucose, fructose, lactose, maltose, etc.
  • Those obtained by the condensation reaction of epihalohydrin and (mono / polysaccharide, etc.) are preferably used.
  • an aliphatic glycidyl ether type epoxy compound having a propylene glycol skeleton, an alkylene skeleton, and an oxyalkylene skeleton in the central skeleton is more preferable.
  • the aliphatic cyclic epoxy compound is a compound having an aliphatic cyclic epoxy group.
  • Examples of the aliphatic cyclic epoxy compound include a hydrogenated epoxy compound and an aliphatic cyclic epoxy compound other than the hydrogenated epoxy compound (simply referred to as an alicyclic epoxy compound).
  • the hydrogenated epoxy compound is preferably a hydrogenated product of a fully or partially hydrogenated aromatic epoxy compound, more preferably a hydrogenated product of an aromatic glycidyl ether compound, and even more preferably an aromatic polyfunctional glycidyl ether. It is a hydrogenated compound. Specifically, hydrogenated bisphenol A type epoxy compounds, hydrogenated bisphenol S type epoxy compounds, hydrogenated bisphenol F type epoxy compounds and the like are preferable. More preferably, it is a hydrogenated bisphenol A type epoxy compound and a hydrogenated bisphenol F type epoxy compound. In the case of a partially hydrogenated product, the hydrogenation rate is preferably 50% or more (upper limit 100%), more preferably 80% or more, and even more preferably 90% or more.
  • the alicyclic epoxy group examples include an epoxycyclohexane group (epoxycyclohexane skeleton) and an epoxy group (particularly an oxylan ring) added directly to a cyclic aliphatic hydrocarbon or via a hydrocarbon.
  • a compound having an epoxycyclohexane group is particularly preferable.
  • a polyfunctional alicyclic epoxy compound having two or more alicyclic epoxy groups in the molecule is preferable in that the curing rate can be further increased.
  • a compound having one alicyclic epoxy group in the molecule and having an unsaturated double bond group such as a vinyl group is also preferably used as the alicyclic epoxy compound.
  • Examples of the epoxy compound having an epoxycyclohexane group include 3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate, epsilon-caprolactone-modified-3,4-epoxycyclohexylmethyl-3', 4'. -Epoxycyclohexanecarboxylate, bis- (3,4-epoxycyclohexyl) adipate and the like are suitable.
  • Examples of the alicyclic epoxy compound other than the epoxy compound having an epoxycyclohexane group include 1,2-epoxy-4- (2-oxylanyl) cyclohexane of 2,2-bis (hydroxymethyl) -1-butanol. Examples thereof include adducts and alicyclic epoxides such as heterocyclic epoxy resins such as triglycidyl isocyanurate.
  • alicyclic epoxy compound commercially available ones can be used, and examples thereof include celoxide 2021P, celoxide 2081, celoxide 2000, and celoxide 3000 (manufactured by Daicel).
  • An aromatic epoxy compound is a compound having an aromatic ring and an epoxy group in the molecule.
  • the aromatic epoxy compound include epoxy compounds having an aromatic ring-conjugated system such as a bisphenol skeleton, a fluorene skeleton, a biphenyl skeleton, a naphthalene ring, and an anthracene ring.
  • a compound having a bisphenol skeleton and / or a fluorene skeleton is preferable. More preferably, it is a compound having a fluorene skeleton.
  • aromatic epoxy compounds a compound having an epoxy group of glycidyl group is preferable, and a compound having a glycidyl ether group (aromatic glycidyl ether compound) is more preferable. Further, a brominated compound of an aromatic epoxy compound may be used.
  • the aromatic epoxy compound include a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a fluorene epoxy compound, and an aromatic epoxy compound having a bromo substituent. Of these, bisphenol A type epoxy compounds and fluorene epoxy compounds are preferable.
  • an aliphatic cyclic epoxy compound is preferable, and an alicyclic epoxy compound is more preferable, from the viewpoint of light resistance, weather resistance, etc. of the cured epoxy resin.
  • the epoxy compound examples include a polyglycidyl etherified product of a polyhydric alcohol having at least one alicyclic ring, or a cyclohexene oxide or a cyclopentene oxide-containing compound obtained by epoxidizing a cyclohexene or cyclopentene ring-containing compound with an oxidizing agent.
  • examples include compounds.
  • Specific examples of the epoxy compound include hydrogenated bisphenol A diglycidyl ether, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and 3,4-epoxy-1-methylcyclohexyl-3,4-.
  • Epoxy-1-methylhexanecarboxylate 6-methyl-3,4-epoxycyclohexylmethyl-6-methyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-3-methylcyclohexylmethyl-3,4- Epoxy-3-methylcyclohexanecarboxylate, 3,4-epoxy-5-methylcyclohexylmethyl-3,4-epoxy-5-methylcyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, 3,4- Epoxy-6-methylcyclohexanecarboxylate, methylenebis (3,4-epoxycyclohexane), propane-2,2-diyl-bis (3,4-epoxycyclohexane), 2,2-bis (3,4-epoxycyclohexyl) Propane, dicyclopentadiene diepoxyside, ethylenebis (3,4-epoxycyclohexane
  • the epoxy resin composition may further contain a compound having another polymerizable group (hereinafter, also referred to as “another polymerizable group-containing compound”) in addition to the above epoxy compound.
  • a compound having another polymerizable group hereinafter, also referred to as “another polymerizable group-containing compound”
  • the polymerizable group may be a curable functional group, and examples thereof include an oxetan group (oxetan ring), a dioxolane group, a trioxane group, a vinyl group, a vinyl ether group, a styryl group, and the like, and an oxetan group is preferable. is there. Further, the curing property of the polymerizable group is influenced not only by the type of group but also by the organic skeleton to which the group is bonded.
  • An oxetane compound is a compound having an oxetane group (oxetane ring). From the viewpoint of curing rate, the oxetane compound is preferably used in combination with an alicyclic epoxy compound and / or a hydrogenated epoxy compound. Further, from the viewpoint of improving light resistance, it is preferable to use an oxetane compound having no aryl group or aromatic ring. On the other hand, from the viewpoint of improving the strength of the cured product, it is preferable to use a polyfunctional oxetane compound, that is, a compound having two or more oxetane rings in one molecule.
  • examples of the monofunctional oxetane compound include 3-methyl-3-hydroxymethyloxetane, 3-ethyl-3-hydroxymethyloxetane, and 3-ethyl-3-.
  • examples of the polyfunctional oxetane compound include di [1-ethyl (3-oxetanyl)] methyl ether and 3,7-bis (3-oxetanyl) -5.
  • oxetane compound examples include ETERNALCOLL (R) EHO, ETERNALCOLL (R) OXBP, ETERNALCOLL (R) OXMA, ETERNALCOLL (R) HBOX, and ETERNALCOLL (R) OXIPA (manufactured by Ube Industries, Ltd.).
  • OXT-101, OXT-121, OXT-211, OXT-221, OXT-212, OXT-610 are suitable.
  • Examples of the curing agent include the alicyclic acid anhydride described in the above surface treatment column.
  • the curing agent is preferably used at a ratio of 0.5 to 1.5 equivalents per 1 equivalent of the epoxy group in the compound having an epoxy group.
  • the curing catalyst examples include aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, piperidine, N-aminoethylpiperazin, mensendiamine, and m-xylenediamine; 2- Dimethylaminoalkylphenols such as (dimethylaminomethyl) phenol, bis (dimethylaminoethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol; aromatic amines such as methanephenylenediamine, diaminodiphenylmethane, diaminodiphenyl sulfone.
  • aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, piperidine, N-aminoethyl
  • Acid anhydrides such as trimetic anhydride, ethylene glycol bis (anhydrotrimeritate), glycerol tris (anhydrotrimeritate), pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride; polyamines in diamine acids Polyaminopolyamide to be reacted; imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole; boron trifluoride-amine complex; disyandiamide; aromatic diazonium salt; polysulfides and the like. ..
  • the curing catalyst is preferably 0.01 to 15 parts by weight, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, and particularly preferably 0, based on 100 parts by weight of the epoxy compound. .1 to 10 parts by weight.
  • organic solvent various conventionally known solvents can be used.
  • the epoxy resin and / or the epoxy compound and / or the compound capable of reacting with the carboxylic acid for example, the compound having an epoxy group, a hydroxyl group, an amino group, an imino group, or an oxazoline group
  • the carboxylic acid for example, the compound having an epoxy group, a hydroxyl group, an amino group, an imino group, or an oxazoline group
  • the surface treatment can be performed by wet-treating an carboxylic acid anhydride or the like.
  • a preferable content ratio of the resin composition to 100% by weight of the composition containing the curable compound and the wood-based structure impairs the characteristics of the wood-based structure. From the viewpoint that there is no such thing, it is preferably 85% by weight or less, more preferably 80% by weight or less, and further preferably 70% by weight or less. Similarly, the preferable content ratio of the resin composition to 100% by weight of the composition is preferably 5% by weight or more, more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. , 20% by weight or more, and particularly preferably 30% by weight or more.
  • the preferable content ratio of the epoxy compound to 100% by weight of the composition containing the curable compound and the wood-based structure does not impair the characteristics of the wood-based structure. From this viewpoint, it is preferably 84% by weight or less, more preferably 80% by weight or less, and even more preferably 70% by weight or less.
  • the preferable content ratio of the epoxy compound with respect to 100% by weight of the composition is preferably 4% by weight or more, more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. It is more preferably 20% by weight or more, and particularly preferably 30% by weight or more.
  • the acrylic resin examples include UV curable acrylic resin and thermosetting acrylic resin.
  • the UV curable acrylic resin is a cured product (including a polymer) of a resin composition containing an acrylate monomer which is a curable compound.
  • acrylate monomer examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n-pentyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, and n-octyl.
  • the above resin composition usually contains a photopolymerization initiator.
  • photopolymerization initiator examples include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, ⁇ -amino-acetophenone, and 4,4-dichloro.
  • the photopolymerization initiator is usually preferably 0.01 to 15 parts by weight, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, particularly preferably 0.01 to 15 parts by weight, based on 100 parts by weight of the acrylate monomer. Is 0.1 to 10 parts by weight.
  • the preferable content ratio of the resin composition to 100% by weight of the composition containing the curable compound and the wood-based structure does not impair the characteristics of the wood-based structure. From the viewpoint, it is preferably 85% by weight or less, more preferably 80% by weight or less, and further preferably 70% by weight or less. Similarly, the preferable content ratio of the resin composition to 100% by weight of the composition is preferably 5% by weight or more, more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. , 20% by weight or more, and particularly preferably 30% by weight or more.
  • the preferable content ratio of the acrylate monomer to 100% by weight of the composition containing the curable compound and the wood-based structure does not impair the characteristics of the wood-based structure. From the viewpoint, it is preferably 84% by weight or less, more preferably 80% by weight or less, and further preferably 70% by weight or less.
  • the preferable content ratio of the acrylate monomer to 100% by weight of the composition is preferably 4% by weight or more, more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. It is more preferably 20% by weight or more, and particularly preferably 30% by weight or more.
  • the content of the resin in the composition is preferably 0.1 to 99% by weight, preferably 10 to 90% by weight, and preferably 20 to 80% by weight. By including the resin in such a range, the desired function can be easily exhibited.
  • Biodegradable resin Since the wood-based structure is a biodegradable material, selecting a biodegradable resin as the resin improves the strength as well as the biodegradability. That is, in a preferred embodiment of the present invention, the resin is a biodegradable resin.
  • biodegradable resin examples include polylactic acid, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, polycaprolactone, polylactic acid-polycaprolactone copolymer, polyorthoester, polyphosphazene, polyphosphate ester, and poly.
  • the biodegradable resin is preferably polylactic acid or starch.
  • the biodegradable resin is preferably contained in the composition in an amount of 30% by weight or more, more preferably 50% by weight or more, and more preferably 90% by weight or more. By containing 30% by weight or more of the biodegradable resin in the composition, the biodegradability can be enhanced and the environmental harmfulness can be reduced.
  • the biodegradable resin is preferably 99% by weight or less in the composition. By reducing the amount of biodegradable resin, it becomes a material with excellent mechanical strength and stability.
  • the wood-based structure When the wood-based structure is impregnated with the wet surface treatment or resin or curable compound, it is preferable not to dry the wood-based structure (white wood) treated in the second step after obtaining it. When dried, it is difficult to remove the air existing at the interface between the wood-based structure and the surface treatment agent, resin, and curable compound, which leads to deterioration of transparency and strength. Therefore, it is preferable to impregnate the surface treatment agent, resin, and curable compound with a highly compatible solvent so that the white wood after cleaning is not dried and becomes incompatible.
  • the composition of the present embodiment may contain an inorganic substance in addition to the wood-based structure.
  • the inorganic substance can be an inorganic compound.
  • the inorganic substance is not particularly limited, but is preferably a metal and its ions, oxides, salts, chlorides or a mixture thereof.
  • the metal refers to a metal excluding non-metals of groups 1 to 16.
  • the metal species may be a single element or a combination of a plurality of elements.
  • the inorganic substance is added for the purpose of imparting a function to the composition.
  • the above-mentioned function is preferably a function of keeping a space in which the composition is installed in a clean state, and specific examples thereof include a deodorant and / or antibacterial function.
  • the deodorant function shown here is to chemically decompose the odorous substance on the inorganic substance, and the antibacterial function is to suppress the activity of microorganisms and not increase the number of bacteria in the initial state. is there.
  • Substances with deodorizing function include titanium oxide, zirconium oxide, iron oxide, aluminum sulfate, copper sulfate, zinc carbonate, zinc sulfate, zinc chloride, nickel, tin, lead, cobalt, platinum, palladium, silver, molybdenum, etc.
  • Various inorganic substances including ruthenium, strontium and the like can be mentioned.
  • Examples of the substance having an antibacterial function include metals such as silver, zinc and copper, and titanium oxide.
  • the inorganic substances are preferably silver, copper and titanium oxide.
  • Preferable forms of existence of inorganic substances are ionic, atomic, and particulate.
  • the inorganic substance exists in the form of particles on the surface of the wood structure.
  • the average particle size at this time is about 0.01 to 100 ⁇ m, preferably 1 to 100 ⁇ m.
  • the average particle size is an average value (number basis) calculated by measuring the particle size of 1000 particles by an observation means such as TEM and SEM (preferably SEM).
  • the particle diameter is represented by the diameter assuming a circle equal to the projected area (diameter equivalent to the projected area circle).
  • the inorganic substance when the inorganic substance is in the form of particles, a form existing in a nano-sized size is also preferable.
  • the average particle size of the inorganic substance is preferably 100 nm or less, more preferably 20 nm or less, further preferably 10 nm or less, preferably 1 nm or more, more preferably 2 nm or more, still more preferably 5 nm or more.
  • the content of the inorganic substance in the composition is 10% by weight to 5% by weight. If the content of the inorganic substance is less than 10 wt ppm, the expected function (for example, deodorant function) may not be obtained, and if it exceeds 5 wt%, the surface gloss and design of the composition are impaired. There is a risk.
  • the expected function for example, deodorant function
  • the method for supporting the inorganic substance on the wood-based structure is not particularly limited, but for example, a liquid phase reduction method, an evaporation dry solid method, a colloid adsorption method, a spray pyrolysis method, and a reverse micelle (microemulsion method). Etc. can be used. Further, the carboxylic acid on the surface of the wood-based structure may be converted into Na carboxylate, and metal ions such as Cu ion and Ag ion may be supported by utilizing the difference in ionization tendency.
  • the simplest method is to apply a commercially available coating agent containing an inorganic substance to the wood-based structure. The coating agent may be applied directly to the wood-based structure, or may be applied to a composition in which the wood-based structure is combined with a resin to improve the strength.
  • composition of the present embodiment may contain a pigment in addition to the wood-based structure.
  • the wood structure contains a pigment, preferably the pigment adheres to the surface of the wood structure, so that it is possible to add color to the wood structure.
  • the pigment is not particularly limited, and may be an organic pigment, an inorganic pigment, or a mixture thereof.
  • inorganic pigments include alumina, titanium dioxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, silica sand, clay, mica, silica ash stone, silica soil, and various inorganic oxide pigments. , Chromium oxide, cerium oxide, red iron oxide, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, silica fine powder, silicon carbide, silicon nitride, boron carbide, tungsten carbide, titanium carbide, cerium oxide, Examples include carbon black. Further, such an inorganic pigment may be treated with a known hydrophobizing agent such as a titanium coupling agent, a silane coupling agent or a higher fatty acid metal salt.
  • a known hydrophobizing agent such as a titanium coupling agent, a silane coupling agent or a higher fatty acid metal salt.
  • Inorganic pigments are inorganic substances, but inorganic substances having a function as pigments are referred to as "pigments”.
  • organic pigments examples include yellow pigments such as Nabres Yellow, Naftor Yellow S, Hanser Yellow G, Hanzer Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Kinolin Yellow Lake, Permanent Yellow NCG, and Tartradin Lake, and Kiribden.
  • Orange pigments such as orange, permanent orange RK, benzine orange G, indanthrone brilliant orange GK, permanent red 4R, resole red, pyrazolone red 4R, watching red calcium salt, lake red D, brilliant carmine 6B, eomin lake, rhodamin lake B , Red pigments such as buzalin lake, brilliant carmine B, purple pigments such as fast violet B, methyl violet lake, alkaline blue lake, Victoria blue lake, phthalocyanine blue, metal-free phthalocyanine blue, phthalocyanine blue partial chloride, fast sky blue, indanthrone blue Examples thereof include blue pigments such as indanthrone blue BC, pigment green B, malakite green lake, and green pigments such as final yellow green G.
  • organic pigments may also be treated pigments having improved dispersibility by using a dispersion aid or the like.
  • the content of the pigment in the composition is appropriately set in order to exert a desired function, but is usually 0.0001 to 10% by weight.
  • composition of the present embodiment may contain a dye in addition to the wood-based structure.
  • the wood structure contains a dye, preferably the dye adheres to the surface of the wood structure, so that it is possible to add color to the wood structure.
  • the dye examples include azine dyes, anthraquinone dyes, perinone dyes, rhodamine dyes, and the like.
  • the content of the dye in the composition is appropriately set in order to exert the desired function, but is usually 0.0001 to 10% by weight.
  • the composition of the present embodiment preferably contains 30% by weight or more of a biological material.
  • a biological material By containing 30% by weight or more of bio-derived materials, it is possible to reduce the use of petroleum-derived raw materials that cause global warming, and it is possible to reduce greenhouse gases as a measure against global warming.
  • the biological material referred to here refers to a material produced from biomass (renewable biological organic resource excluding fossil resources).
  • Bio-derived materials include polylactic acid, polyhydroxyalkanoate, biopolyolefin, nylon 11, nylon 1010, biopolytrimethylene terephthalate, biopolyethylene terephthalate, biopolyurethane, biounsaturated polyester, biopolyester, nylon 610, and cellulose acetate. Examples thereof include (CA), biopolybutylene succinate, compounds made from bioethanol, and natural polymers such as gelatin and starch.
  • compositions include antioxidants, UV absorbers, light stabilizers, plasticizers, non-reactive compounds, chain transfer agents, thermal polymerization initiators, anaerobic polymerization initiators, polymerization inhibitors, inorganic fillers, organic fillers.
  • Adhesion improver such as coupling agent, heat stabilizer, antibacterial / antifungal agent, flame retardant, matting agent, defoaming agent, leveling agent, wetting / dispersing agent, sedimentation inhibitor, thickener / sagging prevention It may contain an agent, a color-coding inhibitor, an emulsifier, an anti-slip / scratch inhibitor, an anti-skin agent, a desiccant, an antifouling agent, an antistatic agent, a conductive agent (electrostatic aid), a solvent and the like.
  • composition of the present embodiment utilizes a wood-based structure, it has high strength even though it is lightweight. Further, the appearance can be processed into a desired appearance such as white, colorless transparent, colored transparent, and colored. Therefore, the composition of the present embodiment can be used for structural materials, interior materials, exterior materials, automobiles, railways, ship structural materials, interior materials, exterior materials, furniture, and the like.
  • the wood raw materials were taken out and washed repeatedly with ethanol.
  • a solution consisting of 0.16 ml of acetic acid, 0.8 g of sodium chlorate and 120 ml of water was prepared.
  • the wood raw material after washing with ethanol was immersed in the solution.
  • the temperature condition was 70 ° C. and the immersion time was 1 hour (second step).
  • the second step was carried out eight times, that is, after the soaking time of 1 hour had elapsed, 0.16 ml of acetic acid and 0.8 g of sodium chlorate were added, and the step of further treating for 1 hour was carried out 7 times (). Soaking time, total 8 hours).
  • the amount of lignin in wood was 14%, whereas the amount of lignin in white wood (wooden structure) was less than 0.1% by weight.
  • the cellulose content of wood is 38% by weight, which is obtained by multiplying the glucose content (% by weight) by 0.9, and the cellulose content of white wood (woody structure) is obtained by multiplying the glucose content (% by weight) by 0.9. It was only 87% by weight.
  • the amount of hemicellulose in the wood raw material was 17% by weight from the contents (% by weight) of xylose, arabinose, mannose, and galactose, while the amount of hemicellulose in white wood (woody structure) was 2% by weight.
  • the viscosity average degree of polymerization of cellulose in the white wood (woody structure) of Synthesis Example 1 is 1100, and the full width at half maximum (FWHM) of 200 faces by X-ray diffraction is 2.50 (3.18 for untreated). ), The maximum load was 27N.
  • the whiteness of white wood (woody structure) is L *: 94.0, a *: -0.3, b *: 1.0 (untreated: L *: 80.1, a *: 3.4. , B *: 17.7).
  • the wood raw materials were taken out and washed repeatedly with ethanol.
  • a solution consisting of 0.16 ml of acetic acid, 0.8 g of sodium chlorate and 120 ml of water was prepared.
  • the wood raw material after washing with ethanol was immersed in the solution.
  • the temperature condition was 70 ° C. and the immersion time was 1 hour (second step).
  • the second step was carried out three times, that is, after the soaking time of 1 hour had elapsed, 0.16 ml of acetic acid and 0.8 g of sodium chlorate were added, and the step of further treating for 1 hour was carried out twice (). Soaking time, total 3 hours).
  • the white wood (wooden structure) of Synthesis Example 2 was prepared.
  • the amount of lignin in white wood (woody structure) was less than 0.1% by weight, the amount of cellulose was 87% by weight, the amount of hemicellulose was 2% by weight, and the average degree of polymerization of cellulose was 1100.
  • the wood-based structure in the X-ray fiber diagram obtained by X-ray diffraction, a plurality of diffraction spots were present in the concentric diffraction images.
  • Example 1 After impregnating one white wood (50 mm ⁇ 10 mm ⁇ 2 mm) obtained in Synthesis Example 1 with water, the solvent was lightly wiped off. Then, the sample was immersed in 50 mL of a 50% aqueous ethanol solution twice, then immersed in 50 mL of absolute ethanol (3 times), and further immersed in 50 mL of methyl ethyl ketone (3 times). In addition, this operation is to treat with a solvent (methyl ethyl ketone) that easily penetrates before adding the curable compound for hydrophobic treatment, and since water and methyl ethyl ketone are not mixed, both before the methyl ethyl ketone treatment.
  • a solvent methyl ethyl ketone
  • Example 2 Using the water-impregnated white wood (50 mm ⁇ 10 mm ⁇ 1 mm) obtained in Synthesis Example 2, alicyclic carboxylic acid was formed on the surface of the white wood using an alicyclic acid anhydride as in Example 1. (Composition) was prepared.
  • Example 3 Resin impregnation + compression
  • 30.7 g of alicyclic epoxy compound (Ceroxide 2021P, manufactured by Daicel), 19.3 g of alicyclic acid anhydride (Recasid MH-700, manufactured by New Japan Chemical Co., Ltd.), curing catalyst (2E-4MZ, manufactured by Shikoku Kasei Co., Ltd.) ) 0.5 g and 21.4 g of methyl ethyl ketone were mixed at room temperature to obtain a resin composition.
  • the white wood (composition) prepared in Example 1 was immersed in the resin composition obtained above with occasional stirring (1 hour each, 3 times). Further, after newly exchanging with the same amount of resin composition, the mixture was allowed to stand under reduced pressure (0.1 kPa) for 20 minutes, and then ultrasonically treated for 30 minutes. This was repeated twice.
  • the resin composition on the surface of white wood impregnated with the resin composition is lightly wiped, heated at 110 ° C. for 30 minutes, and then the heat-dried resin-impregnated white wood is sandwiched between a polyethylene terephthalate film having a thickness of 50 ⁇ m.
  • a polyethylene terephthalate film having a thickness of 50 ⁇ m. was cured at 0.5 MPa at 130 ° C. for 30 minutes to obtain a transparent composition (thickness 0.8 mm) in which the white wood of Synthesis Example 1 was used as a matrix.
  • the transmittance of this composition at a wavelength of 500 nm was 72%, and the maximum bending load was higher than that of white wood.
  • the transmittance and bending load of the composition were measured as follows.
  • ⁇ Transmittance> The transmittance at 25 ° C. and a wavelength of 500 nm was measured using an ultraviolet-visible-infrared spectrophotometer manufactured by JASCO Corporation (V-700 series manufactured by Shimadzu Corporation).
  • ⁇ Bending load (breaking strength)> The three-point bending strength was measured using an Instron universal testing machine (manufactured by Instron Japan, type 1185), and the maximum bending load was evaluated as the breaking strength by the bending stress.
  • Example 4 Resin impregnation + compression] 30.7 g of alicyclic epoxy compound (Ceroxide 2021P, manufactured by Daicel), 19.3 g of alicyclic acid anhydride (Recasid MH-700, manufactured by New Japan Chemical Co., Ltd.), curing catalyst (2E-4MZ, manufactured by Shikoku Kasei Co., Ltd.) ) 0.5 g and 21.4 g of methyl ethyl ketone were mixed at room temperature to obtain a resin composition.
  • the white wood (composition) prepared in Example 2 was immersed in the resin composition obtained above with occasional stirring (1 hour each, 3 times). Further, after newly exchanging with the same amount of the composition, the mixture was allowed to stand under reduced pressure (0.1 kPa) for 20 minutes, and then ultrasonically treated for 30 minutes. This was repeated twice.
  • the transmittance of this composition at a wavelength of 500 nm was 80%, and the maximum bending load was higher than that of white wood.
  • Example 5 Resin impregnation] 30.7 g of alicyclic epoxy compound (Ceroxide 2021P, manufactured by Daicel), 19.3 g of alicyclic acid anhydride (Recasid MH-700, manufactured by New Japan Chemical Co., Ltd.), and curing catalyst (2E-, manufactured by Shikoku Kasei). 0.5 g of 4MZ) was mixed at room temperature to obtain a resin composition.
  • the white wood (composition) prepared in Example 2 was immersed in the resin composition obtained above with occasional stirring (1 hour each, 3 times). Further, after newly exchanging with the same amount of the composition, the mixture was allowed to stand under reduced pressure (0.1 kPa) for 20 minutes, and then ultrasonically treated for 30 minutes. This was repeated twice.
  • the maximum bending load was higher than that of white wood.
  • Example 6 Resin impregnation
  • Example 7 Inorganic substance
  • Example 8 Inorganic substance
  • the sample was soaked for 10 to 15 minutes while shaking lightly.
  • the obtained wood was dried under reduced pressure to obtain wood on which Ag particles were supported. From the EDS analysis image of SEM, it was confirmed that Ag particles (atomic number concentration 6.8% based on oxygen) were supported on the surface of the wood.
  • Example 9 Dye
  • Toluidine blue manufactured by WALDECK, toluidine blue O
  • TB tetrafluoride
  • white wood having an alicyclic carboxylic acid formed on the surface was immersed in 50 g of a TB solution for 15 minutes. It was found that the toluidine blue in the TB solution was reduced because the transmittance of the TB solution was improved.
  • a blue wood (composition) having a grain (the original grain remains) and adsorbing the pigment was obtained.
  • Example 10 Dye
  • One white wood (50 mm ⁇ 10 mm ⁇ 2 mm) obtained in Synthesis Example 1 was impregnated with water, the solvent was lightly wiped off, the sample was immersed once in 100 mL of a 60 wt% ethanol aqueous solution, and then immersed in 100 mL of water. (Twice).
  • Anthraquinone blue (manufactured by Sankyo Chemical Industry Co., Ltd.) was used as a dye, and this was diluted with water to obtain 500 g of an 0.01% by weight anthraquinone blue (AB) aqueous solution.
  • AB anthraquinone blue
  • the blue wood obtained above is treated with 500 g of hot water at 95 ° C. for 15 minutes, and this operation is performed twice to remove the dye that has not been adsorbed, and the dye is adsorbed. Blue wood (composition) was obtained.
  • Example 11 Biodegradable resin / biological material
  • cellulose acetate manufactured by Aldrich
  • a cellulose solution 6 g was dissolved in 48 g of dimethyl sulfoxide to obtain a cellulose solution.
  • the freeze-dried white wood was immersed in a cellulose solution and allowed to stand under reduced pressure (0.1 kPa) for 20 minutes, and then ultrasonically treated for 30 minutes. This was repeated twice.
  • the solution on the surface of the obtained cellulose acetate-impregnated wood was wiped off, the wood was immersed in a 0.1 N NaOH aqueous solution, washed with water to pH 7 after 24 hours, washed with ethanol, dried under reduced pressure, and white containing cellulose. Wood (composition) was obtained.
  • the obtained white wood had a higher maximum load than the white wood before treatment.
  • the content of amorphous cellulose derived from cellulose acetate in wood is 46.3% by weight.
  • the content of amorphous cellulose in the composition was measured by the weight change before and after impregnation. Further, it is possible to calculate the content by decomposing and / or extracting each component of the composition and identifying it by HPLC or the like as in the analysis of wood.
  • Example 12 Biodegradable resin / biological material
  • the white wood obtained in Synthesis Example 1 was freeze-dried in the same manner as in Example 11.
  • 4 g of polylactic acid manufactured by Aldrich, poly (D, L-lactide) Mn10000
  • the freeze-dried white wood was immersed in a polylactic acid solution and ultrasonically performed for 30 minutes. This was repeated twice.
  • the obtained polylactic acid-impregnated wood was dried under reduced pressure to obtain a white wood (composition) containing polylactic acid.
  • the obtained white wood had a higher maximum load than the white wood before treatment.
  • the content of polylactic acid in wood is 67.7% by weight.
  • the content of polylactic acid in the composition was measured by the weight change before and after impregnation. Further, it is possible to calculate the content by decomposing and / or extracting each component of the composition and identifying it by HPLC or the like as in the analysis of wood.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Forests & Forestry (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

[Problem] To confer a new function to a wood material wherein the amount of lignin has been reduced, while maintaining the structure as a wood material. [Solution] A composition containing: a wood-based structure body having a lignin content of less than 3% by weight, a cellulose content of 65% by weight or higher, and a hemicellulose content of between 0.01% by weight and 15% by weight inclusive; and at least one component selected from the group consisting of a curing compound, a resin, an inorganic substance, a dye, and a pigment.

