WO2021039600A1 - Tactile sensor element, tactile sensor, triaxial tactile sensor, and tactile sensor element manufacturing method - Google Patents

Tactile sensor element, tactile sensor, triaxial tactile sensor, and tactile sensor element manufacturing method Download PDF

Info

Publication number
WO2021039600A1
WO2021039600A1 PCT/JP2020/031521 JP2020031521W WO2021039600A1 WO 2021039600 A1 WO2021039600 A1 WO 2021039600A1 JP 2020031521 W JP2020031521 W JP 2020031521W WO 2021039600 A1 WO2021039600 A1 WO 2021039600A1
Authority
WO
WIPO (PCT)
Prior art keywords
tactile sensor
sensor
stress
resistance value
resistance
Prior art date
Application number
PCT/JP2020/031521
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 笹川
Original Assignee
国立大学法人弘前大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人弘前大学 filed Critical 国立大学法人弘前大学
Priority to JP2021542821A priority Critical patent/JP7466214B2/en
Publication of WO2021039600A1 publication Critical patent/WO2021039600A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1623Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of pressure sensitive conductors

Definitions

  • the present invention is a tactile sensor having a structure in which a pair of lower electrodes, a stress-sensitive layer formed straddling the pair of lower electrodes, and an upper electrode formed on the stress-sensitive layer are laminated.
  • the present invention relates to a tactile sensor in which two tactile sensor elements are arranged to face each other on a plane, a three-axis tactile sensor in which two tactile sensors are arranged along two axes on a plane, and the like.
  • a conventional pressure-sensitive sensor is known to have a structure in which two electrodes are opposed to each other and a conductive layer or a resin layer is sandwiched between them.
  • the pressure-sensitive sensor detects a physical quantity between electrodes (for example, an electric resistance value between electrodes) that changes when the conductive layer or resin layer is deformed by an applied force as pressure or shear stress.
  • Patent Document 1 a conductor (consisting of a material in which silver particles are dispersed in a resin such as polyester) and a resistor are formed on the first substrate, and the conductor and the resistor are formed on the second substrate. Is formed, and a pressure sensitive device is disclosed in which both substrates are brought into contact with each other to face each other. When a load is applied to this pressure sensitive device, both substrates bend and the force that presses the two resistors increases, and the contact area of both resistors increases and the contact resistance decreases, so the output resistance value Decreases.
  • the pressure sensitive device of Patent Document 1 can be said to be a resistance type pressure sensitive sensor.
  • Patent Document 2 discloses a tactile sensor having a configuration in which a pair of electrodes are attached to a magnetic rubber body. By changing the contact state between the tactile sensor and the object to be inspected, a force (shear stress, shear stress, etc.) from the object to be inspected is applied to the magnetic rubber body, and the amount of current between the pair of electrodes changes. This amount of current is detected to detect the object to be inspected.
  • a force detection layer such as a conductor or a magnetic rubber body between opposing electrodes is in the direction of force. It is necessary to have enough room for deformation. That is, the larger the amount of deformation before and after the application of stress, the better the stress can be detected. Therefore, it is better that the detection layer is easily deformed. In order to make the same material easily deformable, it is necessary to increase the thickness of the detection layer. There is a problem that this hinders the realization of thinning of the pressure sensor or the tactile sensor.
  • a tactile sensor is formed by applying a conductive polymer to two electrodes and bonding them together.
  • both electrodes are not in contact (close contact)
  • the reaction under low stress when the horizontal deformation under shear stress is small, etc.
  • the sensor has a problem that individual differences in fabrication are large and it is difficult to suppress variations.
  • the thickness of the force detection layer of the conductor, magnetic rubber body, etc. is an important factor, and therefore the pressure-sensitive sensor or tactile sensor There was a problem that it hindered the realization of thinning.
  • the reaction under low stress is unstable because the two electrodes are not in contact (adhesion), and the measurement can be performed. There was a problem that it was difficult. Further, the sensor has a problem that individual differences in fabrication are large and it is difficult to suppress variations.
  • an object of the present invention has been made to solve the above problems, and to provide a tactile sensor element, a tactile sensor, a three-axis tactile sensor, and the like capable of reducing the thickness of a pressure sensor or a tactile sensor. There is.
  • a second object of the present invention is a tactile sensor element that improves measurement stability under low stress to enable highly sensitive measurement, reduces individual differences in fabrication, and enables production with suppressed variation.
  • a tactile sensor a 3-axis tactile sensor, and the like.
  • a pair of lower electrodes, a stress-sensitive layer formed straddling each one end side of the pair of lower electrodes, and an upper electrode formed on the stress-sensitive layer are respectively. It is a tactile sensor element having a structure in which the pair of lower electrodes are closely laminated, and has a region on a plane where the lower electrode and the upper electrode overlap in the vertical direction on each one end side of the pair of lower electrodes.
  • the stress-sensitive layer is compressed to reduce the electrical resistance between both electrodes (the upper electrode and the lower electrode), and the tactile sensor element is in the horizontal direction.
  • a shear stress is applied to the electrodes, the electrical resistance between the two electrodes increases in the direction in which the overlapping region decreases, and the electrical resistance between the two electrodes decreases in the direction in which the overlapping region increases. It is a feature.
  • the tactile sensor of the present invention is a tactile sensor in which two tactile sensor elements of the present invention are arranged on one axis (for example, x-axis) of the xy plane with the one end sides of the pair of lower electrodes facing each other.
  • a contact pressure is applied to the tactile sensor in the vertical direction and / or a shear stress is applied in the horizontal direction, the contact pressure and / or the shear stress is detected based on the change in the electric resistance of each tactile sensor element. It is characterized by that.
  • the tactile sensor is in contact with the electric resistance of the first tactile sensor element (first sensor resistance) and the electric resistance of the second tactile sensor element (second sensor resistance).
  • a bridge circuit is constructed based on the first sensor resistance and the second sensor resistance (fixed resistance) when no pressure and shear stress are applied.
  • the first sensor resistance and the fixed resistance are arranged, the second sensor resistance and the fixed resistance are arranged on the other opposite sides, and the input voltage is applied to the branch point between the first sensor resistance and the second sensor resistance.
  • the amount of change in the resistance value of the first sensor resistance (first sensor resistance value) and the resistance value of the second sensor resistance (second sensor resistance value) depends on the contact pressure applied to the tactile sensor, the shear stress, and the ambient temperature.
  • the amount of change in the first sensor resistance value due to shear stress and the amount of change in the second sensor resistance value are equal in absolute value (referred to as “the amount of change in sensor resistance value due to shear stress") and are in contact with each other.
  • the amount of change in the first sensor resistance value due to pressure and the amount of change in the second sensor resistance value (referred to as “amount of change in sensor resistance value due to contact pressure”) can be equal.
  • the tactile sensor of the present invention when a contact pressure and a shear stress are applied to the tactile sensor, the measured potential with respect to the grounding of the branch point in the one opposite side and the grounding of the branch point in the other opposite side Based on the principle that the potential difference from the measured potential is obtained by the amount of change in the sensor resistance value due to the shear stress, the input voltage, and the resistance value of the fixed resistance, the amount of change in the sensor resistance value due to the shear stress is calculated. It can be obtained by removing the contact pressure and the ambient temperature.
  • the tactile sensor of the present invention when contact pressure and shear stress are applied to the tactile sensor, the measured potential with respect to the ground contact of the branch point in the one opposite side and the ground contact of the branch point in the other opposite side. Based on the principle that the sum potential with the measured potential is obtained by the amount of change in the sensor resistance value due to the contact pressure, the input voltage, and the resistance value of the fixed resistance, the amount of change in the sensor resistance value due to the contact pressure is calculated. It can be obtained by removing the shear stress and the ambient temperature.
  • the 3-axis tactile sensor of the present invention is a 3-axis tactile sensor in which two tactile sensors of the present invention are arranged along two axes on a plane, and a contact pressure is applied to the three-axis tactile sensor in a vertical direction.
  • a contact pressure is applied to the three-axis tactile sensor in a vertical direction.
  • the 3-axis tactile sensor of the present invention is a 3-axis tactile sensor in which two tactile sensors of the present invention are arranged along two axes (xy axes) on a plane, and the three-axis tactile sensor is located on the x-axis.
  • An xy-axis bridge circuit is constructed by combining the x-axis bridge circuit composed of the arranged tactile sensors and the y-axis bridge circuit composed of the y-axis tactile sensors in parallel, and the sensor resistance of each sensor resistance of the x-axis bridge circuit is formed. It is characterized in that an input voltage is commonly applied to the branch point and the branch point of each sensor resistance of the y-axis bridge circuit.
  • the method for manufacturing a tactile sensor element of the present invention is formed by a lower electrode forming step of printing a pair of lower electrodes with a metal (preferably silver) ink on a predetermined base film and a lower electrode forming step.
  • a metal (a metal () is placed on the stress-sensitive layer forming step of forming a stress-sensitive layer by applying a predetermined conductive polymer over the pair of lower electrodes and the stress-sensitive layer formed in the stress-sensitive layer forming step. It is characterized by comprising an upper electrode forming step of printing a preferably silver) ink to form an upper electrode.
  • the cross-sectional structure of the tactile sensor element of the present invention comprises a lower electrode, a stress-sensitive layer of a conductive polymer or the like (for example, PEDOT / PSS) formed straddling one end side of the lower electrode, and a stress-sensitive layer. It is composed of an upper electrode formed in. On one end side of the lower electrode, the lower electrode and the upper electrode have a vertically overlapping region (overlapping region) (via a stress-sensitive layer) on a plane. When a horizontal shear stress is applied to the upper electrode of the tactile sensor element, the overlapping region decreases or increases depending on the horizontal orientation, which increases or decreases the electric resistance value between the upper electrode and the lower electrode. To do.
  • a horizontal shear stress is applied to the upper electrode of the tactile sensor element, the overlapping region decreases or increases depending on the horizontal orientation, which increases or decreases the electric resistance value between the upper electrode and the lower electrode.
  • the shear stress applied to the tactile sensor element can be measured based on the relationship between the change in the electric resistance value and the shear stress.
  • a contact pressure is applied to the tactile sensor element in the vertical direction, the stress-sensitive layer is compressed and the electrical resistance between the upper electrode and the lower electrode is reduced. Therefore, there is an effect that the contact pressure applied to the tactile sensor element can be measured based on the relationship between the change in the electric resistance value and the contact pressure.
  • the tactile sensor element is manufactured using a stacking process, it is possible to reduce the thickness of the tactile sensor by using the tactile sensor element, and it is possible to reduce individual differences in manufacturing and suppress variation. effective.
  • the lower electrode and the stress-sensitive layer of the tactile sensor element, and the stress-sensitive layer and the upper electrode each have a structure in which they are closely laminated. Therefore, the tactile sensor element has an effect of improving measurement stability even under low stress and enabling highly sensitive measurement.
  • the tactile sensor was arranged symmetrically on a plane, left and right, with a pair of lower electrodes of the tactile sensor element and a pair of lower electrodes of another tactile sensor element facing each other.
  • the overlapping region decreases or increases depending on the horizontal orientation, which increases or decreases the electric resistance value between the upper electrode and the lower electrode.
  • the same shear stress is applied to the upper electrode of another tactile sensor element in the horizontal direction, the decrease or increase of the overlapping region is opposite to that of the previous tactile sensor element, and therefore, between the upper electrode and the lower electrode.
  • the increase or decrease of the electric resistance value of is opposite to that of the tactile sensor element. Therefore, by subtracting the change of each electric resistance value of one set of tactile sensor elements, there is an effect that the left and right (X-axis direction) shear stress applied to the tactile sensor can be detected.
  • the tactile sensor can be configured with a bridge circuit. According to the shear stress detection principle used in the present invention, there is an effect that the amount of change in resistance value due to shear stress can be obtained by removing the contact pressure and the ambient temperature. According to the contact pressure detection principle used in the present invention, there is an effect that the amount of change in the resistance value due to the contact pressure can be obtained by removing the shear stress and the ambient temperature.
  • a 3-axis tactile sensor was manufactured by arranging two tactile sensors along two axes on the (XY) plane. When a contact pressure is applied vertically to the tactile sensor and / or a shear stress is applied in the horizontal direction, the contact pressure and / or the shear stress is detected based on the change in the electric resistance value of the tactile sensor element. Can be done.
  • the stress-sensitive layer responsible for sensing and the upper electrode and the lower electrode are brought into close contact with each other by stacking, and a dedicated measurement principle is devised.
  • the tactile sensor is made thinner because the thickness of the detection layer is thin while the stress detection layer has room to be sufficiently deformed in the direction of stress, and the measurement stability is improved even under low stress for highly sensitive measurement.
  • a 3-axis tactile sensor capable of providing a sensor.
  • FIG. 4 It is a figure which shows the three-axis tactile sensor 40 which arranged two tactile sensors 20 (tactile sensor 20 and 20Y'), and arranged along two axes on the (XY) plane.
  • FIG. 4 It is a figure which shows the three-axis tactile sensor 40 which arranged two tactile sensors 20 (tactile sensor 20 and 20Y'), and arranged along two axes on the (XY) plane.
  • FIG. 6 is a circuit diagram in which the 3-axis tactile sensor 40 shown in FIG. 6 is composed of a bridge circuit 50. It is a figure which photographed the 3-axis tactile sensor 40. It is a figure which shows typically the calibration device 60 of the 3-axis tactile sensor 40. It is a figure which shows the material tester used for the calibration test of a contact pressure. It is a partially enlarged view of the material testing machine shown in FIG. It is a graph which shows the result of the calibration experiment of contact pressure. It is a graph which shows the result of the calibration experiment when shear stress was applied under the contact pressure of 4 kPa (weight 64). It is a graph which shows the result of the calibration experiment when shear stress was applied under the contact pressure (weight 64) changed to 2kPa and 4kPa.
  • FIG. 1 shows a cross-sectional structure of the tactile sensor element 10 of the present invention.
  • reference numeral 12 is a lower electrode
  • 14 is a stress-sensitive layer such as a conductive polymer formed straddling one end side 12r (right side in FIG. 1) of the lower electrode 12 (having electrical conductivity as described later).
  • 16 is an upper electrode formed on the stress-sensitive layer 14.
  • the lower electrode 12 and the stress-sensitive layer 14, and the stress-sensitive layer 14 and the upper electrode 16 each have a structure in which they are closely laminated.
  • a region (overlapping region shown by a solid line S; on a plane) in which the lower electrode 12 and the upper electrode 16 vertically overlap (via the stress sensitive layer 14) on a plane. It has a substantially rectangular shape.).
  • the current path changes from the current C1 in the lower electrode 12 to the current C2 passing through the stress-sensitive layer 14 as shown in FIG. 1, and the current C3 flowing through the upper electrode 16 (depth direction). ).
  • FIG. 2 shows a perspective view of the tactile sensor element 10.
  • the parts having the same reference numerals as those in FIG. 1 indicate the same elements, and thus the description thereof will be omitted.
  • the lower electrode of the tactile sensor element 10 is composed of a pair of lower electrodes 12a and 12b. This is provided for measuring the electric resistance value of the tactile sensor element 10 as described later.
  • the stress-sensitive layer 14 is formed so as to straddle (bridge) the one end side 12ra of the pair of lower electrodes 12a and the one end side 12rb of the lower electrode 12b. However, in the one end side 12ra, similarly to the one end side 12r shown in FIG. 1, a region (shown in FIG.
  • the current path becomes the current C2 passing through the stress-sensitive layer 14 from the current C1 in the lower electrode 12a, then the current C3 flowing through the upper electrode 16, and the current C4 flowing through the stress-sensitive layer 14.
  • the current C5 flows through the lower electrode 12b.
  • the stress-sensitive layer 14 is a converter (such as a conductive polymer) for the contact pressure and shear stress applied to the tactile sensor element 10, and is polyethylenedioxythiophene (PEDOT) and polystyrene sulfonate (PSS) acid. Dispersion was used. Specifically, PEDOT / PSS manufactured by Orgacon (registered trademark) EL-P3040 and Agfa (registered trademark) -Material was used.
  • FIG. 3 (A) shows a photograph of PEDOT / PSS, which is an example of a conductive polymer
  • FIG. 3 (B) shows its structure. PEDOT / PSS has electrical conductivity because many electrons in the molecule move freely on the ⁇ orbit.
  • the stress-sensitive layer 14 is not limited to PEDOT / PSS as long as it is a conductive polymer or the like. In the following, PEDOT / PSS will be described as an example.
  • the tactile sensor element 10 is manufactured by using a laminating step.
  • the pair of lower electrodes 12a and 12b were printed on a substrate (predetermined base film) with a metal ink (HARIMA Chemical Group, NPS-J) using an inkjet printer (CLUSTER TECHNOLOGY and Deskviewer) (lower).
  • Electrode forming step As the metal ink, for example, silver ink is suitable. In the following, silver ink will be taken as an example, but the metal ink is not limited to silver ink.
  • As the substrate a special film for silver ink (MITSUBISHI (registered trademark) PAPER MILLS LIMITED, NB-WF-3GF100) was used.
  • the lower electrode 12 was printed on the special film and then appropriately annealed by an electric furnace.
  • the electric conductivity of the silver ink is about 6.30 ⁇ 10 7 (S / m ), much greater than the potential conductivity of PEDOT / PSS.
  • a conductive polymer for example, PEDOT / PSS: a predetermined conductive polymer
  • a screen printing method for example, the above-mentioned PEDOT / PSS: a predetermined conductive polymer.
  • the stress-sensitive layer 14 was formed (stress-sensitive layer forming step). It was coated with multiple layers to reduce the possibility of silver ink getting into PEDOT / PSS. When one layer of PEDOT / PSS was coated, it was appropriately annealed by an electric furnace. After coating all layers, they were appropriately annealed in an electric furnace.
  • the upper electrode 16 was formed by printing on the stress-sensitive layer (PEDOT / PSS) formed in the stress-sensitive layer forming step by using an inkjet printer using silver ink (upper electrode forming step). The upper electrode 16 was formed while observing the flying state and the dripping state of the silver ink. In order to avoid sending silver ink into PEDOT / PSS, printing was performed while heating appropriately. After printing the upper electrode 16, it was appropriately annealed by an electric furnace. After printing the upper electrode 16 on the surface of PEDOT / PSS with silver ink, it was confirmed that the upper electrode 16 had a specified size and did not spread laterally. Finally, the surface of the tactile sensor element 10 was coated with a polyethylene film for electrical insulation and protection.
  • the cross-sectional structure of the tactile sensor element 10 of the present invention is the stress of the lower electrode 12 and the PEDOT / PSS formed across one end side 12r of the lower electrode 12. It is composed of a sensitive layer and an upper electrode 16 formed on the stress sensitive layer 14.
  • a horizontal shear stress Fr or Fl is applied to the upper electrode 16 of the tactile sensor element 10
  • the overlapping region S decreases or increases depending on the horizontal orientation, thereby between the upper electrode 16 and the lower electrode 12.
  • the electrical resistance value of is increased or decreased. Therefore, the shear stress applied to the tactile sensor element 10 can be measured based on the relationship between the change in the electric resistance value and the shear stress.
