WO2021039527A1 - Laser element, laser oscillation method, and method for improving laser oscillation characteristics - Google Patents

Laser element, laser oscillation method, and method for improving laser oscillation characteristics Download PDF

Info

Publication number
WO2021039527A1
WO2021039527A1 PCT/JP2020/031249 JP2020031249W WO2021039527A1 WO 2021039527 A1 WO2021039527 A1 WO 2021039527A1 JP 2020031249 W JP2020031249 W JP 2020031249W WO 2021039527 A1 WO2021039527 A1 WO 2021039527A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
pseudo
perovskite
dimensional perovskite
layer
Prior art date
Application number
PCT/JP2020/031249
Other languages
French (fr)
Japanese (ja)
Inventor
センコウ シン
安達 千波矢
敏則 松島
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2021542782A priority Critical patent/JPWO2021039527A1/ja
Publication of WO2021039527A1 publication Critical patent/WO2021039527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • the present invention relates to a laser element using an organic-inorganic perovskite, a laser oscillation method, and a method for improving laser oscillation characteristics.
  • Organic-inorganic perovskite is composed of monovalent cations such as organic cations, divalent metal ions such as Sn 2+ and Pb 2+ , and halogen ions, and these ions have the same crystal structure as perovskite (perovskite). It is an ionic compound regularly arranged so as to form a perovskite type structure), and three-dimensional perovskite, two-dimensional perovskite, and pseudo-two-dimensional perovskite, which are roughly classified according to the number of dimensions of the crystal arrangement space, are known. These organic-inorganic perovskites have the semiconductor characteristics of inorganic substances, the flexibility of organic substances, and the variety of molecular designs.
  • pseudo-two-dimensional perovskite is also known as an organic-inorganic perovskite.
  • Pseudo-two-dimensional perovskite is a perovskite layer in which two or more octahedral two-dimensional array structures constituting a perovskite-type crystal are laminated via a monovalent cation of A site on both sides of a perovskite layer, for example, more than methylammonium. It has a structure in which a layer of organic cations with a large number of carbon atoms (organic layer) is arranged, and has advantageous features as a laser material such as high stability, large exciton binding energy, and a natural quantum well structure.
  • the present inventors conducted a study to elucidate the generation mechanism of the laser death phenomenon, and found that long-lived excited triplets generated in the inorganic layer accumulated and the singlet-triplet disappeared. Was found to be the main cause of the laser death phenomenon. Then, by introducing or contacting a quencher that quenches the excited triplet of the inorganic component into the pseudo-two-dimensional perovskite, it is possible to obtain the knowledge that the laser death phenomenon is suppressed and the perovskite laser element having excellent laser oscillation characteristics is realized. I arrived.
  • the present invention has been proposed based on these findings, and specifically has the following configuration.
  • a laser device containing a pseudo two-dimensional perovskite which has a quencher for quenching an excited triplet of an inorganic component constituting the pseudo two-dimensional perovskite.
  • the quencher is an organic component constituting the pseudo two-dimensional perovskite, and the excited triplet energy level of the organic component is the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite.
  • the laser element according to [2], wherein the excited triplet energy level of the organic component is 0.10 eV or more lower than the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite.
  • the excited triplet energy level of the organic component constituting the pseudo two-dimensional perovskite is higher than the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite, [5] to [7].
  • the laser element according to any one of the above items.
  • the pseudo two-dimensional perovskite comprises a compound represented by the following general formula (10).
  • R represents a monovalent organic cation
  • A represents a monovalent cation
  • B represents a divalent metal ion
  • X represents a halogen ion.
  • n is an integer of 2 or more.
  • the quencher is an organic component composed of an organic cation represented by R in the general formula (10), and the excited triplet energy level of the organic component constitutes the pseudo-two-dimensional perovskite.
  • Ar (CH 2 ) n1 NH 3 + (11) [In the general formula (11), Ar represents an aromatic ring.
  • n1 is an integer from 1 to 20.
  • Ar in the general formula (11) is a benzene ring or a naphthalene ring.
  • a in the general formula (10) is formamidium or methylammonium.
  • B in the general formula (10) is Pb 2+.
  • X in the general formula (10) is Br ⁇ .
  • the compound represented by the general formula (10) is a compound represented by the following formula (A) or the following formula (B).
  • PEA represents phenylethylammonium
  • FA represents formamidium
  • MA represents methylammonium.
  • n is an integer of 2 or more.
  • the compound represented by the general formula (10) is a compound represented by the following formula (C) or the following formula (D).
  • NMA represents 1-naphthylmethylammonium
  • FA represents formamidium
  • MA represents methylammonium.
  • n is an integer of 2 or more.
  • a laser oscillation method in which a laser is oscillated from the pseudo two-dimensional perovskite by quenching an excited triplet of an inorganic component constituting the pseudo two-dimensional perovskite.
  • a method for improving laser oscillation characteristics which improves the laser oscillation characteristics of the pseudo-two-dimensional perovskite by quenching the excited triplet of an inorganic component constituting the pseudo-two-dimensional perovskite.
  • the present invention it is possible to realize a laser element having excellent laser oscillation characteristics.
  • the laser oscillation method of the present invention it is possible to oscillate a laser beam from a pseudo two-dimensional perovskite to obtain excellent laser oscillation characteristics. Further, according to the method for improving the laser oscillation characteristic of the present invention, the laser oscillation characteristic of the pseudo two-dimensional perovskite can be remarkably improved.
  • the contents of the present invention will be described in detail below.
  • the description of the constituent elements described below may be based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples.
  • the numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the term "main component” means the component having the highest content among the constituent components.
  • the isotope species of the hydrogen atom existing in the molecule of the compound used in the present invention is not particularly limited, and for example, all the hydrogen atoms in the molecule may be 1 H, or part or all of them may be 2 H. (Duterium D) may be used.
  • the laser device of the present invention includes a pseudo two-dimensional perovskite and has a quencher for quenching the excited triplet of the inorganic component constituting the pseudo two-dimensional perovskite.
  • the "pseudo-two-dimensional perovskite" in the present invention is a layered perovskite having a perovskite layer and an organic cation layer (organic layer) in contact with the perovskite layer.
  • the perovskite layer has a structure in which two or more layers of octahedral two-dimensional array structures constituting a perovskite-type crystal are laminated via a monovalent cation of A site.
  • the two-dimensional array structure is two-dimensionally arranged by sharing the vertices of the unit cell BX 6 in which the divalent metal ion B is arranged at the center of the octahedron having the halogen ion X as the apex. It refers to the structure BX 4. Further, the A site refers to a position corresponding to each vertex of the cubic crystal constituting the perovskite type crystal.
  • the "inorganic component constituting the pseudo two-dimensional perovskite" in the present invention is a layer (inorganic layer) of the perovskite layer composed of an octahedral two-dimensional array structure BX 4 composed of halogen ion X and metal ion B.
  • the "excited triplet" of an inorganic component refers to a quantum state capable of causing phosphorescence to the inorganic component via the quantum state.
  • the "organic component” in the present specification means an "organic cation" constituting an organic layer.
  • the "quencher that quenches the excited triplet of an inorganic component” in the present invention refers to a substance having an action of reducing or eliminating the excited triplet of an inorganic component, for example, receiving energy from the excited triplet of an inorganic component.
  • a substance that can be used can be used.
  • the quencher may be a substance that constitutes a part of the pseudo two-dimensional perovskite, or may be a substance different from the pseudo two-dimensional perovskite.
  • the quencher which is another substance, is preferably capable of contacting the inorganic layer of the pseudo-two-dimensional perovskite.
  • a quencher that quenches the excited triplet of an inorganic component may be referred to as a "triplet quencher”.
  • the laser device of the present invention includes a pseudo two-dimensional perovskite, and exhibits excellent laser oscillation characteristics by having a triplet quencher. This is presumed to be due to the following mechanism. That is, when the present inventors investigated the emission lifetime characteristics of the pseudo-two-dimensional perovskite, long-lived light with a lifetime of nearly 1 microsecond was observed as the light derived from the excited triplet generated in the perovskite layer.
  • the excited triplet generated by the inorganic component of the perovskite layer and the excited triplet generated by receiving the excited triplet energy have a long lifetime, so that the excited triplet is dense. It is considered that the main cause of the laser death phenomenon is that the unilateral-triplet annihilation occurs and the inverted distribution of the excited singlet is eliminated.
  • the triplet quencher as described above when used, the accumulated excited triplet is reduced or eliminated, and the singlet-triplet annihilation is suppressed. As a result, it is presumed that the population inversion is maintained and excellent laser oscillation characteristics are obtained while the excitation energy is supplied.
  • the laser element of the present invention can oscillate the laser for a long time at 20 ° C. or higher by effectively drawing out the above action.
  • the organic layer of the pseudo two-dimensional perovskite functions as a protective layer of the perovskite layer to stabilize the laser characteristics, and the pseudo two-dimensional perovskite is inexpensive, so that the manufacturing cost of the laser element is reduced. You can also get the effect of being done.
  • each element constituting the laser element of the present invention will be described.
  • the triplet quencher may form a part of the pseudo two-dimensional perovskite, or may be a substance different from the pseudo two-dimensional perovskite.
  • each type of triplet quencher will be specifically described.
  • triplet quencher that forms part of a pseudo-two-dimensional perovskite
  • a triplet quencher that constitutes a part of the pseudo-two-dimensional perovskite for example, an excited triplet of an organic component that constitutes the pseudo-two-dimensional perovskite and whose excited triplet energy level constitutes an inorganic component that constitutes the pseudo-two-dimensional perovskite.
  • An organic cation lower than the term energy level in other words, an organic cation having both a function as an organic component of a pseudo two-dimensional perovskite and a function of a triplet quencher can be used.
  • the light emission mechanism of a laser device that uses an organic component as a triplet quencher is represented by NMA 2 FA n-1 Pb n Br 3n + 1 (NMA stands for 1-naphthylmethylammonium and FA stands for formamidium).
  • NMA stands for 1-naphthylmethylammonium
  • FA stands for formamidium
  • quasi-two-dimensional perovskite by N2F8 is a layered perovskite having a perovskite layer comprising an inorganic layer 8 layers (two-dimensional array structure of PbBr 6 -4), and an organic layer NMA placing on both sides.
  • the pseudo two-dimensional perovskite that can be used in the present invention is not limitedly interpreted by this specific example. Further, here, it is represented by PEA 2 FA n-1 Pb n Br 3n + 1 (PEA represents phenylethylammonium and FA represents formamidium, respectively), and n is 8 in a pseudo-two-dimensional perovskite (hereinafter, “P2F8””.
  • E S represents the emission excitation singlet energy level of the inorganic component
  • E T represents the triplet energy level of the inorganic component
  • E S1 represents the emission excitation singlet energy level of the organic component
  • E T1 represents a triplet energy level of an organic component.
  • the organic component is a triplet quencher, the excited triplet energy level E T1 is lower than the excited triplet energy level E T of the inorganic component, that is, satisfies the condition that the E T> E T1.
  • E S of the inorganic component is 3.01eV
  • E T is 2.99 eV
  • E S1 of NMA is 4.1 eV
  • E T is 2.6 eV
  • E S1 of PEA is 4 .4eV
  • the E T is 3.3eV. Therefore, here, NMA constitutes a triplet quencher
  • PEA is an organic component that does not exhibit the function of the triplet quencher.
  • the energy of the emission-excited singlet is used for forming a population inversion and used for laser oscillation.
  • excited triplet generated in the inorganic component as shown in FIG. 1 the right side and 2 (b), system that does not include triplet quencher, that is, when it is E T ⁇ E T1
  • the excited triplet never term energy is transferred to an excited triplet energy level E T1 of the organic layer, also, for the transition from an excited triplet to the ground singlet is spin forbidden transition, it is directly stored in triplet It becomes dense.
  • the high-density excitation triplet and the excitation singlet forming the inversion distribution cause singlet-triplet annihilation, the inversion distribution of the excitation singlet is eliminated, and the laser oscillation stops. ..
  • the system comprising an organic component NMA as triplet quencher i.e. in a system is E T> E T1
  • excitation generated in the inorganic layer by triplet is lost from the inorganic layer to move to the excited triplet energy level E T1 of the organic layer, singlet as described above - triplet annihilation can be suppressed.
  • the population inversion of the excited singlet is maintained and excellent laser oscillation characteristics are exhibited.
  • the difference between the excited triplet energy level E T1 excited triplet energy level E T and organic component of the inorganic component (E T -E T1) is not particularly limited However, for example, it can be 0.05 eV or more, 0.10 eV or more, 0.20 eV or more, 0.30 eV or more, 0.35 eV or more.
  • the upper limit of the energy difference (E T -E T1) for example 1.00eV or less, 0.75 eV or less, may be either the following 0.50EV.
  • Emission excited singlet energy level of the inorganic component constituting the quasi-two-dimensional perovskites of the present invention E S
  • excited triplet energy level E T
  • the energy level difference between the excited triplet (E T -E T1) is measured as follows.
  • the measurement target compound in the case of measuring E S the E T is the inorganic component constituting the quasi-two-dimensional perovskite
  • measurement target compound in the case of measuring E S1 E T1 is a quasi-two-dimensional perovskite It is a constituent organic cation.
  • a tangent line is drawn with respect to the rising edge of the fluorescence spectrum on the short wavelength side, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis is obtained.
  • Conversion formula: Emission-excited singlet energy level [eV] 1239.85 / ⁇ edge
  • the fluorescence spectrum can be measured, for example, by using a nitrogen laser (Lasertechnik Berlin, MNL200) as an excitation light source and a streak camera (Hamamatsu Photonics, C4334) as a detector.
  • a tangent line is drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis is obtained.
  • Conversion formula: Excited triplet energy level [eV] 1239.85 / ⁇ edge
  • the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side is drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescent spectrum to the maximum value on the shortest wavelength side of the maximum values of the spectrum, consider the tangents at each point on the curve toward the long wavelength side.
  • This tangent increases in slope as the curve rises (ie, as the vertical axis increases).
  • the tangent line drawn at the point where the value of the slope reaches the maximum value is defined as the tangent line to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and the slope value closest to the maximum value on the shortest wavelength side is the maximum.
  • the tangent line drawn at the point where the value is taken is taken as the tangent line to the rising edge of the phosphorescent spectrum on the short wavelength side.
  • the difference between the excited triplet energy level of the inorganic component excited triplet energy level of the (E T) and the organic component (E T1) (E T -E T1) (E T -E T1) is the measured value from the measurement values of the excited triplet energy level according to the method of (2) (E T), excited triplet energy level according to the method of (2) (E T1) Obtain by pulling.
  • the organic component used as the triplet quencher is not particularly limited and may be appropriately selected depending on the inorganic component to be combined with the organic component.
  • an organic cation having a naphthalene ring is preferable, and ammonium having a naphthalene ring is used. It is more preferably present, and even more preferably substituted or unsubstituted naphthylalkylammonium.
  • the number of carbon atoms in the alkyl moiety of the substituted or unsubstituted naphthylalkylammonium is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 6. It is even more preferably 3.
  • the bond position to the alkyl moiety in the naphthalene ring is not particularly limited, but is preferably 1-position.
  • the description and preferable range of the substituent that can be introduced into the naphthalene ring the description and the preferable range of the substituent of the aromatic ring represented by Ar in the following general formula (11) can be referred to.
  • specific examples of organic components that can be used as triplet quenchers will be illustrated.
  • the triplet quencher that can be used in the present invention should not be construed as limiting by this embodiment.
  • an organic component When using an organic component as a triplet quencher, may be composed of any organic components quasi-two-dimensional perovskite contains a triplet quencher (organic component satisfying E T> E T1), a portion of the organic components May be constructed as a triplet citrate, and the remaining organic components may be those that do not function as a triplet citrate. Further, the number of organic machine components constituting the triplet quencher may be one or more.
  • the quencher which is another substance, may be in either a gas phase, a liquid phase, or a solid phase at room temperature, but is preferably a substance that can be brought into contact with the inorganic component of the pseudo-two-dimensional perovskite. ..
  • a composition containing a molecule having a basal triplet state or a molecule having a basal triplet state can be used, and as a specific example, oxygen in contact with an inorganic component or The atmosphere (air) containing oxygen can be mentioned.
  • Oxygen is a molecule that takes a basal triplet state, and is a triplet quencher that reduces or eliminates the excited triplet of the inorganic component by receiving the energy of the excited triplet of the inorganic component and transitioning itself to singlet oxygen. Functions as. When oxygen or the atmosphere is used as a triplet quencher, the oxygen concentration is preferably 0.1% to 99.9%. Examples of other triplet quenchers include xenon, radon, oganeson and the like.
  • the triplet quencher which is a substance different from the pseudo-two-dimensional perovskite, may be used alone or in combination of two or more. When oxygen, air, etc.
  • the excited triplet energy level of the organic component constituting the pseudo two-dimensional perovskite is higher than the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite. May be high or low. That is, by using a triplet quencher such as oxygen or air, the range of selection of organic components can be widened.
  • the pseudo two-dimensional perovskite contained in the laser device of the present invention preferably comprises a compound represented by the following general formula (10).
  • R represents a monovalent organic cation
  • A represents a monovalent cation
  • B represents a divalent metal ion
  • X represents a halogen ion.
  • n is an integer of 2 or more.
  • the two Rs, the plurality of Bs, and the plurality of Xs may be the same or different from each other. When there are a plurality of A's, the A's may be the same or different from each other.
  • components having a composition represented by An-1 B n X 3n + 1 constitute a perovskite layer, and the unit cell BX 6 shares a vertex and is arranged two-dimensionally.
  • BX 4 constitutes an inorganic component (inorganic layer), and a monovalent organic cation represented by R constitutes an organic component.
  • n corresponds to the number of layers of the two-dimensional array structure in the perovskite layer, and is preferably an integer of 2 to 100.
  • the monovalent organic cation represented by R preferably has an aromatic ring, more preferably has an alkylene group and an aromatic ring, and further preferably has a structure in which an alkylene group and an aromatic ring are linked, and an alkylene group. It is even more preferable that the ammonium has a structure in which the aromatic ring and the aromatic ring are linked, and it is particularly preferable that the ammonium is represented by the following general formula (11). Ar (CH 2 ) n1 NH 3 + (11) In the general formula (11), Ar represents an aromatic ring. n1 is an integer from 1 to 20.
  • the aromatic ring contained in the organic cation may be an aromatic hydrocarbon or an aromatic heterocycle, but is preferably an aromatic hydrocarbon.
  • hetero atom of the aromatic hetero ring examples include a nitrogen atom, an oxygen atom, a sulfur atom and the like.
  • the aromatic hydrocarbon is preferably a condensed polycyclic hydrocarbon having a structure in which a benzene ring and a plurality of benzene rings are condensed, and is preferably a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring, a chrysen ring, a tetracene ring, and the like.
  • Ar is a naphthalene ring
  • the excited triplet energy level of the organic cation can be easily lowered as compared with that of the inorganic component, and the organic cation can be easily formed as a triplet quencher.
  • the bonding position to the alkylene group (CH 2 ) n1 in the naphthalene ring is not particularly limited, but it is preferable to bond to the alkylene group at the 1-position.
  • the aromatic heterocycle is preferably a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a pyrrol ring, a thiophene ring, a furan ring, a carbazole ring, or a triazine ring, preferably a pyridine ring, a pyrazine ring, a pyrimidine ring, or a pyridazine ring. Is more preferable, and a pyridine ring is further preferable.
  • the aromatic ring of the organic cation may have a substituent such as an alkyl group, an aryl group, or a halogen atom (preferably a fluorine atom), and is present in the aromatic ring or the substituent bonded to the aromatic ring.
  • the hydrogen atom may be a heavy hydrogen atom.
  • n1 is more preferably 1 to 10, further preferably 1 to 6, and even more preferably 1 to 3.
  • the monovalent cation represented by A may be an organic cation or an inorganic cation.
  • Examples of the monovalent cation include formamidium, ammonium, cesium and the like, and formamidium is preferable.
  • Examples of the divalent metal ion represented by B include Cu 2+ , Ni 2+ , Mn 2+ , Fe 2+ , Co 2+ , Pd 2+ , Ge 2+ , Sn 2+ , Pb 2+ , Eu 2+ , and Sn. It is preferably 2+ and Pb 2+ , and more preferably Pb 2+.
  • Examples of the halogen ion represented by X include fluorine, chlorine, bromine, and iodine ions.
  • the halogen ions represented by the plurality of Xs may all be the same, or may be a combination of two or three types of halogen ions. It is preferable that the plurality of Xs are all the same halogen ion, and it is more preferable that the plurality of Xs are all bromine ions.
  • PEA represents phenylethylammonium.
  • NMA represents 1-naphthylmethylammonium.
  • FA represents formamidium and MA represents methylammonium.
  • n is an integer of 2 or more.
  • the structure PbX 4 in which the unit cell PbX 6 shares a vertex and is arranged two-dimensionally constitutes an inorganic component (inorganic layer), and is PEA or A monovalent organic cation represented by NMA constitutes an organic component.
  • the compound represented by the formula (C) or the formula (D) is preferable, and the compound represented by the formula (C) is more preferable because the NMA can function as a triplet quencher.
  • the pseudo two-dimensional perovskite included in the laser element of the present invention can be formed, for example, in the form of a film to form an active layer of the laser element.
  • the method for forming the film is not particularly limited, and may be a dry process such as a vacuum vapor deposition method or a wet process such as a solution coating method.
  • the solution coating method is used, the film can be formed in a short time with a simple device, so that there is an advantage that the cost can be suppressed and mass production is easy.
  • the vacuum vapor deposition method has an advantage that a film having a better surface condition can be formed.
  • lead bromide (PbBr 2 ) and 1-naphthylmethylammonium are used to form a film containing pseudo-two-dimensional perovskite represented by NMA 2 FA n-1 Pb n Br 3n + 1 using the vacuum deposition method.
  • a co-deposited method of co-depositing bromide (NMABr) and formamidium bromide (FABr) from different deposition sources can be used.
  • other films containing pseudo-two-dimensional perovskite also apply this method to a metal halide, a compound composed of a monovalent organic cation and a halogen ion, and another monovalent cation and a halogen ion. It can be formed by co-depositing a compound.
  • lead bromide (PbBr 2 ) and 1-naphthylmethylammonium are used to form a film containing a pseudo-two-dimensional perovskite represented by NMA 2 FA n-1 Pb n Br 3n + 1 by using a solution coating method.
  • Bromide (NMABr) and formamidium bromide (FABr) are reacted in a solvent to prepare a pseudo two-dimensional perovskite or precursor, and a coating solution containing this pseudo two-dimensional perovskite is applied to the surface of the support and dried. A film is formed by doing so.
  • this method is applied to synthesize pseudo-two-dimensional perovskite in a solvent, and a coating liquid containing this pseudo-two-dimensional perovskite is applied to the surface of the support and dried. Can be formed. Further, if necessary, a baking treatment may be performed after applying the coating liquid.
  • the coating method of the coating liquid is not particularly limited, and conventionally known coating methods such as a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method can be used. It is preferable to use the spin coating method because a coating film having a relatively thin thickness can be uniformly formed.
  • the solvent of the coating liquid is not particularly limited as long as it can dissolve the perovskite type compound.
  • ethers methylformate, ethylformate, propylformate, pentalformate, methylacetate, ethylacetate, pentylacetate, etc.
  • ketones ⁇ -butyrolactone, N-methyl-2-pyrrolidone, acetone
  • ethers diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane)
  • 4-Methyldioxolane tetrahydrofuran, methyl tetrahydrofuran, anisole, phene
  • esters, ketones, ethers and alcohols that is, -O-, -CO-, -COO-, -OH.
  • the hydrogen atom in the hydrocarbon moiety of esters, ketones, ethers and alcohols may be substituted with a halogen atom (particularly, a fluorine atom).
  • the content of the perovskite-type compound in the coating liquid is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, and 5 to 20% by mass with respect to the total amount of the coating liquid. Is even more preferable.
  • the content of the organic material in the coating liquid is preferably 0.001% by mass or more and less than 50% by mass with respect to the total amount of the perovskite compound and the organic material.
  • the coating liquid applied to the surface of the support is preferably dried by natural drying or heat drying in an atmosphere substituted with an inert gas such as nitrogen.
  • the laser element of the present invention includes a pseudo two-dimensional perovskite and has a quencher (triplet quencher) for quenching the excited triplet of the inorganic component constituting the pseudo two-dimensional perovskite, and as an embodiment thereof, Examples thereof include a configuration in which a membrane containing a pseudo-two-dimensional perovskite is used as the active layer.
  • quasi-two-dimensional perovskite that constitutes the active layer may comprise an organic component is a triplet quencher (organic component satisfying E T> E T1), may be free.
  • the laser element is configured so that oxygen or the atmosphere, which is a triplet quencher, comes into contact with the inorganic layer of the pseudo-two-dimensional perovskite.
  • Specific configurations include a configuration in which the active layer is covered with a protective cover and the protective cover is filled with oxygen and air, a configuration in which an opening is provided in the protective cover and air is allowed to enter the cover through the opening, and an active layer. There is a configuration in which the air is exposed to the outside air without being covered with a protective cover.
  • the configuration in which oxygen or the like is brought into contact with the active layer can also be adopted when the pseudo-two-dimensional perovskite contains an organic component which is a triplet quencher.
  • the laser element may have only one layer of the film containing the pseudo two-dimensional perovskite as described above, or may have two or more layers. When the laser element has two or more layers of films containing pseudo-two-dimensional perovskite, the organic-inorganic perovskite contained in those films may be the same or different.
  • the laser device of the present invention may be a photoexcited laser device that emits laser light by irradiating the active layer with excitation light, or holes and electrons are injected into the active layer and they are recombined. It may be a current excitation type laser element (semiconductor laser element) that emits a laser beam by the energy generated by the above.
  • the photoexcited laser device has a structure in which at least an active layer is formed on a substrate. Further, the current-excited laser device has a structure in which at least an anode, a cathode, and a perovskite layer are formed between the anode and the cathode.
  • the perovskite layer has at least an active layer and may be composed of only an active layer, or may have one or more other organic layers or a perovskite layer in addition to the active layer. ..
  • examples of such other organic layers or perovskite layers include hole transport layers, hole injection layers, electron blocking layers, hole blocking layers, electron injection layers, electron transport layers, exciton blocking layers and the like.
  • the hole transport layer may be a hole injection transport layer having a hole injection function
  • the electron transport layer may be an electron injection transport layer having an electron injection function.
  • the laser light generated in the active layer may pass through the anode and be taken out to the outside, or may pass through the cathode and be taken out to the outside, and pass through the anode and the cathode. And may be taken out to the outside. Further, the laser light generated in the active layer may be taken out from the end face of the perovskite layer.
  • each member and each layer of the current excitation type laser element will be described. The description of the substrate and the active layer also applies to the photoexcited laser device and the active layer.
  • the current-excited laser device of the present invention is preferably supported by a substrate.
  • a substrate having translucency to the laser light is used as the substrate, and a transparent substrate made of glass, transparent plastic, quartz, or the like is used. Is preferably used.
  • the substrate is not particularly limited, and a substrate made of silicon, paper, or cloth may be used in addition to the above transparent substrate. it can.
  • anode As the anode in the current excitation type laser element, a metal having a large work function (4 eV or more), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium zinc oxide (ITO), SnO 2, ZnO, and TiN.
  • a material capable of producing an amorphous and transparent conductive film such as IDIXO (In 2 O 3-ZnO) may be used.
  • the anode can be formed by forming a film of these electrode materials by a method such as vapor deposition or sputtering.
  • a pattern having a desired shape may be formed on the formed thin film by a photolithography method to serve as an anode, or when pattern accuracy is not required so much (about 100 ⁇ m or more), it is desired at the time of vapor deposition or sputtering of the electrode material.
  • the pattern may be formed through a mask having the shape of.
  • a coatable material such as an organic conductive compound
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the current excitation type laser element is configured to transmit the laser light through the anode, the anode needs to have translucency with respect to the laser light, and the transmittance of the laser light is 1.
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a metal having a smaller work function than the material used for the anode (referred to as an electron-injectable metal), an alloy, an electrically conductive compound, or a mixture thereof is used as an electrode material.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O). 3 ) Examples thereof include a mixture, an indium, a lithium / aluminum mixture, and a rare earth metal.
  • a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture.
  • a magnesium / silver mixture Magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, aluminum and the like are suitable.
  • the cathode can be formed by forming a film of these electrode materials by a method such as vapor deposition or sputtering.
  • the cathode when the current excitation type laser element is configured to transmit the laser light through the cathode, the cathode needs to have translucency with respect to the laser light, and the transmittance of the laser light is 1. It is preferably configured to be greater than%, and more preferably configured to be greater than 10%. Specifically, it is preferable to use a thin film formed by forming the above electrode material with a thickness of 10 to 100 nm as the cathode.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the active layer is a layer that emits laser light after holes and electrons injected from the anode and the cathode are recombined to generate excitons and a population inversion is formed.
  • the active layer is composed of a film containing a pseudo-two-dimensional perovskite.
  • the thickness of the active layer is preferably 0 to 500 nm, more preferably 50 to 300 nm.
  • the injection layer is a layer provided between the electrode and the perovskite layer in order to reduce the driving voltage and improve the emission brightness.
  • the injection layer can be provided as needed.
  • the blocking layer is a layer capable of blocking the diffusion of charges (electrons or holes) and / or excitons existing in the active layer to the outside of the active layer.
  • the electron blocking layer can be placed between the active layer and the hole transporting layer to prevent electrons from passing through the active layer towards the hole transporting layer.
  • the hole blocking layer can be placed between the active layer and the electron transporting layer, blocking holes from passing through the active layer towards the electron transporting layer.
  • the blocking layer can also be used to prevent excitons from diffusing outside the active layer. That is, the electron blocking layer and the hole blocking layer can also function as exciton blocking layers, respectively.
  • the electron blocking layer or exciton blocking layer referred to in the present specification is used in the sense that one layer includes a layer having the functions of an electron blocking layer and an exciton blocking layer.
  • the hole blocking layer has a function of an electron transporting layer in a broad sense.
  • the hole blocking layer has a role of blocking the holes from reaching the electron transporting layer while transporting electrons, which can improve the recombination probability of electrons and holes in the active layer.
  • As the material of the hole blocking layer a material of the electron transport layer described later can be used as needed.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role of blocking electrons from reaching the hole transporting layer while transporting holes, which can improve the probability that electrons and holes are recombined in the active layer. ..
  • the exciton blocking layer is a layer for blocking excitons generated by the recombination of holes and electrons in the active layer from diffusing into the charge transport layer, and the excitons are inserted by inserting this layer. It is possible to efficiently confine it in the active layer, and it is possible to improve the light emission efficiency of the element.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the active layer, and both can be inserted at the same time.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted between the hole transport layer and the active layer adjacent to the active layer, and when inserted on the cathode side, the active layer and the cathode can be inserted.
  • the layer can be inserted adjacent to the active layer between and.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the active layer, and the cathode and the excitation adjacent to the cathode side of the active layer can be provided.
  • An electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided between the child blocking layer and the electron blocking layer.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer may be provided with a single layer or a plurality of layers.
  • the hole transporting material has either injection or transport of holes or an electron barrier property, and may be either an organic substance or an inorganic substance.
  • Known hole transporting materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, etc.
  • Amino-substituted chalcone derivatives oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilben derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, especially thiophene oligomers, etc. It is preferable to use a group tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer may be provided with a single layer or a plurality of layers.
  • the electron transporting material (which may also serve as a hole blocking material) may have a function of transferring electrons injected from the cathode to the active layer.
  • Examples of the electron transporting layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, freolenidenemethane derivatives, anthracinodimethane and anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is replaced with a sulfur atom, and a quinoxalin derivative having a quinoxalin ring known as an electron-withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • each layer constituting these laser elements is not particularly limited, and may be produced by either a dry process or a wet process.
  • the laser device of the present invention may further have a resonator structure.
  • the "resonator structure” is a structure for reciprocating the light emitted by the light emitting material in the active layer. As a result, the light repeatedly travels in the active layer to cause stimulated emission, so that a higher intensity laser beam can be obtained.
  • the resonator structure is specifically composed of a pair of reflectors, one of which preferably has a reflectance of 100% and the other of which has a reflectance of 50-95%. preferable. By setting the reflectance of the other reflector to be relatively low, it is possible to allow the laser beam to pass through the reflector and take out the laser beam to the outside.
  • the reflecting mirror on the side that extracts the laser beam is referred to as an "output mirror".
  • the reflector and the output mirror may be provided separately from each layer and each part constituting the current excitation type laser element, or the anode and cathode may also have the function of the reflector or the output mirror.
  • the anode when the anode also functions as a reflector or an output mirror, the anode is made of a metal film having a small absorption of visible light, a high reflectance, and a relatively large work function (4.0 eV or more). It is preferable to configure it.
  • a metal film include a metal film such as Ag, Pt, and Au, or an alloy film containing these metals.
  • the reflectance and transmittance of the anode can be adjusted to desired values by controlling the film thickness of the metal film, for example, in the range of several tens of nm or more.
  • the cathode When the cathode also functions as a reflector or an output mirror, the cathode is preferably formed of a metal film having a small absorption of visible light, a high reflectance, and a relatively small work function. Examples of such a metal film include a metal film such as Al and Mg, or an alloy film containing these metals.
  • the reflectance and transmittance of the cathode can be adjusted to desired values by controlling the film thickness of the metal film, for example, in the range of several tens of nm or more.
  • a reflector or an output mirror is provided separately from each of the above layers and parts, a reflective film is formed between the anode and the organic layer or between the substrate and the anode to form a reflector or an output mirror.
  • a reflector or an output mirror is provided between the anode and the organic layer, as those materials, the absorption of visible light is small, high reflectance can be obtained, and the work function is large (work function 4.0 eV). Above) It is preferable to use a conductive material. Specifically, a metal film made of a metal such as Ag, Pt, Au, or an alloy containing these metals can be used as a reflector or an output mirror. The reflectance and transmittance of this reflector or output mirror can be adjusted to desired values by controlling the film thickness of the metal film, for example, in the range of several tens of nm or more.
  • the material of the anode does not need to have a large work function, and a known electrode material can be widely used.
  • a reflector or an output mirror is provided between the substrate and the anode, it is preferable to use a material having a small absorption of visible light and a high reflectance.
  • a dielectric multilayer film or the like formed on the above can be used as a reflecting mirror or an output mirror.
  • the reflectance and transmittance of the metal film can be adjusted to desired values by controlling the film thickness in the range of, for example, several tens of nm or more. Further, the reflectance and transmittance of the dielectric multilayer film can be adjusted to desired values by controlling the film thickness and the number of layers of silicon oxide and titanium oxide.
  • the combination of the reflector and the output mirror is a combination in which the output mirror is the anode and the reflector is the cathode, and the output mirror is a reflective film arranged between the anode and the organic layer or between the substrate and the anode.
  • the reflector is the cathode
  • the reflector is the anode and the output mirror is the cathode
  • the reflector is a reflective film placed between the anode and the organic layer or between the substrate and the anode.
  • the output mirror is a cathode.
  • the total optical thickness of the layers interposed between the reflector and the output mirror is an integer of the half wavelength of the laser beam. It is preferable to design the layer structure of the element so as to be doubled. As a result, a standing wave is formed between the reflecting mirror and the output mirror, the light is amplified, and a higher intensity laser beam can be obtained.
  • the above resonator structure reciprocates the laser beam in the direction perpendicular to the main surface of the substrate, but the resonator structure reciprocates the laser beam in the horizontal direction with respect to the main surface of the substrate.
  • the end face of the perovskite layer can be configured as a reflector or an output mirror by utilizing the reflection due to the difference in refractive index between the perovskite layer and air.
  • a diffraction grating is provided near the active layer at a lattice spacing of ⁇ / 2n ( ⁇ : wavelength of light, an integer of n: 1 or more), and the light generated in the active layer is periodically reflected by the lattice spacing of the diffraction grating.
  • a DFB (distributed feedback) structure may be adopted. As a result, a single longitudinal mode can be realized, and a laser beam having good monochromaticity can be emitted from the end face of the perovskite layer.
  • the current excitation type laser element as described above emits laser light by passing a current equal to or higher than the threshold current density between the anode and the cathode. Further, the photoexcitation type laser element emits laser light by irradiating the active layer with excitation light of a threshold value or more. At this time, in the laser element of the present invention, the active layer contains the pseudo-two-dimensional perovskite and has a triplet quencher, so that the accumulation of the excited triplet in the perovskite layer of the pseudo-two-dimensional perobskite is suppressed and excited.
  • the laser element of the present invention can also be suitably used as a continuous wave laser element.
  • the laser oscillation method of the present invention is a method of oscillating a laser from a pseudo two-dimensional perovskite by quenching an excited triplet of an inorganic component constituting the pseudo two-dimensional perovskite.
  • the method for improving the laser oscillation characteristic of the present invention is a method for improving the laser oscillation characteristic of the pseudo two-dimensional perovskite by quenching the excited triplet of the inorganic component constituting the pseudo two-dimensional perovskite.
  • the corresponding description in the ⁇ Laser element> column can be referred to.
  • the excitation triplet quenching performed by each method can be performed using a quencher for quenching the excited triplet.
  • the description, preferred range, and specific example of the quencher used here the description, preferred range, and specific example of the quencher in the column of ⁇ laser> element can be referred to.
  • the accumulation of excited triplets in the perovskite layer of the pseudo-two-dimensional perovskite is suppressed, and the singlet-triplet disappearance due to the accumulation of the excited triplets.
  • STA the occurrence of a phenomenon (laser death phenomenon) in which laser oscillation that occurs following STA stops in the middle is suppressed. Therefore, the laser beam reflecting the excellent characteristics of the pseudo two-dimensional perovskite can be continuously oscillated, and the laser oscillation characteristics can be remarkably improved.
  • the features of the present invention will be described in more detail with reference to Examples below.
  • the materials, treatment contents, treatment procedures, etc. shown below can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the specific examples shown below.
  • the light absorption spectrum is measured using an ultraviolet-visible near-infrared spectrophotometer (Perkin Elmer: Lambda 950-PKA), and the emission spectrum is measured using a measuring device (Fluoromax-4, Horiba Jobin Yvon).
  • the transient attenuation curve of light emission is measured using a streak camera (C4334, Hamamatsu Photonics), and X-ray diffraction analysis is performed using an X-ray diffractometer (RINT-2500, manufactured by Rigaku).
  • the intensity is measured using a photonic multi-channel analyzer (Hamamatsu PMA 12), the laser intensity is measured using a spectroscope (Hamamatsu PMA-50), and the film thickness is measured using a profile meter (Bulker). : DektakXT) was used.
  • PEA represents phenylethylammonium
  • NMA represents 1-naphthylmethylammonium
  • FA represents formamidium.
  • Emission excited singlet energy level E S, and triplet energy level E T inorganic components constituting each quasi-two-dimensional perovskite, emission excited singlet organic component energy level E S1 and the light-emitting triplet energy level E T1 is shown in Table 1.
  • NMA 2 FA n-1 Pb n Br 3n + 1 (n ) as follows.
  • a film composed of 8) (hereinafter referred to as "N2F8 perovskite film") was formed.
  • 1-naphthylmethylammonium bromide (C) was dissolved in an N, N-dimethylformamide solution in which formamidium bromide (HC (NH 2 ) 2 Br) and lead bromide (PbBr 2) were dissolved in a molar ratio of 1: 1.
  • the N2F8 perovskite film and the P2F8 perovskite film produced in each production example were subjected to X-ray diffraction analysis, it was confirmed that they were pseudo-two-dimensional perovskite including a perovskite layer composed of eight inorganic layers.
  • the ultraviolet-visible absorption spectrum of each perovskite film and the emission spectrum in a steady state by 337 nm excitation light are shown in FIG.
  • the emission spectrum was measured by changing the irradiation intensity of pulsed excitation light stepwise at room temperature, and the results of investigating the excitation light intensity dependence of the peak intensity and full width at half maximum (FWHM) at the emission peak were obtained. It is shown in FIG.
  • the excitation light used for this measurement is a pulse excitation light having a wavelength of 337 nm and a pulse width of 0.8 ns.
  • N2F8 indicates “N2F8 perovskite film”
  • P2F8 indicates “P2F8 perovskite film”.
  • the full width at half maximum of the emission peak was about 20 nm, and the pattern of the emission spectrum was similar to the emission spectrum in the steady state shown in FIG.
  • both the P2F8 perovskite membrane and the N2F8 perovskite membrane showed constant ASE intensity in an oxygen atmosphere and in air.
  • the N2F8 perovskite membrane obtained almost the same ASE intensity as in an oxygen atmosphere or air, but the P2F8 perovskite membrane gradually decreased in ASE intensity.
  • the ASE intensity changes depending on the measurement atmosphere because the energy of the photoexcited triplet generated in the perovskite layer moves to the triplet oxygen in the atmosphere in the oxygen atmosphere and in the air.
  • NMA having a low excited triplet energy level functions as a quencher of the excited triplet, so that stable ASE is obtained even in a nitrogen atmosphere in which oxygen does not exist. From this, it is possible to remarkably improve the ASE characteristics by introducing or contacting a pseudo-two-dimensional perovskite with a substance that functions as a quencher of the excited triplet, for example, oxygen or a compound having a low excited triplet energy level. all right.
  • FIG. 7 shows the results of measuring the emission spectrum of the produced N2F8 laser and P2F8 laser by changing the irradiation intensity of pulsed excitation light stepwise and examining the dependence of the emission peak intensity on the excitation light intensity.
  • the excitation light used for the measurement is a pulse excitation light having a wavelength of 337 nm and a pulse width of 3 ns.
  • N2F8 indicates “N2F8 laser”
  • P2F8 indicates "P2F8 laser”.
  • both the N2F8 laser and the P2F8 laser rapidly increased the emission intensity at a constant excitation light intensity, and at the same time, the full width at half maximum reached about 0.45 nm.
  • the Q factor was 1000. From this time, it was confirmed that each element exhibited good laser oscillation characteristics. Lasing threshold determined from FIG. 7, 4.7MyuJcm -2 at P2F8 laser is 32.8MyuJcm -2 in N2F8 laser oscillation wavelength determined from the emission spectrum was 552nm at 559 nm, P2F8 laser in N2F8 laser .. For the N2F8 laser, it is considered that the laser threshold can be lowered by optimizing the conditions of the DFB lattice.
  • the P2F8 laser was irradiated with continuous excitation light, the laser intensity was measured in air, and then the laser intensity was measured in a nitrogen atmosphere. The cycle was repeated, and the change in laser intensity during that period was investigated.
  • the excitation light used for the measurement was continuous excitation light having a wavelength of 448 nm, and was irradiated with an irradiation intensity of 1.7 kW / cm 2.
  • the measurement result of the laser intensity change is shown in FIG. As shown in FIG. 8, laser oscillation is observed in the air, and when nitrogen is injected into the sample chamber to create a nitrogen atmosphere in the chamber, the laser intensity immediately decreases, and then the injection of nitrogen is stopped and the air is stopped. Was introduced into the sample chamber, and the laser oscillation was completely restored.
  • the laser oscillation characteristics are effectively improved by bringing a triplet quencher such as oxygen into contact with the laser element.
  • the response speed (the speed at which the laser intensity changes) according to the change in the atmosphere of the laser oscillation was much faster than the response speed in the ASE operation. This suggests that the singlet-triplet annihilation induced by the long-lived photoexcited triplet is the essential cause of the laser death phenomenon during continuous-wave laser oscillation.
  • the laser element of the present invention has excellent laser oscillation characteristics, and since it uses a pseudo two-dimensional perovskite, it has high stability and is advantageous in reducing the manufacturing cost of the laser element. Therefore, according to the present invention, it is possible to inexpensively provide a laser element having excellent laser oscillation characteristics and practicality. Therefore, the present invention has high industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This laser element containing a pseudo two-dimensional perovskite is characterized by having a quencher for quenching the excited triplet of an inorganic component constituting the pseudo two-dimensional perovskite. The quencher may use: an organic component that constitutes the pseudo two-dimensional perovskite and has an excited triplet energy level lower than the excited triplet energy level of an inorganic component; oxygen; air, etc.