Description

組成物Composition
 本発明は、組成物に関する。 The present invention relates to a composition.
 木材は建築材料、家具、音響材料および紙類の原材料として広く利用されている。また、バイオエタノール生産といったバイオリファイナリーの観点からも木質バイオマスは利用されている。なかでも、バイオリファイナリーの観点で木材が利用される場合、木材の構成成分であるリグニンを除去して、セルロースおよびへミセルロースを取り出す。一般にリグニン除去のための処理は前処理と呼称される。いままで細胞や壁層を破壊する様々な前処理技術が報告されてきた。 Wood is widely used as a raw material for building materials, furniture, acoustic materials and paper. Woody biomass is also used from the viewpoint of biorefinery such as bioethanol production. In particular, when wood is used from the viewpoint of biorefinery, lignin, which is a constituent of wood, is removed to extract cellulose and hemicellulose. Generally, the treatment for removing lignin is called pretreatment. So far, various pretreatment techniques that destroy cells and wall layers have been reported.
 リグニン除去のための前処理法としては、水蒸気爆砕処理、酸処理およびアルカリ処理等に代表される物理化学的手法、リグニン分解酵素或いはリグニン分解微生物を利用する生物学的手法が挙げられる。また、これら以外にも現在まで、前処理方法として、例えば、物理的な粉砕、蒸煮、オゾン酸化、γ線照射等が検討されてきた。 Examples of the pretreatment method for removing lignin include physicochemical methods typified by steam explosion treatment, acid treatment and alkali treatment, and biological methods using lignin-degrading enzymes or lignin-degrading microorganisms. In addition to these, as pretreatment methods, for example, physical pulverization, steaming, ozone oxidation, γ-ray irradiation and the like have been studied.
 また、酢酸、エタノール、高沸点アルコール、フェノールなどの有機溶媒を用いた高温加熱処理はソルボリシスと呼ばれ、リグニンを除去する有効な前処理法として知られている。非特許文献1には、ウツギの一種の木材を粉砕し、エタノールと硫酸の混合溶媒で195℃、1時間処理することにより、リグニンの重量パーセントが1桁になる条件を見出している。さらに、非特許文献2では、前処理後の試料の組織観察をしたところ、細胞間層(細胞と細胞の間にある層)のリグニンが優先的に除去されていることを明らかにした。以上の結果から、非特許文献1および非特許文献2に記載された前処理法は、リグニンを除去すると同時に細胞間の単離を促進させるパルプ化の効果も高いと結論付けられている。 In addition, high-temperature heat treatment using organic solvents such as acetic acid, ethanol, high-boiling alcohol, and phenol is called sorbolisis, and is known as an effective pretreatment method for removing lignin. Non-Patent Document 1 finds a condition that the weight percentage of lignin becomes a single digit by crushing a kind of wood of bridal wreath and treating it with a mixed solvent of ethanol and sulfuric acid at 195 ° C. for 1 hour. Further, in Non-Patent Document 2, when the tissue of the sample after the pretreatment was observed, it was clarified that the lignin in the intercellular layer (the layer between the cells) was preferentially removed. From the above results, it is concluded that the pretreatment methods described in Non-Patent Document 1 and Non-Patent Document 2 are highly effective in pulping, which removes lignin and at the same time promotes isolation between cells.
 一方、特許文献1には、スギ材チップをセッケン-ソーダ灰混合水に浸漬し、過酸化水素水で処理することでリグニン除去木材チップを製造することが開示されている。特許文献2には、リグノセルロース系ノミイオマスを、エチレングリコール溶液で加熱抽出と固液分離を一段で処理し、リグニンを含む液体成分とセルロースを含む固体成分とに分離する方法が開示されている。特許文献3には、木材チップを粉砕した木粉を脱脂処理、脱リグニン処理、脱へミセルロース処理、漂白処理した後、セルラーゼ系酵素による処理を行ない、その後、微細化処理を行うことで微細繊維状セルロースを製造する方法が開示されている。特に、脱リグニン処理としては一例として亜塩素酸ナトリウムと酢酸を用いるWise法が開示されている。なお、非特許文献3にも、酢酸を加えてpHを3.8-4.0とした亜塩素酸ナトリウム溶液を用いて脱リグニン処理することが開示されている。 On the other hand, Patent Document 1 discloses that a lignin-removed wood chip is produced by immersing a sugi wood chip in a soap-soda ash mixed water and treating it with a hydrogen peroxide solution. Patent Document 2 discloses a method of treating lignocellulosic fleaiomas with an ethylene glycol solution by heat extraction and solid-liquid separation in one step to separate a liquid component containing lignin and a solid component containing cellulose. According to Patent Document 3, wood flour obtained by crushing wood chips is degreased, lignin-treated, dehemicellulose-treated, and bleached, and then treated with a cellulase-based enzyme, and then finely divided. A method for producing fibrous cellulose is disclosed. In particular, as an example of the delignin treatment, the Wise method using sodium chlorite and acetic acid is disclosed. Non-Patent Document 3 also discloses that delignin treatment is performed using a sodium chlorite solution in which acetic acid is added to adjust the pH to 3.8-4.0.
特開2006-001270号公報Japanese Unexamined Patent Publication No. 2006-001270 特開2015-080759号公報JP-A-2015-080759 特開2012-111849号公報Japanese Unexamined Patent Publication No. 2012-1111849
 上述のように、木材等のリグノセルロース材料に対して種々の方法で脱リグニン処理する方法は知られていた。しかしながら、上述した従来の方法は、リグニンを、セルロースおよびへミセルロースから分離するための手法であり、木材の組織や細胞を破壊することとなり、処理前の形状を維持することはできなかった。なお、特許文献1には木材チップのハニカム構造を維持するリグニン除去方法が開示されるものの、木材チップ自体の形状を維持できる処理ではない。 As described above, there have been known methods for removing lignin from a lignocellulose material such as wood by various methods. However, the above-mentioned conventional method is a method for separating lignin from cellulose and hemicellulose, which destroys wood tissues and cells, and cannot maintain the shape before treatment. Although Patent Document 1 discloses a method for removing lignin that maintains the honeycomb structure of the wood chip, it is not a process that can maintain the shape of the wood chip itself.
 木材のリグニン成分が十分に低減されることにより外部から視認すると白色の木材となる。このような木材に各種機能を付与することで、新たな用途への展開が期待される。 The lignin component of the wood is sufficiently reduced so that it becomes white wood when viewed from the outside. By adding various functions to such wood, it is expected to develop into new uses.
 そこで、本発明は、上述した実情に鑑み、木材としての構造を維持しながらリグニンが低減された木材に新たな機能を付与することを目的とする。 Therefore, in view of the above-mentioned circumstances, an object of the present invention is to impart a new function to wood having reduced lignin while maintaining the structure as wood.
 本発明は、リグニン含有量が3重量%未満、セルロース含有量が65重量%以上、ヘミセルロース含有量が0.01重量%以上15重量%以下である木質系構造体と、硬化性化合物、樹脂、無機物質(無機化合物を含む、以下同様)、染料、および顔料からなる群から選択される少なくとも一と、を含む組成物である。 The present invention comprises a wood-based structure having a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a hemicellulose content of 0.01% by weight or more and 15% by weight or less, and a curable compound, a resin, and the like. A composition comprising at least one selected from the group consisting of inorganic substances (including inorganic compounds, the same shall apply hereinafter), dyes, and pigments.
 また、本発明の他の一実施形態は、リグニン含有量が3重量%未満、セルロース含有量が65重量%以上、前記セルロースの粘度平均重合度DPvが300以上である木質系構造体と、硬化性化合物、樹脂、無機物質、染料、および顔料からなる群から選択される少なくとも一と、を含む組成物である。 In addition, another embodiment of the present invention comprises a wood-based structure having a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a viscosity average degree of polymerization DPv of the cellulose of 300 or more, and curing. A composition comprising at least one selected from the group consisting of sex compounds, resins, inorganic substances, dyes, and pigments.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度45~55%RHの条件で行う。また、本明細書において、「(メタ)アクリル」との表現がある場合は、「アクリルおよび/またはメタクリル」を意味し、「(メタ)アクリレート」との表現がある場合は、「アクリレートおよび/またはメタクリレート」を意味する。さらに、本明細書中で「酸(塩)」との表現がある場合は、「酸および/またはその塩」を意味する。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments. In the present specification, "X to Y" indicating a range means "X or more and Y or less", and unless otherwise specified, operation and measurement of physical properties are performed at room temperature (20 to 25 ° C.) / relative humidity of 45 to 55% RH. Perform under the conditions of. Further, in the present specification, the expression "(meth) acrylic" means "acrylic and / or methacrylic", and the expression "(meth) acrylate" means "acrylate and / or". Or methacrylate ". Further, when the expression "acid (salt)" is used in the present specification, it means "acid and / or a salt thereof".
 本発明の一実施形態は、リグニン含有量が3重量%未満、セルロース含有量が65重量%以上、ヘミセルロース含有量が0.01重量%以上15重量%以下である木質系構造体と、硬化性化合物、樹脂、無機物質、染料、および顔料からなる群から選択される少なくとも一と、を含む組成物である。 One embodiment of the present invention comprises a wood-based structure having a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a hemicellulose content of 0.01% by weight or more and 15% by weight or less, and curability. A composition comprising at least one selected from the group consisting of compounds, resins, inorganic substances, dyes, and pigments.
 また、本発明の他の一実施形態は、リグニン含有量が3重量%未満、セルロース含有量が65重量%以上、前記セルロースの粘度平均重合度DPvが300以上である木質系構造体と、硬化性化合物、樹脂、無機物質、染料、および顔料からなる群から選択される少なくとも一と、を含む組成物である。 In addition, another embodiment of the present invention comprises a wood-based structure having a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a viscosity average degree of polymerization DPv of the cellulose of 300 or more, and curing. A composition comprising at least one selected from the group consisting of sex compounds, resins, inorganic substances, dyes, and pigments.
 本発明によれば、白色の木材に各種機能を付与することが可能となる。 According to the present invention, it is possible to impart various functions to white wood.
 本発明において、木質系構造体は、リグニン含有量が3重量%未満、セルロース含有量が65重量%以上である。木質系構造体がこのような構成をとることで、木材の外形形状・寸法を維持しつつ、白色の外観を呈する。そして、このような木質系構造体と、例えば、樹脂と組み合わせることで、建築資材等、より高い強度が求められる分野へ適用可能となる。そして、樹脂と組み合わせることで、強度向上という新たな機能を付与することができる。 In the present invention, the wood-based structure has a lignin content of less than 3% by weight and a cellulose content of 65% by weight or more. By adopting such a structure, the wood-based structure exhibits a white appearance while maintaining the outer shape and dimensions of the wood. Then, by combining such a wood-based structure with, for example, a resin, it can be applied to fields requiring higher strength such as building materials. Then, by combining with a resin, a new function of improving strength can be imparted.
 また、木質系構造体の表面に樹脂が被覆することで、外観が透明となる場合がある。このような透明な木材は審美性や意匠性の点で新たな機能を付与するものである。木質系構造体に、染料、顔料を組み合わると、外観が有色である木材とすることも可能であり、この場合も審美性や意匠性の点で新たな機能を付与するものである。 In addition, the appearance may become transparent by coating the surface of the wood-based structure with resin. Such transparent wood gives new functions in terms of aesthetics and design. By combining a wood-based structure with dyes and pigments, it is possible to obtain wood with a colored appearance, and in this case as well, new functions are imparted in terms of aesthetics and design.
 さらに、木質系構造体は、木材原材料を構成するセルロースとへミセルロースからなる構造を維持している。このため、木質系構造体は、細胞内腔が作るマイクロメートルオーダーの細孔に加え、多糖間にあるナノオーダーの微細孔が形成された多孔性材料(メソポーラス材料)である。ナノオーダーの微細孔が形成された材料はメソポーラス材料(細孔の直径が数ナノメートルから数十ナノメートルの多孔質材料)と呼称される。メソポーラス材料としての用途としては、例えば、ガス吸着材、断熱材、ガス分離材、微生物の培地などを挙げることができる。また、このような多孔性材料を基材として、無機物質を担持させることができる。このような無機物質としては、後述するように、消臭や抗菌作用を持つものが挙げられる。消臭や抗菌作用を有する無機物質を担持することで、消臭、抗菌といった新たな機能を付与することができる。そして、当該無機物質等を担持させた後にも、組成物が多孔性を維持していることが好ましい。すなわち、本発明の好適な形態は、組成物が多孔体である。組成物が多孔体であることで、単位入射面積当たり、および、単位空間体積当たりの表面積を向上でき、種々の担持材料の効果を高めることが可能である。また、当該多孔体の表面に、硬化性化合物、樹脂、無機物質、染料、および顔料からなる群から選択される少なくとも一が付着していることが好ましい。多孔体の表面に硬化性化合物、樹脂、無機物質が表面に付着することで強度向上が可能であり、無機物質、染料、顔料が付着することで触媒機能や意匠性等のそれぞれの機能を付与可能である。ここで、「表面」とは、外部の空気と接触している(外部に露出している)面を指し、多孔体の場合、該表面だけではなく、内孔(空孔)内の表面(内表面)も含む概念である。 Furthermore, the wood-based structure maintains a structure composed of cellulose and hemicellulose, which are constituents of wood raw materials. Therefore, the wood-based structure is a porous material (mesoporous material) in which nano-order micropores between polysaccharides are formed in addition to micrometer-order pores formed by the cell lumen. Materials with nano-order micropores are called mesoporous materials (porous materials with pore diameters of several nanometers to several tens of nanometers). Examples of applications as mesoporous materials include gas adsorbents, heat insulating materials, gas separators, and microbial media. In addition, an inorganic substance can be supported using such a porous material as a base material. Examples of such inorganic substances include those having a deodorant and antibacterial action, as will be described later. By supporting an inorganic substance having a deodorant or antibacterial action, new functions such as deodorant and antibacterial can be imparted. Then, it is preferable that the composition maintains the porosity even after the inorganic substance or the like is supported. That is, in a preferred embodiment of the present invention, the composition is a porous body. Since the composition is a porous body, the surface area per unit incident area and per unit space volume can be improved, and the effects of various supporting materials can be enhanced. Further, it is preferable that at least one selected from the group consisting of curable compounds, resins, inorganic substances, dyes and pigments is attached to the surface of the porous body. It is possible to improve the strength by adhering curable compounds, resins, and inorganic substances to the surface of the porous body, and by adhering inorganic substances, dyes, and pigments, each function such as catalytic function and designability is imparted. It is possible. Here, the "surface" refers to a surface in contact with external air (exposed to the outside), and in the case of a porous body, not only the surface but also the surface inside the inner hole (vacancy) (the surface (vacancy)). It is a concept that also includes the inner surface).
 さらに、木質系構造体の特徴として、樹木由来且つ化学的な修飾を有しないという特徴に着目すると、生分解性材料であった低環境負荷な材料とも言える。すなわち、木質系構造体を利用した物は全てセルラーゼによって完全に分解することができる。例えば、木質系構造体のメソポーラス構造に着目して吸着材として利用した場合、当該吸着材を生分解することで、例えば、環境中から吸着した物質を濃縮することが可能となる。また、白い木材を従来の発泡スチロールに代えて、例えば、生分解性断熱材として利用することが可能となる。ゆえに、このような木質系構造体と強度向上などを目的として樹脂を組み合わせる際に、ポリ乳酸などの生分解性材料を選択することは、組成物全体の生分解性が向上するため好ましい態様となる。 Furthermore, focusing on the characteristics of the wood-based structure that it is derived from trees and does not have chemical modifications, it can be said that it is a biodegradable material with a low environmental load. That is, anything using a wood-based structure can be completely decomposed by cellulase. For example, when focusing on the mesoporous structure of a wood-based structure and using it as an adsorbent, it is possible to concentrate the adsorbed substance from the environment by biodegrading the adsorbent. In addition, white wood can be used as a biodegradable heat insulating material, for example, in place of conventional Styrofoam. Therefore, when combining such a wood-based structure with a resin for the purpose of improving strength, it is preferable to select a biodegradable material such as polylactic acid because the biodegradability of the entire composition is improved. Become.
 組成物は、木質系構造体の立体形状を保持していることが好ましく、当該組成物は成形体とも言える。 The composition preferably retains the three-dimensional shape of the wood-based structure, and the composition can be said to be a molded product.
 当該組成物は、波長500nmにおける透過率(可視光透過率とも称する)が30%以上であることが好ましい。上記可視光透過率が上述の範囲であると、光学材料に好適に使用できる。上記可視光透過率は、50%以上であることがより好ましく、60%以上であることがより好ましく、70%以上であることがより好ましく、80%以上であることがより好ましく、88%以上であることが更に好ましい。このような高い透過率の組成物は、後述のように、樹脂(硬化性化合物の硬化体を含む)と組み合わせて用いることで得ることができる。また、高い透過率の組成物とするために組成物の平均屈折率の下限が1.43以上であることが好ましく、1.45以上であることがより好ましく、1.47以上であることがさらにより好ましく、1.49以上であることが特に好ましい。組成物の平均屈折率の上限としては1.61未満であることが好ましく、1.58未満であることがより好ましく、1.55未満であることがさらにより好ましい。屈折率は、アッベ屈折率計(アタゴ社製、DR-M2)を用い、25℃で波長589nmにて測定した値を用いる。 The composition preferably has a transmittance (also referred to as visible light transmittance) at a wavelength of 500 nm of 30% or more. When the visible light transmittance is in the above range, it can be suitably used for an optical material. The visible light transmittance is more preferably 50% or more, more preferably 60% or more, more preferably 70% or more, more preferably 80% or more, and 88% or more. Is more preferable. Such a composition having a high transmittance can be obtained by using it in combination with a resin (including a cured product of a curable compound) as described later. Further, in order to obtain a composition having a high transmittance, the lower limit of the average refractive index of the composition is preferably 1.43 or more, more preferably 1.45 or more, and preferably 1.47 or more. Even more preferably, it is 1.49 or more, and particularly preferably 1.49 or more. The upper limit of the average refractive index of the composition is preferably less than 1.61, more preferably less than 1.58, and even more preferably less than 1.55. As the refractive index, a value measured at 25 ° C. and a wavelength of 589 nm using an Abbe refractive index meter (DR-M2 manufactured by Atago Co., Ltd.) is used.
 本明細書において、波長500nmにおける透過率は、実施例に記載の方法により算出した値を採用する。 In the present specification, the value calculated by the method described in the examples is adopted as the transmittance at a wavelength of 500 nm.
 当該組成物は、最大曲げ荷重が、好ましい順に、50MPa以上、80MPa以上、100MPa以上であり、さらに、150MPa以上であることが好ましく、200MPa以上であることがより好ましく、300MPa以上であることがさらにより好ましく、400MPa以上であることが特に好ましく、500MPa以上であることが最も好ましい。最大曲げ荷重が、150MPa以上であることで、十分な機械的強度が得られる。また、当該組成物の最大曲げ荷重は、木質系構造体の最大曲げ荷重よりも高いことが好ましい。最大曲げ荷重の上限は特に限定されるものではないが、通常2000MPa以下である。このような高い最大曲げ荷重の組成物は、後述のように、木質系構造体に対して加圧(圧縮)処理を行う;高強度材料を含浸する;ことなどで得られる。木質系構造体の加圧(圧縮)処理は、後述の硬化性化合物を含む樹脂組成物を木質系構造体に含浸させた後、当該硬化性化合物を硬化させる硬化処理(例えば、加熱処理)と併せて行ってもよい。加圧(圧縮)処理における圧力、時間等は、木質系構造体の種類、形状や表面性状、厚さ等により適宜設定される。木材としての物性が低下しないこと等を考慮すると、圧力は0.01~20MPaが好ましく、0.05~10MPaがより好ましく、0.1~5MPaがさらにより好ましく、時間は1~2400分が好ましく、5~1200分がより好ましく、10~300分がさらにより好ましい。 The maximum bending load of the composition is 50 MPa or more, 80 MPa or more, 100 MPa or more, more preferably 150 MPa or more, more preferably 200 MPa or more, and further preferably 300 MPa or more, in the order of preference. More preferably, it is particularly preferably 400 MPa or more, and most preferably 500 MPa or more. When the maximum bending load is 150 MPa or more, sufficient mechanical strength can be obtained. Further, the maximum bending load of the composition is preferably higher than the maximum bending load of the wood-based structure. The upper limit of the maximum bending load is not particularly limited, but is usually 2000 MPa or less. Such a composition having a high maximum bending load can be obtained by subjecting a wood-based structure to a pressure (compression) treatment; impregnating a high-strength material; or the like, as described later. The pressurization (compression) treatment of the wood-based structure includes a curing treatment (for example, heat treatment) in which the wood-based structure is impregnated with a resin composition containing a curable compound described later and then the curable compound is cured. It may be done at the same time. The pressure, time, etc. in the pressurization (compression) treatment are appropriately set according to the type, shape, surface texture, thickness, etc. of the wood-based structure. Considering that the physical characteristics of the wood do not deteriorate, the pressure is preferably 0.01 to 20 MPa, more preferably 0.05 to 10 MPa, even more preferably 0.1 to 5 MPa, and the time is preferably 1 to 2400 minutes. 5 to 1200 minutes is more preferable, and 10 to 300 minutes is even more preferable.
 当該組成物は、表面が木目を有していることが好ましい。当該組成物が木目を有していることで意匠性に優れる。このような木目を有している組成物は、白色木材の早材部分、晩材部分の構造を活かすことによって得ることができる。木目は、組成物全体が木目調である必要はなく、部分的に木目を有するものであってもよい。なお、白色の木質系構造体には木目があり、これを生かすことができる。 It is preferable that the surface of the composition has a grain of wood. Since the composition has a grain of wood, it is excellent in design. A composition having such a grain can be obtained by utilizing the structures of the early wood portion and the late wood portion of the white wood. The wood grain does not have to be entirely wood grain, and may be partially wood grain. The white wood-based structure has a grain, which can be utilized.
 [木質系構造体]
 木質系構造体は、リグニン含有量が3重量%未満であり、セルロース含有量が65重量%以上である。かかる実施形態によれば、セルロースを主成分とし、リグニン成分が十分に低減されている。セルロースは細胞壁を構成する主要成分であり、木材の強度を担保する重要な役割を果たす。一方、リグニンは、細胞間または細胞壁内のミクロフィブリル間を接着する役割を果たし、木材の構造維持に重要な役割を果たしていると考えられてきた。このため、リグニンを低減しつつ、木材としての構造を維持することは非常に困難であった。上記木質系構造体によれば、リグニン成分が十分に低減されているにも関わらず、木材としての三次元構造が維持されている。このようにリグニン量が低減されているにもかかわらず、三次元構造が維持されている詳細なメカニズムは不明であるが、例えば、後述の製造方法により木材を製造することで、リグニンが除去された部分に水が置換すること、また、本来の木材が有するセルロース構造(セルロースミクロフィブリルなど)が破壊されずに維持されることで、三次元構造体としての形状が維持されているものと考えられる。なお、上記考察は本発明の技術的範囲を何ら制限するものではない。
[Wooden structure]
The wood-based structure has a lignin content of less than 3% by weight and a cellulose content of 65% by weight or more. According to such an embodiment, cellulose is the main component and the lignin component is sufficiently reduced. Cellulose is a major component of cell walls and plays an important role in ensuring the strength of wood. On the other hand, lignin plays a role of adhering between cells or between microfibrils in the cell wall, and has been considered to play an important role in maintaining the structure of wood. For this reason, it was very difficult to maintain the structure as wood while reducing lignin. According to the wood-based structure, the three-dimensional structure as wood is maintained even though the lignin component is sufficiently reduced. Although the detailed mechanism by which the three-dimensional structure is maintained despite the reduction in the amount of lignin is unknown, for example, lignin is removed by producing wood by the production method described later. It is considered that the shape as a three-dimensional structure is maintained by replacing the water in the portion and maintaining the cellulose structure (cellulose microfibrils, etc.) of the original wood without being destroyed. Be done. The above discussion does not limit the technical scope of the present invention.
 上記木質系構造体は、リグニン成分が十分に低減されているために、外部から視認すると白色の木材となる。ゆえに、新しい素材として広く利用することができる。 The above-mentioned wood-based structure has a sufficiently reduced lignin component, so that it becomes white wood when visually recognized from the outside. Therefore, it can be widely used as a new material.
 ここで、本明細書における木質系構造体とは木材由来の構造体である。ここで、木材とは、細胞が規則正しく並んでいる構造(組織)が形成されているものを指す。木材は、パルプとは明確に区別される。細胞が規則正しく並んで組織が形成されていることは、X線CT画像などを用いて観察することができる。木材においては、隣接した細胞が互いに解離することなく順序よく配列している。 Here, the wood-based structure in the present specification is a structure derived from wood. Here, wood refers to a structure (tissue) in which cells are regularly arranged. Wood is clearly distinguished from pulp. It can be observed by using an X-ray CT image or the like that the cells are regularly arranged to form a tissue. In wood, adjacent cells are arranged in order without dissociation from each other.
 また、木質系構造体とは、X線回折によって得られるX線繊維図において、同心円状の回折像中に複数の回折スポットが存在することを指す。このような回折スポットは、X線繊維図において黒色点として視認できる。複数の回折スポットが存在するということは、細胞壁内のセルロースミクロフィブリルの配向に乱れがないことを示す。ゆえに、木質系構造体は、細胞壁内のセルロースミクロフィブリルの構造も維持し、ゆえに強度に優れる。ここで、複数とは2以上であればよい。X線回折スポットの数は同じ種類の原料木材で観測されるスポットと同数であることが好ましい。 Further, the wood-based structure means that a plurality of diffraction spots are present in a concentric diffraction image in an X-ray fiber diagram obtained by X-ray diffraction. Such diffraction spots can be visually recognized as black spots in the X-ray fiber diagram. The presence of multiple diffraction spots indicates that the orientation of the cellulose microfibrils within the cell wall is undisturbed. Therefore, the wood-based structure also maintains the structure of cellulosic microfibrils in the cell wall and is therefore superior in strength. Here, the plurality may be two or more. The number of X-ray diffraction spots is preferably the same as the number of spots observed in the same type of raw wood.
 X線繊維図は以下のようにして測定される。まず、放射切片を作製し、L方向を軸にして筒状に巻いた試料をセットして測定する。測定条件は以下の通りである。 The X-ray fiber diagram is measured as follows. First, a radiation section is prepared, and a sample wound in a tubular shape about the L direction is set and measured. The measurement conditions are as follows.
 イメージングプレート単結晶構造解析装置:リガク社製 R-AXIS RAPID
 X線源:Cu ターゲット
 また、セルロースの結晶構造において、X線回折(200面)の半値全幅(FWHM)は、リグニン量が低減されセルロースの配向性が向上し、繊維方向の強度に優れるという観点で、3以下であることが好ましく、2.8以下であることがより好ましく、2.6以下であることがさらに好ましい。また、透明樹脂を含浸させることにより透明成型物(組成物)を得ることが可能であり、また、染色等の着色も可能になるという観点で、1以上であることが好ましく、1.6以上であることが好ましく、2以上であることが最も好ましい。セルロースのX線回折(200面)の半値全幅(FWHM)がかような範囲にあることで、天然セルロースの結晶構造が維持されていると言える。ゆえに、木材は強度に優れる。
Imaging plate single crystal structure analyzer: R-AXIS RAPID manufactured by Rigaku Corporation
X-ray source: Cu target In addition, in the crystal structure of cellulose, the half-value full width (FWHM) of X-ray diffraction (200 planes) is from the viewpoint that the amount of lignin is reduced, the orientation of cellulose is improved, and the strength in the fiber direction is excellent. It is preferably 3 or less, more preferably 2.8 or less, and further preferably 2.6 or less. Further, from the viewpoint that a transparent molded product (composition) can be obtained by impregnating with a transparent resin, and coloring such as dyeing becomes possible, it is preferably 1 or more, preferably 1.6 or more. Is preferable, and 2 or more is most preferable. It can be said that the crystal structure of natural cellulose is maintained when the full width at half maximum (FWHM) of the X-ray diffraction (200 planes) of cellulose is in such a range. Therefore, wood has excellent strength.
 セルロースの結晶構造は以下のように測定する。 The crystal structure of cellulose is measured as follows.
 X線装置:全自動水平型多目的X線回折装置(リガク社製、SmartLab)
 X線源:Cu ターゲット
 木質系構造体中のリグニン含有量は、好ましい順に、2重量%未満、1重量%未満、0.5重量%未満、0.1重量%未満である。リグニン含有量がこのような範囲にあることで、白色度が向上する。リグニン含有量は少なければ少ないほど好ましく、下限は0重量%である。ここで、0重量%は、下記各成分の含有量をHPLCにより測定した際に検出限界以下であることを指す。
X-ray equipment: Fully automatic horizontal multipurpose X-ray diffractometer (SmartLab, manufactured by Rigaku)
X-ray source: Cu The lignin content in the target wood-based structure is less than 2% by weight, less than 1% by weight, less than 0.5% by weight, and less than 0.1% by weight in the preferred order. When the lignin content is in such a range, the whiteness is improved. The lower the lignin content, the more preferable, and the lower limit is 0% by weight. Here, 0% by weight means that the content of each of the following components is below the detection limit when measured by HPLC.
 木質系構造体中のセルロースの含有量は、65重量%以上であり、好ましい順に、75重量%以上、80重量%以上、85重量%以上、90重量%以上、95重量%以上である。セルロースの含有量が65重量%以上であることで、木材構造中のセルロース繊維方向の強度が向上し、白色度が向上する。なお、セルロースの含有量の上限は、木材構造を維持するという観点で、製造限界を考慮すると、通常99.9重量%以下であり、好ましくは99.5%以下である。 The content of cellulose in the wood-based structure is 65% by weight or more, and in the preferred order, 75% by weight or more, 80% by weight or more, 85% by weight or more, 90% by weight or more, and 95% by weight or more. When the content of cellulose is 65% by weight or more, the strength in the direction of the cellulose fibers in the wood structure is improved, and the whiteness is improved. The upper limit of the cellulose content is usually 99.9% by weight or less, preferably 99.5% or less, considering the production limit from the viewpoint of maintaining the wood structure.
 木質系構造体中に含まれるセルロースの粘度平均重合度DPvは、300以上であることが好ましい。すなわち、好適な形態は、木質系構造体が、リグニン含有量が3重量%未満であり、セルロース含有量が65重量%以上であり、セルロースの粘度平均重合度DPvが、300以上である。セルロースの粘度平均重合度DPvが、300以上であることで、本来の樹木が有しているセルロースの繊維状態に近しいものとなり、木材の強度が向上するので好ましい。通常、何かしらの化学的処理を行った場合、セルロースの粘度平均重合度は著しく低下する。例えば、後述の製造方法によれば、セルロースの粘度平均重合度の著しい低下が抑制される。セルロースの粘度平均重合度DPvは、500以上であることがより好ましく、800以上であることがさらに好ましく、1,000以上であることが特に好ましい。また、セルロースの粘度平均重合度DPvの上限は、本来樹木に存在するセルロースに近いほうが好ましく、このような観点から、通常は、10,000以下であり、5,000以下であることが好ましく、3,000以下であることがより好ましい。セルロースの粘度平均重合度は下記の方法で測定され、処理により取り除けない物質も含めて、粘度平均重合度とする。組成物の場合は、木質系構造体を一般的な手法で抽出する。 The viscosity average degree of polymerization DPv of cellulose contained in the wood-based structure is preferably 300 or more. That is, in a preferable form, the wood-based structure has a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a cellulose viscosity average degree of polymerization DPv of 300 or more. When the viscosity average degree of polymerization DPv of cellulose is 300 or more, it becomes close to the fibrous state of cellulose possessed by the original tree, and the strength of wood is improved, which is preferable. Usually, when some kind of chemical treatment is performed, the viscosity average degree of polymerization of cellulose is significantly reduced. For example, according to the production method described later, a significant decrease in the viscosity average degree of polymerization of cellulose is suppressed. The viscosity average degree of polymerization DPv of cellulose is more preferably 500 or more, further preferably 800 or more, and particularly preferably 1,000 or more. Further, the upper limit of the viscosity average degree of polymerization DPv of cellulose is preferably close to that of cellulose originally present in trees, and from such a viewpoint, it is usually preferably 10,000 or less, preferably 5,000 or less. More preferably, it is 3,000 or less. The viscosity average degree of polymerization of cellulose is measured by the following method, and the viscosity average degree of polymerization is used including substances that cannot be removed by treatment. In the case of the composition, the woody structure is extracted by a general method.
 セルロースの粘度平均重合度は、以下の測定方法により測定することができる。 The viscosity average degree of polymerization of cellulose can be measured by the following measuring method.
 <粘度平均重合度の測定方法>
 木質系構造体に対して亜塩素酸ナトリウムおよび酢酸を用いるWise法を繰り返し、その後5%水酸化ナトリウム水溶液で煮沸処理することによってセルロースを抽出する。セルロースを銅エチレンジアミンに溶解後、キャノン-フェンスケ粘度計により、その落下速度から重合度を測定する。具体的には以下のように測定される。
<Measuring method of viscosity average degree of polymerization>
Cellulose is extracted by repeating the Wise method using sodium chlorite and acetic acid on the wood-based structure, and then boiling treatment with a 5% aqueous sodium hydroxide solution. After dissolving cellulose in copper ethylenediamine, the degree of polymerization is measured from the falling rate with a Canon-Fenceke viscometer. Specifically, it is measured as follows.
 0.5Mの銅エチレンジアミン溶液を調製し、キャノン-フェンスケ粘度計を用いて粘度ηを測定する。また、セルロースを0.5Mの銅エチレンジアミン溶液に溶解した溶解液(セルロース濃度をc(g/dL)とする)を調製し、キャノン-フェンスケ粘度計を用いて粘度ηを測定する。以下の式1によりセルロースの溶解液の固有粘度(「極限粘度」と称することもある)[η]を求める。 A 0.5 M copper ethylenediamine solution is prepared and the viscosity η 0 is measured using a Canon-Fenceke viscometer. Further, a solution in which cellulose is dissolved in a 0.5 M copper ethylenediamine solution (cellulose concentration is c (g / dL)) is prepared, and the viscosity η is measured using a Canon-Fenceke viscometer. The intrinsic viscosity (sometimes referred to as "extreme viscosity") [η] of the cellulose solution is determined by the following formula 1.
 固有粘度[η]=(η/η)/{c(1+A×η/η)} 式1
 式1において、「A」は、溶液の種類による固有の値を示す。0.5Mの銅エチレンジアミン溶液の場合、「A」は0.28である。
Intrinsic viscosity [η] = (η 0 / η) / {c (1 + A × η / η 0 )} Equation 1
In Formula 1, "A" represents a unique value depending on the type of solution. For a 0.5 M copper ethylenediamine solution, "A" is 0.28.
 次に、以下の式2(Mark-Houwink-Sakurada式)により、粘度平均重合度DPvを求める。 Next, the viscosity average degree of polymerization DPv is obtained by the following formula 2 (Mark-Houwink-Sakurada formula).
 固有粘度[η]=K×DPv×a  式2
 式2において、「K」および「a」は、高分子の種類による固有の値を示す。セルロースの場合、「K」は0.57×10-3、「a」は1である。
Intrinsic viscosity [η] = K × DPv × a Equation 2
In Equation 2, "K" and "a" represent unique values depending on the type of polymer. In the case of cellulose, "K" is 0.57 × 10 -3 and “a” is 1.
 木質系構造体中のヘミセルロースの含有量は、0.01重量%以上であることが好ましく、0.1重量%以上であることがより好ましく、0.5重量%以上であることがさらに好ましく、1重量%以上であることがさらにより好ましく、2重量%以上であることが特に好ましい。すなわち、本発明の好適な実施形態は、木質系構造体が、リグニン含有量が3重量%未満、セルロース含有量が65重量%以上、ヘミセルロース含有量が0.01重量%以上15重量%以下である。ヘミセルロースの含有量が上記下限以上であることで、セルロース同士を結着させるのに十分な量となり、三次元構造体が維持されやすくなる。また、ヘミセルロースの上限は特に限定されるものではなく、セルロースの含有量が65重量%以上であることから、35重量%以下であり、25重量%以下であることが好ましく、20重量%以下であることがより好ましく、15重量%以下であることがさらに好ましく、10重量%未満であることがさらにより好ましく、5重量%未満であることが特に好ましい。好適な実施形態は、ヘミセルロースの含有量が0.01重量%以上15重量%以下である。 The content of hemicellulose in the wood-based structure is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, still more preferably 0.5% by weight or more. It is even more preferably 1% by weight or more, and particularly preferably 2% by weight or more. That is, in a preferred embodiment of the present invention, the wood-based structure has a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a hemicellulose content of 0.01% by weight or more and 15% by weight or less. is there. When the content of hemicellulose is at least the above lower limit, the amount is sufficient to bind the celluloses to each other, and the three-dimensional structure is easily maintained. The upper limit of hemicellulose is not particularly limited, and since the cellulose content is 65% by weight or more, it is 35% by weight or less, preferably 25% by weight or less, and 20% by weight or less. It is more preferably 15% by weight or less, further preferably less than 10% by weight, and particularly preferably less than 5% by weight. In a preferred embodiment, the hemicellulose content is 0.01% by weight or more and 15% by weight or less.
 各成分の含有量は、下記測定条件に沿って測定した値を採用する。 For the content of each component, the value measured according to the following measurement conditions is adopted.
 <測定条件>
 試料を72%硫酸で室温1時間処理する。その後、約3%程度に硫酸を水で希釈する。希釈硫酸を121℃、1時間オートクレーブで処理する。得られた試料をガラスフィルターで固体と液体画分に分離する。固体は重量測定によりリグニン量とする。液体画分については中和した後、HPLCによって糖分析を行う。HPLC条件は下記の通りである。
<Measurement conditions>
Samples are treated with 72% sulfuric acid at room temperature for 1 hour. Then, the sulfuric acid is diluted with water to about 3%. Dilute sulfuric acid is autoclaved at 121 ° C. for 1 hour. The obtained sample is separated into solid and liquid fractions with a glass filter. The amount of lignin is determined by weighing the solid. After neutralizing the liquid fraction, sugar analysis is performed by HPLC. The HPLC conditions are as follows.
 装置:Prominence UFLC(島津製作所社製)
 カラム:Asahipak NH2P-50 4E(4mm×250mm,Lot:080806,Shodex(登録商標)、昭和電工社製)
 プレカラム:Asahipak NH2P-50G 4A/Opti-guardDVB(昭和電工社製)
 溶媒:
  移動相A:0.3%りん酸水溶液
  移動相B:0.3%りん酸アセトニトリル
 反応液:ほう酸-Lアルギニン-水酸化カリウム水溶液
 反応器温度:150℃
 カラム温度:45℃
 検出条件:RF-AXL検出器
 上記HPLCにより測定されたグルコース量(重量%)に0.9をかけた値をセルロース量とする。また、ヘミセルロース量は、以下の式から算出される;
Equipment: Prominence UFLC (manufactured by Shimadzu Corporation)
Column: Asahipak NH2P-50 4E (4 mm x 250 mm, Lot: 080806, Shodex (registered trademark), manufactured by Showa Denko KK)
Pre-column: Asahipak NH2P-50G 4A / Opti-guard DVB (manufactured by Showa Denko KK)
solvent:
Mobile phase A: 0.3% aqueous solution of phosphoric acid Mobile phase B: 0.3% aqueous solution of acetonitrile with phosphoric acid Reactor temperature: 150 ° C.
Column temperature: 45 ° C
Detection conditions: RF-AXL detector The amount of cellulose is defined as the value obtained by multiplying the amount of glucose (% by weight) measured by the above HPLC by 0.9. The amount of hemicellulose is calculated from the following formula;
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 木質系構造体の最大荷重は、結晶構造を維持し、機械的強度が担保されているという観点から、0.1N以上であることが好ましく、1N以上であることがより好ましく、5N以上であることがさらに好ましく、10N以上であることがさらにより好ましい。また、木質系構造体の最大荷重の上限は、特に制限されるものではないが、1,000N以下であることが好ましく、500N以下であることがより好ましい。木質系構造体の最大荷重が上記上限以下であることで、多孔質構造を採りやすい。 The maximum load of the wood-based structure is preferably 0.1 N or more, more preferably 1 N or more, and 5 N or more from the viewpoint of maintaining the crystal structure and ensuring the mechanical strength. More preferably, it is even more preferably 10 N or more. The upper limit of the maximum load of the wood-based structure is not particularly limited, but is preferably 1,000 N or less, and more preferably 500 N or less. When the maximum load of the wood-based structure is not more than the above upper limit, it is easy to adopt a porous structure.