  • the contact pressure applied to the tactile sensor element 10 can be measured based on the relationship between the change in the electric resistance value and the contact pressure.
  • the tactile sensor element 10 since the tactile sensor element 10 is manufactured by using the stacking process, the tactile sensor element 10 can be used to reduce the thickness of the tactile sensor, and the individual differences in the manufacturing can be reduced to suppress the variation. It has the effect of enabling manufacturing.
  • the lower electrode 12 and the stress-sensitive layer 14 of the tactile sensor element 10, and the stress-sensitive layer 14 and the upper electrode 16 each have a structure in which they are closely laminated. Therefore, the tactile sensor element 10 has an effect of improving measurement stability even under low stress and enabling highly sensitive measurement.
  • FIG. 4 shows a tactile sensor 20 in which two tactile sensor elements 10 (tactile sensor elements 10 and 10') described above are arranged on one axis (X axis) on an XY plane.
  • the parts having the same reference numerals as those in FIG. 1 indicate the same elements, and thus the description thereof will be omitted.
  • the Y-axis is the same as the direction shown in FIG. 6 described later.
  • Each element on the tactile sensor element 10'side is indicated by adding a dash (') to each corresponding element on the tactile sensor element 10'side. As shown in FIG.
  • the tactile sensor 20 includes a pair of lower electrodes 12a and 12b of the tactile sensor element 10 on each end side 12ra and 12rb, and a pair of lower electrodes 12a'and 12b'of the tactile sensor element 10'.
  • One end side 12ra'and 12rb' were placed to face each other and along one axis (X axis) on a plane. That is, the pair of lower electrodes 12a, 12b, etc. of the tactile sensor elements 10 and the like are opposed to each other and arranged symmetrically to the left and right (on the X-axis).
  • the electrical resistance value between the lower electrode 12a and 12b R X1 the electric resistance value between the lower electrode 12a 'and 12b' was R X2.
  • the tactile sensor element 10 DG shown in FIG. 4 is a dummy gauge (for temperature compensation) whose electrical resistance value changes only by a change in ambient temperature. Each element on the tactile sensor element 10 DG side is indicated by adding a symbol DG to each corresponding element on the tactile sensor element 10 side.
  • RDG is an electrical resistance value for temperature compensation.
  • the overlapping region S decreases or increases depending on the horizontal direction, and is between the upper electrode 16 and the lower electrode 12a and the like.
  • the electrical resistance value of is increased or decreased.
  • a shear stress Fr from left to right in the figure
  • the overlapping region S decreases and the upper electrode
  • the electrical resistance value RX1 between 16 and the lower electrode 12a increases.
  • the stress-sensitive layer 14 is compressed and the electrical resistance between the upper electrode 16 and the lower electrode 12a and the like is reduced. To do. Therefore, the contact pressure applied to the tactile sensor element 10 can be measured based on the relationship between the change in the electric resistance value and the contact pressure.
  • the tactile sensor 20 shown in FIG. 4 when a contact pressure is applied to the tactile sensor 20 in the vertical direction, the stress-sensitive layers 14 and 14'are compressed to have electrical resistance values RX1 and RX2 . Decreases. Therefore, the contact pressure applied to the tactile sensor 20 can be measured based on the relationship between the change in the electric resistance value and the contact pressure.
  • FIG. 5 is a circuit diagram in which the tactile sensor 20 shown in FIG. 4 is composed of a bridge circuit 30.
  • the parts having the same reference numerals as those in FIG. 4 indicate the same elements, and thus the description thereof will be omitted.
  • the tactile sensor 20 includes the electric resistance RX1 (first sensor resistance) of the tactile sensor element 10 (first tactile sensor element) and the tactile sensor element 10'(second tactile sensor element).
  • the bridge circuit 30 also includes a series circuit of a fixed resistance R and the electrical resistance R DG dummy gage 10 DG. Each resistance value is a resistance value when the bridge circuit 30 is in an equilibrium state. As shown in FIG. 5, the electric resistance R X1 and the fixed resistor R is disposed on one of opposite sides of the bridge circuit 30, are arranged electrical resistance R X2 and the fixed resistor R is other opposite sides, the electric resistance R X1 The input voltage E is applied between the branch point r connecting the electric resistance R X2 and the electric resistance R DG and the ground.
  • e 2x is the measured potential between the branch point b and the ground
  • e 3 is the measured potential between the branch point g and the ground.
  • the amount of change in the electrical resistance R DG is given by the amount of change due to the ambient temperature ( ⁇ R DGTMP). That is, it is given as in Equation 3.
  • Equation 4 Ignoring the second term of Equation 2 and substituting Equation 3, it becomes Equation 4.
  • the shear stress detection principle used in the present invention is as follows. That is, when the contact pressure and shear stress to the tactile sensor 20 is applied, the measured potential e 1x to ground branch point a in one opposite side (electric ⁇ R X1 and fixed ⁇ R are arranged side) , the potential e x of the difference between the measured potential e 2x to ground branch point b in the other opposite sides (electric ⁇ R X2 and fixed ⁇ R are arranged side) includes a change amount [Delta] R SS by shear stress The principle is that it is obtained by the input voltage E and the fixed shear value R.
  • Potential e x is the difference in the actual value, the input voltage E and the fixed resistor R for a constant value, based on the equation 6, to remove the amount of change [Delta] R SS the contact pressure and the ambient temperature of the resistance value due to the shear stress Can be obtained.
  • Equation 9 Ignoring the second term of Equation 8 and considering the relationship between Equation 3 and Equation 5, it becomes Equation 9.
  • Equation 11 When the change in the electric resistance value due to the ambient temperature is small and can be ignored (e 1x , e 2x >> e 3 ), Equation 11 may be expressed as Equation 13.
  • the contact pressure detection principle used in the present invention is as follows. That is, when contact pressure and shear stress are applied to the tactile sensor 20, the measured potential e 1x and the dummy gauge with respect to the grounding of the branch point a in one opposite side (the side on which the electric resistance RX1 and the fixed resistance R are arranged) The difference e Z1 from the measured potential e 3 with respect to the grounding of the branch point g in the opposite side (the side where the electric resistance R DG and the fixed resistance R are arranged) including the other opposite side (the electric resistance R X2 and the fixed resistance R) potential e Z of the sum of the difference e Z2 between the measured potential e 2x the measured potential e 3 to ground branching point g in opposite sides including a dummy gauge for grounding the branch point b of the deployed side) in the contact
  • the principle is that the amount of change due to pressure ⁇ R CP , the input voltage E, and the fixed resistance R are obtained.
  • the potential e Z is the sum of the measured values and the input voltage E and the fixed resistance R are constant values
  • the amount of change in the resistance value due to the contact pressure ⁇ R CP is used as the shear stress and the ambient temperature based on the equation 12 or 13. It can be obtained by removing it.
  • the potential e Z may be obtained by the sum of the measured potential e 1x and the measured potential e 2x , ignoring the measured potential e 3 on the dummy gauge side. ..
  • the tactile sensor 20 faces the pair of lower electrodes 12a and 12b of the tactile sensor element 10 and the pair of lower electrodes 12a'and 12b'of the tactile sensor element 10'. They were arranged symmetrically on the plane.
  • a shear stress Fr or Fl is applied to the upper electrode 16 of the tactile sensor element 10 in the horizontal direction, the overlapping region S decreases or increases according to the horizontal orientation, whereby the upper electrode 16 and the lower electrode 12a and the like are formed.
  • the electrical resistance value RX1 between them increases or decreases.
  • the tactile sensor element 10 constituting the tactile sensor 20 is manufactured by using a stacking process, it is possible to reduce the thickness of the tactile sensor by using the tactile sensor 20, and to reduce individual differences in manufacturing and suppress variations. It has the effect of enabling manufacturing.
  • the lower electrode 12a and the like of the tactile sensor element 10 constituting the tactile sensor 20, the stress-sensitive layer 14, and the stress-sensitive layer 14 and the upper electrode 16 each have a structure in which they are closely laminated. Therefore, the tactile sensor 20 has the effect of improving measurement stability even under low stress and enabling highly sensitive measurement.
  • the tactile sensor 20 can be configured by the bridge circuit 30.
  • the principle of detecting shear stress used in the present invention is as follows. That is, when the contact pressure and shear stress to the tactile sensor 20 is applied, the measured potential e 1x to ground the branching point a of the bridge circuit 30, the difference in potential e x between the measured potential e 2x to ground branch point b Is the principle obtained by the amount of change ⁇ R SS due to shear stress, the input voltage E, and the fixed resistance R.
  • Potential e x is the difference in the actual value, the input voltage E and the fixed resistor R for a constant value, based on the equation 6, to remove the amount of change [Delta] R SS the contact pressure and the ambient temperature of the resistance value due to the shear stress It has the effect of being able to obtain it.
  • the contact pressure detection principle used in the present invention is as follows. That is, when contact pressure and shear stress are applied to the tactile sensor 20, the difference e Z1 between the measured potential e 1x with respect to the grounding of the branch point a of the bridge circuit 30 and the measured potential e 3 with respect to the grounding of the branch point g, and branching.
  • the potential e Z of the sum of Z2 is the amount of change ⁇ R CP due to the contact pressure, the input voltage E, and the fixed resistance R. Is the principle obtained by. Since the potential e Z is the sum of the measured values and the input voltage E and the fixed resistance R are constant values, the amount of change in the resistance value due to the contact pressure ⁇ R CP is used as the shear stress and the ambient temperature based on the equation 12 or 13. It has the effect that it can be obtained by removing it.
  • the potential e Z may be obtained by the sum of the measured potential e 1x and the measured potential e 2x , ignoring the measured potential e 3 on the dummy gauge side. ..
  • FIG. 6 shows two tactile sensors 20 (tactile sensors 20 and 20Y) described above, and a three-axis tactile sensor 40 arranged along each axis on the XY plane.
  • the parts having the same reference numerals as those in FIG. 4 indicate the same elements, and thus the description thereof will be omitted.
  • Each element on the tactile sensor 20Y side is indicated by adding Y to each corresponding element on the tactile sensor 20 side.
  • the tactile sensor 20 is arranged along the X-axis direction
  • the tactile sensor 20Y is arranged along the Y-axis direction.
  • the electricity of the pair of tactile sensor elements 10Y and 10Y' is the same as in the case of the tactile sensor 20 described in the second embodiment.
  • the 3-axis tactile sensor 40 includes not only the measurement of the shear stress in the XY-axis direction but also the measurement of the contact pressure in the Z-axis direction, the 3-axis tactile sensor 40 is used.
  • each tactile sensor element 10Y is the same as in the case of the tactile sensor 20 described in the second embodiment. based on the change in the value of electrical resistance R Y1, R Y2 of 10Y ', the contact pressure and / or shear stress it can be detected.
  • FIG. 7 is a circuit diagram in which the 3-axis tactile sensor 40 shown in FIG. 6 is composed of a bridge circuit 50.
  • the parts having the same reference numerals as those in FIG. 5 indicate the same elements, and thus the description thereof will be omitted.
  • the x-axis bridge circuit formed by the tactile sensor 20 arranged on the x-axis and the y-axis bridge circuit formed by the tactile sensor 20Y arranged on the y-axis are arranged in parallel. It constitutes a combined xy-axis bridge circuit.
  • An input voltage E is applied between the branch point r connecting the electrical resistances RX1 , RX2 , RY1 , RY2, and RDG and the ground.
  • An input voltage E is commonly applied to the branch points of the resistors R X1 and RX2 of the x-axis bridge circuit and the branch points of the resistors RY1 and RY2 of the y-axis bridge circuit.
  • e 1Y is the measured potential between the branch point c and the ground
  • e 2Y is the measured potential between the branch point d and the ground.
  • Equation 14 summarizes the changes in voltage e X and e Y due to shear stress in the 3-axis tactile sensor 40.
  • the amount of change in resistance value due to shear stress ⁇ R SS was set to ⁇ R SSX and ⁇ R SSY .
  • Equation 15 summarizes the changes in voltage due to contact pressure in the 3-axis tactile sensor 40.
  • Equation 15 summarizes the changes in voltage due to contact pressure in the 3-axis tactile sensor 40.
  • Equation 16 The average (e XY ) of e ZX and e ZY of Equation 15 is as shown in Equation 16.
  • Equation 18 When the change in the electric resistance value due to the ambient temperature is small and can be ignored (e 1x , e 2x , e 1Y , e 2x >> e 3 ), the equation 18 may be used.
  • FIG. 8 is a photograph of the 3-axis tactile sensor 40, and the stress measurement region M described above is shown.
  • two tactile sensors 20 (tactile sensors 20 and 20Y) of the second embodiment are manufactured, and a three-axis tactile sensor 40 arranged along each axis on the XY plane is produced.
  • a contact pressure is applied to the tactile sensor 20Y in the vertical direction and / or a shear stress is applied in the horizontal direction
  • the tactile sensor elements 10Y and 10Y' are the same as in the case of the tactile sensor 20 described in the second embodiment.
  • the contact pressure and / or shear stress can be detected based on the change in the values of the electric resistances RY1 and RY2.
  • the shear stress and contact pressure detection principles described in the second embodiment can be similarly applied to the three-axis tactile sensor 40 of the third embodiment.
  • the 3-axis tactile sensor 40 is an xy-axis bridge circuit in which an x-axis bridge circuit composed of the tactile sensor 20 arranged on the x-axis and a y-axis bridge circuit composed of the tactile sensor 20Y arranged on the y-axis are combined in parallel. It is configured.
  • the change e Y voltage by shear stress is given similarly to Equation 6 in Example 2. Therefore, the voltage changes e X and e Y due to the shear stress in the 3-axis tactile sensor 40 can be collectively expressed by the equation 14.
  • each tactile sensor element 10 and the like constituting the 3-axis tactile sensor 40 uses a stacking process, it is possible to reduce the thickness of the tactile sensor by using the 3-axis tactile sensor 40, and there are individual differences in manufacturing. It has the effect of making it possible to manufacture products with less variation.
  • the lower electrode 12a and the like of each tactile sensor element 10 and the like constituting the three-axis tactile sensor 40 and the stress-sensitive layer 14 and the like, and the stress-sensitive layer 14 and the like and the upper electrode 16 and the like have a structure in which they are laminated in close contact with each other. There is. Therefore, the 3-axis tactile sensor 40 has the effect of improving measurement stability and enabling highly sensitive measurement even under low stress.
  • the stress-sensitive layer 14 or the like responsible for sensing is brought into close contact with the upper electrode 16 or the like and the lower electrode 12a or the like by stacking, and the above-mentioned dedicated measurement principle is devised.
  • the tactile sensor is made thinner because the thickness of the detection layer is thin while the stress detection layer has room to be sufficiently deformed in the direction of stress, and the measurement stability is improved even under low stress for highly sensitive measurement.
  • the 3-axis tactile sensor 40 capable of providing the three-axis tactile sensor 40 can be provided.
  • FIG. 9A schematically shows the calibration device 60 of the 3-axis tactile sensor 40.
  • 9 (B) and 9 (C) are photographs of the calibration device 60.
  • the 3-axis tactile sensor 40 is placed on the base 61, and the acrylic plate 63 is placed on the 3-axis tactile sensor 40 via a punch (rubber, 7 ⁇ 7 mm 2) 62.
  • a weight 64 for applying contact pressure is placed on the acrylic plate 63.
  • a piezo actuator (MZ-1300ZL, manufactured by Mestec Co., Ltd., maximum displacement 1.3 mm) 72 that generates a horizontal displacement for shear stress is used, and a load cell (USM-5N, manufactured by Unipulse Corporation, USM-5N) 71 is used as a piezo actuator 72. It was set at the tip, and the load cell 71 and the acrylic plate 63 were connected by a wire 70. Although not shown in FIG.
  • a piezo driver (manufactured by Mestec Co., Ltd., M-2691) is connected to the piezo actuator 72, and a DC constant voltage source (manufactured by Matsusada Precision Co., Ltd., P4K-80L) is connected to the piezo actuator 72.
  • the voltage applied to the piezo actuator 72 was a step drive (rectangular wave) type of 0 to 5 V.
  • FIG. 9B shows a state in which the 3-axis tactile sensor 40 is mounted on the base 61.
  • the calibrator 60 is provided with rails 65 (two slots), which can adjust the position of the piezo actuator 72 and the position of the base 61.
  • FIG. 9C shows a state in which the punch 62, the acrylic plate 63, and the weight 64 are further placed on the 3-axis tactile sensor 40 in the state of FIG. 9B.
  • FIG. 10 shows a material testing machine used for the contact pressure calibration test.
  • As the material testing machine Autograph (registered trademark) AGS-J 5kN manufactured by Shimadzu Corporation (registered trademark) was used.
  • FIG. 11 shows a partially enlarged view of the material testing machine shown in FIG.
  • a sponge rubber punch 80 7 ⁇ 7 mm 2
  • the contact pressure was changed from 0 to 5 kPa. Under these conditions, the above-mentioned potentials e 1x , e 2x , e 1Y , e 2Y , e 3 and the like were actually measured.
  • the results will be described later (Fig. 12).
  • the calibration device 60 shown in FIG. 9 was used for the shear stress calibration test.
  • a contact pressure of 4 kPa was applied through the punch 62 by the weight 64. The results will be described later (FIGS. 13 to 14).
  • FIG. 12 graphically shows the result of the contact pressure calibration experiment.
  • the horizontal axis is the contact pressure (kPa)
  • the vertical axis is the output voltage (V) (for example, the above-mentioned potentials e 1x , e 2x , e XY, etc.).
  • the output voltage increases with increasing contact pressure. Therefore, it was found that equations 15 and 16 and the like were correct.
  • ⁇ R CP is basically a negative value.
  • FIG. 13 is a graph showing the results of a calibration experiment when shear stress is applied under a contact pressure of 4 kPa (weight 64).
  • 13 (A) and 13 (B) are measurement results for the X-axis and the Y-axis, respectively.
  • the horizontal axis is the shear stress (kPa) and the vertical axis is the output voltage (V) (for example, the potentials e 1x , e 1Y , e X , e Y, etc. described above).
  • V output voltage
  • Equation 14 the result of the first experiment is shown.
  • the experimental results are indicated by dark ⁇ (green), and the results of the second experiment are indicated by light ⁇ (light blue).
  • the initial voltage of the 3-axis tactile sensor 40 is shifted to 0V.
  • the output voltage increases with the increase in shear stress, and the change (that is, slope) of the output voltage with respect to the increase in shear stress is almost the same for both the first and second times. ing. Therefore, the shear stress can be determined from the output voltage by using this slope. Therefore, it was found that Equation 14 was correct.
  • FIG. 14 is a graph showing the results of a calibration experiment when shear stress is applied while the contact pressure (weight 64) is changed to 2 kPa and 4 kPa.
  • the horizontal axis is the shear stress (kPa)
  • the vertical axis is the output voltage (V) (for example, the above-mentioned potentials e 1x , e 1Y , e X , e Y, etc.).
  • V output voltage
  • a stable output voltage can be obtained even under low stress, so that it can be applied as a biological contact interface.
  • it can be applied to the tip of a robot hand that comes into contact with a person, or as an input interface for an electronic device.
  • 10, 10', 10 DG , 10Y, 10Y' Tactile sensor elements 12, 12a, 12b, 12a', 12b', 12aY, 12bY, 12a'Y, 12b'Y, 12a DG , 12b DG lower electrode, 12r, 12ra, 12rb, 12ra', 12rb'One end side of the lower electrode, 14, 14', 14 DG , 14Y, 14Y'Stress sensitive layer, 16, 16', 16 DG , 16Y, 16Y'Upper electrode, 20, 20Y Tactile Sensors, 30, 50 bridge circuits, 60 calibrators, 61 bases, 62 punches, 63 acrylic plates, 64 weights, 70 wires, 71 load cells, 72 piezo actuators.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Provided are a tactile sensor element, and the like, that make it possible to reduce tactile sensor thickness, measure with a high degree of accuracy by enhancing measurement stability under low stress, and manufacture with a high degree of consistency by reducing differences between individual units in production. The cross-sectional structure of a tactile sensor element (10) comprises a lower electrode (12), a PEDOT:PSS stress reception layer (14) formed so as to extend over one end side (12r) of the lower electrode (12), and an upper electrode (16) formed on the stress reception layer (14). These components are laminated in close contact. The tactile sensor element (10) is manufactured using a lamination process. When sheer stress is applied in the horizontal direction to the upper electrode (16), a planar overlapping area S where the lower electrode (12) and upper electrode (16) overlap in the vertical direction via the stress reception layer (14) shrinks or grows according to the orientation of the sheer stress, and as a result, the electrical resistance value between the upper electrode (16) and lower electrode (12) increases or decreases. Thus, it is possible to measure the sheer stress applied to the tactile sensor element (10) on the basis of the relationship between the variation in the electrical resistance value and the sheer stress.

