WO2021039370A1 - Copper-clad laminate and method for producing same - Google Patents
Copper-clad laminate and method for producing same Download PDFInfo
- Publication number
- WO2021039370A1 WO2021039370A1 PCT/JP2020/030460 JP2020030460W WO2021039370A1 WO 2021039370 A1 WO2021039370 A1 WO 2021039370A1 JP 2020030460 W JP2020030460 W JP 2020030460W WO 2021039370 A1 WO2021039370 A1 WO 2021039370A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plating layer
- copper
- resin film
- clad laminate
- copper plating
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
- H05K3/384—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
- C23C18/1692—Heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2053—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
- C23C18/2066—Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/48—Coating with alloys
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/381—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
Definitions
- the present invention relates to a copper-clad laminate for a flexible circuit board mounted on a communication device or the like, and a method for manufacturing the same.
- the dielectric loss generated in this circuit board is proportional to the product of three elements composed of "signal frequency", "square root of dielectric constant of substrate material” and "dielectric loss tangent". Therefore, in order to obtain the above-mentioned excellent dielectric properties, a material having both a dielectric constant and a dielectric loss tangent as low as possible is inevitably required.
- the circuit is generally formed of a metal such as copper.
- the copper layer in this circuit board is formed by, for example, the laminating method shown in Patent Document 1, the casting method shown in Patent Document 2, the plating method shown in Patent Document 3, and the like.
- Patent No. 6202905 Patent No. 5186266 JP-A-2002-256443
- low-dielectric film As mentioned above, in recent years, suppressing transmission loss in high-frequency communication has become an important development factor, and resin films with low transmission loss (hereinafter, also referred to as “low-dielectric film” or “low-dielectric resin film”) are flexible. It is being used as a base material for circuit boards.
- a metal layer for example, a copper layer
- the interface between the copper layer and the low-dielectric film must be roughened, and the smoothness of the interface deteriorates, resulting in transmission loss. Will occur.
- the copper-plated laminate according to the embodiment of the present invention includes (1) a resin film having a relative dielectric constant of 3.5 or less and a dielectric tangent of 0.008 or less at a frequency of 10 GHz.
- An electroless copper plating layer laminated on at least one surface of the resin film is included, and the average surface roughness Ra at the plating layer side interface of the resin film in contact with the electroless copper plating layer is 1 to 150 nm. It is characterized in that the adhesion strength between the resin film and the electroless copper plating layer is 4.2 N / cm or more.
- the strength of the mass 121 by the time-of-flight mass spectrometry (TOF-SIMS) at the interface on the plating layer side of the resin film is 800 or more. Is preferable.
- the hydroxyl group is added in a larger amount than the carboxyl group at the interface on the plating layer side (4).
- the resin film is any one of polyimide, modified polyimide, liquid crystal polymer, fluororesin, or a mixture thereof. Is preferable.
- the electroless copper plating layer is a Cu—Ni alloy, and Ni in the electroless copper plating layer.
- the content is preferably 3 wt% or less.
- the thickness of the electroless copper plating layer is in the range of 0.1 to 1.0 ⁇ m.
- any of Cu, Ni, Pd and Ag is provided at the interface of the resin film on the electroless copper plating layer side. It is preferable that a metal made of copper is present.
- the copper-clad laminate according to any one of (1) to (8) described above further contains (9) a protective layer formed on the electroless copper plating layer.
- the electroless copper plating layer is formed on both sides of the resin film and is passed through the resin film. It is preferable that the through hole has a hole and at least a part of the electroless copper plating layer is formed on the inner wall of the through hole.
- the method for producing a copper-clad laminate in one embodiment of the present invention has (11) a specific dielectric constant of 3.5 or less and a dielectric tangent of 0.008 or less at a frequency of 10 GHz.
- a second surface modification step of applying a charge to the surface to which the carboxyl group and / or a hydroxyl group is applied by a wet method includes a catalyst adsorption step of adsorbing a catalyst on the surface to which the charge is applied, and the above. It includes a electroless copper plating step of forming an electroless copper plating layer on the surface on which a catalyst is adsorbed, and a heating step of heating the copper-clad laminate on which the electroless copper plating layer is formed. It is characterized by that.
- the alcohol is preferably aminoethanol.
- the surface of the resin film is provided with more hydroxyl groups than the carboxyl groups. Is preferable.
- the carboxyl group and / or the hydroxyl group was added in the second surface modification step (15). It is preferable that the positive charge is adsorbed on the surface and then the negative charge is adsorbed on the surface.
- a cationic surfactant is added to the surface to adsorb the positive charge, and the anionic surfactant is used. It is preferable to add it to the surface to adsorb the negative charge.
- the flexible circuit board according to the embodiment of the present invention is characterized in that a circuit made of the copper-clad laminate according to any one of (1) to (10) above is formed. And.
- the copper-clad laminate 10 of the present embodiment has a resin film 1 as a base material and an electroless copper plating layer 2 laminated on at least one surface of the resin film 1.
- a so-called low-dielectric resin film having excellent electrical characteristics in the high frequency range as the resin film 1 as the base material.
- films such as known liquid crystal polymers, fluororesins, polyimide resins, modified polyimide resins, epoxy resins, polytetrafluoroethylene resins, and polyphenylene ether resins having lower dielectric losses are preferably used. These resins may be monopolymers or copolymers. Further, the resin may be used alone, or a plurality of resins may be blended and used as a hybrid product.
- the electrical characteristics of the resin film 1 as the base material it is preferable that the relative permittivity at a frequency of 10 GHz is 3.5 or less and the dielectric loss tangent is 0.008 or less.
- the thickness of the resin film 1 is not particularly limited, but is preferably 5 ⁇ m to 100 ⁇ m in practical use.
- the electroless copper plating layer 2 in the present embodiment is preferably formed by electroless copper plating. That is, since the resin film 1 has an insulating property, a copper plating layer is formed by electroless plating.
- the electroless copper plating layer 2 may be a seed layer when a flexible circuit board is manufactured by a semi-additive method (SAP method or MSAP method), a subtractive method, a full additive method, or the like.
- the electroless copper plating layer 2 may be the plating of Cu alone or the copper alloy plating containing a predetermined amount or more of copper.
- the copper alloy include Cu—Ni alloys, Cu—Zn alloys, Cu—Sn alloys, and the like.
- the Ni content is 3 wt% or less, preferably 0.01 to 3 wt%, and more preferably 0.01 to 1. It is preferably .5 wt%, more preferably 0.01 to 0.3 wt%.
- the electroless copper plating layer 2 is a Cu—Ni alloy, it is considered that blistering is suppressed because the internal stress in the plating layer is also suppressed by containing Ni, which has a higher plating precipitation property than Cu. Therefore, it is preferable.
- the amount of Ni in the Cu—Ni alloy exceeds 3 wt%, magnetism may be generated in the Cu circuit, which may increase the transmission loss and complicate the etchability at the time of forming the copper wiring.
- the amount of Ni in the Cu—Ni alloy is preferably 3 wt% or less. Further, when the amount of Ni in the Cu—Ni alloy is less than 0.01 wt%, the plating precipitation property deteriorates.
- a known method such as a fluorescent X-ray apparatus (XRF) or a plasma emission spectroscopic analyzer (ICP) can be used.
- the electroless copper plating method for forming the electroless copper plating layer 2 a known method may be used as long as the electroless copper plating layer 2 having a predetermined thickness can be formed.
- the electroless copper plating method will be described in detail with reference to the items of the manufacturing method described later.
- the thickness of the electroless copper plating layer 2 is preferably in the range of 0.1 ⁇ m to 1.0 ⁇ m from the viewpoint of manufacturing efficiency and cost.
- the thickness of the electroless copper plating layer 2 is less than 0.1 ⁇ m, it is not preferable because it may not function as a seed layer when the flexible circuit board is manufactured by the semi-additive method. On the other hand, when the thickness of the electroless copper plating layer 2 exceeds 1.0 ⁇ m, it may be difficult to form a fine circuit pattern when manufacturing a flexible circuit board, which is not preferable.
- the thickness of the electroless copper plating layer 2 is more preferably 0.1 ⁇ m to 0.8 ⁇ m.
- the average surface roughness Ra of the above-mentioned resin film 1 at the plating layer side interface in contact with the electroless copper plating layer 2 is 1 to 150 nm, preferably 20 to 150 nm. It is characterized by being.
- the average surface roughness Ra at the interface on the plating layer side in contact with the electroless copper plating layer 2 is preferably 20 to 150 nm.
- the average surface roughness Ra at the interface on the plating layer side in contact with the electroless copper plating layer 2 is preferably 1 to 150 nm, more preferably. 1 to 50 nm is desirable. The reason for this is as follows.
- the transmission characteristics in the high frequency band above the GHz band are high in order to be suitably applicable to the circuit board corresponding to the high frequency as described above.
- the transmission signal propagates on the conductor surface as the frequency increases due to the skin effect, and the transmission loss increases as the conductor surface roughness increases. Therefore, in the present embodiment, in order to reduce the influence of transmission loss due to the skin effect, it is possible to reduce the average surface roughness Ra of the electroless copper plating layer 2 forming the wiring conductor at the interface with the resin film 1. preferable.
- the average surface roughness Ra of the above-mentioned resin film 1 at the interface on the plating layer side in contact with the electroless copper plating layer 2 is 1 nm to 150 nm. Is.
- the purpose is to achieve both roughness reduction (reduction of transmission loss) and adhesion between the electroless copper plating layer 2 and the resin film 1.
- the specific adhesion strength between the electroless copper plating layer 2 and the resin film 1 is preferably 4.2 N / cm or more in practical use. Further, the above-mentioned adhesion strength is more preferably 5.0 N / cm or more, and further preferably 6.4 N / cm or more.
- FIG. 2 schematically shows the state of the interface between the resin film 1 and the electroless copper plating layer in the copper-clad laminate 10 of the present embodiment. That is, it is preferable that a hydroxyl group and / or a carboxyl group is imparted to the interface of the resin film 1 on the electroless copper plating layer 2 side. This is due to the following reasons.
- the electroless copper plating layer 2 when the electroless copper plating layer 2 is formed on at least one surface of the resin film 1 by electroless plating, it is plated on the surface of the resin film 1.
- the metal palladium which is the core of formation, is applied.
- this metallic palladium those produced by a palladium catalyst can be applied.
- hydroxyl groups and / or carboxyl groups at the interface between the resin film 1 and the electroless copper plating layer 2 can be confirmed by a known surface analysis method.
- known analytical methods such as Fourier transform infrared spectrophotometer (FT-IR), X-ray photoelectron spectroscopy (ESCA), and time-of-flight secondary ion mass spectrometry (TOF-SIMS) can be used. is there.
- the peak at the mass 121 The strength is preferably 800 (0.12 amu bin) or more. That is, in the present embodiment, as a result of analysis by TOF-SIMS, it is preferable that a functional group having a mass of 121 and containing a hydroxyl group and / or a carboxyl group is present at the interface between the resin film 1 and the electroless copper plating layer 2.
- the functional group having a mass of 121 is preferably any of the following structural formula 1 or structural formula 2, but structural formula 1 is particularly preferable.
- the "functional group containing a hydroxyl group and / or a carboxyl group” imparted to the interface between the resin film 1 and the electroless copper plating layer 2 is not limited to the above. Further, as long as the "functional group containing a hydroxyl group” is added, the “functional group containing a carboxyl group” may not be added. And vice versa. Further, both a “functional group containing a hydroxyl group” and a “functional group containing a carboxyl group” may be added.
- the interface between the resin film 1 and the electroless copper plating layer 2 is provided with more "functional groups containing hydroxyl groups” than "functional groups containing carboxyl groups".
- the "functional group containing a hydroxyl group” is added and the "functional group containing a carboxyl group” is not added.
- an electrolytic copper plating layer 4 may be further formed on the electroless copper plating layer 2 described above. That is, when the flexible circuit board is manufactured by the semi-additive method, it is possible to use the electroless copper plating layer 2 as a seed layer and further form an electroless plating layer on the electroless copper plating layer 2.
- the method for forming the flexible circuit board using the copper-clad laminate of the present embodiment is not limited to the semi-additive method described above, and other known methods can be applied.
- the electroless copper plating layers are formed on both sides of the resin film and then the through holes H are formed as shown in FIG. That is, it is preferable that the resin film 1 has through holes in its cross section, and the through holes H are formed so that at least a part of the electroless copper plating layer 2 covers the inner surface of the through holes. It is preferable to form such a through hole H when the copper-clad laminate of the present embodiment is used for a flexible circuit board application. Since the position and size of the through hole H can be appropriately determined by the flexible circuit board to be manufactured, detailed description thereof will be omitted.
- the copper-clad laminate in the present embodiment includes the resin film 1 and the electroless copper plating layer 2 as described above, but is further on the surface of the electroless copper plating layer 2 (the side opposite to the resin film 1). ) May be formed with a known protective layer for preventing oxidation of the electroless copper plating layer 2.
- the protection of the electroless copper plating layer 2 is intended to suppress oxidation, and is formed by performing a rust preventive treatment by a known method.
- the method for producing the copper-plated laminate 10 in the present embodiment includes a first surface modification step (step 1) of imparting a carboxyl group and / or a hydroxyl group on at least one surface of the resin film 1, and the carboxyl group and / Or a second surface modification step (step 2) in which a charge is applied to the surface to which a hydroxyl group is applied by a wet method, and a catalyst adsorption step (step 3) in which a catalyst is adsorbed on the surface to which the charge is applied.
- the heating step (step 5) of heating is included.
- the resin film 1 used is preferably a so-called low-dielectric resin film.
- the relative permittivity at a frequency of 10 GHz is 3.5 or less and the dielectric loss tangent is 0.008 or less.
- a carboxyl group and / or a hydroxyl group is imparted onto at least one surface of the resin film 1.
- the method for imparting the carboxyl group and / or the hydroxyl group include a method in which a mixed solution of an alkaline aqueous solution and an amino alcohol is brought into contact with at least one surface of the resin film 1.
- the alkaline aqueous solution used in the first surface modification step may be either an inorganic alkali or an organic alkali.
- the inorganic alkali include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, or carbonates thereof.
- the organic alkali include tetraalkylammonium hydroxide and the like. The above-mentioned alkalis may be used alone or in combination of two or more.
- the amino alcohol used in the first surface modification step may be, specifically, an aliphatic amino alcohol or an aromatic amino alcohol. Moreover, it may be a derivative thereof.
- amino alcohol ethanolamine, heptaminol, isoetaline, butanolamine, propanolamine, sphingosine, methanolamine, dimethylethanolamine, N-methylethanolamine and the like can be used. Of these, it is particularly preferable to apply aminoethanol.
- the molar ratio within the above range, it is possible to achieve both the roughness reduction (reduction of transmission loss) and the adhesion between the electroless copper plating layer 2 and the resin film 1 which are the objects of the present invention. ..
- the reason is not clear at this time, but as a result of the examination by the inventors, it is presumed that the reason is as follows.
- the mixture having a molar ratio of (-NH 2 groups / -OH groups) within the above range is the first.
- the average surface roughness Ra of the surface on the electroless copper plating layer 2 side can be 1 nm to 150 nm as the state of the surface of the resin film 1. Therefore, when the wiring conductor is formed on the circuit board by the electroless copper plating layer, the transmission loss due to the skin effect is suppressed, and it is possible to exhibit preferable transmission characteristics.
- the present inventors have come up with the idea of achieving the object of the present invention by going through the first surface modification step as described above.
- a known method can be appropriately applied, for example, the resin film 1 is immersed in the mixed solution.
- Examples thereof include a method and a method of spraying the mixed solution onto the resin film 1 by spraying or the like.
- the method is not limited to these methods, and any method other than the above method may be applied as long as it can impart a carboxyl group and / or a hydroxyl group to the surface of the resin film 1.
- the precipitation property of the plating and the adhesion of the plating can be improved by adjusting the contact angle of the film surface.
- the contact angle at the plating layer side interface in contact with the electroless copper plating layer 2 is preferably 30 ° or less.
- the contact angle at the plating layer side interface in contact with the electroless copper plating layer 2 is preferably 45 ° or less.
- the second surface modification step in the present embodiment is preferably a step performed after the first surface modification step described above.
- the second surface modification step is a step of imparting a carboxyl group and / or a hydroxyl group on the surface of the resin film 1 in the first surface modification step, and then further adding an electric charge. It is preferable because it is possible to improve the adhesion between the resin film 1 and the electroless copper plating layer 2 by applying an electric charge.
- the metallic palladium which is the core of the plating growth, is present on the resin film 1. Then, in order for the metallic palladium to adhere firmly to the resin film 1, it is preferable that the surface of the resin film 1 has at least a negative charge.
- a step of applying a positive charge on the surface of the resin film 1 and a step of further applying a negative charge to the surface to which the positive charge is applied are performed. It is preferable to include it. By going through these steps, it is possible to reliably attach a negative charge to the surface of the resin film 1. Therefore, from the viewpoint of the above-mentioned adhesion of metallic palladium and the adhesion of the electroless copper plating layer 2. Is preferable.
- the resin film 1 after imparting a carboxyl group and / or a hydroxyl group to the surface is further known as a cationic surfactant. It is possible to apply a method of immersing in an agent, a method of bringing a known cationic surfactant into contact with the resin film 1 by spraying, or the like.
- the step of adsorbing a negative charge on the surface of the resin film 1 it is possible to apply a method of immersing in a known anionic surfactant, a method of spraying, or the like.
- the second surface modification step of the present embodiment is preferably performed by a wet method as described above. By performing the wet method, it is suitable for mass production by reel-to-reel or the like, and there is an advantage that the cost can be reduced.
- the catalyst adsorption step of the present embodiment is a step of further adsorbing the catalyst on the surface of the resin film 1 with respect to the resin film 1 to which at least a negative charge is applied to the surface by the second surface modification step described above. ..
- a known catalyst solution can be brought into contact with the surface of the resin film 1 by a known method.
- the catalyst Cu, Ni, Pd, Ag and the like can be used.
- the known catalyst solution for example, a tin-palladium-based catalyst solution or a palladium colloid-based catalyst solution can be used, but the catalyst solution is not limited thereto.
- the amount of the catalyst applied to the resin film 1 is preferably 15 ⁇ g / dm 2 or less as metallic palladium.
- the lower limit of the catalyst should be as small as possible in consideration of etching during circuit formation, but it must be applied to the extent that the electroless copper plating layer is well formed, and it may be 1 ⁇ g / dm 2 or more. preferable. If the amount of metallic palladium applied to the resin film 1 exceeds the above value, the insulation reliability between the circuits when the flexible circuit board is used may decrease, which is not preferable.
- the amount of metallic palladium can be obtained by a known measuring method. For example, it can be obtained by a method such as peeling only copper from the resin film 1, dissolving the palladium residue on the resin film 1 with nitric acid, and measuring the amount of the residue by ICP.
- the electroless copper plating step is preferably performed after the catalyst adsorption step.
- an example is given below as a condition of electroless plating in this embodiment.
- Bath composition Copper sulfate 5-10g / L Nickel sulfate 0.5-1.0 g / L Rochelle salt 10-30g / L Sodium hydroxide 3-8g / L pH: 7-13 Bath temperature: 29-35 ° C
- the immersion time of the resin film 1 in the plating bath may be appropriately determined so that the thickness of the electroless copper plating layer 2 is 0.1 to 1.0 ⁇ m.
- the plating layer formed in this electrolytically electroless copper plating step is not limited to plating Cu alone, and may be copper alloy plating.
- it may form a Cu—Ni alloy, a Cu—Zn alloy, a Cu—Sn alloy, or the like.
- a known plating bath can be appropriately applied.
- the purpose is to release the internal stress of the electrolytic copper plating layer, to cause structural transformation, and the like. It is preferable to have a heating step (step 5) for heating the entire copper-clad laminate on which the electrolytic copper plating layer is formed.
- the heating temperature for stress relaxation is preferably 100 to 200 ° C, more preferably 120 to 150 ° C.
- the heating time for stress relaxation is preferably 5 to 60 minutes, more preferably 10 to 30 minutes.
- the heating temperature for transforming the tissue is preferably 150 to 350 ° C, more preferably 150 to 300 ° C.
- the heating time for transforming the tissue is preferably 5 to 180 minutes, more preferably 10 to 30 minutes.
- the heating atmosphere may be, for example, an atmosphere or an atmosphere of an inert gas such as nitrogen.
- the electrolytic copper plating step of forming the electrolytic copper plating layer 4 by the electrolytic plating step is performed. You may have.
- the electrolytic copper plating step a known copper sulfate bath, copper pyrophosphate bath, or the like can be applied, and the electrolytic plating conditions (pH, temperature, current density, immersion time, etc.) are the thickness of the electrolytic plating layer. It can be selected as appropriate based on the above. Through the above steps, the copper-clad laminate 20 according to the present embodiment is manufactured.
- the above-mentioned step 5 is performed after the electrolytic copper plating layer 4 is formed on the resin film 1 (that is, after the electrolytic copper plating layer and the electrolytic copper plating tank are formed).
- the entire stretched laminate may be heated (baked).
- the electrolytic copper plating layer 4 may be formed on the resin film 1 and then the heating step described above may be performed, or the electrolytic copper plating layer 2 may be formed on the resin film 1.
- a heating step of heating the entire copper-clad laminate may be performed after the copper plating layer 4 is formed.
- the flexible circuit board in this embodiment is preferably a flexible circuit board in which a circuit is formed by the electroless copper plating layer 2 of the copper-clad laminate 10 described above.
- the surface roughness Ra between the resin film 1 and the electroless copper plating layer 2 is equal to or less than a predetermined value, so that the transmission loss as a flexible circuit board is reduced. It can be suppressed. Further, since it is possible to improve the adhesion between the resin film 1 and the electroless copper plating layer 2, it is preferable because a fine circuit pattern can be formed even when the semi-additive method is adopted.
- the electroless plating layer 2 A known resist patterning step of applying and patterning a resist is performed on the resist, and then the electrolytic copper plating step described above is performed to form an electrolytic plating layer 4 between the patterned resists.
- the method for forming the flexible circuit board of the present embodiment is not limited to the semi-additive method described above, and other known methods such as the full additive method and the subtractive method can be applied.
- Example 1 a liquid crystal polymer film (Vecstar CTQLCP, manufactured by Kuraray Co., Ltd., thickness: 50 ⁇ m) was prepared as the resin film 1.
- the electrical characteristics the relative permittivity at 10 GHz was 3.3, and the dielectric loss tangent at 10 GHz was 0.002.
- both sides of the prepared resin film 1 are immersed in a mixed solution of potassium hydroxide aqueous solution and monoethanolamine for 5 minutes as a first surface modification step, and carboxyl groups and / or hydroxyl groups are added to both surfaces. It was introduced and washed with immersion water.
- the temperature of the mixed solution used was 30 ° C., and the molar ratio of -OH group and -NH 2 group (-NH 2 group / -OH group) was 2.29.
- the peak intensity of the mass 121 of TOF-SIMS was 1000.