 最大荷重は以下の測定条件で測定した値を採用する。 For the maximum load, use the value measured under the following measurement conditions.
 装置:AandD社製フォーテスターMCT-2150
 試料サイズ:1cmブロック
 方向:繊維方向(木口面を圧縮)
 木質系構造体は、リグニン量が低減されているため、外観は白色木材となる。外観が白色となることで、透明樹脂を含浸させることにより透明成型物(組成物)を得ることが可能であり、また、染色等の着色も可能となる。木質系構造体のL*は、88以上であることが好ましく、より好ましくは90以上、更に好ましくは92以上、最も好ましくは93以上である。また、木材のa*は、5以下であることが好ましく、より好ましくは3以下であり、最も好ましくは1以下であり、更に-5以上であることが好ましく、より好ましくは-3以上であり、最も好ましくは-1以上である。木材のb*は、5以下が好ましく、より好ましくは3以下であり、最も好ましくは2以下である。白色度は、色差計(日本電色工業社製SE-6000)を用いて木材表面を5点測定した値の平均値を採用する。
Equipment: AandD Fortester MCT-2150
Sample size: 1 cm 3 blocks Direction: Fiber direction (compresses the end surface)
Since the amount of lignin is reduced in the wood-based structure, the appearance is white wood. Since the appearance is white, a transparent molded product (composition) can be obtained by impregnating with a transparent resin, and coloring such as dyeing is also possible. The L * of the wood-based structure is preferably 88 or more, more preferably 90 or more, further preferably 92 or more, and most preferably 93 or more. The a * of wood is preferably 5 or less, more preferably 3 or less, most preferably 1 or less, further preferably -5 or more, and more preferably -3 or more. , Most preferably -1 or more. The b * of the wood is preferably 5 or less, more preferably 3 or less, and most preferably 2 or less. For the whiteness, the average value of the values measured at 5 points on the wood surface using a color difference meter (SE-6000 manufactured by Nippon Denshoku Kogyo Co., Ltd.) is adopted.
 また、PAS染色(多糖類染色法)によってセルロースおよびヘミセルロースを染色してセルロースおよびヘミセルロースの存在を定性的に確認することができる。また、染色面積比などによりセルロースおよびヘミセルロース量を定量することもできる。測定条件は下記のとおりである。 In addition, cellulose and hemicellulose can be stained by PAS staining (polysaccharide staining method) to qualitatively confirm the presence of cellulose and hemicellulose. It is also possible to quantify the amount of cellulose and hemicellulose by the dyed area ratio or the like. The measurement conditions are as follows.
 <測定条件>
 切片を過よう素酸水溶液で酸化後、シッフ試薬で反応させる。亜硫酸水で洗浄後、さらに蒸留水で洗浄する。プレパラートを作成し、観察し、色差計によって評価する。
<Measurement conditions>
The sections are oxidized with an aqueous solution of hydrousic acid and then reacted with a Schiff reagent. After washing with sulfite water, further wash with distilled water. Prepare the slide, observe it, and evaluate it with a color difference meter.
 このような木質系構造体は、例えば、下記の製造方法によって得られる。製造条件は、木材の大きさ、木材種などによって適宜設定すればよいが、第1の工程の浸漬時間、回数、第2の工程の浸漬時間、回数などによって制御することができる。特に第2の工程の浸漬時間を長くする、回数を増やすことによって、上記のようにリグニン量が低減された木材が得られやすくなる。 Such a wood-based structure can be obtained, for example, by the following manufacturing method. The production conditions may be appropriately set according to the size of the wood, the type of wood, etc., but can be controlled by the immersion time and the number of times in the first step, the immersion time and the number of times in the second step, and the like. In particular, by lengthening the soaking time in the second step and increasing the number of times, it becomes easy to obtain wood having a reduced amount of lignin as described above.
 木質系構造体の原料(由来、木材)は、特に限定されないが、木本であることが好ましく、好適な形態は、木質系構造体の原料が針葉樹、広葉樹および竹からなる群から選択される。本明細書における木材の定義は上記にあるとおり、「細胞が規則正しく並んでいる構造(組織)が形成されているものを指す」ため、本明細書においては木材として竹も含まれる。このため、本明細書においては、木材に竹材を含む。 The raw material (origin, wood) of the wood-based structure is not particularly limited, but is preferably wood, and the preferred form is selected from the group consisting of coniferous trees, hardwoods and bamboo as the raw material of the wood-based structure. .. As described above, the definition of wood in the present specification "refers to a structure (tissue) in which cells are regularly arranged", and therefore, bamboo is also included as wood in the present specification. Therefore, in this specification, the wood includes bamboo.
 針葉樹としては、特に限定されないが、スギ、エゾマツ、カラマツ、クロマツ、トドマツ、ヒメコマツ、イチイ、イチョウ、ネズコ、カヤ、ハリモミ、イラモミ、イヌマキ、モミ、サワラ、トガサワラ、アスナロ、ヒバ、ツガ、コメツガ、コウヤマキ、ヒノキ、サワラ、イヌガヤ、トウヒ、イエローシーダー(ベイヒバ)、ロウソンヒノキ(ベイヒ)、ダグラスファー(ベイマツ)、シトカスプルース(ベイトウヒ)、ラジアータマツ、イースタンスプルース、イースタンホワイトパイン、ウェスタンラーチ、ウェスタンファー、ウェスタンへムロックおよびタマラック等を挙げることができる。中でも、木材の原料としては、スギ、カラマツ、およびヒノキのいずれかであることが好ましい。 The coniferous trees are not particularly limited, but are sugi, spruce, karamatsu, black pine, todomatsu, himekomatsu, ichii, ginkgo, cat, kaya, harimomi, iramomi, inumaki, fir, sawara, togasawara, asunaro, hiba, tsuga, kometsuga. , Hinoki, Sawara, Inugaya, Spruce, Yellow Cedar (Beihiba), Lawson Hinoki (Beihi), Douglas Fir (Beimatsu), Sitka Spruce (Baitohi), Radiata Matsu, Eastern Spruce, Eastern White Pine, Western Larch, Western Fur, Western Hemlock, Tamarack and the like can be mentioned. Among them, the raw material for wood is preferably any of sugi, larch, and cypress.
 広葉樹としては、特に限定されないが、ブナ、シナ、シラカバ、クルミ、ポプラ、ユーカリ、アカシア、アサダ、ナラ、イタヤカエデ、カツラ、センノキ、クリ、ニレ、キリ、ホオノキ、ヤナギ、セン、ウバメガシ、コナラ、クヌギ、トチノキ、ケヤキ、ツゲ、ミズメ、ミズナラ、ミズキ、アカガシ、アオダモ、バルサおよびアオハダ等を挙げることができる。中でも、木材の原料としては、ブナ、バルサおよびニレのいずれかであることが好ましく、ブナ、およびニレのいずれかであることが好ましい。 Hardwoods are not particularly limited, but beech, cinnamon, white birch, walnut, poplar, eucalyptus, acacia, asada, oak, itaya maple, katsura, sennoki, chestnut, elm, kiri, hoonoki, willow, sen, ubamegashi, konara, oak. , Aesculus turbinata, willow, oak, oak, oak, oak, oak, oak, balsa, aohada and the like. Among them, the raw material for wood is preferably any of beech, balsa and elm, and preferably any of beech and elm.
 竹としては、マダケ、モウソウチク(孟宗竹)およびハチク等を挙げることができる。 Examples of bamboo include Madake, Mosouchiku (Moso bamboo), and Hachiku.
 よって、本発明の好適な形態は、原料(由来)がスギ、カラマツ、ヒノキ、ブナ、ニレ、バルサまたは竹であり、より好適にはスギ、カラマツ、ヒノキ、ブナ、ニレまたは竹である。 Therefore, in a preferred form of the present invention, the raw material (origin) is sugi, larch, cypress, beech, elm, balsa or bamboo, and more preferably sugi, larch, cypress, beech, elm or bamboo.
 木質系構造体は、例えば、木材を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する第1の工程と、その後、木材を亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液に浸漬する第2の工程とを経て作製される。このような方法によれば木材に含まれているリグニン成分を、セルロースとへミセルロースからなる構造を維持しながら低減することができる。したがって、当該方法によって作製された木質系構造体は、木材が本来有しているセルロースとへミセルロースからなる構造を維持し、且つ、リグニン成分が低減されているといった特徴を有する。 The wood-based structure is composed of, for example, a first step of immersing the wood in a solution containing an acid and an alcohol under the conditions of 140 ° C. or higher and 170 ° C. or lower, and then the wood is chlorite ion or hypochlorite. It is produced through a second step of immersing it in a solution containing acid ions. According to such a method, the lignin component contained in the wood can be reduced while maintaining the structure composed of cellulose and hemicellulose. Therefore, the wood-based structure produced by the method has a feature that the structure composed of cellulose and hemicellulose originally possessed by wood is maintained and the lignin component is reduced.
 リグニン成分が低減されたとは、木材中のリグニン成分が、好ましい順に3重量%未満、2重量%未満、1重量%未満、0.5重量%未満、0.1重量%未満となることが好ましい。 The reduction of the lignin component means that the lignin component in the wood is preferably less than 3% by weight, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, and less than 0.1% by weight in a preferable order. ..
 木材は、原料の木に対して所定の加工を施して作製されたものであっても良い。木に対する加工としては、特に限定されないが、切削加工、研削加工、研磨加工、鉋加工および曲げ加工等を挙げることができる。これら加工によれば原料となる木を所望の形状に加工して、当該形状を有する木材を得ることができる。 The wood may be made by subjecting the raw material wood to a predetermined process. The processing on wood is not particularly limited, and examples thereof include cutting processing, grinding processing, polishing processing, plane processing, and bending processing. According to these processes, wood as a raw material can be processed into a desired shape to obtain wood having that shape.
 また、木材は、単一の部材から構成されていても良いし、複数の部材から構成されていても良い。例えば、複数の部材を一般的な方法によって接合することで、複数の部材で構成された木材を作製することができる。複数の部材を接合する方法としては、例えば、接着剤を使用する方法、釘やビスを使用する方法、金具を使用する方法、ほぞ組み等の組み手を使用する方法を挙げることができる。 Further, the wood may be composed of a single member or may be composed of a plurality of members. For example, by joining a plurality of members by a general method, a wood composed of the plurality of members can be produced. Examples of the method of joining a plurality of members include a method of using an adhesive, a method of using nails and screws, a method of using metal fittings, and a method of using a mortise and tenon.
 木材の形状は、特に限定されず、板状、棒状、チップ状、箱状および球状等を挙げることができる。木材の形状については、上述した第1の工程および第2の工程において溶液に所定時間浸漬したときに当該溶液が内部に十分浸透するような形状とすることが好ましい。言い換えると、木材の溶液に対する浸漬時間を調整すればよく、木材は如何なる形状でも良いことが理解できる。 The shape of the wood is not particularly limited, and examples thereof include a plate shape, a rod shape, a chip shape, a box shape, and a spherical shape. The shape of the wood is preferably such that the solution sufficiently permeates the inside when immersed in the solution for a predetermined time in the first step and the second step described above. In other words, it can be understood that the wood may have any shape by adjusting the immersion time of the wood in the solution.
 また、木材の寸法は、特に限定されないが、上述した第1の工程および第2の工程において溶液に浸漬したときに溶液が内部に十分浸透する寸法とすることができる。この観点から木材の寸法は、溶液に対する浸漬時間および原料として使用した木の種類、特に木の密度に応じて好ましい範囲が異なることがわかる。例えばスギを用い、第1の工程および第2の工程における浸漬時間を1時間とした場合、木材の内部において表面からの距離が最も短い位置について、表面からの距離が10cm以下であることが好ましく、5cm以下であることがより好ましく、3cm以下であることが更に好ましく、1cm以下、0.5cm以下であることが最も好ましい。生産における取り扱いやすさの観点では、0.05cm以上であることが好ましく、0.1cm以上であることがより好ましい。また、スギ(針葉樹)に代えてケヤキ、ニレ、ブナ、ナラ(広葉樹)を用いた場合、第1の工程および第2の工程における浸漬時間を1時間とした場合における同寸法は、5cm以下とすることが好ましく、2.5cm以下であることがより好ましく、1.5cm以下であることが更に好ましく、0.5cm以下であることが最も好ましい。また、スギ(針葉樹)に代えて竹を用いた場合、第1の工程および第2の工程における浸漬時間を1時間とした場合における同寸法は、10cm以下であることが好ましく、5cm以下であることがより好ましく、3cm以下であることが更に好ましく、1cm以下であることが最も好ましい。 The size of the wood is not particularly limited, but it can be set so that the solution sufficiently penetrates into the inside when immersed in the solution in the first step and the second step described above. From this point of view, it can be seen that the preferred range of the size of wood varies depending on the immersion time in the solution and the type of wood used as a raw material, particularly the density of wood. For example, when sugi is used and the immersion time in the first step and the second step is 1 hour, the distance from the surface is preferably 10 cm or less at the position where the distance from the surface is the shortest inside the wood. It is more preferably 5 cm or less, further preferably 3 cm or less, and most preferably 1 cm or less and 0.5 cm or less. From the viewpoint of ease of handling in production, it is preferably 0.05 cm or more, and more preferably 0.1 cm or more. When zelkova, elm, beech, and oak (broad-leaved tree) are used instead of sugi (coniferous tree), the same size is 5 cm or less when the immersion time in the first step and the second step is 1 hour. It is more preferably 2.5 cm or less, further preferably 1.5 cm or less, and most preferably 0.5 cm or less. When bamboo is used instead of sugi (coniferous tree), the same size when the immersion time in the first step and the second step is 1 hour is preferably 10 cm or less, preferably 5 cm or less. More preferably, it is more preferably 3 cm or less, and most preferably 1 cm or less.
 本実施形態においては、木材が前記工程だけでは白色化が難しい場合、特に木材が竹である場合、下記第1の工程の前にアルカリ処理を行うことが好ましい。このような前処理を行うことで、リグニン成分の除去が効率的に行われるため好ましい。 In the present embodiment, when it is difficult to whiten the wood only by the above steps, especially when the wood is bamboo, it is preferable to carry out the alkali treatment before the first step below. It is preferable to perform such a pretreatment because the lignin component can be efficiently removed.
 アルカリ処理において、アルカリ溶液を調製するために使用されるアルカリは、特に制限されず、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、水酸化カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化リチウム、アンモニア等が挙げられる。これらのうち、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、水酸化カルシウムが好ましく、水酸化ナトリウム、炭酸ナトリウム、水酸化カルシウムがより好ましく、水酸化ナトリウムが特に好ましい。なお、上記アルカリは、1種単独で用いてもよいし、2種以上併用してもよい。 In the alkali treatment, the alkali used to prepare the alkaline solution is not particularly limited, and sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, calcium hydroxide, sodium hydrogencarbonate, potassium hydrogencarbonate, and hydroxide. Examples include lithium and ammonia. Of these, sodium hydroxide, potassium hydroxide, sodium carbonate, and calcium hydroxide are preferable, sodium hydroxide, sodium carbonate, and calcium hydroxide are more preferable, and sodium hydroxide is particularly preferable. The above alkalis may be used alone or in combination of two or more.
 また、上記アルカリを溶解するための溶媒は、特に制限されないが、水であることが好ましい。すなわち、アルカリ溶液は、水酸化ナトリウム水溶液であることが好ましい。 The solvent for dissolving the alkali is not particularly limited, but water is preferable. That is, the alkaline solution is preferably an aqueous solution of sodium hydroxide.
 アルカリ処理は、上記アルカリ溶液に木材を浸漬することで行われる。この際、浸漬時間としては、木材の形状および寸法、木材の含水率等に応じて適宜設定することができるが、例えば、10分~5時間であり、30分~2時間である。また、浸漬温度は特に限定されるものではないが、135℃以下が好ましく、115℃以下がより好ましい。また、浸漬温度は55℃以上が好ましく、75℃以上がより好ましい。温度条件が高すぎると木材がピーリングしてしまい、低すぎると後の工程での脱リグニンが困難となる。 Alkaline treatment is performed by immersing wood in the above alkaline solution. At this time, the immersion time can be appropriately set according to the shape and size of the wood, the water content of the wood, and the like, and is, for example, 10 minutes to 5 hours and 30 minutes to 2 hours. The immersion temperature is not particularly limited, but is preferably 135 ° C. or lower, more preferably 115 ° C. or lower. The immersion temperature is preferably 55 ° C. or higher, more preferably 75 ° C. or higher. If the temperature condition is too high, the wood will peel, and if it is too low, it will be difficult to remove lignin in the subsequent process.
 本実施形態に係る木材の製造方法では、先ず、上述した木材を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する(第1の工程)。なお、本工程に先立って、木材を乾燥させても良い。例えば含水率が20%以下程度の乾燥材を用いて木材を作製した場合、特に乾燥する工程は不要としても良いが、含水率が20%を超える材料で木材を作製した場合、含水率が20%以下となるように乾燥することが好ましい。 In the method for producing wood according to the present embodiment, first, the above-mentioned wood is immersed in a solution containing an acid and alcohol under the conditions of 140 ° C. or higher and 170 ° C. or lower (first step). The wood may be dried prior to this step. For example, when wood is produced using a desiccant having a moisture content of about 20% or less, a step of drying may not be necessary, but when wood is produced from a material having a moisture content of more than 20%, the moisture content is 20. It is preferable to dry it so that it becomes% or less.
 木材を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する。ここで、140℃以上170℃以下の条件下とは、浸漬する環境下における雰囲気温度が140℃以上170℃以下であるとの意である。温度条件は、脱リグニンを効率よく進めるという観点で140℃以上が好ましく、145℃以上がより好ましい。セルロースの分子量低下を抑制するという観点では、170℃以下であることが好ましく、165℃以下であることがより好ましく、160℃以下であることがさらにより好ましい。 The wood is immersed in a solution containing acid and alcohol under the conditions of 140 ° C or higher and 170 ° C or lower. Here, the condition of 140 ° C. or higher and 170 ° C. or lower means that the atmospheric temperature in the immersion environment is 140 ° C. or higher and 170 ° C. or lower. The temperature condition is preferably 140 ° C. or higher, more preferably 145 ° C. or higher, from the viewpoint of efficiently advancing delignin. From the viewpoint of suppressing the decrease in the molecular weight of cellulose, the temperature is preferably 170 ° C. or lower, more preferably 165 ° C. or lower, and even more preferably 160 ° C. or lower.
 第1の工程では、木材の形状や寸法に応じて、木材の全体を浸漬するに足る溶液量を準備する。第1の工程で使用する溶液は、酸とアルコールを含有する溶液である。ここで、酸としては、特に限定されないが、硫酸、塩酸、硝酸および酢酸等の酸を挙げることができる。なかでも、酸としては低揮発性であることから、硫酸を使用することが好ましい。また、アルコールとしては、特に限定されないが、溶媒が加熱によっても残留しやすいことから、例えば高沸点のアルコールを使用することが好ましい。高沸点アルコールとは、例えば150℃以上の沸点、好ましくは160℃以上の沸点、より好ましくは170℃以上の沸点、更に好ましくは180℃以上の沸点を有するアルコールを意味する。第1の工程で使用できるアルコールとしては、例えば、1,2-エタンジオール(エチレングリコール、沸点:197.2℃)、ジエチレングリコール(沸点:244.3℃)、トリエチレングリコール(沸点:287.4℃)、プロピレングリコール(沸点:187.4℃)、1,3-ブタンジオール(沸点:207.5℃)、1,4-ブタンジオール(沸点:228℃)、2-エチル-1-ヘキサノール(沸点:184.7℃)、ベンジルアルコール(沸点:205.45℃)等を使用することができる。中でもアルコールとしては、エチレングリコールまたはプロピレングリコールを用いることが好ましく、エチレングルコールを用いることがより好ましい。プロピレングリコールは食品添加物として使用できる材料であり、食品包装材等に使用できる材料であり安全性の面で好ましい。本木材を得るために残留する材料を食品添加物とすることは好ましい例であり、反応に使用する材料全てを食品添加物とすることは最も好ましい例である。 In the first step, the amount of solution sufficient to immerse the entire wood is prepared according to the shape and dimensions of the wood. The solution used in the first step is a solution containing an acid and an alcohol. Here, the acid is not particularly limited, and examples thereof include acids such as sulfuric acid, hydrochloric acid, nitric acid, and acetic acid. Of these, sulfuric acid is preferably used because the acid has low volatility. The alcohol is not particularly limited, but it is preferable to use alcohol having a high boiling point, for example, because the solvent tends to remain even when heated. The high boiling point alcohol means, for example, an alcohol having a boiling point of 150 ° C. or higher, preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and even more preferably 180 ° C. or higher. Examples of alcohols that can be used in the first step include 1,2-ethanediol (ethylene glycol, boiling point: 197.2 ° C.), diethylene glycol (boiling point: 244.3 ° C.), and triethylene glycol (boiling point: 287.4 ° C.). ℃), propylene glycol (boiling point: 187.4 ° C), 1,3-butanediol (boiling point: 207.5 ° C), 1,4-butanediol (boiling point: 228 ° C), 2-ethyl-1-hexanol (boiling point: 228 ° C) Boiling point: 184.7 ° C.), benzyl alcohol (boiling point: 205.45 ° C.) and the like can be used. Among them, as the alcohol, it is preferable to use ethylene glycol or propylene glycol, and it is more preferable to use ethylene glycol. Propylene glycol is a material that can be used as a food additive, is a material that can be used as a food packaging material, and is preferable in terms of safety. It is a preferable example that the material remaining to obtain the present wood is a food additive, and it is the most preferable example that all the materials used in the reaction are food additives.
 本発明の好適な形態は、酸とアルコールとを含有する溶液が、硫酸とエチレングリコールとを含有する溶液または硫酸とプロピレングリコールとを含有する溶液である。本発明の好適な形態は、酸とアルコールとを含有する溶液が、硫酸とエチレングリコールとを含有する溶液である。 A preferred embodiment of the present invention is a solution containing acid and alcohol, which is a solution containing sulfuric acid and ethylene glycol or a solution containing sulfuric acid and propylene glycol. In a preferred embodiment of the present invention, the solution containing acid and alcohol is a solution containing sulfuric acid and ethylene glycol.
 第1の工程に使用する溶液において、木材のリグニン成分を十分に低減できるという観点で、酸の濃度が、好ましい順に0.05重量%以上、0.1重量%以上、0.3%重量以上、0.5重量%以上であり、セルロースとへミセルロースからなる構造を維持しやすい、セルロースの分子量を維持しやすいという観点で、酸の濃度が、好ましい順に10重量%以下、5重量%以下、3重量%以下である。好適な形態は、酸とアルコールとを含有する溶液は、酸濃度を0.05~10重量%とする。 From the viewpoint that the lignin component of wood can be sufficiently reduced in the solution used in the first step, the acid concentration is 0.05% by weight or more, 0.1% by weight or more, and 0.3% by weight or more in the preferred order. , 0.5% by weight or more, and from the viewpoint that the structure composed of cellulose and hemicellulose can be easily maintained and the molecular weight of cellulose can be easily maintained, the acid concentration is 10% by weight or less and 5% by weight or less in the preferred order. 3, 3% by weight or less. In a preferred form, the solution containing the acid and alcohol has an acid concentration of 0.05 to 10% by weight.
 また、第1の工程に使用する溶液において、アルコールの濃度は、90~99.5重量%とすることができ、95~99.5重量%とすることが好ましく、97~99重量%とすることがより好ましく、98~99重量%とすることが更に好ましい。溶液におけるアルコールの濃度がこの範囲であることで、木材のリグニン成分を十分に低減しやすい。また溶液におけるアルコールの濃度がこの範囲であることで、木材のリグニン成分を十分に低減でき、かつ、セルロースとへミセルロースからなる構造を維持しやすい。 Further, in the solution used in the first step, the concentration of alcohol can be 90 to 99.5% by weight, preferably 95 to 99.5% by weight, and 97 to 99% by weight. More preferably, it is more preferably 98 to 99% by weight. When the concentration of alcohol in the solution is in this range, it is easy to sufficiently reduce the lignin component of wood. Further, when the concentration of alcohol in the solution is in this range, the lignin component of wood can be sufficiently reduced, and the structure composed of cellulose and hemicellulose can be easily maintained.
 第1の工程では、上記の溶液に木材を浸漬し、140℃以上170℃以下の温度条件で加熱する。このような温度範囲で加熱することで、溶液が木材内部にまで浸透しやすい。このとき、温度条件としては、上記範囲内であれば特に限定されないが、使用するアルコールの沸点より低い温度とすることが好ましく、使用するアルコールの沸点よりも10℃以上低い温度とすることがより好ましく、使用するアルコールの沸点よりも20℃以上低い温度とすることがさらに好ましい。また、第1の工程における浸漬時間は、特に限定されないが、溶液が木材の内部に十分浸透する程度とすることが好ましい。このため、第1の工程における浸漬時間は、木材の形状および寸法、木材の原料とした木の種類、木材の含水率等に応じて適宜設定することができる。加熱温度条件以下の沸点の溶媒を使用する場合には、溶媒揮発量を低減するという観点で加圧下で反応することが好ましく、耐圧容器を使用することも好ましい例である。 In the first step, the wood is immersed in the above solution and heated under a temperature condition of 140 ° C. or higher and 170 ° C. or lower. By heating in such a temperature range, the solution easily penetrates into the wood. At this time, the temperature condition is not particularly limited as long as it is within the above range, but it is preferably a temperature lower than the boiling point of the alcohol used, and more preferably a temperature 10 ° C. or more lower than the boiling point of the alcohol used. It is preferable that the temperature is 20 ° C. or higher lower than the boiling point of the alcohol used. The immersion time in the first step is not particularly limited, but is preferably such that the solution sufficiently permeates the inside of the wood. Therefore, the immersion time in the first step can be appropriately set according to the shape and size of the wood, the type of wood used as the raw material of the wood, the water content of the wood, and the like. When a solvent having a boiling point equal to or lower than the heating temperature condition is used, it is preferable to react under pressure from the viewpoint of reducing the amount of solvent volatilized, and it is also a preferable example to use a pressure resistant container.
 また、第1の工程では、木材を溶液に浸漬した状態で木材に含まれる空気や水を当該溶液に置換する処理を実施することが好ましい。このような処理を行うことで、木材内部にまで溶液が浸透しやすい。当該処理としては、上記木材を上記溶液に浸漬させた状態で密閉し、密閉空間内を脱気する処理が挙げられる。例えば、木材を容器内の溶液に浸漬した状態で、容器ごと真空チャンバ内に格納し、真空チャンバ内を減圧する処理が挙げられる。その他にも、マイクロ波照射(電子レンジで熱をかけたり)、超音波照射を行うといった処理によっても木材に含まれる空気、水を上記溶液に置換することができる。 Further, in the first step, it is preferable to carry out a treatment of substituting the air or water contained in the wood with the solution while the wood is immersed in the solution. By performing such a treatment, the solution easily penetrates into the wood. Examples of the treatment include a treatment in which the wood is immersed in the solution and sealed, and the inside of the closed space is degassed. For example, there is a process in which the wood is immersed in the solution in the container, and the container is stored in the vacuum chamber to reduce the pressure in the vacuum chamber. In addition, the air and water contained in the wood can be replaced with the above solution by treatments such as microwave irradiation (heating with a microwave oven) and ultrasonic irradiation.
 木材に含まれる空気を当該溶液に置換する処理を実施した場合には、当該処理を実施しない場合と比較して第1の工程における浸漬時間を短時間とすることができる。例えば、スギからなる1cm角の直方体の木材(含水率:約15%)であれば、当該処理を実施した場合、第1の工程における浸漬時間を30分以上とすることができ、45分以上とすることが好ましく、1時間以上とすることがより好ましい。この例に従えば、木材の形状および寸法、木材の原料とした木の種類、木材の含水率に応じて浸漬時間を適宜設定することができる。 When the treatment of replacing the air contained in the wood with the solution is carried out, the immersion time in the first step can be shortened as compared with the case where the treatment is not carried out. For example, in the case of a 1 cm square rectangular parallelepiped wood made of sugi (moisture content: about 15%), when the treatment is carried out, the immersion time in the first step can be 30 minutes or more, and 45 minutes or more. It is preferably 1 hour or more, and more preferably 1 hour or more. According to this example, the immersion time can be appropriately set according to the shape and size of the wood, the type of wood used as the raw material of the wood, and the water content of the wood.
 第1の工程においては、酸とアルコールを含む溶液を用いて温度条件を140~170℃としているため木材に含まれるリグニン成分を除去しながらも、セルロースとへミセルロースからなる構造を破壊することなく維持できる。なお、第1の工程は、1回でも複数回行っても良い。 In the first step, since the temperature condition is set to 140 to 170 ° C. using a solution containing acid and alcohol, the structure composed of cellulose and hemicellulose is destroyed while removing the lignin component contained in the wood. Can be maintained without. The first step may be performed once or a plurality of times.
 第1の工程の後、得られた木材に対して洗浄処理を行ってもよい。ここで、洗浄に用いられる液としては、水、アルコールなどが挙げられる。水とアルコールの混合物を用いてもよい。アルコールとしては、その後の工程で取り扱いやすい、メタノール、エタノールなどが挙げられる。洗浄は複数回行ってもよく、各回において用いられる液種が異なっていてもよい。 After the first step, the obtained wood may be washed. Here, examples of the liquid used for cleaning include water and alcohol. A mixture of water and alcohol may be used. Examples of the alcohol include methanol, ethanol and the like, which are easy to handle in the subsequent steps. The washing may be performed a plurality of times, and the liquid type used in each time may be different.
 次に、第1の工程後の木材を、亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液に浸漬する第2の工程を実施する。第2の工程では、第1の工程と同様に、木材の形状や寸法に応じて、木材の全体を浸漬するに足る溶液量を準備する。第2の工程で使用する溶液は、少なくとも亜塩素酸イオンまたは次亜塩素酸イオンを含有する溶液である。好ましくは亜塩素酸イオンを含有する溶液である。亜塩素酸イオンまたは次亜塩素酸イオンを含有する溶液とは、亜塩素酸塩または次亜塩素酸塩の溶液(好ましくは水溶液)ということができる。亜塩素酸塩としては、特に限定されないが、亜塩素酸ナトリウム、亜塩素酸カルシウム等を挙げることができる。なかでも、リグニンの除去がより効果的に行われることから、亜塩素酸イオンを含有する溶液としては、亜塩素酸ナトリウム溶液とすることが好ましい。次亜塩素酸塩としては、特に限定されないが、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等を挙げることができる。なかでも、次亜塩素酸イオンを含有する溶液としては、リグニンの除去がより効果的に行われることから、次亜塩素酸ナトリウム溶液とすることが好ましい。 Next, the second step of immersing the wood after the first step in a solution containing chlorite ions or hypochlorite ions is carried out. In the second step, as in the first step, an amount of solution sufficient to immerse the entire wood is prepared according to the shape and dimensions of the wood. The solution used in the second step is a solution containing at least chlorite ion or hypochlorite ion. A solution containing chlorite ions is preferable. The solution containing chlorite ion or hypochlorite ion can be said to be a solution of chlorite or hypochlorite (preferably an aqueous solution). The chlorite is not particularly limited, and examples thereof include sodium chlorite and calcium chlorite. Of these, a sodium chlorite solution is preferable as the solution containing chlorite ions because lignin can be removed more effectively. The hypochlorite is not particularly limited, and examples thereof include sodium hypochlorite and calcium hypochlorite. Among them, the solution containing hypochlorite ion is preferably a sodium hypochlorite solution because lignin can be removed more effectively.
 また、第2の工程で使用する溶液は、亜塩素酸イオンまたは次亜塩素酸イオンの他に、強い酸化力を有する二酸化塩素を発生させて脱リグニンを進めるように、酢酸等の弱酸を含有することが好ましい。第2の工程で使用できる弱酸成分としては、酢酸、炭酸およびホウ酸等を挙げることができるが、酢酸を使用することが最も好ましい。第2の工程で使用する溶液のpHは11未満が好ましく、pH9以下がより好ましく、pH8以下がさらに好ましい。一方、木材構造の維持、およびセルロースの分子量の維持の観点から、第2の工程で使用する溶液のpHは1以上が好ましく、pH3以上がより好ましく、pH4以上が最も好ましい。 In addition to chlorite ion or hypochlorite ion, the solution used in the second step contains a weak acid such as acetic acid so as to generate chlorine dioxide having a strong oxidizing power to promote delignin. It is preferable to do so. Examples of the weak acid component that can be used in the second step include acetic acid, carbonic acid, boric acid, and the like, but acetic acid is most preferable. The pH of the solution used in the second step is preferably less than 11, more preferably pH 9 or less, and even more preferably pH 8 or less. On the other hand, from the viewpoint of maintaining the wood structure and maintaining the molecular weight of cellulose, the pH of the solution used in the second step is preferably 1 or more, more preferably 3 or more, and most preferably 4 or more.
 第2の工程に使用する溶液において、亜塩素酸イオンまたは次亜塩素酸イオンの濃度は、0.01~10重量%とすることが好ましく、0.05~5重量%がより好ましく、0.1~5重量%がさらに好ましく、0.5~5重量%がさらにより好ましく、0.5~2重量%が特に好ましい。溶液における亜塩素酸イオンまたは次亜塩素酸イオンの濃度がこの範囲内であると、木材のリグニン成分を十分に低減できる。また溶液における亜塩素酸イオンまたは次亜塩素酸イオンの濃度がこの範囲内であると、木材のリグニン成分を十分に低減でき、セルロースとへミセルロースからなる構造を維持しやすい。なお、上記亜塩素酸イオンまたは次亜塩素酸イオンの濃度は、少なくとも初回の添加時に当該範囲であることが好ましい。また、亜塩素酸イオンまたは次亜塩素酸イオンの反応性が高く且つ不安定であるため、反応中には上記濃度は必ずしも維持されない。 In the solution used in the second step, the concentration of chlorite ion or hypochlorite ion is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight, and 0. 1 to 5% by weight is further preferable, 0.5 to 5% by weight is even more preferable, and 0.5 to 2% by weight is particularly preferable. When the concentration of chlorite ion or hypochlorite ion in the solution is within this range, the lignin component of wood can be sufficiently reduced. Further, when the concentration of chlorite ion or hypochlorite ion in the solution is within this range, the lignin component of wood can be sufficiently reduced, and the structure composed of cellulose and hemicellulose can be easily maintained. The concentration of the chlorite ion or hypochlorite ion is preferably in the range at least at the time of the first addition. Further, since the reactivity of chlorite ion or hypochlorite ion is high and unstable, the above concentration is not always maintained during the reaction.
 また、第2の工程に使用する溶液において、弱酸の濃度は、0.005~2.0重量%とすることができ、0.01~1.0重量%とすることができ、0.05~0.8重量%とすることが好ましく、0.1~0.6重量%とすることがより好ましく、0.5重量%とすることがさらに好ましい。溶液における弱酸の濃度がこの範囲であると、木材のリグニン成分を十分に低減できる。また溶液における弱酸の濃度がこの範囲であると、木材のリグニン成分を十分に低減でき、セルロースとへミセルロースからなる構造を維持しやすい。 Further, in the solution used in the second step, the concentration of the weak acid can be 0.005 to 2.0% by weight, 0.01 to 1.0% by weight, and 0.05. It is preferably about 0.8% by weight, more preferably 0.1 to 0.6% by weight, and even more preferably 0.5% by weight. When the concentration of weak acid in the solution is in this range, the lignin component of wood can be sufficiently reduced. Further, when the concentration of the weak acid in the solution is in this range, the lignin component of wood can be sufficiently reduced, and the structure composed of cellulose and hemicellulose can be easily maintained.
 第2の工程に使用する溶液は、水溶液であることが好ましい。水溶液であることで、溶媒中の水が構造体に入り込み、三次元構造体を維持しやすくなる。なお、ここでいう「水溶液」とは、溶媒の100重量%が水に限定されず、水溶性有機溶剤(例えば、アルコール等)を0~30重量%、好ましくは0~5重量%を併用してもよく、本発明ではこれらを水溶液として扱う。最も好ましい形態は、溶媒の100重量%が水である。 The solution used in the second step is preferably an aqueous solution. Being an aqueous solution allows water in the solvent to enter the structure, making it easier to maintain the three-dimensional structure. The term "aqueous solution" as used herein means that 100% by weight of the solvent is not limited to water, and 0 to 30% by weight, preferably 0 to 5% by weight, of a water-soluble organic solvent (for example, alcohol) is used in combination. In the present invention, these may be treated as an aqueous solution. In the most preferred form, 100% by weight of the solvent is water.
 第2の工程では、上記の溶液に第1の工程後の木材を浸漬する。このとき、第1の工程後の木材をエタノールや水で洗浄することが好ましい。特に、第1の工程後の木材をエタノールで洗浄した場合には、第1の工程に使用した酸成分とリグニン成分とを除去することができる。 In the second step, the wood after the first step is immersed in the above solution. At this time, it is preferable to wash the wood after the first step with ethanol or water. In particular, when the wood after the first step is washed with ethanol, the acid component and the lignin component used in the first step can be removed.
 また、第2の工程における浸漬時間は、特に限定されないが、第1の工程と同様に溶液が木材の内部に十分浸透し、残存するリグニン成分を除去できる程度とすることが好ましい。このため、第2の工程における浸漬時間は、第1の工程と同様に、木材の形状および寸法、木材の原料とした木の種類、木材の含水率等に応じて適宜設定することができる。但し、第2の工程では、溶液中の亜塩素酸イオンまたは次亜塩素酸イオンの反応性が高く且つ不安定であるため、上述した亜塩素酸イオンまたは次亜塩素酸イオンの濃度が維持できるよう、所定時間が経過した段階で亜塩素酸塩または次亜塩素酸塩を溶液に添加することが好ましい。或いは、第2の工程は、複数回繰り返して行うことが好ましい。第2の工程を繰り返し複数回行うことで、木材の内部に亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液が十分浸透し、残存するリグニン成分を除去することができる。ここで、複数回とは、2回以上を指すが、好ましくは4回以上であり、より好ましくは6回以上であり、特に好ましくは8回以上である。このように第2の工程を複数回行うことで、木材の内部にまで残存するリグニン成分を除去することができる。また、第2の工程の繰り返し回数の上限は特に限定されるものではないが、生産性を考慮すると、20回以下であることが好ましく、15回以下であることがより好ましく、10回以下であることが特に好ましい。なお、複数回としては、連続滴下を含み、溶液内のpHを制御しながら滴下することも、好ましい例である。 The immersion time in the second step is not particularly limited, but as in the first step, it is preferable that the solution sufficiently permeates the inside of the wood and the remaining lignin component can be removed. Therefore, the immersion time in the second step can be appropriately set according to the shape and size of the wood, the type of wood used as the raw material of the wood, the water content of the wood, and the like, as in the first step. However, in the second step, since the reactivity of chlorite ion or hypochlorite ion in the solution is high and unstable, the above-mentioned concentration of chlorite ion or hypochlorite ion can be maintained. As such, it is preferable to add chlorite or hypochlorite to the solution after a lapse of a predetermined time. Alternatively, it is preferable that the second step is repeated a plurality of times. By repeating the second step a plurality of times, the solution containing the chlorite ion or the hypochlorite ion sufficiently permeates the inside of the wood, and the remaining lignin component can be removed. Here, the plurality of times refers to 2 times or more, preferably 4 times or more, more preferably 6 times or more, and particularly preferably 8 times or more. By performing the second step a plurality of times in this way, the lignin component remaining inside the wood can be removed. The upper limit of the number of repetitions of the second step is not particularly limited, but in consideration of productivity, it is preferably 20 times or less, more preferably 15 times or less, and 10 times or less. It is particularly preferable to have. It should be noted that, as a plurality of times, it is also a preferable example to include continuous dropping and dropping while controlling the pH in the solution.
 例えば、スギからなる1cm角の直方体の木材であれば、第2の工程における浸漬時間は、1時間毎に次亜塩素酸塩を添加して5時間以上とすることができ、6時間以上とすることが好ましく、7時間以上とすることがより好ましい。浸漬時間の上限は特に限定されないが、効果の飽和性と生産性とを鑑みて、10時間以下とすることが好ましい。ただし、第2の工程における浸漬時間は、第1の工程と同様に、木材の形状および寸法、木材の原料とした木の種類、木材の含水率に応じて浸漬時間を適宜設定することができる。 For example, in the case of a 1 cm square rectangular parallelepiped wood made of sugi, the immersion time in the second step can be 5 hours or more by adding hypochlorite every hour, and is 6 hours or more. It is preferably 7 hours or more. The upper limit of the immersion time is not particularly limited, but is preferably 10 hours or less in consideration of the saturation of the effect and the productivity. However, the immersion time in the second step can be appropriately set according to the shape and size of the wood, the type of wood used as the raw material of the wood, and the water content of the wood, as in the first step. ..