Description

触覚センサ素子、触覚センサ、3軸触覚センサおよび触覚センサ素子の製造方法Manufacturing method of tactile sensor element, tactile sensor, 3-axis tactile sensor and tactile sensor element
 本発明は、一対の下電極と、当該一対の下電極に跨がって形成された応力感受層と、当該応力感受層上に形成された上電極とが各々積層された構造を有する触覚センサ素子に関し、特に、当該触覚センサ素子2個を対向させて平面上に配置した触覚センサ、および当該触覚センサ2個を平面上の2軸に沿わせて配置した3軸触覚センサ等に関する。 The present invention is a tactile sensor having a structure in which a pair of lower electrodes, a stress-sensitive layer formed straddling the pair of lower electrodes, and an upper electrode formed on the stress-sensitive layer are laminated. The present invention relates to a tactile sensor in which two tactile sensor elements are arranged to face each other on a plane, a three-axis tactile sensor in which two tactile sensors are arranged along two axes on a plane, and the like.
 従来の感圧センサとして、2つの電極を対向させ、その間に導電層または樹脂層を挟み込んだ構造を有しているものが知られている。当該感圧センサは、導電層または樹脂層が印加された力により変形することで変化する電極間の物理量(例えば、電極間の電気抵抗値)を、圧力またはずり応力として検知している。 A conventional pressure-sensitive sensor is known to have a structure in which two electrodes are opposed to each other and a conductive layer or a resin layer is sandwiched between them. The pressure-sensitive sensor detects a physical quantity between electrodes (for example, an electric resistance value between electrodes) that changes when the conductive layer or resin layer is deformed by an applied force as pressure or shear stress.
 特許文献1には、第1の基板上に導電体(銀粒子をポリエステル等の樹脂中に分散させた材料からなる。)および抵抗体が形成され、第2の基板上に導電体および抵抗体が形成され、両基板を各抵抗体を接触させて対向させた感圧装置が開示されている。この感圧装置に荷重が加えられると両基板等が撓み2つの抵抗体を圧接する力が増加し、これに伴い両抵抗体の接触面積が増加して接触抵抗が低下するため、出力抵抗値が減少する。特許文献1の感圧装置は抵抗式感圧センサと言える。 In Patent Document 1, a conductor (consisting of a material in which silver particles are dispersed in a resin such as polyester) and a resistor are formed on the first substrate, and the conductor and the resistor are formed on the second substrate. Is formed, and a pressure sensitive device is disclosed in which both substrates are brought into contact with each other to face each other. When a load is applied to this pressure sensitive device, both substrates bend and the force that presses the two resistors increases, and the contact area of both resistors increases and the contact resistance decreases, so the output resistance value Decreases. The pressure sensitive device of Patent Document 1 can be said to be a resistance type pressure sensitive sensor.
 特許文献2には、磁性ゴム体に一対の電極を取り付けた構成の触覚センサが開示されている。この触覚センサと被検査物との接触状態が変化することにより被検査物からの力(せん断応力、ずり応力等)が磁性ゴム体に与えられ、一対の電極間の電流量が変化する。この電流量を検知して被検査物を検出する。 Patent Document 2 discloses a tactile sensor having a configuration in which a pair of electrodes are attached to a magnetic rubber body. By changing the contact state between the tactile sensor and the object to be inspected, a force (shear stress, shear stress, etc.) from the object to be inspected is applied to the magnetic rubber body, and the amount of current between the pair of electrodes changes. This amount of current is detected to detect the object to be inspected.
 上述した特許文献1または2に開示された感圧センサまたは触覚センサにより圧力、せん断応力を検知するためには、対向する電極間の導電体、磁性ゴム体等の力の検知層が力の方向に十分変形できる余地を持っていることが必要である。つまり、応力の印加前後で変形量が大きい程、よく応力を検知できるため、検知層は変形しやすくする方がよい。同じ材料で変形しやすくするためには、検知層の厚みを厚くする必要がある。これが、感圧センサまたは触覚センサの薄型化の実現を阻むことになるという問題があった。
 上述した感圧センサ等の他にも、2枚の電極に導電性高分子を塗布し、それらを貼り合わせることにより、触覚センサを構成する例もある。しかし、当該両電極は接触(密着)していないため、低応力下(せん断応力負荷時の水平方向の変形が小さい場合等)での反応が不安定であり、測定が困難であるという問題があった。さらに、当該センサは作製における個体差が大きくバラツキを抑えにくいという問題があった。
In order to detect pressure and shear stress by the pressure sensor or tactile sensor disclosed in Patent Document 1 or 2 described above, a force detection layer such as a conductor or a magnetic rubber body between opposing electrodes is in the direction of force. It is necessary to have enough room for deformation. That is, the larger the amount of deformation before and after the application of stress, the better the stress can be detected. Therefore, it is better that the detection layer is easily deformed. In order to make the same material easily deformable, it is necessary to increase the thickness of the detection layer. There is a problem that this hinders the realization of thinning of the pressure sensor or the tactile sensor.
In addition to the pressure-sensitive sensor described above, there is also an example in which a tactile sensor is formed by applying a conductive polymer to two electrodes and bonding them together. However, since both electrodes are not in contact (close contact), the reaction under low stress (when the horizontal deformation under shear stress is small, etc.) is unstable, and measurement is difficult. there were. Further, the sensor has a problem that individual differences in fabrication are large and it is difficult to suppress variations.
特許第3664622号公報Japanese Patent No. 3664622 特開2013-232293号公報Japanese Unexamined Patent Publication No. 2013-232293
 上述したように、特許文献1または2に開示された感圧センサまたは触覚センサでは、導電体、磁性ゴム体等の力の検知層の厚みが重要な要素となるため、感圧センサまたは触覚センサの薄型化の実現を阻むことになるという問題があった。 As described above, in the pressure-sensitive sensor or tactile sensor disclosed in Patent Document 1 or 2, the thickness of the force detection layer of the conductor, magnetic rubber body, etc. is an important factor, and therefore the pressure-sensitive sensor or tactile sensor There was a problem that it hindered the realization of thinning.
 上述した2枚の電極に導電性高分子を塗布し、それらを貼り合わせた触覚センサでは、両電極が接触(密着)していないため、低応力下での反応が不安定であり、測定が困難であるという問題があった。さらに、当該センサは作製における個体差が大きくバラツキを抑えにくいという問題があった。 In the tactile sensor in which a conductive polymer is applied to the above-mentioned two electrodes and they are bonded together, the reaction under low stress is unstable because the two electrodes are not in contact (adhesion), and the measurement can be performed. There was a problem that it was difficult. Further, the sensor has a problem that individual differences in fabrication are large and it is difficult to suppress variations.
 そこで、本発明の目的は上記問題を解決するためになされたものであり、感圧センサまたは触覚センサの薄型化を図ることが可能な触覚センサ素子、触覚センサおよび3軸触覚センサ等を提供することにある。 Therefore, an object of the present invention has been made to solve the above problems, and to provide a tactile sensor element, a tactile sensor, a three-axis tactile sensor, and the like capable of reducing the thickness of a pressure sensor or a tactile sensor. There is.
 本発明の第2の目的は、低応力下での計測安定性を向上させて高感度な計測を可能とすると共に、作製における個体差を減少させバラツキを抑えた製造を可能とする触覚センサ素子、触覚センサおよび3軸触覚センサ等を提供することにある。 A second object of the present invention is a tactile sensor element that improves measurement stability under low stress to enable highly sensitive measurement, reduces individual differences in fabrication, and enables production with suppressed variation. , A tactile sensor, a 3-axis tactile sensor, and the like.
 この発明の触覚センサ素子は、一対の下電極と、該一対の下電極の各一端側に跨がって形成された応力感受層と、該応力感受層上に形成された上電極とが各々密着して積層された構造を有する触覚センサ素子であって、該一対の下電極の各一端側において、平面上、該下電極と該上電極とは垂直方向に重なる領域を有しており、前記触覚センサ素子に垂直方向に接触圧力が印加された場合、前記応力感受層が圧縮されて両電極(前記上電極及び前記下電極)間の電気抵抗が減少し、前記触覚センサ素子に水平方向にせん断応力が印加された場合、前記重なる領域が減少する方向の場合は両電極間の電気抵抗が増大し、前記重なる領域が増大する方向の場合は両電極間の電気抵抗が減少することを特徴とする。 In the tactile sensor element of the present invention, a pair of lower electrodes, a stress-sensitive layer formed straddling each one end side of the pair of lower electrodes, and an upper electrode formed on the stress-sensitive layer are respectively. It is a tactile sensor element having a structure in which the pair of lower electrodes are closely laminated, and has a region on a plane where the lower electrode and the upper electrode overlap in the vertical direction on each one end side of the pair of lower electrodes. When a contact pressure is applied to the tactile sensor element in the vertical direction, the stress-sensitive layer is compressed to reduce the electrical resistance between both electrodes (the upper electrode and the lower electrode), and the tactile sensor element is in the horizontal direction. When a shear stress is applied to the electrodes, the electrical resistance between the two electrodes increases in the direction in which the overlapping region decreases, and the electrical resistance between the two electrodes decreases in the direction in which the overlapping region increases. It is a feature.
 この発明の触覚センサは、本発明の触覚センサ素子2個を前記一対の下電極の各一端側同士を対向させてxy平面の1軸(例えばx軸)上に配置した触覚センサであって、該触覚センサに垂直方向に接触圧力が印加された場合及び/又は水平方向にせん断応力が印加された場合、各触覚センサ素子の電気抵抗の変化に基づき、接触圧力及び/又はせん断応力を検出することを特徴とする。 The tactile sensor of the present invention is a tactile sensor in which two tactile sensor elements of the present invention are arranged on one axis (for example, x-axis) of the xy plane with the one end sides of the pair of lower electrodes facing each other. When a contact pressure is applied to the tactile sensor in the vertical direction and / or a shear stress is applied in the horizontal direction, the contact pressure and / or the shear stress is detected based on the change in the electric resistance of each tactile sensor element. It is characterized by that.
 ここで、この発明の触覚センサにおいて、該触覚センサは、第1の触覚センサ素子の電気抵抗(第1センサ抵抗)と、第2の触覚センサ素子の電気抵抗(第2センサ抵抗)と、接触圧力及びせん断応力無負荷時における第1センサ抵抗及び第2センサ抵抗(固定抵抗)とに基づくブリッジ回路を構成し、各抵抗値は該ブリッジ回路が平衡状態における抵抗値であり、一の対辺に第1センサ抵抗及び固定抵抗が配置され、他の対辺に第2センサ抵抗及び固定抵抗が配置され、第1センサ抵抗と第2センサ抵抗との分岐点に入力電圧が印加されるものであり、第1センサ抵抗の抵抗値(第1センサ抵抗値)、第2センサ抵抗の抵抗値(第2センサ抵抗値)の変化量は前記触覚センサに印加される接触圧力、せん断応力及び周囲の温度により与えられ、せん断応力による第1センサ抵抗値の変化量と第2センサ抵抗値の変化量とは絶対値(「せん断応力によるセンサ抵抗値の変化量」と言う。)が等しいものであり、接触圧力による第1センサ抵抗値の変化量と第2センサ抵抗値の変化量(「接触圧力によるセンサ抵抗値の変化量」と言う。)とが等しいものとすることができる。 Here, in the tactile sensor of the present invention, the tactile sensor is in contact with the electric resistance of the first tactile sensor element (first sensor resistance) and the electric resistance of the second tactile sensor element (second sensor resistance). A bridge circuit is constructed based on the first sensor resistance and the second sensor resistance (fixed resistance) when no pressure and shear stress are applied. The first sensor resistance and the fixed resistance are arranged, the second sensor resistance and the fixed resistance are arranged on the other opposite sides, and the input voltage is applied to the branch point between the first sensor resistance and the second sensor resistance. The amount of change in the resistance value of the first sensor resistance (first sensor resistance value) and the resistance value of the second sensor resistance (second sensor resistance value) depends on the contact pressure applied to the tactile sensor, the shear stress, and the ambient temperature. Given, the amount of change in the first sensor resistance value due to shear stress and the amount of change in the second sensor resistance value are equal in absolute value (referred to as "the amount of change in sensor resistance value due to shear stress") and are in contact with each other. The amount of change in the first sensor resistance value due to pressure and the amount of change in the second sensor resistance value (referred to as "amount of change in sensor resistance value due to contact pressure") can be equal.
 ここで、この発明の触覚センサにおいて、該触覚センサに接触圧力及びせん断応力が印加された場合、前記一の対辺中の分岐点の接地に対する実測電位と前記他の対辺中の分岐点の接地に対する実測電位との差の電位は、前記せん断応力によるセンサ抵抗値の変化量と前記入力電圧と前記固定抵抗の抵抗値とにより得られるという原理に基づき、該せん断応力によるセンサ抵抗値の変化量を接触圧力及び周囲の温度を除去して得ることができる。 Here, in the tactile sensor of the present invention, when a contact pressure and a shear stress are applied to the tactile sensor, the measured potential with respect to the grounding of the branch point in the one opposite side and the grounding of the branch point in the other opposite side Based on the principle that the potential difference from the measured potential is obtained by the amount of change in the sensor resistance value due to the shear stress, the input voltage, and the resistance value of the fixed resistance, the amount of change in the sensor resistance value due to the shear stress is calculated. It can be obtained by removing the contact pressure and the ambient temperature.
ここで、この発明の触覚センサにおいて、該触覚センサに接触圧力及びせん断応力が印加された場合、前記一の対辺中の分岐点の接地に対する実測電位と前記他の対辺中の分岐点の接地に対する実測電位との和の電位は、前記接触圧力によるセンサ抵抗値の変化量と前記入力電圧と前記固定抵抗の抵抗値とにより得られるという原理に基づき、該接触圧力によるセンサ抵抗値の変化量をせん断応力及び周囲の温度を除去して得ることができる。 Here, in the tactile sensor of the present invention, when contact pressure and shear stress are applied to the tactile sensor, the measured potential with respect to the ground contact of the branch point in the one opposite side and the ground contact of the branch point in the other opposite side. Based on the principle that the sum potential with the measured potential is obtained by the amount of change in the sensor resistance value due to the contact pressure, the input voltage, and the resistance value of the fixed resistance, the amount of change in the sensor resistance value due to the contact pressure is calculated. It can be obtained by removing the shear stress and the ambient temperature.
 この発明の3軸触覚センサは、本発明の触覚センサ2個を平面上の2軸に沿わせて配置した3軸触覚センサであって、該3軸触覚センサに垂直方向に接触圧力が印加された場合及び/又は水平方向にせん断応力が印加された場合、各触覚センサ素子の電気抵抗値の変化に基づき、接触圧力及び/又はせん断応力を検出することを特徴とする。 The 3-axis tactile sensor of the present invention is a 3-axis tactile sensor in which two tactile sensors of the present invention are arranged along two axes on a plane, and a contact pressure is applied to the three-axis tactile sensor in a vertical direction. When shear stress is applied in the horizontal direction and / or in the horizontal direction, the contact pressure and / or shear stress is detected based on the change in the electric resistance value of each tactile sensor element.
 この発明の3軸触覚センサは、本発明の触覚センサ2個を平面上の2軸(xy軸)に沿わせて配置した3軸触覚センサであって、前記3軸触覚センサは、x軸に配置した触覚センサが構成するx軸ブリッジ回路とy軸に配置した触覚センサが構成するy軸ブリッジ回路とを並列に組合わせたxy軸ブリッジ回路を構成し、x軸ブリッジ回路の各センサ抵抗の分岐点とy軸ブリッジ回路の各センサ抵抗の分岐点とに共通に入力電圧が印加されることを特徴とする。 The 3-axis tactile sensor of the present invention is a 3-axis tactile sensor in which two tactile sensors of the present invention are arranged along two axes (xy axes) on a plane, and the three-axis tactile sensor is located on the x-axis. An xy-axis bridge circuit is constructed by combining the x-axis bridge circuit composed of the arranged tactile sensors and the y-axis bridge circuit composed of the y-axis tactile sensors in parallel, and the sensor resistance of each sensor resistance of the x-axis bridge circuit is formed. It is characterized in that an input voltage is commonly applied to the branch point and the branch point of each sensor resistance of the y-axis bridge circuit.
 この発明の触覚センサ素子の製造方法は、所定の基材フィルム上に金属(好適には銀)インクで一対の下電極を印刷して形成する下電極形成工程と、前記下電極形成工程で形成された一対の下電極上に跨って、所定の導電ポリマーを塗布して応力感受層を形成する応力感受層形成工程と、前記応力感受層形成工程で形成された応力感受層上に、金属(好適には銀)インクを印刷して上電極を形成する上電極形成工程とを備えたことを特徴とする。 The method for manufacturing a tactile sensor element of the present invention is formed by a lower electrode forming step of printing a pair of lower electrodes with a metal (preferably silver) ink on a predetermined base film and a lower electrode forming step. A metal (a metal () is placed on the stress-sensitive layer forming step of forming a stress-sensitive layer by applying a predetermined conductive polymer over the pair of lower electrodes and the stress-sensitive layer formed in the stress-sensitive layer forming step. It is characterized by comprising an upper electrode forming step of printing a preferably silver) ink to form an upper electrode.
 本発明の触覚センサ素子の断面構造は、下電極と、下電極の一端側に跨がって形成された導電性高分子等(例えば、PEDOT/PSS)の応力感受層と、応力感受層上に形成された上電極とから構成されている。下電極の一端側において、平面上、下電極と上電極とは(応力感受層を介して)垂直方向に重なる領域(重複領域)を有している。触覚センサ素子の上電極に水平方向にせん断応力が加わると、水平方向の向きに応じて、重複領域は減少または増加し、これにより上電極と下電極との間の電気抵抗値は増加または減少する。従って、当該電気抵抗値の変化とせん断応力との関係に基づき、触覚センサ素子に加わるせん断応力を測定することができる。触覚センサ素子に垂直方向に接触圧力が印加された場合、応力感受層が圧縮されて上電極と下電極との間の電気抵抗が減少する。従って、当該電気抵抗値の変化と接触圧力との関係に基づき、触覚センサ素子に加わる接触圧力を測定することができるという効果がある。 The cross-sectional structure of the tactile sensor element of the present invention comprises a lower electrode, a stress-sensitive layer of a conductive polymer or the like (for example, PEDOT / PSS) formed straddling one end side of the lower electrode, and a stress-sensitive layer. It is composed of an upper electrode formed in. On one end side of the lower electrode, the lower electrode and the upper electrode have a vertically overlapping region (overlapping region) (via a stress-sensitive layer) on a plane. When a horizontal shear stress is applied to the upper electrode of the tactile sensor element, the overlapping region decreases or increases depending on the horizontal orientation, which increases or decreases the electric resistance value between the upper electrode and the lower electrode. To do. Therefore, the shear stress applied to the tactile sensor element can be measured based on the relationship between the change in the electric resistance value and the shear stress. When a contact pressure is applied to the tactile sensor element in the vertical direction, the stress-sensitive layer is compressed and the electrical resistance between the upper electrode and the lower electrode is reduced. Therefore, there is an effect that the contact pressure applied to the tactile sensor element can be measured based on the relationship between the change in the electric resistance value and the contact pressure.
 触覚センサ素子の製造は積層化工程を用いているため、触覚センサ素子により触覚センサの薄型化を図ることが可能であると共に、作製における個体差を減少させバラツキを抑えた製造を可能とするという効果がある。触覚センサ素子の下電極と応力感受層、および応力感受層と上電極は各々密着して積層された構造を有している。このため、触覚センサ素子は低応力下でも計測安定性を向上させ高感度な計測を可能とするという効果がある。 Since the tactile sensor element is manufactured using a stacking process, it is possible to reduce the thickness of the tactile sensor by using the tactile sensor element, and it is possible to reduce individual differences in manufacturing and suppress variation. effective. The lower electrode and the stress-sensitive layer of the tactile sensor element, and the stress-sensitive layer and the upper electrode each have a structure in which they are closely laminated. Therefore, the tactile sensor element has an effect of improving measurement stability even under low stress and enabling highly sensitive measurement.
 触覚センサは、触覚センサ素子の一対の下電極と別の触覚センサ素子の一対の下電極とを対向させて、平面上、左右に対称的に配置した。触覚センサ素子の上電極に水平方向にせん断応力が加わると、水平方向の向きに応じて、重複領域は減少または増加し、これにより上電極と下電極との間の電気抵抗値は増加または減少する。一方、別の触覚センサ素子の上電極に水平方向に同じせん断応力が加わると、重複領域の減少または増加は先の触覚センサ素子とは逆になり、このため、上電極と下電極との間の電気抵抗値の増加または減少は先の触覚センサ素子とは逆になる。従って、1組の触覚センサ素子の各電気抵抗値の変化を差引きすることにより、触覚センサに加わる左右の(X軸方向の)せん断応力を検出することができるという効果がある。 The tactile sensor was arranged symmetrically on a plane, left and right, with a pair of lower electrodes of the tactile sensor element and a pair of lower electrodes of another tactile sensor element facing each other. When a horizontal shear stress is applied to the upper electrode of the tactile sensor element, the overlapping region decreases or increases depending on the horizontal orientation, which increases or decreases the electric resistance value between the upper electrode and the lower electrode. To do. On the other hand, when the same shear stress is applied to the upper electrode of another tactile sensor element in the horizontal direction, the decrease or increase of the overlapping region is opposite to that of the previous tactile sensor element, and therefore, between the upper electrode and the lower electrode. The increase or decrease of the electric resistance value of is opposite to that of the tactile sensor element. Therefore, by subtracting the change of each electric resistance value of one set of tactile sensor elements, there is an effect that the left and right (X-axis direction) shear stress applied to the tactile sensor can be detected.
 触覚センサをブリッジ回路で構成することができる。本発明で用いるせん断応力の検出原理によれば、せん断応力による抵抗値の変化量を接触圧力および周囲の温度を除去して得ることができるという効果がある。本発明で用いる接触圧力の検出原理によれば、接触圧力による抵抗値の変化量をせん断応力および周囲の温度を除去して得ることができるという効果がある。 The tactile sensor can be configured with a bridge circuit. According to the shear stress detection principle used in the present invention, there is an effect that the amount of change in resistance value due to shear stress can be obtained by removing the contact pressure and the ambient temperature. According to the contact pressure detection principle used in the present invention, there is an effect that the amount of change in the resistance value due to the contact pressure can be obtained by removing the shear stress and the ambient temperature.