- both sides of the resin film 1 were immersed in an aqueous solution of a cationic surfactant of 10 g / L for 2 minutes to adsorb a positive charge.
- a cationic surfactant of 10 g / L for 2 minutes to adsorb a positive charge.
- Immersion After washing with water, it was immersed in an aqueous solution of an anionic surfactant of 3 g / L for 1 minute. In this way, after adsorbing the positive charge, the negative charge was adsorbed.
- the plating catalyst was immersed in an aqueous solution of palladium chloride (PdCl 2 ) (2 g / l, pH 12, 40 ° C.) for 5 minutes and then washed with immersion water.
- PdCl 2 palladium chloride
- an electroless Cu—Ni plating layer of 0.3 ⁇ m was formed by an electroless plating bath.
- the electroless plating conditions were as follows. The Ni content in the obtained electroless Cu—Ni plating layer was determined by using the above-mentioned plasma emission spectrophotometer (ICP) and found to be 1.18 wt%.
- an electrolytic copper plating layer was further formed with a thickness of 18 ⁇ m on the electroless Cu—Ni plating layer in the copper-clad laminate by an electrolytic plating bath.
- the electrolytic copper plating conditions were as follows. Bath composition: Copper sulfate hexahydrate 200 g / L Sulfuric acid 50g / L Chloride ion 50ppm Brightener 5 ml / L (Okuno Pharmaceutical Additive Top Luciner) Bath temperature: 20-25 ° C pH: 1 or less Current density: 2-3 A / dm 2
- Heating (annealing) treatment In this example, after the electroless copper plating layer was formed, the first heat treatment was performed under the following heating conditions, and after the electrolytic copper plating layer was formed, the second heat treatment was performed under the following heating conditions.
- This measurement sample was measured with an X-ray photoelectron spectroscope (manufactured by JEOL Ltd., JPS-9200, X-ray source: Mg, analysis area: ⁇ 3 mm) to obtain a C1s spectrum. Then, the intensity of the peak derived from the carboxyl group (COO (H) bond) appearing in the binding energy 288.8 eV and the intensity of the peak derived from the CC bond appearing in the binding energy 284.7 eV were calculated.
- an X-ray photoelectron spectroscope manufactured by JEOL Ltd., JPS-9200, X-ray source: Mg, analysis area: ⁇ 3 mm
- the surface of the measurement sample was analyzed by TOF-SIMS TRIFT-II (manufactured by ULVACPHI CO., LTD.). An untreated resin film sample was used as a control.
- the measurement conditions are as follows. Primary ion: 69 Ga Acceleration voltage: 15kV Measurement range: 100 ⁇ m x 100 ⁇ m Mass range: 0.5-300 (m / z)
- the electroless copper plating layer 2 was peeled off using a FeCl 3 solution in the same manner as described above to expose the resin film.
- the exposed resin film surface was cut out to a size of 20 mm ⁇ 20 mm and used as a measurement sample. 2.0 ⁇ L of pure water was dropped on the surface of this sample, and the contact angle was measured with a contact angle measuring device (DropMaster manufactured by Kyowa Interface Science Co., Ltd.).
- the contact angle of the untreated resin surface used in Example 1 was 65 °
- the contact angle of the untreated resin surface used in Example 5 was 58 °.
- ⁇ Tape peeling strength> The obtained copper-clad laminate 10 (thickness of electroless copper plating layer: 0.3 ⁇ m (in the case of Examples 1 to 5, Examples 11 and Comparative Examples 1 to 8) or 0.2 ⁇ m (Examples 6 to 6). 10 and Comparative Example 9))), an adhesive tape (manufactured by Nichiban Co., Ltd.) was attached to the surface of the electroless copper plating layer 2, and then the tape was peeled off to perform a tape peeling test, which was visually electroless. When the peeling of the copper plating layer 2 was not confirmed, the evaluation result was evaluated as ⁇ . The results are shown in Table 2.
- a copper-clad laminate 20 formed with electrolytic copper plating and subjected to a second heat treatment at 230 ° C. for 10 minutes is cut out into a sample having a size of 40 mm ⁇ 40 mm, and the cut-out sample is attached to an aluminum plate with polyimide tape. It was.
- the 90 ° peel strength was measured as the adhesive strength between the resin film and the electroless copper plating layer as follows.
- Example 2 The same procedure as in Example 1 was carried out except that the temperature of the mixed solution in the first surface modification step was changed to the temperature shown in Table 1. The results are shown in Tables 1 and 2.
- Example 3 The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution in the first surface modification step was changed to the values shown in Table 1. It was. The results are shown in Tables 1 and 2.
- Example 4 The same procedure as in Example 1 was carried out except that the temperature of the mixed solution in the first surface modification step was changed to the temperature shown in Table 1. The results are shown in Tables 1 and 2.
- Example 5 A modified polyimide (MPI) resin (FS-L manufactured by SKC Kolon PI, thickness: 50 ⁇ m) was prepared as the resin film 1.
- MPI polyimide
- the electrical characteristics the relative permittivity at 10 GHz was 3.4, and the dielectric loss tangent at 10 GHz was 0.0035.
- both sides of the prepared resin film 1 are immersed in a mixed solution of sodium hydroxide aqueous solution and monoethanolamine for 5 minutes as a first surface modification step, and carboxyl groups and / or hydroxyl groups are introduced on both surfaces. Then, it was washed with immersion water.
- the temperature of the mixed solution used at this time was 40 ° C., and the molar ratio of -OH group and -NH 2 group (-NH 2 group / -OH group) was 0.19.
- a positive charge was adsorbed on both surfaces of the resin film 1 by the same method as in Example 1, and then a negative charge was further adsorbed.
- the plating catalyst was immersed in an aqueous solution of palladium chloride (PdCl 2 ) (2 g / l, pH 12, 40 °) for 5 minutes and then washed with immersion water.
- PdCl 2 palladium chloride
- an electroless Cu—Ni plating layer of 0.3 ⁇ m was formed by an electroless plating bath.
- the electroless plating conditions were as follows. At this time, the Ni content in the electroless Cu—Ni plating layer was 1.18 wt%.
- Bath composition Copper sulfate 7.5 g / L Nickel sulfate 0.7g / L Rochelle salt 20g / L Sodium hydroxide 5g / L pH: 12.5 Temperature: 32 ° C Processing time: 10 minutes
- an electrolytic copper plating layer was further formed with a thickness of 18 ⁇ m on the electroless Cu—Ni plating layer in the above copper-clad laminate by an electrolytic plating bath in the same manner as in Example 1.
- Example 5 After forming the electroless copper plating layer, the first heat treatment was performed using a dry oven (DY300 manufactured by Yamato Scientific Co., Ltd.) under the following heating conditions. The second heat treatment after the above-mentioned electrolytic plating was omitted. ⁇ Heating conditions in the first heat treatment> Heating temperature: 150 ° C Heating time: 60 minutes Heating atmosphere: In the atmosphere By going through the above steps, the copper-clad laminate 10 in Example 5 was obtained. In this way, after obtaining the copper-clad laminate 10 of Example 5, the copper-clad laminate was evaluated in the same manner as in Example 1. The results of Example 5 are shown in Tables 1 and 2.
- a copper-clad laminate was obtained in the same manner as in Example 2 except that the annealing (heat treatment) was performed at ° C. for 180 minutes after electroless copper plating and before electrolytic copper plating. No heat treatment was performed after electrolytic copper plating. Then, in the same manner as in Example 1, the copper-clad laminate of Example 6 was evaluated. The results of Example 6 are shown in Tables 1 and 2.
- Example 7 A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.32 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.74 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 7 was evaluated. The results of Example 7 are shown in Tables 1 and 2.
- Example 8 A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.13 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.41 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 8 was evaluated. The results of Example 8 are shown in Tables 1 and 2.
- Example 9 A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.065 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.18 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 9 was evaluated. The results of Example 9 are shown in Tables 1 and 2.
- Example 10 A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.013 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.14 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 10 was evaluated. The results of Example 10 are shown in Tables 1 and 2.
- Example 11 Copper in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.0065 g / L and the thickness of the electroless Cu—Ni plating layer was 0.3 ⁇ m. A tension laminate was obtained. The Ni content in the obtained electroless Cu—Ni plating layer was 0.09 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 11 was evaluated. The results of Example 11 are shown in Tables 1 and 2.
- a polyimide film (Kapton, manufactured by Toray DuPont Co., Ltd., thickness: 50 ⁇ m) was prepared as the resin film 1.
- the electrical characteristics the relative permittivity at 1 MHz was 3.4, and the dielectric loss tangent at 1 MHz was 0.0024.
- the prepared resin film 1 was immersed in a potassium hydroxide aqueous solution (200 g / L) at 30 ° C. for 10 minutes and washed with immersion water.
- the plating catalyst is immersed in an aqueous solution of palladium chloride (PdCl 2 ), then immersed in an aqueous solution of dimethylamine borane (DMAB) as a catalytic activator (reducing agent), washed with immersion water, and then electroless nickel.
- An electroless nickel-phosphorus plating layer of 0.5 ⁇ m was formed by a phosphorus plating bath.
- the electroless plating conditions were as follows. The conditions of the catalyst adsorption step were the same as in Example 1. Further, the subsequent electrolytic copper plating and annealing (heat treatment) were the same as in Example 1.
- Example 6 The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution used as the first surface modification step was 0.45. ..
- Example 7 The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution used as the first surface modification step was 0.92. ..
- Example 8 The same procedure as in Example 1 was carried out except that the molar ratio of -OH group and -NH 2 group (-NH 2 group / -OH group) of the mixed solution used as the first surface modification step was set to 1.83. ..
- the surface roughness Ra between the resin film and the electroless copper plating layer is equal to or less than a predetermined value, so that transmission loss as a flexible circuit board can be suppressed and a high frequency is obtained. Can provide high transmission characteristics in. Further, since it is possible to improve the adhesion between the resin film and the electroless copper plating layer, it is possible to form a fine circuit pattern even when the full additive method or the semi-additive method is adopted as the circuit forming method. Is. According to the copper-clad laminate of the present invention, it is clear that it is suitably applied to a wiring board or the like that requires fine wiring having a multi-layer structure.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
- Chemically Coating (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Provided are a copper-clad laminate 10 capable of ensuring high adhesion between a resin film 1 and a copper plating layer 2 while suppressing transmission loss when applied to a flexible circuit board, and a method for producing the same. [Problem] [Solution] The copper-clad laminate is characterized by including a resin film 1 having a relative permittivity of 3.5 or lower and a dielectric loss tangent of 0.008 or lower at a frequency of 10 GHz and an electroless copper plating layer 2 laminated on at least one surface of the resin film 1, the average surface roughness Ra of the resin film 1 being 1-150 nm at the plating layer side interface in contact with the electroless copper plating layer 2, and by the adhesive strength of the resin film 1 and the electroless copper plating layer 2 being 4.2 N/cm or higher.
Description
本発明は、通信機器などに搭載されるフレキシブル回路基板用の銅張積層体と、その製造方法に関する。
The present invention relates to a copper-clad laminate for a flexible circuit board mounted on a communication device or the like, and a method for manufacturing the same.
近年における電子機器の小型化・高性能化は目覚ましく、例えば携帯電話や無線LANなど電波を用いた通信機器の発達が大きく寄与している。
特に昨今ではIoTによるビッグデータに代表される情報の大容量化に伴い、電子機器間における通信信号の高周波化が進んでおり、かような通信機器に搭載される回路基板には高周波領域における伝送損失(誘電損失)の低い材料が要求される。 In recent years, the miniaturization and high performance of electronic devices have been remarkable, and the development of communication devices using radio waves such as mobile phones and wireless LANs has greatly contributed.
In particular, in recent years, as the capacity of information represented by big data by IoT has increased, the frequency of communication signals between electronic devices has been increasing, and the circuit boards mounted on such communication devices are transmitted in the high frequency region. A material with low loss (dielectric loss) is required.
特に昨今ではIoTによるビッグデータに代表される情報の大容量化に伴い、電子機器間における通信信号の高周波化が進んでおり、かような通信機器に搭載される回路基板には高周波領域における伝送損失(誘電損失)の低い材料が要求される。 In recent years, the miniaturization and high performance of electronic devices have been remarkable, and the development of communication devices using radio waves such as mobile phones and wireless LANs has greatly contributed.
In particular, in recent years, as the capacity of information represented by big data by IoT has increased, the frequency of communication signals between electronic devices has been increasing, and the circuit boards mounted on such communication devices are transmitted in the high frequency region. A material with low loss (dielectric loss) is required.
ここで、この回路基板に生じる誘電損失は、「信号の周波数」、「基板材料の誘電率の平方根」および「誘電正接」で構成された3要素の積に比例することが知られている。そのため、上記した優れた誘電特性を得るには、必然的に誘電率と誘電正接が共にできるだけ低い材料が要求される。
Here, it is known that the dielectric loss generated in this circuit board is proportional to the product of three elements composed of "signal frequency", "square root of dielectric constant of substrate material" and "dielectric loss tangent". Therefore, in order to obtain the above-mentioned excellent dielectric properties, a material having both a dielectric constant and a dielectric loss tangent as low as possible is inevitably required.
かような回路基板においては、一般的に銅などの金属によって回路が形成される。この回路基板における銅層は、例えば特許文献1に示されるラミネート法や、特許文献2に示されるキャスト法、あるいは特許文献3に示されるめっき法などによって形成されている。
In such a circuit board, the circuit is generally formed of a metal such as copper. The copper layer in this circuit board is formed by, for example, the laminating method shown in Patent Document 1, the casting method shown in Patent Document 2, the plating method shown in Patent Document 3, and the like.
上述したとおり近年では高周波通信における伝送損失を抑えることが重要な開発要素となっており、低伝送損失を有する樹脂フィルム(以下、「低誘電フィルム」又は「低誘電樹脂フィルム」とも称する)がフレキシブル回路基板の基材として使用されつつある。
しかしながら上記した特許文献を含む従来技術では、上記した低誘電フィルムと回路を形成するための金属層(例えば銅層)との充分な密着力を確保できてはいない。例えば上記した特許文献1に例示されるラミネート法や特許文献2に例示されるキャスト法では、銅層と低誘電フィルムにおける界面を粗化しなければならず、界面の平滑性が劣化して伝送損失が生じてしまう。 As mentioned above, in recent years, suppressing transmission loss in high-frequency communication has become an important development factor, and resin films with low transmission loss (hereinafter, also referred to as "low-dielectric film" or "low-dielectric resin film") are flexible. It is being used as a base material for circuit boards.
However, in the prior art including the above-mentioned patent documents, sufficient adhesion between the above-mentioned low-dielectric film and a metal layer (for example, a copper layer) for forming a circuit cannot be secured. For example, in the laminating method exemplified inPatent Document 1 and the casting method exemplified in Patent Document 2 described above, the interface between the copper layer and the low-dielectric film must be roughened, and the smoothness of the interface deteriorates, resulting in transmission loss. Will occur.
しかしながら上記した特許文献を含む従来技術では、上記した低誘電フィルムと回路を形成するための金属層(例えば銅層)との充分な密着力を確保できてはいない。例えば上記した特許文献1に例示されるラミネート法や特許文献2に例示されるキャスト法では、銅層と低誘電フィルムにおける界面を粗化しなければならず、界面の平滑性が劣化して伝送損失が生じてしまう。 As mentioned above, in recent years, suppressing transmission loss in high-frequency communication has become an important development factor, and resin films with low transmission loss (hereinafter, also referred to as "low-dielectric film" or "low-dielectric resin film") are flexible. It is being used as a base material for circuit boards.
However, in the prior art including the above-mentioned patent documents, sufficient adhesion between the above-mentioned low-dielectric film and a metal layer (for example, a copper layer) for forming a circuit cannot be secured. For example, in the laminating method exemplified in
一方で特許文献3に示されるめっき法によれば、高誘電率の樹脂フィルムに対しては銅層との間で比較的良好な密着力が確保できる。しかしながら、低誘電フィルムは、分子構造が比較的剛直であり、表面の分極が少ないことから、めっき法で銅層を形成した場合には密着力の確保が課題であった。すなわち低誘電フィルムを基材とした場合、密着力を確保するための従来の手法として、界面を粗面化することが広く行われていたが、伝送損失との間でトレードオフの関係を有するため、それらの両立が望まれていた。
なお、上記以外の製法で例えばスパッタ法も例示できるが、上記の手法に比して製造工程が煩雑になる結果、その生産性やコスト面で多くの課題が残ってしまう。 On the other hand, according to the plating method shown in Patent Document 3, a relatively good adhesion with the copper layer can be ensured for a resin film having a high dielectric constant. However, since the low-dielectric film has a relatively rigid molecular structure and little surface polarization, it has been a problem to secure an adhesive force when a copper layer is formed by a plating method. That is, when a low-dielectric film is used as a base material, roughening the interface has been widely performed as a conventional method for ensuring adhesion, but there is a trade-off relationship with transmission loss. Therefore, both of them have been desired.
For example, a sputtering method can be exemplified by a manufacturing method other than the above, but as a result of the manufacturing process becoming more complicated than the above method, many problems remain in terms of productivity and cost.
なお、上記以外の製法で例えばスパッタ法も例示できるが、上記の手法に比して製造工程が煩雑になる結果、その生産性やコスト面で多くの課題が残ってしまう。 On the other hand, according to the plating method shown in Patent Document 3, a relatively good adhesion with the copper layer can be ensured for a resin film having a high dielectric constant. However, since the low-dielectric film has a relatively rigid molecular structure and little surface polarization, it has been a problem to secure an adhesive force when a copper layer is formed by a plating method. That is, when a low-dielectric film is used as a base material, roughening the interface has been widely performed as a conventional method for ensuring adhesion, but there is a trade-off relationship with transmission loss. Therefore, both of them have been desired.
For example, a sputtering method can be exemplified by a manufacturing method other than the above, but as a result of the manufacturing process becoming more complicated than the above method, many problems remain in terms of productivity and cost.
本発明は上記した課題を一例として解決することを目的としており、具体的には、基材となる低誘電フィルムと回路形成のための金属層との界面において、伝送損失を抑制するために平滑性を確保しつつ、高い密着力が確保可能な銅張積層体及びその製造方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems as an example. Specifically, the interface between a low-dielectric film as a base material and a metal layer for forming a circuit is smoothed in order to suppress transmission loss. An object of the present invention is to provide a copper-clad laminate capable of ensuring high adhesion while ensuring properties, and a method for producing the same.
上記した課題を解決するため、本発明の一実施形態における銅張積層体は、(1)周波数10GHzにおける比誘電率が3.5以下、且つ誘電正接が0.008以下である樹脂フィルムと、前記樹脂フィルムの少なくとも一方の面に積層された無電解銅めっき層と、を含み、前記樹脂フィルムのうち前記無電解銅めっき層と接するめっき層側界面における平均表面粗さRaが1~150nmであり、且つ、前記樹脂フィルムと前記無電解銅めっき層との密着強度が4.2N/cm以上であることを特徴とする。
In order to solve the above-mentioned problems, the copper-plated laminate according to the embodiment of the present invention includes (1) a resin film having a relative dielectric constant of 3.5 or less and a dielectric tangent of 0.008 or less at a frequency of 10 GHz. An electroless copper plating layer laminated on at least one surface of the resin film is included, and the average surface roughness Ra at the plating layer side interface of the resin film in contact with the electroless copper plating layer is 1 to 150 nm. It is characterized in that the adhesion strength between the resin film and the electroless copper plating layer is 4.2 N / cm or more.
なお上記した(1)に記載の銅張積層体においては、(2)前記樹脂フィルムのめっき層側界面における飛行時間型質量分析法(TOF-SIMS)による質量121の強度が、800以上であることが好ましい。
In the copper-clad laminate according to (1) above, (2) the strength of the mass 121 by the time-of-flight mass spectrometry (TOF-SIMS) at the interface on the plating layer side of the resin film is 800 or more. Is preferable.
また上記した(1)又は(2)に記載の銅張積層体においては、(3)前記樹脂フィルムのめっき層側界面は、水酸基及び/又はカルボキシル基水酸基が付与されていることが好ましい。
Further, in the copper-clad laminate according to (1) or (2) described above, it is preferable that (3) a hydroxyl group and / or a carboxyl group hydroxyl group is added to the interface on the plating layer side of the resin film.
また上記した(3)に記載の銅張積層体においては、(4)前記めっき層側界面において、前記水酸基は前記カルボキシル基よりも多く付与されていることが好ましい。
Further, in the copper-clad laminate described in (3) above, it is preferable that the hydroxyl group is added in a larger amount than the carboxyl group at the interface on the plating layer side (4).
また上記した(1)~(4)のいずれかに記載の銅張積層体においては、(5)前記樹脂フィルムが、ポリイミド、変性ポリイミド、液晶ポリマー、フッ素系樹脂の何れか、もしくはその混成物であることが好ましい。
Further, in the copper-clad laminate according to any one of (1) to (4) above, (5) the resin film is any one of polyimide, modified polyimide, liquid crystal polymer, fluororesin, or a mixture thereof. Is preferable.
また上記した(1)~(5)のいずれかに記載の銅張積層体においては、(6)前記無電解銅めっき層が、Cu-Ni合金であり、当該無電解銅めっき層におけるNiの含有率が3wt%以下であることが好ましい。
Further, in the copper-clad laminate according to any one of (1) to (5) above, (6) the electroless copper plating layer is a Cu—Ni alloy, and Ni in the electroless copper plating layer. The content is preferably 3 wt% or less.
また上記した(1)~(6)のいずれかに記載の銅張積層体においては、(7)前記無電解銅めっき層の厚みが0.1~1.0μmの範囲であることが好ましい。
Further, in the copper-clad laminate according to any one of (1) to (6) above, it is preferable that (7) the thickness of the electroless copper plating layer is in the range of 0.1 to 1.0 μm.
また上記した(1)~(7)のいずれかに記載の銅張積層体においては、(8)前記樹脂フィルムの、無電解銅めっき層側の界面に、Cu、Ni、Pd、Agのいずれかからなる金属が存在していることが好ましい。
Further, in the copper-clad laminate according to any one of (1) to (7) described above, (8) any of Cu, Ni, Pd and Ag is provided at the interface of the resin film on the electroless copper plating layer side. It is preferable that a metal made of copper is present.
また上記した(1)~(8)のいずれかに記載の銅張積層体においては、(9)前記無電解銅めっき層上に形成された保護層をさらに含むことが好ましい。
Further, it is preferable that the copper-clad laminate according to any one of (1) to (8) described above further contains (9) a protective layer formed on the electroless copper plating layer.
また上記した(1)~(9)のいずれかに記載の銅張積層体においては、(10)前記無電解銅めっき層は前記樹脂フィルムの両面に形成されるとともに、前記樹脂フィルムにはスルーホールを有し、前記スルーホールの内壁には前記無電解銅めっき層の少なくとも一部が形成されてなることが好ましい。
Further, in the copper-clad laminate according to any one of (1) to (9) described above, (10) the electroless copper plating layer is formed on both sides of the resin film and is passed through the resin film. It is preferable that the through hole has a hole and at least a part of the electroless copper plating layer is formed on the inner wall of the through hole.