 なお、第2の工程において温度条件としては、特に限定されないが、例えば50~90℃とすることができ、60~80℃とすることが好ましく、65~75℃とすることがより好ましい。第2の工程の温度条件をこの範囲とすることで、第1の工程を経ても残存したリグニン成分を十分に除去することができる。 The temperature condition in the second step is not particularly limited, but can be, for example, 50 to 90 ° C., preferably 60 to 80 ° C., and more preferably 65 to 75 ° C. By setting the temperature condition of the second step within this range, the lignin component remaining even after the first step can be sufficiently removed.
 第2の工程においては、亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液或いは亜塩素酸イオンまたは次亜塩素酸イオンと弱酸を含む溶液を用いているため、第1の工程で残存した木材に含まれるリグニン成分を確実に除去しながらも、セルロースとへミセルロースからなる構造を破壊することなく維持できる。すなわち、当該第2の工程を経ることによって、木材にもともと含まれていたリグニン成分を大幅に低減することができる。 In the second step, since a solution containing chlorite ion or hypochlorite ion or a solution containing chlorite ion or hypochlorite ion and weak acid is used, the wood remaining in the first step. While reliably removing the lignin component contained in, it can be maintained without destroying the structure composed of cellulose and hemicellulose. That is, by going through the second step, the lignin component originally contained in the wood can be significantly reduced.
 第2の工程で得られた木材を水やアルコールなどで洗浄することが好ましい。洗浄は、水およびアルコールの混合物であってもよい。アルコールとしては、その後の工程で取り扱いやすい、メタノール、エタノールなどが挙げられる。洗浄処理することで、リグニン成分や余分な第2工程の原料・反応成分を除去することができるとともに、構造を維持した木材が得られやすいため好ましい。 It is preferable to wash the wood obtained in the second step with water, alcohol, or the like. The wash may be a mixture of water and alcohol. Examples of the alcohol include methanol, ethanol and the like, which are easy to handle in the subsequent steps. The cleaning treatment is preferable because it is possible to remove the lignin component and the excess raw material / reaction component of the second step, and it is easy to obtain wood having a maintained structure.
 また、洗浄後、乾燥を行う際には、凍結乾燥を行うことが好ましい。 In addition, when drying after washing, it is preferable to freeze-dry.
 上記製造方法によれば、木材にもともと含まれていたリグニン成分の80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上、更に好ましくは98重量%以上、最も好ましくは99重量%以上を低減することができる。言い換えると、本発明に係る木材は、木材にもともと含まれていたリグニン成分の80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上、更に好ましくは98重量%以上、最も好ましくは99重量%以上を低減した木材と言える。 According to the above production method, 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 98% by weight or more, and most preferably 99% by weight of the lignin component originally contained in the wood. % Or more can be reduced. In other words, the wood according to the present invention is 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 98% by weight or more, most preferably 98% by weight or more of the lignin component originally contained in the wood. Can be said to be wood with 99% by weight or more reduced.
 特に、上記製造方法においては、木材の形状および寸法、木材の原料とした木の種類、木材の含水率等に応じて上記第1の工程および第2の工程の条件を調整することによって、木材に含まれる大凡全てのリグニン成分を除去することができる。なお、木材に含まれる大凡全てのリグニン成分を除去するとは、木材中のリグニンを定量的に測定する手法により上記木材に含まれるリグニン成分を測定したときに、検出限界以下となることを意味する。 In particular, in the above-mentioned manufacturing method, the conditions of the first step and the second step are adjusted according to the shape and size of the wood, the type of wood used as the raw material of the wood, the water content of the wood, and the like. Almost all lignin components contained in can be removed. In addition, removing almost all the lignin components contained in wood means that the lignin components contained in the wood are below the detection limit when the lignin components contained in the wood are measured by the method of quantitatively measuring the lignin in the wood. ..
 また、上記製造方法によれば、木材原材料に含まれていたリグニン成分を上述の範囲で低減できることから、処理前の木材原材料が白色化することとなる。木材原材料の白色化とは、リグニン成分の低減度合いに応じて白色に近づくことを意味し、リグニン成分の低減割合が高ければ高いほど、より白色に近い色を呈することを意味する。例えば、本発明に係る木材の製造方法により得られた木材のリグニン成分を測定したときに検出限界以下であった場合、当該木材は白色となる。このように、本発明に係る木材の製造方法によれば「白い木材」を製造することができる。 Further, according to the above manufacturing method, the lignin component contained in the wood raw material can be reduced within the above range, so that the wood raw material before the treatment becomes white. Whitening of wood raw materials means that the color approaches white according to the degree of reduction of the lignin component, and that the higher the reduction rate of the lignin component, the closer to white the color is. For example, when the lignin component of the wood obtained by the method for producing wood according to the present invention is measured and is below the detection limit, the wood becomes white. As described above, according to the method for producing wood according to the present invention, "white wood" can be produced.
 さらに、上記製造方法によれば、木材原材料に含まれていたリグニン成分を上述のように低減するとともに、セルロースとへミセルロースからなる構造を維持することができる。ここで、セルロースとへミセルロースからなる構造を維持するとは、木材原材料の原料として使用した木が本来有している細胞壁構造が維持されること、また、その結果、処理前の木材原材料の外形形状・寸法が維持されることを意味する。処理前の木材原材料の外形形状・寸法が維持されるとは、木材原材料の処理前後の寸法を測定した時にその変化量が5%以下、好ましくは3%以下、より好ましくは2%以下、更に好ましくは1%以下であることを意味する。 Furthermore, according to the above manufacturing method, the lignin component contained in the wood raw material can be reduced as described above, and the structure composed of cellulose and hemicellulose can be maintained. Here, maintaining the structure composed of cellulose and hemicellulose means that the cell wall structure originally possessed by the wood used as the raw material of the wood raw material is maintained, and as a result, the outer shape of the wood raw material before treatment is maintained. It means that the shape and dimensions are maintained. Maintaining the outer shape and dimensions of the wood raw material before treatment means that the amount of change when measuring the dimensions of the wood raw material before and after treatment is 5% or less, preferably 3% or less, more preferably 2% or less, and further. It means that it is preferably 1% or less.
 以上のような木質系構造体の製造方法によれば、処理前の木材に含まれるリグニン成分を大幅に低減でき、且つ処理前の木材の外形形状・寸法を維持した木質系構造体を製造することができる。このような木質系構造体は、従来にない新たな材料として、特に限定されず、様々な分野への応用が可能となる。 According to the method for producing a wood-based structure as described above, a wood-based structure capable of significantly reducing the lignin component contained in the untreated wood and maintaining the outer shape and dimensions of the untreated wood is manufactured. be able to. Such a wood-based structure is not particularly limited as a new material that has never existed before, and can be applied to various fields.
 白い木材の特徴として、原料の樹木が本来有している組織・細胞構造が維持されている点に着目すると、樹木が生み出した最適なフレーム構造を利用した材料開発の基盤として白い木材を利用できる。厳しい自然環境の中、100mを超える巨大な体躯の生存を1000年以上にも亘って保障するのは、樹木が精密に形成制御した木質高分子から成る階層構造に他ならない。 Focusing on the fact that the tissue and cell structure originally possessed by the raw material tree is maintained as a characteristic of white wood, white wood can be used as the basis for material development using the optimum frame structure created by the tree. .. In a harsh natural environment, it is the hierarchical structure made of woody polymers that are precisely formed and controlled by trees that guarantees the survival of a huge body over 100 m for more than 1000 years.
 従来のミクロフィブリルの製造においては、組織構造が解消したパルプ状に加工してからミクロフィブリルを抽出するため、樹木が有していた階層構造とは無関係に、配向性を有しないミクロフィブリルしか得られない。また、配向性を有しないミクロフィブリルを一軸配向させる技術も確立されていない。しかしながら、白い木材はこの階層構造を維持していることから、白い木材における配向性を維持してミクロフィブリルを利用することができる。 In the conventional production of microfibrils, since the microfibrils are extracted after being processed into a pulp having a structure-free structure, only microfibrils having no orientation can be obtained regardless of the hierarchical structure of the tree. I can't. In addition, a technique for uniaxially orienting non-orientating microfibrils has not been established. However, since white wood maintains this hierarchical structure, microfibrils can be utilized while maintaining the orientation in white wood.
 すなわち、得られた白い木材の接線方向並びに板目方向に圧縮すれば、セルロースミクロフィブリルが配向した紙やフィルムを開発することができる。また、原料として使用する樹木の種類によって、様々な組織構造を有する白い木材を得ることができる。このため、白い木材を使用した紙・フィルムについても、このような組織構造の特徴を生かすことができ、目的に応じた材料として利用できる。なお、得られた白い木材に含まれるセルロースミクロフィブリルは、従来、セルロースミクロフィブリルやセルロースナノファイバー等が利用されてきた用途にも当然利用することができる。例えば、車体、タイヤ、窓ガラス、ディスプレイ、電池材料、スビーカー、おむつ、増粘剤、食品用包装材、人工血管、人工軟骨、食品添加物等に対して、白い木材由来のセルロースミクロフィブリルを利用することができる。 That is, by compressing the obtained white wood in the tangential direction and the grain direction, it is possible to develop a paper or film in which cellulose microfibrils are oriented. In addition, white wood having various tissue structures can be obtained depending on the type of tree used as a raw material. For this reason, even papers and films made of white wood can take advantage of such characteristics of the tissue structure and can be used as materials according to the purpose. The cellulose microfibrils contained in the obtained white wood can naturally be used for applications in which cellulose microfibrils, cellulose nanofibers, and the like have been conventionally used. For example, white wood-derived cellulose microfibrils are used for car bodies, tires, windowpanes, displays, battery materials, sbeekers, diapers, thickeners, food packaging materials, artificial blood vessels, artificial cartilage, food additives, etc. can do.
 また、The Murata Science Foundation Annual Report No.30 2016 page 151-153に記載されるように、銀ナノワイヤーとセルロース繊維からなるナノペーパーとから高誘電材料を作製するという技術が知られている。白い木材の特徴としてセルロースミクロフィブリルが配向していることから、一軸配向したナノペーパーの特徴を維持した高誘電材料を作製することができる。なお、白い木材に銀ナノワイヤーを張り巡らせることで導電性材料を作製することができる。このように、白い木材は、電子部品の材料として使用することができる。 In addition, The Murata Science Foundation Annual Report No. As described in 30 2016 page 151-153, a technique for producing a high-dielectric material from silver nanowires and nanopaper made of cellulose fibers is known. Since cellulose microfibrils are oriented as a characteristic of white wood, it is possible to produce a highly dielectric material that maintains the characteristics of uniaxially oriented nanopaper. A conductive material can be produced by stretching silver nanowires around white wood. In this way, white wood can be used as a material for electronic components.
 さらにまた、白い木材は、例えば水酸化ナトリウム水溶液に浸漬することで膨潤し、木材ゲル材料となる。これは白い木材を水酸化ナトリウム水溶液に浸漬すると、ナトリウムイオンがセルロース結晶内部に入り込み分子間を広げ、部分的に水酸化ナトリウム水溶液に溶解し、水で洗浄するとセルロース同士が架橋構造を形成することで、ゲルとしての物性を発現する。具体的な処理条件は8~20%の水酸化ナトリウム水溶液に室温で浸漬させて、12時間処理し、その後水で洗浄する条件を挙げることができる。白い木材を用いた木材ゲル材料は、例えば、ゲル化により弾性を有する機能性材料となるため、例えば創傷被膜材といった医療用ゲル材料や食品用ゲルに応用することができる。 Furthermore, white wood swells when immersed in, for example, an aqueous solution of sodium hydroxide, and becomes a wood gel material. This is because when white wood is immersed in an aqueous solution of sodium hydroxide, sodium ions enter the inside of the cellulose crystals to widen the intermolecular force, partially dissolve in the aqueous solution of sodium hydroxide, and when washed with water, the celluloses form a crosslinked structure. Then, it expresses the physical properties as a gel. Specific treatment conditions include conditions in which the product is immersed in an 8 to 20% aqueous sodium hydroxide solution at room temperature, treated for 12 hours, and then washed with water. Since a wood gel material using white wood becomes a functional material having elasticity by gelation, for example, it can be applied to a medical gel material such as a wound coating material or a food gel.
 [表面処理]
 木質系構造体は表面処理されてもよい。ここでいう表面とは木質構造の内表面を含む。すなわち、「表面」とは、外部の空気と接触している(外部に露出している)面を指し、多孔体の場合、該表面だけではなく、内孔(空孔)内の表面(内表面)も含む概念である。表面処理としては、特に限定されるものではないが、コロナ処理、プラズマ処理、オゾン処理等の乾式処理、(無水)カルボン酸、アルコキシシラン(シランカップリング剤)、シラザン、シリル、イソシアネート、イミン、オキサゾリン、エポキシ等の骨格(官能基)を有する物質による湿式処理(木質系構造体との表面反応による改質)などが挙げられる。
[surface treatment]
The wood-based structure may be surface-treated. The surface referred to here includes the inner surface of the wood structure. That is, the "surface" refers to a surface in contact with external air (exposed to the outside), and in the case of a porous body, not only the surface but also the surface (inside) inside the inner hole (vacancy). It is a concept that also includes the surface). The surface treatment is not particularly limited, but is a dry treatment such as corona treatment, plasma treatment, ozone treatment, (anhydrous) carboxylic acid, alkoxysilane (silane coupling agent), silazane, silyl, isocyanate, imine, etc. Wet treatment with a substance having a skeleton (functional group) such as oxazoline and epoxy (modification by surface reaction with a wood-based structure) and the like can be mentioned.
 上記無水カルボン酸による表面処理により、カルボキシル基の一方が木材と結合し、さらに一方が、例えば、後述する硬化性化合物中のエポキシ基と結合することができる。このような構造をとることで、木質系構造体と樹脂が一体化した構造となり、透明性や強度を低下させる空気層の発生を抑制し、透明性や強度が向上する。 By the surface treatment with the above-mentioned carboxylic acid anhydride, one of the carboxyl groups can be bonded to wood, and the other can be bonded to, for example, an epoxy group in a curable compound described later. By adopting such a structure, the wood-based structure and the resin become an integrated structure, the generation of an air layer that lowers the transparency and strength is suppressed, and the transparency and strength are improved.
 無水カルボン酸としては、無水コハク酸;フタル酸無水物などの芳香環式酸無水物;脂環式酸無水物のいずれであってもよい。低粘度な液状で取り扱いやすく、また硬化物の耐熱性や機械的物性の観点から、脂環式酸無水物が用いることが好ましい。このような脂環式酸無水物の具体例としては、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルジヒドロナジック酸無水物、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,3,6-テトラヒドロフタル酸無水物、メチル-1,2,3,6-テトラヒドロフタル酸無水物、ナジック酸無水物、メチルナジック酸無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-3-メチル-1,2,5,6-テトラヒドロフタル酸無水物などが挙げられる。この様な無水カルボン酸だけではなく、木質系構造体表面に疎水性を付与することで、木質系構造体の表面張力を低下させ、木材と樹脂との親和性を向上させることが可能となる。木質系構造体と樹脂との親和性が向上することで、透明性や強度を低下させる空気層の発生を抑制し、透明性や強度が向上する。疎水性を付与可能な構造としては、脂環構造、芳香環構造、アルキル基等があげられる。 The carboxylic acid anhydride may be any of succinic anhydride; aromatic ring-type acid anhydride such as phthalic acid anhydride; and alicyclic acid anhydride. It is preferable to use an alicyclic acid anhydride because it is a low-viscosity liquid and easy to handle, and from the viewpoint of heat resistance and mechanical properties of the cured product. Specific examples of such alicyclic acid anhydrides include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyldihydronadic acid anhydride, 1,2,4,5-cyclopentanetetracarboxylic acid. Dianhydride, 1,2,3,6-tetrahydrophthalic anhydride, methyl-1,2,3,6-tetrahydrophthalic anhydride, nadic acid anhydride, methyl nagic acid anhydride, bicyclo [2,2] , 2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 4- (2,5-dioxotetraxtetra-3-yl) -3-methyl-1,2,5, 6-Tetrahydrophthalic anhydride and the like can be mentioned. By imparting hydrophobicity not only to such carboxylic acid anhydride but also to the surface of the wood-based structure, it is possible to reduce the surface tension of the wood-based structure and improve the affinity between the wood and the resin. .. By improving the affinity between the wood-based structure and the resin, the generation of an air layer that lowers the transparency and strength is suppressed, and the transparency and strength are improved. Examples of the structure capable of imparting hydrophobicity include an alicyclic structure, an aromatic ring structure, and an alkyl group.
 このような酸無水物の表面処理方法としては、特に限定されるものではないが、木質系構造体を酸無水物に浸漬した後、必要により加熱処理を行うなどの方法が挙げられる。浸漬回数は適宜設定されるが、複数回行ってもよい。浸漬を繰り返し複数回行うことで、木材の内部に酸無水物が十分浸透し、均一に表面処理を行うことができる。浸漬回数としては、例えば1~10回であり、浸漬時間は、例えば、1~4800分である。また、加熱温度としては、反応が進行すれば特に限定されるものではないが、通常45~200℃、1~4800分程度である。なお、酸無水物処理の前に、有機溶媒に浸漬することが好ましい。 The surface treatment method for such an acid anhydride is not particularly limited, and examples thereof include a method in which a wood-based structure is immersed in the acid anhydride and then heat-treated if necessary. The number of immersions is appropriately set, but may be performed a plurality of times. By repeating the dipping a plurality of times, the acid anhydride sufficiently permeates the inside of the wood, and the surface treatment can be uniformly performed. The number of immersions is, for example, 1 to 10, and the immersion time is, for example, 1 to 4800 minutes. The heating temperature is not particularly limited as long as the reaction proceeds, but is usually about 45 to 200 ° C. for 1 to 4800 minutes. It is preferable to immerse in an organic solvent before the acid anhydride treatment.
 [樹脂]
 本実施形態の組成物は、木質系構造体に加えて樹脂を含みうる。
[resin]
The composition of the present embodiment may contain a resin in addition to the wood-based structure.
 上述のとおり、木質系構造体は白色を呈する。白色は、セルロースとへミセルロース成分の屈折率と、内部に含まれる空気の屈折率が異なることに起因する。したがって、白い木質系構造体に樹脂を含侵させることによって、セルロースとへミセルロース成分の屈折率と内部の屈折率とを近づけることができ、無色透明を呈することとなる。白い木材に樹脂を含侵させた組成物(成形体)は、例えば、ディスプレイや太陽電池基板に応用することができる。 As mentioned above, the wood-based structure exhibits a white color. The white color is due to the difference between the refractive index of the cellulose and hemicellulose components and the refractive index of the air contained therein. Therefore, by impregnating the white wood-based structure with the resin, the refractive index of the cellulose and the hemicellulose component can be brought close to each other, and the white wood-based structure becomes colorless and transparent. The composition (molded product) obtained by impregnating white wood with resin can be applied to, for example, a display or a solar cell substrate.
 また、木質構造体に樹脂を組み合わせることで、木質系構造体の強度を向上させることができる。 In addition, the strength of the wood-based structure can be improved by combining the wood-based structure with the resin.
 樹脂は、天然樹脂、合成樹脂のいずれであってもよいし、それらの混合物であってもよい。 The resin may be either a natural resin or a synthetic resin, or a mixture thereof.
 天然樹脂としては、にかわ、ゼラチン、カゼイン、アルブミン等のタンパク質類;アラビアゴム、トラガントゴム等の天然ゴム類;サポニン等のグルコシド類;アルギン酸、アルギン酸プロピレングリコールエステル、アルギン酸トリエタノールアミン、アルギン酸アンモニウム等のアルギン酸誘導体等のアルギン酸類;メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシセルロース、アセチルセルロース等のセルロース誘導体;等を挙げることができる。 Natural resins include proteins such as glue, gelatin, casein and albumin; natural rubbers such as arabic rubber and tragant rubber; glucosides such as saponin; alginic acid, propylene glycol alginate, triethanolamine alginate, ammonium alginate and the like. Examples thereof include alginic acids such as derivatives; cellulose derivatives such as methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl hydroxy cellulose, and acetyl cellulose; and the like.
 合成樹脂としては、熱または光などの硬化性樹脂、熱可塑性樹脂等が挙げられる。 Examples of the synthetic resin include curable resins such as heat and light, and thermoplastic resins.
 硬化性樹脂としては、アクリル樹脂;フェノール樹脂;キシレン・ホルムアルデヒド樹脂、ケトン・ホルムアルデヒド樹脂、ユリア樹脂、メラミン樹脂、アニリン樹脂等のホルムアルデヒドとの反応で得られる樹脂;フラン樹脂;アルキド樹脂;ポリエステル樹脂;エポキシ樹脂;ベンゾグアナミン樹脂;ウレタン樹脂;等が挙げられる。 The curable resin includes acrylic resin; phenol resin; xylene / formaldehyde resin, ketone / formaldehyde resin, urea resin, melamine resin, aniline resin and other resins obtained by reaction with formaldehyde; furan resin; alkyd resin; polyester resin; Epoxy resin; benzoguanamine resin; urethane resin; and the like can be mentioned.
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂;ポリスチレン;ポリ酢酸ビニル;ポリアクリレート、ポリメタクリレート等の(メタ)アクリル系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等のハロゲン化ビニル樹脂;ポリアクリロニトリル;脂肪族ポリアミド、芳香族ポリアミド等のアミド樹脂;ポリカーボネート;シリコーン樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂;ABS樹脂(アクリロニトリル-ブタジエン-スチレン樹脂)、ACS樹脂(塩素化ポリエチレン-アクリロニトリル-スチレン樹脂)、AES樹脂(アクリロニトリル-エチレン-スチレン樹脂)等のビニル系グラフト共重合体樹脂;ウレタン樹脂;ポリフェニレンエーテル、ポリフェニレンオキシド、ポリフェニレンスルフィド等のフェニレン基含有樹脂;フッ素樹脂;ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルスルホン等のポリエーテル樹脂;ポリビニルエーテル樹脂;ポリビニルケトン樹脂;ポリキシリレン樹脂;ポリスルホン樹脂;ポリ乳酸;ポリイミド、ポリアミドイミド、マレイミド等のイミド樹脂;シアネートエステル樹脂;チオフェノール樹脂等が挙げられ、これら樹脂を構成するモノマーを適宜組み合わせた共重合体も含まれる。さらにはビニル基を有するモノマーをラジカル重合することによって得られる樹脂(ビニル系樹脂)であってもよい。 Examples of the thermoplastic resin include olefin resins such as polyethylene and polypropylene; polystyrene; polyvinyl acetate; (meth) acrylic resins such as polyacrylate and polymethacrylate; vinyl halide resins such as polyvinyl chloride and polyvinylidene chloride; poly. Acrylonitrile; amide resin such as aliphatic polyamide and aromatic polyamide; polycarbonate; silicone resin; polyester resin such as polyethylene terephthalate and polybutylene terephthalate; ABS resin (acrylonitrile-butadiene-styrene resin), ACS resin (chlorinated polyethylene-acrylonitrile- Vinyl-based graft copolymer resin such as styrene resin), AES resin (acrylonitrile-ethylene-styrene resin); urethane resin; phenylene group-containing resin such as polyphenylene ether, polyphenylene oxide, polyphenylene sulfide; fluororesin; polyether ether ketone, Polyether resins such as polyether ketones and polyether sulfones; polyvinyl ether resins; polyvinyl ketone resins; polyxylylene resins; polysulfone resins; polylactic acid; imide resins such as polyimides, polyamideimides and maleimides; cyanate ester resins; thiophenol resins and the like Examples thereof include copolymers in which monomers constituting these resins are appropriately combined. Further, it may be a resin (vinyl resin) obtained by radical polymerization of a monomer having a vinyl group.
 当該樹脂としては、中でも、エポキシ樹脂、アクリル樹脂、セルロース誘導体、ポリ乳酸、イミド樹脂、シアネートエステル樹脂、チオフェノール樹脂、ポリエステル樹脂が好ましく、エポキシ樹脂、イミド樹脂、シアネートエステル樹脂、チオフェノール樹脂、ポリエステル樹脂がより好ましく、エポキシ樹脂がさらにより好ましい。エポキシ樹脂としては、脂肪族エポキシ樹脂および芳香族エポキシ樹脂が好ましく、中でも、脂肪族環状エポキシ樹脂(脂環式エポキシ樹脂、水添エポキシ樹脂)および芳香族エポキシ樹脂が好ましい。中でも、耐候性、耐光性等に優れ、着色等の経時劣化が起きにくいことから、エポキシ樹脂としては、脂環式エポキシ樹脂、水添エポキシ樹脂がより好ましい。一方で、機械強度の観点では、芳香族エポキシ樹脂が好ましい。ここで、エポキシ樹脂は、エポキシ化合物を硬化、重合または架橋したものを意味し、例えば、脂肪族環状エポキシ樹脂とは、下記脂環式エポキシ化合物および/または水添化合物を硬化、重合または架橋したものを意味する。また、上述したように、生分解性向上を目的として樹脂として生分解性樹脂を選択することも好適な形態である。生分解性樹脂は後述する。 Among the resins, epoxy resin, acrylic resin, cellulose derivative, polylactic acid, imide resin, cyanate ester resin, thiophenol resin and polyester resin are preferable, and epoxy resin, imide resin, cyanate ester resin, thiophenol resin and polyester are preferable. Resins are more preferred, and epoxy resins are even more preferred. As the epoxy resin, an aliphatic epoxy resin and an aromatic epoxy resin are preferable, and among them, an aliphatic cyclic epoxy resin (alicyclic epoxy resin, hydrogenated epoxy resin) and an aromatic epoxy resin are preferable. Among them, alicyclic epoxy resin and hydrogenated epoxy resin are more preferable as the epoxy resin because they are excellent in weather resistance, light resistance and the like, and deterioration with time such as coloring is unlikely to occur. On the other hand, from the viewpoint of mechanical strength, an aromatic epoxy resin is preferable. Here, the epoxy resin means a cured, polymerized or crosslinked epoxy compound. For example, the aliphatic cyclic epoxy resin is a cured, polymerized or crosslinked alicyclic epoxy compound and / or hydrogenated compound described below. Means things. Further, as described above, it is also a preferable form to select a biodegradable resin as the resin for the purpose of improving the biodegradability. The biodegradable resin will be described later.
 樹脂の当該組成物に対する含有率は、0.1~99重量%であることが好ましく、10~90重量%であることが好ましく、20~80重量%であることが好ましい。樹脂をかような範囲で含むことで所望の機能が発揮されやすい。 The content of the resin in the composition is preferably 0.1 to 99% by weight, preferably 10 to 90% by weight, and preferably 20 to 80% by weight. By including the resin in such a range, the desired function can be easily exhibited.
 なお、本明細書においては、硬化性化合物を硬化させたものを硬化性樹脂とする。そして、本発明の組成物の実施形態として、硬化性化合物(を含む樹脂組成物)と、木質系構造体と、を含む(硬化前の)組成物も好適な形態である。 In this specification, a curable resin is obtained by curing a curable compound. As an embodiment of the composition of the present invention, a composition (before curing) containing a curable compound (containing a resin composition) and a wood-based structure is also a suitable form.
 硬化性化合物を含む樹脂組成物と、木質系構造体とを含む、組成物100重量%に対する、樹脂組成物の好ましい含有割合は、木質系構造体の特性を損なわないという観点で、85重量%以下であることが好ましく、80重量%以下であることがより好ましく、70重量%以下であることがさらに好ましい。また、同様に、組成物100重量%に対する、樹脂組成物の好ましい含有割合は、木質系構造体を結びつけるという観点で、5重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、30重量%以上であることが特に好ましい。 The preferable content ratio of the resin composition with respect to 100% by weight of the composition containing the resin composition containing the curable compound and the wood-based structure is 85% by weight from the viewpoint of not impairing the characteristics of the wood-based structure. It is preferably less than or equal to, more preferably 80% by weight or less, and further preferably 70% by weight or less. Similarly, the preferable content ratio of the resin composition with respect to 100% by weight of the composition is preferably 5% by weight or more, and more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. It is more preferably 20% by weight or more, and particularly preferably 30% by weight or more.
 さらに、硬化性化合物を含む樹脂組成物と、木質系構造体とを含む、組成物100重量%に対する、硬化性化合物の好ましい含有割合は、木質系構造体の特性を損なわないという観点で、84重量%以下であることが好ましく、80重量%以下であることがより好ましく、70重量%以下であることがさらに好ましい。また、同様に、組成物100重量%に対する、硬化性化合物の好ましい含有割合は、木質系構造体を結びつけるという観点で、4重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、30重量%以上であることが特に好ましい。 Further, a preferable content ratio of the curable compound with respect to 100% by weight of the composition containing the resin composition containing the curable compound and the wood-based structure is 84 from the viewpoint of not impairing the characteristics of the wood-based structure. It is preferably 0% by weight or less, more preferably 80% by weight or less, and further preferably 70% by weight or less. Similarly, the preferable content ratio of the curable compound with respect to 100% by weight of the composition is preferably 4% by weight or more, more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. It is more preferably 20% by weight or more, and particularly preferably 30% by weight or more.
 硬化性化合物を含む樹脂組成物を木質系構造体と混合した後、硬化させることにより、木質系構造体表面に硬化性樹脂が付着した組成物を得ることができる。したがって、本発明の組成物の実施形態として、硬化性化合物を含む樹脂組成物を木質系構造体と混合した後、硬化させることにより得られる組成物も好適な形態である。当該形態によれば、木質系構造体の繊維構造により強度向上が可能であり、また、2次硬化を利用して、木材組成物に形状を付与することも可能となる。硬化性化合物を含む樹脂組成物(以下、単に樹脂組成物とも称する)を木質系構造体と混合する際の樹脂組成物の量は、樹脂組成物および木質系構造体の合計100重量%に対して、85重量%以下であることが好ましく、80重量%以下であることがより好ましく、70重量%以下であることがさらに好ましい。木質系構造体の特性を損なわないという観点で、樹脂組成物の量は、樹脂組成物および木質系構造体の合計100重量%に対して、85重量%以下であることが好ましく、80重量%以下であることがより好ましく、70重量%以下であることがさらに好ましい。木質系構造体を結びつけるという観点で、5重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、30重量%以上であることが特に好ましい。また、硬化性化合物を含む樹脂組成物を木質系構造体と混合した後、硬化させることにより得られる組成物において、JIS 7171:2016、JIS7017:1999等に準拠した曲げ強度試験で測定した曲げ強度は、好ましい順に、50MPa以上、80MPa以上、100MPa以上、150MPa以上、200MPa以上、300MPa以上、400MPa以上、500MPa以上である。 By mixing the resin composition containing the curable compound with the wood-based structure and then curing it, a composition in which the curable resin is attached to the surface of the wood-based structure can be obtained. Therefore, as an embodiment of the composition of the present invention, a composition obtained by mixing a resin composition containing a curable compound with a wood-based structure and then curing the composition is also a suitable form. According to this form, the fiber structure of the wood-based structure can improve the strength, and the secondary hardening can be used to impart a shape to the wood composition. The amount of the resin composition when the resin composition containing the curable compound (hereinafter, also simply referred to as the resin composition) is mixed with the wood-based structure is 100% by weight of the total of the resin composition and the wood-based structure. It is preferably 85% by weight or less, more preferably 80% by weight or less, and further preferably 70% by weight or less. From the viewpoint of not impairing the characteristics of the wood-based structure, the amount of the resin composition is preferably 85% by weight or less, preferably 80% by weight, based on 100% by weight of the total of the resin composition and the wood-based structure. It is more preferably 70% by weight or less, and further preferably 70% by weight or less. From the viewpoint of binding the wood-based structure, it is preferably 5% by weight or more, more preferably 10% by weight or more, further preferably 20% by weight or more, and more preferably 30% by weight or more. Especially preferable. Further, in a composition obtained by mixing a resin composition containing a curable compound with a wood-based structure and then curing the composition, the bending strength measured by a bending strength test based on JIS 7171: 2016, JIS 7017: 1999, etc. In the preferred order, 50 MPa or more, 80 MPa or more, 100 MPa or more, 150 MPa or more, 200 MPa or more, 300 MPa or more, 400 MPa or more, 500 MPa or more.
 樹脂組成物を木質系構造体と混合させる混合の方法は特に限定されるものではなく、木質系構造体を樹脂組成物に浸漬するなどの方法が挙げられる。浸漬回数は適宜設定されるが、複数回行ってもよい。浸漬を繰り返し複数回行うことで、木材の内部に樹脂組成物が十分浸透し、均一に樹脂を被覆させることができる。また、浸漬の際、木質系構造体表面との親和性を高め、樹脂表面に存在する空気や溶媒等との交換を進め易くすることが可能であるので、減圧下で超音波処理を行うことが好ましい。 The mixing method of mixing the resin composition with the wood-based structure is not particularly limited, and examples thereof include a method of immersing the wood-based structure in the resin composition. The number of immersions is appropriately set, but may be performed a plurality of times. By repeating the dipping a plurality of times, the resin composition sufficiently permeates the inside of the wood, and the resin can be uniformly coated. In addition, during immersion, it is possible to increase the affinity with the surface of the wood-based structure and facilitate the exchange with air, solvent, etc. existing on the resin surface, so ultrasonic treatment should be performed under reduced pressure. Is preferable.
 硬化が熱硬化である場合の加熱温度(硬化温度)としては、硬化性化合物の種類などによって適宜設定されるが、45~200℃が好ましく、より好ましくは100~190℃、さらに好ましくは100~180℃である。また、硬化の際に加熱する時間(硬化時間)としては、特に限定されないが、10~300分が好ましく、より好ましくは20~100分である。硬化温度が低すぎる場合、および/又は、硬化時間が短すぎる場合は、硬化が不十分となる場合がある。一方、硬化温度が高すぎる場合、および/又は、硬化時間が長すぎる場合は、樹脂成分の分解が起こる場合がある。硬化条件は種々の条件に依存するが、硬化温度を高くした場合は硬化時間を短く、硬化温度を低くした場合は硬化時間を長くする等により、適宜調整することができる。 The heating temperature (curing temperature) when the curing is thermosetting is appropriately set depending on the type of the curable compound and the like, but is preferably 45 to 200 ° C, more preferably 100 to 190 ° C, and further preferably 100 to 100. It is 180 ° C. The heating time (curing time) at the time of curing is not particularly limited, but is preferably 10 to 300 minutes, more preferably 20 to 100 minutes. If the curing temperature is too low and / or the curing time is too short, curing may be insufficient. On the other hand, if the curing temperature is too high and / or the curing time is too long, decomposition of the resin component may occur. The curing conditions depend on various conditions, but can be appropriately adjusted by shortening the curing time when the curing temperature is high and lengthening the curing time when the curing temperature is low.
 本発明の好適な一実施形態は、樹脂が硬化性樹脂であり、また、他の好適な一実施形態は、当該硬化性樹脂がエポキシ樹脂および/またはアクリル樹脂であり、硬化性樹脂はエポキシ樹脂でありうる。以下、硬化性樹脂の好適な形態であるエポキシ樹脂、アクリル樹脂について述べる。 In one preferred embodiment of the present invention, the resin is a curable resin, and in another preferred embodiment, the curable resin is an epoxy resin and / or an acrylic resin, and the curable resin is an epoxy resin. Can be. Hereinafter, epoxy resin and acrylic resin, which are suitable forms of the curable resin, will be described.
 エポキシ樹脂は、硬化性化合物であるエポキシ化合物を含むエポキシ樹脂組成物の硬化物である。エポキシ樹脂組成物は、エポキシ化合物、硬化剤、硬化触媒および有機溶媒を含みうる。エポキシ樹脂組成物は少なくともエポキシ化合物、硬化剤および/または硬化触媒を含むことが好ましい。 The epoxy resin is a cured product of an epoxy resin composition containing an epoxy compound which is a curable compound. The epoxy resin composition may include an epoxy compound, a curing agent, a curing catalyst and an organic solvent. The epoxy resin composition preferably contains at least an epoxy compound, a curing agent and / or a curing catalyst.
 エポキシ化合物としては、脂肪族エポキシ化合物(脂肪族鎖状エポキシ化合物、脂肪族環状エポキシ化合物)、芳香族エポキシ化合物が挙げられる。 Examples of the epoxy compound include an aliphatic epoxy compound (aliphatic chain epoxy compound, an aliphatic cyclic epoxy compound) and an aromatic epoxy compound.
 脂肪族鎖状エポキシ化合物としては、脂肪族グリシジルエーテル型エポキシ化合物が好ましく、例えば、ポリヒドロキシ化合物(エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール(PEG600)、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール(PPG)、グリセロール、ジグリセロール、テトラグリセロール、ポリグリセロール、トリメチロールプロパン及びその多量体、ペンタエリスリトール及びその多量体、グルコース、フルクトース、ラクトース、マルトース等の単/多糖類等)とエピハロヒドリンとの縮合反応により得られるもの等が好適に挙げられる。中でも、中心骨格にプロピレングリコール骨格、アルキレン骨格、オキシアルキレン骨格を有する脂肪族グリシジルエーテル型エポキシ化合物等がより好適である。 As the aliphatic chain epoxy compound, an aliphatic glycidyl ether type epoxy compound is preferable, and for example, polyhydroxy compounds (ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol (PEG600), propylene glycol, dipropylene glycol) are preferable. , Tripropylene glycol, tetrapropylene glycol, polypropylene glycol (PPG), glycerol, diglycerol, tetraglycerol, polyglycerol, trimethylolpropane and its multimers, pentaerythritol and its multimers, glucose, fructose, lactose, maltose, etc. Those obtained by the condensation reaction of epihalohydrin and (mono / polysaccharide, etc.) are preferably used. Of these, an aliphatic glycidyl ether type epoxy compound having a propylene glycol skeleton, an alkylene skeleton, and an oxyalkylene skeleton in the central skeleton is more preferable.
 脂肪族環状エポキシ化合物とは、脂肪族環状エポキシ基を有する化合物である。脂肪族環状エポキシ化合物としては、水添エポキシ化合物、水添エポキシ化合物以外の脂肪族環状エポキシ化合物(単に脂環式エポキシ化合物と称する)とが挙げられる。 The aliphatic cyclic epoxy compound is a compound having an aliphatic cyclic epoxy group. Examples of the aliphatic cyclic epoxy compound include a hydrogenated epoxy compound and an aliphatic cyclic epoxy compound other than the hydrogenated epoxy compound (simply referred to as an alicyclic epoxy compound).
 水添エポキシ化合物としては、芳香族エポキシ化合物の完全又は部分水添物であることが好ましく、より好ましくは、芳香族グリシジルエーテル化合物の水添物であり、更に好ましくは、芳香族多官能グリシジルエーテル化合物の水添物である。具体的には、水添ビスフェノールA型エポキシ化合物、水添ビスフェノールS型エポキシ化合物、水添ビスフェノールF型エポキシ化合物等が好ましい。より好ましくは、水添ビスフェノールA型エポキシ化合物、水添ビスフェノールF型エポキシ化合物である。部分水添物の場合、水添率が50%以上(上限100%)であることが好ましく、より好ましくは80%以上、さらにより好ましくは90%以上である。 The hydrogenated epoxy compound is preferably a hydrogenated product of a fully or partially hydrogenated aromatic epoxy compound, more preferably a hydrogenated product of an aromatic glycidyl ether compound, and even more preferably an aromatic polyfunctional glycidyl ether. It is a hydrogenated compound. Specifically, hydrogenated bisphenol A type epoxy compounds, hydrogenated bisphenol S type epoxy compounds, hydrogenated bisphenol F type epoxy compounds and the like are preferable. More preferably, it is a hydrogenated bisphenol A type epoxy compound and a hydrogenated bisphenol F type epoxy compound. In the case of a partially hydrogenated product, the hydrogenation rate is preferably 50% or more (upper limit 100%), more preferably 80% or more, and even more preferably 90% or more.