 触覚センサを2個、(X―Y)平面上の2軸に沿わせて配置した3軸触覚センサを作製した。触覚センサに垂直方向に接触圧力が印加された場合および/または水平方向にせん断応力が印加された場合、触覚センサ素子の電気抵抗値の変化に基づき、接触圧力および/またはせん断応力を検出することができる。 A 3-axis tactile sensor was manufactured by arranging two tactile sensors along two axes on the (XY) plane. When a contact pressure is applied vertically to the tactile sensor and / or a shear stress is applied in the horizontal direction, the contact pressure and / or the shear stress is detected based on the change in the electric resistance value of the tactile sensor element. Can be done.
 本発明の3軸触覚センサではセンシングを担う応力感受層と、上電極および下電極とを積層化によって密着させると共に、専用の測定原理を考案した。この結果、応力の検知層が応力の方向に十分変形できる余地を持ちながら検知層の厚みが薄いという触覚センサの薄型化を実現すると共に、低応力下でも計測安定性を向上させ高感度な計測が可能である3軸触覚センサを提供することができるという効果がある。 In the 3-axis tactile sensor of the present invention, the stress-sensitive layer responsible for sensing and the upper electrode and the lower electrode are brought into close contact with each other by stacking, and a dedicated measurement principle is devised. As a result, the tactile sensor is made thinner because the thickness of the detection layer is thin while the stress detection layer has room to be sufficiently deformed in the direction of stress, and the measurement stability is improved even under low stress for highly sensitive measurement. There is an effect that it is possible to provide a 3-axis tactile sensor capable of providing a sensor.
本発明の触覚センサ素子10の構造を示す断面図である。It is sectional drawing which shows the structure of the tactile sensor element 10 of this invention. 本発明の触覚センサ素子10の斜視図である。It is a perspective view of the tactile sensor element 10 of this invention. 導電性高分子の例であるPEDOT/PSSの写真と構造を示す図である。It is a figure which shows the photograph and structure of PEDOT / PSS which is an example of a conductive polymer. 触覚センサ素子10を2個(触覚センサ素子10および10’)、(X―Y)平面上に配置した触覚センサ20を示す図である。It is a figure which shows the tactile sensor 20 which arranged two tactile sensor elements 10 (tactile sensor elements 10 and 10'), (XY) plane. 図4に示した触覚センサ20をブリッジ回路30で構成した回路図である。It is a circuit diagram which configured the tactile sensor 20 shown in FIG. 4 by a bridge circuit 30. 触覚センサ20を2個(触覚センサ20および20Y’)、(X―Y)平面上の2軸に沿わせて配置した3軸触覚センサ40を示す図である。It is a figure which shows the three-axis tactile sensor 40 which arranged two tactile sensors 20 ( tactile sensor 20 and 20Y'), and arranged along two axes on the (XY) plane. 図6に示した3軸触覚センサ40をブリッジ回路50で構成した回路図である。FIG. 6 is a circuit diagram in which the 3-axis tactile sensor 40 shown in FIG. 6 is composed of a bridge circuit 50. 3軸触覚センサ40を撮影した図である。It is a figure which photographed the 3-axis tactile sensor 40. 3軸触覚センサ40の較正装置60を模式的に示す図である。It is a figure which shows typically the calibration device 60 of the 3-axis tactile sensor 40. 接触圧力の較正試験に用いた材料試験機を示す図である。It is a figure which shows the material tester used for the calibration test of a contact pressure. 図10に示した材料試験機の一部拡大図である。It is a partially enlarged view of the material testing machine shown in FIG. 接触圧力の較正実験の結果を示すグラフである。It is a graph which shows the result of the calibration experiment of contact pressure. 接触圧力4kPa(重り64)の下で、せん断応力を付加したときの較正実験の結果を示すグラフである。It is a graph which shows the result of the calibration experiment when shear stress was applied under the contact pressure of 4 kPa (weight 64). 接触圧力(重り64)を2kPaと4kPaとに変えた下で、せん断応力を付加したときの較正実験の結果を示すグラフである。It is a graph which shows the result of the calibration experiment when shear stress was applied under the contact pressure (weight 64) changed to 2kPa and 4kPa.
 以下、実施例について図面を参照して詳細に説明する。 Hereinafter, examples will be described in detail with reference to the drawings.
 図1は本発明の触覚センサ素子10の断面構造を示す。図1で、符号12は下電極、14は下電極12の一端側12r(図1では右側)に跨がって形成された導電ポリマー等の応力感受層(後述するように電気伝導率を有している。)、16は応力感受層14上に形成された上電極である。図1に示されるように、下電極12と応力感受層14、および応力感受層14と上電極16は各々密着して積層された構造を有している。加えて、下電極12の一端側12rにおいて、平面上、下電極12と上電極16とは(応力感受層14を介して)垂直方向に重なる領域(実線Sで示される重複領域。平面上では略矩形状になる。)を有している。触覚センサ素子10に電圧が印加された場合、電流経路は図1に示されるように、下電極12における電流C1から応力感受層14を通る電流C2となり、上電極16を流れる電流C3(奥行方向)となる。 FIG. 1 shows a cross-sectional structure of the tactile sensor element 10 of the present invention. In FIG. 1, reference numeral 12 is a lower electrode, and 14 is a stress-sensitive layer such as a conductive polymer formed straddling one end side 12r (right side in FIG. 1) of the lower electrode 12 (having electrical conductivity as described later). ), 16 is an upper electrode formed on the stress-sensitive layer 14. As shown in FIG. 1, the lower electrode 12 and the stress-sensitive layer 14, and the stress-sensitive layer 14 and the upper electrode 16 each have a structure in which they are closely laminated. In addition, on one end side 12r of the lower electrode 12, a region (overlapping region shown by a solid line S; on a plane) in which the lower electrode 12 and the upper electrode 16 vertically overlap (via the stress sensitive layer 14) on a plane. It has a substantially rectangular shape.). When a voltage is applied to the tactile sensor element 10, the current path changes from the current C1 in the lower electrode 12 to the current C2 passing through the stress-sensitive layer 14 as shown in FIG. 1, and the current C3 flowing through the upper electrode 16 (depth direction). ).
 図2は触覚センサ素子10の斜視図を示す。図2で図1と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図2に示されるように、触覚センサ素子10の下電極は一対の下電極12aおよび12bから構成されている。これは後述するように触覚センサ素子10の電気抵抗値を計測するために設けられている。応力感受層14は、この一対の下電極12aの一端側12raと下電極12bの一端側12rbとに跨がって(橋渡すように)形成されている。但し、一端側12raでは図1に示される一端側12rと同様に、平面上、下電極12aと上電極16とは(応力感受層14を介して)垂直方向に重なる領域(図1に示される実線Sと同様の重複領域)を有している。一端側12rbの場合も同様に、平面上、下電極12bと上電極16とは(応力感受層14を介して)垂直方向に重なる領域(図1に示される実線Sと同様の重複領域)を有している。このため、電流経路は図2に示されるように、下電極12aにおける電流C1から応力感受層14を通る電流C2となり、次いで上電極16を流れる電流C3となり、応力感受層14を流れる電流C4となって下電極12bを流れる電流C5となる。 FIG. 2 shows a perspective view of the tactile sensor element 10. In FIG. 2, the parts having the same reference numerals as those in FIG. 1 indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 2, the lower electrode of the tactile sensor element 10 is composed of a pair of lower electrodes 12a and 12b. This is provided for measuring the electric resistance value of the tactile sensor element 10 as described later. The stress-sensitive layer 14 is formed so as to straddle (bridge) the one end side 12ra of the pair of lower electrodes 12a and the one end side 12rb of the lower electrode 12b. However, in the one end side 12ra, similarly to the one end side 12r shown in FIG. 1, a region (shown in FIG. 1) in which the lower electrode 12a and the upper electrode 16 overlap in the vertical direction (via the stress sensitive layer 14) on a plane. It has the same overlapping region as the solid line S). Similarly, in the case of 12 rb on one end side, a region (overlapping region similar to the solid line S shown in FIG. 1) in which the lower electrode 12b and the upper electrode 16 vertically overlap (via the stress sensitive layer 14) is formed on a plane. Have. Therefore, as shown in FIG. 2, the current path becomes the current C2 passing through the stress-sensitive layer 14 from the current C1 in the lower electrode 12a, then the current C3 flowing through the upper electrode 16, and the current C4 flowing through the stress-sensitive layer 14. The current C5 flows through the lower electrode 12b.
 図1および図2を参照して、触覚センサ素子10の上電極16に水平方向にせん断応力Fr(図上左から右方向)が加わると、重複領域Sは減少し上電極16と下電極12との間の電気抵抗値は増加する。一方、触覚センサ素子10の上電極16に水平方向にせん断応力Fl(図上右から左方向)が加わると、重複領域Sは増加し上電極16と下電極12との間の電気抵抗値は減少する。従って、当該電気抵抗値の変化とせん断応力との関係に基づき、触覚センサ素子10に加わるせん断応力を測定することができる。 With reference to FIGS. 1 and 2, when a shear stress Fr (from left to right in the figure) is applied horizontally to the upper electrode 16 of the tactile sensor element 10, the overlapping region S decreases and the upper electrode 16 and the lower electrode 12 The electrical resistance value between and increases. On the other hand, when a shear stress Fl (from right to left in the figure) is applied to the upper electrode 16 of the tactile sensor element 10 in the horizontal direction, the overlapping region S increases and the electric resistance value between the upper electrode 16 and the lower electrode 12 increases. Decrease. Therefore, the shear stress applied to the tactile sensor element 10 can be measured based on the relationship between the change in the electric resistance value and the shear stress.
 応力感受層14は触覚センサ素子10へ印加される接触圧力およびせん断応力に対する(導電ポリマー等の)変換器であり、ポリエチレンジオキシチオフェン(polyethylenedioxythiophene :PEDOT)とポリスチレンスルホン酸(polystyrenesulfonic(PSS)acid)の分散体を用いた。詳しくは、Orgacon (登録商標)EL-P 3040, Agfa(登録商標)-Material 社製のPEDOT/PSSを用いた。図3(A)は導電性高分子の例であるPEDOT/PSSの写真を示し、図3(B)はその構造を示す。PEDOT/PSSは分子中の多数の電子がπ軌道上を自由に移動するため、電気伝導率を有している。さらに、圧縮応力が印加された場合、電気抵抗が減少する性質を有していることが知られている。このため、触覚センサ素子10に垂直方向に接触圧力が印加された場合、応力感受層14が圧縮されて上電極16と下電極12との間の電気抵抗が減少する。従って、当該電気抵抗値の変化と接触圧力との関係に基づき、触覚センサ素子10に加わる接触圧力を測定することができる。応力感受層14は導電性高分子等であればPEDOT/PSSに限定されるものではない。以下では、PEDOT/PSSを例に説明する。 The stress-sensitive layer 14 is a converter (such as a conductive polymer) for the contact pressure and shear stress applied to the tactile sensor element 10, and is polyethylenedioxythiophene (PEDOT) and polystyrene sulfonate (PSS) acid. Dispersion was used. Specifically, PEDOT / PSS manufactured by Orgacon (registered trademark) EL-P3040 and Agfa (registered trademark) -Material was used. FIG. 3 (A) shows a photograph of PEDOT / PSS, which is an example of a conductive polymer, and FIG. 3 (B) shows its structure. PEDOT / PSS has electrical conductivity because many electrons in the molecule move freely on the π orbit. Furthermore, it is known that when compressive stress is applied, it has the property of reducing electrical resistance. Therefore, when a contact pressure is applied to the tactile sensor element 10 in the vertical direction, the stress-sensitive layer 14 is compressed and the electrical resistance between the upper electrode 16 and the lower electrode 12 is reduced. Therefore, the contact pressure applied to the tactile sensor element 10 can be measured based on the relationship between the change in the electric resistance value and the contact pressure. The stress-sensitive layer 14 is not limited to PEDOT / PSS as long as it is a conductive polymer or the like. In the following, PEDOT / PSS will be described as an example.
 次に、触覚センサ素子10の製造方法について説明する。触覚センサ素子10の製造は積層化工程積層化工程を用いる。一対の下電極12aおよび12bはインクジェットプリンタ(CLUSTER TECHNOLOGY社製およびDeskviewer)を用いて金属インク(HARIMA Chemical Group社製,NPS-J)により、基板(所定の基材フィルム)上に印刷した(下電極形成工程)。金属インクとしては例えば銀インクが好適である。以下では銀インクを例に取り上げるが、金属インクが銀インクに限定されるものではない。基板としては、銀インクに対する専用フィルム(MITSUBISHI(登録商標) PAPER MILLS LIMITED社製、NB-WF-3GF100)を用いた。下電極12を上記専用フィルムに印刷後、電気炉により適宜アニールした。なお、銀インクの電気伝導率は約6.30×10(S/m)であり、PEDOT/PSSの電位伝導率よりかなり大きい。 Next, a method of manufacturing the tactile sensor element 10 will be described. The tactile sensor element 10 is manufactured by using a laminating step. The pair of lower electrodes 12a and 12b were printed on a substrate (predetermined base film) with a metal ink (HARIMA Chemical Group, NPS-J) using an inkjet printer (CLUSTER TECHNOLOGY and Deskviewer) (lower). Electrode forming step). As the metal ink, for example, silver ink is suitable. In the following, silver ink will be taken as an example, but the metal ink is not limited to silver ink. As the substrate, a special film for silver ink (MITSUBISHI (registered trademark) PAPER MILLS LIMITED, NB-WF-3GF100) was used. The lower electrode 12 was printed on the special film and then appropriately annealed by an electric furnace. The electric conductivity of the silver ink is about 6.30 × 10 7 (S / m ), much greater than the potential conductivity of PEDOT / PSS.
 続いて、下電極形成工程で形成された一対の下電極12aおよび12bの表面上に跨って、スクリーン印刷の方法を用いて導電ポリマー(例えば、上記PEDOT/PSS:所定の導電ポリマー)を塗布(コーティング)することにより、応力感受層14を形成した(応力感受層形成工程)。PEDOT/PSSの中に銀インクが入り込む可能性を減少させるため、複数の層でコーティングした。PEDOT/PSSの1層をコーティングした際、電気炉により適宜アニールした。全層をコーティング後、電気炉により適宜アニールした。 Subsequently, a conductive polymer (for example, PEDOT / PSS: a predetermined conductive polymer) is applied over the surfaces of the pair of lower electrodes 12a and 12b formed in the lower electrode forming step by a screen printing method (for example, the above-mentioned PEDOT / PSS: a predetermined conductive polymer). By coating), the stress-sensitive layer 14 was formed (stress-sensitive layer forming step). It was coated with multiple layers to reduce the possibility of silver ink getting into PEDOT / PSS. When one layer of PEDOT / PSS was coated, it was appropriately annealed by an electric furnace. After coating all layers, they were appropriately annealed in an electric furnace.
 上電極16は銀インクを用いてインクジェットプリンタにより、応力感受層形成工程で形成された応力感受層(PEDOT/PSS)上に印刷することにより形成した(上電極形成工程)。銀インクの飛翔状態および着滴状態を観察しながら上電極16を形成した。PEDOT/PSSの中に銀インクが送り込まれるのを避けるため、適宜加熱しつつ印刷をおこなった。上電極16を印刷後、電気炉により適宜アニールした。PEDOT/PSSの表面上に銀インクで上電極16を印刷後、規定通りの大きさであり横に広がっていないことを確認した。最後に、触覚センサ素子10の表面を電気的絶縁および保護のため、ポリエチレンフィルムでコーティングした。 The upper electrode 16 was formed by printing on the stress-sensitive layer (PEDOT / PSS) formed in the stress-sensitive layer forming step by using an inkjet printer using silver ink (upper electrode forming step). The upper electrode 16 was formed while observing the flying state and the dripping state of the silver ink. In order to avoid sending silver ink into PEDOT / PSS, printing was performed while heating appropriately. After printing the upper electrode 16, it was appropriately annealed by an electric furnace. After printing the upper electrode 16 on the surface of PEDOT / PSS with silver ink, it was confirmed that the upper electrode 16 had a specified size and did not spread laterally. Finally, the surface of the tactile sensor element 10 was coated with a polyethylene film for electrical insulation and protection.
 以上より、本発明の実施例1によれば、本発明の触覚センサ素子10の断面構造は、下電極12と、下電極12の一端側12rに跨がって形成されたPEDOT/PSSの応力感受層と、応力感受層14上に形成された上電極16とから構成されている。触覚センサ素子10の上電極16に水平方向にせん断応力FrまたはFlが加わると、水平方向の向きに応じて、重複領域Sは減少または増加し、これにより上電極16と下電極12との間の電気抵抗値は増加または減少する。従って、当該電気抵抗値の変化とせん断応力との関係に基づき、触覚センサ素子10に加わるせん断応力を測定することができる。触覚センサ素子10に垂直方向に接触圧力が印加された場合、応力感受層14が圧縮されて上電極16と下電極12との間の電気抵抗が減少する。従って、当該電気抵抗値の変化と接触圧力との関係に基づき、触覚センサ素子10に加わる接触圧力を測定することができる。 Based on the above, according to the first embodiment of the present invention, the cross-sectional structure of the tactile sensor element 10 of the present invention is the stress of the lower electrode 12 and the PEDOT / PSS formed across one end side 12r of the lower electrode 12. It is composed of a sensitive layer and an upper electrode 16 formed on the stress sensitive layer 14. When a horizontal shear stress Fr or Fl is applied to the upper electrode 16 of the tactile sensor element 10, the overlapping region S decreases or increases depending on the horizontal orientation, thereby between the upper electrode 16 and the lower electrode 12. The electrical resistance value of is increased or decreased. Therefore, the shear stress applied to the tactile sensor element 10 can be measured based on the relationship between the change in the electric resistance value and the shear stress. When a contact pressure is applied to the tactile sensor element 10 in the vertical direction, the stress-sensitive layer 14 is compressed and the electrical resistance between the upper electrode 16 and the lower electrode 12 is reduced. Therefore, the contact pressure applied to the tactile sensor element 10 can be measured based on the relationship between the change in the electric resistance value and the contact pressure.
 上述したように、触覚センサ素子10の製造は積層化工程を用いているため、触覚センサ素子10により触覚センサの薄型化を図ることが可能であると共に、作製における個体差を減少させバラツキを抑えた製造を可能とするという効果がある。触覚センサ素子10の下電極12と応力感受層14、および応力感受層14と上電極16は各々密着して積層された構造を有している。このため、触覚センサ素子10は低応力下でも計測安定性を向上させ高感度な計測を可能とするという効果がある。 As described above, since the tactile sensor element 10 is manufactured by using the stacking process, the tactile sensor element 10 can be used to reduce the thickness of the tactile sensor, and the individual differences in the manufacturing can be reduced to suppress the variation. It has the effect of enabling manufacturing. The lower electrode 12 and the stress-sensitive layer 14 of the tactile sensor element 10, and the stress-sensitive layer 14 and the upper electrode 16 each have a structure in which they are closely laminated. Therefore, the tactile sensor element 10 has an effect of improving measurement stability even under low stress and enabling highly sensitive measurement.
 図4は、上述した触覚センサ素子10を2個(触覚センサ素子10および10’)、XY平面上の1軸(X軸)上に配置した触覚センサ20を示す。図4で図1と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図4では説明の都合上、X軸およびZ軸のみを示しているが、Y軸は後述する図6に示される方向と同じである。触覚センサ素子10’側の各要素には触覚センサ素子10側の対応する各要素にダッシュ(’)を付けて示す。図4に示されるように触覚センサ20は、触覚センサ素子10の一対の下電極12aおよび12bの各一端側12raおよび12rbと、触覚センサ素子10’の一対の下電極12a’および12b’の各一端側12ra’および12rb’とを対向させて平面上の1軸(X軸)上に沿わせて配置した。つまり、各触覚センサ素子10等の一対の下電極12a、12b等同士を対向させて、左右に(X軸上に)対称的に配置した。下電極12aと12bとの間の電気抵抗値をRX1、下電極12a’と12b’との間の電気抵抗値をRX2とした。図4に示される触覚センサ素子10DGは、周囲の温度の変化によってのみ電気抵抗値が変化する(温度補償用の)ダミーゲージである。触覚センサ素子10DG側の各要素には触覚センサ素子10側の対応する各要素に記号DGを付けて示す。RDGは温度補償用の電気抵抗値である。 FIG. 4 shows a tactile sensor 20 in which two tactile sensor elements 10 (tactile sensor elements 10 and 10') described above are arranged on one axis (X axis) on an XY plane. In FIG. 4, the parts having the same reference numerals as those in FIG. 1 indicate the same elements, and thus the description thereof will be omitted. Although only the X-axis and the Z-axis are shown in FIG. 4 for convenience of explanation, the Y-axis is the same as the direction shown in FIG. 6 described later. Each element on the tactile sensor element 10'side is indicated by adding a dash (') to each corresponding element on the tactile sensor element 10'side. As shown in FIG. 4, the tactile sensor 20 includes a pair of lower electrodes 12a and 12b of the tactile sensor element 10 on each end side 12ra and 12rb, and a pair of lower electrodes 12a'and 12b'of the tactile sensor element 10'. One end side 12ra'and 12rb' were placed to face each other and along one axis (X axis) on a plane. That is, the pair of lower electrodes 12a, 12b, etc. of the tactile sensor elements 10 and the like are opposed to each other and arranged symmetrically to the left and right (on the X-axis). The electrical resistance value between the lower electrode 12a and 12b R X1, the electric resistance value between the lower electrode 12a 'and 12b' was R X2. The tactile sensor element 10 DG shown in FIG. 4 is a dummy gauge (for temperature compensation) whose electrical resistance value changes only by a change in ambient temperature. Each element on the tactile sensor element 10 DG side is indicated by adding a symbol DG to each corresponding element on the tactile sensor element 10 side. RDG is an electrical resistance value for temperature compensation.
 上述したように、触覚センサ素子10に水平方向(X軸方向)にせん断応力が加わると、水平方向の向きにより重複領域Sは減少または増加して、上電極16と下電極12a等との間の電気抵抗値は増加または減少する。図4に示される触覚センサ20の場合も同様であり、触覚センサ素子10の上電極16に水平方向にせん断応力Fr(図上左から右方向)が加わると、重複領域Sは減少し上電極16と下電極12aとの間の電気抵抗値RX1は増加する。一方、触覚センサ素子10’の場合、上電極16’に水平方向に同じせん断応力Frが加わると、重複領域S’は増加し上電極16’と下電極12a’等との間の電気抵抗値RX2は減少する。逆方向も同様に、触覚センサ素子10の上電極16に水平方向にせん断応力Fl(図上右から左方向)が加わると、重複領域Sは増加し上電極16と下電極12a等との間の電気抵抗値RX1は減少する。一方、触覚センサ素子10’の場合、上電極16’に水平方向に同じせん断応力Flが加わると、重複領域S’は減少し上電極16’と下電極12a’等との間の電気抵抗値RX2は増加する。従って、1組の触覚センサ素子10および10’の各電気抵抗値RX1の変化とRX2の変化とを差引きすることにより、触覚センサ20に加わる左右の(X軸方向の)せん断応力Fr、Flを検出することができる。 As described above, when shear stress is applied to the tactile sensor element 10 in the horizontal direction (X-axis direction), the overlapping region S decreases or increases depending on the horizontal direction, and is between the upper electrode 16 and the lower electrode 12a and the like. The electrical resistance value of is increased or decreased. The same applies to the tactile sensor 20 shown in FIG. 4. When a shear stress Fr (from left to right in the figure) is applied to the upper electrode 16 of the tactile sensor element 10 in the horizontal direction, the overlapping region S decreases and the upper electrode The electrical resistance value RX1 between 16 and the lower electrode 12a increases. On the other hand, in the case of the tactile sensor element 10', when the same shear stress Fr is applied to the upper electrode 16'in the horizontal direction, the overlapping region S'increases and the electrical resistance value between the upper electrode 16' and the lower electrode 12a'etc. RX2 decreases. Similarly, in the reverse direction, when a shear stress Fl (from right to left in the figure) is applied to the upper electrode 16 of the tactile sensor element 10 in the horizontal direction, the overlapping region S increases and is between the upper electrode 16 and the lower electrode 12a and the like. The electrical resistance value RX1 of is decreased. On the other hand, in the case of the tactile sensor element 10', when the same shear stress Fl is applied to the upper electrode 16'in the horizontal direction, the overlapping region S'decreases and the electrical resistance value between the upper electrode 16' and the lower electrode 12a'etc. RX2 increases. Therefore, by subtracting one set of the change of the change and R X2 of each electric resistance value R X1 of the tactile sensor element 10 and 10 ', right and left applied to the tactile sensor 20 (the X-axis direction) shear stress Fr , Fl can be detected.
 上述したように、触覚センサ素子10に垂直方向(Z軸方向)に接触圧力が印加された場合、応力感受層14が圧縮されて上電極16と下電極12a等との間の電気抵抗が減少する。従って、当該電気抵抗値の変化と接触圧力との関係に基づき、触覚センサ素子10に加わる接触圧力を測定することができる。図4に示される触覚センサ20の場合も同様に、触覚センサ20に垂直方向に接触圧力が印加された場合、各応力感受層14、14’が圧縮されて電気抵抗値RX1とRX2とが減少する。従って、当該電気抵抗値の変化と接触圧力との関係に基づき、触覚センサ20に加わる接触圧力を測定することができる。以上より、触覚センサ20に垂直方向に接触圧力が印加された場合および/または水平方向にせん断応力Fr、Flが印加された場合、各触覚センサ素子10、10’の電気抵抗値RX1、RX2の変化に基づき、接触圧力および/またはせん断応力Fr、Flを検出することができる(「Aおよび/またはB」は、「AおよびB」と「AまたはB」との併記を略したものである。)。 As described above, when a contact pressure is applied to the tactile sensor element 10 in the vertical direction (Z-axis direction), the stress-sensitive layer 14 is compressed and the electrical resistance between the upper electrode 16 and the lower electrode 12a and the like is reduced. To do. Therefore, the contact pressure applied to the tactile sensor element 10 can be measured based on the relationship between the change in the electric resistance value and the contact pressure. Similarly, in the case of the tactile sensor 20 shown in FIG. 4, when a contact pressure is applied to the tactile sensor 20 in the vertical direction, the stress-sensitive layers 14 and 14'are compressed to have electrical resistance values RX1 and RX2 . Decreases. Therefore, the contact pressure applied to the tactile sensor 20 can be measured based on the relationship between the change in the electric resistance value and the contact pressure. From the above, when the contact pressure is applied to the tactile sensor 20 in the vertical direction and / or when the shear stresses Fr and Fl are applied in the horizontal direction, the electric resistance values RX1 and R of the tactile sensor elements 10 and 10'are each. Contact pressure and / or shear stress Fr, Fl can be detected based on the change of X2 (“A and / or B” is an abbreviation for “A and B” and “A or B”. It is.).
 以下では、本発明で用いるせん断応力、接触圧力の検出原理につき詳しく説明する。図5は図4に示した触覚センサ20をブリッジ回路30で構成した回路図である。図5で図4と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図5に示されるように、触覚センサ20は、触覚センサ素子10(第1の触覚センサ素子)の電気抵抗RX1(第1センサ抵抗)と、触覚センサ素子10’(第2の触覚センサ素子)の電気抵抗RX2(第2センサ抵抗)と、接触圧力およびせん断応力が無負荷時における電気抵抗RX1およびRX2(=R。固定抵抗)とに基づくブリッジ回路30を構成する。ブリッジ回路30にはダミーゲージ10DGの電気抵抗RDGと固定抵抗Rとの直列回路も含む。各抵抗値はブリッジ回路30が平衡状態における抵抗値である。図5に示されるように、ブリッジ回路30の一の対辺に電気抵抗RX1および固定抵抗Rが配置され、他の対辺に電気抵抗RX2および固定抵抗Rが配置されており、電気抵抗RX1と電気抵抗RX2と電気抵抗RDGとを結ぶ分岐点rと接地間とに入力電圧Eが印加される。e1xは分岐点aと接地との間の実測電位、e2xは分岐点bと接地との間の実測電位、eは分岐点gと接地との間の実測電位である。触覚センサ20に垂直方向に接触圧力が印加された場合および水平方向にせん断応力Fr、Flが印加された場合、せん断応力による電圧の変化eは以下の式1で与えられる。 Hereinafter, the principle of detecting shear stress and contact pressure used in the present invention will be described in detail. FIG. 5 is a circuit diagram in which the tactile sensor 20 shown in FIG. 4 is composed of a bridge circuit 30. In FIG. 5, the parts having the same reference numerals as those in FIG. 4 indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 5, the tactile sensor 20 includes the electric resistance RX1 (first sensor resistance) of the tactile sensor element 10 (first tactile sensor element) and the tactile sensor element 10'(second tactile sensor element). the electrical resistance R X2 (second sensor resistance) of), the contact pressure and shear stress is a bridge circuit 30 based on the electrical resistance R X1 and R X2 (= R. fixed resistor) when no load. The bridge circuit 30 also includes a series circuit of a fixed resistance R and the electrical resistance R DG dummy gage 10 DG. Each resistance value is a resistance value when the bridge circuit 30 is in an equilibrium state. As shown in FIG. 5, the electric resistance R X1 and the fixed resistor R is disposed on one of opposite sides of the bridge circuit 30, are arranged electrical resistance R X2 and the fixed resistor R is other opposite sides, the electric resistance R X1 The input voltage E is applied between the branch point r connecting the electric resistance R X2 and the electric resistance R DG and the ground. e 1x is the measured potential between the branch point a and the ground, e 2x is the measured potential between the branch point b and the ground, and e 3 is the measured potential between the branch point g and the ground. If when the contact pressure in the direction perpendicular to the tactile sensor 20 is applied and horizontal shear stresses Fr, Fl is applied, the change e x of the voltage due to shear stress is given by Equation 1 below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、式1をテイラー展開すると式2になる。 Here, when the formula 1 is expanded by Taylor, it becomes the formula 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 電気抵抗RX1の変化量ΔRX1、電気抵抗RX2の変化量ΔRX2は、触覚センサ20に印加される接触圧力による変化量(ΔRX1CP、ΔRX2CP)、せん断応力による変化量(ΔRX1SS、ΔRX2SS)及び周囲の温度による変化量(ΔRX1TMP、ΔRX2TMP)により与えられる。電気抵抗RDGの変化量は周囲の温度による変化量(ΔRDGTMP)により与えられる。即ち、式3のように与えられる。 Variation [Delta] R X1 of the electric resistance R X1, variation [Delta] R X2 of the electrical resistance R X2, the amount of change due to the contact pressure applied to the tactile sensor 20 (ΔR X1CP, ΔR X2CP) , the amount of change due to the shear stress (ΔR X1SS, ΔR X2SS ) and the amount of change due to ambient temperature (ΔR X1 TMP , ΔR X2 TMP ). The amount of change in the electrical resistance R DG is given by the amount of change due to the ambient temperature (ΔR DGTMP). That is, it is given as in Equation 3.
 ΔRX1=ΔRX1CP+ΔRX1SS+ΔRX1TMP
 ΔRX2=ΔRX2CP+ΔRX2SS+ΔRX2TMP
 ΔRDG=ΔRRGTMP                   (3)
ΔR X1 = ΔR X1CP + ΔR X1SS + ΔR X1TMP
ΔR X2 = ΔR X2CP + ΔR X2SS + ΔR X2TMP
ΔR DG = ΔR RGTMP (3)
 式2の第2項を無視し、式3を代入すると式4のようになる。 Ignoring the second term of Equation 2 and substituting Equation 3, it becomes Equation 4.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、
接触圧力による変化量ΔRX1CP=ΔRX2CP=ΔRCP(<0)、
せん断応力による変化量ΔRX1SS=-ΔRX2SSとして両者の絶対値をΔRSS
周囲の温度による変化量ΔRX1TMP=ΔRX2TMP=ΔRTMP     (5)
とすれば、式4は式6のようになる。
here,
Amount of change due to contact pressure ΔR X1CP = ΔR X2CP = ΔR CP (<0),
The amount of change due to shear stress ΔR X1SS = −ΔR X2SS , and the absolute values of both are ΔR SS ,
Weight change due to ambient temperature ΔR X1TMP = ΔR X2TMP = ΔR TMP (5)
Then, Equation 4 becomes Equation 6.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 以上より、本発明で用いるせん断応力の検出原理は次の通りである。即ち、触覚センサ20に接触圧力およびせん断応力が印加された場合、一の対辺(電気抵値RX1および固定抵値Rが配置された辺)中の分岐点aの接地に対する実測電位e1xと、他の対辺(電気抵値RX2および固定抵値Rが配置された辺)中の分岐点bの接地に対する実測電位e2xとの差の電位eは、せん断応力による変化量ΔRSSと入力電圧Eと固定抵値Rとにより得られるという原理である。電位eは実測値の差であり、入力電圧Eおよび固定抵抗Rは定数値であるため、式6に基づき、せん断応力による抵抗値の変化量ΔRSSを接触圧力および周囲の温度を除去して得ることができる。 Based on the above, the shear stress detection principle used in the present invention is as follows. That is, when the contact pressure and shear stress to the tactile sensor 20 is applied, the measured potential e 1x to ground branch point a in one opposite side (electric抵値R X1 and fixed抵値R are arranged side) , the potential e x of the difference between the measured potential e 2x to ground branch point b in the other opposite sides (electric抵値R X2 and fixed抵値R are arranged side) includes a change amount [Delta] R SS by shear stress The principle is that it is obtained by the input voltage E and the fixed shear value R. Potential e x is the difference in the actual value, the input voltage E and the fixed resistor R for a constant value, based on the equation 6, to remove the amount of change [Delta] R SS the contact pressure and the ambient temperature of the resistance value due to the shear stress Can be obtained.
 次に、触覚センサ20に垂直方向に接触圧力が印加された場合および水平方向にせん断応力Fr、Flが印加された場合、触覚センサ素子10の接触圧力による電圧の変化eZ1は以下の式7で与えられる。 Next, when a contact pressure is applied to the tactile sensor 20 in the vertical direction and when shear stresses Fr and Fl are applied in the horizontal direction, the change in voltage due to the contact pressure of the tactile sensor element 10 e Z1 is expressed by the following equation 7 Given in.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、式7をテイラー展開し、2次項までとると式8になる。 Here, when the formula 7 is expanded by Taylor and the quadratic term is taken, it becomes the formula 8.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式8の第2項を無視し、式3および式5の関係を考慮すると式9のようになる。 Ignoring the second term of Equation 8 and considering the relationship between Equation 3 and Equation 5, it becomes Equation 9.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 同様にして、触覚センサ素子10’の接触圧力による電圧の変化eZ2は以下の式10で与えられる。 Similarly, the voltage change eZ2 due to the contact pressure of the tactile sensor element 10'is given by the following equation 10.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式9および10より、触覚センサ素子10および10’の接触圧力による電圧の変化eは以下の式11で与えられる。 From Equation 9 and 10, the change e Z voltage by contact pressure of the tactile sensor element 10 and 10 'is given by the following equation 11.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、式5の関係を考慮すると、式11は式12のようになる。 Here, considering the relationship of the formula 5, the formula 11 becomes the formula 12.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 なお、周囲の温度による電気抵抗値の変化が小さく無視できる場合(e1x、e2x>>e)、式11は式13のようにしてもよい。 When the change in the electric resistance value due to the ambient temperature is small and can be ignored (e 1x , e 2x >> e 3 ), Equation 11 may be expressed as Equation 13.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 以上より、本発明で用いる接触圧力の検出原理は次の通りである。即ち、触覚センサ20に接触圧力およびせん断応力が印加された場合、一の対辺(電気抵抗RX1および固定抵抗Rが配置された辺)中の分岐点aの接地に対する実測電位e1xとダミーゲージを含む対辺(電気抵抗RDGおよび固定抵抗Rが配置された辺)中の分岐点gの接地に対する実測電位eとの差eZ1と、他の対辺(電気抵抗RX2および固定抵抗Rが配置された辺)中の分岐点bの接地に対する実測電位e2xとダミーゲージを含む対辺中の分岐点gの接地に対する実測電位eとの差eZ2との和の電位eは、接触圧力による変化量ΔRCPと入力電圧Eと固定抵抗Rとにより得られるという原理である。電位eは実測値の和であり、入力電圧Eおよび固定抵抗Rは定数値であるため、式12または13に基づき、接触圧力による抵抗値の変化量ΔRCPをせん断応力および周囲の温度を除去して得ることができる。周囲の温度による電気抵抗値の変化が小さく無視できる場合、ダミーゲージ側の実測電位eを無視して、電位eは実測電位e1xと実測電位e2xとの和により得られるとしてもよい。 From the above, the contact pressure detection principle used in the present invention is as follows. That is, when contact pressure and shear stress are applied to the tactile sensor 20, the measured potential e 1x and the dummy gauge with respect to the grounding of the branch point a in one opposite side (the side on which the electric resistance RX1 and the fixed resistance R are arranged) The difference e Z1 from the measured potential e 3 with respect to the grounding of the branch point g in the opposite side (the side where the electric resistance R DG and the fixed resistance R are arranged) including the other opposite side (the electric resistance R X2 and the fixed resistance R) potential e Z of the sum of the difference e Z2 between the measured potential e 2x the measured potential e 3 to ground branching point g in opposite sides including a dummy gauge for grounding the branch point b of the deployed side) in the contact The principle is that the amount of change due to pressure ΔR CP , the input voltage E, and the fixed resistance R are obtained. Since the potential e Z is the sum of the measured values and the input voltage E and the fixed resistance R are constant values, the amount of change in the resistance value due to the contact pressure ΔR CP is used as the shear stress and the ambient temperature based on the equation 12 or 13. It can be obtained by removing it. When the change in the electric resistance value due to the ambient temperature is small and can be ignored, the potential e Z may be obtained by the sum of the measured potential e 1x and the measured potential e 2x , ignoring the measured potential e 3 on the dummy gauge side. ..
 以上より、本発明の実施例2によれば、触覚センサ20は、触覚センサ素子10の一対の下電極12aおよび12bと、触覚センサ素子10’の一対の下電極12a’および12b’とを対向させて、平面上、左右に対称的に配置した。触覚センサ素子10の上電極16に水平方向にせん断応力FrまたはFlが加わると、水平方向の向きに応じて、重複領域Sは減少または増加し、これにより上電極16と下電極12a等との間の電気抵抗値RX1は増加または減少する。一方、触覚センサ素子10’の上電極16’に水平方向に同じせん断応力FrまたはFlが加わると、重複領域S’の減少または増加は触覚センサ素子10とは逆になり、このため、上電極16’と下電極12a’等との間の電気抵抗値RX2の増加または減少は触覚センサ素子10とは逆になる。従って、1組の触覚センサ素子10および10’の各電気抵抗値RX1の変化とRX2の変化とを差引きすることにより、触覚センサ20に加わる左右の(X軸方向の)せん断応力Fr、Flを検出することができる。触覚センサ20を構成する触覚センサ素子10の製造は積層化工程を用いているため、触覚センサ20により触覚センサの薄型化を図ることが可能であると共に、作製における個体差を減少させバラツキを抑えた製造を可能とするという効果がある。触覚センサ20を構成する触覚センサ素子10の下電極12a等と応力感受層14、および応力感受層14と上電極16は各々密着して積層された構造を有している。このため、触覚センサ20は低応力下でも計測安定性を向上させ高感度な計測を可能とするという効果がある。 Based on the above, according to the second embodiment of the present invention, the tactile sensor 20 faces the pair of lower electrodes 12a and 12b of the tactile sensor element 10 and the pair of lower electrodes 12a'and 12b'of the tactile sensor element 10'. They were arranged symmetrically on the plane. When a shear stress Fr or Fl is applied to the upper electrode 16 of the tactile sensor element 10 in the horizontal direction, the overlapping region S decreases or increases according to the horizontal orientation, whereby the upper electrode 16 and the lower electrode 12a and the like are formed. The electrical resistance value RX1 between them increases or decreases. On the other hand, when the same shear stress Fr or Fl is applied to the upper electrode 16'of the tactile sensor element 10'in the horizontal direction, the decrease or increase of the overlapping region S'is opposite to that of the tactile sensor element 10, and therefore, the upper electrode The increase or decrease of the electric resistance value RX2 between 16'and the lower electrode 12a'etc. is opposite to that of the tactile sensor element 10. Therefore, by subtracting one set of the change of the change and R X2 of each electric resistance value R X1 of the tactile sensor element 10 and 10 ', right and left applied to the tactile sensor 20 (the X-axis direction) shear stress Fr , Fl can be detected. Since the tactile sensor element 10 constituting the tactile sensor 20 is manufactured by using a stacking process, it is possible to reduce the thickness of the tactile sensor by using the tactile sensor 20, and to reduce individual differences in manufacturing and suppress variations. It has the effect of enabling manufacturing. The lower electrode 12a and the like of the tactile sensor element 10 constituting the tactile sensor 20, the stress-sensitive layer 14, and the stress-sensitive layer 14 and the upper electrode 16 each have a structure in which they are closely laminated. Therefore, the tactile sensor 20 has the effect of improving measurement stability even under low stress and enabling highly sensitive measurement.
 触覚センサ20をブリッジ回路30で構成することができる。本発明で用いるせん断応力の検出原理は次の通りである。即ち、触覚センサ20に接触圧力およびせん断応力が印加された場合、ブリッジ回路30の分岐点aの接地に対する実測電位e1xと、分岐点bの接地に対する実測電位e2xとの差の電位eは、せん断応力による変化量ΔRSSと入力電圧Eと固定抵抗Rとにより得られるという原理である。電位eは実測値の差であり、入力電圧Eおよび固定抵抗Rは定数値であるため、式6に基づき、せん断応力による抵抗値の変化量ΔRSSを接触圧力および周囲の温度を除去して得ることができるという効果がある。本発明で用いる接触圧力の検出原理は次の通りである。即ち、触覚センサ20に接触圧力およびせん断応力が印加された場合、ブリッジ回路30の分岐点aの接地に対する実測電位e1xと分岐点gの接地に対する実測電位eとの差eZ1と、分岐点bの接地に対する実測電位e2xと分岐点gの接地に対する実測電位eとの差eZ2との和の電位eは、接触圧力による変化量ΔRCPと入力電圧Eと固定抵抗Rとにより得られるという原理である。電位eは実測値の和であり、入力電圧Eおよび固定抵抗Rは定数値であるため、式12または13に基づき、接触圧力による抵抗値の変化量ΔRCPをせん断応力および周囲の温度を除去して得ることができるという効果がある。周囲の温度による電気抵抗値の変化が小さく無視できる場合、ダミーゲージ側の実測電位eを無視して、電位eは実測電位e1xと実測電位e2xとの和により得られるとしてもよい。 The tactile sensor 20 can be configured by the bridge circuit 30. The principle of detecting shear stress used in the present invention is as follows. That is, when the contact pressure and shear stress to the tactile sensor 20 is applied, the measured potential e 1x to ground the branching point a of the bridge circuit 30, the difference in potential e x between the measured potential e 2x to ground branch point b Is the principle obtained by the amount of change ΔR SS due to shear stress, the input voltage E, and the fixed resistance R. Potential e x is the difference in the actual value, the input voltage E and the fixed resistor R for a constant value, based on the equation 6, to remove the amount of change [Delta] R SS the contact pressure and the ambient temperature of the resistance value due to the shear stress It has the effect of being able to obtain it. The contact pressure detection principle used in the present invention is as follows. That is, when contact pressure and shear stress are applied to the tactile sensor 20, the difference e Z1 between the measured potential e 1x with respect to the grounding of the branch point a of the bridge circuit 30 and the measured potential e 3 with respect to the grounding of the branch point g, and branching. The difference between the measured potential e 2x with respect to the grounding of the point b and the measured potential e 3 with respect to the grounding of the branch point g e The potential e Z of the sum of Z2 is the amount of change ΔR CP due to the contact pressure, the input voltage E, and the fixed resistance R. Is the principle obtained by. Since the potential e Z is the sum of the measured values and the input voltage E and the fixed resistance R are constant values, the amount of change in the resistance value due to the contact pressure ΔR CP is used as the shear stress and the ambient temperature based on the equation 12 or 13. It has the effect that it can be obtained by removing it. When the change in the electric resistance value due to the ambient temperature is small and can be ignored, the potential e Z may be obtained by the sum of the measured potential e 1x and the measured potential e 2x , ignoring the measured potential e 3 on the dummy gauge side. ..
 図6は、上述した触覚センサ20を2個(触覚センサ20および20Y)、XY平面上の各軸に沿わせて配置した3軸触覚センサ40を示す。図6で図4と同じ符号を付した個所は同じ要素を示すため、説明は省略する。触覚センサ20Y側の各要素には触覚センサ20側の対応する各要素にYを付けて示す。図6に示されるように3軸触覚センサ40は、触覚センサ20をX軸方向に沿わせて配置し、触覚センサ20YをY軸方向に沿わせて配置した。触覚センサ20Yを構成する触覚センサ素子10Yの下電極12aYと12bYとの間の電気抵抗値をRY1、触覚センサ素子10Y’の下電極12a’Yと12b’Yとの間の電気抵抗値をRY2とした。触覚センサ20Yに水平方向(この場合はY軸方向)にせん断応力が加わった場合、実施例2で説明した触覚センサ20の場合と同様に、1組の触覚センサ素子10Yおよび10Y’の各電気抵抗RY1の変化とRY2の変化とを差引きすることにより、触覚センサ20Yに加わるY軸方向のせん断応力を検出することができる。触覚センサ20Yに垂直方向(Z軸方向)に接触圧力が印加された場合、実施例2で説明した触覚センサ20の場合と同様に、各応力感受層14Y、14Y’が圧縮されて電気抵抗RY1とおよびRY2の値が減少する。従って、当該電気抵抗値の変化と接触圧力との関係に基づき、触覚センサ20Yに加わる接触圧力を測定することができる。以上のように、3軸触覚センサ40はXY軸方向のせん断応力の計測だけではなく、Z軸方向の接触圧力の計測も含むため、3軸触覚センサ40とした。図6に示される1点鎖線で囲まれた部分Mが応力測定領域であり、約3.6×3.6mmである。但し、応力測定領域Mのサイズはこれに限定されるものではない。以上より、触覚センサ20Yに垂直方向に接触圧力が印加された場合および/または水平方向にせん断応力が印加された場合、実施例2で説明した触覚センサ20の場合と同様に各触覚センサ素子10Y、10Y’の電気抵抗RY1、RY2の値の変化に基づき、接触圧力および/またはせん断応力を検出することができる。 FIG. 6 shows two tactile sensors 20 ( tactile sensors 20 and 20Y) described above, and a three-axis tactile sensor 40 arranged along each axis on the XY plane. In FIG. 6, the parts having the same reference numerals as those in FIG. 4 indicate the same elements, and thus the description thereof will be omitted. Each element on the tactile sensor 20Y side is indicated by adding Y to each corresponding element on the tactile sensor 20 side. As shown in FIG. 6, in the 3-axis tactile sensor 40, the tactile sensor 20 is arranged along the X-axis direction, and the tactile sensor 20Y is arranged along the Y-axis direction. The electrical resistance value R Y1 between the lower electrode 12aY and 12bY tactile sensor element 10Y constituting the tactile sensor 20Y, the electric resistance value between the lower electrode 12a'Y and 12b'Y tactile sensor element 10Y ' It was set to RY2 . When shear stress is applied to the tactile sensor 20Y in the horizontal direction (in this case, the Y-axis direction), the electricity of the pair of tactile sensor elements 10Y and 10Y'is the same as in the case of the tactile sensor 20 described in the second embodiment. by subtracting the change in the change in resistance R Y1 and R Y2, it is possible to detect the Y-axis direction of the shear stress applied to the tactile sensor 20Y. When a contact pressure is applied to the tactile sensor 20Y in the vertical direction (Z-axis direction), the stress-sensitive layers 14Y and 14Y'are compressed and the electrical resistance R is as in the case of the tactile sensor 20 described in the second embodiment. The values of Y1 and RY2 decrease. Therefore, the contact pressure applied to the tactile sensor 20Y can be measured based on the relationship between the change in the electric resistance value and the contact pressure. As described above, since the 3-axis tactile sensor 40 includes not only the measurement of the shear stress in the XY-axis direction but also the measurement of the contact pressure in the Z-axis direction, the 3-axis tactile sensor 40 is used. The portion M surrounded by the alternate long and short dash line shown in FIG. 6 is the stress measurement region, which is about 3.6 × 3.6 mm 2 . However, the size of the stress measurement region M is not limited to this. From the above, when contact pressure is applied to the tactile sensor 20Y in the vertical direction and / or when shear stress is applied in the horizontal direction, each tactile sensor element 10Y is the same as in the case of the tactile sensor 20 described in the second embodiment. based on the change in the value of electrical resistance R Y1, R Y2 of 10Y ', the contact pressure and / or shear stress it can be detected.
 実施例2で説明したせん断応力、接触圧力の検出原理は実施例3の3軸触覚センサ40に対しても同様に適用することができる。図7は図6に示した3軸触覚センサ40をブリッジ回路50で構成した回路図である。図7で図5と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図7に示されるように、3軸触覚センサ40は、x軸に配置した触覚センサ20が構成するx軸ブリッジ回路とy軸に配置した触覚センサ20Yが構成するy軸ブリッジ回路とを並列に組合わせたxy軸ブリッジ回路を構成している。電気抵抗RX1、RX2、RY1、RY2およびRDGを結ぶ分岐点rと接地間とに入力電圧Eが印加される。x軸ブリッジ回路の各抵抗RX1、RX2の分岐点とy軸ブリッジ回路の各抵抗RY1、RY2の分岐点とに共通に入力電圧Eが印加される。e1Yは分岐点cと接地との間の実測電位、e2Yは分岐点dと接地との間の実測電位である。 The shear stress and contact pressure detection principles described in the second embodiment can be similarly applied to the three-axis tactile sensor 40 of the third embodiment. FIG. 7 is a circuit diagram in which the 3-axis tactile sensor 40 shown in FIG. 6 is composed of a bridge circuit 50. In FIG. 7, the parts having the same reference numerals as those in FIG. 5 indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 7, in the 3-axis tactile sensor 40, the x-axis bridge circuit formed by the tactile sensor 20 arranged on the x-axis and the y-axis bridge circuit formed by the tactile sensor 20Y arranged on the y-axis are arranged in parallel. It constitutes a combined xy-axis bridge circuit. An input voltage E is applied between the branch point r connecting the electrical resistances RX1 , RX2 , RY1 , RY2, and RDG and the ground. An input voltage E is commonly applied to the branch points of the resistors R X1 and RX2 of the x-axis bridge circuit and the branch points of the resistors RY1 and RY2 of the y-axis bridge circuit. e 1Y is the measured potential between the branch point c and the ground, and e 2Y is the measured potential between the branch point d and the ground.
 触覚センサ20Yに垂直方向に接触圧力が印加された場合および水平方向にせん断応力が印加された場合、せん断応力による電圧の変化eは、式6と同様に与えられる。以下の式14は3軸触覚センサ40におけるせん断応力による電圧の変化eおよびeを纏めて表したものである。但し、X、Y方向を区別するため、せん断応力による抵抗値の変化量ΔRSSを、ΔRSSX、ΔRSSYとした。 When the shear stress when the direction perpendicular to the contact pressure is applied and horizontally tactile sensor 20Y is applied, the change e Y voltage by shear stress is given similarly to Equation 6. Equation 14 below summarizes the changes in voltage e X and e Y due to shear stress in the 3-axis tactile sensor 40. However, in order to distinguish the X and Y directions, the amount of change in resistance value due to shear stress ΔR SS was set to ΔR SSX and ΔR SSY .
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 触覚センサ20Yに垂直方向に接触圧力が印加された場合および水平方向にせん断応力が印加された場合、接触圧力による電圧の変化eは、式12と同様に与えられる。以下の式15は3軸触覚センサ40における接触圧力による電圧の変化を纏めて表したものである。但し、X、Y方向を区別するため、触覚センサ20、20Yにおける接触圧力による電圧の変化をeZXおよびeZYとし、接触圧力による抵抗値の変化量ΔRCPをΔRCPX、ΔRCPYとした。 When the shear stress when the direction perpendicular to the contact pressure is applied and horizontally tactile sensor 20Y is applied, the change e Z voltage by contact pressure is given as for formula 12. Equation 15 below summarizes the changes in voltage due to contact pressure in the 3-axis tactile sensor 40. However, to distinguish X, the Y-direction, a change in the voltage due to contact pressure at the tactile sensor 20,20Y and e ZX and e ZY, and the change amount [Delta] R CP in resistance due to the contact pressure [Delta] R CPX, and [Delta] R CPY.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式15のeZXおよびeZYの平均(eXY)は式16のようになる。 The average (e XY ) of e ZX and e ZY of Equation 15 is as shown in Equation 16.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ここで、ΔRCPX=ΔRCPY=ΔRCPとみなせる場合、式16は式17となる。 Here, when it can be regarded as ΔR CPX = ΔR CPY = ΔR CP , the equation 16 becomes the equation 17.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 なお、周囲の温度による電気抵抗値の変化が小さく無視できる場合(e1x、e2x、e1Y、e2x>>e)、式18のようにしてもよい。 When the change in the electric resistance value due to the ambient temperature is small and can be ignored (e 1x , e 2x , e 1Y , e 2x >> e 3 ), the equation 18 may be used.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 図8は、3軸触覚センサ40を撮影した図であり、上述した応力測定領域Mが示されている。 FIG. 8 is a photograph of the 3-axis tactile sensor 40, and the stress measurement region M described above is shown.
 以上より、本発明の実施例3によれば、実施例2の触覚センサ20を2個(触覚センサ20および20Y)、XY平面上の各軸に沿わせて配置した3軸触覚センサ40を作製した。触覚センサ20Yに垂直方向に接触圧力が印加された場合および/または水平方向にせん断応力が印加された場合、実施例2で説明した触覚センサ20の場合と同様に各触覚センサ素子10Y、10Y’の電気抵抗RY1、RY2の値の変化に基づき、接触圧力および/またはせん断応力を検出することができる。実施例2で説明したせん断応力、接触圧力の検出原理は実施例3の3軸触覚センサ40に対しても同様に適用することができる。3軸触覚センサ40は、x軸に配置した触覚センサ20が構成するx軸ブリッジ回路とy軸に配置した触覚センサ20Yが構成するy軸ブリッジ回路とを並列に組合わせたxy軸ブリッジ回路を構成している。触覚センサ20Yに垂直方向に接触圧力が印加された場合および水平方向にせん断応力が印加された場合、せん断応力による電圧の変化eは、実施例2の式6と同様に与えられる。このため、3軸触覚センサ40におけるせん断応力による電圧の変化eおよびeを纏めて式14で表すことができる。触覚センサ20Yに垂直方向に接触圧力が印加された場合および水平方向にせん断応力が印加された場合、接触圧力による電圧の変化eは、実施例2の式12と同様に与えられる。このため、3軸触覚センサ40における接触圧力による電圧の変化を纏めて式15で表すことができる。 From the above, according to the third embodiment of the present invention, two tactile sensors 20 ( tactile sensors 20 and 20Y) of the second embodiment are manufactured, and a three-axis tactile sensor 40 arranged along each axis on the XY plane is produced. did. When a contact pressure is applied to the tactile sensor 20Y in the vertical direction and / or a shear stress is applied in the horizontal direction, the tactile sensor elements 10Y and 10Y'are the same as in the case of the tactile sensor 20 described in the second embodiment. The contact pressure and / or shear stress can be detected based on the change in the values of the electric resistances RY1 and RY2. The shear stress and contact pressure detection principles described in the second embodiment can be similarly applied to the three-axis tactile sensor 40 of the third embodiment. The 3-axis tactile sensor 40 is an xy-axis bridge circuit in which an x-axis bridge circuit composed of the tactile sensor 20 arranged on the x-axis and a y-axis bridge circuit composed of the tactile sensor 20Y arranged on the y-axis are combined in parallel. It is configured. When the shear stress when the direction perpendicular to the contact pressure is applied and horizontally tactile sensor 20Y is applied, the change e Y voltage by shear stress is given similarly to Equation 6 in Example 2. Therefore, the voltage changes e X and e Y due to the shear stress in the 3-axis tactile sensor 40 can be collectively expressed by the equation 14. When the shear stress when the direction perpendicular to the contact pressure is applied and horizontally tactile sensor 20Y is applied, the change e Z voltage by contact pressure is given as for formula 12 in Example 2. Therefore, the change in voltage due to the contact pressure in the 3-axis tactile sensor 40 can be collectively expressed by Equation 15.
 3軸触覚センサ40を構成する各触覚センサ素子10等の製造は積層化工程を用いているため、3軸触覚センサ40により触覚センサの薄型化を図ることが可能であると共に、作製における個体差を減少させバラツキを抑えた製造を可能とするという効果がある。3軸触覚センサ40を構成する各触覚センサ素子10等の下電極12a等と応力感受層14等、および応力感受層14等と上電極16等は各々密着して積層された構造を有している。このため、3軸触覚センサ40は低応力下でも計測安定性を向上させ高感度な計測を可能とするという効果がある。言い換えると、本発明の3軸触覚センサ40ではセンシングを担う応力感受層14等と、上電極16等および下電極12a等とを積層化によって密着させると共に、上述した専用の測定原理を考案した。この結果、応力の検知層が応力の方向に十分変形できる余地を持ちながら検知層の厚みが薄いという触覚センサの薄型化を実現すると共に、低応力下でも計測安定性を向上させ高感度な計測が可能である3軸触覚センサ40を提供することができるという効果がある。 Since the manufacturing of each tactile sensor element 10 and the like constituting the 3-axis tactile sensor 40 uses a stacking process, it is possible to reduce the thickness of the tactile sensor by using the 3-axis tactile sensor 40, and there are individual differences in manufacturing. It has the effect of making it possible to manufacture products with less variation. The lower electrode 12a and the like of each tactile sensor element 10 and the like constituting the three-axis tactile sensor 40 and the stress-sensitive layer 14 and the like, and the stress-sensitive layer 14 and the like and the upper electrode 16 and the like have a structure in which they are laminated in close contact with each other. There is. Therefore, the 3-axis tactile sensor 40 has the effect of improving measurement stability and enabling highly sensitive measurement even under low stress. In other words, in the 3-axis tactile sensor 40 of the present invention, the stress-sensitive layer 14 or the like responsible for sensing is brought into close contact with the upper electrode 16 or the like and the lower electrode 12a or the like by stacking, and the above-mentioned dedicated measurement principle is devised. As a result, the tactile sensor is made thinner because the thickness of the detection layer is thin while the stress detection layer has room to be sufficiently deformed in the direction of stress, and the measurement stability is improved even under low stress for highly sensitive measurement. There is an effect that the 3-axis tactile sensor 40 capable of providing the three-axis tactile sensor 40 can be provided.
較正装置.
 図9(A)は、3軸触覚センサ40の較正装置60を模式的に示す。図9(B)、(C)は較正装置60の撮影図である。図9(A)に示されるように、ベース61上に3軸触覚センサ40が載せられ、3軸触覚センサ40上にパンチ(ゴム製。7×7mm)62を介してアクリル板63が載せられ、アクリル板63の上に接触圧力印加用の重り64が乗っている。せん断応力用に水平方向の変位を発生させるピエゾアクチュエータ(株式会社メステック製、MZ-1300ZL、最大変位1.3mm)72を用い、ロードセル(ユニパルス株式会社製、USM-5N)71をピエゾアクチュエータ72の先端にセットし、ロードセル71とアクリル板63とをワイヤ70で繋げた。図9では図示されていないが、ピエゾアクチュエータ72にはピエゾドライバ(株式会社メステック製、M-2691)が接続され、それにDC定電圧源(松定プレシジョン株式会社製、P4K-80L)が接続されている。ピエゾアクチュエータ72への印加電圧は0~5Vのステップ駆動(矩形波)型とした。以上の構成により、3軸触覚センサ40へのせん断応力はピエゾアクチュエータ72でワイヤ70により(アクリル板63を介して)パンチ62を水平方向に引くことにより印加し、接触圧力は重り64をアクリル板63に置くことにより印加した。図9(B)はベース61に3軸触覚センサ40を載せた状態を示している。較正装置60にはレール65(2本のスロット)が設けられており、これによりピエゾアクチュエータ72の位置、ベース61の位置を調節することができる。図9(C)は図9(B)の状態でさらに3軸触覚センサ40上にパンチ62、アクリル板63および重り64を載せた状態を示す。
Calibration device.
FIG. 9A schematically shows the calibration device 60 of the 3-axis tactile sensor 40. 9 (B) and 9 (C) are photographs of the calibration device 60. As shown in FIG. 9A, the 3-axis tactile sensor 40 is placed on the base 61, and the acrylic plate 63 is placed on the 3-axis tactile sensor 40 via a punch (rubber, 7 × 7 mm 2) 62. A weight 64 for applying contact pressure is placed on the acrylic plate 63. A piezo actuator (MZ-1300ZL, manufactured by Mestec Co., Ltd., maximum displacement 1.3 mm) 72 that generates a horizontal displacement for shear stress is used, and a load cell (USM-5N, manufactured by Unipulse Corporation, USM-5N) 71 is used as a piezo actuator 72. It was set at the tip, and the load cell 71 and the acrylic plate 63 were connected by a wire 70. Although not shown in FIG. 9, a piezo driver (manufactured by Mestec Co., Ltd., M-2691) is connected to the piezo actuator 72, and a DC constant voltage source (manufactured by Matsusada Precision Co., Ltd., P4K-80L) is connected to the piezo actuator 72. ing. The voltage applied to the piezo actuator 72 was a step drive (rectangular wave) type of 0 to 5 V. With the above configuration, the shear stress on the 3-axis tactile sensor 40 is applied by pulling the punch 62 in the horizontal direction by the wire 70 (via the acrylic plate 63) with the piezo actuator 72, and the contact pressure applies the weight 64 to the acrylic plate. Applied by placing at 63. FIG. 9B shows a state in which the 3-axis tactile sensor 40 is mounted on the base 61. The calibrator 60 is provided with rails 65 (two slots), which can adjust the position of the piezo actuator 72 and the position of the base 61. FIG. 9C shows a state in which the punch 62, the acrylic plate 63, and the weight 64 are further placed on the 3-axis tactile sensor 40 in the state of FIG. 9B.
較正試験.
 図10は、接触圧力の較正試験に用いた材料試験機を示す。材料試験機としては株式会社島津製作所(登録商標)製のオートグラフ(登録商標)AGS-J 5kNを用いた。図11は図10に示した材料試験機の一部拡大図を示す。図11に示されるように、3軸触覚センサ40の上にスポンジラバーパンチ80(7×7mm)を置いた。ブリッジ回路50への入力電圧E=5Vとし、接触圧力は0~5kPaと変化させた。この条件で、上述した各電位e1x、e2x、e1Y、e2Y、e等を実測した。結果については後述する(図12)。せん断応力の較正試験には図9に示した較正装置60を用いた。ブリッジ回路50への入力電圧E=5Vとし、せん断応力は-8~+8kPaと変化させた。同時に重り64によりパンチ62を介して4kPaの接触圧力を印加した。結果については後述する(図13~14)。
Calibration test.
FIG. 10 shows a material testing machine used for the contact pressure calibration test. As the material testing machine, Autograph (registered trademark) AGS-J 5kN manufactured by Shimadzu Corporation (registered trademark) was used. FIG. 11 shows a partially enlarged view of the material testing machine shown in FIG. As shown in FIG. 11, a sponge rubber punch 80 (7 × 7 mm 2 ) was placed on the 3-axis tactile sensor 40. The input voltage to the bridge circuit 50 was E = 5V, and the contact pressure was changed from 0 to 5 kPa. Under these conditions, the above-mentioned potentials e 1x , e 2x , e 1Y , e 2Y , e 3 and the like were actually measured. The results will be described later (Fig. 12). The calibration device 60 shown in FIG. 9 was used for the shear stress calibration test. The input voltage to the bridge circuit 50 was set to E = 5V, and the shear stress was changed from -8 to +8 kPa. At the same time, a contact pressure of 4 kPa was applied through the punch 62 by the weight 64. The results will be described later (FIGS. 13 to 14).
実験結果.
 図12は接触圧力の較正実験の結果をグラフで示す。図12で、横軸は接触圧力(kPa)、縦軸は出力電圧(V)(例えば、上述した電位e1x、e2x、eXY等)である。図12に示されるように、出力電圧は接触圧力の増加と共に増加している。従って、式15、16等が正しいことがわかった。なお、ΔRCPは基本的に負の値である。
Experimental result.
FIG. 12 graphically shows the result of the contact pressure calibration experiment. In FIG. 12, the horizontal axis is the contact pressure (kPa), and the vertical axis is the output voltage (V) (for example, the above-mentioned potentials e 1x , e 2x , e XY, etc.). As shown in FIG. 12, the output voltage increases with increasing contact pressure. Therefore, it was found that equations 15 and 16 and the like were correct. Note that ΔR CP is basically a negative value.
 図13は、接触圧力4kPa(重り64)の下で、せん断応力を付加したときの較正実験の結果をグラフで示す。図13(A)、(B)は各々X軸、Y軸に関する測定結果である。図13(A)、(B)で、横軸はせん断応力(kPa)、縦軸は出力電圧(V)(例えば、上述した電位e1x、e1Y、e、e等)である。図13(A)では1回目の実験結果は薄い〇(原図では橙色)で示され、2回目の実験結果は濃い〇(原図では赤色)で示してあり、図13(B)では1回目の実験結果は濃い〇(緑色)で示され、2回目の実験結果は薄い〇(薄青色)で示してある。図13(A)、(B)に示されるように、3軸触覚センサ40の初期電圧は0Vにシフトされている。X軸、Y軸のいずれの場合も、出力電圧はせん断応力の増加と共に増加しており、1回目および2回目共に、せん断応力の増加に対する出力電圧の変化(即ち、傾き)はほぼ同じとなっている。このため、せん断応力はこの傾きを用いることにより出力電圧から決定することができる。従って、式14が正しいことがわかった。 FIG. 13 is a graph showing the results of a calibration experiment when shear stress is applied under a contact pressure of 4 kPa (weight 64). 13 (A) and 13 (B) are measurement results for the X-axis and the Y-axis, respectively. In FIGS. 13A and 13B, the horizontal axis is the shear stress (kPa) and the vertical axis is the output voltage (V) (for example, the potentials e 1x , e 1Y , e X , e Y, etc. described above). In FIG. 13 (A), the result of the first experiment is shown by a light circle (orange in the original drawing), the result of the second experiment is shown by a dark circle (red in the original drawing), and in FIG. 13 (B), the result of the first experiment is shown. The experimental results are indicated by dark 〇 (green), and the results of the second experiment are indicated by light 〇 (light blue). As shown in FIGS. 13A and 13B, the initial voltage of the 3-axis tactile sensor 40 is shifted to 0V. In both the X-axis and the Y-axis, the output voltage increases with the increase in shear stress, and the change (that is, slope) of the output voltage with respect to the increase in shear stress is almost the same for both the first and second times. ing. Therefore, the shear stress can be determined from the output voltage by using this slope. Therefore, it was found that Equation 14 was correct.
 図14は、接触圧力(重り64)を2kPaと4kPaとに変えた下で、せん断応力を付加したときの較正実験の結果をグラフで示す。図14で、横軸はせん断応力(kPa)、縦軸は出力電圧(V)(例えば、上述した電位e1x、e1Y、e、e等)である。図14では接触圧力2kPaの実験結果は濃い色(原図では青色)で示され、4kPaの実験結果は薄い色(原図では橙色)で示してある。図14に示されるように、接触圧力(重り64)によらず傾きと切片が等しい直線が得られたため、せん断応力のみによって出力電圧が変化することが示された。従って、接触圧力とせん断応力とが組み合わされて印加された場合であっても、せん断応力のみを独立に測定することができることが示された。これにより、上述した本発明の測定原理の正しさが証明された。加えて、図12~14に示されるように、低応力下でも安定した出力電圧を得ることができることも示された。 FIG. 14 is a graph showing the results of a calibration experiment when shear stress is applied while the contact pressure (weight 64) is changed to 2 kPa and 4 kPa. In FIG. 14, the horizontal axis is the shear stress (kPa), and the vertical axis is the output voltage (V) (for example, the above-mentioned potentials e 1x , e 1Y , e X , e Y, etc.). In FIG. 14, the experimental result of the contact pressure of 2 kPa is shown in a dark color (blue in the original drawing), and the experimental result of 4 kPa is shown in a light color (orange in the original figure). As shown in FIG. 14, since a straight line having the same slope and intercept was obtained regardless of the contact pressure (weight 64), it was shown that the output voltage changes only by the shear stress. Therefore, it was shown that even when the contact pressure and the shear stress are applied in combination, only the shear stress can be measured independently. This proved the correctness of the measurement principle of the present invention described above. In addition, as shown in FIGS. 12-14, it was also shown that a stable output voltage can be obtained even under low stress.
 本発明の活用例として、低応力下でも安定した出力電圧を得ることができるため、生物学的な接触インタフェースとして適用することができる。例えば、人との接触を伴うロボットハンドの先端に取り付けたり、電子機器の入力インタフェースとしたりすることに適用することができる。 As an example of utilization of the present invention, a stable output voltage can be obtained even under low stress, so that it can be applied as a biological contact interface. For example, it can be applied to the tip of a robot hand that comes into contact with a person, or as an input interface for an electronic device.
 10、10’、10DG、10Y、10Y’ 触覚センサ素子、 12、12a、12b、12a’、12b’、12aY、12bY、12a’Y、12b’Y、12aDG、12bDG 下電極、 12r、12ra、12rb、12ra’、12rb’ 下電極の一端側、 14、14’、14DG、14Y、14Y’ 応力感受層、 16、16’、16DG、16Y、16Y’ 上電極、 20、20Y 触覚センサ、 30、50 ブリッジ回路、 60 較正装置、 61 ベース、 62 パンチ、 63 アクリル板、 64 重り、 70 ワイヤ、 71 ロードセル、 72 ピエゾアクチュエータ。 10, 10', 10 DG , 10Y, 10Y' Tactile sensor elements, 12, 12a, 12b, 12a', 12b', 12aY, 12bY, 12a'Y, 12b'Y, 12a DG , 12b DG lower electrode, 12r, 12ra, 12rb, 12ra', 12rb'One end side of the lower electrode, 14, 14', 14 DG , 14Y, 14Y'Stress sensitive layer, 16, 16', 16 DG , 16Y, 16Y'Upper electrode, 20, 20Y Tactile Sensors, 30, 50 bridge circuits, 60 calibrators, 61 bases, 62 punches, 63 acrylic plates, 64 weights, 70 wires, 71 load cells, 72 piezo actuators.