Description

レーザー素子、レーザー発振方法およびレーザー発振特性の向上方法Laser element, laser oscillation method and method for improving laser oscillation characteristics
 本発明は、有機無機ペロブスカイトを用いたレーザー素子、レーザー発振方法およびレーザー発振特性の向上方法に関する。 The present invention relates to a laser element using an organic-inorganic perovskite, a laser oscillation method, and a method for improving laser oscillation characteristics.
 有機無機ペロブスカイトは、有機カチオン等の1価のカチオンと、Sn2+やPb2+等の2価の金属イオンと、ハロゲンイオンとからなり、これらのイオンがペロブスカイト(灰チタン石)と同じ結晶構造(ペロブスカイト型構造)を形成するように規則的に配置したイオン化合物であり、結晶の配列空間の次元数により大別された3次元ペロブスカイト、2次元ペロブスカイトおよび擬2次元ペロブスカイトが知られている。これらの有機無機ペロブスカイトは、無機物の半導体特性と、有機物のフレキシブル性や分子設計の多様性を併せもち、また、原料コストが低く、溶液塗布法による成膜が可能でコスト低減の点からも有利であることから、その材料を用いた各種素子の実現に向けて研究開発が盛んに行われている。
 例えば、有機無機ペロブスカイトをレーザー素子の活性層に利用しようとする研究が精力的に進められており、そうしたペロブスカイトにおいて、低閾値での自然増幅放出光(Amplified spontaneous emission、ASE)発振やレーザー発振が実現されている。さらに、3次元ペロブスカイトであるCHNHPbIについて、250秒間の短時間ではあるが、140Kまたは室温で近赤外域の連続波(CW)レーザー発振が観測されたことが報告されている(非特許文献1参照)。
Organic-inorganic perovskite is composed of monovalent cations such as organic cations, divalent metal ions such as Sn 2+ and Pb 2+ , and halogen ions, and these ions have the same crystal structure as perovskite (perovskite). It is an ionic compound regularly arranged so as to form a perovskite type structure), and three-dimensional perovskite, two-dimensional perovskite, and pseudo-two-dimensional perovskite, which are roughly classified according to the number of dimensions of the crystal arrangement space, are known. These organic-inorganic perovskites have the semiconductor characteristics of inorganic substances, the flexibility of organic substances, and the variety of molecular designs. In addition, the raw material cost is low, and film formation by the solution coating method is possible, which is advantageous in terms of cost reduction. Therefore, research and development are being actively carried out toward the realization of various elements using the material.
For example, research is being vigorously pursued to utilize organic-inorganic perovskite as the active layer of laser elements, and in such perovskite, spontaneous emission (ASE) oscillation and laser oscillation at low threshold values are performed. It has been realized. Furthermore, it has been reported that continuous wave (CW) laser oscillation in the near infrared region was observed at 140 K or room temperature for a short time of 250 seconds for CH 3 NH 3 PbI 3 , which is a three-dimensional perovskite (3D perovskite). See Non-Patent Document 1).
 ところで、上記のように、有機無機ペロブスカイトとしては擬2次元ペロブスカイトも知られている。擬2次元ペロブスカイトは、ペロブスカイト型結晶を構成する八面体の2次元配列構造が、Aサイトの1価のカチオンを介して2層以上積層した構造を有するペロブスカイト層の両側に、例えばメチルアンモニウムよりも炭素数が大きい有機カチオンの層(有機層)が配置した構造を有しており、高い安定性と大きな励起子束縛エネルギー、自然量子井戸構造を持つといった、レーザー材料として有利な特徴を有することが確認されている。
 しかし、擬2次元ペロブスカイトを活性層とする素子に連続パルス励起光を照射していると、途中でレーザー発振が停止するレーザー死現象が起きることが知られており、その発生メカニズムや対処法については未だ解明されていない。そのため、擬2次元ペロブスカイトは上記のような優れた特徴を有するものの、その材料を活性層とするレーザー素子はこれまで実現されていないのが実情である。
By the way, as described above, pseudo-two-dimensional perovskite is also known as an organic-inorganic perovskite. Pseudo-two-dimensional perovskite is a perovskite layer in which two or more octahedral two-dimensional array structures constituting a perovskite-type crystal are laminated via a monovalent cation of A site on both sides of a perovskite layer, for example, more than methylammonium. It has a structure in which a layer of organic cations with a large number of carbon atoms (organic layer) is arranged, and has advantageous features as a laser material such as high stability, large exciton binding energy, and a natural quantum well structure. It has been confirmed.
However, it is known that when a device having a pseudo-two-dimensional perovskite as an active layer is irradiated with continuous pulse excitation light, a laser death phenomenon occurs in which laser oscillation stops in the middle. Has not been clarified yet. Therefore, although the pseudo two-dimensional perovskite has the above-mentioned excellent characteristics, the actual situation is that a laser element using the material as an active layer has not been realized so far.
 このような状況下において本発明者らは、従来よりもレーザー発振特性に優れたペロブスカイトレーザー素子を提供することを目的として鋭意検討を進めた。 Under such circumstances, the present inventors have made diligent studies for the purpose of providing a perovskite laser element having better laser oscillation characteristics than before.
 上記の課題を解決するため、本発明者らがレーザー死現象の発生メカニズムを解明すべく検討を行ったところ、無機層で生成した長寿命の励起三重項が蓄積して一重項-三重項消滅を引き起こすことが、レーザー死現象の主な原因になっていることを判明した。そして、無機成分の励起三重項をクエンチするクエンチャーを擬2次元ペロブスカイトに導入または接触させることにより、レーザー死現象が抑えられてレーザー発振特性に優れたペロブスカイトレーザー素子が実現するとの知見を得るに至った。本発明は、これらの知見に基づいて提案されたものであり、具体的に以下の構成を有する。 In order to solve the above problems, the present inventors conducted a study to elucidate the generation mechanism of the laser death phenomenon, and found that long-lived excited triplets generated in the inorganic layer accumulated and the singlet-triplet disappeared. Was found to be the main cause of the laser death phenomenon. Then, by introducing or contacting a quencher that quenches the excited triplet of the inorganic component into the pseudo-two-dimensional perovskite, it is possible to obtain the knowledge that the laser death phenomenon is suppressed and the perovskite laser element having excellent laser oscillation characteristics is realized. I arrived. The present invention has been proposed based on these findings, and specifically has the following configuration.
[1] 擬2次元ペロブスカイトを構成する無機成分の励起三重項をクエンチするクエンチャーを有することを特徴とする、擬2次元ペロブスカイトを含むレーザー素子。
[2] 前記クエンチャーが、前記擬2次元ペロブスカイトを構成する有機成分であって、前記有機成分の励起三重項エネルギー準位が前記擬2次元ペロブスカイトを構成する無機成分の励起三重項エネルギー準位よりも低い、[1]に記載のレーザー素子。
[3] 前記有機成分の励起三重項エネルギー準位が前記擬2次元ペロブスカイトを構成する無機成分の励起三重項エネルギー準位よりも0.10eV以上低い、[2]に記載のレーザー素子。
[4] 前記クエンチャーである有機成分が、置換もしくは無置換のナフチルアルキルアンモニウムである、[2]に記載のレーザー素子。
[5] 前記クエンチャーが、基底三重項状態をとる分子、または、基底三重項状態をとる分子を含む組成物である、[1]に記載のレーザー素子。
[6] 前記クエンチャーが、擬2次元ペロブスカイトを構成する無機成分に接触する酸素である、[1]に記載のレーザー素子。
[7] 前記クエンチャーが、擬2次元ペロブスカイトを構成する無機成分に接触する大気である、[1]に記載のレーザー素子。
[8] 前記擬2次元ペロブスカイトを構成する有機成分の励起三重項エネルギー準位が、前記擬2次元ペロブスカイトを構成する無機成分の励起三重項エネルギー準位よりも高い、[5]~[7]のいずれか1項に記載のレーザー素子。
[9] 前記擬2次元ペロブスカイトが、下記一般式(10)で表される化合物からなり、
   Rn-13n+1    (10)
[一般式(10)において、Rは1価の有機カチオンを表し、Aは1価のカチオンを表し、Bは2価の金属イオンを表し、Xはハロゲンイオンを表す。nは2以上の整数である。]
 前記一般式(10)のBXで表される組成の無機層が前記無機成分を構成する、[1]に記載のレーザー素子。
[10] 前記クエンチャーが、前記一般式(10)のRで表される有機カチオンからなる有機成分であって、前記有機成分の励起三重項エネルギー準位が前記擬2次元ペロブスカイトを構成する無機成分の励起三重項エネルギー準位よりも低い、[9]に記載のレーザー素子。
[11] 前記一般式(10)のRが下記一般式(11)で表されるアンモニウムである、[9]に記載の有機無機ペロブスカイト。
   Ar(CHn1NH     (11)
[一般式(11)において、Arは芳香環を表す。n1は1~20の整数である。]
[12] 前記一般式(11)のArがベンゼン環またはナフタレン環である、[11]に記載のレーザー素子。
[13] 前記一般式(10)のAがホルムアミジウムまたはメチルアンモニウムである、[9]~[12]のいずれか1項に記載のレーザー素子。
[14] 前記一般式(10)のBがPb2+である、[9]~[13]のいずれか1項に記載のレーザー素子。
[15] 前記一般式(10)のXがBrである、[9]~[14]のいずれか1項に記載のレーザー素子。
[16] 前記一般式(10)で表される化合物が、下記式(A)または下記式(B)で表される化合物であり、
    PEAFAn-1PbBr3n+1            式(A)
    PEAMAn-1PbBr3n+1            式(B)
[式(A)および式(B)において、PEAはフェニルエチルアンモニウムを表し、FAはホルムアミジウムを表し、MAはメチルアンモニウムを表す。nは2以上の整数である。]
 前記式(A)または前記式(B)のPbBrで表される組成の無機層が前記無機成分を構成する、[9]に記載のレーザー素子。
[17] 前記一般式(10)で表される化合物が、下記式(C)または下記式(D)で表される化合物であり、
    NMAFAn-1PbBr3n+1            式(C)
    NMAMAn-1PbBr3n+1            式(D)
[式(C)および式(D)において、NMAは1-ナフチルメチルアンモニウムを表し、FAはホルムアミジウムを表し、MAはメチルアンモニウムを表す。nは2以上の整数である。]
 前記式(C)または前記式(D)のPbBrで表される組成の無機層が前記無機成分を構成する、[9]に記載のレーザー素子。
[18] 20℃以上の温度でレーザー発振する、[1]~[17]のいずれか1項に記載のレーザー素子。
[19] 共振器を有する、[1]~[18]のいずれか1項に記載のレーザー素子。
[20] 分布帰還型レーザー素子である、[19]に記載のレーザー素子。
[1] A laser device containing a pseudo two-dimensional perovskite, which has a quencher for quenching an excited triplet of an inorganic component constituting the pseudo two-dimensional perovskite.
[2] The quencher is an organic component constituting the pseudo two-dimensional perovskite, and the excited triplet energy level of the organic component is the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite. The laser element according to [1], which is lower than.
[3] The laser element according to [2], wherein the excited triplet energy level of the organic component is 0.10 eV or more lower than the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite.
[4] The laser device according to [2], wherein the organic component of the quencher is a substituted or unsubstituted naphthylalkylammonium.
[5] The laser device according to [1], wherein the quencher is a molecule having a basal triplet state or a composition containing a molecule having a basal triplet state.
[6] The laser device according to [1], wherein the quencher is oxygen that comes into contact with an inorganic component constituting a pseudo two-dimensional perovskite.
[7] The laser element according to [1], wherein the quencher is an atmosphere in contact with an inorganic component constituting a pseudo two-dimensional perovskite.
[8] The excited triplet energy level of the organic component constituting the pseudo two-dimensional perovskite is higher than the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite, [5] to [7]. The laser element according to any one of the above items.
[9] The pseudo two-dimensional perovskite comprises a compound represented by the following general formula (10).
R 2 A n-1 B n X 3n + 1 (10)
[In the general formula (10), R represents a monovalent organic cation, A represents a monovalent cation, B represents a divalent metal ion, and X represents a halogen ion. n is an integer of 2 or more. ]
The laser device according to [1], wherein the inorganic layer having the composition represented by BX 4 of the general formula (10) constitutes the inorganic component.
[10] The quencher is an organic component composed of an organic cation represented by R in the general formula (10), and the excited triplet energy level of the organic component constitutes the pseudo-two-dimensional perovskite. The laser element according to [9], which is lower than the excited triplet energy level of the component.
[11] The organic-inorganic perovskite according to [9], wherein R of the general formula (10) is ammonium represented by the following general formula (11).
Ar (CH 2 ) n1 NH 3 + (11)
[In the general formula (11), Ar represents an aromatic ring. n1 is an integer from 1 to 20. ]
[12] The laser device according to [11], wherein Ar in the general formula (11) is a benzene ring or a naphthalene ring.
[13] The laser device according to any one of [9] to [12], wherein A in the general formula (10) is formamidium or methylammonium.
[14] The laser device according to any one of [9] to [13], wherein B in the general formula (10) is Pb 2+.
[15] The laser device according to any one of [9] to [14], wherein X in the general formula (10) is Br −.
[16] The compound represented by the general formula (10) is a compound represented by the following formula (A) or the following formula (B).
PEA 2 FA n-1 Pb n Br 3n + 1 equation (A)
PEA 2 MA n-1 Pb n Br 3n + 1 equation (B)
[In formulas (A) and (B), PEA represents phenylethylammonium, FA represents formamidium, and MA represents methylammonium. n is an integer of 2 or more. ]
The laser device according to [9], wherein the inorganic layer having the composition represented by PbBr 4 of the formula (A) or the formula (B) constitutes the inorganic component.
[17] The compound represented by the general formula (10) is a compound represented by the following formula (C) or the following formula (D).
NMA 2 FA n-1 Pb n Br 3n + 1 equation (C)
NMA 2 MA n-1 Pb n Br 3n + 1 equation (D)
[In formulas (C) and (D), NMA represents 1-naphthylmethylammonium, FA represents formamidium, and MA represents methylammonium. n is an integer of 2 or more. ]
The laser device according to [9], wherein an inorganic layer having a composition represented by PbBr 4 of the formula (C) or the formula (D) constitutes the inorganic component.
[18] The laser element according to any one of [1] to [17], which oscillates a laser at a temperature of 20 ° C. or higher.
[19] The laser element according to any one of [1] to [18], which has a resonator.
[20] The laser element according to [19], which is a distributed feedback type laser element.
[21] 擬2次元ペロブスカイトを構成する無機成分の励起三重項をクエンチすることによって、前記擬2次元ペロブスカイトからレーザー発振させる、レーザー発振方法。
[22] 擬2次元ペロブスカイトを構成する無機成分の励起三重項をクエンチすることによって、前記擬2次元ペロブスカイトのレーザー発振特性を向上させる、レーザー発振特性の向上方法。
[21] A laser oscillation method in which a laser is oscillated from the pseudo two-dimensional perovskite by quenching an excited triplet of an inorganic component constituting the pseudo two-dimensional perovskite.
[22] A method for improving laser oscillation characteristics, which improves the laser oscillation characteristics of the pseudo-two-dimensional perovskite by quenching the excited triplet of an inorganic component constituting the pseudo-two-dimensional perovskite.
 本発明によれば、レーザー発振特性に優れたレーザー素子を実現することができる。本発明のレーザー発振方法によれば、擬2次元ペロブスカイトからレーザー光を発振させて優れたレーザー発振特性を得ることができる。また、本発明のレーザー発振特性の向上方法によれば、擬2次元ペロブスカイトのレーザー発振特性を顕著に向上させることができる。 According to the present invention, it is possible to realize a laser element having excellent laser oscillation characteristics. According to the laser oscillation method of the present invention, it is possible to oscillate a laser beam from a pseudo two-dimensional perovskite to obtain excellent laser oscillation characteristics. Further, according to the method for improving the laser oscillation characteristic of the present invention, the laser oscillation characteristic of the pseudo two-dimensional perovskite can be remarkably improved.
本発明のレーザー素子の発光メカニズムを説明するための模式図である。It is a schematic diagram for demonstrating the light emitting mechanism of the laser element of this invention. 三重項クエンチャーNMAを含む系(a)と三重項クエンチャーを含まない系(b)における、ペロブスカイト層から有機層への励起三重項エネルギーの移動の様子を示す模式図である。It is a schematic diagram which shows the state of the transfer of the excited triplet energy from a perovskite layer to an organic layer in a system (a) containing a triplet quencher NMA and a system (b) not containing a triplet quencher. 本発明のレーザー素子の層構成例を示す概略断面図である。It is the schematic sectional drawing which shows the layer structure example of the laser element of this invention. P2F8ペロブスカイト膜およびN2F8ペロブスカイト膜の紫外可視吸収スペクトルと発光スペクトルである。It is an ultraviolet-visible absorption spectrum and an emission spectrum of a P2F8 perovskite film and an N2F8 perovskite film. P2F8ペロブスカイト膜およびN2F8ペロブスカイト膜で観測された発光ピークの、ピーク強度と半値全幅の励起光強度依存性を示すグラフである。It is a graph which shows the excitation light intensity dependence of the peak intensity and the full width at half maximum of the emission peak observed in the P2F8 perovskite film and the N2F8 perovskite film. P2F8ペロブスカイト膜およびN2F8ペロブスカイト膜について、各種雰囲気で測定したASE強度の変化を示すグラフである。It is a graph which shows the change of the ASE intensity measured in various atmospheres about a P2F8 perovskite film and an N2F8 perovskite film. P2F8ペロブスカイト膜を用いたDFBレーザー素子およびN2F8ペロブスカイト膜を用いたDFBレーザー素子のレーザー強度の励起光強度依存性を示すグラフである。It is a graph which shows the excitation light intensity dependence of the laser intensity of the DFB laser element using the P2F8 perovskite film and the DFB laser element using the N2F8 perovskite film. P2F8ペロブスカイト膜を用いたDFBレーザー素子およびN2F8ペロブスカイト膜を用いたDFBレーザー素子について、空気中または窒素雰囲気中で測定したレーザー強度の変化を示すグラフである。6 is a graph showing changes in laser intensity measured in air or a nitrogen atmosphere for a DFB laser element using a P2F8 perovskite film and a DFB laser element using an N2F8 perovskite film.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本明細書において「主成分」というときは、その構成成分のうち、最も含有量が大きい成分のことをいう。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべてHであってもよいし、一部または全部がH(デューテリウムD)であってもよい。 The contents of the present invention will be described in detail below. The description of the constituent elements described below may be based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. The numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value. Further, in the present specification, the term "main component" means the component having the highest content among the constituent components. Further, the isotope species of the hydrogen atom existing in the molecule of the compound used in the present invention is not particularly limited, and for example, all the hydrogen atoms in the molecule may be 1 H, or part or all of them may be 2 H. (Duterium D) may be used.
<レーザー素子>
 本発明のレーザー素子は、擬2次元ペロブスカイトを含み、その擬2次元ペロブスカイトを構成する無機成分の励起三重項をクエンチするクエンチャーを有するものである。
 本発明における「擬2次元ペロブスカイト」とは、ペロブスカイト層と、該ペロブスカイト層に接する有機カチオンの層(有機層)を有する層状ペロブスカイトである。ペロブスカイト層は、ペロブスカイト型結晶を構成する八面体の2次元配列構造がAサイトの1価のカチオンを介して2層以上積層した構造を有する。ここで、2次元配列構造は、詳細には、ハロゲンイオンXを頂点とする八面体の中心に二価の金属イオンBが配置してなる単位格子BXが頂点共有して二次元配列してなる構造BXのことをいう。また、Aサイトとは、ペロブスカイト型結晶を構成する立方晶の各頂点に対応する位置のことをいう。本発明における「擬2次元ペロブスカイトを構成する無機成分」とは、ペロブスカイト層のうち、ハロゲンイオンXおよび金属イオンBで構成された八面体の二次元配列構造BXからなる層(無機層)のことをいい、無機成分の「励起三重項」とは、その量子状態を経由して無機成分に燐光発光を引き起こすことができる量子状態のことをいう。また、本明細書中における「有機成分」とは、有機層を構成する「有機カチオン」のことをいう。
 本発明における「無機成分の励起三重項をクエンチするクエンチャー」とは、無機成分の励起三重項を減少または消失させる作用を有する物質のことをいい、例えば無機成分の励起三重項からエネルギーを受け取ることができる物質を用いることができる。クエンチャーは、擬2次元ペロブスカイトの一部を構成する物質であってもよいし、擬2次元ペロブスカイトとは別の物質であってもよい。別の物質であるクエンチャーは、擬2次元ペロブスカイトの無機層に接触させうるものであることが好ましい。以下の説明では、「無機成分の励起三重項をクエンチするクエンチャー」を、「三重項クエンチャー」ということがある。
 本発明のレーザー素子は、擬2次元ペロブスカイトを含むものであって、三重項クエンチャーを有することにより、優れたレーザー発振特性を示す。これは、以下のメカニズムによるものと推測される。
 すなわち、本発明者らが擬2次元ペロブスカイトの発光寿命特性を調べたところ、ペロブスカイト層で生成した励起三重項に由来する光として、寿命が1マイクロ秒近くの長寿命の光が観測された。このことから、擬2次元ペロブスカイトでは、ペロブスカイト層の無機成分で生成した励起三重項や、その励起三重項エネルギーを受け取って生成した励起三重項が長寿命であるために、励起三重項が高密度に蓄積して一重項-三重項消滅を引き起こし励起一重項の反転分布が解消されることが、レーザー死現象の主な原因になっていると考えられた。これに対して、上記のような三重項クエンチャーを用いると、蓄積した励起三重項が減少または消失して一重項-三重項消滅が抑えられる。その結果、励起エネルギーを供給している間、反転分布が維持されて優れたレーザー発振特性が得られると推定される。
 さらに、本発明のレーザー素子は、上記の作用を効果的に引き出すことで、20℃以上で長時間レーザー発振させることも可能である。また、その他の効果として、擬2次元ペロブスカイトの有機層がペロブスカイト層の保護層として機能してレーザー特性が安定化することや、擬2次元ペロブスカイトが安価であるため、レーザー素子の製造コストが削減されるという効果も得ることができる。
 以下において、本発明のレーザー素子を構成する各要素について説明する。
<Laser element>
The laser device of the present invention includes a pseudo two-dimensional perovskite and has a quencher for quenching the excited triplet of the inorganic component constituting the pseudo two-dimensional perovskite.
The "pseudo-two-dimensional perovskite" in the present invention is a layered perovskite having a perovskite layer and an organic cation layer (organic layer) in contact with the perovskite layer. The perovskite layer has a structure in which two or more layers of octahedral two-dimensional array structures constituting a perovskite-type crystal are laminated via a monovalent cation of A site. Here, in detail, the two-dimensional array structure is two-dimensionally arranged by sharing the vertices of the unit cell BX 6 in which the divalent metal ion B is arranged at the center of the octahedron having the halogen ion X as the apex. It refers to the structure BX 4. Further, the A site refers to a position corresponding to each vertex of the cubic crystal constituting the perovskite type crystal. The "inorganic component constituting the pseudo two-dimensional perovskite" in the present invention is a layer (inorganic layer) of the perovskite layer composed of an octahedral two-dimensional array structure BX 4 composed of halogen ion X and metal ion B. The "excited triplet" of an inorganic component refers to a quantum state capable of causing phosphorescence to the inorganic component via the quantum state. Further, the "organic component" in the present specification means an "organic cation" constituting an organic layer.
The "quencher that quenches the excited triplet of an inorganic component" in the present invention refers to a substance having an action of reducing or eliminating the excited triplet of an inorganic component, for example, receiving energy from the excited triplet of an inorganic component. A substance that can be used can be used. The quencher may be a substance that constitutes a part of the pseudo two-dimensional perovskite, or may be a substance different from the pseudo two-dimensional perovskite. The quencher, which is another substance, is preferably capable of contacting the inorganic layer of the pseudo-two-dimensional perovskite. In the following description, "a quencher that quenches the excited triplet of an inorganic component" may be referred to as a "triplet quencher".
The laser device of the present invention includes a pseudo two-dimensional perovskite, and exhibits excellent laser oscillation characteristics by having a triplet quencher. This is presumed to be due to the following mechanism.
That is, when the present inventors investigated the emission lifetime characteristics of the pseudo-two-dimensional perovskite, long-lived light with a lifetime of nearly 1 microsecond was observed as the light derived from the excited triplet generated in the perovskite layer. From this, in the pseudo-two-dimensional perovskite, the excited triplet generated by the inorganic component of the perovskite layer and the excited triplet generated by receiving the excited triplet energy have a long lifetime, so that the excited triplet is dense. It is considered that the main cause of the laser death phenomenon is that the unilateral-triplet annihilation occurs and the inverted distribution of the excited singlet is eliminated. On the other hand, when the triplet quencher as described above is used, the accumulated excited triplet is reduced or eliminated, and the singlet-triplet annihilation is suppressed. As a result, it is presumed that the population inversion is maintained and excellent laser oscillation characteristics are obtained while the excitation energy is supplied.
Further, the laser element of the present invention can oscillate the laser for a long time at 20 ° C. or higher by effectively drawing out the above action. In addition, as other effects, the organic layer of the pseudo two-dimensional perovskite functions as a protective layer of the perovskite layer to stabilize the laser characteristics, and the pseudo two-dimensional perovskite is inexpensive, so that the manufacturing cost of the laser element is reduced. You can also get the effect of being done.
Hereinafter, each element constituting the laser element of the present invention will be described.
[クエンチャー(三重項クエンチャー)]
 上記のように、三重項クエンチャーは、擬2次元ペロブスカイトの一部を構成するものであってもよいし、擬2次元ペロブスカイトとは別の物質であってもよい。
 以下、それぞれのタイプの三重項クエンチャーについて具体的に説明する。
[Triplet Quencher]
As described above, the triplet quencher may form a part of the pseudo two-dimensional perovskite, or may be a substance different from the pseudo two-dimensional perovskite.
Hereinafter, each type of triplet quencher will be specifically described.
(擬2次元ペロブスカイトの一部を構成する三重項クエンチャー)
 擬2次元ペロブスカイトの一部を構成する三重項クエンチャーとして、例えば擬2次元ペロブスカイトを構成する有機成分であって、その励起三重項エネルギー準位が擬2次元ペロブスカイトを構成する無機成分の励起三重項エネルギー準位よりも低いもの、言い換えれば、擬2次元ペロブスカイトの有機成分としての機能と三重項クエンチャーの機能を兼ねる有機カチオンを用いることができる。有機成分を三重項クエンチャーとして用いることにより、別の物質を三重項クエンチャーとして接触させることが不要になるため、レーザー素子の設計が容易になり、また、別の物質によるレーザー特性への影響を回避できるという効果が得られる。
 有機成分を三重項クエンチャーとして用いるレーザー素子の発光メカニズムについて、NMAFAn-1PbBr3n+1(NMAは1-ナフチルメチルアンモニウム、FAはホルムアミジウムをそれぞれ表す)で表され、nが8である擬2次元ペロブスカイト(以下、「N2F8」という)を用いる場合を例にして図1および図2を参照しながら説明する。
 ここで、N2F8による擬2次元ペロブスカイトは、8層の無機層(PbBr -4の二次元配列構造)を含むペロブスカイト層と、その両側に配置する有機層NMAとを有する層状ペロブスカイトである。なお、本発明で用いることができる擬2次元ペロブスカイトは、この具体例によって限定的に解釈されるものではない。また、ここでは、PEAFAn-1PbBr3n+1(PEAはフェニルエチルアンモニウム、FAはホルムアミジウムをそれぞれ表す)で表され、nが8である擬2次元ペロブスカイト(以下、「P2F8」という)を参照例として有機成分のクエンチャー機能を説明するが、P2F8も別の物質としての三重項クエンチャーを接触させて用いることにより本発明のレーザー素子を構成しうるものであり、本発明で用いる擬2次元ペロブスカイトから排除されるものではない。
 図1には、N2F8およびP2F8の擬2次元ペロブスカイト構造の模式図と、各擬2次元ペロブスカイトの無機成分PbBr(PbBr -4の二次元配列構造)および各有機成分NMA、PEAのエネルギー準位図を示し、図2には、N2F8およびP2F8の擬2次元ペロブスカイト構造と、そのペロブスカイト層で生成する励起子を模式的に示す。図1のエネルギー準位図において、Eは無機成分の発光励起一重項エネルギー準位を表し、Eは無機成分の励起三重項エネルギー準位を表す。ES1は有機成分の発光励起一重項エネルギー準位を表し、ET1は有機成分の励起三重項エネルギー準位を表す。三重項クエンチャーである有機成分は、その励起三重項エネルギー準位ET1が無機成分の励起三重項エネルギー準位Eよりも低いもの、すなわちE> ET1の条件を満たすものである。図1に示した具体例では、無機成分のEが3.01eV、Eが2.99eVであり、NMAのES1が4.1eV、Eが2.6eV、PEAのES1が4.4eV、Eが3.3eVである。したがって、ここではNMAが三重項クエンチャーを構成し、PEAは三重項クエンチャーの機能を示さない有機成分である。
 まず、各擬2次元ペロブスカイトに閾値以上の励起光が照射されると、ペロブスカイト層を構成する無機成分で発光励起一重項と励起三重項が生じる。そのうち発光励起一重項のエネルギーは反転分布の形成に供されてレーザー発振に利用される。
 一方、無機成分で生成した励起三重項は、図1右側および図2(b)に示すように、三重項クエンチャーを含まない系、すなわちE≦ ET1である場合には、その励起三重項エネルギーが有機層の励起三重項エネルギー準位ET1へ移動することはなく、また、励起三重項から基底一重項への遷移はスピン禁制遷移であるために、そのまま蓄積されて励起三重項が高密度になる。その結果、高密度になった励起三重項と反転分布を形成している励起一重項とが一重項-三重項消滅を起こして励起一重項の反転分布が解消され、レーザー発振が停止してしまう。
 これに対して、図1左側および図2(a)に示すように、三重項クエンチャーとしての有機成分NMAを含む系、すなわちE> ET1である系では、各無機層で生じた励起三重項が有機層の励起三重項エネルギー準位ET1へと移動して無機層から失われることにより、上記のような一重項-三重項消滅が抑えられる。その結果、励起一重項の反転分布が維持されて優れたレーザー発振特性を示す。
(Triplet quencher that forms part of a pseudo-two-dimensional perovskite)
As a triplet quencher that constitutes a part of the pseudo-two-dimensional perovskite, for example, an excited triplet of an organic component that constitutes the pseudo-two-dimensional perovskite and whose excited triplet energy level constitutes an inorganic component that constitutes the pseudo-two-dimensional perovskite. An organic cation lower than the term energy level, in other words, an organic cation having both a function as an organic component of a pseudo two-dimensional perovskite and a function of a triplet quencher can be used. By using the organic component as a triplet quencher, it is not necessary to bring another substance into contact with the triplet quencher, which facilitates the design of the laser element and influences the laser characteristics of the other substance. The effect of avoiding is obtained.
The light emission mechanism of a laser device that uses an organic component as a triplet quencher is represented by NMA 2 FA n-1 Pb n Br 3n + 1 (NMA stands for 1-naphthylmethylammonium and FA stands for formamidium). A case where a pseudo two-dimensional perovskite (hereinafter referred to as “N2F8”) of No. 8 is used will be described as an example with reference to FIGS. 1 and 2.
Here, quasi-two-dimensional perovskite by N2F8 is a layered perovskite having a perovskite layer comprising an inorganic layer 8 layers (two-dimensional array structure of PbBr 6 -4), and an organic layer NMA placing on both sides. The pseudo two-dimensional perovskite that can be used in the present invention is not limitedly interpreted by this specific example. Further, here, it is represented by PEA 2 FA n-1 Pb n Br 3n + 1 (PEA represents phenylethylammonium and FA represents formamidium, respectively), and n is 8 in a pseudo-two-dimensional perovskite (hereinafter, “P2F8””. The quencher function of the organic component will be described with reference to (referred to as), but P2F8 can also constitute the laser element of the present invention by contacting and using a triplet quencher as another substance, and the present invention It is not excluded from the pseudo-two-dimensional perovskite used in.
FIG 1, N2F8 and a schematic diagram of a quasi-two-dimensional perovskite structure P2F8, (two-dimensional array structure of PbBr 6 -4) each pseudo 2D perovskite inorganic components PbBr 4 and the organic component NMA, the energy level of the PEA A position diagram is shown, and FIG. 2 schematically shows a pseudo two-dimensional perovskite structure of N2F8 and P2F8 and an exciter generated in the perovskite layer. In the energy level diagram of Fig. 1, E S represents the emission excitation singlet energy level of the inorganic component, E T represents the triplet energy level of the inorganic component. E S1 represents the emission excitation singlet energy level of the organic component, E T1 represents a triplet energy level of an organic component. The organic component is a triplet quencher, the excited triplet energy level E T1 is lower than the excited triplet energy level E T of the inorganic component, that is, satisfies the condition that the E T> E T1. In the specific example shown in FIG. 1, E S of the inorganic component is 3.01eV, E T is 2.99 eV, E S1 of NMA is 4.1 eV, E T is 2.6 eV, E S1 of PEA is 4 .4eV, the E T is 3.3eV. Therefore, here, NMA constitutes a triplet quencher, and PEA is an organic component that does not exhibit the function of the triplet quencher.
First, when each pseudo-two-dimensional perovskite is irradiated with excitation light equal to or higher than the threshold value, a luminescence-excited singlet and an excitation triplet are generated in the inorganic components constituting the perovskite layer. Among them, the energy of the emission-excited singlet is used for forming a population inversion and used for laser oscillation.
Meanwhile, excited triplet generated in the inorganic component, as shown in FIG. 1 the right side and 2 (b), system that does not include triplet quencher, that is, when it is E T ≦ E T1, the excited triplet never term energy is transferred to an excited triplet energy level E T1 of the organic layer, also, for the transition from an excited triplet to the ground singlet is spin forbidden transition, it is directly stored in triplet It becomes dense. As a result, the high-density excitation triplet and the excitation singlet forming the inversion distribution cause singlet-triplet annihilation, the inversion distribution of the excitation singlet is eliminated, and the laser oscillation stops. ..
In contrast, as shown in FIG. 1 the left side and FIG. 2 (a), the system comprising an organic component NMA as triplet quencher, i.e. in a system is E T> E T1, excitation generated in the inorganic layer by triplet is lost from the inorganic layer to move to the excited triplet energy level E T1 of the organic layer, singlet as described above - triplet annihilation can be suppressed. As a result, the population inversion of the excited singlet is maintained and excellent laser oscillation characteristics are exhibited.
 ここで、有機成分を三重項クエンチャーとして用いる場合、無機成分の励起三重項エネルギー準位Eと有機成分の励起三重項エネルギー準位ET1の差(E-ET1)は特に制限されないが、例えば0.05eV以上、0.10eV以上、0.20eV以上、0.30eV以上、0.35eV以上とすることができる。また、エネルギー差(E-ET1)の上限は、例えば1.00eV以下、0.75eV以下、0.50eV以下のいずれであってもよい。 Here, the case of using an organic component as a triplet quencher, the difference between the excited triplet energy level E T1 excited triplet energy level E T and organic component of the inorganic component (E T -E T1) is not particularly limited However, for example, it can be 0.05 eV or more, 0.10 eV or more, 0.20 eV or more, 0.30 eV or more, 0.35 eV or more. The upper limit of the energy difference (E T -E T1), for example 1.00eV or less, 0.75 eV or less, may be either the following 0.50EV.
 本発明における擬2次元ペロブスカイトを構成する無機成分の発光励起一重項エネルギー準位(E)および励起三重項エネルギー準位(E)、擬2次元ペロブスカイトを構成する有機成分の発光励起一重項エネルギー準位(ES1)および励起三重項エネルギー準位(ET1)、各励起三重項のエネルギー準位差(E-ET1)は以下のようにして測定される。ここで、E、Eを測定する場合の測定対象化合物は、擬2次元ペロブスカイトを構成する無機成分であり、ES1、ET1を測定する場合の測定対象化合物は、擬2次元ペロブスカイトを構成する有機カチオンである。
(1)無機成分の発光励起一重項エネルギー準位(E)および有機成分の発光励起一重項エネルギー準位(ES1
 測定対象化合物を含む溶液をSi基板上に塗布し、乾燥することで厚さ70~110nmの膜の試料を作製する。30Kでこの試料の337nm励起光による蛍光スペクトルを測定する。ここで、励起光入射直後から入射後1マイクロ秒までの発光を積算することで、縦軸を発光強度、横軸を波長とする蛍光スペクトルを得る。この蛍光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求める。この波長値を次に示す換算式でエネルギー値に換算した値を発光励起一重項エネルギー準位EまたはES1とする。
  換算式:発光励起一重項エネルギー準位[eV]=1239.85/λedge
 蛍光スペクトルの測定は、例えば励起光源に窒素レーザー(Lasertechnik Berlin社製、MNL200)を用い、検出器にストリークカメラ(浜松ホトニクス社製、C4334)を用いて行うことができる。
(2)無機成分の励起三重項エネルギー準位(E)および有機成分の励起三重項エネルギー準位(ET1
 発光励起一重項エネルギー準位の測定に用いたものと同様の試料を30Kに冷却し、この試料に337nm励起光を照射し、ストリークカメラを用いて燐光強度を測定する。励起光入射後1マイクロ秒から入射後数十マイクロ秒の発光を積算することで、縦軸を発光強度、横軸を波長とする燐光スペクトルを得る。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求める。この波長値を次に示す換算式でエネルギー値に換算した値を励起三重項エネルギー準位EまたはET1とする。
  換算式:励起三重項エネルギー準位[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
(3)無機成分の励起三重項エネルギー準位(E)と有機成分の励起三重項エネルギー準位(ET1)の差(E-ET1
 (E-ET1)は、(2)の方法による励起三重項エネルギー準位(E)の測定値から、(2)の方法による励起三重項エネルギー準位(ET1)の測定値を引くことで求める。
Emission excited singlet energy level of the inorganic component constituting the quasi-two-dimensional perovskites of the present invention (E S) and excited triplet energy level (E T), the light-emitting excited singlet of the organic components constituting the quasi-two-dimensional perovskite energy level (E S1) and excited triplet energy level (E T1), the energy level difference between the excited triplet (E T -E T1) is measured as follows. Here, the measurement target compound in the case of measuring E S, the E T is the inorganic component constituting the quasi-two-dimensional perovskite, measurement target compound in the case of measuring E S1, E T1 is a quasi-two-dimensional perovskite It is a constituent organic cation.
(1) emitting an excitation singlet energy level of the inorganic component (E S) and emission excited singlet energy level of the organic component (E S1)
A solution containing the compound to be measured is applied onto a Si substrate and dried to prepare a sample of a film having a thickness of 70 to 110 nm. The fluorescence spectrum of this sample with 337 nm excitation light is measured at 30 K. Here, by integrating the light emission from immediately after the excitation light is incident to 1 microsecond after the incident, a fluorescence spectrum having the vertical axis as the emission intensity and the horizontal axis as the wavelength is obtained. A tangent line is drawn with respect to the rising edge of the fluorescence spectrum on the short wavelength side, and the wavelength value λedge [nm] at the intersection of the tangent line and the horizontal axis is obtained. The value converted to the energy value conversion equation shown below the wavelength value and emitting excitation singlet energy level E S or E S1.
Conversion formula: Emission-excited singlet energy level [eV] = 1239.85 / λedge
The fluorescence spectrum can be measured, for example, by using a nitrogen laser (Lasertechnik Berlin, MNL200) as an excitation light source and a streak camera (Hamamatsu Photonics, C4334) as a detector.
(2) excited triplet energy level of the inorganic component (E T) and excited triplet energy level of the organic component (E T1)
A sample similar to that used for the measurement of the luminescence excitation singlet energy level is cooled to 30K, this sample is irradiated with 337 nm excitation light, and the phosphorescence intensity is measured using a streak camera. By integrating the emission from 1 microsecond after the excitation light is incident to several tens of microseconds after the incident, a phosphorescence spectrum having the emission intensity on the vertical axis and the wavelength on the horizontal axis can be obtained. A tangent line is drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side, and the wavelength value λedge [nm] at the intersection of the tangent line and the horizontal axis is obtained. The value converted to the energy value conversion equation shown below the wavelength value and excited triplet energy level E T or E T1.
Conversion formula: Excited triplet energy level [eV] = 1239.85 / λedge
The tangent to the rising edge of the phosphorescence spectrum on the short wavelength side is drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescent spectrum to the maximum value on the shortest wavelength side of the maximum values of the spectrum, consider the tangents at each point on the curve toward the long wavelength side. This tangent increases in slope as the curve rises (ie, as the vertical axis increases). The tangent line drawn at the point where the value of the slope reaches the maximum value is defined as the tangent line to the rising edge of the phosphorescence spectrum on the short wavelength side.
The maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and the slope value closest to the maximum value on the shortest wavelength side is the maximum. The tangent line drawn at the point where the value is taken is taken as the tangent line to the rising edge of the phosphorescent spectrum on the short wavelength side.
(3) the difference between the excited triplet energy level of the inorganic component excited triplet energy level of the (E T) and the organic component (E T1) (E T -E T1)
(E T -E T1) is the measured value from the measurement values of the excited triplet energy level according to the method of (2) (E T), excited triplet energy level according to the method of (2) (E T1) Obtain by pulling.
 三重項クエンチャーとして用いる有機成分は、特に制限されず、それと組み合わせる無機成分に応じて適宜選択することができるが、例えば、ナフタレン環を有する有機カチオンであることが好ましく、ナフタレン環を有するアンモニウムであることがより好ましく、置換もしくは無置換のナフチルアルキルアンモニウムであることがさらに好ましい。ここで、置換もしくは無置換のナフチルアルキルアンモニウムのアルキル部分の炭素数は、1~20であることが好ましく、1~10であることがより好ましく、1~6であることがさらに好ましく、1~3であることがさらにより好ましい。ナフタレン環におけるアルキル部分への結合位置は特に制限されないが、1位であることが好ましい。ナフタレン環に導入しうる置換基の説明と好ましい範囲については、下記の一般式(11)のArで表される芳香環の置換基の説明と好ましい範囲を参照することができる。
 以下において、三重項クエンチャーとして用いうる有機成分の具体例を例示する。ただし、本発明において用いることができる三重項クエンチャーはこの具体例によって限定的に解釈されるべきものではない。
The organic component used as the triplet quencher is not particularly limited and may be appropriately selected depending on the inorganic component to be combined with the organic component. For example, an organic cation having a naphthalene ring is preferable, and ammonium having a naphthalene ring is used. It is more preferably present, and even more preferably substituted or unsubstituted naphthylalkylammonium. Here, the number of carbon atoms in the alkyl moiety of the substituted or unsubstituted naphthylalkylammonium is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 6. It is even more preferably 3. The bond position to the alkyl moiety in the naphthalene ring is not particularly limited, but is preferably 1-position. For the description and preferable range of the substituent that can be introduced into the naphthalene ring, the description and the preferable range of the substituent of the aromatic ring represented by Ar in the following general formula (11) can be referred to.
In the following, specific examples of organic components that can be used as triplet quenchers will be illustrated. However, the triplet quencher that can be used in the present invention should not be construed as limiting by this embodiment.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 有機成分を三重項クエンチャーとして用いる場合、擬2次元ペロブスカイトが含む有機成分の全てを三重項クエンチャー(E> ET1を満たす有機成分)として構成してもよいし、有機成分の一部を三重項クエンチャーとして構成し、残りの有機成分には三重項クエンチャーとして機能しないものを用いてもよい。また、三重項クエンチャーを構成する有機機成分は、1種類であっても2種類以上であってもよい。 When using an organic component as a triplet quencher, may be composed of any organic components quasi-two-dimensional perovskite contains a triplet quencher (organic component satisfying E T> E T1), a portion of the organic components May be constructed as a triplet citrate, and the remaining organic components may be those that do not function as a triplet citrate. Further, the number of organic machine components constituting the triplet quencher may be one or more.
(擬2次元ペロブスカイトとは別の物質である三重項クエンチャー)
 別の物質であるクエンチャーは、室温で気相、液相、固相のいずれの相をなすものであってもよいが、擬2次元ペロブスカイトの無機成分と接触させうる物質であることが好ましい。別の物質である三重項クエンチャーには、例えば基底三重項状態をとる分子や、基底三重項状態をとる分子を含む組成物を用いることができ、具体例として、無機成分と接触する酸素や酸素を含む大気(空気)を挙げることができる。酸素は、基底三重項状態をとる分子であり、無機成分の励起三重項のエネルギーを受け取って自己が一重項酸素に遷移することにより、無機成分の励起三重項を減少または消失させる三重項クエンチャーとして機能する。酸素や大気を三重項クエンチャーとして用いる場合、その酸素濃度は0.1%~99.9%であることが好ましい。
 その他の三重項クエンチャーの例として、キセノン、ラドン、オガネソン等を挙げることができる。
 擬2次元ペロブスカイトとは別の物質である三重項クエンチャーは、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。また、酸素や空気等を三重項クエンチャーとして用いる場合、擬2次元ペロブスカイトを構成する有機成分の励起三重項エネルギー準位は、擬2次元ペロブスカイトを構成する無機成分の励起三重項エネルギー準位よりも高くても低くてもよい。すなわち、酸素や空気等の三重項クエンチャーを用いることにより、有機成分の選択の幅を広くすることができる。
(Triplet quencher, which is a substance different from pseudo-two-dimensional perovskite)
The quencher, which is another substance, may be in either a gas phase, a liquid phase, or a solid phase at room temperature, but is preferably a substance that can be brought into contact with the inorganic component of the pseudo-two-dimensional perovskite. .. For the triplet quencher, which is another substance, for example, a composition containing a molecule having a basal triplet state or a molecule having a basal triplet state can be used, and as a specific example, oxygen in contact with an inorganic component or The atmosphere (air) containing oxygen can be mentioned. Oxygen is a molecule that takes a basal triplet state, and is a triplet quencher that reduces or eliminates the excited triplet of the inorganic component by receiving the energy of the excited triplet of the inorganic component and transitioning itself to singlet oxygen. Functions as. When oxygen or the atmosphere is used as a triplet quencher, the oxygen concentration is preferably 0.1% to 99.9%.
Examples of other triplet quenchers include xenon, radon, oganeson and the like.
The triplet quencher, which is a substance different from the pseudo-two-dimensional perovskite, may be used alone or in combination of two or more. When oxygen, air, etc. are used as the triplet quencher, the excited triplet energy level of the organic component constituting the pseudo two-dimensional perovskite is higher than the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite. May be high or low. That is, by using a triplet quencher such as oxygen or air, the range of selection of organic components can be widened.
[擬2次元ペロブスカイト]
 本発明のレーザー素子が含む擬2次元ペロブスカイトは、下記一般式(10)で表される化合物からなることが好ましい。
   Rn-13n+1    (10)
 一般式(10)において、Rは1価の有機カチオンを表し、Aは1価のカチオンを表し、Bは2価の金属イオンを表し、Xはハロゲンイオンを表す。nは2以上の整数である。2つのR同士、複数のB同士、複数のX同士は、それぞれ互いに同じであっても異なっていてもよい。Aが複数存在するとき、A同士は互いに同じであっても異なっていてもよい。
 一般式(10)で表される化合物では、An-13n+1で表される組成の成分がペロブスカイト層を構成し、単位格子BXが頂点共有して二次元配列してなる構造BXが無機成分(無機層)を構成し、Rで表される1価の有機カチオンが有機成分を構成する。nはペロブスカイト層における2次元配列構造の積層数に対応し、2~100の整数であることが好ましい。
[Pseudo 2D perovskite]
The pseudo two-dimensional perovskite contained in the laser device of the present invention preferably comprises a compound represented by the following general formula (10).
R 2 A n-1 B n X 3n + 1 (10)
In the general formula (10), R represents a monovalent organic cation, A represents a monovalent cation, B represents a divalent metal ion, and X represents a halogen ion. n is an integer of 2 or more. The two Rs, the plurality of Bs, and the plurality of Xs may be the same or different from each other. When there are a plurality of A's, the A's may be the same or different from each other.
In the compound represented by the general formula (10), components having a composition represented by An-1 B n X 3n + 1 constitute a perovskite layer, and the unit cell BX 6 shares a vertex and is arranged two-dimensionally. BX 4 constitutes an inorganic component (inorganic layer), and a monovalent organic cation represented by R constitutes an organic component. n corresponds to the number of layers of the two-dimensional array structure in the perovskite layer, and is preferably an integer of 2 to 100.
 Rで表される1価の有機カチオンは、芳香環を有することが好ましく、アルキレン基と芳香環を有することがより好ましく、アルキレン基と芳香環が連結した構造を有することがさらに好ましく、アルキレン基と芳香環が連結した構造を有するアンモニウムであることがさらにより好ましく、下記一般式(11)で表されるアンモニウムであることが特に好ましい。
   Ar(CHn1NH     (11)
 一般式(11)において、Arは芳香環を表す。n1は1~20の整数である。
 有機カチオンが有する芳香環は、芳香族炭化水素であってもよいし、芳香族ヘテロ環であってもよいが、芳香族炭化水素であることが好ましい。芳香族ヘテロ環のヘテロ原子としては、窒素原子、酸素原子、硫黄原子等を挙げることができる。芳香族炭化水素としては、ベンゼン環および複数のベンゼン環が縮合した構造を有する縮合多環系炭化水素であることが好ましく、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環、クリセン環、テトラセン環、ペリレン環であることが好ましく、ベンゼン環、ナフタレン環であることがより好ましく、ナフタレン環であることがさらに好ましい。Arがナフタレン環であることにより、有機カチオンの励起三重項エネルギー準位を無機成分のそれに比べて低くし易くなり、有機カチオンを三重項クエンチャーとして構成し易くなる。また、Arがナフタレン環であるとき、ナフタレン環におけるアルキレン基(CHn1への結合位置は特に制限されないが、1位でアルキレン基に結合することが好ましい。芳香族ヘテロ環としては、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、ピロール環、チオフェン環、フラン環、カルバゾール環、トリアジン環であることが好ましく、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環であることがより好ましく、ピリジン環であることがさらに好ましい。有機カチオンが有する芳香環は、例えばアルキル基、アリール基、ハロゲン原子(好ましくはフッ素原子)等の置換基を有していてもよく、また、芳香環または芳香環に結合する置換基に存在する水素原子は重水素原子であってもよい。
 n1は、1~10であることがより好ましく、1~6であることがさらに好ましく、1~3であることがさらにより好ましい。
The monovalent organic cation represented by R preferably has an aromatic ring, more preferably has an alkylene group and an aromatic ring, and further preferably has a structure in which an alkylene group and an aromatic ring are linked, and an alkylene group. It is even more preferable that the ammonium has a structure in which the aromatic ring and the aromatic ring are linked, and it is particularly preferable that the ammonium is represented by the following general formula (11).
Ar (CH 2 ) n1 NH 3 + (11)
In the general formula (11), Ar represents an aromatic ring. n1 is an integer from 1 to 20.
The aromatic ring contained in the organic cation may be an aromatic hydrocarbon or an aromatic heterocycle, but is preferably an aromatic hydrocarbon. Examples of the hetero atom of the aromatic hetero ring include a nitrogen atom, an oxygen atom, a sulfur atom and the like. The aromatic hydrocarbon is preferably a condensed polycyclic hydrocarbon having a structure in which a benzene ring and a plurality of benzene rings are condensed, and is preferably a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring, a chrysen ring, a tetracene ring, and the like. It is preferably a perylene ring, more preferably a benzene ring or a naphthalene ring, and even more preferably a naphthalene ring. Since Ar is a naphthalene ring, the excited triplet energy level of the organic cation can be easily lowered as compared with that of the inorganic component, and the organic cation can be easily formed as a triplet quencher. When Ar is a naphthalene ring, the bonding position to the alkylene group (CH 2 ) n1 in the naphthalene ring is not particularly limited, but it is preferable to bond to the alkylene group at the 1-position. The aromatic heterocycle is preferably a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a pyrrol ring, a thiophene ring, a furan ring, a carbazole ring, or a triazine ring, preferably a pyridine ring, a pyrazine ring, a pyrimidine ring, or a pyridazine ring. Is more preferable, and a pyridine ring is further preferable. The aromatic ring of the organic cation may have a substituent such as an alkyl group, an aryl group, or a halogen atom (preferably a fluorine atom), and is present in the aromatic ring or the substituent bonded to the aromatic ring. The hydrogen atom may be a heavy hydrogen atom.
n1 is more preferably 1 to 10, further preferably 1 to 6, and even more preferably 1 to 3.
 Aで表される1価のカチオンは、有機カチオンであっても無機カチオンであってもよい。1価のカチオンとして、ホルムアミジウム、アンモニウム、セシウム等を挙げることができ、ホルムアミジウムであること好ましい。 The monovalent cation represented by A may be an organic cation or an inorganic cation. Examples of the monovalent cation include formamidium, ammonium, cesium and the like, and formamidium is preferable.
 Bで表される2価の金属イオンとしては、Cu2+,Ni2+,Mn2+,Fe2+、Co2+、Pd2+、Ge2+、Sn2+、Pb2+、Eu2+等を挙げることができ、Sn2+、Pb2+であることが好ましく、Pb2+であることがより好ましい。
 Xで表されるハロゲンイオンとしては、フッ素、塩素、臭素、ヨウ素の各イオンを挙げることができる。複数のXが表すハロゲンイオンは、全て同じであってもよいし、2または3種類のハロゲンイオンの組み合わせであってもよい。好ましいのは、複数のXが全て同じハロゲンイオンの場合であり、複数のXが全て臭素イオンであることがより好ましい。
Examples of the divalent metal ion represented by B include Cu 2+ , Ni 2+ , Mn 2+ , Fe 2+ , Co 2+ , Pd 2+ , Ge 2+ , Sn 2+ , Pb 2+ , Eu 2+ , and Sn. It is preferably 2+ and Pb 2+ , and more preferably Pb 2+.
Examples of the halogen ion represented by X include fluorine, chlorine, bromine, and iodine ions. The halogen ions represented by the plurality of Xs may all be the same, or may be a combination of two or three types of halogen ions. It is preferable that the plurality of Xs are all the same halogen ion, and it is more preferable that the plurality of Xs are all bromine ions.
 一般式(10)で表される化合物の好ましい具体例として、下記式(A)~下記式(D)のいずれかで表される化合物を挙げることができる。ただし、本発明において用いることができる擬2次元ペロブスカイトは、この具体例によって限定的に解釈されることはない。
    PEAFAn-1PbBr3n+1            式(A)
    PEAMAn-1PbBr3n+1            式(B)
    NMAFAn-1PbBr3n+1            式(C)
    NMAMAn-1PbBr3n+1            式(D)
 式(A)および式(B)において、PEAはフェニルエチルアンモニウムを表す。式(C)および式(D)において、NMAは1-ナフチルメチルアンモニウムを表す。式(A)~(D)において、FAはホルムアミジウムを表し、MAはメチルアンモニウムを表す。nは2以上の整数である。
 式(A)~式(D)のいずれかで表される化合物では、単位格子PbXが頂点共有して二次元配列してなる構造PbXが無機成分(無機層)を構成し、PEAまたはNMAで表される1価の有機カチオンが有機成分を構成する。これらの中では、NMAが三重項クエンチャーとして機能しうることから、式(C)または式(D)で表される化合物が好ましく、式(C)で表される化合物がより好ましい。
As a preferable specific example of the compound represented by the general formula (10), a compound represented by any of the following formulas (A) to (D) can be mentioned. However, the pseudo-two-dimensional perovskite that can be used in the present invention is not limitedly interpreted by this specific example.
PEA 2 FA n-1 Pb n Br 3n + 1 equation (A)
PEA 2 MA n-1 Pb n Br 3n + 1 equation (B)
NMA 2 FA n-1 Pb n Br 3n + 1 equation (C)
NMA 2 MA n-1 Pb n Br 3n + 1 equation (D)
In formulas (A) and (B), PEA represents phenylethylammonium. In formulas (C) and (D), NMA represents 1-naphthylmethylammonium. In formulas (A) to (D), FA represents formamidium and MA represents methylammonium. n is an integer of 2 or more.
In the compound represented by any of the formulas (A) to (D), the structure PbX 4 in which the unit cell PbX 6 shares a vertex and is arranged two-dimensionally constitutes an inorganic component (inorganic layer), and is PEA or A monovalent organic cation represented by NMA constitutes an organic component. Among these, the compound represented by the formula (C) or the formula (D) is preferable, and the compound represented by the formula (C) is more preferable because the NMA can function as a triplet quencher.
[擬2次元ペロブスカイトの成膜方法]
 本発明のレーザー素子が含む擬2次元ペロブスカイトは、例えば膜状に形成されてレーザー素子の活性層を構成することができる。
 膜の形成方法は特に限定されず、真空蒸着法等のドライプロセスであっても、溶液塗布法等のウェットプロセスであってもよい。ここで、溶液塗布法を用いれば、簡単な装置で短時間に成膜が行えることから、コストを抑えて大量生産しやすいという利点がある。また、真空蒸着法を用いれば、表面状態がより良好な膜を形成できるという利点がある。
[Pseudo-two-dimensional perovskite film formation method]
The pseudo two-dimensional perovskite included in the laser element of the present invention can be formed, for example, in the form of a film to form an active layer of the laser element.
The method for forming the film is not particularly limited, and may be a dry process such as a vacuum vapor deposition method or a wet process such as a solution coating method. Here, if the solution coating method is used, the film can be formed in a short time with a simple device, so that there is an advantage that the cost can be suppressed and mass production is easy. Further, the vacuum vapor deposition method has an advantage that a film having a better surface condition can be formed.
 例えば、真空蒸着法を用いて、NMAFAn-1PbBr3n+1で表される擬2次元ペロブスカイトを含む膜を形成するには、臭化鉛(PbBr2)と、1-ナフチルメチルアンモニウムブロマイド(NMABr)と、ホルムアミジウムブロマイド(FABr)を異なる蒸着源から共蒸着する共蒸着法を用いることができる。また、この他の擬2次元ペロブスカイトを含む膜も、この方法を応用して、金属ハロゲン化物と、1価の有機カチオンとハロゲンイオンからなる化合物と、他の1価のカチオンとハロゲンイオンからなる化合物を共蒸着することにより形成することができる。 For example, lead bromide (PbBr 2 ) and 1-naphthylmethylammonium are used to form a film containing pseudo-two-dimensional perovskite represented by NMA 2 FA n-1 Pb n Br 3n + 1 using the vacuum deposition method. A co-deposited method of co-depositing bromide (NMABr) and formamidium bromide (FABr) from different deposition sources can be used. In addition, other films containing pseudo-two-dimensional perovskite also apply this method to a metal halide, a compound composed of a monovalent organic cation and a halogen ion, and another monovalent cation and a halogen ion. It can be formed by co-depositing a compound.
 また、溶液塗布法を用いて、NMAFAn-1PbBr3n+1で表される擬2次元ペロブスカイトを含む膜を形成するには、臭化鉛(PbBr2)と、1-ナフチルメチルアンモニウムブロマイド(NMABr)と、ホルムアミジウムブロマイド(FABr)を溶媒中で反応させて擬2次元ペロブスカイトまたは前駆体を調製し、この擬2次元ペロブスカイトを含有する塗工液を支持体表面に塗布、乾燥することで膜を形成する。この他の擬2次元ペロブスカイトを含む膜も、この方法を応用して、溶媒中で擬2次元ペロブスカイトを合成し、この擬2次元ペロブスカイトを含有する塗工液を支持体表面に塗布、乾燥して形成することができる。また、必要に応じて、塗工液を塗布した後に、ベーキング処理を行ってもよい。 In addition, lead bromide (PbBr 2 ) and 1-naphthylmethylammonium are used to form a film containing a pseudo-two-dimensional perovskite represented by NMA 2 FA n-1 Pb n Br 3n + 1 by using a solution coating method. Bromide (NMABr) and formamidium bromide (FABr) are reacted in a solvent to prepare a pseudo two-dimensional perovskite or precursor, and a coating solution containing this pseudo two-dimensional perovskite is applied to the surface of the support and dried. A film is formed by doing so. For other films containing pseudo-two-dimensional perovskite, this method is applied to synthesize pseudo-two-dimensional perovskite in a solvent, and a coating liquid containing this pseudo-two-dimensional perovskite is applied to the surface of the support and dried. Can be formed. Further, if necessary, a baking treatment may be performed after applying the coating liquid.
 塗工液の塗布方法としては、特に制限されず、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコート法、ディップ法、ダイコート法等の従来公知の塗布方法を用いることができ、比較的薄い厚さの塗膜を均一に形成できることがらスピンコート法を用いることが好ましい。 The coating method of the coating liquid is not particularly limited, and conventionally known coating methods such as a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method can be used. It is preferable to use the spin coating method because a coating film having a relatively thin thickness can be uniformly formed.
 塗工液の溶剤は、ペロブスカイト型化合物を溶解できるものであればよく、特に限定されない。具体的には、エステル類(メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等)、ケトン類(γ-ブチロラクトン、Nメチル-2-ピロリドン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等)、エーテル類(ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等)、アルコール類(メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等)、グリコールエーテル(セロソルブ)類(エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等)、アミド系溶剤(N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等)、ニトリル系溶剤(アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等)、カーボート系剤(エチレンカーボネート、プロピレンカーボネート等)、ハロゲン化炭化水素(塩化メチレン、ジクロロメタン、クロロホルム等)、炭化水素(n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等)、ジメチルスルホキシド等を挙げることができる。この他、エステル類、ケトン類、エーテル類およびアルコール類の官能基(即ち、-O-、-CO-、-COO-、-OH)のいずれかを二つ以上有するものであってもよいし、エステル類、ケトン類、エーテル類およびアルコール類の炭化水素部分における水素原子がハロゲン原子(特に、フッ素原子)で置換されたものであってもよい。
 塗工液におけるペロブスカイト型化合物の含有量は、塗工液全量に対して1~50質量%であることが好ましく、2~30質量%であることがより好ましく、5~20質量%であることがさらに好ましい。塗工液における有機材料の含有量は、ペロブスカイト化合物と有機材料の合計量に対して、0.001質量%以上、50質量%未満であることが好ましい。
 また、支持体表面に塗布された塗工液の乾燥は、窒素等の不活性ガスで置換された雰囲気中で、自然乾燥または加熱乾燥により行うことが好ましい。
The solvent of the coating liquid is not particularly limited as long as it can dissolve the perovskite type compound. Specifically, ethers (methylformate, ethylformate, propylformate, pentalformate, methylacetate, ethylacetate, pentylacetate, etc.), ketones (γ-butyrolactone, N-methyl-2-pyrrolidone, acetone) , Dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, etc.), ethers (diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane) , 4-Methyldioxolane, tetrahydrofuran, methyl tetrahydrofuran, anisole, phenetol, etc.), alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2 -Methyl-2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, etc.), glycol Ethers (cellosolves) (ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, triethylene glycol dimethyl ether, etc.), amide-based solvents (N, N-dimethylformamide, acetamide, N , N-Dimethylacetamide, etc.), nitrile-based solvents (acetoyl, isobutyronitrile, propionitrile, methoxynitrile, etc.), carboat-based agents (ethylene carbonate, propylene carbonate, etc.), halogenated hydrocarbons (methylene chloride, dichloromethane, etc.) (Hyrochloroene, etc.), hydrocarbons (n-pentane, cyclohexane, n-hexane, benzene, toluene, xylene, etc.), dimethylsulfoxide, etc. can be mentioned. In addition, it may have two or more functional groups of esters, ketones, ethers and alcohols (that is, -O-, -CO-, -COO-, -OH). , The hydrogen atom in the hydrocarbon moiety of esters, ketones, ethers and alcohols may be substituted with a halogen atom (particularly, a fluorine atom).
The content of the perovskite-type compound in the coating liquid is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, and 5 to 20% by mass with respect to the total amount of the coating liquid. Is even more preferable. The content of the organic material in the coating liquid is preferably 0.001% by mass or more and less than 50% by mass with respect to the total amount of the perovskite compound and the organic material.
Further, the coating liquid applied to the surface of the support is preferably dried by natural drying or heat drying in an atmosphere substituted with an inert gas such as nitrogen.
[レーザー素子の実施形態]
 本発明のレーザー素子は、擬2次元ペロブスカイトを含み、その擬2次元ペロブスカイトを構成する無機成分の励起三重項をクエンチするクエンチャー(三重項クエンチャー)を有するものであり、その実施形態として、擬2次元ペロブスカイトを含む膜を活性層に用いる構成が挙げられる。ここで、活性層を構成する擬2次元ペロブスカイトは、三重項クエンチャーである有機成分(E > ET1を満たす有機成分)を含んでいてもよいし、含まなくてもよい。擬2次元ペロブスカイトが三重項クエンチャーである有機成分を含まない場合、擬2次元ペロブスカイトの無機層に、三重項クエンチャーである酸素や大気が接触するようにレーザー素子を構成する。具体的な構成として、活性層を保護カバーで覆い、その保護カバー内に酸素や空気を充填する構成や、保護カバーに開口を設け、該開口を通じて大気をカバー内に侵入させる構成や、活性層を保護カバーで覆わず外気に露出させる構成等が挙げられる。なお、これらの酸素等を活性層に接触させる構成は、擬2次元ペロブスカイトが三重項クエンチャーである有機成分を含む場合にも採用することができる。レーザー素子は、上記のような擬2次元ペロブスカイトを含む膜を1層のみ有していてもよいし、2層以上有していてもよい。レーザー素子が、擬2次元ペロブスカイトを含む膜を2層以上有する場合、それらの膜が含む有機無機ペロブスカイトは、同一であっても異なっていてもよい。
[Implementation of Laser Element]
The laser element of the present invention includes a pseudo two-dimensional perovskite and has a quencher (triplet quencher) for quenching the excited triplet of the inorganic component constituting the pseudo two-dimensional perovskite, and as an embodiment thereof, Examples thereof include a configuration in which a membrane containing a pseudo-two-dimensional perovskite is used as the active layer. Here, quasi-two-dimensional perovskite that constitutes the active layer may comprise an organic component is a triplet quencher (organic component satisfying E T> E T1), may be free. When the pseudo-two-dimensional perovskite does not contain an organic component which is a triplet quencher, the laser element is configured so that oxygen or the atmosphere, which is a triplet quencher, comes into contact with the inorganic layer of the pseudo-two-dimensional perovskite. Specific configurations include a configuration in which the active layer is covered with a protective cover and the protective cover is filled with oxygen and air, a configuration in which an opening is provided in the protective cover and air is allowed to enter the cover through the opening, and an active layer. There is a configuration in which the air is exposed to the outside air without being covered with a protective cover. The configuration in which oxygen or the like is brought into contact with the active layer can also be adopted when the pseudo-two-dimensional perovskite contains an organic component which is a triplet quencher. The laser element may have only one layer of the film containing the pseudo two-dimensional perovskite as described above, or may have two or more layers. When the laser element has two or more layers of films containing pseudo-two-dimensional perovskite, the organic-inorganic perovskite contained in those films may be the same or different.
 本発明のレーザー素子は、活性層に励起光が照射されることでレーザー光を放射する光励起型レーザー素子であってもよいし、活性層に正孔と電子が注入され、それらが再結合して生じたエネルギーによりレーザー光を放射する電流励起型レーザー素子(半導体レーザー素子)であってもよい。光励起型レーザー素子は、基板上に少なくとも活性層を形成した構造を有する。また、電流励起型レーザー素子は、少なくとも陽極、陰極、および陽極と陰極の間にペロブスカイト層を形成した構造を有する。ペロブスカイト層は、少なくとも活性層を有するものであり、活性層のみからなるものであってもよいし、活性層の他に1層以上の他の有機層もしくはペロブスカイト層を有するものであってもよい。そのような他の有機層もしくはペロブスカイト層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な電流励起型レーザー素子の構造例を図3に示す。図3において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は活性層、6は電子輸送層、7は陰極を表わす。電流励起型の電流励起型レーザー素子において、活性層で生じたレーザー光は、陽極を透過して外部に取り出されても、陰極を透過して外部に取り出されてもよく、陽極および陰極を透過して外部に取り出されてもよい。また、活性層で生じたレーザー光は、ペロブスカイト層の端面から外部に取り出されてもよい。
 以下において、電流励起型レーザー素子の各部材および各層について説明する。なお、基板と活性層の説明は光励起型レーザー素子と活性層にも該当する。
The laser device of the present invention may be a photoexcited laser device that emits laser light by irradiating the active layer with excitation light, or holes and electrons are injected into the active layer and they are recombined. It may be a current excitation type laser element (semiconductor laser element) that emits a laser beam by the energy generated by the above. The photoexcited laser device has a structure in which at least an active layer is formed on a substrate. Further, the current-excited laser device has a structure in which at least an anode, a cathode, and a perovskite layer are formed between the anode and the cathode. The perovskite layer has at least an active layer and may be composed of only an active layer, or may have one or more other organic layers or a perovskite layer in addition to the active layer. .. Examples of such other organic layers or perovskite layers include hole transport layers, hole injection layers, electron blocking layers, hole blocking layers, electron injection layers, electron transport layers, exciton blocking layers and the like. The hole transport layer may be a hole injection transport layer having a hole injection function, and the electron transport layer may be an electron injection transport layer having an electron injection function. A specific structural example of the current excitation type laser element is shown in FIG. In FIG. 3, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is an active layer, 6 is an electron transport layer, and 7 is a cathode. In the current-excited current-excited laser element, the laser light generated in the active layer may pass through the anode and be taken out to the outside, or may pass through the cathode and be taken out to the outside, and pass through the anode and the cathode. And may be taken out to the outside. Further, the laser light generated in the active layer may be taken out from the end face of the perovskite layer.
Hereinafter, each member and each layer of the current excitation type laser element will be described. The description of the substrate and the active layer also applies to the photoexcited laser device and the active layer.
(基板)
 本発明の電流励起型レーザー素子は、基板に支持されていることが好ましい。基板としては、電流励起型レーザー素子が基板側からレーザー光を取り出す構成である場合には、レーザー光に対して透光性を有する基板が用いられ、ガラス、透明プラスチック、石英などからなる透明基板を用いることが好ましい。一方、電流励起型レーザー素子が基板と反対側からレーザー光を取り出す構成である場合には、基板は特に制限されず、上記の透明基板の他、シリコン、紙、布からなる基板も用いることができる。
(substrate)
The current-excited laser device of the present invention is preferably supported by a substrate. When the current-excited laser element has a configuration in which laser light is extracted from the substrate side, a substrate having translucency to the laser light is used as the substrate, and a transparent substrate made of glass, transparent plastic, quartz, or the like is used. Is preferably used. On the other hand, when the current excitation type laser element has a configuration in which laser light is extracted from the side opposite to the substrate, the substrate is not particularly limited, and a substrate made of silicon, paper, or cloth may be used in addition to the above transparent substrate. it can.
(陽極)
 電流励起型レーザー素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO、TiN等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等の非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの電極材料を蒸着やスパッタリング等の方法により成膜して形成することができる。また、形成した薄膜に、フォトリソグラフィー法で所望の形状のパターンを形成して陽極としてもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。
 ただし、電流励起型レーザー素子が、陽極を透過させてレーザー光を取り出す構成である場合には、陽極はレーザー光に対して透光性を有することを要し、そのレーザー光の透過率が1%より大きくなるように構成することが好ましく、10%より大きくなるように構成することがより好ましい。具体的には、上記の導電性透明材料を陽極に用いるか、金属または合金を10~100nmの厚さで形成した薄膜を陽極に用いることが好ましい。
 陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(anode)
As the anode in the current excitation type laser element, a metal having a large work function (4 eV or more), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium zinc oxide (ITO), SnO 2, ZnO, and TiN. Further, a material capable of producing an amorphous and transparent conductive film such as IDIXO (In 2 O 3-ZnO) may be used. The anode can be formed by forming a film of these electrode materials by a method such as vapor deposition or sputtering. Further, a pattern having a desired shape may be formed on the formed thin film by a photolithography method to serve as an anode, or when pattern accuracy is not required so much (about 100 μm or more), it is desired at the time of vapor deposition or sputtering of the electrode material. The pattern may be formed through a mask having the shape of. Alternatively, when a coatable material such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can also be used.
However, when the current excitation type laser element is configured to transmit the laser light through the anode, the anode needs to have translucency with respect to the laser light, and the transmittance of the laser light is 1. It is preferably configured to be greater than%, and more preferably configured to be greater than 10%. Specifically, it is preferable to use the above-mentioned conductive transparent material for the anode, or to use a thin film formed of a metal or alloy having a thickness of 10 to 100 nm for the anode.
The sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
(陰極)
 一方、陰極としては、陽極に用いる材料よりも仕事関数が小さい金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極は、これらの電極材料を蒸着やスパッタリング等の方法により成膜して形成することができる。
 ただし、電流励起型レーザー素子が、陰極を透過させてレーザー光を取り出す構成である場合には、陰極はレーザー光に対して透光性を有することを要し、そのレーザー光の透過率が1%より大きくなるように構成することが好ましく、10%より大きくなるように構成することがより好ましい。具体的には、上記の電極材料を10~100nmの厚さで形成した薄膜を陰極に用いることが好ましい。
 陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
(cathode)
On the other hand, as the cathode, a metal having a smaller work function than the material used for the anode (referred to as an electron-injectable metal), an alloy, an electrically conductive compound, or a mixture thereof is used as an electrode material. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O). 3 ) Examples thereof include a mixture, an indium, a lithium / aluminum mixture, and a rare earth metal. Among these, from the viewpoint of electron injectability and durability against oxidation and the like, a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture. Magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, aluminum and the like are suitable. The cathode can be formed by forming a film of these electrode materials by a method such as vapor deposition or sputtering.
However, when the current excitation type laser element is configured to transmit the laser light through the cathode, the cathode needs to have translucency with respect to the laser light, and the transmittance of the laser light is 1. It is preferably configured to be greater than%, and more preferably configured to be greater than 10%. Specifically, it is preferable to use a thin film formed by forming the above electrode material with a thickness of 10 to 100 nm as the cathode.
The sheet resistance as a cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
(活性層)
 活性層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成し、反転分布が形成された後、レーザー光を放射する層である。本発明のレーザー素子では、活性層は、擬2次元ペロブスカイトを含む膜により構成されている。
 活性層は、厚さが0~500nmであることが好ましく、50~300nmであることがより好ましい。
(Active layer)
The active layer is a layer that emits laser light after holes and electrons injected from the anode and the cathode are recombined to generate excitons and a population inversion is formed. In the laser device of the present invention, the active layer is composed of a film containing a pseudo-two-dimensional perovskite.
The thickness of the active layer is preferably 0 to 500 nm, more preferably 50 to 300 nm.
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極とペロブスカイト層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と活性層または正孔輸送層の間、および陰極と活性層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(Injection layer)
The injection layer is a layer provided between the electrode and the perovskite layer in order to reduce the driving voltage and improve the emission brightness. There are a hole injection layer and an electron injection layer, and between the anode and the active layer or the hole transport layer, And may be present between the cathode and the active layer or electron transport layer. The injection layer can be provided as needed.
(阻止層)
 阻止層は、活性層中に存在する電荷(電子もしくは正孔)および/または励起子の活性層外への拡散を阻止することができる層である。電子阻止層は、活性層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって活性層を通過することを阻止する。同様に、正孔阻止層は活性層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって活性層を通過することを阻止する。阻止層はまた、励起子が活性層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(Blocking layer)
The blocking layer is a layer capable of blocking the diffusion of charges (electrons or holes) and / or excitons existing in the active layer to the outside of the active layer. The electron blocking layer can be placed between the active layer and the hole transporting layer to prevent electrons from passing through the active layer towards the hole transporting layer. Similarly, the hole blocking layer can be placed between the active layer and the electron transporting layer, blocking holes from passing through the active layer towards the electron transporting layer. The blocking layer can also be used to prevent excitons from diffusing outside the active layer. That is, the electron blocking layer and the hole blocking layer can also function as exciton blocking layers, respectively. The electron blocking layer or exciton blocking layer referred to in the present specification is used in the sense that one layer includes a layer having the functions of an electron blocking layer and an exciton blocking layer.
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより活性層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(Hole blocking layer)
The hole blocking layer has a function of an electron transporting layer in a broad sense. The hole blocking layer has a role of blocking the holes from reaching the electron transporting layer while transporting electrons, which can improve the recombination probability of electrons and holes in the active layer. As the material of the hole blocking layer, a material of the electron transport layer described later can be used as needed.
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより活性層中での電子と正孔が再結合する確率を向上させることができる。
(Electronic blocking layer)
The electron blocking layer has a function of transporting holes in a broad sense. The electron blocking layer has a role of blocking electrons from reaching the hole transporting layer while transporting holes, which can improve the probability that electrons and holes are recombined in the active layer. ..
(励起子阻止層)
 励起子阻止層とは、活性層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に活性層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は活性層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と活性層の間に、活性層に隣接して該層を挿入することができ、陰極側に挿入する場合、活性層と陰極との間に、活性層に隣接して該層を挿入することができる。また、陽極と、活性層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、活性層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(Exciton blocking layer)
The exciton blocking layer is a layer for blocking excitons generated by the recombination of holes and electrons in the active layer from diffusing into the charge transport layer, and the excitons are inserted by inserting this layer. It is possible to efficiently confine it in the active layer, and it is possible to improve the light emission efficiency of the element. The exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the active layer, and both can be inserted at the same time. That is, when the exciton blocking layer is provided on the anode side, the layer can be inserted between the hole transport layer and the active layer adjacent to the active layer, and when inserted on the cathode side, the active layer and the cathode can be inserted. The layer can be inserted adjacent to the active layer between and. Further, a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the active layer, and the cathode and the excitation adjacent to the cathode side of the active layer can be provided. An electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided between the child blocking layer and the electron blocking layer. When the blocking layer is arranged, it is preferable that at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is higher than the excited singlet energy and the excited triplet energy of the light emitting material.
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer may be provided with a single layer or a plurality of layers.
The hole transporting material has either injection or transport of holes or an electron barrier property, and may be either an organic substance or an inorganic substance. Known hole transporting materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, etc. Amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilben derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, especially thiophene oligomers, etc. It is preferable to use a group tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を活性層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
(Electronic transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer may be provided with a single layer or a plurality of layers.
The electron transporting material (which may also serve as a hole blocking material) may have a function of transferring electrons injected from the cathode to the active layer. Examples of the electron transporting layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, freolenidenemethane derivatives, anthracinodimethane and anthrone derivatives, and oxadiazole derivatives. Further, among the above-mentioned oxadiazole derivatives, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is replaced with a sulfur atom, and a quinoxalin derivative having a quinoxalin ring known as an electron-withdrawing group can also be used as an electron transport material. Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 これらのレーザー素子を構成する各層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。 The film forming method of each layer constituting these laser elements is not particularly limited, and may be produced by either a dry process or a wet process.
(共振器構造)
 本発明のレーザー素子は、さらに、共振器構造を有していてもよい。「共振器構造」とは、発光材料が放出した光を活性層中で往復させるための構造である。これにより、光が繰り返し活性層中を走行して誘導放出を引き起こすため、より高い強度のレーザー光を得ることができる。共振器構造は、具体的には一対の反射鏡により構成され、一方の反射鏡は100%の反射率を有することが好ましく、他方の反射鏡は、反射率が50~95%であることが好ましい。他方の反射鏡の反射率を比較的低く設定することにより、この反射鏡を透過させてレーザー光を外部に取り出すことが可能になる。以下では、レーザー光を取り出す側の反射鏡を「出力鏡」という。反射鏡および出力鏡は、上記の電流励起型レーザー素子を構成する各層および各部とは別に設けてもよいし、陽極や陰極に反射鏡または出力鏡の機能を兼ねさせてもよい。
(Resonator structure)
The laser device of the present invention may further have a resonator structure. The "resonator structure" is a structure for reciprocating the light emitted by the light emitting material in the active layer. As a result, the light repeatedly travels in the active layer to cause stimulated emission, so that a higher intensity laser beam can be obtained. The resonator structure is specifically composed of a pair of reflectors, one of which preferably has a reflectance of 100% and the other of which has a reflectance of 50-95%. preferable. By setting the reflectance of the other reflector to be relatively low, it is possible to allow the laser beam to pass through the reflector and take out the laser beam to the outside. Hereinafter, the reflecting mirror on the side that extracts the laser beam is referred to as an "output mirror". The reflector and the output mirror may be provided separately from each layer and each part constituting the current excitation type laser element, or the anode and cathode may also have the function of the reflector or the output mirror.
 例えば、陽極に反射鏡または出力鏡の機能を兼ねさせる場合には、陽極は、可視光の吸収が小さく、反射率が高く、且つ、仕事関数が比較的大きい(4.0eV以上)金属膜により構成することが好ましい。そのような金属膜として、例えばAg、Pt、Au等の金属膜、または、これらの金属を含む合金膜を挙げることができる。陽極の反射率および透過率は、例えば数十nm以上の範囲で、金属膜の膜厚を制御することにより所望の値に調整することができる。
 陰極に反射鏡または出力鏡の機能を兼ねさせる場合には、陰極は、可視光の吸収が小さく、反射率が高く、且つ、仕事関数が比較的小さい金属膜により構成することが好ましい。そのような金属膜として、例えばAl、Mg等の金属膜、または、これらの金属を含む合金膜を挙げることができる。陰極の反射率および透過率は、例えば数十nm以上の範囲で、金属膜の膜厚を制御することにより所望の値に調整することができる。
 反射鏡または出力鏡を、上記の各層および各部とは別に設ける場合には、陽極と有機層との間、または、基板と陽極の間に反射性の膜を形成して反射鏡または出力鏡として機能させることが好ましい。
 陽極と有機層との間に反射鏡または出力鏡を設ける場合には、それらの材料として、可視光の吸収が小さく、高い反射率が得られ、且つ、仕事関数が大きい(仕事関数4.0eV以上)導電性材料を用いることが好ましい。具体的には、Ag、Pt、Au等の金属、または、これらの金属を含む合金からなる金属膜を反射鏡または出力鏡として用いることができる。この反射鏡または出力鏡の反射率および透過率は、例えば数十nm以上の範囲で、金属膜の膜厚を制御することにより所望の値に調整することができる。ここで、こうした反射鏡または出力鏡を陽極と有機層との間に設ける場合には、陽極の材料は、仕事関数が大きいものである必要はなく、公知の電極材料を広く用いることができる。
 基板と陽極の間に反射鏡または出力鏡を設ける場合には、それらの材料として、可視光の吸収が小さく、高い反射率が得られるものを用いることが好ましい。具体的には、Al、Ag、Pt等の金属、または、これらの金属を含む合金からなる金属膜、AlとSiの合金膜上にTi膜を積層した積層膜、酸化ケイ素と酸化チタンを交互に成膜した誘電体多層膜等を反射鏡または出力鏡として用いることができる。このうち、金属膜の反射率および透過率は、例えば数十nm以上の範囲で膜厚を制御することにより所望の値に調整することができる。また、誘電体多層膜の反射率および透過率は、酸化ケイ素と酸化チタンの膜厚および積層数を制御することによって所望の値に調整することができる。
 反射鏡と出力鏡の組み合わせとしては、出力鏡が陽極であり、反射鏡が陰極である組み合わせ、出力鏡が陽極と有機層の間または基板と陽極の間に配された反射性の膜であり、反射鏡が陰極である組み合わせ、反射鏡が陽極であり、出力鏡が陰極である組み合わせ、反射鏡が陽極と有機層の間または基板と陽極の間に配された反射性の膜であり、出力鏡が陰極である組み合わせを挙げることができる。
 こうした共振器構造では、反射鏡と出力鏡の間に介在する層の光学膜厚の合計(各層のそれぞれについて、その膜厚に屈折率を乗じた値の合計)がレーザー光の半波長の整数倍となるように、素子の層構造を設計することが好ましい。これにより、反射鏡と出力鏡の間で定在波が形成されて光が増幅され、より高い強度のレーザー光を得ることができる。
For example, when the anode also functions as a reflector or an output mirror, the anode is made of a metal film having a small absorption of visible light, a high reflectance, and a relatively large work function (4.0 eV or more). It is preferable to configure it. Examples of such a metal film include a metal film such as Ag, Pt, and Au, or an alloy film containing these metals. The reflectance and transmittance of the anode can be adjusted to desired values by controlling the film thickness of the metal film, for example, in the range of several tens of nm or more.
When the cathode also functions as a reflector or an output mirror, the cathode is preferably formed of a metal film having a small absorption of visible light, a high reflectance, and a relatively small work function. Examples of such a metal film include a metal film such as Al and Mg, or an alloy film containing these metals. The reflectance and transmittance of the cathode can be adjusted to desired values by controlling the film thickness of the metal film, for example, in the range of several tens of nm or more.
When a reflector or an output mirror is provided separately from each of the above layers and parts, a reflective film is formed between the anode and the organic layer or between the substrate and the anode to form a reflector or an output mirror. It is preferable to make it work.
When a reflector or an output mirror is provided between the anode and the organic layer, as those materials, the absorption of visible light is small, high reflectance can be obtained, and the work function is large (work function 4.0 eV). Above) It is preferable to use a conductive material. Specifically, a metal film made of a metal such as Ag, Pt, Au, or an alloy containing these metals can be used as a reflector or an output mirror. The reflectance and transmittance of this reflector or output mirror can be adjusted to desired values by controlling the film thickness of the metal film, for example, in the range of several tens of nm or more. Here, when such a reflector or an output mirror is provided between the anode and the organic layer, the material of the anode does not need to have a large work function, and a known electrode material can be widely used.
When a reflector or an output mirror is provided between the substrate and the anode, it is preferable to use a material having a small absorption of visible light and a high reflectance. Specifically, a metal film made of a metal such as Al, Ag, Pt, or an alloy containing these metals, a laminated film in which a Ti film is laminated on an alloy film of Al and Si, silicon oxide and titanium oxide are alternately alternated. A dielectric multilayer film or the like formed on the above can be used as a reflecting mirror or an output mirror. Of these, the reflectance and transmittance of the metal film can be adjusted to desired values by controlling the film thickness in the range of, for example, several tens of nm or more. Further, the reflectance and transmittance of the dielectric multilayer film can be adjusted to desired values by controlling the film thickness and the number of layers of silicon oxide and titanium oxide.
The combination of the reflector and the output mirror is a combination in which the output mirror is the anode and the reflector is the cathode, and the output mirror is a reflective film arranged between the anode and the organic layer or between the substrate and the anode. , A combination in which the reflector is the cathode, a combination in which the reflector is the anode and the output mirror is the cathode, the reflector is a reflective film placed between the anode and the organic layer or between the substrate and the anode. A combination in which the output mirror is a cathode can be mentioned.
In such a cavity structure, the total optical thickness of the layers interposed between the reflector and the output mirror (the total of the values obtained by multiplying the thickness of each layer by the refractive index) is an integer of the half wavelength of the laser beam. It is preferable to design the layer structure of the element so as to be doubled. As a result, a standing wave is formed between the reflecting mirror and the output mirror, the light is amplified, and a higher intensity laser beam can be obtained.
 また、以上の共振器構造は、基板の主面に対する垂直方向にレーザー光を往復させるものであるが、共振器構造は、基板の主面に対する水平方向にレーザー光を往復させるものであってもよい。こうした共振器構造は、ペロブスカイト層と空気との屈折率差による反射を利用し、ペロブスカイト層の端面を反射鏡または出力鏡として構成することができる。また、活性層付近に、λ/2n(λ:光の波長、n:1以上の整数)の格子間隔で回折格子を設け、活性層で発生した光を回折格子の格子間隔によって周期的に反射させるDFB(distributed feedback)構造を採用してもよい。これにより、単一の縦モードが実現でき、ペロブスカイト層の端面から単色性の良いレーザー光を放射させることができる。 Further, the above resonator structure reciprocates the laser beam in the direction perpendicular to the main surface of the substrate, but the resonator structure reciprocates the laser beam in the horizontal direction with respect to the main surface of the substrate. Good. In such a resonator structure, the end face of the perovskite layer can be configured as a reflector or an output mirror by utilizing the reflection due to the difference in refractive index between the perovskite layer and air. Further, a diffraction grating is provided near the active layer at a lattice spacing of λ / 2n (λ: wavelength of light, an integer of n: 1 or more), and the light generated in the active layer is periodically reflected by the lattice spacing of the diffraction grating. A DFB (distributed feedback) structure may be adopted. As a result, a single longitudinal mode can be realized, and a laser beam having good monochromaticity can be emitted from the end face of the perovskite layer.
 以上のような電流励起型レーザー素子は、陽極と陰極の間に閾値電流密度以上の電流を流すことによりレーザー光を放射する。また、光励起型レーザー素子は、活性層に閾値以上の励起光を照射することによりレーザー光を放射する。このとき、本発明のレーザー素子では、活性層に擬2次元ペロブスカイトを含むとともに、三重項クエンチャーを有することにより、擬2次元ペロブスカイトのペロブスカイト層に励起三重項が蓄積することが抑えられ、励起三重項の蓄積に起因する一重項-三重項消滅(STA)、STAに引き続いて起こるレーザー発振が途中で停止する現象(レーザー死現象)の発生が抑えられる。そのため、擬2次元ペロブスカイトの優れた特徴を反映したレーザー発振特性を継続的に得ることができる。そのため、本発明のレーザー素子は、連続波レーザー素子としても好適に用いることができる。 The current excitation type laser element as described above emits laser light by passing a current equal to or higher than the threshold current density between the anode and the cathode. Further, the photoexcitation type laser element emits laser light by irradiating the active layer with excitation light of a threshold value or more. At this time, in the laser element of the present invention, the active layer contains the pseudo-two-dimensional perovskite and has a triplet quencher, so that the accumulation of the excited triplet in the perovskite layer of the pseudo-two-dimensional perobskite is suppressed and excited. The occurrence of singlet-triplet annihilation (STA) due to the accumulation of triplets and the phenomenon that the laser oscillation that follows STA stops in the middle (laser death phenomenon) is suppressed. Therefore, it is possible to continuously obtain laser oscillation characteristics that reflect the excellent characteristics of the pseudo two-dimensional perovskite. Therefore, the laser element of the present invention can also be suitably used as a continuous wave laser element.
<レーザー発振方法およびレーザー発振特性の向上方法>
 次に、本発明のレーザー発振方法およびレーザー発振特性の向上方法について説明する。
 本発明のレーザー発振方法は、擬2次元ペロブスカイトを構成する無機成分の励起三重項をクエンチすることによって、擬2次元ペロブスカイトからレーザー発振させる方法である。
 本発明のレーザー発振特性の向上方法は、擬2次元ペロブスカイトを構成する無機成分の励起三重項をクエンチすることによって、擬2次元ペロブスカイトのレーザー発振特性を向上させる方法である。
 本発明のレーザー発振方法およびレーザー発振特性の向上方法で用いる擬2次元ペロブスカイト、無機成分および励起三重項の説明については、<レーザー素子>の欄における対応する記載を参照することができる。
 各方法で行う励起三重項のクエンチは、励起三重項をクエンチするクエンチャーを用いて行うことができる。ここで用いるクエンチャーの説明、好ましい範囲および具体例については、<レーザー>素子の欄におけるクエンチャーについての説明、好ましい範囲、具体例を参照することができる。
 本発明のレーザー発振方法およびレーザー発振特性の向上方法によれば、擬2次元ペロブスカイトのペロブスカイト層に励起三重項が蓄積することが抑えられ、励起三重項の蓄積に起因する一重項-三重項消滅(STA)、STAに引き続いて起こるレーザー発振が途中で停止する現象(レーザー死現象)の発生が抑えられる。そのため、擬2次元ペロブスカイトの優れた特性を反映したレーザー光を継続して発振させることができ、そのレーザー発振特性を顕著に向上させることができる。
<Laser oscillation method and method for improving laser oscillation characteristics>
Next, the laser oscillation method and the method for improving the laser oscillation characteristics of the present invention will be described.
The laser oscillation method of the present invention is a method of oscillating a laser from a pseudo two-dimensional perovskite by quenching an excited triplet of an inorganic component constituting the pseudo two-dimensional perovskite.
The method for improving the laser oscillation characteristic of the present invention is a method for improving the laser oscillation characteristic of the pseudo two-dimensional perovskite by quenching the excited triplet of the inorganic component constituting the pseudo two-dimensional perovskite.
For the description of the pseudo-two-dimensional perovskite, the inorganic component, and the excited triplet used in the laser oscillation method and the method for improving the laser oscillation characteristics of the present invention, the corresponding description in the <Laser element> column can be referred to.
The excitation triplet quenching performed by each method can be performed using a quencher for quenching the excited triplet. For the description, preferred range, and specific example of the quencher used here, the description, preferred range, and specific example of the quencher in the column of <laser> element can be referred to.
According to the laser oscillation method and the method for improving the laser oscillation characteristics of the present invention, the accumulation of excited triplets in the perovskite layer of the pseudo-two-dimensional perovskite is suppressed, and the singlet-triplet disappearance due to the accumulation of the excited triplets. (STA), the occurrence of a phenomenon (laser death phenomenon) in which laser oscillation that occurs following STA stops in the middle is suppressed. Therefore, the laser beam reflecting the excellent characteristics of the pseudo two-dimensional perovskite can be continuously oscillated, and the laser oscillation characteristics can be remarkably improved.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、光吸収スペクトルの測定は、紫外可視近赤外分光光度計(パーキンエルマー社製:Lambda 950-PKA)を用いて行い、発光スペクトルの測定は測定装置(Fluoromax-4, Horiba Jobin Yvon)を用いて行い、発光の過渡減衰曲線の測定はストリークカメラ(C4334, Hamamatsu Photonics)を用いて行い、X線回折分析は、X線回折装置(リガク社製:RINT-2500)を用いて行い、ASE強度の測定はフォトニックマルチチャンネル分析装置(Hamamatsu PMA 12)を用いて行い、レーザー強度の測定は分光器(Hamamatsu PMA-50)を用いて行い、膜厚の測定はプロフィロメーター(ブルカー社製:DektakXT)を用いて行った。
 以下の製造例1~4で使用した擬2次元ペロブスカイトは、PEAFAn-1PbBr3n+1(n=8)およびNMAFAn-1PbBr3n+1(n=8)である。ここで、PEAはフェニルエチルアンモニウムを表し、NMAは1-ナフチルメチルアンモニウムを表し、FAはホルムアミジウムを表す。各擬2次元ペロブスカイトを構成する無機成分の発光励起一重項エネルギー準位Eおよび励起三重項エネルギー準位E、有機成分の発光励起一重項エネルギー準位ES1および発光三重項エネルギー準位ET1を表1に示す。
The features of the present invention will be described in more detail with reference to Examples below. The materials, treatment contents, treatment procedures, etc. shown below can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the specific examples shown below. The light absorption spectrum is measured using an ultraviolet-visible near-infrared spectrophotometer (Perkin Elmer: Lambda 950-PKA), and the emission spectrum is measured using a measuring device (Fluoromax-4, Horiba Jobin Yvon). The transient attenuation curve of light emission is measured using a streak camera (C4334, Hamamatsu Photonics), and X-ray diffraction analysis is performed using an X-ray diffractometer (RINT-2500, manufactured by Rigaku). The intensity is measured using a photonic multi-channel analyzer (Hamamatsu PMA 12), the laser intensity is measured using a spectroscope (Hamamatsu PMA-50), and the film thickness is measured using a profile meter (Bulker). : DektakXT) was used.
The pseudo two-dimensional perovskites used in Production Examples 1 to 4 below are PEA 2 FA n-1 Pb n Br 3n + 1 (n = 8) and NMA 2 FA n-1 Pb n Br 3n + 1 (n = 8). Here, PEA represents phenylethylammonium, NMA represents 1-naphthylmethylammonium, and FA represents formamidium. Emission excited singlet energy level E S, and triplet energy level E T inorganic components constituting each quasi-two-dimensional perovskite, emission excited singlet organic component energy level E S1 and the light-emitting triplet energy level E T1 is shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(製造例1) N2F8ペロブスカイト膜を用いたASE素子の作製
 水分濃度および酸素濃度が1ppm未満の窒素雰囲気のグローブボックス中で、以下のようにしてNMAFAn-1PbBr3n+1(n=8)からなる膜(以下、「N2F8ペロブスカイト膜」という)を形成した。まず、ホルムアミジウムブロマイド(HC(NHBr)と臭化鉛(PbBr)が1:1のモル比で溶解したN,N-ジメチルホルムアミド溶液に、1-ナフチルメチルアンモニウムブロマイド(C10CHNHBr)を25mol%で添加することにより、N2F8ペロブスカイトの濃度が0.4mMである前駆体溶液を調製した。このN2F8ペロブスカイトの前駆体溶液50μLを石英ガラス基板の上に滴下し、3,000rpmで30秒間スピンコートすることでN2F8ペロブスカイト前駆体膜を形成した。なお、このスピンコートを行っている間に、0.2mLのトルエンを膜の上に滴下した。続いて、ペロブスカイト前駆体膜が形成された基板をホットプレート上に配置して、70℃で10分間ベーキング処理を行い、さらに、100℃で10分間ベーキング処理を行うことにより、厚さが70~110nmであるN2F8ペロブスカイト膜を形成し、ASE素子とした。
(Production Example 1) Fabrication of ASE element using N2F8 perovskite film In a glove box with a nitrogen atmosphere having a water concentration and an oxygen concentration of less than 1 ppm, NMA 2 FA n-1 Pb n Br 3n + 1 (n =) as follows. A film composed of 8) (hereinafter referred to as "N2F8 perovskite film") was formed. First, 1-naphthylmethylammonium bromide (C) was dissolved in an N, N-dimethylformamide solution in which formamidium bromide (HC (NH 2 ) 2 Br) and lead bromide (PbBr 2) were dissolved in a molar ratio of 1: 1. 10 H 7 CH 2 NH 3 Br) was added at 25 mol% to prepare a precursor solution having a concentration of N2F8 perovskite of 0.4 mM. 50 μL of this N2F8 perovskite precursor solution was dropped onto a quartz glass substrate and spin-coated at 3,000 rpm for 30 seconds to form an N2F8 perovskite precursor film. During this spin coating, 0.2 mL of toluene was added dropwise onto the membrane. Subsequently, the substrate on which the perovskite precursor film was formed was placed on a hot plate and baked at 70 ° C. for 10 minutes, and further baked at 100 ° C. for 10 minutes to obtain a thickness of 70 to 70 to An N2F8 perovskite film having a diameter of 110 nm was formed and used as an ASE element.
(製造例2) P2F8ペロブスカイト膜を用いたASE素子の作製
 ペロブスカイト膜を形成する際、1-ナフチルメチルアンモニウムブロマイドの代わりにフェニルエチルアンモニウムブロマイド(CCHCHNHBr)を用いてPEAFAn-1PbBr3n+1(n=8)からなる膜(以下、「P2F8ペロブスカイト膜」という)を形成したこと以外は、製造例1と同様にしてASE素子を作製した。
(Production Example 2) Preparation of ASE element using P2F8 perovskite film When forming a perovskite film, phenylethylammonium bromide (C 6 H 5 CH 2 CH 2 NH 3 Br) is used instead of 1-naphthyl methyl ammonium bromide. An ASE element was produced in the same manner as in Production Example 1 except that a film composed of PEA 2 FA n-1 Pb n Br 3n + 1 (n = 8) (hereinafter referred to as “P2F8 perobskite film”) was formed.
 各製造例で作製したN2F8ペロブスカイト膜およびP2F8ペロブスカイト膜についてX線回折分析を行ったところ、それぞれ8層の無機層からなるペロブスカイト層を含む擬2次元ペロブスカイトであることを確認することができた。
 各ペロブスカイト膜の紫外可視吸収スペクトルと337nm励起光による定常状態での発光スペクトルを図4に示す。また、各ペロブスカイト膜について、室温でパルス励起光の照射強度を段階的に変えて発光スペクトルを測定し、その発光ピークにおけるピーク強度と半値全幅(FWHM)の励起光強度依存性を調べた結果を図5に示す。この測定に用いた励起光は、波長が337nm、パルス幅が0.8nsのパルス励起光である。図4、5および下記図6において、「N2F8」は「N2F8ペロブスカイト膜」を示し、「P2F8」は「P2F8ペロブスカイト膜」を示す。
 図5に示すように、パルス励起光強度が低い範囲では、発光ピークの半値全幅は20nm程度であり、発光スペクトルのパターンは図4に示す定常状態での発光スペクトルと類似していた。これに対して、パルス励起光強度が一定の値を超えると、P2F8では550nm、N2F8では555nmの位置に強い発光ピークが現れ、半値全幅が4nmにまで縮小した。この発光スペクトルの急激な変化は、ASE放射が開始したことを示し、そのときのパルス励起光強度(ASE閾値)は、P2F8ペロブスカイト膜で16.7μJ/cm、N2F8ペロブスカイト膜で33.1μJ/cmであった。これらの結果から、P2F8ペロブスカイト膜およびN2F8ペロブスカイト膜は、いずれもASE放射を示す活性層であることが確認された。
When the N2F8 perovskite film and the P2F8 perovskite film produced in each production example were subjected to X-ray diffraction analysis, it was confirmed that they were pseudo-two-dimensional perovskite including a perovskite layer composed of eight inorganic layers.
The ultraviolet-visible absorption spectrum of each perovskite film and the emission spectrum in a steady state by 337 nm excitation light are shown in FIG. In addition, for each perovskite film, the emission spectrum was measured by changing the irradiation intensity of pulsed excitation light stepwise at room temperature, and the results of investigating the excitation light intensity dependence of the peak intensity and full width at half maximum (FWHM) at the emission peak were obtained. It is shown in FIG. The excitation light used for this measurement is a pulse excitation light having a wavelength of 337 nm and a pulse width of 0.8 ns. In FIGS. 4 and 5 and FIG. 6 below, "N2F8" indicates "N2F8 perovskite film" and "P2F8" indicates "P2F8 perovskite film".
As shown in FIG. 5, in the range where the pulse excitation light intensity was low, the full width at half maximum of the emission peak was about 20 nm, and the pattern of the emission spectrum was similar to the emission spectrum in the steady state shown in FIG. On the other hand, when the pulse excitation light intensity exceeded a certain value, a strong emission peak appeared at the position of 550 nm in P2F8 and 555 nm in N2F8, and the full width at half maximum was reduced to 4 nm. This sudden change in the emission spectrum indicates that ASE radiation has started, and the pulse excitation light intensity (ASE threshold) at that time is 16.7 μJ / cm 2 for the P2F8 perovskite film and 33.1 μJ / for the N2F8 perovskite film. It was cm 2. From these results, it was confirmed that both the P2F8 perovskite membrane and the N2F8 perovskite membrane are active layers exhibiting ASE radiation.
 次に、各種雰囲気下、室温で連続パルス励起光を照射しながらASE強度の変化を測定した。具体的には、始めの750秒間は酸素雰囲気中で測定を行い、750~1500秒間は空気中で測定を行い、1500~3000秒間は窒素雰囲気中で測定を行った。測定に用いた励起光は、波長が337nm、パルス幅が3nsの連続パルス励起光であり、70μJ/cmの照射強度で照射した。ASE強度変化の測定結果を図6に示す。
 図6に示すように、P2F8ペロブスカイト膜およびN2F8ペロブスカイト膜は、いずれも酸素雰囲気中および空気中では一定のASE強度を示した。これに対して、窒素雰囲気中で測定を行うと、N2F8ペロブスカイト膜では、酸素雰囲気中や空気中とほぼ同じASE強度が得られるものの、P2F8ペロブスカイト膜では、ASE強度が徐々に低下した。このように、P2F8ペロブスカイト膜において、測定雰囲気によってASE強度が変化するのは、酸素雰囲気中および空気中では、そのペロブスカイト層で生成した光励起三重項のエネルギーが雰囲気中の三重項酸素に移動して一重項-三重項消滅が抑制されるが、窒素雰囲気中ではこうした光励起三重項のクエンチング機構が働かないためであると考えられる。一方、N2F8ペロブスカイト膜では、励起三重項エネルギー準位が低いNMAが励起三重項のクエンチャーとして機能することにより、酸素が存在しない窒素雰囲気中でも安定的なASEが得られたと推定される。このことから、擬2次元ペロブスカイトに、励起三重項のクエンチャーとして機能する物質、例えば酸素や励起三重項エネルギー準位が低い化合物を導入または接触させることにより、そのASE特性を顕著に改善できることがわかった。
 また、ここでは、酸素雰囲気中および空気中において、ペロブスカイト膜を保護キャップ等で覆うことなく高いASE強度が得られた。これは、擬2次元ペロブスカイトの有機層がペロブスカイト層の保護層として機能したためと考えられる。このことから、擬2次元ペロブスカイトは、3次元ペロブスカイトよりもレーザー素子の活性層材料として有利であることもわかった。
Next, changes in ASE intensity were measured while irradiating continuous pulse excitation light at room temperature under various atmospheres. Specifically, the measurement was performed in an oxygen atmosphere for the first 750 seconds, the measurement was performed in the air for 750 to 1500 seconds, and the measurement was performed in a nitrogen atmosphere for 1500 to 3000 seconds. The excitation light used for the measurement was a continuous pulse excitation light having a wavelength of 337 nm and a pulse width of 3 ns, and was irradiated with an irradiation intensity of 70 μJ / cm 2. The measurement result of the ASE intensity change is shown in FIG.
As shown in FIG. 6, both the P2F8 perovskite membrane and the N2F8 perovskite membrane showed constant ASE intensity in an oxygen atmosphere and in air. On the other hand, when the measurement was performed in a nitrogen atmosphere, the N2F8 perovskite membrane obtained almost the same ASE intensity as in an oxygen atmosphere or air, but the P2F8 perovskite membrane gradually decreased in ASE intensity. In this way, in the P2F8 perovskite film, the ASE intensity changes depending on the measurement atmosphere because the energy of the photoexcited triplet generated in the perovskite layer moves to the triplet oxygen in the atmosphere in the oxygen atmosphere and in the air. It is considered that the singlet-triplet annihilation is suppressed, but the quenching mechanism of such a photoexcited triplet does not work in a nitrogen atmosphere. On the other hand, in the N2F8 perovskite membrane, it is presumed that NMA having a low excited triplet energy level functions as a quencher of the excited triplet, so that stable ASE is obtained even in a nitrogen atmosphere in which oxygen does not exist. From this, it is possible to remarkably improve the ASE characteristics by introducing or contacting a pseudo-two-dimensional perovskite with a substance that functions as a quencher of the excited triplet, for example, oxygen or a compound having a low excited triplet energy level. all right.
Further, here, in an oxygen atmosphere and in the air, high ASE strength was obtained without covering the perovskite film with a protective cap or the like. It is considered that this is because the organic layer of the pseudo two-dimensional perovskite functioned as a protective layer of the perovskite layer. From this, it was also found that the pseudo two-dimensional perovskite is more advantageous as the active layer material of the laser device than the three-dimensional perovskite.
(製造例3) N2F8ペロブスカイト膜を用いたDFBレーザー素子の作製
 厚さ1μmのシリコン熱酸化膜が形成されたシリコン基板の表面に、ヘキサメチルジシラザン層とレジスト層を形成させた後、電子ビームリソグラフィ法を用いてDFB(distributed feedback)格子を形成した。このとき、格子ピッチは250nm、格子高さは60nm、エアトレンチ幅は120nmとした。続いて、DFB格子を形成したシリコン基板の表面に、製造例1と同様にしてN2F8ペロブスカイト膜を形成し、DFBレーザー素子(N2F8レーザー)とした。
(Manufacturing Example 3) Fabrication of DFB Laser Element Using N2F8 Perovskite Film A hexamethyldisilazane layer and a resist layer are formed on the surface of a silicon substrate on which a silicon thermal oxide film having a thickness of 1 μm is formed, and then an electron beam is formed. A DFB (distributed feedback) lattice was formed using a lithography method. At this time, the lattice pitch was 250 nm, the lattice height was 60 nm, and the air trench width was 120 nm. Subsequently, an N2F8 perovskite film was formed on the surface of the silicon substrate on which the DFB lattice was formed in the same manner as in Production Example 1 to obtain a DFB laser element (N2F8 laser).
(製造例4) P2F8ペロブスカイト膜を用いたDFBレーザー素子の作製
 DFB格子を形成したシリコン基板の表面に、製造例2と同様にしてP2F8ペロブスカイト膜を形成したこと以外は、製造例3と同様にしてDFBレーザー素子(P2F8レーザー)を作製した。
(Manufacturing Example 4) Fabrication of DFB Laser Element Using P2F8 Perobskite Film The same as in Production Example 3 except that the P2F8 perovskite film was formed on the surface of the silicon substrate on which the DFB lattice was formed in the same manner as in Production Example 2. DFB laser element (P2F8 laser) was manufactured.
 作製したN2F8レーザーおよびP2F8レーザーに、パルス励起光の照射強度を段階的に変えて発光スペクトルを測定し、その発光ピーク強度の励起光強度依存性を調べた結果を図7に示す。測定に用いた励起光は、波長が337nm、パルス幅が3nsのパルス励起光である。図7および下記図8において、「N2F8」は「N2F8レーザー」を示し、「P2F8」は「P2F8レーザー」を示す。
 図7に示すように、N2F8レーザーおよびP2F8レーザーは、いずれも一定の励起光強度で発光強度が急激に高くなり、それと同時に半値全幅が約0.45nmに達した。この際、Qファクターは1000であった。このことから、各素子が良好なレーザー発振特性を示すことが確認された。図7から求めたレーザー閾値は、P2F8レーザーで4.7μJcm-2、N2F8レーザーで32.8μJcm-2であり、発光スペクトルから求めた発振波長は、N2F8レーザーで559nm、P2F8レーザーで552nmであった。N2F8レーザーについては、DFB格子の条件を最適化することで、レーザー閾値をより低くできると考えられる。
FIG. 7 shows the results of measuring the emission spectrum of the produced N2F8 laser and P2F8 laser by changing the irradiation intensity of pulsed excitation light stepwise and examining the dependence of the emission peak intensity on the excitation light intensity. The excitation light used for the measurement is a pulse excitation light having a wavelength of 337 nm and a pulse width of 3 ns. In FIG. 7 and FIG. 8 below, "N2F8" indicates "N2F8 laser" and "P2F8" indicates "P2F8 laser".
As shown in FIG. 7, both the N2F8 laser and the P2F8 laser rapidly increased the emission intensity at a constant excitation light intensity, and at the same time, the full width at half maximum reached about 0.45 nm. At this time, the Q factor was 1000. From this, it was confirmed that each element exhibited good laser oscillation characteristics. Lasing threshold determined from FIG. 7, 4.7MyuJcm -2 at P2F8 laser is 32.8MyuJcm -2 in N2F8 laser oscillation wavelength determined from the emission spectrum was 552nm at 559 nm, P2F8 laser in N2F8 laser .. For the N2F8 laser, it is considered that the laser threshold can be lowered by optimizing the conditions of the DFB lattice.
 次に、P2F8レーザーに連続励起光を照射し、空気中でレーザー強度を測定した後、窒素雰囲気中でレーザー強度を測定するというサイクルを繰り返し行い、その間のレーザー強度の変化を調べた。測定に用いた励起光は、波長が448nmの連続励起光であり、1.7kW/cmの照射強度で照射した。レーザー強度変化の測定結果を図8に示す。
 図8に示すように、空気中ではレーザー発振が見られ、窒素をサンプルチャンバーに注入してチャンバー内を窒素雰囲気にすると、レーザー強度がすぐに低下し、その後、窒素の注入を停止して空気をサンプルチャンバー内に導入すると、レーザー発振が完全に回復した。この結果から、酸素のような三重項クエンチャーをレーザー素子に接触させることにより、レーザー発振特性が効果的に改善されることがわかった。また、このレーザー発振の雰囲気変化に応じた応答速度(レーザー強度が変化する速度)は、ASE動作での応答速度よりも遥かに高速であった。このことから、長寿命の光励起三重項が誘起する一重項-三重項消滅が、連続波レーザー発振時のレーザー死現象の本質的な原因であることが示唆された。
Next, the P2F8 laser was irradiated with continuous excitation light, the laser intensity was measured in air, and then the laser intensity was measured in a nitrogen atmosphere. The cycle was repeated, and the change in laser intensity during that period was investigated. The excitation light used for the measurement was continuous excitation light having a wavelength of 448 nm, and was irradiated with an irradiation intensity of 1.7 kW / cm 2. The measurement result of the laser intensity change is shown in FIG.
As shown in FIG. 8, laser oscillation is observed in the air, and when nitrogen is injected into the sample chamber to create a nitrogen atmosphere in the chamber, the laser intensity immediately decreases, and then the injection of nitrogen is stopped and the air is stopped. Was introduced into the sample chamber, and the laser oscillation was completely restored. From this result, it was found that the laser oscillation characteristics are effectively improved by bringing a triplet quencher such as oxygen into contact with the laser element. Further, the response speed (the speed at which the laser intensity changes) according to the change in the atmosphere of the laser oscillation was much faster than the response speed in the ASE operation. This suggests that the singlet-triplet annihilation induced by the long-lived photoexcited triplet is the essential cause of the laser death phenomenon during continuous-wave laser oscillation.
 本発明のレーザー素子はレーザー発振特性に優れており、また、擬2次元ペロブスカイトを用いているため、安定性が高く、レーザー素子の製造コストの削減にも有利である。そのため、本発明によれば、レーザー発振特性および実用性に優れたレーザー素子を安価に提供することができる。このため、本発明は産業上の利用可能性が高い。 The laser element of the present invention has excellent laser oscillation characteristics, and since it uses a pseudo two-dimensional perovskite, it has high stability and is advantageous in reducing the manufacturing cost of the laser element. Therefore, according to the present invention, it is possible to inexpensively provide a laser element having excellent laser oscillation characteristics and practicality. Therefore, the present invention has high industrial applicability.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 活性層
 6 電子輸送層
 7 陰極
1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Active layer 6 Electron transport layer 7 Cathode

Claims (22)

  1.  擬2次元ペロブスカイトを構成する無機成分の励起三重項をクエンチするクエンチャーを有することを特徴とする、擬2次元ペロブスカイトを含むレーザー素子。 A laser device containing a pseudo two-dimensional perovskite, which has a quencher for quenching an excited triplet of an inorganic component constituting a pseudo two-dimensional perovskite.
  2.  前記クエンチャーが、前記擬2次元ペロブスカイトを構成する有機成分であって、前記有機成分の励起三重項エネルギー準位が前記擬2次元ペロブスカイトを構成する無機成分の励起三重項エネルギー準位よりも低い、請求項1に記載のレーザー素子。 The quencher is an organic component constituting the pseudo two-dimensional perovskite, and the excited triplet energy level of the organic component is lower than the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite. , The laser element according to claim 1.
  3.  前記有機成分の励起三重項エネルギー準位が前記擬2次元ペロブスカイトを構成する無機成分の励起三重項エネルギー準位よりも0.10eV以上低い、請求項2に記載のレーザー素子。 The laser element according to claim 2, wherein the excited triplet energy level of the organic component is 0.10 eV or more lower than the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite.
  4.  前記クエンチャーである有機成分が、置換もしくは無置換のナフチルアルキルアンモニウムである、請求項2に記載のレーザー素子。 The laser device according to claim 2, wherein the organic component of the quencher is a substituted or unsubstituted naphthylalkylammonium.
  5.  前記クエンチャーが、基底三重項状態をとる分子、または、基底三重項状態をとる分子を含む組成物である、請求項1に記載のレーザー素子。 The laser device according to claim 1, wherein the quencher is a molecule having a basal triplet state or a composition containing a molecule having a basal triplet state.
  6.  前記クエンチャーが、擬2次元ペロブスカイトを構成する無機成分に接触する酸素である、請求項1に記載のレーザー素子。 The laser element according to claim 1, wherein the quencher is oxygen that comes into contact with an inorganic component constituting a pseudo two-dimensional perovskite.
  7.  前記クエンチャーが、擬2次元ペロブスカイトを構成する無機成分に接触する大気である、請求項1に記載のレーザー素子。 The laser element according to claim 1, wherein the quencher is an atmosphere in contact with an inorganic component constituting a pseudo two-dimensional perovskite.
  8.  前記擬2次元ペロブスカイトを構成する有機成分の励起三重項エネルギー準位が、前記擬2次元ペロブスカイトを構成する無機成分の励起三重項エネルギー準位よりも高い、請求項5~7のいずれか1項に記載のレーザー素子。 Any one of claims 5 to 7, wherein the excited triplet energy level of the organic component constituting the pseudo two-dimensional perovskite is higher than the excited triplet energy level of the inorganic component constituting the pseudo two-dimensional perovskite. The laser element described in.
  9.  前記擬2次元ペロブスカイトが、下記一般式(10)で表される化合物からなり、
       Rn-13n+1    (10)
    [一般式(10)において、Rは1価の有機カチオンを表し、Aは1価のカチオンを表し、Bは2価の金属イオンを表し、Xはハロゲンイオンを表す。nは2以上の整数である。]
     前記一般式(10)のBXで表される組成の無機層が前記無機成分を構成する、請求項1に記載のレーザー素子。
    The pseudo two-dimensional perovskite comprises a compound represented by the following general formula (10).
    R 2 A n-1 B n X 3n + 1 (10)
    [In the general formula (10), R represents a monovalent organic cation, A represents a monovalent cation, B represents a divalent metal ion, and X represents a halogen ion. n is an integer of 2 or more. ]
    The laser device according to claim 1, wherein an inorganic layer having a composition represented by BX 4 of the general formula (10) constitutes the inorganic component.
  10.  前記クエンチャーが、前記一般式(10)のRで表される有機カチオンからなる有機成分であって、前記有機成分の励起三重項エネルギー準位が前記擬2次元ペロブスカイトを構成する無機成分の励起三重項エネルギー準位よりも低い、請求項9に記載のレーザー素子。 The quencher is an organic component composed of an organic cation represented by R in the general formula (10), and the excitation triplet energy level of the organic component excites the inorganic component constituting the pseudo-two-dimensional perovskite. The laser element according to claim 9, which is lower than the triplet energy level.
  11.  前記一般式(10)のRが下記一般式(11)で表されるアンモニウムである、請求項9に記載の有機無機ペロブスカイト。
       Ar(CHn1NH     (11)
    [一般式(11)において、Arは芳香環を表す。n1は1~20の整数である。]
    The organic-inorganic perovskite according to claim 9, wherein R of the general formula (10) is ammonium represented by the following general formula (11).
    Ar (CH 2 ) n1 NH 3 + (11)
    [In the general formula (11), Ar represents an aromatic ring. n1 is an integer from 1 to 20. ]
  12.  前記一般式(11)のArがベンゼン環またはナフタレン環である、請求項11に記載のレーザー素子。 The laser device according to claim 11, wherein Ar in the general formula (11) is a benzene ring or a naphthalene ring.
  13.  前記一般式(10)のAがホルムアミジウムまたはメチルアンモニウムである、請求項9~12のいずれか1項に記載のレーザー素子。 The laser device according to any one of claims 9 to 12, wherein A of the general formula (10) is formamidium or methylammonium.
  14.  前記一般式(10)のBがPb2+である、請求項9~13のいずれか1項に記載のレーザー素子。 The laser device according to any one of claims 9 to 13, wherein B of the general formula (10) is Pb 2+.
  15.  前記一般式(10)のXがBrである、請求項9~14のいずれか1項に記載のレーザー素子。 The laser device according to any one of claims 9 to 14, wherein X in the general formula (10) is Br −.
  16.  前記一般式(10)で表される化合物が、下記式(A)または下記式(B)で表される化合物であり、
        PEAFAn-1PbBr3n+1       式(A)
        PEAMAn-1PbBr3n+1       式(B)
    [式(A)および式(B)において、PEAはフェニルエチルアンモニウムを表し、FAはホルムアミジウムを表し、MAはメチルアンモニウムを表す。nは2以上の整数である。]
     前記式(A)または前記式(B)のPbBrで表される組成の無機層が前記無機成分を構成する、請求項9に記載のレーザー素子。
    The compound represented by the general formula (10) is a compound represented by the following formula (A) or the following formula (B).
    PEA 2 FA n-1 Pb n Br 3n + 1 equation (A)
    PEA 2 MA n-1 Pb n Br 3n + 1 equation (B)
    [In formulas (A) and (B), PEA represents phenylethylammonium, FA represents formamidium, and MA represents methylammonium. n is an integer of 2 or more. ]
    The laser device according to claim 9, wherein an inorganic layer having a composition represented by PbBr 4 of the formula (A) or the formula (B) constitutes the inorganic component.
  17.  前記一般式(10)で表される化合物が、下記式(C)または下記式(D)で表される化合物であり、
        NMAFAn-1PbBr3n+1       式(C)
        NMAMAn-1PbBr3n+1       式(D)
    [式(C)および式(D)において、NMAは1-ナフチルメチルアンモニウムを表し、FAはホルムアミジウムを表し、MAはメチルアンモニウムを表す。nは2以上の整数である。]
     前記式(C)または前記式(D)のPbBrで表される組成の無機層が前記無機成分を構成する、請求項9に記載のレーザー素子。
    The compound represented by the general formula (10) is a compound represented by the following formula (C) or the following formula (D).
    NMA 2 FA n-1 Pb n Br 3n + 1 equation (C)
    NMA 2 MA n-1 Pb n Br 3n + 1 equation (D)
    [In formulas (C) and (D), NMA represents 1-naphthylmethylammonium, FA represents formamidium, and MA represents methylammonium. n is an integer of 2 or more. ]
    The laser device according to claim 9, wherein an inorganic layer having a composition represented by PbBr 4 of the formula (C) or the formula (D) constitutes the inorganic component.
  18.  20℃以上の温度でレーザー発振する、請求項1~17のいずれか1項に記載のレーザー素子。 The laser element according to any one of claims 1 to 17, which oscillates a laser at a temperature of 20 ° C. or higher.
  19.  共振器を有する、請求項1~18のいずれか1項に記載のレーザー素子。 The laser element according to any one of claims 1 to 18, which has a resonator.
  20.  分布帰還型レーザー素子である、請求項19に記載のレーザー素子。 The laser element according to claim 19, which is a distributed feedback type laser element.
  21.  擬2次元ペロブスカイトを構成する無機成分の励起三重項をクエンチすることによって、前記擬2次元ペロブスカイトからレーザー発振させる、レーザー発振方法。 A laser oscillation method in which a laser is oscillated from the pseudo two-dimensional perovskite by quenching the excited triplet of the inorganic component constituting the pseudo two-dimensional perovskite.
  22.  擬2次元ペロブスカイトを構成する無機成分の励起三重項をクエンチすることによって、前記擬2次元ペロブスカイトのレーザー発振特性を向上させる、レーザー発振特性の向上方法。 A method for improving the laser oscillation characteristics, which improves the laser oscillation characteristics of the pseudo-two-dimensional perovskite by quenching the excited triplet of the inorganic component constituting the pseudotwo-dimensional perovskite.
PCT/JP2020/031249 2019-08-27 2020-08-19 Laser element, laser oscillation method, and method for improving laser oscillation characteristics WO2021039527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542782A JPWO2021039527A1 (en) 2019-08-27 2020-08-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-155038 2019-08-27
JP2019155038 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021039527A1 true WO2021039527A1 (en) 2021-03-04

Family

ID=74685510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031249 WO2021039527A1 (en) 2019-08-27 2020-08-19 Laser element, laser oscillation method, and method for improving laser oscillation characteristics

Country Status (3)

Country Link
JP (1) JPWO2021039527A1 (en)
TW (1) TW202124400A (en)
WO (1) WO2021039527A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241435A (en) * 2000-12-15 2002-08-28 Japan Science & Technology Corp Organic and inorganic lamellar perovskite polymerization compound
JP2003036977A (en) * 2001-07-25 2003-02-07 Japan Science & Technology Corp Electric field light-emitting element utilizing phosphorescence light of lead halide type stratified perovskite compound
JP2005039236A (en) * 2003-06-30 2005-02-10 Semiconductor Energy Lab Co Ltd Semiconductor device
WO2018021975A1 (en) * 2016-07-28 2018-02-01 Nanyang Technological University Apparatus for electro-magnetic wave detection
US20180037813A1 (en) * 2016-08-04 2018-02-08 Florida State University Research Foundation, Inc. Organic-Inorganic Hybrid Perovskites, Devices, and Methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241435A (en) * 2000-12-15 2002-08-28 Japan Science & Technology Corp Organic and inorganic lamellar perovskite polymerization compound
JP2003036977A (en) * 2001-07-25 2003-02-07 Japan Science & Technology Corp Electric field light-emitting element utilizing phosphorescence light of lead halide type stratified perovskite compound
JP2005039236A (en) * 2003-06-30 2005-02-10 Semiconductor Energy Lab Co Ltd Semiconductor device
WO2018021975A1 (en) * 2016-07-28 2018-02-01 Nanyang Technological University Apparatus for electro-magnetic wave detection
US20180037813A1 (en) * 2016-08-04 2018-02-08 Florida State University Research Foundation, Inc. Organic-Inorganic Hybrid Perovskites, Devices, and Methods

Also Published As

Publication number Publication date
TW202124400A (en) 2021-07-01
JPWO2021039527A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
Zhang et al. One-step co-evaporation of all-inorganic perovskite thin films with room-temperature ultralow amplified spontaneous emission threshold and air stability
Kozlov et al. Optical properties of molecular organic semiconductor thin films under intense electrical excitation
CN103094836B (en) With the organic semiconductor laser of triplet manager
WO2021157593A1 (en) Composition, film, organic light emitting element, method for providing light emitting composition, and program
US7724796B2 (en) Organic laser
Karunathilaka et al. An Organic Laser Dye having a Small Singlet‐Triplet Energy Gap Makes the Selection of a Host Material Easier
JP2016025209A (en) Organic light emitting element
JP2004099868A (en) Organic light-emitting polymer
WO2018180838A1 (en) Organic semiconductor laser element
JP2023021988A (en) Organic electroluminescent device, compound, and use thereof
US11476435B2 (en) Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
JP7165412B2 (en) Organic-inorganic perovskite, film, light-emitting film, delayed fluorescence emission film, light-emitting device, and method for producing light-emitting device
WO2021039527A1 (en) Laser element, laser oscillation method, and method for improving laser oscillation characteristics
JP7022528B2 (en) Organic electroluminescence element
JP6581364B2 (en) Triplet removing agent, thin film, laser oscillation device and compound
JP2022524468A (en) Electric drive type organic semiconductor laser diode and its manufacturing method
TW202139553A (en) Laser element
JPWO2020175624A1 (en) Compounds, light emitting materials and organic semiconductor laser devices
JPWO2020130086A1 (en) Decomposition inhibitor, thin film, laser oscillator and laser dye decomposition suppression method
湯洵 Molecular design for moving from fluorescent to TADF emitters toward high-performance OLEDs and organic lasers
KR20220075307A (en) Laser element, compound, compound manufacturing method, lasing sensitizer
JP2005019327A (en) Selection method for organic el element material, manufacturing method of organic el element, and organic el element
Brouwer Semiconducting Polymers for

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856662

Country of ref document: EP

Kind code of ref document: A1