 脂環式エポキシ基としては、例えば、エポキシシクロヘキサン基(エポキシシクロヘキサン骨格)、環状脂肪族炭化水素に直接又は炭化水素を介して付加したエポキシ基(特にオキシラン環)等が挙げられる。脂環式エポキシ化合物としては、中でも、エポキシシクロヘキサン基を有する化合物であることが好適である。また、硬化速度をより高めることができる点で、分子中に脂環式エポキシ基を2個以上有する多官能脂環式エポキシ化合物が好適である。また、分子中に脂環式エポキシ基を1個有し、かつビニル基等の不飽和二重結合基を有する化合物も、脂環式エポキシ化合物として好ましく用いられる。 Examples of the alicyclic epoxy group include an epoxycyclohexane group (epoxycyclohexane skeleton) and an epoxy group (particularly an oxylan ring) added directly to a cyclic aliphatic hydrocarbon or via a hydrocarbon. As the alicyclic epoxy compound, a compound having an epoxycyclohexane group is particularly preferable. In addition, a polyfunctional alicyclic epoxy compound having two or more alicyclic epoxy groups in the molecule is preferable in that the curing rate can be further increased. Further, a compound having one alicyclic epoxy group in the molecule and having an unsaturated double bond group such as a vinyl group is also preferably used as the alicyclic epoxy compound.
 上記エポキシシクロヘキサン基を有するエポキシ化合物としては、例えば、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、イプシロン-カプロラクトン変性-3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、ビス-(3,4-エポキシシクロヘキシル)アジペート等が好適である。また、上記エポキシシクロヘキサン基を有するエポキシ化合物以外の脂環式エポキシ化合物としては、例えば、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、トリグリシジルイソシアヌレート等のヘテロ環含有のエポキシ樹脂等の脂環式エポキシド等が挙げられる。 Examples of the epoxy compound having an epoxycyclohexane group include 3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate, epsilon-caprolactone-modified-3,4-epoxycyclohexylmethyl-3', 4'. -Epoxycyclohexanecarboxylate, bis- (3,4-epoxycyclohexyl) adipate and the like are suitable. Examples of the alicyclic epoxy compound other than the epoxy compound having an epoxycyclohexane group include 1,2-epoxy-4- (2-oxylanyl) cyclohexane of 2,2-bis (hydroxymethyl) -1-butanol. Examples thereof include adducts and alicyclic epoxides such as heterocyclic epoxy resins such as triglycidyl isocyanurate.
 上記脂環式エポキシ化合物としては、市販のものを用いることができ、例えば、セロキサイド2021P、セロキサイド2081、セロキサイド2000、セロキサイド3000(ダイセル社製)等が挙げられる。 As the alicyclic epoxy compound, commercially available ones can be used, and examples thereof include celoxide 2021P, celoxide 2081, celoxide 2000, and celoxide 3000 (manufactured by Daicel).
 芳香族エポキシ化合物とは、分子中に芳香環及びエポキシ基を有する化合物である。芳香族エポキシ化合物としては、例えば、ビスフェノール骨格、フルオレン骨格、ビフェニル骨格、ナフタレン環、アントラセン環等の芳香環共役系を有するエポキシ化合物等が好適に挙げられる。中でも、ビスフェノール骨格及び/又はフルオレン骨格を有する化合物であることが好適である。より好ましくは、フルオレン骨格を有する化合物である。また、芳香族エポキシ化合物においてエポキシ基がグリシジル基である化合物が好ましいが、中でもグリシジルエーテル基である化合物(芳香族グリシジルエーテル化合物)がより好ましい。また、芳香族エポキシ化合物の臭素化化合物を用いてもよい。 An aromatic epoxy compound is a compound having an aromatic ring and an epoxy group in the molecule. Preferable examples of the aromatic epoxy compound include epoxy compounds having an aromatic ring-conjugated system such as a bisphenol skeleton, a fluorene skeleton, a biphenyl skeleton, a naphthalene ring, and an anthracene ring. Of these, a compound having a bisphenol skeleton and / or a fluorene skeleton is preferable. More preferably, it is a compound having a fluorene skeleton. Further, among the aromatic epoxy compounds, a compound having an epoxy group of glycidyl group is preferable, and a compound having a glycidyl ether group (aromatic glycidyl ether compound) is more preferable. Further, a brominated compound of an aromatic epoxy compound may be used.
 上記芳香族エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、フルオレン系エポキシ化合物、ブロモ置換基を有する芳香族エポキシ化合物等が好適に挙げられる。中でも、ビスフェノールA型エポキシ化合物及びフルオレン系エポキシ化合物が好ましい。 Preferable examples of the aromatic epoxy compound include a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a fluorene epoxy compound, and an aromatic epoxy compound having a bromo substituent. Of these, bisphenol A type epoxy compounds and fluorene epoxy compounds are preferable.
 エポキシ化合物としては、硬化物であるエポキシ樹脂の耐光性、耐候性等の観点から、脂肪族環状エポキシ化合物が好ましく、脂環式エポキシ化合物であることがより好ましい。 As the epoxy compound, an aliphatic cyclic epoxy compound is preferable, and an alicyclic epoxy compound is more preferable, from the viewpoint of light resistance, weather resistance, etc. of the cured epoxy resin.
 エポキシ化合物の具体例としては、少なくとも1個の脂環式環を有する多価アルコールのポリグリシジルエーテル化物またはシクロヘキセンやシクロペンテン環含有化合物を酸化剤でエポキシ化することによって得られるシクロヘキセンオキサイドやシクロペンテンオキサイド含有化合物が挙げられる。エポキシ化合物の具体例としては、例えば、水素添加ビスフェノールAジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-1-メチルシクロヘキシル-3,4-エポキシ-1-メチルヘキサンカルボキシレート、6-メチル-3,4-エポキシシクロヘキシルメチル-6-メチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-3-メチルシクロヘキシルメチル-3,4-エポキシ-3-メチルシクロヘキサンカルボキシレート、3,4-エポキシ-5-メチルシクロヘキシルメチル-3,4-エポキシ-5-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、プロパン-2,2-ジイル-ビス(3,4-エポキシシクロヘキサン)、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、ジシクロペンタジエンジエポキサイド、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ-2-エチルヘキシル、1-エポキシエチル-3,4-エポキシシクロヘキサン、1,2-エポキシ-2-エポキシエチルシクロヘキサン、α-ピネンオキシド、リモネンジオキシド等が挙げられる。 Specific examples of the epoxy compound include a polyglycidyl etherified product of a polyhydric alcohol having at least one alicyclic ring, or a cyclohexene oxide or a cyclopentene oxide-containing compound obtained by epoxidizing a cyclohexene or cyclopentene ring-containing compound with an oxidizing agent. Examples include compounds. Specific examples of the epoxy compound include hydrogenated bisphenol A diglycidyl ether, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and 3,4-epoxy-1-methylcyclohexyl-3,4-. Epoxy-1-methylhexanecarboxylate, 6-methyl-3,4-epoxycyclohexylmethyl-6-methyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-3-methylcyclohexylmethyl-3,4- Epoxy-3-methylcyclohexanecarboxylate, 3,4-epoxy-5-methylcyclohexylmethyl-3,4-epoxy-5-methylcyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, 3,4- Epoxy-6-methylcyclohexanecarboxylate, methylenebis (3,4-epoxycyclohexane), propane-2,2-diyl-bis (3,4-epoxycyclohexane), 2,2-bis (3,4-epoxycyclohexyl) Propane, dicyclopentadiene diepoxyside, ethylenebis (3,4-epoxycyclohexanecarboxylate), dioctyl epoxyhexahydrophthalate, di-2-ethylhexyl epoxyhexahydrophthalate, 1-epoxyethyl-3,4-epoxycyclohexane , 1,2-Epoxy-2-epoxyethylcyclohexane, α-pinenooxide, limonendioxide and the like.
 エポキシ樹脂組成物は、上記エポキシ化合物以外に、他の重合性基を有する化合物(以下、「他の重合性基含有化合物」ともいう)を更に含有することもできる。 The epoxy resin composition may further contain a compound having another polymerizable group (hereinafter, also referred to as “another polymerizable group-containing compound”) in addition to the above epoxy compound.
 上記重合性基としては、硬化性の官能基であればよく、例えば、オキセタン基(オキセタン環)、ジオキソラン基、トリオキサン基、ビニル基、ビニルエーテル基、スチリル基等が挙げられ、オキセタン基が好適である。また、上記重合性基の硬化特性は、基の種類のみならず、該基が結合した有機骨格にも影響されることになる。 The polymerizable group may be a curable functional group, and examples thereof include an oxetan group (oxetan ring), a dioxolane group, a trioxane group, a vinyl group, a vinyl ether group, a styryl group, and the like, and an oxetan group is preferable. is there. Further, the curing property of the polymerizable group is influenced not only by the type of group but also by the organic skeleton to which the group is bonded.
 以下では、他の重合性基含有化合物としてオキセタン化合物について、具体的に説明する。 Hereinafter, the oxetane compound as another polymerizable group-containing compound will be specifically described.
 オキセタン化合物とは、オキセタン基(オキセタン環)を有する化合物である。上記オキセタン化合物は、硬化速度の観点から、脂環式エポキシ化合物及び/又は水添エポキシ化合物と併用することが好ましい。また、耐光性向上の観点では、アリール基又は芳香環を有しないオキセタン化合物を用いることが好ましい。一方、硬化物の強度向上の観点から、多官能のオキセタン化合物、すなわち1分子中に2個以上のオキセタン環を有する化合物を用いることが好適である。 An oxetane compound is a compound having an oxetane group (oxetane ring). From the viewpoint of curing rate, the oxetane compound is preferably used in combination with an alicyclic epoxy compound and / or a hydrogenated epoxy compound. Further, from the viewpoint of improving light resistance, it is preferable to use an oxetane compound having no aryl group or aromatic ring. On the other hand, from the viewpoint of improving the strength of the cured product, it is preferable to use a polyfunctional oxetane compound, that is, a compound having two or more oxetane rings in one molecule.
 上記アリール基又は芳香環を有しないオキセタン化合物のうち、単官能のオキセタン化合物としては、例えば、3-メチル-3-ヒドロキシメチルオキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、イソブトキシメチル(3-エチル-3-オキセタニルメチル)エーテル、イソボルニルオキシエチル(3-エチル-3-オキセタニルメチル)エーテル、イソボルニル(3-エチル-3-オキセタニルメチル)エーテル、2-エチルヘキシル(3-エチル-3-オキセタニルメチル)エーテル、エチルジエチレングリコール(3-エチル-3-オキセタニルメチル)エーテル等が好ましい。上記アリール基又は芳香環を有しないオキセタン化合物のうち、多官能のオキセタン化合物としては、例えば、ジ〔1-エチル(3-オキセタニル)〕メチルエーテル、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、1,2-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕エタン、1,3-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕プロパン、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリシクロデカンジイルジメチレン(3-エチル-3-オキセタニルメチル)エーテル、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス(3-エチル-3-オキセタニルメトキシ)ブタン、1,6-ビス(3-エチル-3-オキセタニルメトキシ)ヘキサン、ペンタエリスリトールトリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、ポリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールヘキサキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールペンタキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル等が好ましい。上記オキセタン化合物としては、具体的には、例えば、ETERNACOLL(R)EHO、ETERNACOLL(R)OXBP、ETERNACOLL(R)OXMA、ETERNACOLL(R)HBOX、ETERNACOLL(R)OXIPA(以上、宇部興産社製);OXT-101、OXT-121、OXT-211、OXT-221、OXT-212、OXT-610(以上、東亜合成社製)等が好適である。 Among the oxetane compounds having no aryl group or aromatic ring, examples of the monofunctional oxetane compound include 3-methyl-3-hydroxymethyloxetane, 3-ethyl-3-hydroxymethyloxetane, and 3-ethyl-3-. (2-Ethylhexyloxymethyl) oxetane, isobutoxymethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyloxyethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyl (3-ethyl-3-3) Oxetanylmethyl) ether, 2-ethylhexyl (3-ethyl-3-oxetanylmethyl) ether, ethyldiethylene glycol (3-ethyl-3-oxetanylmethyl) ether and the like are preferable. Among the oxetane compounds having no aryl group or aromatic ring, examples of the polyfunctional oxetane compound include di [1-ethyl (3-oxetanyl)] methyl ether and 3,7-bis (3-oxetanyl) -5. -Oxa-nonane, 1,2-bis [(3-ethyl-3-oxetanylmethoxy) methyl] ethane, 1,3-bis [(3-ethyl-3-oxetanylmethoxy) methyl] propane, ethylene glycol bis (3) -Ethyl-3-oxetanylmethyl) ether, tricyclodecandyldimethylene (3-ethyl-3-oxetanylmethyl) ether, trimethylpropanthris (3-ethyl-3-oxetanylmethyl) ether, 1,4-bis ( 3-Ethyl-3-oxetanylmethoxy) butane, 1,6-bis (3-ethyl-3-oxetanylmethoxy) hexane, pentaerythritol tris (3-ethyl-3-oxetanylmethyl) ether, pentaerythritol tetrakis (3-ethyl) -3-oxetanylmethyl) ether, polyethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, dipentaerythritol hexaxe (3-ethyl-3-oxetanylmethyl) ether, dipentaerythritol pentax (3-ethyl- 3-Oxetanylmethyl) ether, dipentaerythritol tetrakis (3-ethyl-3-oxetanylmethyl) ether and the like are preferable. Specific examples of the oxetane compound include ETERNALCOLL (R) EHO, ETERNALCOLL (R) OXBP, ETERNALCOLL (R) OXMA, ETERNALCOLL (R) HBOX, and ETERNALCOLL (R) OXIPA (manufactured by Ube Industries, Ltd.). OXT-101, OXT-121, OXT-211, OXT-221, OXT-212, OXT-610 (all manufactured by Toagosei Corporation) and the like are suitable.
 硬化剤としては、上記表面処理の欄で述べた脂環式酸無水物などが挙げられる。硬化剤は、エポキシ基を有する化合物におけるエポキシ基1当量当たり、0.5~1.5当量となる割合で使用することが好ましい。 Examples of the curing agent include the alicyclic acid anhydride described in the above surface treatment column. The curing agent is preferably used at a ratio of 0.5 to 1.5 equivalents per 1 equivalent of the epoxy group in the compound having an epoxy group.
 硬化触媒としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン、ピペリジン、N-アミノエチルピペラジン、メンセンジアミン、m-キシレンジアミンなどの脂肪族ポリアミン;2-(ジメチルアミノメチル)フェノール、ビス(ジメチルアミノエチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等のジメチルアミノアルキルフェノール類;メタンフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォンなどの芳香族アミン、無水トリメット酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸などの酸無水物;ダイマー酸にポリアミンを反応させるポリアミノポリアミド;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾールなどのイミダゾール類;三フッ化ホウ素-アミン錯体;ジシアンジアミド;芳香族ジアゾニウム塩;ポリスルフィド類などが挙げられる。硬化触媒としては、エポキシ化合物100重量部に対して、0.01~15重量部が好ましく、より好ましくは0.01~12重量部、さらに好ましくは0.05~10重量部、特に好ましくは0.1~10重量部である。 Examples of the curing catalyst include aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, piperidine, N-aminoethylpiperazin, mensendiamine, and m-xylenediamine; 2- Dimethylaminoalkylphenols such as (dimethylaminomethyl) phenol, bis (dimethylaminoethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol; aromatic amines such as methanephenylenediamine, diaminodiphenylmethane, diaminodiphenyl sulfone. Acid anhydrides such as trimetic anhydride, ethylene glycol bis (anhydrotrimeritate), glycerol tris (anhydrotrimeritate), pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride; polyamines in diamine acids Polyaminopolyamide to be reacted; imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole; boron trifluoride-amine complex; disyandiamide; aromatic diazonium salt; polysulfides and the like. .. The curing catalyst is preferably 0.01 to 15 parts by weight, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, and particularly preferably 0, based on 100 parts by weight of the epoxy compound. .1 to 10 parts by weight.
 有機溶媒としては従来公知の各種溶媒を用いることができる。 As the organic solvent, various conventionally known solvents can be used.
 なお、当該エポキシ樹脂、及び/又は、エポキシ化合物、及び/又は、カルボン酸と反応しうる化合物(例えば、エポキシ基、水酸基、アミノ基、イミノ基、またはオキサゾリン基を有する化合物)を含有させる際には、上述のとおり、木質系構造体にあらかじめカルボキシル基を付与する表面処理を行うことが好ましい。具体的には、無水カルボン酸等などを湿式処理することで表面処理を行うことができる。 When the epoxy resin and / or the epoxy compound and / or the compound capable of reacting with the carboxylic acid (for example, the compound having an epoxy group, a hydroxyl group, an amino group, an imino group, or an oxazoline group) is contained. As described above, it is preferable to perform a surface treatment for imparting a carboxyl group to the wood-based structure in advance. Specifically, the surface treatment can be performed by wet-treating an carboxylic acid anhydride or the like.
 硬化性化合物がエポキシ化合物である場合、硬化性化合物を含む樹脂組成物と、木質系構造体とを含む組成物100重量%に対する樹脂組成物の好ましい含有割合は、木質系構造体の特性を損なわないという観点で、85重量%以下であることが好ましく、80重量%以下であることがより好ましく、70重量%以下であることがさらに好ましい。また、同様に、組成物100重量%に対する樹脂組成物の好ましい含有割合は、木質系構造体を結びつけるという観点で、5重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、30重量%以上であることが特に好ましい。 When the curable compound is an epoxy compound, a preferable content ratio of the resin composition to 100% by weight of the composition containing the curable compound and the wood-based structure impairs the characteristics of the wood-based structure. From the viewpoint that there is no such thing, it is preferably 85% by weight or less, more preferably 80% by weight or less, and further preferably 70% by weight or less. Similarly, the preferable content ratio of the resin composition to 100% by weight of the composition is preferably 5% by weight or more, more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. , 20% by weight or more, and particularly preferably 30% by weight or more.
 硬化性化合物がエポキシ化合物である場合、硬化性化合物を含む樹脂組成物と、木質系構造体とを含む組成物100重量%に対するエポキシ化合物の好ましい含有割合は、木質系構造体の特性を損なわないという観点で、84重量%以下であることが好ましく、80重量%以下であることがより好ましく、70重量%以下であることがさらにより好ましい。また、同様に、組成物100重量%に対するエポキシ化合物の好ましい含有割合は、木質系構造体を結びつけるという観点で、4重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、30重量%以上であることが特に好ましい。 When the curable compound is an epoxy compound, the preferable content ratio of the epoxy compound to 100% by weight of the composition containing the curable compound and the wood-based structure does not impair the characteristics of the wood-based structure. From this viewpoint, it is preferably 84% by weight or less, more preferably 80% by weight or less, and even more preferably 70% by weight or less. Similarly, the preferable content ratio of the epoxy compound with respect to 100% by weight of the composition is preferably 4% by weight or more, more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. It is more preferably 20% by weight or more, and particularly preferably 30% by weight or more.
 アクリル樹脂としては、UV硬化型アクリル樹脂、熱硬化型アクリル樹脂が挙げられる。UV硬化型アクリル樹脂は、硬化性化合物であるアクリレートモノマーを含む樹脂組成物の硬化物(重合体を含む)である。 Examples of the acrylic resin include UV curable acrylic resin and thermosetting acrylic resin. The UV curable acrylic resin is a cured product (including a polymer) of a resin composition containing an acrylate monomer which is a curable compound.
 アクリレートモノマーとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-ペンチルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2-エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、1,6-ヘキサジオールジアクリレート、1,3-プロパンジオールアクリレート、1,4-シクロヘキサンジオールジアクリレート、2,2-ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、エチレンオキサイド変性トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4-ブタンジオールトリアクリレート、2,2,4-トリメチル-1,3-ペンタジオールジアクリレート、ジアリルフマレート、1,10-デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、および、上記のアクリレートをメタクリレートに換えたもの、γ-メタクリロキシプロピルトリメトキシシラン、1-ビニル-2-ピロリドン等が挙げられる。上記のアクリレートモノマーは、1種または2種以上の混合物として、あるいは、その他の化合物との混合物として使用することができる。 Examples of the acrylate monomer include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n-pentyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, and n-octyl. Acrylate, n-decyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, allyl acrylate, benzyl acrylate, butoxyethyl acrylate, butoxyethylene glycol acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, 2-ethylhexyl acrylate, glycerol acrylate, glycidyl acrylate, 2-Hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobonyl acrylate, isodexyl acrylate, isooctyl acrylate, lauryl acrylate, 2-metricethyl acrylate, methoxyethylene glycol acrylate, phenoxyethyl acrylate, stearyl acrylate, ethylene glycol di Acrylate, diethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,5-pentanediol diacrylate, 1,6-hexadiol diacrylate, 1,3-propanediol acrylate, 1,4-cyclohexanediol diacrylate, 2,2-Dimethylol propanediacrylate, glycerol diacrylate, tripropylene glycol diacrylate, glycerol triacrylate, trimethylol propane triacrylate, ethylene oxide modified trimethylol propane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, ethylene Oxide-modified pentaerythritol triacrylate, ethylene oxide-modified pentaerythritol tetraacrylate, propionoxide-modified pentaerythritol triacrylate, propionoxide-modified pentaerythritol tetraacrylate, triethylene glycol diacrylate, polyoxypropyltrimethylol propantriacrylate, butylene glycol diacrylate , 1,2,4-butanediol triacrylate, 2,2,4-trimethyl-1,3-pentadio Ludiacrylate, diallyl fumarate, 1,10-decanediol dimethyl acrylate, pentaerythritol hexaacrylate, and the above acrylate replaced with methacrylate, γ-methacryloxypropyltrimethoxysilane, 1-vinyl-2-pyrrolidone. And so on. The above acrylate monomer can be used as one or a mixture of two or more kinds, or as a mixture with other compounds.
 上記樹脂組成物は、通常、光重合開始剤を含有する。 The above resin composition usually contains a photopolymerization initiator.
 光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4-ビス(ジメチルアミン)ベンゾフェノン、4,4-ビス(ジエチルアミン)ベンゾフェノン、α-アミノ・アセトフェノン、4,4-ジクロロベンゾフェノン、4-ベンゾイル-4-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-tert-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-tert-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンジルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、2-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,3-ジフェニル-プロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(o-ベンゾイル)オキシム、ミヒラーケトン、2-メチル[4-(メチルチオ)フェニル]-2-モノフォリノ-1-プロパン、2-ベンジル-2-ジメチルアミノ-1-(4-モノフォリノフェニル)-ブタノン-1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n-フェニルチオアクリドン、4,4-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。光重合開始剤は、アクリレートモノマー100重量部に対して、通常0.01~15重量部が好ましく、より好ましくは0.01~12重量部、さらに好ましくは0.05~10重量部、特に好ましくは0.1~10重量部である。 Examples of the photopolymerization initiator include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, α-amino-acetophenone, and 4,4-dichloro. Benzophenone, 4-benzoyl-4-methyldiphenylketone, dibenzylketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p- tert-Butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethylketal, benzylmethoxyethyl acetal, benzoinmethyl ether, benzoin butyl ether, anthraquinone, 2-tert-butylanthraquinone , 2-Amil anthraquinone, β-chloroanthraquinone, antron, benzanthron, dibenzsberon, methylene antron, 4-azidobenzylacetophenone, 2,6-bis (p-azidobenzylidene) cyclohexane, 2,6-bis (p-azidobenziliden) ) -4-Methylcyclohexanone, 2-phenyl-1,2-butadione-2- (o-methoxycarbonyl) oxime, 1-phenyl-propanedione-2- (o-ethoxycarbonyl) oxime, 1,3-diphenyl- Propantrione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxy-propanthrion-2- (o-benzoyl) oxime, Michler ketone, 2-methyl [4- (methylthio) phenyl] -2-monophorino -1-Propane, 2-benzyl-2-dimethylamino-1- (4-monophorinophenyl) -butanone-1, naphthalenesulfonyl chloride, quinolinesulfonyl chloride, n-phenylthioacridone, 4,4-azobis Photoreducing dyes such as isobutyronitrile, diphenyldisulfide, benzthiazoledisulfide, triphenylphosphine, camphorquinone, carbon tetrabromide, tribromophenylsulfone, benzoin peroxide, eosin, methylene blue and ascorbic acid, triethanolamine Examples thereof include a combination of reducing agents such as the above, and these photopolymerization initiators can be used alone or in combination of two or more. The photopolymerization initiator is usually preferably 0.01 to 15 parts by weight, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, particularly preferably 0.01 to 15 parts by weight, based on 100 parts by weight of the acrylate monomer. Is 0.1 to 10 parts by weight.
 硬化性化合物がアクリレートモノマーの場合、硬化性化合物を含む樹脂組成物と、木質系構造体とを含む組成物100重量%に対する樹脂組成物の好ましい含有割合は、木質系構造体の特性を損なわないという観点で、85重量%以下であることが好ましく、80重量%以下であることがより好ましく、70重量%以下であることがさらに好ましい。また、同様に、組成物100重量%に対する樹脂組成物の好ましい含有割合は、木質系構造体を結びつけるという観点で、5重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、30重量%以上であることが特に好ましい。 When the curable compound is an acrylate monomer, the preferable content ratio of the resin composition to 100% by weight of the composition containing the curable compound and the wood-based structure does not impair the characteristics of the wood-based structure. From the viewpoint, it is preferably 85% by weight or less, more preferably 80% by weight or less, and further preferably 70% by weight or less. Similarly, the preferable content ratio of the resin composition to 100% by weight of the composition is preferably 5% by weight or more, more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. , 20% by weight or more, and particularly preferably 30% by weight or more.
 硬化性化合物がアクリレートモノマーの場合、硬化性化合物を含む樹脂組成物と、木質系構造体とを含む組成物100重量%に対するアクリレートモノマーの好ましい含有割合は、木質系構造体の特性を損なわないという観点で、84重量%以下であることが好ましく、80重量%以下であることがより好ましく、70重量%以下であることがさらに好ましい。また、同様に、組成物100重量%に対するアクリレートモノマーの好ましい含有割合は、木質系構造体を結びつけるという観点で、4重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、30重量%以上であることが特に好ましい。 When the curable compound is an acrylate monomer, the preferable content ratio of the acrylate monomer to 100% by weight of the composition containing the curable compound and the wood-based structure does not impair the characteristics of the wood-based structure. From the viewpoint, it is preferably 84% by weight or less, more preferably 80% by weight or less, and further preferably 70% by weight or less. Similarly, the preferable content ratio of the acrylate monomer to 100% by weight of the composition is preferably 4% by weight or more, more preferably 10% by weight or more, from the viewpoint of binding the wood-based structure. It is more preferably 20% by weight or more, and particularly preferably 30% by weight or more.
 樹脂の当該組成物に対する含有率は、0.1~99重量%であることが好ましく、10~90重量%であることが好ましく、20~80重量%であることが好ましい。樹脂をかような範囲で含むことで所望の機能が発揮されやすい。 The content of the resin in the composition is preferably 0.1 to 99% by weight, preferably 10 to 90% by weight, and preferably 20 to 80% by weight. By including the resin in such a range, the desired function can be easily exhibited.
 [生分解性樹脂]
 木質系構造体は、生分解性材料であるため、樹脂として生分解性樹脂を選択することで、強度向上とともに生分解性も向上する。すなわち、本発明の好適な形態は、樹脂が生分解性樹脂である。
[Biodegradable resin]
Since the wood-based structure is a biodegradable material, selecting a biodegradable resin as the resin improves the strength as well as the biodegradability. That is, in a preferred embodiment of the present invention, the resin is a biodegradable resin.
 生分解性樹脂としては、例えば、ポリ乳酸、ポリグリコール酸、ポリ乳酸-ポリグリコール酸共重合体、ポリカプロラクトン、ポリ乳酸-ポリカプロラクトン共重合体、ポリオルソエステル、ポリホスファゼン、ポリリン酸エステル、ポリヒドロキシ酪酸、ポリリンゴ酸、ポリブチレンサクシネート系、ポリブチレンアジぺートテレフタレート、変性ポリエチレンテレフタレート、ポリビニルアルコール、ポリヒドロキシアルカノエート、バクテリアセルロース、キトサン/セルロース/デンプン、酢酸セルロース、エステル化デンプン、ポリα-アミノ酸、コラーゲン、ゼラチン、デンプン、およびこれらの混合物などが挙げられる。中でも、生分解性樹脂としては、ポリ乳酸、デンプンであることが好ましい。 Examples of the biodegradable resin include polylactic acid, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, polycaprolactone, polylactic acid-polycaprolactone copolymer, polyorthoester, polyphosphazene, polyphosphate ester, and poly. Hydrohydroxybutyrate, polyappleic acid, polybutylene succinate, polybutylene adipate terephthalate, modified polyethylene terephthalate, polyvinyl alcohol, polyhydroxyalkanoate, bacterial cellulose, chitosan / cellulose / starch, cellulose acetate, esterified starch, polyα- Examples include amino acids, collagen, gelatin, starch, and mixtures thereof. Among them, the biodegradable resin is preferably polylactic acid or starch.
 生分解性樹脂は、組成物中、30重量%以上含むことが好ましく、50重量%以上含むことがより好ましく、90重量%以上含むことがより好ましい。生分解性樹脂を、組成物中、30重量%以上含むことで、生分解性を高めることが可能であり、環境有害性を低減可能である。生分解性樹脂は、組成物中、99重量%以下であることが好ましい。生分解性樹脂を低減することで機械強度、安定性に優れる材料となる。 The biodegradable resin is preferably contained in the composition in an amount of 30% by weight or more, more preferably 50% by weight or more, and more preferably 90% by weight or more. By containing 30% by weight or more of the biodegradable resin in the composition, the biodegradability can be enhanced and the environmental harmfulness can be reduced. The biodegradable resin is preferably 99% by weight or less in the composition. By reducing the amount of biodegradable resin, it becomes a material with excellent mechanical strength and stability.
 前記湿式の表面処理、樹脂や硬化性化合物を木質系構造体に含浸させる場合には、第2の工程で処理した木質系構造体(白い木材)を得た後に乾燥させないことが好ましい。乾燥した場合には、木質系構造体と表面処理剤、樹脂、硬化性化合物との界面に存在する空気を除くことが難しく、透明性の悪化や強度低下につながってしまう。したがって、洗浄後の白い木材を乾燥させず、非相溶とならない様に相溶性の高い溶媒を用いながら、表面処理剤、樹脂、硬化性化合物に含浸させる事が好ましい。 When the wood-based structure is impregnated with the wet surface treatment or resin or curable compound, it is preferable not to dry the wood-based structure (white wood) treated in the second step after obtaining it. When dried, it is difficult to remove the air existing at the interface between the wood-based structure and the surface treatment agent, resin, and curable compound, which leads to deterioration of transparency and strength. Therefore, it is preferable to impregnate the surface treatment agent, resin, and curable compound with a highly compatible solvent so that the white wood after cleaning is not dried and becomes incompatible.
 [無機物質]
 本実施形態の組成物は、木質系構造体に加えて無機物質を含みうる。また、無機物質は無機化合物でありうる。
[Inorganic substances]
The composition of the present embodiment may contain an inorganic substance in addition to the wood-based structure. In addition, the inorganic substance can be an inorganic compound.
 無機物質は特に制限はないが、金属およびそのイオン、酸化物、塩、塩化物もしくはこれらの混合物であることが好ましい。ここで前記金属は1乃至16族の非金属を除いたものを指す。前記金属種は単独もしくは複数元素の組み合わせであっても良い。 The inorganic substance is not particularly limited, but is preferably a metal and its ions, oxides, salts, chlorides or a mixture thereof. Here, the metal refers to a metal excluding non-metals of groups 1 to 16. The metal species may be a single element or a combination of a plurality of elements.
 当該無機物質は当該組成物に機能を付与することを目的として加えられる。前記の機能は、好ましくは当該組成物を設置する空間を清潔な状態に保つ機能であり、具体的には消臭および又は抗菌機能が挙げられる。ここで示す消臭機能とは臭気物質を当該無機物質上で化学的に分解することであり、また、抗菌機能とは微生物の活動を抑制して菌数を初期の状態のまま増加させないことである。 The inorganic substance is added for the purpose of imparting a function to the composition. The above-mentioned function is preferably a function of keeping a space in which the composition is installed in a clean state, and specific examples thereof include a deodorant and / or antibacterial function. The deodorant function shown here is to chemically decompose the odorous substance on the inorganic substance, and the antibacterial function is to suppress the activity of microorganisms and not increase the number of bacteria in the initial state. is there.
 消臭機能を有する物質としては、酸化チタン、酸化ジルコニウム、酸化鉄、硫酸アルミニウム、硫酸銅、炭酸亜鉛、硫酸亜鉛、塩化亜鉛のほかニッケル、スズ、鉛、コバルト、白金、パラジウム、銀、モリブデン、ルテニウム、ストロンチウムなどを含む種々の無機物質が挙げられる。抗菌機能を有する物質としては、銀、亜鉛、銅などの金属や酸化チタンなどが挙げられる。 Substances with deodorizing function include titanium oxide, zirconium oxide, iron oxide, aluminum sulfate, copper sulfate, zinc carbonate, zinc sulfate, zinc chloride, nickel, tin, lead, cobalt, platinum, palladium, silver, molybdenum, etc. Various inorganic substances including ruthenium, strontium and the like can be mentioned. Examples of the substance having an antibacterial function include metals such as silver, zinc and copper, and titanium oxide.
 中でも、無機物質としては、銀、銅、酸化チタンであることが好ましい。 Among them, the inorganic substances are preferably silver, copper and titanium oxide.
 無機物質の好ましい存在形態としては、イオン状、原子状、粒子状である。 Preferable forms of existence of inorganic substances are ionic, atomic, and particulate.
 中でも、無機物質は、木質構造体の表面上で粒子の状態で存在していることが好ましい。この際の平均粒子径としては、0.01~100μm程度であり、好ましくは1~100μmである。平均粒子径は、TEMおよびSEM(好ましくはSEM)などの観察手段により1000個の粒子の粒子径を測定し、算出された平均値(個数基準)である。また、粒子径は、その投影面積に等しい円を仮定したときの直径で表したもの(投影面積円相当径)である。 Above all, it is preferable that the inorganic substance exists in the form of particles on the surface of the wood structure. The average particle size at this time is about 0.01 to 100 μm, preferably 1 to 100 μm. The average particle size is an average value (number basis) calculated by measuring the particle size of 1000 particles by an observation means such as TEM and SEM (preferably SEM). The particle diameter is represented by the diameter assuming a circle equal to the projected area (diameter equivalent to the projected area circle).
 また、無機物質が粒子状である場合、ナノサイズの大きさで存在する形態も好ましい。この場合、無機物質の平均粒子径は、100nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましく、また、1nm以上が好ましく、2nm以上がより好ましく、5nm以上がさらにより好ましい。 Further, when the inorganic substance is in the form of particles, a form existing in a nano-sized size is also preferable. In this case, the average particle size of the inorganic substance is preferably 100 nm or less, more preferably 20 nm or less, further preferably 10 nm or less, preferably 1 nm or more, more preferably 2 nm or more, still more preferably 5 nm or more.
 当該無機物質の当該組成物に対する含有率は10重量ppm乃至5重量%である。当該無機物質の含有率が10重量ppm未満であれば期待する機能(例えば、消臭機能)が得られないおそれがあり、5重量%を上回れば当該組成物の表面光沢や意匠性が損なわれるおそれがある。 The content of the inorganic substance in the composition is 10% by weight to 5% by weight. If the content of the inorganic substance is less than 10 wt ppm, the expected function (for example, deodorant function) may not be obtained, and if it exceeds 5 wt%, the surface gloss and design of the composition are impaired. There is a risk.
 木質系構造体に無機物質を担持させる方法としては特に限定されるものではないが、例えば、液相還元法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの方法が使用できる。また、木質系構造体の表面のカルボン酸をカルボン酸Naに変換し、イオン化傾向の違いを利用して、CuイオンやAgイオンなどの金属イオンを担持させても良い。最も簡便には、木質系構造体に無機物質を含む市販のコーティング剤を塗布すれば良い。前記コーティング剤は木質系構造体に直接塗布しても良いし、木質系構造体を樹脂と組み合わせて強度を向上させた組成物に塗布しても良い。 The method for supporting the inorganic substance on the wood-based structure is not particularly limited, but for example, a liquid phase reduction method, an evaporation dry solid method, a colloid adsorption method, a spray pyrolysis method, and a reverse micelle (microemulsion method). Etc. can be used. Further, the carboxylic acid on the surface of the wood-based structure may be converted into Na carboxylate, and metal ions such as Cu ion and Ag ion may be supported by utilizing the difference in ionization tendency. The simplest method is to apply a commercially available coating agent containing an inorganic substance to the wood-based structure. The coating agent may be applied directly to the wood-based structure, or may be applied to a composition in which the wood-based structure is combined with a resin to improve the strength.
 [顔料]
 本実施形態の組成物は、木質系構造体に加えて顔料を含みうる。
[Pigment]
The composition of the present embodiment may contain a pigment in addition to the wood-based structure.
 木質構造体が顔料を含む、好適には木質構造体の表面に顔料が付着することで、木質構造体に色を付加させることが可能となる。 The wood structure contains a pigment, preferably the pigment adheres to the surface of the wood structure, so that it is possible to add color to the wood structure.
 顔料としては、特に限定されるものではなく、有機顔料でも、無機顔料でも、あるいはそれらの混合物であっても構わない。 The pigment is not particularly limited, and may be an organic pigment, an inorganic pigment, or a mixture thereof.
 無機顔料としては、例えば、アルミナ、二酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、各種無機酸化物顔料、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、シリカ微粉体、炭化ケイ素、窒化ケイ素、炭化ホウ素、炭化タングステン、炭化チタン、酸化セリウム、カーボンブラックなどが挙げられる。さらにこのような無機顔料は、チタンカップリング剤、シランカップリング剤もしくは高級脂肪酸金属塩等の公知の疎水化処理剤により処理されたものであってもよい。 Examples of inorganic pigments include alumina, titanium dioxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, silica sand, clay, mica, silica ash stone, silica soil, and various inorganic oxide pigments. , Chromium oxide, cerium oxide, red iron oxide, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, silica fine powder, silicon carbide, silicon nitride, boron carbide, tungsten carbide, titanium carbide, cerium oxide, Examples include carbon black. Further, such an inorganic pigment may be treated with a known hydrophobizing agent such as a titanium coupling agent, a silane coupling agent or a higher fatty acid metal salt.
 なお、無機顔料は、無機物質であるが、顔料としての機能を有する無機物質は「顔料」とする。 Inorganic pigments are inorganic substances, but inorganic substances having a function as pigments are referred to as "pigments".
 有機顔料としては、例えばネーブルスイエロー、ナフトールイエローS、ハンザーイエローG、ハンザーイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキ等の黄色顔料、キリブデンオレンジ、パーマネントオレンジRK、ベンジジンオレンジG、インダンスレンブリリアントオレンジGK等の橙色顔料、パーマネントレッド4R、リソールレッド、ピラゾロンレッド4R、ウォッチングレッドカルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオミンレーキ、ローダミンレーキB、ブザリンレーキ、ブリリアントカーミンB等の赤色顔料、ファストバイオレットB、メチルバイオレットレーキ等の紫色顔料、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩化物、ファストスカイブルー、インダンスレンブルーBC等の青色顔料、ピグメントグリーンB、マラカイトグリーンレーキ、ファイナルイエログリーンG等の緑色顔料等が挙げられる。 Examples of organic pigments include yellow pigments such as Nabres Yellow, Naftor Yellow S, Hanser Yellow G, Hanzer Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Kinolin Yellow Lake, Permanent Yellow NCG, and Tartradin Lake, and Kiribden. Orange pigments such as orange, permanent orange RK, benzine orange G, indanthrone brilliant orange GK, permanent red 4R, resole red, pyrazolone red 4R, watching red calcium salt, lake red D, brilliant carmine 6B, eomin lake, rhodamin lake B , Red pigments such as buzalin lake, brilliant carmine B, purple pigments such as fast violet B, methyl violet lake, alkaline blue lake, Victoria blue lake, phthalocyanine blue, metal-free phthalocyanine blue, phthalocyanine blue partial chloride, fast sky blue, indanthrone blue Examples thereof include blue pigments such as indanthrone blue BC, pigment green B, malakite green lake, and green pigments such as final yellow green G.