Claims (8)

  1. 一対の下電極と、該一対の下電極の各一端側に跨がって形成された応力感受層と、該応力感受層上に形成された上電極とが各々積層された構造を有する触覚センサ素子であって、該一対の下電極の各一端側において、平面上、該下電極と該上電極とは垂直方向に重なる領域を有しており、
     前記触覚センサ素子に垂直方向に接触圧力が印加された場合、前記応力感受層が圧縮されて両電極(前記上電極及び前記下電極)間の電気抵抗が減少し、
     前記触覚センサ素子に水平方向にせん断応力が印加された場合、前記重なる領域が減少する方向の場合は両電極間の電気抵抗が増大し、前記重なる領域が増大する方向の場合は両電極間の電気抵抗が減少することを特徴とする触覚センサ素子。
    A tactile sensor having a structure in which a pair of lower electrodes, a stress-sensitive layer formed straddling each one end side of the pair of lower electrodes, and an upper electrode formed on the stress-sensitive layer are laminated. The element has a region on each one end side of the pair of lower electrodes that vertically overlaps the lower electrode and the upper electrode on a plane.
    When a contact pressure is applied to the tactile sensor element in the vertical direction, the stress-sensitive layer is compressed and the electrical resistance between both electrodes (the upper electrode and the lower electrode) is reduced.
    When shear stress is applied to the tactile sensor element in the horizontal direction, the electrical resistance between the two electrodes increases in the direction in which the overlapping region decreases, and between the two electrodes in the direction in which the overlapping region increases. A tactile sensor element characterized by reduced electrical resistance.
  2. 請求項1記載の触覚センサ素子2個を前記一対の下電極の各一端側同士を対向させて平面の1軸上に配置した触覚センサであって、該触覚センサに垂直方向に接触圧力が印加された場合及び/又は水平方向にせん断応力が印加された場合、各触覚センサ素子の電気抵抗の変化に基づき、接触圧力及び/又はせん断応力を検出することを特徴とする触覚センサ。 A tactile sensor in which two tactile sensor elements according to claim 1 are arranged on one axis of a plane with one end side of each of the pair of lower electrodes facing each other, and a contact pressure is applied to the tactile sensor in a vertical direction. A tactile sensor characterized in that the contact pressure and / or the shear stress is detected based on the change in the electrical resistance of each tactile sensor element when the shear stress is applied and / or in the horizontal direction.
  3. 請求項2記載の触覚センサにおいて、該触覚センサは、第1の触覚センサ素子の電気抵抗(第1センサ抵抗)と、第2の触覚センサ素子の電気抵抗(第2センサ抵抗)と、接触圧力及びせん断応力無負荷時における第1センサ抵抗及び第2センサ抵抗(固定抵抗)とに基づくブリッジ回路を構成し、各抵抗値は該ブリッジ回路が平衡状態における抵抗値であり、一の対辺に第1センサ抵抗及び固定抵抗が配置され、他の対辺に第2センサ抵抗及び固定抵抗が配置され、第1センサ抵抗と第2センサ抵抗との分岐点に入力電圧が印加されるものであり、
     第1センサ抵抗の抵抗値(第1センサ抵抗値)、第2センサ抵抗の抵抗値(第2センサ抵抗値)の変化量は前記触覚センサに印加される接触圧力、せん断応力及び周囲の温度により与えられ、せん断応力による第1センサ抵抗値の変化量と第2センサ抵抗値の変化量とは絶対値(「せん断応力によるセンサ抵抗値の変化量」と言う。)が等しいものであり、接触圧力による第1センサ抵抗値の変化量と第2センサ抵抗値の変化量(「接触圧力によるセンサ抵抗値の変化量」と言う。)とが等しいことを特徴とする触覚センサ。
    In the tactile sensor according to claim 2, the tactile sensor includes the electric resistance of the first tactile sensor element (first sensor resistance), the electric resistance of the second tactile sensor element (second sensor resistance), and the contact pressure. And a bridge circuit based on the first sensor resistance and the second sensor resistance (fixed resistance) when there is no shear stress load, and each resistance value is the resistance value when the bridge circuit is in equilibrium state, and the opposite side is the first. One sensor resistance and fixed resistance are arranged, the second sensor resistance and fixed resistance are arranged on the other opposite side, and an input voltage is applied to the branch point between the first sensor resistance and the second sensor resistance.
    The amount of change in the resistance value of the first sensor resistance (first sensor resistance value) and the resistance value of the second sensor resistance (second sensor resistance value) depends on the contact pressure applied to the tactile sensor, the shear stress, and the ambient temperature. Given, the amount of change in the first sensor resistance value due to shear stress and the amount of change in the second sensor resistance value are equal in absolute value (referred to as "the amount of change in sensor resistance value due to shear stress") and are in contact with each other. A tactile sensor characterized in that the amount of change in the resistance value of the first sensor due to pressure and the amount of change in the resistance value of the second sensor (referred to as "amount of change in sensor resistance value due to contact pressure") are equal.
  4. 請求項3記載の触覚センサにおいて、該触覚センサに接触圧力及びせん断応力が印加された場合、前記一の対辺中の分岐点の接地に対する実測電位と前記他の対辺中の分岐点の接地に対する実測電位との差の電位は、前記せん断応力によるセンサ抵抗値の変化量と前記入力電圧と前記固定抵抗の抵抗値とにより得られるという原理に基づき、該せん断応力によるセンサ抵抗値の変化量を接触圧力及び周囲の温度を除去して得ることを特徴とする触覚センサ。 In the tactile sensor according to claim 3, when contact pressure and shear stress are applied to the tactile sensor, the measured potential for the ground contact of the branch point in one opposite side and the actual measurement for the ground contact of the branch point in the other opposite side. Based on the principle that the potential difference from the potential is obtained by the amount of change in the sensor resistance value due to the shear stress, the input voltage, and the resistance value of the fixed resistance, the amount of change in the sensor resistance value due to the shear stress is contacted. A tactile sensor characterized by removing pressure and ambient temperature.
  5. 請求項3又は4記載の触覚センサにおいて、該触覚センサに接触圧力及びせん断応力が印加された場合、前記一の対辺中の分岐点の接地に対する実測電位と前記他の対辺中の分岐点の接地に対する実測電位との和の電位は、前記接触圧力によるセンサ抵抗値の変化量と前記入力電圧と前記固定抵抗の抵抗値とにより得られるという原理に基づき、該接触圧力によるセンサ抵抗値の変化量をせん断応力及び周囲の温度を除去して得ることを特徴とする触覚センサ。 In the tactile sensor according to claim 3 or 4, when contact pressure and shear stress are applied to the tactile sensor, the measured potential with respect to the grounding of the branch point in the one opposite side and the grounding of the branch point in the other opposite side. Based on the principle that the potential of the sum of the measured potential and the measured potential is obtained by the amount of change in the sensor resistance value due to the contact pressure, the input voltage, and the resistance value of the fixed resistance, the amount of change in the sensor resistance value due to the contact pressure. A tactile sensor characterized by removing shear stress and ambient temperature.
  6. 請求項2記載の触覚センサ2個を平面上の2軸に沿わせて配置した3軸触覚センサであって、該3軸触覚センサに垂直方向に接触圧力が印加された場合及び/又は水平方向にせん断応力が印加された場合、各触覚センサ素子の電気抵抗値の変化に基づき、接触圧力及び/又はせん断応力を検出することを特徴とする3軸触覚センサ。 A three-axis tactile sensor in which two tactile sensors according to claim 2 are arranged along two axes on a plane, when a contact pressure is applied to the three-axis tactile sensor in the vertical direction and / or in the horizontal direction. A 3-axis tactile sensor characterized in that contact pressure and / or shear stress is detected based on a change in the electric resistance value of each tactile sensor element when a shear stress is applied to the sensor.
  7. 請求項3乃至5のいずれかに記載の触覚センサ2個を平面上の2軸(xy軸)に沿わせて配置した3軸触覚センサであって、
     前記3軸触覚センサは、x軸に配置した触覚センサが構成するx軸ブリッジ回路とy軸に配置した触覚センサが構成するy軸ブリッジ回路とを並列に組合わせたxy軸ブリッジ回路を構成し、x軸ブリッジ回路の各センサ抵抗の分岐点とy軸ブリッジ回路の各センサ抵抗の分岐点とに共通に入力電圧が印加されることを特徴とする3軸触覚センサ。
    A three-axis tactile sensor in which the two tactile sensors according to any one of claims 3 to 5 are arranged along two axes (xy axes) on a plane.
    The 3-axis tactile sensor constitutes an xy-axis bridge circuit in which an x-axis bridge circuit composed of a tactile sensor arranged on the x-axis and a y-axis bridge circuit composed of a tactile sensor arranged on the y-axis are combined in parallel. , A 3-axis tactile sensor characterized in that an input voltage is commonly applied to a branch point of each sensor resistance of an x-axis bridge circuit and a branch point of each sensor resistance of a y-axis bridge circuit.
  8. 請求項1記載の触覚センサ素子の製造方法であって、
     所定の基材フィルム上に銀インクで一対の下電極を印刷して形成する下電極形成工程と、
     前記下電極形成工程で形成された一対の下電極上に跨って、所定の導電ポリマーを塗布して応力感受層を形成する応力感受層形成工程と、
     前記応力感受層形成工程で形成された応力感受層上に、金属インクを印刷して上電極を形成する上電極形成工程とを備えたことを特徴とする触覚センサ素子の製造方法。
     
    The method for manufacturing a tactile sensor element according to claim 1.
    A lower electrode forming step of printing a pair of lower electrodes with silver ink on a predetermined base film and forming the lower electrodes.
    A stress-sensitive layer forming step of applying a predetermined conductive polymer over a pair of lower electrodes formed in the lower electrode forming step to form a stress-sensitive layer.
    A method for manufacturing a tactile sensor element, which comprises a step of forming an upper electrode by printing a metal ink on the stress-sensitive layer formed in the step of forming the stress-sensitive layer.
PCT/JP2020/031521 2019-08-28 2020-08-20 Tactile sensor element, tactile sensor, triaxial tactile sensor, and tactile sensor element manufacturing method WO2021039600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542821A JP7466214B2 (en) 2019-08-28 2020-08-20 Tactile sensor element, tactile sensor, three-axis tactile sensor, and method for manufacturing tactile sensor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-155358 2019-08-28
JP2019155358 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021039600A1 true WO2021039600A1 (en) 2021-03-04

Family

ID=74683516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031521 WO2021039600A1 (en) 2019-08-28 2020-08-20 Tactile sensor element, tactile sensor, triaxial tactile sensor, and tactile sensor element manufacturing method

Country Status (2)

Country Link
JP (1) JP7466214B2 (en)
WO (1) WO2021039600A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226380A (en) * 2003-01-27 2004-08-12 Sharp Corp Tactile sensor and distribution tactile sensor
JP2013079831A (en) * 2011-10-03 2013-05-02 Shinshu Univ Load measuring system
JP2013232293A (en) * 2012-04-27 2013-11-14 Fukushima Univ Tactile sensor
US20180067000A1 (en) * 2015-03-24 2018-03-08 National University Of Singapore A resistive microfluidic pressure sensor
WO2018084284A1 (en) * 2016-11-04 2018-05-11 国立大学法人弘前大学 Distribution measuring sensor, distribution measuring sensor system, distribution measuring program, and recording medium
JP2018115873A (en) * 2017-01-16 2018-07-26 凸版印刷株式会社 Sensor sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226380A (en) * 2003-01-27 2004-08-12 Sharp Corp Tactile sensor and distribution tactile sensor
JP2013079831A (en) * 2011-10-03 2013-05-02 Shinshu Univ Load measuring system
JP2013232293A (en) * 2012-04-27 2013-11-14 Fukushima Univ Tactile sensor
US20180067000A1 (en) * 2015-03-24 2018-03-08 National University Of Singapore A resistive microfluidic pressure sensor
WO2018084284A1 (en) * 2016-11-04 2018-05-11 国立大学法人弘前大学 Distribution measuring sensor, distribution measuring sensor system, distribution measuring program, and recording medium
JP2018115873A (en) * 2017-01-16 2018-07-26 凸版印刷株式会社 Sensor sheet

Also Published As

Publication number Publication date
JPWO2021039600A1 (en) 2021-03-04
JP7466214B2 (en) 2024-04-12

Similar Documents

Publication Publication Date Title
EP3244179B1 (en) Pressure-sensitive element and pressure sensor
US10928259B2 (en) Pressure sensor
CN106648236B (en) Touch display panel and touch display device
EP3246685B1 (en) Pressure-sensitive element, pressure sensor, and method for manufacturing pressure-sensitive element
Zhu et al. A flexible three-dimensional force sensor based on PI piezoresistive film
DE112015000387T5 (en) Temperature compensating transparent force sensor with a compatible layer
JP5688792B2 (en) Sensor device and distribution measuring device
TW201538941A (en) Input device and input device control method
US20130042702A1 (en) Force sensor and measuring method of resistance variation thereof
JP5997781B2 (en) Manufacturing method of pressure detecting device
US9972768B2 (en) Actuator structure and method
JP2018115873A (en) Sensor sheet
WO2015098254A1 (en) Input device and input device production method
WO2021039600A1 (en) Tactile sensor element, tactile sensor, triaxial tactile sensor, and tactile sensor element manufacturing method
Albrecht et al. Screen-printed capacitive pressure sensors with high sensitivity and accuracy on flexible substrates
CZ180295A3 (en) Power sensor
CN109324219B (en) Short-electrode four-terminal current sensing assembly and production process thereof
JP2006337315A (en) Tactile sensor and sensitivity-adjusting method of the tactile sensor
JP2003045262A (en) Membrane type pressure-sensitive sheet and its manufacturing method
JP2008224406A (en) Physical quantity sensor
TWI803033B (en) Pressure sensing device and method of fabricating thereof
JP6837113B2 (en) Strain gauge and multi-axial force sensor
CN110307778B (en) Flexible signal sensing and processing device
CN110160439B (en) Contact type flexible sensor
JP2024065854A (en) Tactile Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021542821

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856011

Country of ref document: EP

Kind code of ref document: A1