さらに上記した課題を解決するため、本発明の一実施形態における銅張積層体の製造方法は、(11)周波数10GHzにおける比誘電率が3.5以下、且つ、誘電正接が0.008以下である樹脂フィルムに無電解銅めっき層を形成して製造される銅張積層体の製造方法であって、前記樹脂フィルムの表面にカルボキシル基及び/又は水酸基を付与する第1表面改質工程と、前記カルボキシル基及び/又は水酸基が付与された前記表面に対して湿式方式により電荷を付与する第2表面改質工程と、前記電荷が付与された前記表面に触媒を吸着させる触媒吸着工程と、前記触媒が吸着された前記表面に対して無電解銅めっき層を形成する無電解銅めっき工程と、前記無電解銅めっき層が形成された前記銅張積層体を加熱する加熱工程と、を含む、ことを特徴とする。
Further, in order to solve the above-mentioned problems, the method for producing a copper-clad laminate in one embodiment of the present invention has (11) a specific dielectric constant of 3.5 or less and a dielectric tangent of 0.008 or less at a frequency of 10 GHz. A method for producing a copper-clad laminate produced by forming a copper-free copper plating layer on a resin film, which comprises a first surface modification step of imparting a carboxyl group and / or a hydroxyl group to the surface of the resin film. A second surface modification step of applying a charge to the surface to which the carboxyl group and / or a hydroxyl group is applied by a wet method, a catalyst adsorption step of adsorbing a catalyst on the surface to which the charge is applied, and the above. It includes a electroless copper plating step of forming an electroless copper plating layer on the surface on which a catalyst is adsorbed, and a heating step of heating the copper-clad laminate on which the electroless copper plating layer is formed. It is characterized by that.
なお上記した(11)に記載の銅張積層体の製造方法においては、(12)前記第1表面改質工程において、アルカリ水溶液とアルコールの混合液を用いることが好ましい。
In the method for producing a copper-clad laminate according to (11) above, it is preferable to use a mixed solution of an alkaline aqueous solution and alcohol in (12) the first surface modification step.
また、上記した(12)に記載の銅張積層体の製造方法においては、(13)前記アルコールは、アミノエタノールであることが好ましい。
Further, in the method for producing a copper-clad laminate according to (12) above, (13) the alcohol is preferably aminoethanol.
また、上記した(11)~(13)のいずれかに記載の銅張積層体の製造方法においては、(14)前記樹脂フィルムの表面に対して前記カルボキシル基よりも前記水酸基のほうが多く付与されることが好ましい。
Further, in the method for producing a copper-clad laminate according to any one of (11) to (13) described above, (14) the surface of the resin film is provided with more hydroxyl groups than the carboxyl groups. Is preferable.
また、上記した(11)~(14)のいずれかに記載の銅張積層体の製造方法においては、(15)前記第2表面改質工程において、前記カルボキシル基及び/又は水酸基が付与された表面にプラス電荷を吸着させた後に、マイナス電荷を前記表面に吸着させることが好ましい。
Further, in the method for producing a copper-clad laminate according to any one of (11) to (14) above, the carboxyl group and / or the hydroxyl group was added in the second surface modification step (15). It is preferable that the positive charge is adsorbed on the surface and then the negative charge is adsorbed on the surface.
また、上記した(15)に記載の銅張積層体の製造方法においては、(16)カチオン系界面活性剤を前記表面に添加して前記プラス電荷を吸着させるとともに、アニオン系界面活性剤を前記表面に添加して前記マイナス電荷を吸着させることが好ましい。
Further, in the method for producing a copper-clad laminate according to (15) above, (16) a cationic surfactant is added to the surface to adsorb the positive charge, and the anionic surfactant is used. It is preferable to add it to the surface to adsorb the negative charge.
さらに上記した課題を解決するため、本発明の一実施形態におけるフレキシブル回路基板は、上記した(1)~(10)のいずれかに記載の銅張積層体による回路が形成されていることを特徴とする。
Further, in order to solve the above-mentioned problems, the flexible circuit board according to the embodiment of the present invention is characterized in that a circuit made of the copper-clad laminate according to any one of (1) to (10) above is formed. And.
本発明によれば、低誘電フィルムと無電解銅めっき層との界面を粗化することなく高い密着力を確保することが可能となる。
According to the present invention, it is possible to secure a high adhesion force without roughening the interface between the low-dielectric film and the electroless copper plating layer.
以下、図1を用いて本実施形態の銅張積層体10について説明する。
<銅張積層体>
本実施形態に係る銅張積層体10は、基材となる樹脂フィルム1と、当該樹脂フィルム1の少なくとも一方の面に積層されてなる無電解銅めっき層2を有する。本実施形態において、基材となる樹脂フィルム1は、高周波域の電気特性に優れるいわゆる低誘電樹脂フィルムを用いることが好ましい。
具体的には、より誘電損失の低いそれぞれ公知の液晶ポリマー、フッ素系樹脂、ポリイミド樹脂、変性ポリイミド樹脂、エポキシ樹脂、ポリテトラフルオロエチレン樹脂、ポリフェニレンエーテル樹脂等のフィルムが好ましく用いられる。これらの樹脂はモノポリマーであってもよいし、コポリマーであってもよい。また、樹脂は単独で使用してもよいし、複数樹脂をブレンドし混成物として使用してもよい。 Hereinafter, the copper-clad laminate 10 of the present embodiment will be described with reference to FIG.
<Copper-clad laminate>
The copper-clad laminate 10 according to the present embodiment has a resin film 1 as a base material and an electroless copper plating layer 2 laminated on at least one surface of the resin film 1. In the present embodiment, it is preferable to use a so-called low-dielectric resin film having excellent electrical characteristics in the high frequency range as the resin film 1 as the base material.
Specifically, films such as known liquid crystal polymers, fluororesins, polyimide resins, modified polyimide resins, epoxy resins, polytetrafluoroethylene resins, and polyphenylene ether resins having lower dielectric losses are preferably used. These resins may be monopolymers or copolymers. Further, the resin may be used alone, or a plurality of resins may be blended and used as a hybrid product.
<銅張積層体>
本実施形態に係る銅張積層体10は、基材となる樹脂フィルム1と、当該樹脂フィルム1の少なくとも一方の面に積層されてなる無電解銅めっき層2を有する。本実施形態において、基材となる樹脂フィルム1は、高周波域の電気特性に優れるいわゆる低誘電樹脂フィルムを用いることが好ましい。
具体的には、より誘電損失の低いそれぞれ公知の液晶ポリマー、フッ素系樹脂、ポリイミド樹脂、変性ポリイミド樹脂、エポキシ樹脂、ポリテトラフルオロエチレン樹脂、ポリフェニレンエーテル樹脂等のフィルムが好ましく用いられる。これらの樹脂はモノポリマーであってもよいし、コポリマーであってもよい。また、樹脂は単独で使用してもよいし、複数樹脂をブレンドし混成物として使用してもよい。 Hereinafter, the copper-
<Copper-clad laminate>
The copper-
Specifically, films such as known liquid crystal polymers, fluororesins, polyimide resins, modified polyimide resins, epoxy resins, polytetrafluoroethylene resins, and polyphenylene ether resins having lower dielectric losses are preferably used. These resins may be monopolymers or copolymers. Further, the resin may be used alone, or a plurality of resins may be blended and used as a hybrid product.
基材となる樹脂フィルム1の電気特性としては、具体的には、周波数10GHzにおける比誘電率が3.5以下、且つ誘電正接が0.008以下であることが好ましい。
樹脂フィルム1の厚みとしては、特に制限はないが、実用上においては5μm~100μmであることが好ましい。 Specifically, as the electrical characteristics of theresin film 1 as the base material, it is preferable that the relative permittivity at a frequency of 10 GHz is 3.5 or less and the dielectric loss tangent is 0.008 or less.
The thickness of theresin film 1 is not particularly limited, but is preferably 5 μm to 100 μm in practical use.
樹脂フィルム1の厚みとしては、特に制限はないが、実用上においては5μm~100μmであることが好ましい。 Specifically, as the electrical characteristics of the
The thickness of the
次に、樹脂フィルム1の少なくとも一方の面に積層されてなる無電解銅めっき層2について説明する。本実施形態における無電解銅めっき層2は無電解銅めっきにより形成されることが好ましい。すなわち、樹脂フィルム1が絶縁性を有するため、無電解めっきにより銅めっき層を形成させる。なおこの無電解銅めっき層2は、フレキシブル回路基板をセミアディティブ法(SAP法又はMSAP法)、サブトラクティブ法や、フルアディティブ法などにより製造する際のシード層となるものであってもよい。
Next, the electroless copper plating layer 2 laminated on at least one surface of the resin film 1 will be described. The electroless copper plating layer 2 in the present embodiment is preferably formed by electroless copper plating. That is, since the resin film 1 has an insulating property, a copper plating layer is formed by electroless plating. The electroless copper plating layer 2 may be a seed layer when a flexible circuit board is manufactured by a semi-additive method (SAP method or MSAP method), a subtractive method, a full additive method, or the like.
本実施形態において無電解銅めっき層2は、Cu単体のめっきであってもよいし、銅の量が所定量以上含有される銅合金めっきであってもよい。銅合金としては、Cu-Ni合金、Cu-Zn合金、Cu-Sn合金、等を挙げることができる。
In the present embodiment, the electroless copper plating layer 2 may be the plating of Cu alone or the copper alloy plating containing a predetermined amount or more of copper. Examples of the copper alloy include Cu—Ni alloys, Cu—Zn alloys, Cu—Sn alloys, and the like.
なお、無電解銅めっき層2がCu-Ni合金で形成されている場合において、Niの含有率としては3wt%以下であり、好ましくは0.01~3wt%、より好ましくは0.01~1.5wt%、さらに好ましくは0.01~0.3wt%であることが好ましい。
無電解銅めっき層2をCu-Ni合金とした場合、Cuよりめっき析出性の高いNiを含有させることで、めっき層中の内部応力も抑制されることから、フクレが抑制されると考えられるため、好ましい。一方でCu-Ni合金中のNi量が3wt%を超えると、Cu回路に磁性が発生し、伝送損失が高まる可能性があるとともに、銅配線形成時のエッチング性が煩雑になるおそれがあるため、Cu-Ni合金中のNi量は3wt%以下であることが好ましい。また、Cu-Ni合金中のNi量が0.01wt%を下回ると、めっき析出性が悪化する。
なお、無電解めっき層2中のNi含有率を測定する手法としては、例えば蛍光X線装置(XRF)やプラズマ発光分光分析装置(ICP)等の公知の手法を用いることができる。 When the electrolesscopper plating layer 2 is formed of a Cu—Ni alloy, the Ni content is 3 wt% or less, preferably 0.01 to 3 wt%, and more preferably 0.01 to 1. It is preferably .5 wt%, more preferably 0.01 to 0.3 wt%.
When the electrolesscopper plating layer 2 is a Cu—Ni alloy, it is considered that blistering is suppressed because the internal stress in the plating layer is also suppressed by containing Ni, which has a higher plating precipitation property than Cu. Therefore, it is preferable. On the other hand, if the amount of Ni in the Cu—Ni alloy exceeds 3 wt%, magnetism may be generated in the Cu circuit, which may increase the transmission loss and complicate the etchability at the time of forming the copper wiring. , The amount of Ni in the Cu—Ni alloy is preferably 3 wt% or less. Further, when the amount of Ni in the Cu—Ni alloy is less than 0.01 wt%, the plating precipitation property deteriorates.
As a method for measuring the Ni content in theelectroless plating layer 2, for example, a known method such as a fluorescent X-ray apparatus (XRF) or a plasma emission spectroscopic analyzer (ICP) can be used.
無電解銅めっき層2をCu-Ni合金とした場合、Cuよりめっき析出性の高いNiを含有させることで、めっき層中の内部応力も抑制されることから、フクレが抑制されると考えられるため、好ましい。一方でCu-Ni合金中のNi量が3wt%を超えると、Cu回路に磁性が発生し、伝送損失が高まる可能性があるとともに、銅配線形成時のエッチング性が煩雑になるおそれがあるため、Cu-Ni合金中のNi量は3wt%以下であることが好ましい。また、Cu-Ni合金中のNi量が0.01wt%を下回ると、めっき析出性が悪化する。
なお、無電解めっき層2中のNi含有率を測定する手法としては、例えば蛍光X線装置(XRF)やプラズマ発光分光分析装置(ICP)等の公知の手法を用いることができる。 When the electroless
When the electroless
As a method for measuring the Ni content in the
本実施形態において、無電解銅めっき層2を形成させるための無電解銅めっきの方法としては、所定の厚みを有する無電解銅めっき層2を形成できる限りにおいて公知の方法を用いてよい。なお無電解銅めっきの方法については詳細には、後述する製造方法の項目について説明する。
なお本実施形態において、無電解銅めっき層2の厚みとしては0.1μm~1.0μmの範囲であることが、製造上の効率やコストの観点からは好ましい。 In the present embodiment, as the electroless copper plating method for forming the electrolesscopper plating layer 2, a known method may be used as long as the electroless copper plating layer 2 having a predetermined thickness can be formed. The electroless copper plating method will be described in detail with reference to the items of the manufacturing method described later.
In the present embodiment, the thickness of the electrolesscopper plating layer 2 is preferably in the range of 0.1 μm to 1.0 μm from the viewpoint of manufacturing efficiency and cost.
なお本実施形態において、無電解銅めっき層2の厚みとしては0.1μm~1.0μmの範囲であることが、製造上の効率やコストの観点からは好ましい。 In the present embodiment, as the electroless copper plating method for forming the electroless
In the present embodiment, the thickness of the electroless
無電解銅めっき層2の厚みが0.1μm未満である場合には、フレキシブル回路基板をセミアディティブ法により製造する際のシード層としての機能を発揮し得ない可能性があるため好ましくない。一方で、無電解銅めっき層2の厚みが1.0μmを超える場合には、フレキシブル回路基板を製造する際に、微細な回路パターンの形成等が困難となる可能性があるため、好ましくない。
When the thickness of the electroless copper plating layer 2 is less than 0.1 μm, it is not preferable because it may not function as a seed layer when the flexible circuit board is manufactured by the semi-additive method. On the other hand, when the thickness of the electroless copper plating layer 2 exceeds 1.0 μm, it may be difficult to form a fine circuit pattern when manufacturing a flexible circuit board, which is not preferable.
なお、上記無電解銅めっき層2の厚みとしては、0.1μm~0.8μmであることがさらに好ましい。特にSAP法での回路形成において、エッチング時間が短い方(厚みが薄い方)が、微細かつ、回路の断面方向へのインピーダンスのばらつきが小さいパターンの形成が可能となるためである。
The thickness of the electroless copper plating layer 2 is more preferably 0.1 μm to 0.8 μm. In particular, in circuit formation by the SAP method, the shorter the etching time (thinner), the finer the pattern can be formed with less variation in impedance in the cross-sectional direction of the circuit.
本実施形態の銅張積層体10において、上記した樹脂フィルム1の、無電解銅めっき層2と接するめっき層側界面における平均表面粗さRaは、1~150nmであり、好適には20~150nmであることを特徴とする。特に樹脂フィルム1が液晶ポリマーである場合においては、無電解銅めっき層2と接するめっき層側界面における平均表面粗さRaは、20~150nmであることが望ましい。また、特に樹脂フィルム1が変性ポリイミド(MPI)である場合においては、無電解銅めっき層2と接するめっき層側界面における平均表面粗さRaは、1~150nmであることが望ましく、より好ましくは1~50nmが望ましい。
この理由としては以下のとおりである。 In the copper-cladlaminate 10 of the present embodiment, the average surface roughness Ra of the above-mentioned resin film 1 at the plating layer side interface in contact with the electroless copper plating layer 2 is 1 to 150 nm, preferably 20 to 150 nm. It is characterized by being. In particular, when the resin film 1 is a liquid crystal polymer, the average surface roughness Ra at the interface on the plating layer side in contact with the electroless copper plating layer 2 is preferably 20 to 150 nm. Further, particularly when the resin film 1 is a modified polyimide (MPI), the average surface roughness Ra at the interface on the plating layer side in contact with the electroless copper plating layer 2 is preferably 1 to 150 nm, more preferably. 1 to 50 nm is desirable.
The reason for this is as follows.
この理由としては以下のとおりである。 In the copper-clad
The reason for this is as follows.
すなわち、本実施形態の銅張積層体においては、上述したように高周波対応の回路基板に好適に適用可能とするため、GHz帯以上の高周波における伝送特性が高いことが望まれる。
That is, in the copper-clad laminate of the present embodiment, it is desired that the transmission characteristics in the high frequency band above the GHz band are high in order to be suitably applicable to the circuit board corresponding to the high frequency as described above.
一般的に、伝送信号は表皮効果により高周波になるほど導体表面を伝搬するようになり、導体表面の粗さが大きいほど、伝送損失が増大することが知られている。そのため本実施形態において、表皮効果による伝送損失の影響を小さくするためには、配線導体を形成する無電解銅めっき層2の、樹脂フィルム1との界面における平均表面粗さRaを低減することが好ましい。
In general, it is known that the transmission signal propagates on the conductor surface as the frequency increases due to the skin effect, and the transmission loss increases as the conductor surface roughness increases. Therefore, in the present embodiment, in order to reduce the influence of transmission loss due to the skin effect, it is possible to reduce the average surface roughness Ra of the electroless copper plating layer 2 forming the wiring conductor at the interface with the resin film 1. preferable.
一方で、無電解銅めっき層2と、樹脂フィルム1との間で、界面の粗化によってアンカー効果を得ることは、金属と樹脂との密着性を確保するために従来広く行われている。このように、本実施形態の銅張積層体では、無電解銅めっき層2と、樹脂フィルム1との間において、粗さ(密着性)と伝送損失とがトレードオフの関係である。
本発明者らは、上記両方の特性をより高度な次元で両立させるために、鋭意検討を行った。その結果、本実施形態においては上記した樹脂フィルム1の、無電解銅めっき層2と接するめっき層側界面における平均表面粗さRaを、1nm~150nmとすることが好ましいとの知見に至ったものである。 On the other hand, obtaining an anchor effect by roughening the interface between the electrolesscopper plating layer 2 and the resin film 1 has been widely practiced in order to ensure the adhesion between the metal and the resin. As described above, in the copper-clad laminate of the present embodiment, the roughness (adhesion) and the transmission loss are in a trade-off relationship between the electroless copper plating layer 2 and the resin film 1.
The present inventors have conducted diligent studies in order to achieve both of the above characteristics at a higher level. As a result, in the present embodiment, it has been found that it is preferable that the average surface roughness Ra of the above-mentionedresin film 1 at the interface on the plating layer side in contact with the electroless copper plating layer 2 is 1 nm to 150 nm. Is.
本発明者らは、上記両方の特性をより高度な次元で両立させるために、鋭意検討を行った。その結果、本実施形態においては上記した樹脂フィルム1の、無電解銅めっき層2と接するめっき層側界面における平均表面粗さRaを、1nm~150nmとすることが好ましいとの知見に至ったものである。 On the other hand, obtaining an anchor effect by roughening the interface between the electroless
The present inventors have conducted diligent studies in order to achieve both of the above characteristics at a higher level. As a result, in the present embodiment, it has been found that it is preferable that the average surface roughness Ra of the above-mentioned
本発明者の継続した検討の結果、平均表面粗さRaが1nm未満である場合には、無電解銅めっき層2と樹脂フィルム1との間で好ましい密着性を得ることができないことに帰結した。一方で、平均表面粗さRaが150nmを超える場合には、上記したように無電解銅めっき層2により回路基板上に配線導体が形成された場合において、表皮効果による伝送損失により、高周波における好ましい伝送特性を得ることができない可能性がある。
As a result of continuous studies by the present inventor, it has been concluded that when the average surface roughness Ra is less than 1 nm, favorable adhesion cannot be obtained between the electroless copper plating layer 2 and the resin film 1. .. On the other hand, when the average surface roughness Ra exceeds 150 nm, when the wiring conductor is formed on the circuit board by the electroless copper plating layer 2 as described above, it is preferable at high frequencies due to the transmission loss due to the skin effect. It may not be possible to obtain transmission characteristics.
本実施形態においては、上記したように無電解銅めっき層2と樹脂フィルム1との間で粗さ低減(伝送損失の低減)と密着性の両立を目的としているものである。
無電解銅めっき層2と樹脂フィルム1との間の具体的な密着強度としては、4.2N/cm以上であることが実用上においては好ましい。さらには、上記した密着強度として、5.0N/cm以上であることがより好ましく、6.4N/cm以上であることがさらに好ましい。 In the present embodiment, as described above, the purpose is to achieve both roughness reduction (reduction of transmission loss) and adhesion between the electrolesscopper plating layer 2 and the resin film 1.
The specific adhesion strength between the electrolesscopper plating layer 2 and the resin film 1 is preferably 4.2 N / cm or more in practical use. Further, the above-mentioned adhesion strength is more preferably 5.0 N / cm or more, and further preferably 6.4 N / cm or more.
無電解銅めっき層2と樹脂フィルム1との間の具体的な密着強度としては、4.2N/cm以上であることが実用上においては好ましい。さらには、上記した密着強度として、5.0N/cm以上であることがより好ましく、6.4N/cm以上であることがさらに好ましい。 In the present embodiment, as described above, the purpose is to achieve both roughness reduction (reduction of transmission loss) and adhesion between the electroless
The specific adhesion strength between the electroless
本実施形態において、無電解銅めっき層2と樹脂フィルム1との間において上記した密着性を確保するためには、さらに以下の特徴を有することが好ましい。
図2に、本実施形態の銅張積層体10において、樹脂フィルム1と無電解銅めっき層の界面の状態を模式的に示す。すなわち、樹脂フィルム1の無電解銅めっき層2側の界面には、水酸基及び/又はカルボキシル基が付与されることが好ましい。これは以下の理由によるものである。 In the present embodiment, in order to ensure the above-mentioned adhesion between the electrolesscopper plating layer 2 and the resin film 1, it is preferable to have the following characteristics.
FIG. 2 schematically shows the state of the interface between theresin film 1 and the electroless copper plating layer in the copper-clad laminate 10 of the present embodiment. That is, it is preferable that a hydroxyl group and / or a carboxyl group is imparted to the interface of the resin film 1 on the electroless copper plating layer 2 side. This is due to the following reasons.
図2に、本実施形態の銅張積層体10において、樹脂フィルム1と無電解銅めっき層の界面の状態を模式的に示す。すなわち、樹脂フィルム1の無電解銅めっき層2側の界面には、水酸基及び/又はカルボキシル基が付与されることが好ましい。これは以下の理由によるものである。 In the present embodiment, in order to ensure the above-mentioned adhesion between the electroless
FIG. 2 schematically shows the state of the interface between the
図1に示されるように、本実施形態の銅張積層体10において、樹脂フィルム1の少なくとも片面に無電解めっきにより無電解銅めっき層2を形成させる際には、樹脂フィルム1表面上にめっき形成の核となる金属パラジウムが付与されることが一般に知られている。この金属パラジウムは、パラジウム触媒により生成したものを適用することができる。
As shown in FIG. 1, in the copper-clad laminate 10 of the present embodiment, when the electroless copper plating layer 2 is formed on at least one surface of the resin film 1 by electroless plating, it is plated on the surface of the resin film 1. It is generally known that the metal palladium, which is the core of formation, is applied. As this metallic palladium, those produced by a palladium catalyst can be applied.
本実施形態においては、樹脂フィルム1の表面に、水酸基とカルボキシル基のうちの少なくとも一方を付与することにより、樹脂フィルム1表面上に金属パラジウムの吸着を強固にすることが可能となる。それゆえ、樹脂フィルム1と無電解銅めっき層2との密着性を向上させることが可能となる。
In the present embodiment, by imparting at least one of a hydroxyl group and a carboxyl group to the surface of the resin film 1, it is possible to strengthen the adsorption of metallic palladium on the surface of the resin film 1. Therefore, it is possible to improve the adhesion between the resin film 1 and the electroless copper plating layer 2.
なお、樹脂フィルム1と無電解銅めっき層2の界面における水酸基及び/又はカルボキシル基の存在については、公知の表面分析方法により確認することが可能である。例えば、フーリエ変換赤外分光光度計(FT-IR)、X線光電子分光(ESCA)、飛行時間型二次イオン質量分析法(TOF-SIMS)、等の公知の分析方法を用いることが可能である。
The presence of hydroxyl groups and / or carboxyl groups at the interface between the resin film 1 and the electroless copper plating layer 2 can be confirmed by a known surface analysis method. For example, known analytical methods such as Fourier transform infrared spectrophotometer (FT-IR), X-ray photoelectron spectroscopy (ESCA), and time-of-flight secondary ion mass spectrometry (TOF-SIMS) can be used. is there.
特に本実施形態においては、樹脂フィルム1と無電解銅めっき層2の界面において、無電解銅めっき層2の側の飛行時間型質量分析法(TOF-SIMS)による分析の結果、質量121におけるピーク強度が800(0.12amu bin)以上であることが好ましい。
すなわち本実施形態においては、TOF-SIMSにより分析した結果において、質量121であり水酸基及び/又はカルボキシル基を含む官能基が樹脂フィルム1と無電解銅めっき層2の界面に存在することが好ましい。なお、質量121の官能基としては下記構造式1又は構造式2のいずれかであることが好ましいが、特に構造式1であることが好ましい。 In particular, in the present embodiment, at the interface between theresin film 1 and the electroless copper plating layer 2, as a result of analysis by the time-of-flight mass spectrometry (TOF-SIMS) on the side of the electroless copper plating layer 2, the peak at the mass 121 The strength is preferably 800 (0.12 amu bin) or more.
That is, in the present embodiment, as a result of analysis by TOF-SIMS, it is preferable that a functional group having a mass of 121 and containing a hydroxyl group and / or a carboxyl group is present at the interface between theresin film 1 and the electroless copper plating layer 2. The functional group having a mass of 121 is preferably any of the following structural formula 1 or structural formula 2, but structural formula 1 is particularly preferable.
すなわち本実施形態においては、TOF-SIMSにより分析した結果において、質量121であり水酸基及び/又はカルボキシル基を含む官能基が樹脂フィルム1と無電解銅めっき層2の界面に存在することが好ましい。なお、質量121の官能基としては下記構造式1又は構造式2のいずれかであることが好ましいが、特に構造式1であることが好ましい。 In particular, in the present embodiment, at the interface between the
That is, in the present embodiment, as a result of analysis by TOF-SIMS, it is preferable that a functional group having a mass of 121 and containing a hydroxyl group and / or a carboxyl group is present at the interface between the
なお、樹脂フィルム1と無電解銅めっき層2の界面に付与されている「水酸基及び/又はカルボキシル基を含む官能基」としては、上述したものに限られない。また、「水酸基を含む官能基」が付与されていれば「カルボキシル基を含む官能基」は付与されていなくてもよい。またその逆でもよい。さらには「水酸基を含む官能基」と「カルボキシル基を含む官能基」の両方が付与されていてもよい。
The "functional group containing a hydroxyl group and / or a carboxyl group" imparted to the interface between the resin film 1 and the electroless copper plating layer 2 is not limited to the above. Further, as long as the "functional group containing a hydroxyl group" is added, the "functional group containing a carboxyl group" may not be added. And vice versa. Further, both a "functional group containing a hydroxyl group" and a "functional group containing a carboxyl group" may be added.
特に本実施形態においては、樹脂フィルム1と無電解銅めっき層2の界面には「水酸基を含む官能基」が「カルボキシル基を含む官能基」よりも多く付与されていることが好ましい。あるいは「水酸基を含む官能基」が付与されており「カルボキシル基を含む官能基」は付与されていない状態であることが好ましい。
In particular, in the present embodiment, it is preferable that the interface between the resin film 1 and the electroless copper plating layer 2 is provided with more "functional groups containing hydroxyl groups" than "functional groups containing carboxyl groups". Alternatively, it is preferable that the "functional group containing a hydroxyl group" is added and the "functional group containing a carboxyl group" is not added.
なお、本実施形態の銅張積層体は、図5に示すように、上記した無電解銅めっき層2の上に、さらに電解銅めっき層4が形成されていてもよい。すなわち、フレキシブル回路基板をセミアディティブ法により製造する際には、無電解銅めっき層2をシード層として、さらに無電解銅めっき層2の上にさらに電解めっき層を形成させることも可能である。
In the copper-clad laminate of the present embodiment, as shown in FIG. 5, an electrolytic copper plating layer 4 may be further formed on the electroless copper plating layer 2 described above. That is, when the flexible circuit board is manufactured by the semi-additive method, it is possible to use the electroless copper plating layer 2 as a seed layer and further form an electroless plating layer on the electroless copper plating layer 2.
なお、本実施形態の銅張積層体を用いてフレキシブル回路基板を形成する方法としては、上記したセミアディティブ法に限られず、他の公知の方法を適用可能である。
The method for forming the flexible circuit board using the copper-clad laminate of the present embodiment is not limited to the semi-additive method described above, and other known methods can be applied.
また、本実施形態の銅張積層体においては、樹脂フィルムの両面に無電解銅めっき層が形成されたうえで、図3に示すようにスルーホールHが形成されていることが好ましい。すなわち、樹脂フィルム1がその断面において貫通孔を有するとともに、無電解銅めっき層2の少なくとも一部がその貫通孔の内面を被覆するように当該スルーホールHが形成されていることが好ましい。かようなスルーホールHを形成することが、本実施形態の銅張積層体をフレキシブル回路基板用途として用いる場合には好ましい。
なお、スルーホールHの位置や大きさ等は製造するフレキシブル回路基板により適宜決定可能であるため、詳細な説明は省略する。 Further, in the copper-clad laminate of the present embodiment, it is preferable that the electroless copper plating layers are formed on both sides of the resin film and then the through holes H are formed as shown in FIG. That is, it is preferable that theresin film 1 has through holes in its cross section, and the through holes H are formed so that at least a part of the electroless copper plating layer 2 covers the inner surface of the through holes. It is preferable to form such a through hole H when the copper-clad laminate of the present embodiment is used for a flexible circuit board application.
Since the position and size of the through hole H can be appropriately determined by the flexible circuit board to be manufactured, detailed description thereof will be omitted.
なお、スルーホールHの位置や大きさ等は製造するフレキシブル回路基板により適宜決定可能であるため、詳細な説明は省略する。 Further, in the copper-clad laminate of the present embodiment, it is preferable that the electroless copper plating layers are formed on both sides of the resin film and then the through holes H are formed as shown in FIG. That is, it is preferable that the
Since the position and size of the through hole H can be appropriately determined by the flexible circuit board to be manufactured, detailed description thereof will be omitted.
本実施形態における銅張積層体は、上記したように樹脂フィルム1と無電解銅めっき層2を含んでなるものであるが、さらに無電解銅めっき層2の表面(樹脂フィルム1とは反対側)に、無電解銅めっき層2の酸化を防止するための公知の保護層が形成されていてもよい。なお、無電解銅めっき層2の保護としては、酸化の抑制を目的としたもので、公知の方法により防錆処理を行うことにより形成される。
The copper-clad laminate in the present embodiment includes the resin film 1 and the electroless copper plating layer 2 as described above, but is further on the surface of the electroless copper plating layer 2 (the side opposite to the resin film 1). ) May be formed with a known protective layer for preventing oxidation of the electroless copper plating layer 2. The protection of the electroless copper plating layer 2 is intended to suppress oxidation, and is formed by performing a rust preventive treatment by a known method.
<銅張積層体の製造方法>
次に、本実施形態の銅張積層体10の製造方法について図4を用いて説明する。
本実施形態における銅張積層体10の製造方法としては、樹脂フィルム1の少なくとも一方の表面上にカルボキシル基及び/又は水酸基を付与する第1表面改質工程(ステップ1)と、前記カルボキシル基及び/又は水酸基が付与された前記表面に対して湿式方式により電荷を付与する第2表面改質工程(ステップ2)と、前記電荷が付与された前記表面に触媒を吸着させる触媒吸着工程(ステップ3)と、前記触媒が吸着された前記表面に対して無電解銅めっき層2を形成する無電解銅めっき工程(ステップ4)と、前記無電解銅めっき層が形成された前記銅張積層体を加熱する加熱工程(ステップ5)を含む。 <Manufacturing method of copper-clad laminate>
Next, a method of manufacturing the copper-cladlaminate 10 of the present embodiment will be described with reference to FIG.
The method for producing the copper-platedlaminate 10 in the present embodiment includes a first surface modification step (step 1) of imparting a carboxyl group and / or a hydroxyl group on at least one surface of the resin film 1, and the carboxyl group and / Or a second surface modification step (step 2) in which a charge is applied to the surface to which a hydroxyl group is applied by a wet method, and a catalyst adsorption step (step 3) in which a catalyst is adsorbed on the surface to which the charge is applied. ), The electroless copper plating step (step 4) of forming the electroless copper plating layer 2 on the surface on which the catalyst is adsorbed, and the copper-clad laminate on which the electroless copper plating layer is formed. The heating step (step 5) of heating is included.
次に、本実施形態の銅張積層体10の製造方法について図4を用いて説明する。
本実施形態における銅張積層体10の製造方法としては、樹脂フィルム1の少なくとも一方の表面上にカルボキシル基及び/又は水酸基を付与する第1表面改質工程(ステップ1)と、前記カルボキシル基及び/又は水酸基が付与された前記表面に対して湿式方式により電荷を付与する第2表面改質工程(ステップ2)と、前記電荷が付与された前記表面に触媒を吸着させる触媒吸着工程(ステップ3)と、前記触媒が吸着された前記表面に対して無電解銅めっき層2を形成する無電解銅めっき工程(ステップ4)と、前記無電解銅めっき層が形成された前記銅張積層体を加熱する加熱工程(ステップ5)を含む。 <Manufacturing method of copper-clad laminate>
Next, a method of manufacturing the copper-clad
The method for producing the copper-plated
まず第1表面改質工程(ステップ1)について説明すると、用いられる樹脂フィルム1は、上述したように、いわゆる低誘電樹脂フィルムであることが好ましい。具体的な樹脂フィルム1の電気特性としては、周波数10GHzにおける比誘電率が3.5以下、且つ、誘電正接が0.008以下であることが好ましい。
First, the first surface modification step (step 1) will be described. As described above, the resin film 1 used is preferably a so-called low-dielectric resin film. As specific electrical characteristics of the resin film 1, it is preferable that the relative permittivity at a frequency of 10 GHz is 3.5 or less and the dielectric loss tangent is 0.008 or less.
本実施形態の第1表面改質工程では、樹脂フィルム1の少なくとも一方の表面上に、カルボキシル基及び/又は水酸基が付与される。このカルボキシル基及び/又は水酸基を付与する方法としては、アルカリ水溶液とアミノアルコールの混合液を樹脂フィルム1の少なくとも一方の表面上に接触する方法が挙げられる。
In the first surface modification step of the present embodiment, a carboxyl group and / or a hydroxyl group is imparted onto at least one surface of the resin film 1. Examples of the method for imparting the carboxyl group and / or the hydroxyl group include a method in which a mixed solution of an alkaline aqueous solution and an amino alcohol is brought into contact with at least one surface of the resin film 1.
第1表面改質工程に用いられるアルカリ水溶液としては、無機アルカリ又は有機アルカリのいずれであってもよい。無機アルカリとしては例えば、水酸化ナトリウム、水酸化カリウム、等のアルカリ金属水酸化物又はその炭酸塩等が挙げられる。有機アルカリとしては例えば、テトラアルキルアンモニウムヒドロキシド等を挙げることができる。
上記したアルカリは、単独で使用してもよいし、複数を混合して使用してもよい。 The alkaline aqueous solution used in the first surface modification step may be either an inorganic alkali or an organic alkali. Examples of the inorganic alkali include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, or carbonates thereof. Examples of the organic alkali include tetraalkylammonium hydroxide and the like.
The above-mentioned alkalis may be used alone or in combination of two or more.
上記したアルカリは、単独で使用してもよいし、複数を混合して使用してもよい。 The alkaline aqueous solution used in the first surface modification step may be either an inorganic alkali or an organic alkali. Examples of the inorganic alkali include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, or carbonates thereof. Examples of the organic alkali include tetraalkylammonium hydroxide and the like.
The above-mentioned alkalis may be used alone or in combination of two or more.
一方で、第1表面改質工程に用いられるアミノアルコールとしては、具体的には、脂肪族アミノアルコールであってもよいし、芳香族アミノアルコールであってもよい。また、それらの誘導体であってもよい。
On the other hand, the amino alcohol used in the first surface modification step may be, specifically, an aliphatic amino alcohol or an aromatic amino alcohol. Moreover, it may be a derivative thereof.
アミノアルコールとしては具体的には、エタノールアミン、ヘプタミノール、イソエタリン、ブタノールアミン、プロパノールアミン、スフィンゴシン、メタノールアミン、ジメチルエタノールアミン、N-メチルエタノールアミン等を用いることが可能である。このうち、アミノエタノールを適用することが特に好ましい。
Specifically, as the amino alcohol, ethanolamine, heptaminol, isoetaline, butanolamine, propanolamine, sphingosine, methanolamine, dimethylethanolamine, N-methylethanolamine and the like can be used. Of these, it is particularly preferable to apply aminoethanol.
第1表面改質工程のアルカリ水溶液とアミノアルコールの混合液における混合比率は、モル比率において、-OH基と-NH2基の比率が(-NH2基/-OH基)=2.00~3.00となるように調整することが好ましい。
モル比率を上記範囲内とすることにより、本発明の目的とする無電解銅めっき層2と樹脂フィルム1との間での粗さ低減(伝送損失の低減)と密着性の両立を達成し得る。その理由は現時点では明らかではないが、発明者らが検討した結果、以下のような理由によるものと推定される。 The mixing ratio of the alkaline aqueous solution and the amino alcohol in the first surface modification step is such that the ratio of -OH groups and -NH 2 groups is (-NH 2 groups / -OH groups) = 2.00 to the molar ratio. It is preferable to adjust it so that it becomes 3.00.
By setting the molar ratio within the above range, it is possible to achieve both the roughness reduction (reduction of transmission loss) and the adhesion between the electrolesscopper plating layer 2 and the resin film 1 which are the objects of the present invention. .. The reason is not clear at this time, but as a result of the examination by the inventors, it is presumed that the reason is as follows.
モル比率を上記範囲内とすることにより、本発明の目的とする無電解銅めっき層2と樹脂フィルム1との間での粗さ低減(伝送損失の低減)と密着性の両立を達成し得る。その理由は現時点では明らかではないが、発明者らが検討した結果、以下のような理由によるものと推定される。 The mixing ratio of the alkaline aqueous solution and the amino alcohol in the first surface modification step is such that the ratio of -OH groups and -NH 2 groups is (-NH 2 groups / -OH groups) = 2.00 to the molar ratio. It is preferable to adjust it so that it becomes 3.00.
By setting the molar ratio within the above range, it is possible to achieve both the roughness reduction (reduction of transmission loss) and the adhesion between the electroless
すなわち、(-NH2基/-OH基)のモル比率が上記範囲内の混合液により、上記した誘電損失の低い樹脂(液晶ポリマー、変性ポリイミド樹脂など)を用いた樹脂フィルム1に対して第1表面改質工程を施した場合、樹脂フィルム1表面の状態としては、無電解銅めっき層2側の表面の平均表面粗さRaを1nm~150nmとすることができると考えられる。そのため、無電解銅めっき層により回路基板上に配線導体が形成された場合において、表皮効果による伝送損失が抑制され、好ましい伝送特性を発揮することが可能となる。それに加えて、無電解銅めっき層2側の表面の平均表面粗さRaが1nm~150nmの範囲内であれば、樹脂フィルム1と無電解銅めっき層2の密着性も担保できる。
それ故、本発明者らは、上述したような第1表面改質工程を経ることにより、本発明の目的を達成することに想到したものである。 That is, with respect to theresin film 1 using the resin having a low dielectric loss (liquid crystal polymer, modified polyimide resin, etc.), the mixture having a molar ratio of (-NH 2 groups / -OH groups) within the above range is the first. When the 1 surface modification step is performed, it is considered that the average surface roughness Ra of the surface on the electroless copper plating layer 2 side can be 1 nm to 150 nm as the state of the surface of the resin film 1. Therefore, when the wiring conductor is formed on the circuit board by the electroless copper plating layer, the transmission loss due to the skin effect is suppressed, and it is possible to exhibit preferable transmission characteristics. In addition, if the average surface roughness Ra of the surface on the electroless copper plating layer 2 side is within the range of 1 nm to 150 nm, the adhesion between the resin film 1 and the electroless copper plating layer 2 can be ensured.
Therefore, the present inventors have come up with the idea of achieving the object of the present invention by going through the first surface modification step as described above.
それ故、本発明者らは、上述したような第1表面改質工程を経ることにより、本発明の目的を達成することに想到したものである。 That is, with respect to the
Therefore, the present inventors have come up with the idea of achieving the object of the present invention by going through the first surface modification step as described above.
なお、第1表面改質工程において混合液中の(-NH2基/-OH基)のモル比率を上記範囲とすることにより、樹脂フィルム1の表面上に、カルボキシル基よりも水酸基を多く付与することができる。
By setting the molar ratio of (-NH 2 groups / -OH groups) in the mixed solution in the above range in the first surface modification step, more hydroxyl groups than carboxyl groups are added to the surface of the resin film 1. can do.
第1表面改質工程において、アルカリ水溶液とアミノアルコールの混合液を樹脂フィルム1の表面に接触させる方法としては、公知の方法を適宜適用可能である、例えば、樹脂フィルム1を混合液に浸漬させる方法や、スプレー等で樹脂フィルム1に混合液を噴霧する方法等が挙げられる。これらの方法に限られず、樹脂フィルム1の表面にカルボキシル基及び/又は水酸基を付与できる方法であれば、上記した方法以外の方法を適用してもよい。
As a method of bringing the mixed solution of the alkaline aqueous solution and the amino alcohol into contact with the surface of the resin film 1 in the first surface modification step, a known method can be appropriately applied, for example, the resin film 1 is immersed in the mixed solution. Examples thereof include a method and a method of spraying the mixed solution onto the resin film 1 by spraying or the like. The method is not limited to these methods, and any method other than the above method may be applied as long as it can impart a carboxyl group and / or a hydroxyl group to the surface of the resin film 1.
なお、前記第1表面改質工程において、フィルム表面の接触角を調整することによってめっきの析出性およびめっきの密着性を向上させることができる。特に樹脂フィルム1が液晶ポリマーである場合においては、無電解銅めっき層2と接するめっき層側界面における接触角は30°以下が好ましい。また、特に樹脂フィルム1が変性ポリイミド(MPI)である場合においては、無電解銅めっき層2と接するめっき層側界面における接触角は45°以下が好ましい。
In the first surface modification step, the precipitation property of the plating and the adhesion of the plating can be improved by adjusting the contact angle of the film surface. In particular, when the resin film 1 is a liquid crystal polymer, the contact angle at the plating layer side interface in contact with the electroless copper plating layer 2 is preferably 30 ° or less. Further, particularly when the resin film 1 is a modified polyimide (MPI), the contact angle at the plating layer side interface in contact with the electroless copper plating layer 2 is preferably 45 ° or less.
次に、本実施形態の第2表面改質工程(ステップ2)について説明する。本実施形態における第2表面改質工程は、上記した第1表面改質工程の後に行う工程であることが好ましい。
第2表面改質工程は、上記第1表面改質工程において樹脂フィルム1の表面上にカルボキシル基及び/又は水酸基を付与した後に、さらに電荷を付与する工程である。電荷の付与により、樹脂フィルム1と無電解銅めっき層2との密着性を向上させることが可能であるため好ましい。 Next, the second surface modification step (step 2) of the present embodiment will be described. The second surface modification step in the present embodiment is preferably a step performed after the first surface modification step described above.
The second surface modification step is a step of imparting a carboxyl group and / or a hydroxyl group on the surface of theresin film 1 in the first surface modification step, and then further adding an electric charge. It is preferable because it is possible to improve the adhesion between the resin film 1 and the electroless copper plating layer 2 by applying an electric charge.
第2表面改質工程は、上記第1表面改質工程において樹脂フィルム1の表面上にカルボキシル基及び/又は水酸基を付与した後に、さらに電荷を付与する工程である。電荷の付与により、樹脂フィルム1と無電解銅めっき層2との密着性を向上させることが可能であるため好ましい。 Next, the second surface modification step (step 2) of the present embodiment will be described. The second surface modification step in the present embodiment is preferably a step performed after the first surface modification step described above.
The second surface modification step is a step of imparting a carboxyl group and / or a hydroxyl group on the surface of the
すなわち上述したように、無電解銅めっき層2の形成のためには、めっき成長の核となる金属パラジウムが樹脂フィルム1上に存在することが好ましい。そして、この金属パラジウムが樹脂フィルム1上に強固に付着するためには、樹脂フィルム1の表面が少なくともマイナスの電荷を有していることが好ましい。
That is, as described above, in order to form the electroless copper plating layer 2, it is preferable that the metallic palladium, which is the core of the plating growth, is present on the resin film 1. Then, in order for the metallic palladium to adhere firmly to the resin film 1, it is preferable that the surface of the resin film 1 has at least a negative charge.
好ましくは、本実施形態の第2表面改質工程では、さらに、樹脂フィルム1の表面上にプラス電荷を付与する工程と、前記プラス電荷を付与した表面にさらにマイナス電荷を付与する工程と、を含むことが好ましい。これらの工程を経ることにより、樹脂フィルム1の表面にマイナスの電荷を確実に付着させることが可能となるので、上記した金属パラジウムの付着、及び、無電解銅めっき層2の密着性の観点からは好ましい。
Preferably, in the second surface modification step of the present embodiment, further, a step of applying a positive charge on the surface of the resin film 1 and a step of further applying a negative charge to the surface to which the positive charge is applied are performed. It is preferable to include it. By going through these steps, it is possible to reliably attach a negative charge to the surface of the resin film 1. Therefore, from the viewpoint of the above-mentioned adhesion of metallic palladium and the adhesion of the electroless copper plating layer 2. Is preferable.
上記した、樹脂フィルム1の表面上にプラス電荷を付与する工程において、具体的な方法としては、表面にカルボキシル基及び/又は水酸基を付与した後の樹脂フィルム1を、さらに公知のカチオン系界面活性剤に浸漬する方法や、またはスプレー噴霧により公知のカチオン系界面活性剤を樹脂フィルム1に接触させる方法等を適用することが可能である。
In the above-mentioned step of imparting a positive charge on the surface of the resin film 1, as a specific method, the resin film 1 after imparting a carboxyl group and / or a hydroxyl group to the surface is further known as a cationic surfactant. It is possible to apply a method of immersing in an agent, a method of bringing a known cationic surfactant into contact with the resin film 1 by spraying, or the like.
また、樹脂フィルム1の表面上にマイナス電荷を吸着させる工程においても同様に、公知のアニオン系界面活性剤に浸漬する方法や、スプレー噴霧等の方法を適用することが可能である。
なお、本実施形態の第2表面改質工程は、上述したように湿式方式により行うことが好ましい。湿式で行うことにより、リールtoリール等による大量生産に好適であり、また、低コスト化が可能となるメリットがある。 Further, also in the step of adsorbing a negative charge on the surface of theresin film 1, it is possible to apply a method of immersing in a known anionic surfactant, a method of spraying, or the like.
The second surface modification step of the present embodiment is preferably performed by a wet method as described above. By performing the wet method, it is suitable for mass production by reel-to-reel or the like, and there is an advantage that the cost can be reduced.
なお、本実施形態の第2表面改質工程は、上述したように湿式方式により行うことが好ましい。湿式で行うことにより、リールtoリール等による大量生産に好適であり、また、低コスト化が可能となるメリットがある。 Further, also in the step of adsorbing a negative charge on the surface of the
The second surface modification step of the present embodiment is preferably performed by a wet method as described above. By performing the wet method, it is suitable for mass production by reel-to-reel or the like, and there is an advantage that the cost can be reduced.
次に、本実施形態における製造方法における、触媒吸着工程(ステップ3)について説明する。
本実施形態の触媒吸着工程については、上述した第2表面改質工程により表面に少なくともマイナスの電荷が付与された樹脂フィルム1に対して、樹脂フィルム1の表面にさらに触媒を吸着させる工程である。 Next, the catalyst adsorption step (step 3) in the production method in the present embodiment will be described.
The catalyst adsorption step of the present embodiment is a step of further adsorbing the catalyst on the surface of theresin film 1 with respect to the resin film 1 to which at least a negative charge is applied to the surface by the second surface modification step described above. ..
本実施形態の触媒吸着工程については、上述した第2表面改質工程により表面に少なくともマイナスの電荷が付与された樹脂フィルム1に対して、樹脂フィルム1の表面にさらに触媒を吸着させる工程である。 Next, the catalyst adsorption step (step 3) in the production method in the present embodiment will be described.
The catalyst adsorption step of the present embodiment is a step of further adsorbing the catalyst on the surface of the
触媒吸着工程において、樹脂フィルム1の表面にさらに触媒を吸着させる方法としては例えば、公知の触媒液を樹脂フィルム1の表面に公知の方法により接触させることにより行うことが可能である。触媒としては、Cu、Ni、Pd、Agなどを用いることができる。公知の触媒液としては例えば、錫-パラジウム系又はパラジウムコロイド系の触媒液等を使用することができるが、これらに限られるものではない。
In the catalyst adsorption step, as a method of further adsorbing the catalyst on the surface of the resin film 1, for example, a known catalyst solution can be brought into contact with the surface of the resin film 1 by a known method. As the catalyst, Cu, Ni, Pd, Ag and the like can be used. As the known catalyst solution, for example, a tin-palladium-based catalyst solution or a palladium colloid-based catalyst solution can be used, but the catalyst solution is not limited thereto.
触媒吸着工程において、樹脂フィルム1上に付与する触媒の量としては、金属パラジウムとして15μg/dm2以下であることが好ましい。触媒の下限値については、回路形成時のエッチングを考慮すると少なければ少ないほどよいが、無電解銅めっき層が良好に形成される程度に付与される必要があり、1μg/dm2以上あることが好ましい。
樹脂フィルム1上に付与する金属パラジウムの量が上記数値を超えた場合、フレキシブル回路基板とした際の回路間の絶縁信頼性が低下する可能性があるため好ましくない。
なお、金属パラジウムの量としては、公知の測定方法により得ることができる。例えば、樹脂フィルム1から銅のみを剥離した後、樹脂フィルム1上のパラジウム残渣を硝酸により溶解し、ICPにより残渣量を測定する等の方法で得ることが可能である。 In the catalyst adsorption step, the amount of the catalyst applied to theresin film 1 is preferably 15 μg / dm 2 or less as metallic palladium. The lower limit of the catalyst should be as small as possible in consideration of etching during circuit formation, but it must be applied to the extent that the electroless copper plating layer is well formed, and it may be 1 μg / dm 2 or more. preferable.
If the amount of metallic palladium applied to theresin film 1 exceeds the above value, the insulation reliability between the circuits when the flexible circuit board is used may decrease, which is not preferable.
The amount of metallic palladium can be obtained by a known measuring method. For example, it can be obtained by a method such as peeling only copper from theresin film 1, dissolving the palladium residue on the resin film 1 with nitric acid, and measuring the amount of the residue by ICP.
樹脂フィルム1上に付与する金属パラジウムの量が上記数値を超えた場合、フレキシブル回路基板とした際の回路間の絶縁信頼性が低下する可能性があるため好ましくない。
なお、金属パラジウムの量としては、公知の測定方法により得ることができる。例えば、樹脂フィルム1から銅のみを剥離した後、樹脂フィルム1上のパラジウム残渣を硝酸により溶解し、ICPにより残渣量を測定する等の方法で得ることが可能である。 In the catalyst adsorption step, the amount of the catalyst applied to the
If the amount of metallic palladium applied to the
The amount of metallic palladium can be obtained by a known measuring method. For example, it can be obtained by a method such as peeling only copper from the
次に、本実施形態の製造方法における、無電解銅めっき工程(ステップ4)について説明する。
無電解銅めっき工程は、上記触媒吸着工程を経た後に行われることが好ましい。ここで本実施形態における無電解めっきの条件として、一例を以下に挙げる。
[無電解銅めっき条件の一例]
浴組成:硫酸銅 5~10g/L
硫酸ニッケル 0.5~1.0g/L
ロッシェル塩 10~30g/L
水酸化ナトリウム 3~8g/L
pH:7~13
浴温:29~35℃ Next, the electroless copper plating step (step 4) in the manufacturing method of the present embodiment will be described.
The electroless copper plating step is preferably performed after the catalyst adsorption step. Here, an example is given below as a condition of electroless plating in this embodiment.
[Example of electroless copper plating conditions]
Bath composition: Copper sulfate 5-10g / L
Nickel sulfate 0.5-1.0 g / L
Rochelle salt 10-30g / L
Sodium hydroxide 3-8g / L
pH: 7-13
Bath temperature: 29-35 ° C
無電解銅めっき工程は、上記触媒吸着工程を経た後に行われることが好ましい。ここで本実施形態における無電解めっきの条件として、一例を以下に挙げる。
[無電解銅めっき条件の一例]
浴組成:硫酸銅 5~10g/L
硫酸ニッケル 0.5~1.0g/L
ロッシェル塩 10~30g/L
水酸化ナトリウム 3~8g/L
pH:7~13
浴温:29~35℃ Next, the electroless copper plating step (step 4) in the manufacturing method of the present embodiment will be described.
The electroless copper plating step is preferably performed after the catalyst adsorption step. Here, an example is given below as a condition of electroless plating in this embodiment.
[Example of electroless copper plating conditions]
Bath composition: Copper sulfate 5-10g / L
Nickel sulfate 0.5-1.0 g / L
Rochelle salt 10-30g / L
Sodium hydroxide 3-8g / L
pH: 7-13
Bath temperature: 29-35 ° C
なお、樹脂フィルム1のめっき浴への浸漬時間としては、無電解銅めっき層2の厚みが0.1~1.0μmとなるように適宜決定すればよい。
The immersion time of the resin film 1 in the plating bath may be appropriately determined so that the thickness of the electroless copper plating layer 2 is 0.1 to 1.0 μm.
また、この無電解銅めっき工程において形成されるめっき層としては、Cu単体のめっきに限られず、銅合金めっきであってもよい。例えば、Cu-Ni合金、Cu-Zn合金、Cu-Sn合金等を形成するものであってもよい。
この場合のめっき浴としては、公知のめっき浴を適宜適用することが可能である。 Further, the plating layer formed in this electrolytically electroless copper plating step is not limited to plating Cu alone, and may be copper alloy plating. For example, it may form a Cu—Ni alloy, a Cu—Zn alloy, a Cu—Sn alloy, or the like.
As the plating bath in this case, a known plating bath can be appropriately applied.
この場合のめっき浴としては、公知のめっき浴を適宜適用することが可能である。 Further, the plating layer formed in this electrolytically electroless copper plating step is not limited to plating Cu alone, and may be copper alloy plating. For example, it may form a Cu—Ni alloy, a Cu—Zn alloy, a Cu—Sn alloy, or the like.
As the plating bath in this case, a known plating bath can be appropriately applied.
本実施形態の製造方法においては、樹脂フィルム1上に無電解銅めっき層2を形成した後、無電解銅めっき層の内部応力を解放する目的や組織の変態を起こす目的などのために、無電解銅めっき層が形成された前記銅張積層体全体を加熱する加熱工程(ステップ5)を有することが好ましい。
なお、応力緩和のための加熱の温度としては、100~200℃が好ましく、120~150℃がより好ましい。応力緩和のための加熱時間としては、5~60分が好ましく、10~30分がより好ましい。また、組織を変態させるための加熱の温度としては、150~350℃が好ましく、150~300℃がより好ましい。組織を変態させるための加熱時間としては、5~180分が好ましく、10~30分がより好ましい。
また、加熱雰囲気としては、例えば大気中でもよいし、窒素などの不活性ガス雰囲気中であってもよい。
当該加熱工程を行うことで、無電解銅めっき層2が樹脂フィルム1から剥離することを抑制することができ、無電解銅めっき層2と樹脂フィルム1との密着性も確保することができる。また、無電解銅めっき層2の結晶子が成長することで、後述する電解銅めっき層4を積層した後の銅めっき層(無電解銅めっき層2及び電解銅めっき層4)と樹脂フィルム1との密着性を向上できる。 In the production method of the present embodiment, after the electrolyticcopper plating layer 2 is formed on the resin film 1, the purpose is to release the internal stress of the electrolytic copper plating layer, to cause structural transformation, and the like. It is preferable to have a heating step (step 5) for heating the entire copper-clad laminate on which the electrolytic copper plating layer is formed.
The heating temperature for stress relaxation is preferably 100 to 200 ° C, more preferably 120 to 150 ° C. The heating time for stress relaxation is preferably 5 to 60 minutes, more preferably 10 to 30 minutes. The heating temperature for transforming the tissue is preferably 150 to 350 ° C, more preferably 150 to 300 ° C. The heating time for transforming the tissue is preferably 5 to 180 minutes, more preferably 10 to 30 minutes.
Further, the heating atmosphere may be, for example, an atmosphere or an atmosphere of an inert gas such as nitrogen.
By performing the heating step, it is possible to prevent the electrolesscopper plating layer 2 from peeling off from the resin film 1, and it is possible to secure the adhesion between the electroless copper plating layer 2 and the resin film 1. Further, as the crystallites of the electrolytic copper plating layer 2 grow, the copper plating layer (electrolytic copper plating layer 2 and electrolytic copper plating layer 4) and the resin film 1 after laminating the electrolytic copper plating layer 4 described later are laminated. Adhesion with can be improved.
なお、応力緩和のための加熱の温度としては、100~200℃が好ましく、120~150℃がより好ましい。応力緩和のための加熱時間としては、5~60分が好ましく、10~30分がより好ましい。また、組織を変態させるための加熱の温度としては、150~350℃が好ましく、150~300℃がより好ましい。組織を変態させるための加熱時間としては、5~180分が好ましく、10~30分がより好ましい。
また、加熱雰囲気としては、例えば大気中でもよいし、窒素などの不活性ガス雰囲気中であってもよい。
当該加熱工程を行うことで、無電解銅めっき層2が樹脂フィルム1から剥離することを抑制することができ、無電解銅めっき層2と樹脂フィルム1との密着性も確保することができる。また、無電解銅めっき層2の結晶子が成長することで、後述する電解銅めっき層4を積層した後の銅めっき層(無電解銅めっき層2及び電解銅めっき層4)と樹脂フィルム1との密着性を向上できる。 In the production method of the present embodiment, after the electrolytic
The heating temperature for stress relaxation is preferably 100 to 200 ° C, more preferably 120 to 150 ° C. The heating time for stress relaxation is preferably 5 to 60 minutes, more preferably 10 to 30 minutes. The heating temperature for transforming the tissue is preferably 150 to 350 ° C, more preferably 150 to 300 ° C. The heating time for transforming the tissue is preferably 5 to 180 minutes, more preferably 10 to 30 minutes.
Further, the heating atmosphere may be, for example, an atmosphere or an atmosphere of an inert gas such as nitrogen.
By performing the heating step, it is possible to prevent the electroless
なお、本実施形態の銅張積層体の製造方法において、無電解銅めっき工程による無電解銅めっき層2の形成の後に、電解めっき工程により、電解銅めっき層4を形成させる電解銅めっき工程を有していてもよい。電解銅めっき工程としては、公知の硫酸銅浴やピロリン酸銅浴などを適用することができ、また、電解めっき条件(pH、温度、電流密度、浸漬時間等)は、電解めっき層の厚さなどに基づいて適宜選択可能である。
以上の工程を経ることで、本実施形態における銅張積層体20が製造される。 In the method for producing a copper-clad laminate of the present embodiment, after the electrolyticcopper plating layer 2 is formed by the electrolytic copper plating step, the electrolytic copper plating step of forming the electrolytic copper plating layer 4 by the electrolytic plating step is performed. You may have. As the electrolytic copper plating step, a known copper sulfate bath, copper pyrophosphate bath, or the like can be applied, and the electrolytic plating conditions (pH, temperature, current density, immersion time, etc.) are the thickness of the electrolytic plating layer. It can be selected as appropriate based on the above.
Through the above steps, the copper-cladlaminate 20 according to the present embodiment is manufactured.
以上の工程を経ることで、本実施形態における銅張積層体20が製造される。 In the method for producing a copper-clad laminate of the present embodiment, after the electrolytic
Through the above steps, the copper-clad
なお本実施形態の製造方法においては、上記したステップ5は、樹脂フィルム1上に電解銅めっき層4を形成した後で(すなわち無電解銅めっき層および電解銅めっき槽が形成された後)銅張積層体全体を加熱(焼鈍)してもよい。換言すれば、本実施形態においては、樹脂フィルム1上に電解銅めっき層4を形成した後で上記した加熱工程を実行してもよいし、樹脂フィルム1上に無電解銅めっき層2を形成した後で且つ電解銅めっき層4を形成する前に銅張積層体全体を加熱する加熱工程を実行してもよい。なお、電解銅めっき層4を形成する前に上記したステップ5を実行する場合には、後述するレジストパターニング工程より前に実行することがより好ましい。
In the manufacturing method of the present embodiment, the above-mentioned step 5 is performed after the electrolytic copper plating layer 4 is formed on the resin film 1 (that is, after the electrolytic copper plating layer and the electrolytic copper plating tank are formed). The entire stretched laminate may be heated (baked). In other words, in the present embodiment, the electrolytic copper plating layer 4 may be formed on the resin film 1 and then the heating step described above may be performed, or the electrolytic copper plating layer 2 may be formed on the resin film 1. A heating step of heating the entire copper-clad laminate may be performed after the copper plating layer 4 is formed. When the above-mentioned step 5 is executed before forming the electrolytic copper plating layer 4, it is more preferable to execute the step 5 before the resist patterning step described later.
<フレキシブル回路基板>
次に、本実施形態のフレキシブル回路基板について説明する。
本実施形態におけるフレキシブル回路基板は、上述の銅張積層体10の無電解銅めっき層2により回路が形成されてなるフレキシブル回路基板であることが好ましい。
上述したように、本実施形態の銅張積層体10は樹脂フィルム1と無電解銅めっき層2との間の表面粗さRaが所定の値以下であるため、フレキシブル回路基板としての伝送損失を抑制することが可能である。
また、樹脂フィルム1と無電解銅めっき層2との密着性を向上させることが可能であるため、セミアディティブ法を採用した場合でも、微細な回路パターンの形成が可能となるため好ましい。 <Flexible circuit board>
Next, the flexible circuit board of this embodiment will be described.
The flexible circuit board in this embodiment is preferably a flexible circuit board in which a circuit is formed by the electrolesscopper plating layer 2 of the copper-clad laminate 10 described above.
As described above, in the copper-cladlaminate 10 of the present embodiment, the surface roughness Ra between the resin film 1 and the electroless copper plating layer 2 is equal to or less than a predetermined value, so that the transmission loss as a flexible circuit board is reduced. It can be suppressed.
Further, since it is possible to improve the adhesion between theresin film 1 and the electroless copper plating layer 2, it is preferable because a fine circuit pattern can be formed even when the semi-additive method is adopted.
次に、本実施形態のフレキシブル回路基板について説明する。
本実施形態におけるフレキシブル回路基板は、上述の銅張積層体10の無電解銅めっき層2により回路が形成されてなるフレキシブル回路基板であることが好ましい。
上述したように、本実施形態の銅張積層体10は樹脂フィルム1と無電解銅めっき層2との間の表面粗さRaが所定の値以下であるため、フレキシブル回路基板としての伝送損失を抑制することが可能である。
また、樹脂フィルム1と無電解銅めっき層2との密着性を向上させることが可能であるため、セミアディティブ法を採用した場合でも、微細な回路パターンの形成が可能となるため好ましい。 <Flexible circuit board>
Next, the flexible circuit board of this embodiment will be described.
The flexible circuit board in this embodiment is preferably a flexible circuit board in which a circuit is formed by the electroless
As described above, in the copper-clad
Further, since it is possible to improve the adhesion between the
より具体的に、例えばSAP法又はMSAP法による場合には、本実施形態におけるフレキシブル回路基板の製造方法として、上述したステップ1~ステップ5(図4も参照)を経た後に、無電解めっき層2上にレジストの塗布及びパターニングを行う公知のレジストパターニング工程を行い、さらにその後に上記した電解銅めっき工程を経ることでパターニングされたレジスト間に電解めっき層4が形成される。
なお、本実施形態のフレキシブル回路基板を形成する方法としては、上記したセミアディティブ法に限られず、フルアディティブ法やサブトラクティブ法などの他の公知の方法を適用可能である。 More specifically, for example, in the case of the SAP method or the MSAP method, as the method for manufacturing the flexible circuit board in the present embodiment, after going through the above-mentionedsteps 1 to 5 (see also FIG. 4), the electroless plating layer 2 A known resist patterning step of applying and patterning a resist is performed on the resist, and then the electrolytic copper plating step described above is performed to form an electrolytic plating layer 4 between the patterned resists.
The method for forming the flexible circuit board of the present embodiment is not limited to the semi-additive method described above, and other known methods such as the full additive method and the subtractive method can be applied.
なお、本実施形態のフレキシブル回路基板を形成する方法としては、上記したセミアディティブ法に限られず、フルアディティブ法やサブトラクティブ法などの他の公知の方法を適用可能である。 More specifically, for example, in the case of the SAP method or the MSAP method, as the method for manufacturing the flexible circuit board in the present embodiment, after going through the above-mentioned
The method for forming the flexible circuit board of the present embodiment is not limited to the semi-additive method described above, and other known methods such as the full additive method and the subtractive method can be applied.
次に実施例を挙げて本発明についてより具体的に説明する。
Next, the present invention will be described in more detail with reference to examples.
<実施例1>
まず樹脂フィルム1として液晶ポリマーフィルム(ベクスターCTQLCP、株式会社クラレ製、厚さ:50μm)を準備した。電気特性としては、10GHzでの比誘電率が3.3、10GHzでの誘電正接が0.002であった。 <Example 1>
First, a liquid crystal polymer film (Vecstar CTQLCP, manufactured by Kuraray Co., Ltd., thickness: 50 μm) was prepared as theresin film 1. As for the electrical characteristics, the relative permittivity at 10 GHz was 3.3, and the dielectric loss tangent at 10 GHz was 0.002.
まず樹脂フィルム1として液晶ポリマーフィルム(ベクスターCTQLCP、株式会社クラレ製、厚さ:50μm)を準備した。電気特性としては、10GHzでの比誘電率が3.3、10GHzでの誘電正接が0.002であった。 <Example 1>
First, a liquid crystal polymer film (Vecstar CTQLCP, manufactured by Kuraray Co., Ltd., thickness: 50 μm) was prepared as the
次に、準備した樹脂フィルム1の両面に対して、第1表面改質工程として、水酸化カリウム水溶液とモノエタノールアミンの混合液に5分間浸漬し、両方の表面にカルボキシル基及び/又は水酸基を導入し、浸漬水洗を行った。用いた混合液の温度は30℃であり、-OH基と-NH2基のモル比率(-NH2基/-OH基)が2.29であった。またTOF-SIMSの質量121のピーク強度は、1000であった。
Next, both sides of the prepared resin film 1 are immersed in a mixed solution of potassium hydroxide aqueous solution and monoethanolamine for 5 minutes as a first surface modification step, and carboxyl groups and / or hydroxyl groups are added to both surfaces. It was introduced and washed with immersion water. The temperature of the mixed solution used was 30 ° C., and the molar ratio of -OH group and -NH 2 group (-NH 2 group / -OH group) was 2.29. The peak intensity of the mass 121 of TOF-SIMS was 1000.
次いで、第2表面改質工程として、樹脂フィルム1の両面に、カチオン系界面活性剤10g/Lの水溶液中に2分浸漬しプラス電荷を吸着させた。浸漬水洗した後に、アニオン系界面活性剤3g/Lの水溶液中に1分間浸漬した。このようにして、プラス電荷を吸着させた後に、マイナス電荷を吸着させた。
さらに、触媒吸着工程及び無電解銅めっき工程として、めっき触媒として塩化パラジウム(PdCl2)水溶液(2g/l、pH12、40℃)に5分間浸漬後、浸漬水洗した。さらに、触媒活性剤(還元剤)としてジメチルアミンボラン(DMAB)1g/Lとホウ酸6g/Lを添加した水溶液(25℃)に5分間浸漬後、浸漬水洗した。
その後、無電解めっき浴により、無電解Cu-Niめっき層を0.3μm形成させた。無電解めっき条件としては以下のとおりとした。なお、得られた無電解Cu-Niめっき層におけるNi含有率を、上記したプラズマ発光分光分析装置(ICP)を用いて求めたところ、1.18wt%であった。 Next, as a second surface modification step, both sides of theresin film 1 were immersed in an aqueous solution of a cationic surfactant of 10 g / L for 2 minutes to adsorb a positive charge. Immersion After washing with water, it was immersed in an aqueous solution of an anionic surfactant of 3 g / L for 1 minute. In this way, after adsorbing the positive charge, the negative charge was adsorbed.
Further, as a catalyst adsorption step and an electroless copper plating step, the plating catalyst was immersed in an aqueous solution of palladium chloride (PdCl 2 ) (2 g / l, pH 12, 40 ° C.) for 5 minutes and then washed with immersion water. Further, it was immersed in an aqueous solution (25 ° C.) containing 1 g / L of dimethylamine borane (DMAB) and 6 g / L of boric acid as a catalytic activator (reducing agent) for 5 minutes, and then washed with immersion water.
Then, an electroless Cu—Ni plating layer of 0.3 μm was formed by an electroless plating bath. The electroless plating conditions were as follows. The Ni content in the obtained electroless Cu—Ni plating layer was determined by using the above-mentioned plasma emission spectrophotometer (ICP) and found to be 1.18 wt%.
さらに、触媒吸着工程及び無電解銅めっき工程として、めっき触媒として塩化パラジウム(PdCl2)水溶液(2g/l、pH12、40℃)に5分間浸漬後、浸漬水洗した。さらに、触媒活性剤(還元剤)としてジメチルアミンボラン(DMAB)1g/Lとホウ酸6g/Lを添加した水溶液(25℃)に5分間浸漬後、浸漬水洗した。
その後、無電解めっき浴により、無電解Cu-Niめっき層を0.3μm形成させた。無電解めっき条件としては以下のとおりとした。なお、得られた無電解Cu-Niめっき層におけるNi含有率を、上記したプラズマ発光分光分析装置(ICP)を用いて求めたところ、1.18wt%であった。 Next, as a second surface modification step, both sides of the
Further, as a catalyst adsorption step and an electroless copper plating step, the plating catalyst was immersed in an aqueous solution of palladium chloride (PdCl 2 ) (2 g / l, pH 12, 40 ° C.) for 5 minutes and then washed with immersion water. Further, it was immersed in an aqueous solution (25 ° C.) containing 1 g / L of dimethylamine borane (DMAB) and 6 g / L of boric acid as a catalytic activator (reducing agent) for 5 minutes, and then washed with immersion water.
Then, an electroless Cu—Ni plating layer of 0.3 μm was formed by an electroless plating bath. The electroless plating conditions were as follows. The Ni content in the obtained electroless Cu—Ni plating layer was determined by using the above-mentioned plasma emission spectrophotometer (ICP) and found to be 1.18 wt%.
[無電解めっき条件]
浴組成:硫酸銅 7.5g/L
硫酸ニッケル 0.7g/L
ロッシェル塩 20g/L
水酸化ナトリウム 5g/L
pH:9
浴温:32℃ [Electroless plating conditions]
Bath composition: Copper sulfate 7.5 g / L
Nickel sulfate 0.7g / L
Rochelle salt 20g / L
Sodium hydroxide 5g / L
pH: 9
Bath temperature: 32 ° C
浴組成:硫酸銅 7.5g/L
硫酸ニッケル 0.7g/L
ロッシェル塩 20g/L
水酸化ナトリウム 5g/L
pH:9
浴温:32℃ [Electroless plating conditions]
Bath composition: Copper sulfate 7.5 g / L
Nickel sulfate 0.7g / L
Rochelle salt 20g / L
Sodium hydroxide 5g / L
pH: 9
Bath temperature: 32 ° C
その後、電解めっき浴により、上記の銅張積層体における無電解Cu-Niめっき層の上に、さらに電解銅めっき層を18μmの厚みで形成させた。電解銅めっき条件としては以下のとおりとした。
浴組成:硫酸銅6水和物 200g/L
硫酸 50g/L
塩化物イオン 50ppm
光沢剤 5ml/L(奥野製薬製添加剤トップルチナー)
浴温:20~25℃
pH:1以下
電流密度:2~3A/dm2 Then, an electrolytic copper plating layer was further formed with a thickness of 18 μm on the electroless Cu—Ni plating layer in the copper-clad laminate by an electrolytic plating bath. The electrolytic copper plating conditions were as follows.
Bath composition: Copper sulfate hexahydrate 200 g / L
Sulfuric acid 50g / L
Chloride ion 50ppm
Brightener 5 ml / L (Okuno Pharmaceutical Additive Top Luciner)
Bath temperature: 20-25 ° C
pH: 1 or less Current density: 2-3 A / dm 2
浴組成:硫酸銅6水和物 200g/L
硫酸 50g/L
塩化物イオン 50ppm
光沢剤 5ml/L(奥野製薬製添加剤トップルチナー)
浴温:20~25℃
pH:1以下
電流密度:2~3A/dm2 Then, an electrolytic copper plating layer was further formed with a thickness of 18 μm on the electroless Cu—Ni plating layer in the copper-clad laminate by an electrolytic plating bath. The electrolytic copper plating conditions were as follows.
Bath composition: Copper sulfate hexahydrate 200 g / L
Sulfuric acid 50g / L
Chloride ion 50ppm
Brightener 5 ml / L (Okuno Pharmaceutical Additive Top Luciner)
Bath temperature: 20-25 ° C
pH: 1 or less Current density: 2-3 A / dm 2
[加熱(焼鈍)処理]
本実施例では、無電解銅めっき層を形成した後に、下記加熱条件にて第1加熱処理を行うとともに、電解銅めっき層を形成した後で下記加熱条件にて第2加熱処理を行った。
<第1加熱処理における加熱条件>
加熱温度:150℃
加熱時間:10分
加熱雰囲気:大気中
<第2加熱処理における加熱条件>
加熱温度:230℃
加熱時間:10分
加熱雰囲気:大気中
以上の工程を経ることで、実施例1における銅張積層体10を得た。 [Heating (annealing) treatment]
In this example, after the electroless copper plating layer was formed, the first heat treatment was performed under the following heating conditions, and after the electrolytic copper plating layer was formed, the second heat treatment was performed under the following heating conditions.
<Heating conditions in the first heat treatment>
Heating temperature: 150 ° C
Heating time: 10 minutes Heating atmosphere: Atmosphere <Heating conditions in the second heat treatment>
Heating temperature: 230 ° C
Heating time: 10 minutes Heating atmosphere: In the atmosphere By going through the above steps, the copper-cladlaminate 10 in Example 1 was obtained.
本実施例では、無電解銅めっき層を形成した後に、下記加熱条件にて第1加熱処理を行うとともに、電解銅めっき層を形成した後で下記加熱条件にて第2加熱処理を行った。
<第1加熱処理における加熱条件>
加熱温度:150℃
加熱時間:10分
加熱雰囲気:大気中
<第2加熱処理における加熱条件>
加熱温度:230℃
加熱時間:10分
加熱雰囲気:大気中
以上の工程を経ることで、実施例1における銅張積層体10を得た。 [Heating (annealing) treatment]
In this example, after the electroless copper plating layer was formed, the first heat treatment was performed under the following heating conditions, and after the electrolytic copper plating layer was formed, the second heat treatment was performed under the following heating conditions.
<Heating conditions in the first heat treatment>
Heating temperature: 150 ° C
Heating time: 10 minutes Heating atmosphere: Atmosphere <Heating conditions in the second heat treatment>
Heating temperature: 230 ° C
Heating time: 10 minutes Heating atmosphere: In the atmosphere By going through the above steps, the copper-clad
[評価]
<TOF-SIMS及びESCA>
樹脂フィルム1と無電解銅めっき層2の界面におけるカルボキシル基及び/又は水酸基の存在を確認するため、表面状態の確認を行った。
まず、得られた銅張積層体10について、熱処理を行わずに、無電解銅めっき層2を42ボーメのFeCl3溶液(50℃)に浸漬し、無電解銅めっき層2が消えたことを目視で確認したタイミングで取り出すことで無電解銅めっき層2を剥離し、樹脂フィルムを露出させた。露出した樹脂フィルム表面を、20mm×20mmの大きさに切り出して測定サンプルとした。この測定サンプルを、X線光電子分光分析機(日本電子株式会社製、JPS-9200、X線源:Mg、分析領域:φ3mm)で測定し、C1sスペクトルを得た。そして、束縛エネルギー288.8eVに表れるカルボキシル基(COO(H)結合)に由来するピークの強度と束縛エネルギー284.7eVに現れるC-C結合に由来するピークの強度を算出した。 [Evaluation]
<TOF-SIMS and ESCA>
In order to confirm the presence of carboxyl groups and / or hydroxyl groups at the interface between theresin film 1 and the electroless copper plating layer 2, the surface condition was confirmed.
First, the obtained copper-cladlaminate 10 was immersed in the electroless copper plating layer 2 in a FeCl 3 solution (50 ° C.) of 42 bohm without heat treatment, and the electroless copper plating layer 2 disappeared. The electroless copper plating layer 2 was peeled off by taking it out at the timing visually confirmed, and the resin film was exposed. The exposed resin film surface was cut out to a size of 20 mm × 20 mm and used as a measurement sample. This measurement sample was measured with an X-ray photoelectron spectroscope (manufactured by JEOL Ltd., JPS-9200, X-ray source: Mg, analysis area: φ3 mm) to obtain a C1s spectrum. Then, the intensity of the peak derived from the carboxyl group (COO (H) bond) appearing in the binding energy 288.8 eV and the intensity of the peak derived from the CC bond appearing in the binding energy 284.7 eV were calculated.
<TOF-SIMS及びESCA>
樹脂フィルム1と無電解銅めっき層2の界面におけるカルボキシル基及び/又は水酸基の存在を確認するため、表面状態の確認を行った。
まず、得られた銅張積層体10について、熱処理を行わずに、無電解銅めっき層2を42ボーメのFeCl3溶液(50℃)に浸漬し、無電解銅めっき層2が消えたことを目視で確認したタイミングで取り出すことで無電解銅めっき層2を剥離し、樹脂フィルムを露出させた。露出した樹脂フィルム表面を、20mm×20mmの大きさに切り出して測定サンプルとした。この測定サンプルを、X線光電子分光分析機(日本電子株式会社製、JPS-9200、X線源:Mg、分析領域:φ3mm)で測定し、C1sスペクトルを得た。そして、束縛エネルギー288.8eVに表れるカルボキシル基(COO(H)結合)に由来するピークの強度と束縛エネルギー284.7eVに現れるC-C結合に由来するピークの強度を算出した。 [Evaluation]
<TOF-SIMS and ESCA>
In order to confirm the presence of carboxyl groups and / or hydroxyl groups at the interface between the
First, the obtained copper-clad
上記ESCAでの測定結果によれば、カルボキシル基の存在が確認できなかった。次いで、TOF-SIMSにより、上記測定サンプルの表面状態を確認した。
According to the measurement result by the above ESCA, the existence of the carboxyl group could not be confirmed. Next, the surface condition of the measurement sample was confirmed by TOF-SIMS.
上記測定サンプルの表面を、TOF-SIMS TRIFT-II(アルバックファイ株式会社製)により分析を行った。また、コントロールとして未処理の樹脂フィルムサンプルを使用した。測定条件は以下のとおりである。
一次イオン:69Ga
加速電圧:15kV
測定範囲:100μm×100μm
マスレンジ:0.5~300(m/z) The surface of the measurement sample was analyzed by TOF-SIMS TRIFT-II (manufactured by ULVACPHI CO., LTD.). An untreated resin film sample was used as a control. The measurement conditions are as follows.
Primary ion: 69 Ga
Acceleration voltage: 15kV
Measurement range: 100 μm x 100 μm
Mass range: 0.5-300 (m / z)
一次イオン:69Ga
加速電圧:15kV
測定範囲:100μm×100μm
マスレンジ:0.5~300(m/z) The surface of the measurement sample was analyzed by TOF-SIMS TRIFT-II (manufactured by ULVACPHI CO., LTD.). An untreated resin film sample was used as a control. The measurement conditions are as follows.
Primary ion: 69 Ga
Acceleration voltage: 15kV
Measurement range: 100 μm x 100 μm
Mass range: 0.5-300 (m / z)
得られた結果は解析ソフトWin Cadence(Physical Electronics社製)にて解析した。TOF-SIMSスペクトルにおいて無電解銅めっきを剥離したサンプルの表面からのみ、質量121に特徴的なピークが観察されることを確認した。未処理のサンプル表面からは質量121に特徴的なピークは確認されなかった。
ESCAでの測定結果によれば、カルボキシル基の存在が確認できなかったことより、第1表面改質工程及び第2表面改質工程を施した後は、C8H9O(-CH-CH3-C6H4-OH)基が導入されたと判断した。 The obtained results were analyzed by analysis software Win Cadence (manufactured by Physical Electricals). In the TOF-SIMS spectrum, it was confirmed that a characteristic peak at mass 121 was observed only from the surface of the sample from which the electroless copper plating was peeled off. No peak characteristic of mass 121 was observed from the surface of the untreated sample.
According to the measurement results by ESCA, the presence of the carboxyl group could not be confirmed. Therefore, after the first surface modification step and the second surface modification step, C 8 H 9 O (-CH-CH) 3 -C 6 H 4 -OH) group is determined to have been introduced.
ESCAでの測定結果によれば、カルボキシル基の存在が確認できなかったことより、第1表面改質工程及び第2表面改質工程を施した後は、C8H9O(-CH-CH3-C6H4-OH)基が導入されたと判断した。 The obtained results were analyzed by analysis software Win Cadence (manufactured by Physical Electricals). In the TOF-SIMS spectrum, it was confirmed that a characteristic peak at mass 121 was observed only from the surface of the sample from which the electroless copper plating was peeled off. No peak characteristic of mass 121 was observed from the surface of the untreated sample.
According to the measurement results by ESCA, the presence of the carboxyl group could not be confirmed. Therefore, after the first surface modification step and the second surface modification step, C 8 H 9 O (-CH-CH) 3 -C 6 H 4 -OH) group is determined to have been introduced.
<めっき層剥離後Ra>
得られた銅張積層体10(無電解銅めっき層の厚さ:0.3μm(実施例1~5、実施例11、および比較例1~8の場合)又は0.2μm(実施例6~10および比較例9の場合))に対して前述と同様の方法でFeCl3溶液を用いて無電解銅めっき層2を剥離し、樹脂フィルムを露出させた。露出した樹脂フィルムの表面粗さ(Ra)を、レーザー顕微鏡(オリンパス OLS3500)のAFMモード、視野角5μm×5μmにて測定した。得られた値を表2に示す。 <Ra after peeling of the plating layer>
The obtained copper-clad laminate 10 (thickness of electroless copper plating layer: 0.3 μm (in the case of Examples 1 to 5, Examples 11 and Comparative Examples 1 to 8) or 0.2 μm (Examples 6 to 6). In the case of 10 and Comparative Example 9)), the electrolesscopper plating layer 2 was peeled off using a FeCl 3 solution in the same manner as described above to expose the resin film. The surface roughness (Ra) of the exposed resin film was measured by a laser microscope (Olympus OLS3500) in AFM mode and a viewing angle of 5 μm × 5 μm. The values obtained are shown in Table 2.
得られた銅張積層体10(無電解銅めっき層の厚さ:0.3μm(実施例1~5、実施例11、および比較例1~8の場合)又は0.2μm(実施例6~10および比較例9の場合))に対して前述と同様の方法でFeCl3溶液を用いて無電解銅めっき層2を剥離し、樹脂フィルムを露出させた。露出した樹脂フィルムの表面粗さ(Ra)を、レーザー顕微鏡(オリンパス OLS3500)のAFMモード、視野角5μm×5μmにて測定した。得られた値を表2に示す。 <Ra after peeling of the plating layer>
The obtained copper-clad laminate 10 (thickness of electroless copper plating layer: 0.3 μm (in the case of Examples 1 to 5, Examples 11 and Comparative Examples 1 to 8) or 0.2 μm (Examples 6 to 6). In the case of 10 and Comparative Example 9)), the electroless
<接触角>
得られた銅張積層体10について、前述と同様の方法でFeCl3溶液を用いて無電解銅めっき層2を剥離し、樹脂フィルムを露出させた。露出した樹脂フィルム表面を、20mm×20mmに切り出して測定サンプルとした。このサンプル表面に純水を2.0μL滴下し、接触角を接触角測定器(協和界面科学株式会社製、DropMaster)で測定した。なお、実施例1に使用した未処理の樹脂表面の接触角は、65°であり、実施例5で使用した未処理の樹脂表面の接触角は、58°であった。 <Contact angle>
With respect to the obtained copper-cladlaminate 10, the electroless copper plating layer 2 was peeled off using a FeCl 3 solution in the same manner as described above to expose the resin film. The exposed resin film surface was cut out to a size of 20 mm × 20 mm and used as a measurement sample. 2.0 μL of pure water was dropped on the surface of this sample, and the contact angle was measured with a contact angle measuring device (DropMaster manufactured by Kyowa Interface Science Co., Ltd.). The contact angle of the untreated resin surface used in Example 1 was 65 °, and the contact angle of the untreated resin surface used in Example 5 was 58 °.
得られた銅張積層体10について、前述と同様の方法でFeCl3溶液を用いて無電解銅めっき層2を剥離し、樹脂フィルムを露出させた。露出した樹脂フィルム表面を、20mm×20mmに切り出して測定サンプルとした。このサンプル表面に純水を2.0μL滴下し、接触角を接触角測定器(協和界面科学株式会社製、DropMaster)で測定した。なお、実施例1に使用した未処理の樹脂表面の接触角は、65°であり、実施例5で使用した未処理の樹脂表面の接触角は、58°であった。 <Contact angle>
With respect to the obtained copper-clad
<テープ剥離強度>
得られた銅張積層体10(無電解銅めっき層の厚さ:0.3μm(実施例1~5、実施例11、および比較例1~8の場合)又は0.2μm(実施例6~10、および比較例9の場合))に対して無電解銅めっき層2の表面に粘着テープ(ニチバン社製)を貼付した後、引き剥がすことによりテープ剥離試験を実施し、目視にて無電解銅めっき層2の剥離が確認されなかった場合には、評価結果を〇とした。結果を表2に示す。 <Tape peeling strength>
The obtained copper-clad laminate 10 (thickness of electroless copper plating layer: 0.3 μm (in the case of Examples 1 to 5, Examples 11 and Comparative Examples 1 to 8) or 0.2 μm (Examples 6 to 6). 10 and Comparative Example 9))), an adhesive tape (manufactured by Nichiban Co., Ltd.) was attached to the surface of the electrolesscopper plating layer 2, and then the tape was peeled off to perform a tape peeling test, which was visually electroless. When the peeling of the copper plating layer 2 was not confirmed, the evaluation result was evaluated as 〇. The results are shown in Table 2.
得られた銅張積層体10(無電解銅めっき層の厚さ:0.3μm(実施例1~5、実施例11、および比較例1~8の場合)又は0.2μm(実施例6~10、および比較例9の場合))に対して無電解銅めっき層2の表面に粘着テープ(ニチバン社製)を貼付した後、引き剥がすことによりテープ剥離試験を実施し、目視にて無電解銅めっき層2の剥離が確認されなかった場合には、評価結果を〇とした。結果を表2に示す。 <Tape peeling strength>
The obtained copper-clad laminate 10 (thickness of electroless copper plating layer: 0.3 μm (in the case of Examples 1 to 5, Examples 11 and Comparative Examples 1 to 8) or 0.2 μm (Examples 6 to 6). 10 and Comparative Example 9))), an adhesive tape (manufactured by Nichiban Co., Ltd.) was attached to the surface of the electroless
<90°ピール強度>
電解銅めっきが形成されて230℃、10分間の第2加熱処理を経た銅張積層体20を、40mm×40mmの大きさの試片を切り出し、切り出した試片をポリイミドテープでアルミ板に張り付けた。樹脂フィルムと無電解銅めっき層の接着力として90°ピール強度を以下のようにして測定した。 <90 ° peel strength>
A copper-cladlaminate 20 formed with electrolytic copper plating and subjected to a second heat treatment at 230 ° C. for 10 minutes is cut out into a sample having a size of 40 mm × 40 mm, and the cut-out sample is attached to an aluminum plate with polyimide tape. It was. The 90 ° peel strength was measured as the adhesive strength between the resin film and the electroless copper plating layer as follows.
電解銅めっきが形成されて230℃、10分間の第2加熱処理を経た銅張積層体20を、40mm×40mmの大きさの試片を切り出し、切り出した試片をポリイミドテープでアルミ板に張り付けた。樹脂フィルムと無電解銅めっき層の接着力として90°ピール強度を以下のようにして測定した。 <90 ° peel strength>
A copper-clad
すなわち、各供試材に電解銅めっき層を形成させた面に、5mmの間隔で銅めっき面にカッターで短冊状に切り込みを入れ、次いで短冊状の端部を強制剥離し剥離のきっかけを作り、剥離した樹脂フィルムと銅めっき部を作った。次いで、剥離した樹脂フィルムと銅めっき層をテンシロンのチャックで挟んで、オートグラフにより、90°ピール強度を測定した。なお、90°ピール強度はN/cm(幅)に換算した。これらの結果を表2に示す。
That is, a strip-shaped cut is made in the copper-plated surface at 5 mm intervals with a cutter on the surface on which the electrolytic copper plating layer is formed on each test material, and then the strip-shaped end is forcibly peeled off to create a trigger for peeling. , The peeled resin film and the copper-plated part were made. Next, the peeled resin film and the copper plating layer were sandwiched between Tensilon chucks, and the 90 ° peel strength was measured by an autograph. The 90 ° peel strength was converted into N / cm (width). These results are shown in Table 2.
<めっき性(外観検査)>
得られた銅張積層体について、無電解銅めっき層の外観を目視で観察し、剥がれや膨れのないものを○として表2に示した。 <Plating property (appearance inspection)>
The appearance of the electroless copper plating layer of the obtained copper-clad laminate was visually observed, and those without peeling or swelling were shown as ◯ in Table 2.
得られた銅張積層体について、無電解銅めっき層の外観を目視で観察し、剥がれや膨れのないものを○として表2に示した。 <Plating property (appearance inspection)>
The appearance of the electroless copper plating layer of the obtained copper-clad laminate was visually observed, and those without peeling or swelling were shown as ◯ in Table 2.
<無電解銅めっき層2のNi含有率測定>
表1に示す条件で無電解銅めっき層2を形成後に2cm×2cmを30%硝酸(常温)に浸漬して無電解銅めっき層2を溶解し、得られた液をプラズマ発光分光分析装置(ICP)(島津製作所製ICPE-9820)を用いて、Cu(銅)およびNi(ニッケル)の重量を測定し、Ni重量/Cu重量+Ni重量を算出して無電解銅めっき層2のNi含有率を算出した。 <Measurement of Ni content of electrolesscopper plating layer 2>
After forming the electrolesscopper plating layer 2 under the conditions shown in Table 1, 2 cm × 2 cm was immersed in 30% nickel (normal temperature) to dissolve the electroless copper plating layer 2, and the obtained liquid was used as a plasma emission spectroscopic analyzer ( Using ICP) (ICPE-9820 manufactured by Shimadzu Corporation), weigh Cu (copper) and Ni (nickel), calculate Ni weight / Cu weight + Ni weight, and calculate the Ni content of the electroless copper plating layer 2. Was calculated.
表1に示す条件で無電解銅めっき層2を形成後に2cm×2cmを30%硝酸(常温)に浸漬して無電解銅めっき層2を溶解し、得られた液をプラズマ発光分光分析装置(ICP)(島津製作所製ICPE-9820)を用いて、Cu(銅)およびNi(ニッケル)の重量を測定し、Ni重量/Cu重量+Ni重量を算出して無電解銅めっき層2のNi含有率を算出した。 <Measurement of Ni content of electroless
After forming the electroless
<総合評価>
上記評価項目を総合的に判断し、実用上問題ないものは○、実用不可能なものは×として表2に示した。 <Comprehensive evaluation>
The above evaluation items were comprehensively judged, and those that had no practical problem were shown as ◯, and those that were not practical were shown as x in Table 2.
上記評価項目を総合的に判断し、実用上問題ないものは○、実用不可能なものは×として表2に示した。 <Comprehensive evaluation>
The above evaluation items were comprehensively judged, and those that had no practical problem were shown as ◯, and those that were not practical were shown as x in Table 2.
<実施例2>
第1表面改質工程における混合液の温度を表1に示す温度に変更した以外は、実施例1と同様に行った。結果を表1及び表2に示す。 <Example 2>
The same procedure as in Example 1 was carried out except that the temperature of the mixed solution in the first surface modification step was changed to the temperature shown in Table 1. The results are shown in Tables 1 and 2.
第1表面改質工程における混合液の温度を表1に示す温度に変更した以外は、実施例1と同様に行った。結果を表1及び表2に示す。 <Example 2>
The same procedure as in Example 1 was carried out except that the temperature of the mixed solution in the first surface modification step was changed to the temperature shown in Table 1. The results are shown in Tables 1 and 2.
<実施例3>
第1表面改質工程における混合液の-OH基と-NH2基のモル比率(-NH2基/-OH基)を表1に示す数値に変更した以外は、実施例1と同様に行った。結果を表1及び表2に示す。 <Example 3>
The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution in the first surface modification step was changed to the values shown in Table 1. It was. The results are shown in Tables 1 and 2.
第1表面改質工程における混合液の-OH基と-NH2基のモル比率(-NH2基/-OH基)を表1に示す数値に変更した以外は、実施例1と同様に行った。結果を表1及び表2に示す。 <Example 3>
The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution in the first surface modification step was changed to the values shown in Table 1. It was. The results are shown in Tables 1 and 2.
<実施例4>
第1表面改質工程における混合液の温度を表1に示す温度に変更した以外は、実施例1と同様に行った。結果を表1及び表2に示す。 <Example 4>
The same procedure as in Example 1 was carried out except that the temperature of the mixed solution in the first surface modification step was changed to the temperature shown in Table 1. The results are shown in Tables 1 and 2.
第1表面改質工程における混合液の温度を表1に示す温度に変更した以外は、実施例1と同様に行った。結果を表1及び表2に示す。 <Example 4>
The same procedure as in Example 1 was carried out except that the temperature of the mixed solution in the first surface modification step was changed to the temperature shown in Table 1. The results are shown in Tables 1 and 2.
<実施例5>
樹脂フィルム1として変性ポリイミド(MPI)樹脂(SKCコーロンPI製FS-L、厚さ:50μm)を準備した。電気特性としては、10GHzでの比誘電率が3.4、10GHzでの誘電正接が0.0035であった。 <Example 5>
A modified polyimide (MPI) resin (FS-L manufactured by SKC Kolon PI, thickness: 50 μm) was prepared as theresin film 1. As for the electrical characteristics, the relative permittivity at 10 GHz was 3.4, and the dielectric loss tangent at 10 GHz was 0.0035.
樹脂フィルム1として変性ポリイミド(MPI)樹脂(SKCコーロンPI製FS-L、厚さ:50μm)を準備した。電気特性としては、10GHzでの比誘電率が3.4、10GHzでの誘電正接が0.0035であった。 <Example 5>
A modified polyimide (MPI) resin (FS-L manufactured by SKC Kolon PI, thickness: 50 μm) was prepared as the
次に、準備した樹脂フィルム1の両面に対し、第1表面改質工程として、水酸化ナトリウム水溶液とモノエタノールアミンの混合液に5分間浸漬し、両方の表面にカルボキシル基及び/又は水酸基を導入し、浸漬水洗を行った。このとき用いた混合液の温度は40℃であり、-OH基と-NH2基のモル比率(-NH2基/-OH基)が0.19であった。
Next, both sides of the prepared resin film 1 are immersed in a mixed solution of sodium hydroxide aqueous solution and monoethanolamine for 5 minutes as a first surface modification step, and carboxyl groups and / or hydroxyl groups are introduced on both surfaces. Then, it was washed with immersion water. The temperature of the mixed solution used at this time was 40 ° C., and the molar ratio of -OH group and -NH 2 group (-NH 2 group / -OH group) was 0.19.
次いで、第2表面改質工程として、実施例1と同様の手法によって樹脂フィルム1の両面に、プラス電荷を吸着させた後で更にマイナス電荷を吸着させた。
さらに、触媒吸着工程及び無電解銅めっき工程として、めっき触媒として塩化パラジウム(PdCl2)水溶液(2g/l、pH12、40°)に5分間浸漬後、浸漬水洗した。さらに、触媒活性剤(還元剤)としてジメチルアミンボラン(DMAB)1g/Lとホウ酸6g/Lを添加した水溶液(25℃)に5分間浸漬後、浸漬水洗した。 Next, as a second surface modification step, a positive charge was adsorbed on both surfaces of theresin film 1 by the same method as in Example 1, and then a negative charge was further adsorbed.
Further, as a catalyst adsorption step and an electroless copper plating step, the plating catalyst was immersed in an aqueous solution of palladium chloride (PdCl 2 ) (2 g / l, pH 12, 40 °) for 5 minutes and then washed with immersion water. Further, it was immersed in an aqueous solution (25 ° C.) containing 1 g / L of dimethylamine borane (DMAB) and 6 g / L of boric acid as a catalytic activator (reducing agent) for 5 minutes, and then washed with immersion water.
さらに、触媒吸着工程及び無電解銅めっき工程として、めっき触媒として塩化パラジウム(PdCl2)水溶液(2g/l、pH12、40°)に5分間浸漬後、浸漬水洗した。さらに、触媒活性剤(還元剤)としてジメチルアミンボラン(DMAB)1g/Lとホウ酸6g/Lを添加した水溶液(25℃)に5分間浸漬後、浸漬水洗した。 Next, as a second surface modification step, a positive charge was adsorbed on both surfaces of the
Further, as a catalyst adsorption step and an electroless copper plating step, the plating catalyst was immersed in an aqueous solution of palladium chloride (PdCl 2 ) (2 g / l, pH 12, 40 °) for 5 minutes and then washed with immersion water. Further, it was immersed in an aqueous solution (25 ° C.) containing 1 g / L of dimethylamine borane (DMAB) and 6 g / L of boric acid as a catalytic activator (reducing agent) for 5 minutes, and then washed with immersion water.
その後、無電解めっき浴により、無電解Cu-Niめっき層を0.3μm形成させた。無電解めっき条件としては以下のとおりとした。このとき、無電解Cu-Niめっき層におけるNi含有率は、1.18wt%であった。
[無電解めっき条件]
浴組成:硫酸銅 7.5g/L
硫酸ニッケル 0.7g/L
ロッシェル塩 20g/L
水酸化ナトリウム 5g/L
pH:12.5
温度:32℃
処理時間:10分 Then, an electroless Cu—Ni plating layer of 0.3 μm was formed by an electroless plating bath. The electroless plating conditions were as follows. At this time, the Ni content in the electroless Cu—Ni plating layer was 1.18 wt%.
[Electroless plating conditions]
Bath composition: Copper sulfate 7.5 g / L
Nickel sulfate 0.7g / L
Rochelle salt 20g / L
Sodium hydroxide 5g / L
pH: 12.5
Temperature: 32 ° C
Processing time: 10 minutes
[無電解めっき条件]
浴組成:硫酸銅 7.5g/L
硫酸ニッケル 0.7g/L
ロッシェル塩 20g/L
水酸化ナトリウム 5g/L
pH:12.5
温度:32℃
処理時間:10分 Then, an electroless Cu—Ni plating layer of 0.3 μm was formed by an electroless plating bath. The electroless plating conditions were as follows. At this time, the Ni content in the electroless Cu—Ni plating layer was 1.18 wt%.
[Electroless plating conditions]
Bath composition: Copper sulfate 7.5 g / L
Nickel sulfate 0.7g / L
Rochelle salt 20g / L
Sodium hydroxide 5g / L
pH: 12.5
Temperature: 32 ° C
Processing time: 10 minutes
その後、実施例1と同様の手法にて、電解めっき浴により、上記の銅張積層体における無電解Cu-Niめっき層の上にさらに電解銅めっき層を18μmの厚みで形成させた。
After that, an electrolytic copper plating layer was further formed with a thickness of 18 μm on the electroless Cu—Ni plating layer in the above copper-clad laminate by an electrolytic plating bath in the same manner as in Example 1.
[加熱(焼鈍)処理]
実施例5では、無電解銅めっき層を形成した後に、以下の加熱条件にてドライオーブン(ヤマト科学社製DY300)を用いて第1加熱処理を行った。なお、上記した電解めっき後の第2加熱処理は省略した。
<第1加熱処理における加熱条件>
加熱温度:150℃
加熱時間:60分
加熱雰囲気:大気中
以上の工程を経ることで、実施例5における銅張積層体10を得た。
このようにして、実施例5の銅張積層体10を得た上で、実施例1と同様にこの銅張積層体を評価した。これら実施例5の結果を表1及び表2に示す。 [Heating (annealing) treatment]
In Example 5, after forming the electroless copper plating layer, the first heat treatment was performed using a dry oven (DY300 manufactured by Yamato Scientific Co., Ltd.) under the following heating conditions. The second heat treatment after the above-mentioned electrolytic plating was omitted.
<Heating conditions in the first heat treatment>
Heating temperature: 150 ° C
Heating time: 60 minutes Heating atmosphere: In the atmosphere By going through the above steps, the copper-cladlaminate 10 in Example 5 was obtained.
In this way, after obtaining the copper-cladlaminate 10 of Example 5, the copper-clad laminate was evaluated in the same manner as in Example 1. The results of Example 5 are shown in Tables 1 and 2.
実施例5では、無電解銅めっき層を形成した後に、以下の加熱条件にてドライオーブン(ヤマト科学社製DY300)を用いて第1加熱処理を行った。なお、上記した電解めっき後の第2加熱処理は省略した。
<第1加熱処理における加熱条件>
加熱温度:150℃
加熱時間:60分
加熱雰囲気:大気中
以上の工程を経ることで、実施例5における銅張積層体10を得た。
このようにして、実施例5の銅張積層体10を得た上で、実施例1と同様にこの銅張積層体を評価した。これら実施例5の結果を表1及び表2に示す。 [Heating (annealing) treatment]
In Example 5, after forming the electroless copper plating layer, the first heat treatment was performed using a dry oven (DY300 manufactured by Yamato Scientific Co., Ltd.) under the following heating conditions. The second heat treatment after the above-mentioned electrolytic plating was omitted.
<Heating conditions in the first heat treatment>
Heating temperature: 150 ° C
Heating time: 60 minutes Heating atmosphere: In the atmosphere By going through the above steps, the copper-clad
In this way, after obtaining the copper-clad
<実施例6>
無電解Cu-Niめっき層におけるめっき厚を0.2μmとしたこと、真空乾燥装置(佐藤真空社製DQ-46P-LP)を用いて焼鈍(加熱処理)を不活性(窒素)ガス中に280℃で180分とし、且つこの焼鈍(加熱処理)を無電解銅めっき後で且つ電解銅めっき前に行ったこと以外は、実施例2と同様にして銅張積層体を得た。なお電解銅めっき後については熱処理を行っていない。
そして実施例1と同様に、この実施例6の銅張積層体を評価した。これら実施例6の結果を表1及び表2に示す。 <Example 6>
The plating thickness of the electroless Cu-Ni plating layer was set to 0.2 μm, and annealing (heat treatment) was performed in an inert (nitrogen) gas using a vacuum drying device (DQ-46P-LP manufactured by Sato Vacuum Co., Ltd.). A copper-clad laminate was obtained in the same manner as in Example 2 except that the annealing (heat treatment) was performed at ° C. for 180 minutes after electroless copper plating and before electrolytic copper plating. No heat treatment was performed after electrolytic copper plating.
Then, in the same manner as in Example 1, the copper-clad laminate of Example 6 was evaluated. The results of Example 6 are shown in Tables 1 and 2.
無電解Cu-Niめっき層におけるめっき厚を0.2μmとしたこと、真空乾燥装置(佐藤真空社製DQ-46P-LP)を用いて焼鈍(加熱処理)を不活性(窒素)ガス中に280℃で180分とし、且つこの焼鈍(加熱処理)を無電解銅めっき後で且つ電解銅めっき前に行ったこと以外は、実施例2と同様にして銅張積層体を得た。なお電解銅めっき後については熱処理を行っていない。
そして実施例1と同様に、この実施例6の銅張積層体を評価した。これら実施例6の結果を表1及び表2に示す。 <Example 6>
The plating thickness of the electroless Cu-Ni plating layer was set to 0.2 μm, and annealing (heat treatment) was performed in an inert (nitrogen) gas using a vacuum drying device (DQ-46P-LP manufactured by Sato Vacuum Co., Ltd.). A copper-clad laminate was obtained in the same manner as in Example 2 except that the annealing (heat treatment) was performed at ° C. for 180 minutes after electroless copper plating and before electrolytic copper plating. No heat treatment was performed after electrolytic copper plating.
Then, in the same manner as in Example 1, the copper-clad laminate of Example 6 was evaluated. The results of Example 6 are shown in Tables 1 and 2.
<実施例7>
無電解Cu-Niめっき浴における硫酸ニッケルの含有量を0.32g/Lとしたこと以外は、実施例6と同様にして銅張積層体を得た。得られた無電解Cu-Niめっき層におけるNi含有率は0.74wt%であった。そして実施例1と同様に、この実施例7の銅張積層体を評価した。これら実施例7の結果を表1及び表2に示す。 <Example 7>
A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.32 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.74 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 7 was evaluated. The results of Example 7 are shown in Tables 1 and 2.
無電解Cu-Niめっき浴における硫酸ニッケルの含有量を0.32g/Lとしたこと以外は、実施例6と同様にして銅張積層体を得た。得られた無電解Cu-Niめっき層におけるNi含有率は0.74wt%であった。そして実施例1と同様に、この実施例7の銅張積層体を評価した。これら実施例7の結果を表1及び表2に示す。 <Example 7>
A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.32 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.74 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 7 was evaluated. The results of Example 7 are shown in Tables 1 and 2.
<実施例8>
無電解Cu-Niめっき浴における硫酸ニッケルの含有量を0.13g/Lとしたこと以外は、実施例6と同様にして銅張積層体を得た。得られた無電解Cu-Niめっき層におけるNi含有率は0.41wt%であった。そして実施例1と同様に、この実施例8の銅張積層体を評価した。これら実施例8の結果を表1及び表2に示す。 <Example 8>
A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.13 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.41 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 8 was evaluated. The results of Example 8 are shown in Tables 1 and 2.
無電解Cu-Niめっき浴における硫酸ニッケルの含有量を0.13g/Lとしたこと以外は、実施例6と同様にして銅張積層体を得た。得られた無電解Cu-Niめっき層におけるNi含有率は0.41wt%であった。そして実施例1と同様に、この実施例8の銅張積層体を評価した。これら実施例8の結果を表1及び表2に示す。 <Example 8>
A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.13 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.41 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 8 was evaluated. The results of Example 8 are shown in Tables 1 and 2.
<実施例9>
無電解Cu-Niめっき浴における硫酸ニッケルの含有量を0.065g/Lとしたこと以外は、実施例6と同様にして銅張積層体を得た。得られた無電解Cu-Niめっき層におけるNi含有率は0.18wt%であった。そして実施例1と同様に、この実施例9の銅張積層体を評価した。これら実施例9の結果を表1及び表2に示す。 <Example 9>
A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.065 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.18 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 9 was evaluated. The results of Example 9 are shown in Tables 1 and 2.
無電解Cu-Niめっき浴における硫酸ニッケルの含有量を0.065g/Lとしたこと以外は、実施例6と同様にして銅張積層体を得た。得られた無電解Cu-Niめっき層におけるNi含有率は0.18wt%であった。そして実施例1と同様に、この実施例9の銅張積層体を評価した。これら実施例9の結果を表1及び表2に示す。 <Example 9>
A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.065 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.18 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 9 was evaluated. The results of Example 9 are shown in Tables 1 and 2.
<実施例10>
無電解Cu-Niめっき浴における硫酸ニッケルの含有量を0.013g/Lとしたこと以外は、実施例6と同様にして銅張積層体を得た。得られた無電解Cu-Niめっき層におけるNi含有率は0.14wt%であった。そして実施例1と同様に、この実施例10の銅張積層体を評価した。これら実施例10の結果を表1及び表2に示す。 <Example 10>
A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.013 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.14 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 10 was evaluated. The results of Example 10 are shown in Tables 1 and 2.
無電解Cu-Niめっき浴における硫酸ニッケルの含有量を0.013g/Lとしたこと以外は、実施例6と同様にして銅張積層体を得た。得られた無電解Cu-Niめっき層におけるNi含有率は0.14wt%であった。そして実施例1と同様に、この実施例10の銅張積層体を評価した。これら実施例10の結果を表1及び表2に示す。 <Example 10>
A copper-clad laminate was obtained in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.013 g / L. The Ni content in the obtained electroless Cu—Ni plating layer was 0.14 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 10 was evaluated. The results of Example 10 are shown in Tables 1 and 2.
<実施例11>
無電解Cu-Niめっき浴における硫酸ニッケルの含有量を0.0065g/Lとしたこと、無電解Cu-Niめっき層の厚みを0.3μmとしたこと以外は、実施例6と同様にして銅張積層体を得た。得られた無電解Cu-Niめっき層におけるNi含有率は0.09wt%であった。そして実施例1と同様に、この実施例11の銅張積層体を評価した。これら実施例11の結果を表1及び表2に示す。 <Example 11>
Copper in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.0065 g / L and the thickness of the electroless Cu—Ni plating layer was 0.3 μm. A tension laminate was obtained. The Ni content in the obtained electroless Cu—Ni plating layer was 0.09 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 11 was evaluated. The results of Example 11 are shown in Tables 1 and 2.
無電解Cu-Niめっき浴における硫酸ニッケルの含有量を0.0065g/Lとしたこと、無電解Cu-Niめっき層の厚みを0.3μmとしたこと以外は、実施例6と同様にして銅張積層体を得た。得られた無電解Cu-Niめっき層におけるNi含有率は0.09wt%であった。そして実施例1と同様に、この実施例11の銅張積層体を評価した。これら実施例11の結果を表1及び表2に示す。 <Example 11>
Copper in the same manner as in Example 6 except that the nickel sulfate content in the electroless Cu—Ni plating bath was 0.0065 g / L and the thickness of the electroless Cu—Ni plating layer was 0.3 μm. A tension laminate was obtained. The Ni content in the obtained electroless Cu—Ni plating layer was 0.09 wt%. Then, in the same manner as in Example 1, the copper-clad laminate of Example 11 was evaluated. The results of Example 11 are shown in Tables 1 and 2.
<比較例1>
まず樹脂フィルム1としてポリイミドフィルム(カプトン、東レ・デュポン株式会社製、厚さ:50μm)を準備した。電気特性としては、1MHzでの比誘電率が3.4、1MHzでの誘電正接が0.0024であった。
次に、準備した樹脂フィルム1を30℃の水酸化カリウム水溶液(200g/L)に10分間浸漬し、浸漬水洗した。 <Comparative example 1>
First, a polyimide film (Kapton, manufactured by Toray DuPont Co., Ltd., thickness: 50 μm) was prepared as theresin film 1. As for the electrical characteristics, the relative permittivity at 1 MHz was 3.4, and the dielectric loss tangent at 1 MHz was 0.0024.
Next, theprepared resin film 1 was immersed in a potassium hydroxide aqueous solution (200 g / L) at 30 ° C. for 10 minutes and washed with immersion water.
まず樹脂フィルム1としてポリイミドフィルム(カプトン、東レ・デュポン株式会社製、厚さ:50μm)を準備した。電気特性としては、1MHzでの比誘電率が3.4、1MHzでの誘電正接が0.0024であった。
次に、準備した樹脂フィルム1を30℃の水酸化カリウム水溶液(200g/L)に10分間浸漬し、浸漬水洗した。 <Comparative example 1>
First, a polyimide film (Kapton, manufactured by Toray DuPont Co., Ltd., thickness: 50 μm) was prepared as the
Next, the
触媒吸着工程及び無電解めっき工程として、めっき触媒に塩化パラジウム(PdCl2)水溶液に浸漬後、触媒活性剤(還元剤)としてジメチルアミンボラン(DMAB)水溶液に浸漬し、浸漬水洗後、無電解ニッケル-リンめっき浴により、0.5μmの無電解ニッケル-リンめっき層を形成させた。無電解めっき条件としては以下のとおりとした。なお、触媒吸着工程の条件は実施例1と同様にした。また、その後における電解銅めっき及び焼鈍(加熱処理)については実施例1と同様にした。
As a catalyst adsorption step and an electroless plating step, the plating catalyst is immersed in an aqueous solution of palladium chloride (PdCl 2 ), then immersed in an aqueous solution of dimethylamine borane (DMAB) as a catalytic activator (reducing agent), washed with immersion water, and then electroless nickel. An electroless nickel-phosphorus plating layer of 0.5 μm was formed by a phosphorus plating bath. The electroless plating conditions were as follows. The conditions of the catalyst adsorption step were the same as in Example 1. Further, the subsequent electrolytic copper plating and annealing (heat treatment) were the same as in Example 1.
[無電解めっき条件]
浴組成:硫酸ニッケル 27g/L
次亜燐酸ナトリウム 30g/L
リンゴ酸 30g/L
乳酸 15g/L
安定剤 0.6ppm
pH:4.5
温度:89℃
処理時間:5分 [Electroless plating conditions]
Bath composition: Nickel sulfate 27 g / L
Sodium hypochlorite 30 g / L
Malic acid 30g / L
Lactic acid 15g / L
Stabilizer 0.6ppm
pH: 4.5
Temperature: 89 ° C
Processing time: 5 minutes
浴組成:硫酸ニッケル 27g/L
次亜燐酸ナトリウム 30g/L
リンゴ酸 30g/L
乳酸 15g/L
安定剤 0.6ppm
pH:4.5
温度:89℃
処理時間:5分 [Electroless plating conditions]
Bath composition: Nickel sulfate 27 g / L
Sodium hypochlorite 30 g / L
Malic acid 30g / L
Lactic acid 15g / L
Stabilizer 0.6ppm
pH: 4.5
Temperature: 89 ° C
Processing time: 5 minutes
<比較例2>
樹脂フィルムとして、実施例1で使用した液晶ポリマーフィルムを用いた以外は、比較例1と同様に行った。結果を表1及び表2に示す。 <Comparative example 2>
The same procedure as in Comparative Example 1 was carried out except that the liquid crystal polymer film used in Example 1 was used as the resin film. The results are shown in Tables 1 and 2.
樹脂フィルムとして、実施例1で使用した液晶ポリマーフィルムを用いた以外は、比較例1と同様に行った。結果を表1及び表2に示す。 <Comparative example 2>
The same procedure as in Comparative Example 1 was carried out except that the liquid crystal polymer film used in Example 1 was used as the resin film. The results are shown in Tables 1 and 2.
<比較例3>
無電解めっき層を、無電解銅めっき層とした以外は、比較例2と同様に行った。
[無電解めっき条件]
浴組成:硫酸銅 6g/L
ロッシェル塩 20g/L
ホルマリン 5g/L
pH:11.5
温度:30℃
処理時間:10分 <Comparative example 3>
The same procedure as in Comparative Example 2 was carried out except that the electroless plating layer was an electroless copper plating layer.
[Electroless plating conditions]
Bath composition: Copper sulfate 6 g / L
Rochelle salt 20g / L
Formalin 5g / L
pH: 11.5
Temperature: 30 ° C
Processing time: 10 minutes
無電解めっき層を、無電解銅めっき層とした以外は、比較例2と同様に行った。
[無電解めっき条件]
浴組成:硫酸銅 6g/L
ロッシェル塩 20g/L
ホルマリン 5g/L
pH:11.5
温度:30℃
処理時間:10分 <Comparative example 3>
The same procedure as in Comparative Example 2 was carried out except that the electroless plating layer was an electroless copper plating layer.
[Electroless plating conditions]
Bath composition: Copper sulfate 6 g / L
Rochelle salt 20g / L
Formalin 5g / L
pH: 11.5
Temperature: 30 ° C
Processing time: 10 minutes
<比較例4>
実施例1と同様の条件で第2表面改質工程を施した以外は、比較例3と同様に行った。 <Comparative example 4>
It was carried out in the same manner as in Comparative Example 3 except that the second surface modification step was carried out under the same conditions as in Example 1.
実施例1と同様の条件で第2表面改質工程を施した以外は、比較例3と同様に行った。 <Comparative example 4>
It was carried out in the same manner as in Comparative Example 3 except that the second surface modification step was carried out under the same conditions as in Example 1.
<比較例5>
第1表面改質工程として使用した混合液の-OH基と-NH2基のモル比率(-NH2基/-OH基)を0.23とした以外は、実施例1と同様に行った。 <Comparative example 5>
The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution used as the first surface modification step was 0.23. ..
第1表面改質工程として使用した混合液の-OH基と-NH2基のモル比率(-NH2基/-OH基)を0.23とした以外は、実施例1と同様に行った。 <Comparative example 5>
The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution used as the first surface modification step was 0.23. ..
<比較例6>
第1表面改質工程として使用した混合液の-OH基と-NH2基のモル比率(-NH2基/-OH基)を0.45とした以外は、実施例1と同様に行った。 <Comparative Example 6>
The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution used as the first surface modification step was 0.45. ..
第1表面改質工程として使用した混合液の-OH基と-NH2基のモル比率(-NH2基/-OH基)を0.45とした以外は、実施例1と同様に行った。 <Comparative Example 6>
The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution used as the first surface modification step was 0.45. ..
<比較例7>
第1表面改質工程として使用した混合液の-OH基と-NH2基のモル比率(-NH2基/-OH基)を0.92とした以外は、実施例1と同様に行った。 <Comparative Example 7>
The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution used as the first surface modification step was 0.92. ..
第1表面改質工程として使用した混合液の-OH基と-NH2基のモル比率(-NH2基/-OH基)を0.92とした以外は、実施例1と同様に行った。 <Comparative Example 7>
The same procedure as in Example 1 was carried out except that the molar ratio of -OH groups and -NH 2 groups (-NH 2 groups / -OH groups) of the mixed solution used as the first surface modification step was 0.92. ..
<比較例8>
第1表面改質工程として使用した混合液の-OH基と-NH2基のモル比率(-NH2基/-OH基)を1.83とした以外は、実施例1と同様に行った。 <Comparative Example 8>
The same procedure as in Example 1 was carried out except that the molar ratio of -OH group and -NH 2 group (-NH 2 group / -OH group) of the mixed solution used as the first surface modification step was set to 1.83. ..
第1表面改質工程として使用した混合液の-OH基と-NH2基のモル比率(-NH2基/-OH基)を1.83とした以外は、実施例1と同様に行った。 <Comparative Example 8>
The same procedure as in Example 1 was carried out except that the molar ratio of -OH group and -NH 2 group (-NH 2 group / -OH group) of the mixed solution used as the first surface modification step was set to 1.83. ..
<比較例9>
樹脂フィルム上に形成する無電解めっきを銅めっき(Ni含有率を0)としたこと、比較例3と同様のめっき液を用いてこの無電解Cuめっきのめっき厚を0.2μmとしたこと、実施例6と同じ装置を用いて焼鈍(加熱処理)を不活性(窒素)ガス中に280℃で180分とし、且つこの焼鈍(加熱処理)を無電解銅めっき後で且つ電解銅めっき前に行ったこと以外は、実施例2と同様に行った。なお、この比較例9においては、無電解Cuめっき層が局所的に不めっきであったため、無電解Cuめっき層が形成されている箇所にのみ電解Cuめっきを実施し、ピール強度の測定以外の評価を行った。 <Comparative Example 9>
The electroless plating formed on the resin film was copper plating (Ni content was 0), and the plating thickness of this electroless Cu plating was 0.2 μm using the same plating solution as in Comparative Example 3. Using the same equipment as in Example 6, annealing (heat treatment) was performed in an inert (nitrogen) gas at 280 ° C. for 180 minutes, and this annealing (heat treatment) was performed after electroless copper plating and before electrolytic copper plating. Except for what was done, it was done in the same manner as in Example 2. In Comparative Example 9, since the electroless Cu plating layer was locally non-plated, electrolytic Cu plating was performed only on the portion where the electroless Cu plating layer was formed, except for the measurement of peel strength. Evaluation was performed.
樹脂フィルム上に形成する無電解めっきを銅めっき(Ni含有率を0)としたこと、比較例3と同様のめっき液を用いてこの無電解Cuめっきのめっき厚を0.2μmとしたこと、実施例6と同じ装置を用いて焼鈍(加熱処理)を不活性(窒素)ガス中に280℃で180分とし、且つこの焼鈍(加熱処理)を無電解銅めっき後で且つ電解銅めっき前に行ったこと以外は、実施例2と同様に行った。なお、この比較例9においては、無電解Cuめっき層が局所的に不めっきであったため、無電解Cuめっき層が形成されている箇所にのみ電解Cuめっきを実施し、ピール強度の測定以外の評価を行った。 <Comparative Example 9>
The electroless plating formed on the resin film was copper plating (Ni content was 0), and the plating thickness of this electroless Cu plating was 0.2 μm using the same plating solution as in Comparative Example 3. Using the same equipment as in Example 6, annealing (heat treatment) was performed in an inert (nitrogen) gas at 280 ° C. for 180 minutes, and this annealing (heat treatment) was performed after electroless copper plating and before electrolytic copper plating. Except for what was done, it was done in the same manner as in Example 2. In Comparative Example 9, since the electroless Cu plating layer was locally non-plated, electrolytic Cu plating was performed only on the portion where the electroless Cu plating layer was formed, except for the measurement of peel strength. Evaluation was performed.
本発明の銅張積層体は樹脂フィルムと無電解銅めっき層との間の表面粗さRaが所定の値以下であるため、フレキシブル回路基板としての伝送損失を抑制することが可能であり、高周波における高い伝送特性を提供することができる。また、樹脂フィルムと無電解銅めっき層との密着性を向上させることが可能であるため、回路形成の方法としてフルアディティブ法又はセミアディティブ法を採用した場合でも、微細な回路パターンの形成が可能である。
本発明の銅張積層体よれば、多層構造の微細配線が求められる配線板等に好適に適用されることが明らかである。 In the copper-clad laminate of the present invention, the surface roughness Ra between the resin film and the electroless copper plating layer is equal to or less than a predetermined value, so that transmission loss as a flexible circuit board can be suppressed and a high frequency is obtained. Can provide high transmission characteristics in. Further, since it is possible to improve the adhesion between the resin film and the electroless copper plating layer, it is possible to form a fine circuit pattern even when the full additive method or the semi-additive method is adopted as the circuit forming method. Is.
According to the copper-clad laminate of the present invention, it is clear that it is suitably applied to a wiring board or the like that requires fine wiring having a multi-layer structure.
本発明の銅張積層体よれば、多層構造の微細配線が求められる配線板等に好適に適用されることが明らかである。 In the copper-clad laminate of the present invention, the surface roughness Ra between the resin film and the electroless copper plating layer is equal to or less than a predetermined value, so that transmission loss as a flexible circuit board can be suppressed and a high frequency is obtained. Can provide high transmission characteristics in. Further, since it is possible to improve the adhesion between the resin film and the electroless copper plating layer, it is possible to form a fine circuit pattern even when the full additive method or the semi-additive method is adopted as the circuit forming method. Is.
According to the copper-clad laminate of the present invention, it is clear that it is suitably applied to a wiring board or the like that requires fine wiring having a multi-layer structure.
1 樹脂フィルム
2 無電解銅めっき層
4 電解めっき層
10 銅張積層体
20 銅張積層体 1Resin film 2 Electroless copper plating layer 4 Electroplating layer 10 Copper-clad laminate 20 Copper-clad laminate
2 無電解銅めっき層
4 電解めっき層
10 銅張積層体
20 銅張積層体 1
Claims (17)
- 周波数10GHzにおける比誘電率が3.5以下、且つ誘電正接が0.008以下である低誘電樹脂フィルムと、
前記低誘電樹脂フィルムの少なくとも一方の面に積層された無電解銅めっき層と、
を含み、
前記低誘電樹脂フィルムのうち前記無電解銅めっき層と接するめっき層側界面における平均表面粗さRaが1~150nmであり、且つ、前記樹脂フィルムと前記無電解銅めっき層との密着強度が4.2N/cm以上である、ことを特徴とする銅張積層体。 A low-dielectric resin film having a relative permittivity of 3.5 or less and a dielectric loss tangent of 0.008 or less at a frequency of 10 GHz.
An electroless copper plating layer laminated on at least one surface of the low-dielectric resin film,
Including
Among the low-dielectric resin films, the average surface roughness Ra at the plating layer side interface in contact with the electroless copper plating layer is 1 to 150 nm, and the adhesion strength between the resin film and the electroless copper plating layer is 4. A copper-clad laminate characterized by being .2 N / cm or more. - 前記樹脂フィルムのめっき層側界面における飛行時間型質量分析法(TOF-SIMS)による質量121の強度が、800以上である、請求項1に記載の銅張積層体。 The copper-clad laminate according to claim 1, wherein the strength of the mass 121 by the time-of-flight mass spectrometry (TOF-SIMS) at the interface on the plating layer side of the resin film is 800 or more.
- 前記樹脂フィルムのめっき層側界面は、水酸基及び/又はカルボキシル基が付与されている、請求項1又は2に記載の銅張積層体。 The copper-clad laminate according to claim 1 or 2, wherein a hydroxyl group and / or a carboxyl group is added to the interface on the plating layer side of the resin film.
- 前記めっき層側界面において、前記水酸基は前記カルボキシル基よりも多く付与されている、請求項3に記載の銅張積層体。 The copper-clad laminate according to claim 3, wherein more hydroxyl groups are added than the carboxyl groups at the plating layer side interface.
- 前記樹脂フィルムが、ポリイミド、変性ポリイミド、液晶ポリマー、フッ素系樹脂の何れか、もしくはその混成物である、請求項1~4のいずれか一項に記載の銅張積層体。 The copper-clad laminate according to any one of claims 1 to 4, wherein the resin film is any one of polyimide, modified polyimide, liquid crystal polymer, and fluororesin, or a mixture thereof.
- 前記無電解銅めっき層が、Cu-Ni合金であり、
当該無電解銅めっき層におけるNiの含有率が3wt%以下である、請求項1~5のいずれか一項に記載の銅張積層体。 The electroless copper plating layer is a Cu—Ni alloy.
The copper-clad laminate according to any one of claims 1 to 5, wherein the content of Ni in the electroless copper plating layer is 3 wt% or less. - 前記無電解銅めっき層の厚みが0.1~1.0μmの範囲である、請求項1~6のいずれか一項に記載の銅張積層体。 The copper-clad laminate according to any one of claims 1 to 6, wherein the thickness of the electroless copper plating layer is in the range of 0.1 to 1.0 μm.
- 前記樹脂フィルムの、無電解銅めっき層側の界面に、Cu、Ni、Pd、Agのいずれかからなる金属が存在している、請求項1~7のいずれか一項に記載の銅張積層体。 The copper-clad laminate according to any one of claims 1 to 7, wherein a metal made of Cu, Ni, Pd, or Ag is present at the interface of the resin film on the electroless copper plating layer side. body.
- 前記無電解銅めっき層上に形成された保護層をさらに含む、請求項1~8のいずれか一項に記載の銅張積層体。 The copper-clad laminate according to any one of claims 1 to 8, further comprising a protective layer formed on the electroless copper plating layer.
- 前記無電解銅めっき層が前記樹脂フィルムの両面に形成されるとともに、
前記樹脂フィルムにはスルーホールを有し、前記スルーホールの内壁には前記無電解銅めっき層の少なくとも一部が形成されてなる、請求項1~9のいずれか一項に記載の銅張積層体。 The electroless copper plating layer is formed on both sides of the resin film, and
The copper-clad laminate according to any one of claims 1 to 9, wherein the resin film has through holes, and at least a part of the electroless copper plating layer is formed on the inner wall of the through holes. body. - 周波数10GHzにおける比誘電率が3.5以下、且つ、誘電正接が0.008以下である樹脂フィルムに無電解銅めっき層を形成して製造される銅張積層体の製造方法であって、
前記樹脂フィルムの表面にカルボキシル基及び/又は水酸基を付与する第1表面改質工程と、
前記カルボキシル基及び/又は水酸基が付与された前記表面に対して湿式方式により電荷を付与する第2表面改質工程と、
前記電荷が付与された前記表面に触媒を吸着させる触媒吸着工程と、
前記触媒が吸着された前記表面に対して無電解銅めっき層を形成する無電解銅めっき工程と、
前記無電解銅めっき層が形成された前記銅張積層体を加熱する加熱工程と、
を含む、ことを特徴とする銅張積層体の製造方法。 A method for producing a copper-clad laminate produced by forming an electroless copper plating layer on a resin film having a relative permittivity of 3.5 or less and a dielectric loss tangent of 0.008 or less at a frequency of 10 GHz.
The first surface modification step of imparting a carboxyl group and / or a hydroxyl group to the surface of the resin film, and
A second surface modification step of applying an electric charge to the surface to which the carboxyl group and / or a hydroxyl group is added by a wet method, and
A catalyst adsorption step of adsorbing a catalyst on the surface to which the electric charge is applied, and
An electroless copper plating step of forming an electroless copper plating layer on the surface on which the catalyst is adsorbed,
A heating step of heating the copper-clad laminate on which the electroless copper plating layer is formed, and
A method for producing a copper-clad laminate, which comprises. - 前記第1表面改質工程において、アルカリ水溶液とアミノアルコールの混合液を用いる、請求項11に記載の銅張積層体の製造方法。 The method for producing a copper-clad laminate according to claim 11, wherein a mixed solution of an alkaline aqueous solution and an amino alcohol is used in the first surface modification step.
- 前記アミノアルコールは、アミノエタノールである請求項12に記載の銅張積層体の製造方法。 The method for producing a copper-clad laminate according to claim 12, wherein the amino alcohol is amino ethanol.
- 前記樹脂フィルムの表面に対して前記カルボキシル基よりも前記水酸基のほうが多く付与される、請求項11~13のいずれか一項に記載の銅張積層体の製造方法。 The method for producing a copper-clad laminate according to any one of claims 11 to 13, wherein more hydroxyl groups are imparted to the surface of the resin film than the carboxyl groups.
- 前記第2表面改質工程において、前記カルボキシル基及び/又は水酸基が付与された表面にプラス電荷を吸着させた後に、マイナス電荷を前記表面に吸着させる、請求項11~14のいずれか一項に記載の銅張積層体の製造方法。 According to any one of claims 11 to 14, in the second surface modification step, a positive charge is adsorbed on the surface to which the carboxyl group and / or the hydroxyl group is added, and then the negative charge is adsorbed on the surface. The method for producing a copper-clad laminate according to the description.
- カチオン系界面活性剤を前記表面に添加して前記プラス電荷を吸着させるとともに、アニオン系界面活性剤を前記表面に添加して前記マイナス電荷を吸着させる、請求項15に記載の銅張積層体の製造方法。 The copper-clad laminate according to claim 15, wherein a cationic surfactant is added to the surface to adsorb the positive charge, and an anionic surfactant is added to the surface to adsorb the negative charge. Production method.
- 請求項1~10のいずれか一項に記載された銅張積層体による回路が形成されたフレキシブル回路基板。 A flexible circuit board on which a circuit made of the copper-clad laminate according to any one of claims 1 to 10 is formed.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217042043A KR20220052860A (en) | 2019-08-29 | 2020-08-07 | Copper clad laminate and manufacturing method thereof |
JP2021542704A JPWO2021039370A1 (en) | 2019-08-29 | 2020-08-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-157429 | 2019-08-29 | ||
JP2019157429 | 2019-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039370A1 true WO2021039370A1 (en) | 2021-03-04 |
Family
ID=74684583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/030460 WO2021039370A1 (en) | 2019-08-29 | 2020-08-07 | Copper-clad laminate and method for producing same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2021039370A1 (en) |
KR (1) | KR20220052860A (en) |
CN (2) | CN118433993A (en) |
WO (1) | WO2021039370A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002256443A (en) * | 2001-02-27 | 2002-09-11 | Japan Science & Technology Corp | Plating method |
JP2007254606A (en) * | 2006-03-23 | 2007-10-04 | Nippon Zeon Co Ltd | Plating method of resin molded body |
JP2016113688A (en) * | 2014-12-17 | 2016-06-23 | キヤノン・コンポーネンツ株式会社 | Plating film-attached resin product, production method thereof and encoder |
JP2017208540A (en) * | 2016-05-13 | 2017-11-24 | 株式会社イオックス | Plating transfer film |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5186266B2 (en) | 2008-03-31 | 2013-04-17 | 新日鉄住金化学株式会社 | Multilayer wiring circuit board and manufacturing method thereof |
WO2010024175A1 (en) * | 2008-08-25 | 2010-03-04 | 株式会社関東学院大学表面工学研究所 | Laminate and process for producing the laminate |
JP6202905B2 (en) | 2013-06-27 | 2017-09-27 | 株式会社クラレ | Circuit board and manufacturing method thereof |
JP2018145303A (en) * | 2017-03-06 | 2018-09-20 | 株式会社カネカ | Multilayer polyimide film |
-
2020
- 2020-08-07 JP JP2021542704A patent/JPWO2021039370A1/ja active Pending
- 2020-08-07 KR KR1020217042043A patent/KR20220052860A/en not_active Application Discontinuation
- 2020-08-07 WO PCT/JP2020/030460 patent/WO2021039370A1/en active Application Filing
- 2020-08-28 CN CN202410536183.2A patent/CN118433993A/en active Pending
- 2020-08-28 CN CN202010886991.3A patent/CN112449483B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002256443A (en) * | 2001-02-27 | 2002-09-11 | Japan Science & Technology Corp | Plating method |
JP2007254606A (en) * | 2006-03-23 | 2007-10-04 | Nippon Zeon Co Ltd | Plating method of resin molded body |
JP2016113688A (en) * | 2014-12-17 | 2016-06-23 | キヤノン・コンポーネンツ株式会社 | Plating film-attached resin product, production method thereof and encoder |
JP2017208540A (en) * | 2016-05-13 | 2017-11-24 | 株式会社イオックス | Plating transfer film |
Also Published As
Publication number | Publication date |
---|---|
CN112449483B (en) | 2024-05-07 |
CN118433993A (en) | 2024-08-02 |
JPWO2021039370A1 (en) | 2021-03-04 |
KR20220052860A (en) | 2022-04-28 |
CN112449483A (en) | 2021-03-05 |
TW202117074A (en) | 2021-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7166334B2 (en) | copper clad laminate | |
KR101830994B1 (en) | Roughened copper foil, method for producing same, copper clad laminated board, and printed circuit board | |
JP5178064B2 (en) | Metal layer laminate having metal surface roughened layer and method for producing the same | |
JP6149066B2 (en) | Surface treated copper foil | |
CN110087405B (en) | Copper foil with adhesive layer, copper-clad laminate, and printed wiring board | |
WO2012043182A1 (en) | Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board | |
JP5886416B2 (en) | Surface treated copper foil | |
CN107109663B (en) | Surface-treated copper foil for forming high-frequency signal transmission circuit, copper-clad laminate, and printed wiring board | |
CN110546313A (en) | Surface treated copper foil | |
US20230199947A1 (en) | Copper clad laminate film and electronic device including same | |
WO2021039370A1 (en) | Copper-clad laminate and method for producing same | |
JP2014208893A (en) | Surface-treated copper foil, method of treating surface of the copper foil, copper-clad laminate sheet and method of producing the laminate sheet | |
TWI854011B (en) | Copper-clad laminate and method for manufacturing the same | |
WO2022030644A1 (en) | Copper-clad layered body and method for producing same | |
WO2022030645A1 (en) | Copper-clad laminate and manufacturing method thereof | |
JP6827083B2 (en) | Surface-treated copper foil, copper-clad laminate, and printed wiring board | |
JP7513717B2 (en) | Copper foil laminate film, electronic device including same, and method for manufacturing said copper foil laminate film | |
KR102548431B1 (en) | Copper clad laminate film, electronic device including the same | |
KR102124327B1 (en) | EMI shielding material for circuit board and manufacturing method of PCB using the same | |
TW202239278A (en) | Copper clad laminate film, electronic device including the same, and method of preparing the copper clad laminate film | |
JP2023064709A (en) | Copper clad laminate film and electronic device including the same | |
JP2009164316A (en) | Method of manufacturing metal thin film on polyimide resin surface, metal thin film, method of manufacturing polyimide wiring board, and polyimide wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20859234 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021542704 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20859234 Country of ref document: EP Kind code of ref document: A1 |