 これら有機顔料においても分散助剤などを用いて分散性を向上させた処理顔料などであってもよい。 These organic pigments may also be treated pigments having improved dispersibility by using a dispersion aid or the like.
 顔料の当該組成物に対する含有率は、所望の機能を発揮させるために適宜設定されるが、通常0.0001~10重量%である。 The content of the pigment in the composition is appropriately set in order to exert a desired function, but is usually 0.0001 to 10% by weight.
 [染料]
 本実施形態の組成物は、木質系構造体に加えて染料を含みうる。
[dye]
The composition of the present embodiment may contain a dye in addition to the wood-based structure.
 木質構造体が染料を含む、好適には木質構造体の表面に染料が付着することで、木質構造体に色を付加させることが可能となる。 The wood structure contains a dye, preferably the dye adheres to the surface of the wood structure, so that it is possible to add color to the wood structure.
 染料としては、アジン系染料、アントラキノン系染料、ペリノン系染料、ローダミン染料等が挙げられ、例えば、C.I.ソルベントブラック5、C.I.ソルベントブラック7、スピリットブラックSB、トルイジンブルー、C.I.ソルベントブルー11、C.I.ソルベントブルー12、C.I.ソルベントブルー35、C.I.ソルベントブルー59、C.I.ソルベントブルー74、1-アミノアントラキノン、2-アミノアントラキノン、ヒドロキシエチルアミノアントラキノン、C.I.ソルベントバイオレット47、ソルベントオレンジ60、ソルベントオレンジ78、ソルベントオレンジ90、ソルベントバイオレット29、ソルベントレッド135、ソルベントレッド162、ソルベントレッド179、ローダミン-Bベースなどが挙げられる。 Examples of the dye include azine dyes, anthraquinone dyes, perinone dyes, rhodamine dyes, and the like. I. Solvent Black 5, C.I. I. Solvent Black 7, Spirit Black SB, Toluidine Blue, C.I. I. Solvent Blue 11, C.I. I. Solvent Blue 12, C.I. I. Solvent Blue 35, C.I. I. Solvent Blue 59, C.I. I. Solvent Blue 74, 1-aminoanthraquinone, 2-aminoanthraquinone, hydroxyethylaminoanthraquinone, C.I. I. Examples thereof include Solvent Violet 47, Solvent Orange 60, Solvent Orange 78, Solvent Orange 90, Solvent Violet 29, Solvent Red 135, Solvent Red 162, Solvent Red 179, Rhodamine-B base and the like.
 染料の当該組成物に対する含有率は、所望の機能を発揮させるために適宜設定されるが、通常0.0001~10重量%である。 The content of the dye in the composition is appropriately set in order to exert the desired function, but is usually 0.0001 to 10% by weight.
 [生体由来材料]
 本実施形態の組成物は、生体由来材料を30重量%以上含むことが好ましい。生体由来材料を30重量%以上含むことで、地球温暖化の原因である石油由来の原料の使用を低減することができ、温暖化対策となる温室効果ガスの削減が可能である。なお、ここでいう生体由来材料とは、バイオマス(再生可能な生物由来の有機性資源で化石資源を除いたもの)を原料に製造された材料を指す。
[Biological material]
The composition of the present embodiment preferably contains 30% by weight or more of a biological material. By containing 30% by weight or more of bio-derived materials, it is possible to reduce the use of petroleum-derived raw materials that cause global warming, and it is possible to reduce greenhouse gases as a measure against global warming. The biological material referred to here refers to a material produced from biomass (renewable biological organic resource excluding fossil resources).
 生体由来材料としては、ポリ乳酸、ポリヒドロキシアルカノエート、バイオポリオレフィン、ナイロン11、ナイロン1010、バイオポリトリメチレンテレフタレート、バイオポリエチレンテレフタレート、バイオポリウレタン、バイオ不飽和ポリエステル、バイオポリカーボネート、ナイロン610、酢酸セルロース系(CA)、バイオポリブチレンサクシネート、バイオエタノールを原料とした化合物、ゼラチン、デンプン等の天然高分子などが挙げられる。 Bio-derived materials include polylactic acid, polyhydroxyalkanoate, biopolyolefin, nylon 11, nylon 1010, biopolytrimethylene terephthalate, biopolyethylene terephthalate, biopolyurethane, biounsaturated polyester, biopolyester, nylon 610, and cellulose acetate. Examples thereof include (CA), biopolybutylene succinate, compounds made from bioethanol, and natural polymers such as gelatin and starch.
 [添加剤]
 上記組成物は、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、非反応性化合物、連鎖移動剤、熱重合開始剤、嫌気重合開始剤、重合禁止剤、無機充填剤、有機充填剤、カップリング剤等の密着向上剤、熱安定剤、防菌・防カビ剤、難燃剤、艶消し剤、消泡剤、レベリング剤、湿潤・分散剤、沈降防止剤、増粘剤・タレ防止剤、色分かれ防止剤、乳化剤、スリップ・スリキズ防止剤、皮張り防止剤、乾燥剤、防汚剤、帯電防止剤、導電剤(静電助剤)、溶媒等を含有してもよい。
[Additive]
The above compositions include antioxidants, UV absorbers, light stabilizers, plasticizers, non-reactive compounds, chain transfer agents, thermal polymerization initiators, anaerobic polymerization initiators, polymerization inhibitors, inorganic fillers, organic fillers. , Adhesion improver such as coupling agent, heat stabilizer, antibacterial / antifungal agent, flame retardant, matting agent, defoaming agent, leveling agent, wetting / dispersing agent, sedimentation inhibitor, thickener / sagging prevention It may contain an agent, a color-coding inhibitor, an emulsifier, an anti-slip / scratch inhibitor, an anti-skin agent, a desiccant, an antifouling agent, an antistatic agent, a conductive agent (electrostatic aid), a solvent and the like.
 [用途]
 本実施形態の組成物は、木質系構造体を利用しているため、軽量であるにもかかわらず、高い強度を有する。また、外観は、白色、無色透明、有色透明、有色など所望の外観に加工することが可能である。ゆえに、本実施形態の組成物は、建築物の構造材、内装材、外装材、自動車、鉄道、船舶の構造材、内装材、外装材、家具などの用途で用いることができる。
[Use]
Since the composition of the present embodiment utilizes a wood-based structure, it has high strength even though it is lightweight. Further, the appearance can be processed into a desired appearance such as white, colorless transparent, colored transparent, and colored. Therefore, the composition of the present embodiment can be used for structural materials, interior materials, exterior materials, automobiles, railways, ship structural materials, interior materials, exterior materials, furniture, and the like.
 以下、実施例により本発明を更に詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。実施例において「部」あるいは「%」の表示を用いる場合があるが、特に断りがない限り、「重量部」あるいは「重量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行われる。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to the following Examples. In the examples, the indication of "parts" or "%" may be used, but unless otherwise specified, it indicates "parts by weight" or "% by weight". Unless otherwise specified, each operation is performed at room temperature (25 ° C.).
 [合成例1]
 本実施例では、スギ(針葉樹)からなる直方体(50mm×10mm×2mm)のロータリーレース切削された木材原材料(木材)を5本準備した。先ず、エチレングリコールと50重量%硫酸を重量比99:1(溶液中の酸濃度0.5重量%)で混合した溶液を準備した。密閉容器内にて、当該溶液120mlに木材原材料を浸漬し、ポンピングをすることにより、木材原材料中の空気を溶媒と置換した。つぎに、木材原材料を溶液ごと、150℃(雰囲気温度)で1時間処理した(第1の工程)。
[Synthesis Example 1]
In this embodiment, five rectangular parallelepiped (50 mm × 10 mm × 2 mm) rotary lace-cut wood raw materials (wood) made of sugi (conifer) were prepared. First, a solution was prepared in which ethylene glycol and 50% by weight sulfuric acid were mixed at a weight ratio of 99: 1 (acid concentration in the solution was 0.5% by weight). The wood raw material was immersed in 120 ml of the solution in a closed container and pumped to replace the air in the wood raw material with a solvent. Next, the wood raw material was treated together with the solution at 150 ° C. (atmospheric temperature) for 1 hour (first step).
 処理後、木材原材料を取り出し、エタノールで繰り返し洗浄した。また、酢酸0.16ml、亜塩素酸ソーダ0.8gおよび水120mlからなる溶液を準備した。そして、エタノール洗浄後の木材原材料を当該溶液に浸漬した。温度条件を70℃とし、浸漬時間を1時間とした(第2の工程)。本実施例では、第2の工程を8回、すなわち1時間の浸漬時間が経過した後、酢酸0.16mlおよび亜塩素酸ソーダ0.8gを加え更に1時間処理する工程を7回実施した(浸漬時間、合計8時間)。 After the treatment, the wood raw materials were taken out and washed repeatedly with ethanol. In addition, a solution consisting of 0.16 ml of acetic acid, 0.8 g of sodium chlorate and 120 ml of water was prepared. Then, the wood raw material after washing with ethanol was immersed in the solution. The temperature condition was 70 ° C. and the immersion time was 1 hour (second step). In this example, the second step was carried out eight times, that is, after the soaking time of 1 hour had elapsed, 0.16 ml of acetic acid and 0.8 g of sodium chlorate were added, and the step of further treating for 1 hour was carried out 7 times (). Soaking time, total 8 hours).
 そして、完全に漂白された木材を取り出し、水で洗浄することによって、リグニン成分が除去されるとともに、セルロースとへミセルロースからなる構造を維持した白い木材(木質系構造体)を得ることができた。未処理の木材および白い木材(木質系構造体)の寸法を計測したところ以下のようになった(表1)。この結果から、白い木材(木質系構造体)は、未処理の木材の外形形状・寸法を維持していることが明らかになった。 Then, by taking out the completely bleached wood and washing it with water, it is possible to obtain a white wood (woody structure) in which the lignin component is removed and the structure composed of cellulose and hemicellulose is maintained. It was. The dimensions of untreated wood and white wood (wooden structure) were measured and found as follows (Table 1). From this result, it was clarified that the white wood (wooden structure) maintains the outer shape and dimensions of the untreated wood.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、木材ではリグニン量は14%であったのに対して白い木材(木質系構造体)ではリグニン量は0.1重量%未満であった。木材のセルロース量はグルコース含有量(重量%)に0.9をかけた38重量%であり、白い木材(木質系構造体)のセルロース量はグルコース含有量(重量%)に0.9をかけた87重量%であった。木質原料のヘミセルロース量は、キシロース、アラビノース、マンノース、ガラクトース含有量(重量%)から17重量%であったが、白い木材(木質系構造体)のヘミセルロース量は2重量%となった。 In addition, the amount of lignin in wood was 14%, whereas the amount of lignin in white wood (wooden structure) was less than 0.1% by weight. The cellulose content of wood is 38% by weight, which is obtained by multiplying the glucose content (% by weight) by 0.9, and the cellulose content of white wood (woody structure) is obtained by multiplying the glucose content (% by weight) by 0.9. It was only 87% by weight. The amount of hemicellulose in the wood raw material was 17% by weight from the contents (% by weight) of xylose, arabinose, mannose, and galactose, while the amount of hemicellulose in white wood (woody structure) was 2% by weight.
 また、合成例1の白い木材(木質系構造体)のセルロースの粘度平均重合度は1100、X線回折による200面の半値全幅(FWHM)の値は、2.50(未処理は3.18)、最大荷重は27Nであった。白い木材(木質系構造体)の白色度はL*:94.0、a*:-0.3、b*:1.0(未処理:L*:80.1、a*:3.4、b*:17.7)であった。 The viscosity average degree of polymerization of cellulose in the white wood (woody structure) of Synthesis Example 1 is 1100, and the full width at half maximum (FWHM) of 200 faces by X-ray diffraction is 2.50 (3.18 for untreated). ), The maximum load was 27N. The whiteness of white wood (woody structure) is L *: 94.0, a *: -0.3, b *: 1.0 (untreated: L *: 80.1, a *: 3.4. , B *: 17.7).
 さらに、木質系構造体は、X線回折によって得られるX線繊維図において、同心円状の回折像中に複数の回折スポットが存在した。 Furthermore, in the wood-based structure, in the X-ray fiber diagram obtained by X-ray diffraction, a plurality of diffraction spots were present in the concentric diffraction images.
 [合成例2]
 スギ(針葉樹)からなる直方体(50mm×10mm×1mm)のロータリーレース切削された木材原材料(木材)について、5本準備した。先ず、エチレングリコールと50重量%硫酸を重量比99:1(溶液中の酸濃度0.5重量%)で混合した溶液を準備した。密閉容器内にて、当該溶液120mlに木材原材料を浸漬し、ポンピングをすることにより、木材原材料中の空気を溶媒と置換した。つぎに、木材原材料を溶液ごと、145℃(雰囲気温度)で1時間処理した(第1の工程)。
[Synthesis Example 2]
Five rotary lace-cut wood raw materials (wood) of a rectangular parallelepiped (50 mm x 10 mm x 1 mm) made of sugi (conifer) were prepared. First, a solution was prepared in which ethylene glycol and 50% by weight sulfuric acid were mixed at a weight ratio of 99: 1 (acid concentration in the solution was 0.5% by weight). The wood raw material was immersed in 120 ml of the solution in a closed container and pumped to replace the air in the wood raw material with a solvent. Next, the wood raw material was treated together with the solution at 145 ° C. (atmospheric temperature) for 1 hour (first step).
 処理後、木材原材料を取り出し、エタノールで繰り返し洗浄した。また、酢酸0.16ml、亜塩素酸ソーダ0.8gおよび水120mlからなる溶液を準備した。そして、エタノール洗浄後の木材原材料を当該溶液に浸漬した。温度条件を70℃とし、浸漬時間を1時間とした(第2の工程)。本実施例では、第2の工程を3回、すなわち1時間の浸漬時間が経過した後、酢酸0.16mlおよび亜塩素酸ソーダ0.8gを加え更に1時間処理する工程を2回実施した(浸漬時間、合計3時間)。 After the treatment, the wood raw materials were taken out and washed repeatedly with ethanol. In addition, a solution consisting of 0.16 ml of acetic acid, 0.8 g of sodium chlorate and 120 ml of water was prepared. Then, the wood raw material after washing with ethanol was immersed in the solution. The temperature condition was 70 ° C. and the immersion time was 1 hour (second step). In this example, the second step was carried out three times, that is, after the soaking time of 1 hour had elapsed, 0.16 ml of acetic acid and 0.8 g of sodium chlorate were added, and the step of further treating for 1 hour was carried out twice (). Soaking time, total 3 hours).
 そして、完全に漂白された木材を取り出し、水で洗浄することによって、リグニン成分が除去されるとともに、セルロースとへミセルロースからなる構造を維持した白い木材(木質系構造体)を得ることができ、合成例2の白い木材(木質系構造体)を作製した。未処理の木材および白い木材(木質系構造体)の寸法を計測したところ、白い木材(木質系構造体)は、未処理の木材の外形形状・寸法を維持していた。また、白い木材(木質系構造体)のリグニン量は0.1重量%未満、セルロース量は、87重量%、ヘミセルロース量は2重量%、セルロースの粘度平均重合度は1100であった。さらに、木質系構造体は、X線回折によって得られるX線繊維図において、同心円状の回折像中に複数の回折スポットが存在した。 Then, by taking out the completely bleached wood and washing it with water, it is possible to obtain a white wood (woody structure) in which the lignin component is removed and the structure composed of cellulose and hemicellulose is maintained. , The white wood (wooden structure) of Synthesis Example 2 was prepared. When the dimensions of the untreated wood and the white wood (wooden structure) were measured, the white wood (wooden structure) maintained the outer shape and dimensions of the untreated wood. The amount of lignin in white wood (woody structure) was less than 0.1% by weight, the amount of cellulose was 87% by weight, the amount of hemicellulose was 2% by weight, and the average degree of polymerization of cellulose was 1100. Further, in the wood-based structure, in the X-ray fiber diagram obtained by X-ray diffraction, a plurality of diffraction spots were present in the concentric diffraction images.
 [実施例1]
 合成例1で得られた白い木材(50mm×10mm×2mm)1本を水に含浸した後、溶媒を軽くぬぐった。その後、50%エタノール水溶液50mLに試料を2回浸漬した後、無水エタノール50mLに浸漬し(3回)、更に、メチルエチルケトン50mLに浸漬した(3回)。なお、この操作は、疎水性の処理を行うために硬化性化合物を添加する前に浸透しやすい溶剤(メチルエチルケトン)で処理するものであり、水とメチルエチルケトンは混ざらないので、メチルエチルケトン処理の前に両方が混ざるエタノールにまずは置換させている。その後、脂環式酸無水物(新日本理化社製、リカシッドMH-700)50mLに浸漬した(3回)。それぞれにおいて、試料を軽く振りながら10~15分ほど浸漬した。
[Example 1]
After impregnating one white wood (50 mm × 10 mm × 2 mm) obtained in Synthesis Example 1 with water, the solvent was lightly wiped off. Then, the sample was immersed in 50 mL of a 50% aqueous ethanol solution twice, then immersed in 50 mL of absolute ethanol (3 times), and further immersed in 50 mL of methyl ethyl ketone (3 times). In addition, this operation is to treat with a solvent (methyl ethyl ketone) that easily penetrates before adding the curable compound for hydrophobic treatment, and since water and methyl ethyl ketone are not mixed, both before the methyl ethyl ketone treatment. First of all, it is replaced with ethanol mixed with. Then, it was immersed in 50 mL of alicyclic acid anhydride (manufactured by New Japan Chemical Co., Ltd., Ricacid MH-700) (3 times). In each case, the sample was soaked for 10 to 15 minutes while shaking lightly.
 脂環式酸無水物に浸漬した後で、減圧(0.1kPa未満)、超音波処理を30分ずつ2回繰り返した。この操作により、木質系構造体表面と脂環式酸無水物を近づけるために、空気と溶媒を除去して、出来る限り脂環式酸無水物のみにすることが可能となる。120℃で1時間加熱した。その後、メチルエチルケトン50mLに浸漬した(3回)。加熱した木材サンプルを減圧乾燥し、赤外吸収スペクトルを評価したところ、1710cm-1のカルボン酸のピークが増大し、3340cm-1の水酸基のピークが低減し、木材表面にカルボン酸が生成していることが示唆された。 After immersing in the alicyclic acid anhydride, depressurization (less than 0.1 kPa) and sonication were repeated twice for 30 minutes each. By this operation, in order to bring the surface of the wood-based structure close to the alicyclic acid anhydride, air and the solvent can be removed to make only the alicyclic acid anhydride as much as possible. It was heated at 120 ° C. for 1 hour. Then, it was immersed in 50 mL of methyl ethyl ketone (three times). When the heated wood sample was dried under reduced pressure and the infrared absorption spectrum was evaluated, the peak of 1710 cm -1 carboxylic acid increased, the peak of 3340 cm -1 hydroxyl group decreased, and carboxylic acid was generated on the wood surface. It was suggested that there was.
 [実施例2]
 合成例2で得られた水を含浸した白い木材(50mm×10mm×1mm)を用いて、実施例1と同様に脂環式酸無水物を用いて脂環カルボン酸が表面に生成した白い木材(組成物)を作製した。
[Example 2]
Using the water-impregnated white wood (50 mm × 10 mm × 1 mm) obtained in Synthesis Example 2, alicyclic carboxylic acid was formed on the surface of the white wood using an alicyclic acid anhydride as in Example 1. (Composition) was prepared.
 [実施例3:樹脂含浸+圧縮]
 脂環式エポキシ化合物(ダイセル社製、セロキサイド2021P)30.7g、脂環式酸無水物(新日本理化社製、リカシッドMH-700)19.3g、硬化触媒(四国化成社製、2E-4MZ)0.5gおよびメチルエチルケトン21.4gを室温で混合し、樹脂組成物を得た。
[Example 3: Resin impregnation + compression]
30.7 g of alicyclic epoxy compound (Ceroxide 2021P, manufactured by Daicel), 19.3 g of alicyclic acid anhydride (Recasid MH-700, manufactured by New Japan Chemical Co., Ltd.), curing catalyst (2E-4MZ, manufactured by Shikoku Kasei Co., Ltd.) ) 0.5 g and 21.4 g of methyl ethyl ketone were mixed at room temperature to obtain a resin composition.
 実施例1で作製した白い木材(組成物)を上記で得られた樹脂組成物に時々撹拌しながら浸漬した(1時間ずつ、3回)。更に、同量の樹脂組成物に新たに交換した後、減圧下(0.1kPa)に20分間静置した後、超音波処理を30分間行った。これを2回繰り返した。 The white wood (composition) prepared in Example 1 was immersed in the resin composition obtained above with occasional stirring (1 hour each, 3 times). Further, after newly exchanging with the same amount of resin composition, the mixture was allowed to stand under reduced pressure (0.1 kPa) for 20 minutes, and then ultrasonically treated for 30 minutes. This was repeated twice.
 樹脂組成物を含浸した白い木材表面の樹脂組成物を軽くぬぐって、110℃で30分加熱した後、50μm厚みのポリエチレンテレフタレートフィルムに加熱乾燥した樹脂含浸した白い木材を挟み込み、加熱加圧含浸装置を用い、0.5MPa、130℃、30分間硬化し、合成例1の白い木材がマトリックスとなった透明な組成物(厚み0.8mm)を得た。 The resin composition on the surface of white wood impregnated with the resin composition is lightly wiped, heated at 110 ° C. for 30 minutes, and then the heat-dried resin-impregnated white wood is sandwiched between a polyethylene terephthalate film having a thickness of 50 μm. Was cured at 0.5 MPa at 130 ° C. for 30 minutes to obtain a transparent composition (thickness 0.8 mm) in which the white wood of Synthesis Example 1 was used as a matrix.
 この組成物の波長500nmにおける透過率は72%であり、白い木材に比べて最大曲げ荷重は高い値であった。 The transmittance of this composition at a wavelength of 500 nm was 72%, and the maximum bending load was higher than that of white wood.
 なお、組成物の透過率および曲げ荷重は以下のように測定した。 The transmittance and bending load of the composition were measured as follows.
 <透過率>
 日本分光製紫外可視赤外分光光度計(島津社製、V-700 series)を用いて、25℃で波長500nmにおける透過率を測定した。
<Transmittance>
The transmittance at 25 ° C. and a wavelength of 500 nm was measured using an ultraviolet-visible-infrared spectrophotometer manufactured by JASCO Corporation (V-700 series manufactured by Shimadzu Corporation).
 <曲げ荷重(破断強度)>
 インストロン万能試験機(インストロンジャパン製、1185型)を用いて、3点曲げ強度を測定し、曲げ応力で最大曲げ荷重を破断強度として評価した。
<Bending load (breaking strength)>
The three-point bending strength was measured using an Instron universal testing machine (manufactured by Instron Japan, type 1185), and the maximum bending load was evaluated as the breaking strength by the bending stress.
 [実施例4:樹脂含浸+圧縮]
 脂環式エポキシ化合物(ダイセル社製、セロキサイド2021P)30.7g、脂環式酸無水物(新日本理化社製、リカシッドMH-700)19.3g、硬化触媒(四国化成社製、2E-4MZ)0.5gおよびメチルエチルケトン21.4gを室温で混合し、樹脂組成物を得た。
[Example 4: Resin impregnation + compression]
30.7 g of alicyclic epoxy compound (Ceroxide 2021P, manufactured by Daicel), 19.3 g of alicyclic acid anhydride (Recasid MH-700, manufactured by New Japan Chemical Co., Ltd.), curing catalyst (2E-4MZ, manufactured by Shikoku Kasei Co., Ltd.) ) 0.5 g and 21.4 g of methyl ethyl ketone were mixed at room temperature to obtain a resin composition.
 実施例2で作製した白い木材(組成物)を上記で得られた樹脂組成物に時々撹拌しながら浸漬した(1時間ずつ、3回)。更に、同量の前記組成物に新たに交換した後、減圧下(0.1kPa)に20分間静置した後、超音波処理を30分間行った。これを2回繰り返した。 The white wood (composition) prepared in Example 2 was immersed in the resin composition obtained above with occasional stirring (1 hour each, 3 times). Further, after newly exchanging with the same amount of the composition, the mixture was allowed to stand under reduced pressure (0.1 kPa) for 20 minutes, and then ultrasonically treated for 30 minutes. This was repeated twice.
 樹脂組成物を含浸した白い木材表面の樹脂組成物を軽くぬぐって、110℃で30分加熱した後、50μm厚みのポリエチレンテレフタレートフィルムに加熱乾燥した樹脂含浸した白い木材を挟み込み、加熱加圧含浸装置を用い、0.5MPa、130℃、30分間硬化し、合成例1の白い木材がマトリックスとなった透明な成型物(硬化物)(厚み0.4mm)を得た。 Lightly wipe the resin composition on the surface of white wood impregnated with the resin composition, heat it at 110 ° C. for 30 minutes, and then sandwich the heat-dried resin-impregnated white wood in a polyethylene terephthalate film with a thickness of 50 μm. Was cured at 0.5 MPa at 130 ° C. for 30 minutes to obtain a transparent molded product (cured product) (thickness 0.4 mm) in which the white wood of Synthesis Example 1 was used as a matrix.
 この組成物の波長500nmにおける透過率は80%、白い木材に比べて最大曲げ荷重は高い値であった。 The transmittance of this composition at a wavelength of 500 nm was 80%, and the maximum bending load was higher than that of white wood.
 [実施例5:樹脂含浸]
 脂環式エポキシ化合物(ダイセル社製、セロキサイド2021P)30.7g、脂環式酸無水物(新日本理化社製、リカシッドMH-700)19.3g、および硬化触媒(四国化成社製、2E-4MZ)0.5gを室温で混合し、樹脂組成物を得た。
[Example 5: Resin impregnation]
30.7 g of alicyclic epoxy compound (Ceroxide 2021P, manufactured by Daicel), 19.3 g of alicyclic acid anhydride (Recasid MH-700, manufactured by New Japan Chemical Co., Ltd.), and curing catalyst (2E-, manufactured by Shikoku Kasei). 0.5 g of 4MZ) was mixed at room temperature to obtain a resin composition.
 実施例2で作製した白い木材(組成物)を上記で得られた樹脂組成物に時々撹拌しながら浸漬した(1時間ずつ、3回)。更に、同量の前記組成物に新たに交換した後、減圧下(0.1kPa)に20分間静置した後、超音波処理を30分間行った。これを2回繰り返した。 The white wood (composition) prepared in Example 2 was immersed in the resin composition obtained above with occasional stirring (1 hour each, 3 times). Further, after newly exchanging with the same amount of the composition, the mixture was allowed to stand under reduced pressure (0.1 kPa) for 20 minutes, and then ultrasonically treated for 30 minutes. This was repeated twice.
 樹脂組成物を含浸した白い木材表面の樹脂組成物を軽くぬぐって、50μm厚みのポリエチレンテレフタレートフィルムに加熱乾燥した樹脂含浸した白い木材を挟み込み、加熱加圧含浸装置を用い、15gの錘により加圧しながら、130℃、30分間硬化し、合成例1の白い木材がマトリックスとなった透明な成型物(硬化物)(厚み1.0mm)を得た。 Lightly wipe the resin composition on the surface of the white wood impregnated with the resin composition, sandwich the heat-dried resin-impregnated white wood in a polyethylene terephthalate film with a thickness of 50 μm, and pressurize with a 15 g weight using a heat-pressurized impregnation device. However, it was cured at 130 ° C. for 30 minutes to obtain a transparent molded product (cured product) (thickness 1.0 mm) in which the white wood of Synthesis Example 1 was used as a matrix.
 白い木材に比べて最大曲げ荷重は高い値であった。 The maximum bending load was higher than that of white wood.
 [実施例6:樹脂含浸]
 合成例2で得られた白い木材(50mm×10mm×1mm)1本を水に含浸した後、溶媒を軽くぬぐった。その後、50%エタノール水溶液50mLに試料を2回浸漬した後、無水エタノール50mLに浸漬した(3回)。それぞれにおいて、試料を軽く振りながら10~15分ほど浸漬した。その後、白い木材を「アクリル樹脂(アルドリッチ社製、トリメチロ-ルプロパンEO付加トリアクリレ-ト、Mn912)49.5g、および、硬化触媒(光重合開始剤)(東京化成工業社製、2-ヒドロキシ-2-メチルプロピオフェノン)0.5gを室温混合した樹脂組成物」に遮光下にて時々撹拌しながら浸漬した(1時間ずつ、3回)。更に、同量の前記組成物に新たに交換した後、減圧下(0.1kPa)に20分間静置した後、超音波処理を30分間行った。これを2回繰り返した。
[Example 6: Resin impregnation]
After impregnating one white wood (50 mm × 10 mm × 1 mm) obtained in Synthesis Example 2 with water, the solvent was lightly wiped off. Then, the sample was immersed in 50 mL of a 50% ethanol aqueous solution twice, and then immersed in 50 mL of absolute ethanol (three times). In each case, the sample was soaked for 10 to 15 minutes while shaking lightly. After that, 49.5 g of acrylic resin (Trimethylol Propane EO-added Triacrylate, Mn912, manufactured by Aldrich) and a curing catalyst (photopolymerization initiator) (manufactured by Tokyo Chemical Industry Co., Ltd., 2-hydroxy-2) were added to the white wood. -Methylpropiophenone) 0.5 g was immersed in a resin composition mixed at room temperature under light shielding with occasional stirring (1 hour each, 3 times). Further, after newly exchanging with the same amount of the composition, the mixture was allowed to stand under reduced pressure (0.1 kPa) for 20 minutes, and then ultrasonically treated for 30 minutes. This was repeated twice.
 樹脂組成物を含浸した白い木材表面の樹脂組成物を軽くぬぐって、スライドガラスに挟み込み、片面ずつ10秒間交互に6回、UV(波長365nm)照射(ウシオ社製、UV照射装置PM25C-100、30mW/cm)し、合成例2の白い木材がマトリックスとなった透明な成型物(硬化物)(厚み1mm)を得た。 Lightly wipe the resin composition on the white wood surface impregnated with the resin composition, sandwich it between slide glasses, and irradiate each side with UV (wavelength 365 nm) 6 times alternately for 10 seconds (UV irradiation device PM25C-100, manufactured by Ushio). 30 mW / cm 2 ) was performed to obtain a transparent molded product (cured product) (thickness 1 mm) in which the white wood of Synthesis Example 2 was used as a matrix.
 [実施例7:無機物質]
 実施例1で作製した脂環式酸無水物を用いて脂環カルボン酸が表面に生成した白い木材の溶媒を軽くぬぐって、無水エタノール50mLに2回浸漬した後、50%エタノール水溶液50mLに試料を2回浸漬し、更に、水50mLに浸漬した(3回)。0.1NのNaOH水溶液を用いて中和した後、pH7になるまで水洗し、木材をろ過、自然乾燥した。その後、10重量%CuCl水溶液に浸漬した後、pH7になるまで水洗し、その後、木材をエタノールに浸漬した。それぞれにおいて、試料を軽く振りながら10~15分ほど浸漬した。得られた木材を減圧乾燥し、Cu粒子が担持した木材を得た。SEMのEDS解析像より木材の表面にCu粒子(酸素基準で原子数濃度4.7%)が担持していることを確認した。
[Example 7: Inorganic substance]
Using the alicyclic acid anhydride prepared in Example 1, lightly wipe the solvent of the white wood on which the alicyclic carboxylic acid was generated on the surface, immerse it in 50 mL of absolute ethanol twice, and then soak the sample in 50 mL of a 50% ethanol aqueous solution. Was immersed twice, and further immersed in 50 mL of water (3 times). After neutralization with a 0.1 N NaOH aqueous solution, the wood was washed with water until the pH reached 7, and the wood was filtered and air-dried. Then, it was immersed in a 10 wt% CuCl 2 aqueous solution, washed with water until the pH reached 7, and then the wood was immersed in ethanol. In each case, the sample was soaked for 10 to 15 minutes while shaking lightly. The obtained wood was dried under reduced pressure to obtain wood on which Cu particles were supported. From the EDS analysis image of SEM, it was confirmed that Cu particles (atomic number concentration 4.7% based on oxygen) were supported on the surface of the wood.
 [実施例8:無機物質]
 実施例1で作製した脂環式酸無水物を用いて脂環カルボン酸が表面に生成した白い木材の溶媒を軽くぬぐって、無水エタノール50mLに2回浸漬した後、50%エタノール水溶液50mLに試料を2回浸漬し、更に、水50mLに浸漬した(3回)。0.1NのNaOH水溶液を用いて中和した後、pH7になるまで水洗し、木材をろ過、自然乾燥した。その後、10重量%AgNO水溶液に浸漬した後、pH7になるまで水洗し、エタノールに浸漬した。それぞれにおいて、試料を軽く振りながら10~15分ほど浸漬した。得られた木材を減圧乾燥し、Ag粒子が担持した木材を得た。SEMのEDS解析像より木材の表面にAg粒子(酸素基準で原子数濃度6.8%)が担持していることを確認した。
[Example 8: Inorganic substance]
Using the alicyclic acid anhydride prepared in Example 1, lightly wipe the solvent of the white wood on which the alicyclic carboxylic acid was generated on the surface, immerse it in 50 mL of absolute ethanol twice, and then soak the sample in 50 mL of a 50% ethanol aqueous solution. Was immersed twice, and further immersed in 50 mL of water (3 times). After neutralization with a 0.1 N NaOH aqueous solution, the wood was washed with water until the pH reached 7, and the wood was filtered and air-dried. Then, it was immersed in a 10 wt% AgNO 3 aqueous solution, washed with water until the pH reached 7, and immersed in ethanol. In each case, the sample was soaked for 10 to 15 minutes while shaking lightly. The obtained wood was dried under reduced pressure to obtain wood on which Ag particles were supported. From the EDS analysis image of SEM, it was confirmed that Ag particles (atomic number concentration 6.8% based on oxygen) were supported on the surface of the wood.
 [実施例9:染料]
 トルイジンブルー(WALDECK社製、トルイジンブルーO)を水で希釈し、0.00025重量%のトルイジンブルー(TB)水溶液を得た。実施例1で作製した脂環式酸無水物を用いて脂環カルボン酸が表面に生成した白い木材を50gのTB溶液に15分間浸漬した。TB溶液の透過率が向上したことから、TB溶液中のトルイジンブルーが減少していることが分かった。また、木目があり(元の木目が残っており)色素が吸着した青色の木材(組成物)が得られた。
[Example 9: Dye]
Toluidine blue (manufactured by WALDECK, toluidine blue O) was diluted with water to obtain a 0.00025 wt% toluidine blue (TB) aqueous solution. Using the alicyclic acid anhydride prepared in Example 1, white wood having an alicyclic carboxylic acid formed on the surface was immersed in 50 g of a TB solution for 15 minutes. It was found that the toluidine blue in the TB solution was reduced because the transmittance of the TB solution was improved. In addition, a blue wood (composition) having a grain (the original grain remains) and adsorbing the pigment was obtained.
 [実施例10:染料]
 合成例1で得られた白い木材(50mm×10mm×2mm)1本を水に含浸した後、溶媒を軽くぬぐい、60重量%エタノール水溶液100mLに試料を1回浸漬した後、水100mLに浸漬した(2回)。
[Example 10: Dye]
One white wood (50 mm × 10 mm × 2 mm) obtained in Synthesis Example 1 was impregnated with water, the solvent was lightly wiped off, the sample was immersed once in 100 mL of a 60 wt% ethanol aqueous solution, and then immersed in 100 mL of water. (Twice).
 染料としてアントラキノン系ブルー(三協化学工業株式会社製)を使用し、これを水で希釈し0.01重量%のアントラキノン系ブルー(AB)水溶液500gを得た。上記により水に2回浸漬した後の白い木材について、表面の水を軽くぬぐった後、60℃に温められたAB水溶液に浸漬した。 Anthraquinone blue (manufactured by Sankyo Chemical Industry Co., Ltd.) was used as a dye, and this was diluted with water to obtain 500 g of an 0.01% by weight anthraquinone blue (AB) aqueous solution. The white wood after being immersed in water twice as described above was lightly wiped with water on the surface and then immersed in an AB aqueous solution warmed to 60 ° C.
 この水溶液に硫酸ナトリウム(富士フイルム和光純薬株式会社製)を10g溶かし、その後、10分おきに炭酸ナトリウム(富士フイルム和光純薬株式会社製)を5gずつ、5回(合計25g)投入を行った。 10 g of sodium sulfate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is dissolved in this aqueous solution, and then 5 g of sodium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is added 5 times (25 g in total) every 10 minutes. It was.
 最後の投入から30分間後、上記により得られた青色の木材を、95℃の熱水500gで15分間処理し、この操作を2度行い、吸着していない染料の除去を行ない、色素が吸着した青色の木材(組成物)を得た。 After 30 minutes from the last injection, the blue wood obtained above is treated with 500 g of hot water at 95 ° C. for 15 minutes, and this operation is performed twice to remove the dye that has not been adsorbed, and the dye is adsorbed. Blue wood (composition) was obtained.
 なお、熱水処理後の青色の木材をエタノールに浸漬させたところ、1週間後も、木材は青色のままであり、また、溶媒に変色はなく透明のままであった。このことから、経時変化することなく、色素が白い木材に吸着していることを確認した。 When the blue wood after hot water treatment was immersed in ethanol, the wood remained blue even after one week, and the solvent remained transparent without discoloration. From this, it was confirmed that the pigment was adsorbed on the white wood without changing with time.
 [実施例11:生分解性樹脂/生体由来材料]
 合成例1で得られた白い木材を以下のように凍結乾燥した。
[Example 11: Biodegradable resin / biological material]
The white wood obtained in Synthesis Example 1 was freeze-dried as follows.
 凍結乾燥:50%エタノール水溶液に試料を浸漬した後、順に70%エタノール水溶液、90%エタノール水溶液、95%エタノール水溶液、99.5%エタノール水溶液、無水エタノール(3回)のそれぞれに試料を10~15分ほど浸漬した。その後、試料を無水エタノール:t-ブチルアルコール=1:1で15~30分ほど浸漬し、さらに、t-ブチルアルコールに15分以上浸漬した。この操作を3回繰り返した。サンプルから溶媒を軽くぬぐって、冷蔵庫に15分以上保存して凍結乾燥を行った。 Freeze-drying: After immersing the sample in a 50% ethanol aqueous solution, 10 to 10 samples are placed in each of a 70% ethanol aqueous solution, a 90% ethanol aqueous solution, a 95% ethanol aqueous solution, a 99.5% ethanol aqueous solution, and absolute ethanol (3 times). Soaked for about 15 minutes. Then, the sample was immersed in absolute ethanol: t-butyl alcohol = 1: 1 for about 15 to 30 minutes, and further immersed in t-butyl alcohol for 15 minutes or more. This operation was repeated 3 times. The solvent was lightly wiped from the sample and stored in a refrigerator for 15 minutes or more for freeze-drying.
 次いで、酢酸セルロース(アルドリッチ社製、Mn50000)6gをジメチルスルホキシド48gに溶解させ、セルロース溶液を得た。凍結乾燥した白い木材をセルロース溶液に浸漬させ、減圧下(0.1kPa)に20分間静置した後、超音波処理を30分間行った。これを2回繰り返した。得られた酢酸セルロース含浸木材の表面の溶液を拭き取り、該木材を0.1NのNaOH水溶液に浸漬させ、24時間後にpH7まで水で洗浄し、エタノールで洗浄後に減圧乾燥し、セルロースを内包した白い木材(組成物)を得た。得られた白い木材は、処理前の白い木材に比べて、最大荷重が高いものとなった。木材中、酢酸セルロース由来のアモルファスセルロースの含有量は46.3重量%である。組成物中のアモルファスセルロースの含有量は、含浸前後の重量変化によって測定した。また、木材の分析と同様に組成物の各成分を分解、及び/又は、抽出して、HPLC等で同定することによって含有量を計算することが可能である。 Next, 6 g of cellulose acetate (Mn50000 manufactured by Aldrich) was dissolved in 48 g of dimethyl sulfoxide to obtain a cellulose solution. The freeze-dried white wood was immersed in a cellulose solution and allowed to stand under reduced pressure (0.1 kPa) for 20 minutes, and then ultrasonically treated for 30 minutes. This was repeated twice. The solution on the surface of the obtained cellulose acetate-impregnated wood was wiped off, the wood was immersed in a 0.1 N NaOH aqueous solution, washed with water to pH 7 after 24 hours, washed with ethanol, dried under reduced pressure, and white containing cellulose. Wood (composition) was obtained. The obtained white wood had a higher maximum load than the white wood before treatment. The content of amorphous cellulose derived from cellulose acetate in wood is 46.3% by weight. The content of amorphous cellulose in the composition was measured by the weight change before and after impregnation. Further, it is possible to calculate the content by decomposing and / or extracting each component of the composition and identifying it by HPLC or the like as in the analysis of wood.
 [実施例12](生分解性樹脂/生体由来材料)
 合成例1で得られた白い木材を実施例11と同様に凍結乾燥した。ポリ乳酸(アルドリッチ社製、ポリ(D,L-ラクチド)Mn10000)4gをジクロロメタン12gに溶解させ、ポリ乳酸溶液を得た。凍結乾燥した白い木材をポリ乳酸溶液に浸漬させ、超音波を30分間行った。これを2回繰り返した。得られたポリ乳酸含浸木材を減圧乾燥し、ポリ乳酸を内包した白い木材(組成物)を得た。得られた白い木材は、処理前の白い木材に比べて、最大荷重が高いものとなった。木材中、ポリ乳酸の含有量は67.7重量%である。組成物中のポリ乳酸の含有量は、含浸前後の重量変化によって測定した。また、木材の分析と同様に組成物の各成分を分解、及び/又は、抽出して、HPLC等で同定する事によって含有量を計算することが可能である。
[Example 12] (Biodegradable resin / biological material)
The white wood obtained in Synthesis Example 1 was freeze-dried in the same manner as in Example 11. 4 g of polylactic acid (manufactured by Aldrich, poly (D, L-lactide) Mn10000) was dissolved in 12 g of dichloromethane to obtain a polylactic acid solution. The freeze-dried white wood was immersed in a polylactic acid solution and ultrasonically performed for 30 minutes. This was repeated twice. The obtained polylactic acid-impregnated wood was dried under reduced pressure to obtain a white wood (composition) containing polylactic acid. The obtained white wood had a higher maximum load than the white wood before treatment. The content of polylactic acid in wood is 67.7% by weight. The content of polylactic acid in the composition was measured by the weight change before and after impregnation. Further, it is possible to calculate the content by decomposing and / or extracting each component of the composition and identifying it by HPLC or the like as in the analysis of wood.
 [比較例1]
 合成例1の白い木材を110℃で30分加熱した後、50μm厚みのポリエチレンテレフタレートフィルムに加熱乾燥した白い木材を挟み込み、加熱加圧含浸装置を用い、0.5MPa、130℃、30分間加熱圧縮した。この組成物の波長500nmにおける透過率は0%、最大曲げ荷重は実施例3~6の樹脂含浸木材より小さい値であった。
[Comparative Example 1]
After heating the white wood of Synthesis Example 1 at 110 ° C. for 30 minutes, the white wood dried by heating is sandwiched between polyethylene terephthalate films having a thickness of 50 μm, and heat-compressed at 0.5 MPa, 130 ° C. for 30 minutes using a heat-pressurizing impregnation device. did. The transmittance of this composition at a wavelength of 500 nm was 0%, and the maximum bending load was smaller than that of the resin-impregnated wood of Examples 3 to 6.
 [比較例2]
 合成例2の白い木材を110℃で30分加熱した後、50μm厚みのポリエチレンテレフタレートフィルムに加熱乾燥した白い木材を挟み込み、加熱加圧含浸装置を用い、0.5MPa、130℃、30分間加熱圧縮した。この組成物の波長500nmにおける透過率は0%、最大曲げ荷重は実施例3~6の樹脂含浸木材より小さい値であった。
[Comparative Example 2]
After heating the white wood of Synthesis Example 2 at 110 ° C. for 30 minutes, the white wood dried by heating is sandwiched between polyethylene terephthalate films having a thickness of 50 μm, and heat-compressed at 0.5 MPa, 130 ° C. for 30 minutes using a heat-pressurizing impregnation device. did. The transmittance of this composition at a wavelength of 500 nm was 0%, and the maximum bending load was smaller than that of the resin-impregnated wood of Examples 3 to 6.
 本出願は、2019年8月28日に出願された、日本特許出願 特願2019-155958号に基づいており、その開示内容は、その全体が参照により本明細書に組みこまれる。 This application is based on Japanese Patent Application No. 2019-155598, which was filed on August 28, 2019, and the entire disclosure content is incorporated herein by reference in its entirety.

Claims (10)

  1.  リグニン含有量が3重量%未満、セルロース含有量が65重量%以上、ヘミセルロース含有量が0.01重量%以上15重量%以下である木質系構造体と、硬化性化合物、樹脂、無機物質、染料、および顔料からなる群から選択される少なくとも一と、を含む組成物。 Wood-based structures with a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a hemicellulose content of 0.01% by weight or more and 15% by weight or less, and curable compounds, resins, inorganic substances, and dyes. A composition comprising, and at least one selected from the group consisting of pigments.
  2.  リグニン含有量が3重量%未満、セルロース含有量が65重量%以上、セルロースの粘度平均重合度DPvが300以上である木質系構造体と、硬化性化合物、樹脂、無機物質、染料、および顔料からなる群から選択される少なくとも一と、を含む組成物。 From wood-based structures with a lignin content of less than 3% by weight, a cellulose content of 65% by weight or more, and a cellulose viscosity average degree of polymerization DPv of 300 or more, and curable compounds, resins, inorganic substances, dyes, and pigments. A composition comprising at least one selected from the group:
  3.  多孔体であって、硬化性化合物、樹脂、無機物質、染料、および顔料からなる群から選択される少なくとも一が表面に付着している、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, which is a porous body and has at least one selected from the group consisting of a curable compound, a resin, an inorganic substance, a dye, and a pigment attached to the surface.
  4.  波長500nmにおける透過率が30%以上である、請求項1~3のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the transmittance at a wavelength of 500 nm is 30% or more.
  5.  前記樹脂が生分解性樹脂、及び/又は、生体由来材料であり、当該樹脂を30重量%以上含む、請求項1~4のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 4, wherein the resin is a biodegradable resin and / or a biological material, and contains 30% by weight or more of the resin.
  6.  表面が木目を有している、請求項1~5のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 5, which has a grain on the surface.
  7.  生体由来材料を30重量%以上含む、請求項1~6のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 6, which contains 30% by weight or more of a biological material.
  8.  前記木質系構造体と、前記硬化性化合物を含む樹脂組成物と、を含む、請求項1~7のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 7, which comprises the wood-based structure and the resin composition containing the curable compound.
  9.  前記硬化性化合物が、エポキシ化合物である、請求項8に記載の組成物。 The composition according to claim 8, wherein the curable compound is an epoxy compound.
  10.  前記硬化性化合物を含む樹脂組成物を木質系構造体と混合した後、硬化させることにより得られる、請求項1~9のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 9, which is obtained by mixing the resin composition containing the curable compound with a wood-based structure and then curing the resin composition.
PCT/JP2020/031685 2019-08-28 2020-08-21 Composition WO2021039648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-155958 2019-08-28
JP2019155958A JP2022145972A (en) 2019-08-28 2019-08-28 Composition

Publications (1)

Publication Number Publication Date
WO2021039648A1 true WO2021039648A1 (en) 2021-03-04

Family

ID=74685606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031685 WO2021039648A1 (en) 2019-08-28 2020-08-21 Composition

Country Status (2)

Country Link
JP (1) JP2022145972A (en)
WO (1) WO2021039648A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330141A (en) * 2003-05-09 2004-11-25 Fumio Kadoi Whitened wood chip and its production method
JP2010221645A (en) * 2009-03-25 2010-10-07 Aichi Prefecture Method of modifying wood and modified wood obtained by this method
JP2011116930A (en) * 2009-10-27 2011-06-16 Panasonic Electric Works Co Ltd Vegetable-originated adhesive, vegetable originated composition, and wood composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330141A (en) * 2003-05-09 2004-11-25 Fumio Kadoi Whitened wood chip and its production method
JP2010221645A (en) * 2009-03-25 2010-10-07 Aichi Prefecture Method of modifying wood and modified wood obtained by this method
JP2011116930A (en) * 2009-10-27 2011-06-16 Panasonic Electric Works Co Ltd Vegetable-originated adhesive, vegetable originated composition, and wood composite material

Also Published As

Publication number Publication date
JP2022145972A (en) 2022-10-05

Similar Documents

Publication Publication Date Title
Yang et al. Preserving cellulose structure: delignified wood fibers for paper structures of high strength and transparency
Fu et al. Luminescent and hydrophobic wood films as optical lighting materials
Nair et al. Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite
CN103429622B (en) Cellulose fibre and its manufacture method, cellulose fibre aggregation and cellulose fiber composite material
Dong et al. Improvement of water resistance, dimensional stability, and mechanical properties of poplar wood by rosin impregnation
Qiu et al. Improvement of the performance of plantation wood by grafting water-soluble vinyl monomers onto cell walls
EP2485880B1 (en) Impregnation of chemicals into wood
Klapiszewski et al. Preparation and characterization of multifunctional chitin/lignin materials
Xu et al. Dialdehyde modified cellulose nanofibers enhanced the physical properties of decorative paper impregnated by aldehyde-free adhesive
Iman et al. Green jute-based cross-linked soy flour nanocomposites reinforced with cellulose whiskers and nanoclay
Wang et al. Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement
JPWO2012067113A1 (en) Cellulose fiber aggregate and method for producing the same, defibrated cellulose fiber and method for producing the same, and cellulose fiber composite
Islam et al. The effect of crosslinker on mechanical and morphological properties of tropical wood material composites
Huang et al. Incorporation of ligno-cellulose nanofibrils and bark extractives in water-based coatings for improved wood protection
Liu et al. Preparation of a strong and multiple-function soybean flour adhesive via the construction of tannin microspheres with a core–shell structure
Kolya et al. Polyvinyl acetate/reduced graphene oxide-poly (diallyl dimethylammonium chloride) composite coated wood surface reveals improved hydrophobicity
Kiguchi Surface modification and activation of wood
Dong et al. Grafting polyethylene glycol dicrylate (PEGDA) to cell walls of poplar wood in two steps for improving dimensional stability and durability of the wood polymer composite
Yang et al. Development of biomass adhesives based on aminated cellulose and oxidized sucrose reinforced with epoxy functionalized wood interface
Su et al. Novel ultrastrong wood bonding interface through chemical covalent crosslinking of aldehyde-amine
Camargos et al. Protective coatings based on cellulose nanofibrils, cellulose nanocrystals, and lignin nanoparticles for the conservation of cellulosic artifacts
Song et al. Valorization of lignin from biorefinery: Colloidal lignin micro-Nanospheres as multifunctional bio-based fillers for waterborne wood coating enhancement
Yue et al. Transparent Wood Prepared by Polymer Impregnation of Rubber Wood (Hevea brasiliensis Muell. Arg).
Li et al. Range-broadening ultraviolet-blocking regulation of cellulose nanopaper via surface self-absorption with poly (methyl methacrylate)/avobenzone
Bisht et al. Physiochemical characterization and thermal behaviour of transparent wood composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP