WO2021039152A1 - Vaporized fuel treatment device - Google Patents

Vaporized fuel treatment device Download PDF

Info

Publication number
WO2021039152A1
WO2021039152A1 PCT/JP2020/027100 JP2020027100W WO2021039152A1 WO 2021039152 A1 WO2021039152 A1 WO 2021039152A1 JP 2020027100 W JP2020027100 W JP 2020027100W WO 2021039152 A1 WO2021039152 A1 WO 2021039152A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel tank
pressure
tank
control unit
Prior art date
Application number
PCT/JP2020/027100
Other languages
French (fr)
Japanese (ja)
Inventor
義彦 本田
善和 宮部
昌慶 品川
尚人 武関
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Publication of WO2021039152A1 publication Critical patent/WO2021039152A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines

Definitions

  • the present disclosure relates to an evaporative fuel processing device that processes evaporative fuel generated in a fuel tank of an internal combustion engine mounted on a vehicle.
  • An evaporative fuel treatment device is used to prevent the evaporative fuel generated in the fuel tank from being released to the atmosphere.
  • the evaporated fuel in the fuel tank is introduced into the canister containing the adsorbent and temporarily adsorbed on the adsorbent.
  • the evaporated fuel adsorbed on the adsorbent is purged when the purge execution condition determined based on the operating conditions of the internal combustion engine is satisfied, and is purged to the intake passage of the internal combustion engine via the purge passage.
  • Some of such evaporative fuel treatment devices have a function of performing a leak inspection to determine whether or not there is a leak in the portion including the fuel tank and the canister.
  • Patent Document 1 there is one described in Patent Document 1.
  • an air supply pump is provided, the fuel tank and the canister are pressurized by the air supply pump, and leak detection is performed based on the subsequent pressure change.
  • Patent Document 2 there is one described in Patent Document 2.
  • the fuel tank is sealed by an on-off valve, and leak detection is performed based on the pressure change after the pressure in the fuel tank is increased by the change in the outside air temperature.
  • the present disclosure has been made to solve the above-mentioned problems, and an evaporative fuel treatment apparatus capable of detecting a leak without installing a new pump and securing an opportunity for detecting a leak.
  • the purpose is to provide.
  • a form of this disclosure made to solve the above problems is A fuel tank for storing fuel, a fuel pump for pumping fuel in the fuel tank to the internal combustion engine via a fuel passage, a canister for storing evaporated fuel sent from the fuel tank via a vapor passage, and the fuel.
  • a return passage that returns a part or all of the fuel pumped by the pump to the fuel tank, at least two control valves that seal the fuel tank, a pressure sensor that detects the pressure in the fuel tank, and the fuel pump.
  • a control unit for controlling the control valve, in an evaporative fuel processing apparatus.
  • the fuel passage or the return passage includes a heat receiving portion from an internal combustion engine.
  • control unit drives the fuel pump to return the fuel heated by the heat receiving unit to the fuel tank via the return passage, and the fuel in the fuel tank is returned. After heating to generate a differential pressure in the fuel tank, a leak inspection is performed based on the change in the pressure value detected by the pressure sensor.
  • the fuel heated in the heat receiving section is returned to the fuel tank via the return passage, and the fuel in the fuel tank is heated to generate a differential pressure (positive pressure or negative pressure) in the fuel tank.
  • a differential pressure positive pressure or negative pressure
  • a leak inspection is performed based on the change in the pressure value detected by the pressure sensor. Therefore, a pump for generating a differential pressure in the fuel tank becomes unnecessary.
  • a differential pressure can be reliably generated in the fuel tank without being affected by the outside air temperature.
  • the leak inspection can be reliably performed once the internal combustion engine is started and the warm-up is completed.
  • leak detection can be performed without providing a new pump, and an opportunity for leak detection can be secured.
  • the control unit After operating the control valve to seal the fuel tank, the control unit returns the fuel heated by the heat receiving unit to the fuel tank via the return passage to heat the fuel in the fuel tank. , It is preferable to generate a positive pressure in the fuel tank to perform a leak inspection.
  • the fuel heated in the heat receiving section is returned to the fuel tank via the return passage to heat the fuel in the fuel tank, thereby entering the fuel tank.
  • a differential pressure can be generated on the positive pressure side. As a result, a leak inspection by positive pressure can be performed.
  • the control unit returns the fuel heated by the heat receiving unit to the fuel tank via the return passage to heat the fuel in the fuel tank, and then operates the control valve to seal the fuel tank. Therefore, it is preferable to generate a negative pressure in the fuel tank to perform a leak inspection.
  • the fuel heated in the heat receiving section is returned to the fuel tank via the return passage to heat the fuel in the fuel tank, and then the control valve is operated to seal the fuel tank, thereby entering the fuel tank.
  • a differential pressure can be generated on the negative pressure side.
  • a leak inspection due to negative pressure can be performed. Therefore, it is possible to prevent the evaporated fuel adsorbed on the canister from being released during the leak inspection.
  • control unit changes the amount of return fuel returned to the fuel tank based on the amount of fuel in the fuel tank.
  • the return fuel may be reduced as the amount of fuel in the fuel tank decreases.
  • the fuel in the fuel tank may be heated more than necessary when the amount of fuel in the fuel tank (remaining amount of fuel) is small. Therefore, by doing so, it is possible to prevent the fuel in the fuel tank from being heated more than necessary. Moreover, since the driving time of the fuel pump can be reduced, the amount of electric charge can be reduced.
  • the control unit may stop the fuel pump and finish heating the fuel in the fuel tank.
  • the control unit returns the fuel heated by the heat receiving unit to the fuel tank via the return passage while the purge in which the evaporated fuel stored in the canister is supplied to the internal combustion engine is being executed.
  • the fuel in the fuel tank is heated and the internal combustion engine is stopped, it is preferable to stop the fuel pump and finish heating the fuel in the fuel tank.
  • the pressure in the fuel tank can be reduced by returning the return fuel to the fuel tank and heating the fuel in the fuel tank while the purge is being executed. Then, when the internal combustion engine is stopped, the heating of the fuel in the fuel tank is completed and the fuel tank is sealed. As a result, the temperature of the heated fuel drops toward the outside air temperature, so that the inside of the fuel tank can have a negative pressure, and a leak inspection due to the negative pressure can be performed.
  • a temperature sensor for detecting the temperature inside the fuel tank is provided.
  • the control unit preferably stops the fuel pump and finishes heating the fuel in the fuel tank.
  • a bypass passage that returns fuel to the fuel tank without passing through the heat receiving section It is equipped with an on-off valve that opens and closes the bypass passage. It is preferable that the control unit controls the on-off valve to open the bypass passage when it is not necessary to heat the fuel in the fuel tank.
  • the return passage is provided with a pressure regulator that regulates the pressure of the fuel in the passage so that the pressure does not rise above a certain level.
  • the closed valve may be used for one of the control valves.
  • an evaporative fuel treatment apparatus capable of performing leak detection without providing a new pump and securing an opportunity for leak detection.
  • the engine system to which the evaporated fuel treatment device 1 of the present embodiment is applied is mounted on a vehicle such as an automobile, and as shown in FIG. 1, the engine ENG includes air (intake air, intake air) in the engine ENG. ) Is connected to the intake passage IP.
  • the intake passage IP is provided with a throttle valve THR that opens and closes the intake passage IP to control the amount of air flowing into the engine ENG (intake air amount).
  • An air cleaner AC for removing foreign matter from the air flowing into the intake passage IP is provided on the upstream side (upstream side in the flow direction of the intake air) of the throttle valve THR in the intake passage IP.
  • the evaporated fuel processing device 1 of the present embodiment supplies the evaporated fuel generated in the fuel tank FT to the engine ENG via the intake passage IP and processes it.
  • the evaporated fuel processing device 1 includes a fuel tank FT, a fuel pump FP, a return passage 13, a canister 21, a purge control valve 23, an atmosphere release valve 27, a pressure sensor 31, a control unit 40, and the like.
  • the fuel tank FT is configured to store the fuel supplied to the engine ENG.
  • a fuel pump FP is provided inside the fuel tank FT, and the fuel in the fuel tank FT is supplied to the injector 11 by the fuel pump FP via the fuel passage 12. Then, fuel is supplied from the injector 11 to the engine ENG (intake port).
  • a high-pressure pump 14 is provided in the fuel passage 12. High-pressure fuel is supplied to the injector 11 by the high-pressure pump 14.
  • the high-pressure pump 14 is an example of the “heat receiving unit from the internal combustion engine” of the present disclosure, and the fuel supplied to the high-pressure pump 14 is heated.
  • the fuel tank FT is provided with a liquid level sensor 30 that detects the fuel liquid level in order to measure the amount of fuel (remaining amount of fuel) stored inside. Further, the fuel tank FT is provided with a pressure sensor 31 that detects the pressure in the upper space of the fuel liquid level (tank internal pressure).
  • the fuel that was heated by the high-pressure pump 14 and was not supplied to the injector 11 is returned to the fuel tank FT in the return passage 13.
  • the return passage 13 is provided with a pressure regulator 15 that regulates the pressure of the fuel in the passage so that the pressure does not rise above a certain level. Since the pressure in the return passage 13 does not increase due to the pressure regulator 15, it is not necessary to increase the pressure resistance of the return passage 13, so that the cost of the device can be reduced.
  • the canister 21 contains an adsorbent such as activated carbon inside, and recovers (adsorbs and holds) the evaporated fuel generated in the fuel tank FT.
  • the canister 21 is connected to the fuel tank FT via the vapor passage 24, and temporarily adsorbs the evaporated fuel flowing from the fuel tank FT through the vapor passage 24. Further, the canister 21 communicates with the purge passage 22 and the atmospheric passage 25.
  • the purge passage 22 is connected to the intake passage IP and the canister 21. As a result, the purge gas (gas containing evaporated fuel) flowing out of the canister 21 flows through the purge passage 22 and is introduced into the intake passage IP. In the example shown in FIG. 1, the purge passage 22 is connected to a position on the downstream side (downstream side in the flow direction of the intake air) of the throttle valve THR.
  • the purge control valve 23 is provided in the purge passage 22.
  • the purge control valve 23 opens and closes the purge passage 22.
  • the purge control valve 23 is closed (when the valve is closed)
  • the purge gas in the purge passage 22 is stopped by the purge control valve 23 and does not flow to the intake passage IP.
  • the purge control valve 23 is opened (when the valve is open), the purge gas flows into the intake passage IP.
  • the purge control valve 23 is an example of the "control valve" of the present disclosure.
  • One end of the atmospheric passage 25 is opened as an atmospheric opening 26, and the other end is connected to the canister 21 to communicate the canister 21 with the atmosphere. Then, the air taken in from the atmospheric opening 26 flows through the atmospheric passage 25. Further, the atmospheric passage 25 is provided with an atmospheric release valve 27 that opens and closes the atmospheric passage 25.
  • the atmosphere release valve 27 is an example of the "control valve" of the present disclosure.
  • the vapor passage 24 is connected to the fuel tank FT and the canister 21. As a result, the evaporated fuel of the fuel tank FT flows into the canister 21 through the vapor passage 24.
  • the control unit 40 is a part of an ECU (not shown) mounted on a vehicle equipped with the above engine system, and is integrally arranged with other parts of the ECU (for example, a part that controls engine ENG).
  • the control unit 40 may be arranged separately from other parts of the ECU.
  • the control unit 40 includes a CPU and memories such as ROM and RAM.
  • the control unit 40 controls the evaporative fuel processing device 1 and the engine system according to a program stored in the memory in advance. For example, the control unit 40 controls the fuel pump FP, the purge control valve 23, the atmosphere release valve 27, and the like. Further, the control unit 40 acquires output signals from the liquid level sensor 30, the pressure sensor 31, and the like.
  • the control unit 40 opens the purge control valve 23 and executes the purge control.
  • the purge control is a control for introducing the purge gas from the canister 21 to the intake passage IP via the purge passage 22.
  • the engine ENG receives the air taken into the intake passage IP, the fuel supplied from the fuel tank FT and injected through the injector 11, and the intake passage IP by the purge control.
  • the purge gas to be supplied is supplied.
  • the control unit 40 adjusts the injection time of the injector 11 and the valve opening time of the purge control valve 23 to adjust the air-fuel ratio (A / F) of the engine ENG to the optimum air-fuel ratio (for example, the ideal air-fuel ratio). adjust.
  • the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13 to heat the fuel in the fuel tank FT, and then the purge control valve 23 and the atmosphere release valve 27 are operated.
  • the fuel tank FT is sealed, a negative pressure is generated in the fuel tank FT, and a leak inspection is performed.
  • control unit 40 performs negative pressure OBD control based on the control chart shown in FIG. That is, after the ignition switch (IG) is turned on (step S1), the engine ENG is driven (ON) (step S2), and the purge condition is satisfied (step S3: YES), the fuel in the fuel tank FT is heated. Is started (step S4). That is, as shown by the broken line in FIG. 1, the control unit 40 controls the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. When the fuel is constantly returned to the fuel tank FT while the engine is operating and the amount of fuel is controlled, the process of increasing the amount of return fuel is performed in S4.
  • the heated return fuel is introduced (or increased) into the fuel tank FT, so that the fuel in the fuel tank FT is heated.
  • the introduction of the return fuel into the fuel tank FT is continuously performed during the purge execution with the engine ENG being driven. As a result, the fuel in the fuel tank FT is heated.
  • step S5 when the engine ENG is stopped (OFF) (step S5: YES), the control unit 40 stops the fuel pump FP, stops the introduction of the return fuel into the fuel tank FT, and enters the fuel tank FT. The heating of the fuel of (step S6) is completed. Then, when the IG is turned off (step S7: YES), the control unit 40 determines whether or not the OBD condition is satisfied (step S8).
  • the OBD condition is a condition for OBD to be implemented and is defined based on laws and regulations. As the OBD condition, for example, the purge history and the outside air temperature are determined. Further, in the process of S7, if the IG remains ON (S7: NO), the process returns to the process of S2, and the processes of S2 to S7 are repeated.
  • the control unit 40 closes the atmosphere release valve 27 and the purge control valve 23 (step S9).
  • the fuel tank FT and the canister 21 are sealed.
  • the temperature in the fuel tank FT decreases toward the outside air temperature, and the inside of the fuel tank FT becomes a negative pressure.
  • the control unit 40 determines that the pressure change (negative differential pressure) of the pressure in the fuel tank FT (tank internal pressure) from the time when the fuel tank FT and the canister 21 are sealed is equal to or more than a certain value, that is, in the fuel tank FT. Whether or not a negative pressure (for example, -3 kPa) is generated is determined based on the detected value of the pressure sensor 31 (step S10). At this time, if the pressure change is equal to or higher than a certain level (S10: YES), the control unit 40 executes a leak inspection (step S11).
  • a negative pressure for example, -3 kPa
  • the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and determines whether or not there is a leak in the evaporated fuel treatment device 1.
  • the presence or absence of this leak is determined by a known method. Since the leak inspection is performed by the negative pressure in this way, it is possible to prevent the evaporated fuel adsorbed on the canister 21 from being released during the leak inspection.
  • the determination value is corrected by the outside air temperature.
  • FIGS. 3A and 3B By performing control based on the control chart shown in FIG. 2, an example of the control time chart as shown in FIGS. 3A and 3B is implemented.
  • the purge is executed and the fuel in the fuel tank FT is heated by the return fuel. Is carried out. At this time, there is almost no change in the tank internal pressure.
  • the pressure inside the tank decreases, and at time T3, the pressure change in the fuel tank FT becomes equal to or higher than a certain level.
  • a leak check is executed at regular intervals from time T4 to T8. At this time, if the tank internal pressure is within the range of the determination value shown by the broken line in FIG. 3A, it is determined that there is no leak, and if it is outside the range of the determination value, it is determined that there is a leak.
  • control unit 40 performs positive pressure OBD control based on the control chart shown in FIG. That is, when the IG is turned on (step S20), the engine ENG is driven (ON) (step S21), and the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S22), control is performed. Part 40 determines whether or not the OBD condition is satisfied (step S23).
  • step S24 the control unit 40 closes the atmosphere release valve 27 and the purge control valve 23 (step S24). As a result, the fuel tank FT and the canister 21 are sealed. Then, heating of the fuel in the fuel tank FT is started (step S25). That is, as shown by the broken line in FIG. 1, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated. If the OBD condition is not satisfied (S23: NO), this processing routine is terminated.
  • step S26 when the return fuel is introduced (returned) into the fuel tank FT by a predetermined amount (step S26: YES), the control unit 40 stops the fuel pump FP and the fuel tank of the return fuel. The introduction into the FT is stopped, and the heating of the fuel in the fuel tank FT is finished (step S27).
  • the predetermined amount of return fuel to be introduced into the fuel tank FT is the amount of return fuel that can heat the fuel in the fuel tank (when the tank is full) so that the tank internal pressure at which the leak inspection can be performed is equal to or higher. You just have to ask.
  • the control unit 40 increases the pressure change (positive differential pressure) of the tank internal pressure from the time when the fuel tank FT and the canister 21 are sealed to a certain level or more, that is, in the fuel tank FT. Whether or not a predetermined positive pressure (for example, 3 kPa) is generated is determined based on the detected value of the pressure sensor 31 (step S28). At this time, if the pressure change is equal to or higher than a certain level (S28: YES), the control unit 40 executes a leak inspection (step S29).
  • a predetermined positive pressure for example, 3 kPa
  • the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and determines whether or not there is a leak in the evaporated fuel treatment device 1. The presence or absence of this leak is determined by a known method. If the pressure change is not equal to or higher than a certain level (S28: NO), this processing routine is terminated without performing a leak inspection.
  • FIGS. 5A and 5B By performing control based on the control chart shown in FIG. 4, an example of the control time chart as shown in FIGS. 5A and 5B is implemented.
  • the engine ENG is started at time T0, and when the purge condition is satisfied at time T1, the purge is executed. At this time, there is almost no change in the tank internal pressure. Then, when the engine ENG is stopped at time T2, the fuel in the fuel tank FT is heated by the return fuel. Then, the pressure inside the tank increases, and at time T3, the pressure change inside the fuel tank FT becomes equal to or higher than a certain level. After that, a leak check is executed at regular intervals from time T4 to T6. At this time, if the tank internal pressure is within the range of the determination value shown by the broken line in FIG. 5A, it is determined that there is no leak, and if it is outside the range of the determination value, it is determined that there is a leak.
  • control unit 40 performs positive pressure OBD control based on the control chart shown in FIG. That is, when the IG is turned on (step S30), the engine ENG is driven (ON) (step S31), and the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S32), control is performed.
  • the unit 40 determines whether or not the OBD condition is satisfied (step S33).
  • step S34 the control unit 40 closes the atmosphere release valve 27 and the purge control valve 23 (step S34). As a result, the fuel tank FT and the canister 21 are sealed. Then, heating of the fuel in the fuel tank FT is started (step S35). That is, as shown by the broken line in FIG. 1, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated. If the OBD condition is not satisfied (S33: NO), this processing routine is terminated.
  • the pressure change (positive differential pressure) of the tank internal pressure from the time when the fuel tank FT and the canister 21 are sealed is equal to or more than a certain value, that is, a predetermined positive pressure (for example, 3 kPa) is generated in the fuel tank FT.
  • a predetermined positive pressure for example, 3 kPa
  • control unit 40 executes a leak inspection (step S38). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and determines whether or not there is a leak in the evaporated fuel treatment device 1. The presence or absence of this leak is determined by a known method.
  • the tank internal pressure exceeds the predetermined pressure required for the leak inspection, the heating of the fuel in the fuel tank FT is stopped. Therefore, it is possible to prevent the fuel in the fuel tank FT from being heated more than necessary. Further, since the driving time of the fuel pump FP can be reduced, the electric charge consumption can be reduced.
  • the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13, the fuel in the fuel tank FT is heated, and then the fuel is released to the atmosphere.
  • the valve 27 and the purge control valve 23 are closed to seal the fuel tank FT and the canister 21.
  • a negative pressure can be generated in the fuel tank FT, so that a leak inspection due to the negative pressure can be performed based on the change in the pressure value detected by the pressure sensor 31.
  • the fuel heated by the high pressure pump 14 is returned to the return passage 13.
  • the fuel is returned to the fuel tank FT via the fuel tank FT to heat the fuel in the fuel tank FT.
  • a positive pressure can be generated in the fuel tank FT, so that a leak inspection by the positive pressure can be performed based on the change in the pressure value detected by the pressure sensor 31.
  • a pump for generating a differential pressure in the fuel tank FT becomes unnecessary.
  • a differential pressure negative pressure or positive pressure
  • the leak inspection can be surely performed. Therefore, according to the evaporated fuel treatment device 1 of the present embodiment, leak detection can be performed without providing a new pump, and an opportunity for leak detection can be secured.
  • the second embodiment has the same basic configuration as the first embodiment, but as shown in FIG. 7, a temperature sensor 32 for detecting the temperature inside the fuel tank FT (the temperature inside the tank) is provided. The point is different. That is, in the evaporated fuel processing apparatus 1A of the second embodiment, the temperature sensor 32 is arranged in the fuel tank FT.
  • the evaporated fuel processing device 1A of the present embodiment can also perform negative pressure OBD control or positive pressure OBD control as in the first embodiment.
  • step S43: YES the purge condition is satisfied (step S43: YES) after the IG is turned on (step S41) and the engine ENG is driven (ON) (step S42)
  • the control unit 40 determines the temperature inside the fuel tank FT (step S43: YES). It is determined whether or not the temperature in the tank) is equal to or lower than the predetermined temperature (step S44).
  • the predetermined temperature when the temperature inside the sealed tank drops to the outside air temperature during parking, the temperature at which the negative pressure required for the negative pressure OBD (for example, -3 kPa) can be generated in the fuel tank FT may be set. .. This predetermined temperature may be determined in advance by an experiment.
  • the control unit 40 starts heating the fuel in the fuel tank FT (step S45). That is, as shown by the broken line in FIG. 7, the control unit 40 controls the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13, or the return fuel. Increase the amount. As a result, the heated return fuel is introduced (or increased) into the fuel tank FT, so that the fuel in the fuel tank FT is heated. The introduction (or increase) of the return fuel into the fuel tank FT is continuously performed during the purge execution with the engine ENG being driven. As a result, the fuel in the fuel tank FT is heated and the pressure in the fuel tank FT (tank internal pressure) is lowered.
  • step S46 when the temperature inside the tank becomes equal to or higher than the predetermined temperature (step S46: YES), the control unit 40 stops the fuel pump FP (or lowers the rotation speed of the fuel pump FP) and enters the fuel tank FT of the return fuel. (Or reduce the amount of return fuel), and end the heating of the fuel in the fuel tank FT (step S47). Then, when the engine ENG is stopped (OFF) (step S48: YES) and the IG is turned OFF (step S49: YES), the control unit 40 determines whether or not the OBD condition is satisfied (step S50). .. If the engine ENG is not stopped (S48: NO), the process returns to S44. If the IG is not turned off (S49: NO), the process returns to the process of S42.
  • the control unit 40 closes the atmosphere release valve 27 and the purge control valve 23 (step S51). As a result, the fuel tank FT and the canister 21 are sealed. Then, since the fuel in the fuel tank FT is sealed in a heated state, the temperature in the fuel tank FT decreases toward the outside air temperature, and the inside of the fuel tank FT becomes a negative pressure.
  • the pressure change (negative differential pressure) of the tank internal pressure from the time when the fuel tank FT and the canister 21 are sealed is equal to or more than a certain value, that is, a predetermined negative pressure (for example, -3 kPa) in the fuel tank FT. Is determined based on the detected value of the pressure sensor 31 (step S52). At this time, if the pressure change is equal to or higher than a certain level (S52: YES), the control unit 40 executes a leak inspection (step S53).
  • the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and determines whether or not there is a leak in the evaporated fuel treatment device 1A.
  • the presence or absence of this leak is determined by a known method. Since the leak inspection is performed by the negative pressure in this way, it is possible to prevent the evaporated fuel adsorbed on the canister 21 from being released during the leak inspection.
  • the judgment value is corrected by the temperature inside the tank.
  • FIGS. 9A, 9B, and 9C By performing control based on the control chart shown in FIG. 8, an example of the control time chart as shown in FIGS. 9A, 9B, and 9C is implemented.
  • FIGS. 9A, 9B and 9C when the engine ENG is started at time T10 and the purge condition is satisfied at time T11, purging is executed and the fuel tank FT with return fuel is used. Fuel heating is carried out. At this time, the heating of the fuel is controlled so that the temperature inside the tank becomes equal to or higher than the predetermined temperature. Then, when the engine ENG is stopped at time T12, the pressure inside the tank decreases, and at time T13, the pressure change in the fuel tank FT becomes equal to or higher than a certain level.
  • a leak check is executed at regular intervals from time T14 to T18. At this time, if the tank internal pressure is within the range of the determination value shown by the broken line in FIG. 9A, it is determined that there is no leak, and if it is outside the range of the determination value, it is determined that there is a leak.
  • the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13 and returned to the fuel tank FT. Heat the fuel inside.
  • the fuel pump FP is stopped to finish heating the fuel in the fuel tank FT.
  • the purge control valve 23 and the air release valve 27 are operated to seal the fuel tank FT, and a predetermined negative pressure is generated in the fuel tank FT to perform a leak inspection.
  • control unit 40 when the IG is turned on (step S60), the engine ENG is driven (ON) (step S61), and the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S61). Step S62), it is determined whether or not the OBD condition is satisfied (step S63).
  • the control unit 40 closes the atmosphere release valve 27 and the purge control valve 23 (step S64). As a result, the fuel tank FT and the canister 21 are sealed. Then, the control unit 40 confirms the remaining amount of fuel in the fuel tank FT from the liquid level sensor 30 (step S65). Further, the control unit 40 confirms the outside air temperature from the intake air temperature sensor (step S66) and confirms the temperature inside the tank from the temperature sensor 32 (step S67).
  • the control unit 40 returns the return fuel to the fuel tank FT, which is necessary to generate a positive pressure for performing a leak inspection in the fuel tank FT based on the remaining fuel amount, the outside air temperature, and the temperature inside the tank.
  • the amount is set (step S68).
  • the set amount of the return fuel is basically set based on the remaining amount of fuel, and is corrected by the outside air temperature and the temperature inside the tank. In other words, the smaller the remaining fuel amount, the smaller the set amount of return fuel is set, and when the temperature is high, the set amount of return fuel is corrected to decrease, and when the temperature is low, the set amount of return fuel is corrected. It is corrected so that the set amount of the amount increases.
  • step S69 the control unit 40 starts heating the fuel in the fuel tank FT (step S69). That is, as shown by the broken line in FIG. 7, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated. If the OBD condition is not satisfied (S63: NO), this processing routine is terminated.
  • step S70 when the return fuel amount reaches the set amount, that is, when the set amount of return fuel is introduced (returned) into the fuel tank FT (step S70: YES), the control unit 40 stops the fuel pump FP. Then, the introduction of the return fuel into the fuel tank FT is stopped, and the heating of the fuel in the fuel tank FT is completed (step S71).
  • the control unit 40 increases the pressure change (positive differential pressure) of the tank internal pressure from the time when the fuel tank FT and the canister 21 are sealed to a certain level or more, that is, in the fuel tank FT. Whether or not a predetermined positive pressure (for example, 3 kPa) is generated is determined based on the detected value of the pressure sensor 31 (step S72).
  • a predetermined positive pressure for example, 3 kPa
  • step S73 the control unit 40 executes a leak inspection (step S73). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and determines whether or not there is a leak in the evaporated fuel treatment device 1. The presence or absence of this leak is determined by a known method. If the pressure change is not equal to or higher than a certain level (S72: NO), this processing routine is terminated without performing a leak inspection.
  • FIGS. 11A, 11B, and 11C By performing control based on the control chart shown in FIG. 10, an example of the control time chart as shown in FIGS. 11A, 11B, and 11C is implemented.
  • the engine ENG is started at time T10, and when the purge condition is satisfied at time T11, purging is executed. At this time, there is almost no change in the tank internal pressure, but the tank internal temperature is heated by the heat from the exhaust pipe or the like. Then, when the engine ENG is stopped at time T12, the fuel in the fuel tank FT is heated by the return fuel. Then, the tank internal pressure will increase. Then, at time T13, the return fuel amount reaches the set amount and the fuel heating is completed.
  • the leak check is executed at regular intervals from time T14 to T16. At this time, if the tank internal pressure is within the range of the determination value shown by the broken line in FIG. 11A, it is determined that there is no leak, and if it is outside the range of the determination value, it is determined that there is a leak.
  • the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13.
  • the fuel in the fuel tank FT is heated.
  • the fuel pump FP is stopped and the heating of the fuel in the fuel tank FT is completed. In this way, a predetermined positive pressure is generated in the fuel tank FT to perform a leak inspection.
  • the same effect as that of the first embodiment can be obtained without heating the fuel in the fuel tank FT more than necessary. Further, since the rotation speed and the driving time of the fuel pump FP can be reduced, the power consumption can be reduced and the fuel consumption can be improved.
  • the evaporative fuel processing apparatus of the third embodiment will be described with reference to FIG.
  • the third embodiment illustrates a case where the present disclosure is applied to an evaporative fuel treatment device that employs a closed tank.
  • the evaporative fuel processing device 1B of the present embodiment includes a sealing valve 35 for sealing the fuel tank FT, as shown in FIG. That is, in the evaporative fuel processing device 1B of the present embodiment, the sealing valve 35 is provided in the vapor passage 24, and the blocking valve 35 closes to close the fuel tank FT. The opening and closing of the blocking valve 35 is controlled by the control unit 40. Then, the evaporated fuel treatment device 1B of the present embodiment can also perform negative pressure OBD control or positive pressure OBD control as in the first embodiment.
  • control unit 40 performs negative pressure OBD control based on the control chart shown in FIG. That is, after the IG is turned on (step S81), the engine ENG is driven (ON) (step S82), and the purge condition is satisfied (step S83: YES), the control unit 40 has the tank internal pressure near the atmospheric pressure. It is determined whether or not there is (step S84). At this time, the pressure in the fuel tank FT (tank internal pressure) is lowered by executing the purge.
  • Step S86 the control unit 40 controls the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. If the tank internal pressure is not near the atmospheric pressure (S84: NO), the process proceeds to S90 described later.
  • step S87 when the engine ENG is stopped (OFF) (step S87: YES), the control unit 40 stops the fuel pump FP, stops the introduction of the return fuel into the fuel tank FT, and enters the fuel tank FT. The heating of the fuel of (step S88) is completed. Next, the control unit 40 turns off (closes) the blocking valve 35 (step S89). Then, when the IG is turned off (step S90: YES), the control unit 40 determines whether or not the OBD condition is satisfied (step S91). If the IG remains ON (S90: NO), the process returns to the process of S82, and the processes of S82 to S90 are repeated.
  • the control unit 40 changes the pressure in the fuel tank FT (tank internal pressure) from the time when the closing valve 35 is closed and the fuel tank FT is closed (negative). Whether or not the differential pressure) is above a certain level, that is, whether or not a predetermined negative pressure (for example, -3 kPa) is generated in the fuel tank FT is determined based on the detected value of the pressure sensor 31 (step S92). At this time, if the pressure change is equal to or higher than a certain level (S92: YES), the control unit 40 executes a leak inspection in the fuel tank FT (step S93).
  • a predetermined negative pressure for example, -3 kPa
  • control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and the evaporative fuel processing device 1B determines whether or not the leak in the fuel tank FT occurs. Judge the presence or absence. The presence or absence of this leak is determined by a known method.
  • control unit 40 closes the air release valve 27 and the purge control valve 23 (step S94), and turns on (opens) the blockade valve 35 (step S95). As a result, the inside of the canister 21, the purge passage 22, and the vapor passage 24 is sealed. Then, the control unit 40 executes a leak inspection of each pipe of the canister 21, the purge passage 22, and the vapor passage 24 (step S96). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and in the evaporated fuel processing device 1B, the canister 21 and the purge passage 22 and It is determined whether or not there is a leak in each pipe of the vapor passage 24. The presence or absence of this leak is determined by a known method.
  • control unit 40 performs positive pressure OBD control based on the control chart shown in FIG. That is, when the IG is turned on (step S100) and the engine ENG is driven (ON) (step S101: YES), the control unit 40 turns on (opens) the blocking valve 35 (step S102). When the engine ENG is not driven (S101: NO), the control unit 40 determines whether or not the IG is OFF (step S115). At this time, if IG is OFF (S115: YES), the process proceeds to S105. On the other hand, if IG is not OFF (S115: NO), the process returns to S100.
  • step S103 when the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S103), the control unit 40 turns off (closes) the blocking valve 35 (step S104), and sets the OBD condition. It is determined whether or not it is satisfied (step S105). At this time, if the OBD condition is satisfied (S105: YES), the control unit 40 determines whether or not the tank internal pressure is near the atmospheric pressure (step S106). If the OBD condition is not satisfied (S105: NO), this processing routine is terminated.
  • step S107 the control unit 40 starts heating the fuel in the fuel tank FT (step S107). That is, as shown by the broken line in FIG. 12, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated. If the tank internal pressure is not near the atmospheric pressure (S106: NO), the process proceeds to S111, which will be described later.
  • step S108 when the return fuel is introduced (returned) into the fuel tank FT by a predetermined amount (step S108: YES), the control unit 40 stops the fuel pump FP and the fuel tank of the return fuel. The introduction into the FT is stopped, and the heating of the fuel in the fuel tank FT is finished (step S109).
  • the control unit 40 closes the sealing valve 35 and the pressure change (positive differential pressure) of the tank internal pressure from the time when the fuel tank FT is closed is more than a certain value, that is, Whether or not a predetermined positive pressure (for example, 3 kPa) is generated in the fuel tank FT is determined based on the detected value of the pressure sensor 31 (step S110). At this time, if the pressure change is equal to or higher than a certain level (S110: YES), the control unit 40 executes a leak inspection in the fuel tank FT (step S111).
  • a predetermined positive pressure for example, 3 kPa
  • control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and the evaporative fuel processing device 1B determines whether or not the leak in the fuel tank FT occurs. Judge the presence or absence. The presence or absence of this leak is determined by a known method.
  • control unit 40 closes the air release valve 27 and the purge control valve 23 (step S112), and turns on (opens) the blockade valve 35 (step S113). As a result, the inside of the canister 21, the purge passage 22, and the vapor passage 24 is sealed. Then, the control unit 40 executes a leak inspection of each pipe of the canister 21, the purge passage 22, and the vapor passage 24 (step S114). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and in the evaporated fuel processing device 1B, the canister 21 and the purge passage 22 and It is determined whether or not there is a leak in each pipe of the vapor passage 24. The presence or absence of this leak is determined by a known method.
  • a modified example of positive pressure OBD can be applied as in the first embodiment. That is, in this modification, after starting heating of the fuel in the fuel tank FT by the return fuel, when a predetermined positive pressure (for example, 3 kPa) is generated in the fuel tank FT, the fuel in the fuel tank FT The heating can be completed to prevent unnecessary fuel heating. Therefore, a modified example of the positive pressure OBD will be described with reference to FIG.
  • control unit 40 performs positive pressure OBD control based on the control chart shown in FIG. That is, when the IG is turned on (step S120) and the engine ENG is driven (ON) (step S121: YES), the control unit 40 turns on (opens) the blocking valve 35 (step S122). When the engine ENG is not driven (S121: NO), the control unit 40 determines whether or not the IG is OFF (step S134). At this time, if IG is OFF (S134: YES), the process proceeds to S125. On the other hand, if IG is not OFF (S134: NO), the process returns to S120.
  • step S123 when the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S123), the control unit 40 turns off (closes) the blocking valve 35 (step S124), and sets the OBD condition. It is determined whether or not it is satisfied (step S125). At this time, if the OBD condition is satisfied (S125: YES), the control unit 40 determines whether or not the tank internal pressure is near the atmospheric pressure (step S126). If the OBD condition is not satisfied (S125: NO), this processing routine is terminated.
  • step S127 the control unit 40 starts heating the fuel in the fuel tank FT (step S127). That is, as shown by the broken line in FIG. 12, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated. If the tank internal pressure is not near the atmospheric pressure (S126: NO), the process proceeds to S130, which will be described later.
  • control unit 40 closes the sealing valve 35 to seal the fuel tank FT, and the pressure change (positive differential pressure) in the tank internal pressure is equal to or more than a certain value, that is, a predetermined positive pressure (positive differential pressure) in the fuel tank FT.
  • a predetermined positive pressure positive differential pressure
  • the control unit 40 executes a leak inspection in the fuel tank FT (step S130). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and the evaporative fuel processing device 1B determines whether or not the leak in the fuel tank FT occurs. Judge the presence or absence. The presence or absence of this leak is determined by a known method.
  • control unit 40 closes the air release valve 27 and the purge control valve 23 (step S131), and turns on (opens) the blockade valve 35 (step S132). As a result, the inside of the canister 21, the purge passage 22, and the vapor passage 24 is sealed. Then, the control unit 40 executes a leak inspection of each pipe of the canister 21, the purge passage 22, and the vapor passage 24 (step S133). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and in the evaporated fuel processing device 1B, the canister 21 and the purge passage 22 and It is determined whether or not there is a leak in each pipe of the vapor passage 24. The presence or absence of this leak is determined by a known method.
  • the same effect as that of the first embodiment can be obtained.
  • the evaporative fuel treatment device 1B of the present embodiment since the sealing valve 35 is provided, the presence or absence of a leak in the fuel tank FT and the presence or absence of a leak in each pipe of the canister 21, the purge passage 22, and the vapor passage 24. It is possible to perform a highly accurate leak inspection that can determine and separately. Since the sealing valve 35 provided in the sealing tank system is used as the control valve for sealing the fuel tank FT, such a highly accurate leak inspection is performed while reducing the cost of the device. be able to.
  • the evaporated fuel treatment apparatus of the fourth embodiment has the same basic configuration as the third embodiment, but as shown in FIG. 16, a temperature sensor 32 for detecting the temperature inside the fuel tank FT (the temperature inside the tank) is provided. The point is different. That is, in the evaporated fuel processing apparatus 1C of the fourth embodiment, the temperature sensor 32 is arranged in the fuel tank FT.
  • the evaporated fuel processing device 1C of the present embodiment can also perform negative pressure OBD control or positive pressure OBD control as in the third embodiment.
  • control unit 40 when the ignition switch (IG) is turned on (step S141), the engine ENG is driven (ON) (step S142), and the purge condition is satisfied (step S143: YES), the control unit 40 Determines whether or not the tank internal pressure is near the atmospheric pressure (step S144). At this time, the pressure in the fuel tank FT (tank internal pressure) is lowered by executing the purge.
  • step S145 the control unit 40 turns on (opens) the blocking valve 35 (step S145), and the temperature inside the fuel tank FT (tank temperature). ) Is below the predetermined temperature (step S146). If the tank internal pressure is not near the atmospheric pressure (S144: NO), the process proceeds to S152, which will be described later. At this time, if the temperature inside the tank is equal to or lower than the predetermined temperature (S146: YES), the control unit 40 starts heating the fuel in the fuel tank FT as shown by the broken line in FIG. 16 (step S147).
  • control unit 40 controls the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13, or increases the amount of the return fuel.
  • the heated return fuel is introduced (or increased) into the fuel tank FT, so that the fuel in the fuel tank FT is heated.
  • the introduction (or increase) of the return fuel into the fuel tank FT is continuously performed during the purge execution with the engine ENG being driven.
  • step S148 when the temperature inside the tank becomes equal to or higher than the predetermined temperature (step S148: YES), the control unit 40 stops the fuel pump FP (or lowers the rotation speed of the fuel pump FP) and enters the fuel tank FT of the return fuel. (Or reduce the amount of return fuel), and end the heating of the fuel in the fuel tank FT (step S149). Then, when the engine ENG is stopped (OFF) (step S150: YES), the control unit 40 turns off (closes) the blocking valve 35 (step S151).
  • step S152 when the IG is turned off (step S152: YES), the control unit 40 determines whether or not the OBD condition is satisfied (step S153). If the IG remains ON (S153: NO), the process returns to the process of S142, and the processes of S142 to S151 are repeated.
  • the control unit 40 changes the pressure (negative) of the pressure in the fuel tank FT (tank internal pressure) from the time when the closing valve 35 is closed and the fuel tank FT is closed. Whether or not the differential pressure) is above a certain level, that is, whether or not a predetermined negative pressure (for example, -3 kPa) is generated in the fuel tank FT is determined based on the detected value of the pressure sensor 31 (step S154). At this time, if the pressure change is equal to or higher than a certain level (S154: YES), the control unit 40 executes a leak inspection in the fuel tank FT (step S155).
  • a predetermined negative pressure for example, -3 kPa
  • control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and the evaporative fuel processing device 1C determines whether or not the leak in the fuel tank FT occurs. Judge the presence or absence. The presence or absence of this leak is determined by a known method.
  • control unit 40 closes the air release valve 27 and the purge control valve 23 (step S156), and turns on (opens) the blockade valve 35 (step S157). As a result, the inside of the canister 21, the purge passage 22, and the vapor passage 24 is sealed. Then, the control unit 40 executes a leak inspection of each pipe of the canister 21, the purge passage 22, and the vapor passage 24 (step S158). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and in the evaporated fuel processing device 1C, the canister 21 and the purge passage 22 and It is determined whether or not there is a leak in each pipe of the vapor passage 24. The presence or absence of this leak is determined by a known method.
  • control unit 40 performs positive pressure OBD control based on the control chart shown in FIG. That is, when the IG is turned on (step S160) and the engine ENG is driven (ON) (step S161: YES), the control unit 40 turns on (opens) the blocking valve 35 (step S162). When the engine ENG is not driven (S161: NO), the control unit 40 determines whether or not the IG is OFF (step S179). At this time, if IG is OFF (S179: YES), the process proceeds to S165. On the other hand, if IG is not OFF (S179: NO), the process returns to S160.
  • step S163 when the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S163), the control unit 40 turns off (closes) the blocking valve 35 (step S164) to set the OBD condition. It is determined whether or not it is satisfied (step S165). At this time, if the OBD condition is satisfied (S165: YES), the control unit 40 determines whether or not the tank internal pressure is near the atmospheric pressure (step S166). If the OBD condition is not satisfied (S165: NO), this processing routine is terminated.
  • the control unit 40 confirms the remaining amount of fuel in the fuel tank FT from the liquid level sensor 30 (step S167). Further, the control unit 40 confirms the outside air temperature from the intake air temperature sensor (step S168) and confirms the temperature inside the tank from the temperature sensor 32 (step S169).
  • the control unit 40 returns the return fuel to the fuel tank FT, which is necessary to generate a positive pressure for performing a leak inspection in the fuel tank FT based on the remaining fuel amount, the outside air temperature, and the temperature inside the tank.
  • the amount is set (step S170).
  • the set amount of the return fuel is basically set based on the remaining amount of fuel, and is corrected by the outside air temperature and the temperature inside the tank. In other words, the smaller the remaining fuel amount, the smaller the set amount of return fuel is set, and when the temperature is high, the set amount of return fuel is corrected to decrease, and when the temperature is low, the set amount of return fuel is corrected. It is corrected so that the set amount of the amount increases.
  • step S171 the control unit 40 starts heating the fuel in the fuel tank FT (step S171). That is, as shown by the broken line in FIG. 16, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated.
  • step S172 when the return fuel amount reaches the set amount, that is, when the set amount of return fuel is introduced (returned) into the fuel tank FT (step S172: YES), the control unit 40 stops the fuel pump FP. Then, the introduction of the return fuel into the fuel tank FT is stopped, and the heating of the fuel in the fuel tank FT is completed (step S173).
  • the control unit 40 closes the sealing valve 35 and the pressure change (positive differential pressure) of the tank internal pressure from the time when the fuel tank FT is closed is more than a certain value, that is, Whether or not a predetermined positive pressure (for example, 3 kPa) is generated in the fuel tank FT is determined based on the detected value of the pressure sensor 31 (step S174). At this time, if the pressure change is equal to or higher than a certain level (S174: YES), the control unit 40 executes a leak inspection in the fuel tank FT (step S175).
  • a predetermined positive pressure for example, 3 kPa
  • control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and the evaporative fuel processing device 1C determines whether or not the leak in the fuel tank FT occurs. Judge the presence or absence. The presence or absence of this leak is determined by a known method.
  • control unit 40 closes the air release valve 27 and the purge control valve 23 (step S176), and turns on (opens) the blockade valve 35 (step S177).
  • the control unit 40 executes a leak inspection of each pipe of the canister 21, the purge passage 22, and the vapor passage 24 (step S178). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and in the evaporated fuel processing device 1C, the canister 21 and the purge passage 22 and It is determined whether or not there is a leak in each pipe of the vapor passage 24. The presence or absence of this leak is determined by a known method.
  • the evaporative fuel treatment device 1C of the present embodiment even when the closed tank system is adopted, the same effect as that of the third embodiment can be obtained without heating the fuel in the fuel tank FT more than necessary. Obtainable.
  • the fifth embodiment has the same basic configuration as the first embodiment, but as shown in FIG. 19, a bypass passage 16 for returning fuel to the fuel tank FT without passing through the high-pressure pump 14 which is a heat receiving portion.
  • the difference is that a switching valve 17 for opening the bypass passage 16 is provided.
  • the switching valve 17 is an example of the "opening / closing valve" of the present disclosure, and is a three-way valve in the present embodiment.
  • a bypass passage 16 connecting the fuel passage 12 and the return passage 13 is provided in the fuel tank FT, and the bypass passage 16 is opened or shut off by the switching valve 17. Then, the pressure regulator 15 is arranged in the fuel tank FT via the switching valve 17.
  • the switching valve 17 is connected to the control unit 40, and the bypass passage 16 is opened or shut off by being ON / OFF controlled by the control unit 40.
  • the switching valve 17 is turned on and bypassed.
  • the passage 16 is opened, and the fuel supplied from the inside of the fuel tank FT to the fuel passage 12 by the fuel pump FP is returned to the fuel tank FT via the bypass passage 16.
  • the switching valve 17 is OFF, the bypass passage 16 is shut off, and the fuel supplied from the fuel tank FT to the fuel passage 12 by the fuel pump FP passes through the high pressure pump 14 and passes through the return passage 13. Is returned to the fuel tank FT.
  • the switching valve 17 is turned on by the control unit 40 and the bypass passage 16 is opened. As shown by the broken line, the fuel is returned into the fuel tank FT through the bypass passage 16 without passing through the high pressure pump 14. Therefore, it is possible to prevent the heated return fuel from being returned to the fuel tank FT. As a result, it is possible to prevent the fuel in the fuel tank FT from being heated more than necessary.
  • the pressure regulator 15, the bypass passage 16 and the switching valve 17 are arranged in the fuel tank FT, but the pressure adjusting device 15, the bypass passage 16 and the switching valve 17 are arranged in the fuel tank. It is not limited to within the FT. However, by arranging them in the fuel tank FT as in the present embodiment, these can be integrated with the fuel pump module, so that the assembly cost can be reduced.
  • the above-described embodiment is merely an example and does not limit the present disclosure in any way, and it goes without saying that various improvements and modifications can be made without departing from the gist thereof.
  • the engine system including the high pressure pump 14 is illustrated, but the present disclosure can be applied to the engine system not provided with the high pressure pump 14.
  • a delivery pipe 18 is provided, the fuel is heated by receiving heat from the engine ENG in the delivery pipe 18, and the heated fuel is passed through the return passage 13 to the fuel tank. Returned to FT (see dashed line in FIG. 20).
  • the delivery pipe 18 is an example of the “heat receiving portion from the internal combustion engine” of the present disclosure.
  • the device in which the delivery pipe 18 is provided is illustrated in the first embodiment, the delivery pipe 18 can also be provided in the second to fifth embodiments without providing the high pressure pump 14. ..
  • the pressure regulator 15 is provided near the engine ENG, but the pressure regulator 15 may be provided in the middle of the return passage 13. Therefore, for example, as shown in FIG. 21, it may be provided in the fuel tank FT as in the fifth embodiment. By doing so, the pressure regulator 15 can be integrated with the fuel pump module, so that the assembly cost can be reduced.

Abstract

In this vaporized fuel treatment device, a fuel passage or a return passage is provided with a heat reception part for heat from an internal combustion engine, and a control unit causes a fuel pump to be operated after warming of the internal combustion engine is completed, thereby returning the fuel heated by the heat reception part to a fuel tank via the return passage, and the control unit performs leak detection on the basis of a change in a pressure value detected by a pressure sensor after heating the fuel inside the fuel tank and generating a pressure difference inside the fuel tank.

Description

蒸発燃料処理装置Evaporative fuel processing equipment
 本開示は、車両に搭載される内燃機関の燃料タンク内で発生した蒸発燃料を処理する蒸発燃料処理装置に関する。 The present disclosure relates to an evaporative fuel processing device that processes evaporative fuel generated in a fuel tank of an internal combustion engine mounted on a vehicle.
 燃料タンクで発生した蒸発燃料の大気への放散を防止するために、蒸発燃料処理装置が利用されている。この蒸発燃料処理装置では、燃料タンク内の蒸発燃料を、吸着材を収納したキャニスタ内に導入して、一時的に吸着材に吸着させる。吸着材に吸着された蒸発燃料は、内燃機関の運転条件に基づいて判断されるパージ実行条件が成立したらパージが実行され、パージ通路を介して内燃機関の吸気通路にパージされる。 An evaporative fuel treatment device is used to prevent the evaporative fuel generated in the fuel tank from being released to the atmosphere. In this evaporated fuel processing apparatus, the evaporated fuel in the fuel tank is introduced into the canister containing the adsorbent and temporarily adsorbed on the adsorbent. The evaporated fuel adsorbed on the adsorbent is purged when the purge execution condition determined based on the operating conditions of the internal combustion engine is satisfied, and is purged to the intake passage of the internal combustion engine via the purge passage.
 このような蒸発燃料処理装置では、燃料タンク及びキャニスタを含む部分内にリークがあるか否かを判断するためのリーク検査を実施する機能を備えるものがある。この種の装置として、例えば特許文献1に記載されたものがある。この特許文献1の装置では、送気ポンプを設け、送気ポンプにより燃料タンク及びキャニスタの部分に加圧した状態にして、その後の圧力変化に基づいてリーク検出を行っている。また、別の装置として、例えば特許文献2に記載されたものがある。この特許文献2の装置では、燃料タンクを開閉弁により密閉し、外気温変化により燃料タンク内の圧力を上昇させた後の圧力変化に基づいてリーク検出を行っている。 Some of such evaporative fuel treatment devices have a function of performing a leak inspection to determine whether or not there is a leak in the portion including the fuel tank and the canister. As an apparatus of this type, for example, there is one described in Patent Document 1. In the apparatus of Patent Document 1, an air supply pump is provided, the fuel tank and the canister are pressurized by the air supply pump, and leak detection is performed based on the subsequent pressure change. Further, as another device, for example, there is one described in Patent Document 2. In the device of Patent Document 2, the fuel tank is sealed by an on-off valve, and leak detection is performed based on the pressure change after the pressure in the fuel tank is increased by the change in the outside air temperature.
特開平5-272417号公報Japanese Unexamined Patent Publication No. 5-272417 米国特許7448367号明細書U.S. Pat. No. 7,448367
 しかしながら、特許文献1に記載の装置では、リーク検出のために専用の送気ポンプが必要となるため、コスト上昇を招いてしまう。一方、特許文献2に記載の装置では、コスト上昇を招くことはないが、圧力変化は外気温変化に依存するため、外気温によっては圧力変化が生じない場合があり、リーク検出の機会が制限されてしまうおそれがある。 However, in the device described in Patent Document 1, a dedicated air supply pump is required for leak detection, which causes an increase in cost. On the other hand, the apparatus described in Patent Document 2 does not cause an increase in cost, but since the pressure change depends on the change in the outside air temperature, the pressure change may not occur depending on the outside air temperature, and the opportunity for leak detection is limited. There is a risk of being lost.
 そこで、本開示は上記した問題点を解決するためになされたものであり、新たなポンプを設けることなくリーク検出を行うことができ、リーク検出の機会を確保することができる蒸発燃料処理装置を提供することを目的とする。 Therefore, the present disclosure has been made to solve the above-mentioned problems, and an evaporative fuel treatment apparatus capable of detecting a leak without installing a new pump and securing an opportunity for detecting a leak. The purpose is to provide.
 上記課題を解決するためになされた本開示の一形態は、
 燃料を貯蔵する燃料タンクと、前記燃料タンク内の燃料を燃料通路を介して内燃機関に圧送する燃料ポンプと、前記燃料タンクからベーパ通路を介して送られる蒸発燃料を貯留するキャニスタと、前記燃料ポンプで圧送された燃料の一部又は全部を前記燃料タンクに戻すリターン通路と、前記燃料タンクを密閉する少なくとも2つの制御弁と、前記燃料タンク内の圧力を検出する圧力センサと、前記燃料ポンプ及び前記制御弁を制御する制御部と、を有する蒸発燃料処理装置において、
 前記燃料通路又は前記リターン通路は、内燃機関からの受熱部を備えており、
 前記制御部は、内燃機関の暖機完了後に、前記燃料ポンプを駆動させることにより、前記受熱部で加熱された燃料を前記リターン通路を介して前記燃料タンクに戻し、前記燃料タンク内の燃料を加熱して前記燃料タンク内に差圧を発生させた後、前記圧力センサで検出される圧力値の変化に基づいてリーク検査を行うことを特徴とする。
A form of this disclosure made to solve the above problems is
A fuel tank for storing fuel, a fuel pump for pumping fuel in the fuel tank to the internal combustion engine via a fuel passage, a canister for storing evaporated fuel sent from the fuel tank via a vapor passage, and the fuel. A return passage that returns a part or all of the fuel pumped by the pump to the fuel tank, at least two control valves that seal the fuel tank, a pressure sensor that detects the pressure in the fuel tank, and the fuel pump. And a control unit for controlling the control valve, in an evaporative fuel processing apparatus.
The fuel passage or the return passage includes a heat receiving portion from an internal combustion engine.
After the warm-up of the internal combustion engine is completed, the control unit drives the fuel pump to return the fuel heated by the heat receiving unit to the fuel tank via the return passage, and the fuel in the fuel tank is returned. After heating to generate a differential pressure in the fuel tank, a leak inspection is performed based on the change in the pressure value detected by the pressure sensor.
 この蒸発燃料処理装置では、受熱部で加熱された燃料をリターン通路を介して燃料タンクに戻し、燃料タンク内の燃料を加熱することにより燃料タンク内に差圧(正圧又は負圧)を発生させる。そして、燃料タンク内に差圧を発生させた後に、圧力センサで検出される圧力値の変化に基づいてリーク検査を行う。従って、燃料タンク内に差圧を発生させるためのポンプが不要となる。また、外気温度に影響されることなく、確実に燃料タンク内に差圧を発生させることができる。そして、内燃機関からの受熱を利用するため、内燃機関が始動されて暖機が完了すれば、確実にリーク検査を行うことができる。これらのことにより、この蒸発燃料処理装置によれば、新たなポンプを設けることなくリーク検出を行うことができ、リーク検出の機会を確保することができる。 In this evaporative fuel processing device, the fuel heated in the heat receiving section is returned to the fuel tank via the return passage, and the fuel in the fuel tank is heated to generate a differential pressure (positive pressure or negative pressure) in the fuel tank. Let me. Then, after generating a differential pressure in the fuel tank, a leak inspection is performed based on the change in the pressure value detected by the pressure sensor. Therefore, a pump for generating a differential pressure in the fuel tank becomes unnecessary. In addition, a differential pressure can be reliably generated in the fuel tank without being affected by the outside air temperature. Then, since the heat received from the internal combustion engine is used, the leak inspection can be reliably performed once the internal combustion engine is started and the warm-up is completed. As a result, according to this evaporative fuel treatment device, leak detection can be performed without providing a new pump, and an opportunity for leak detection can be secured.
 また、上記した蒸発燃料処理装置において、
 前記制御部は、前記制御弁を作動させて前記燃料タンクを密閉した後に、前記受熱部で加熱された燃料を前記リターン通路を介して前記燃料タンクに戻して前記燃料タンク内の燃料を加熱し、前記燃料タンク内に正圧を発生させてリーク検査を行うことが好ましい。
Further, in the above-mentioned evaporated fuel processing apparatus,
After operating the control valve to seal the fuel tank, the control unit returns the fuel heated by the heat receiving unit to the fuel tank via the return passage to heat the fuel in the fuel tank. , It is preferable to generate a positive pressure in the fuel tank to perform a leak inspection.
 このように、制御弁を作動させて燃料タンクを密閉した後に、受熱部で加熱された燃料をリターン通路を介して燃料タンクに戻して燃料タンク内の燃料を加熱することにより、燃料タンク内に正圧側に差圧を生じさせることができる。これにより、正圧によるリーク検査を行うことができる。 In this way, after operating the control valve to seal the fuel tank, the fuel heated in the heat receiving section is returned to the fuel tank via the return passage to heat the fuel in the fuel tank, thereby entering the fuel tank. A differential pressure can be generated on the positive pressure side. As a result, a leak inspection by positive pressure can be performed.
 また、上記した蒸発燃料処理装置において、
 前記制御部は、前記受熱部で加熱された燃料を前記リターン通路を介して前記燃料タンクに戻して前記燃料タンク内の燃料を加熱した後、前記制御弁を作動させて前記燃料タンクを密閉して、前記燃料タンク内に負圧を発生させてリーク検査を行うことが好ましい。
Further, in the above-mentioned evaporated fuel processing apparatus,
The control unit returns the fuel heated by the heat receiving unit to the fuel tank via the return passage to heat the fuel in the fuel tank, and then operates the control valve to seal the fuel tank. Therefore, it is preferable to generate a negative pressure in the fuel tank to perform a leak inspection.
 このように、受熱部で加熱された燃料をリターン通路を介して燃料タンクに戻して燃料タンク内の燃料を加熱した後、制御弁を作動させて燃料タンクを密閉することにより、燃料タンク内に負圧側に差圧を生じさせることができる。これにより、負圧によるリーク検査を行うことができる。そのため、リーク検査中にキャニスタに吸着された蒸発燃料が放出されることを防ぐことができる。 In this way, the fuel heated in the heat receiving section is returned to the fuel tank via the return passage to heat the fuel in the fuel tank, and then the control valve is operated to seal the fuel tank, thereby entering the fuel tank. A differential pressure can be generated on the negative pressure side. As a result, a leak inspection due to negative pressure can be performed. Therefore, it is possible to prevent the evaporated fuel adsorbed on the canister from being released during the leak inspection.
 また、上記した蒸発燃料処理装置において、
 前記制御部は、前記燃料タンク内の燃料量に基づいて、前記燃料タンクに戻すリターン燃料量を変更することが好ましい。例えば、燃料タンク内の燃料量が少なくなるにしたがって、リターン燃料を少なくすればよい。
Further, in the above-mentioned evaporated fuel processing apparatus,
It is preferable that the control unit changes the amount of return fuel returned to the fuel tank based on the amount of fuel in the fuel tank. For example, the return fuel may be reduced as the amount of fuel in the fuel tank decreases.
 リターン燃料量を一定量に定めていると、燃料タンク内の燃料量(燃料残量)が少ないときには、必要以上に燃料タンク内の燃料が加熱されてしまうおそれがある。そのため、このようにすることにより、必要以上に燃料タンク内の燃料が加熱されてしまうことを防止することができる。また、燃料ポンプの駆動時間を減少させることができるため消費電量を削減することができる。 If the amount of return fuel is set to a certain amount, the fuel in the fuel tank may be heated more than necessary when the amount of fuel in the fuel tank (remaining amount of fuel) is small. Therefore, by doing so, it is possible to prevent the fuel in the fuel tank from being heated more than necessary. Moreover, since the driving time of the fuel pump can be reduced, the amount of electric charge can be reduced.
 あるいは、上記した蒸発燃料処理装置において、
 前記制御部は、前記圧力センサで検出される圧力が予め定めた所定圧力以上になると、前記燃料ポンプを停止して前記燃料タンク内の燃料の加熱を終了してもよい。
Alternatively, in the above-mentioned evaporated fuel processing apparatus,
When the pressure detected by the pressure sensor becomes equal to or higher than a predetermined pressure, the control unit may stop the fuel pump and finish heating the fuel in the fuel tank.
 このようにすることにより、燃料タンク内の圧力がリーク検査に必要となる所定圧力以上になれば、燃料タンク内の燃料の加熱は不要となる。ところが、リターン燃料量を一定量に定めていると、燃料タンク内の圧力が所定圧力以上になっても、燃料タンク内の燃料の加熱が継続されてしまうおそれがある。そのため、このようにすることにより、必要以上に燃料タンク内の燃料が加熱されてしまうことを防止することができる。また、燃料ポンプの駆動時間を減少させることができるため消費電量を削減することができる。 By doing so, if the pressure in the fuel tank exceeds the predetermined pressure required for leak inspection, heating of the fuel in the fuel tank becomes unnecessary. However, if the amount of return fuel is set to a certain amount, heating of the fuel in the fuel tank may continue even if the pressure in the fuel tank exceeds the predetermined pressure. Therefore, by doing so, it is possible to prevent the fuel in the fuel tank from being heated more than necessary. Moreover, since the driving time of the fuel pump can be reduced, the amount of electric charge can be reduced.
 また、上記した蒸発燃料処理装置において、
 前記制御部は、前記キャニスタに貯蔵された蒸発燃料が内燃機関に供給されるパージが実行されている間に、前記受熱部で加熱された燃料を前記リターン通路を介して前記燃料タンクに戻して前記燃料タンク内の燃料を加熱し、内燃機関が停止すると、前記燃料ポンプを停止して前記燃料タンク内の燃料の加熱を終了することが好ましい。
Further, in the above-mentioned evaporated fuel processing apparatus,
The control unit returns the fuel heated by the heat receiving unit to the fuel tank via the return passage while the purge in which the evaporated fuel stored in the canister is supplied to the internal combustion engine is being executed. When the fuel in the fuel tank is heated and the internal combustion engine is stopped, it is preferable to stop the fuel pump and finish heating the fuel in the fuel tank.
 このように、パージが実行されている間に、リターン燃料を燃料タンクに戻して燃料タンク内の燃料を加熱することにより、燃料タンク内の圧力を下げることができる。そして、内燃機関が停止すると、燃料タンクの燃料の加熱が終了して燃料タンクが密閉される。これにより、加熱された燃料の温度が外気温に向かって下がるため、燃料タンク内を負圧にすることができ、負圧によるリーク検査を行うことができる。 In this way, the pressure in the fuel tank can be reduced by returning the return fuel to the fuel tank and heating the fuel in the fuel tank while the purge is being executed. Then, when the internal combustion engine is stopped, the heating of the fuel in the fuel tank is completed and the fuel tank is sealed. As a result, the temperature of the heated fuel drops toward the outside air temperature, so that the inside of the fuel tank can have a negative pressure, and a leak inspection due to the negative pressure can be performed.
 また、上記した蒸発燃料処理装置において、
 前記燃料タンク内の温度を検出する温度センサを備え、
 前記制御部は、前記温度センサで検出される温度が予め定めた所定温度以上の場合、前記燃料ポンプを停止して前記燃料タンク内の燃料の加熱を終了することが好ましい。
Further, in the above-mentioned evaporated fuel processing apparatus,
A temperature sensor for detecting the temperature inside the fuel tank is provided.
When the temperature detected by the temperature sensor is equal to or higher than a predetermined temperature, the control unit preferably stops the fuel pump and finishes heating the fuel in the fuel tank.
 このようにすることにより、パージ実行中に必要以上にリターン燃料を燃料タンクに戻す必要がなくなるため、必要以上に燃料タンク内の燃料が加熱されてしまうことを防止することができる。また、燃料ポンプの回転数や駆動時間を減少させることができるため消費電量が削減され燃費を向上させることができる。 By doing so, it is not necessary to return the return fuel to the fuel tank more than necessary during the execution of purging, so that it is possible to prevent the fuel in the fuel tank from being heated more than necessary. Further, since the rotation speed and the driving time of the fuel pump can be reduced, the electric charge consumption can be reduced and the fuel efficiency can be improved.
 また、上記した蒸発燃料処理装置において、
 前記受熱部を通過させずに燃料を前記燃料タンクに戻すバイパス通路と、
 前記バイパス通路を開閉する開閉弁とを備え、
 前記制御部は、前記燃料タンク内における燃料の加熱が不要である場合に、前記開閉弁を制御して前記バイパス通路を開通させることが好ましい。
Further, in the above-mentioned evaporated fuel processing apparatus,
A bypass passage that returns fuel to the fuel tank without passing through the heat receiving section,
It is equipped with an on-off valve that opens and closes the bypass passage.
It is preferable that the control unit controls the on-off valve to open the bypass passage when it is not necessary to heat the fuel in the fuel tank.
 このようにすることにより、燃料タンク内における燃料の加熱が不要である場合に、受熱部を通過した燃料が燃料タンクに戻されることを防ぐことができる。そのため、必要以上に燃料タンク内の燃料が加熱されてしまうことを防止することができる。 By doing so, it is possible to prevent the fuel that has passed through the heat receiving portion from being returned to the fuel tank when it is not necessary to heat the fuel in the fuel tank. Therefore, it is possible to prevent the fuel in the fuel tank from being heated more than necessary.
 また、上記した蒸発燃料処理装置において、
 前記リターン通路には、通路内の燃料の圧力が一定以上に上昇しないように調圧する調圧器が設けられていることが好ましい。
Further, in the above-mentioned evaporated fuel processing apparatus,
It is preferable that the return passage is provided with a pressure regulator that regulates the pressure of the fuel in the passage so that the pressure does not rise above a certain level.
 このようにすることにより、リターン通路の圧力が上昇することがないため、リターン通路の耐圧性を高める必要がないので、装置の低コスト化を図ることができる。 By doing so, since the pressure in the return passage does not increase, it is not necessary to increase the pressure resistance of the return passage, so that the cost of the device can be reduced.
 また、上記した蒸発燃料処理装置において、
 前記燃料タンクを密閉する封鎖弁を備える密閉タンクシステムの場合には、前記制御弁のうちの1つに、前記封鎖弁を使用すればよい。
Further, in the above-mentioned evaporated fuel processing apparatus,
In the case of a closed tank system including a closed valve for sealing the fuel tank, the closed valve may be used for one of the control valves.
 このように、密閉タンクシステムに備わっている封鎖弁を制御弁のうちの1つに使用することにより、装置の低コスト化を図りながら高精度なリーク検査を行うことができる。 In this way, by using the blockade valve provided in the closed tank system as one of the control valves, it is possible to perform highly accurate leak inspection while reducing the cost of the device.
 本開示によれば、新たなポンプを設けることなくリーク検出を行うことができ、リーク検出の機会を確保することができる蒸発燃料処理装置を提供することができる。 According to the present disclosure, it is possible to provide an evaporative fuel treatment apparatus capable of performing leak detection without providing a new pump and securing an opportunity for leak detection.
第1実施形態の蒸発燃料処理装置を含むエンジンシステムの全体構成を示す概略図である。It is the schematic which shows the whole structure of the engine system including the evaporative fuel processing apparatus of 1st Embodiment. 負圧OBD制御の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the negative pressure OBD control. 負圧OBD制御を実施したときのタイムチャートの一例であり、燃料タンク内の圧力の変化を示す。It is an example of a time chart when negative pressure OBD control is performed, and shows a change in pressure in the fuel tank. 負圧OBD制御を実施したときのタイムチャートの一例であり、外気温の変化を示す。It is an example of a time chart when negative pressure OBD control is performed, and shows a change in outside air temperature. 正圧OBD制御の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the positive pressure OBD control. 正圧OBD制御を実施したときのタイムチャートの一例であり、燃料タンク内の圧力の変化を示す。It is an example of a time chart when positive pressure OBD control is performed, and shows a change in pressure in the fuel tank. 正圧OBD制御を実施したときのタイムチャートの一例であり、外気温の変化を示す。It is an example of a time chart when positive pressure OBD control is performed, and shows a change in outside air temperature. 正圧OBD制御の変形例の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the modification of the positive pressure OBD control. 第2実施形態の蒸発燃料処理装置を含むエンジンシステムの全体構成を示す概略図である。It is the schematic which shows the whole structure of the engine system including the evaporative fuel processing apparatus of 2nd Embodiment. 負圧OBD制御の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the negative pressure OBD control. 負圧OBD制御を実施したときのタイムチャートの一例であり、燃料タンク内の圧力の変化を示す。It is an example of a time chart when negative pressure OBD control is performed, and shows a change in pressure in the fuel tank. 負圧OBD制御を実施したときのタイムチャートの一例であり、タンク内温度の変化を示す。It is an example of a time chart when negative pressure OBD control is performed, and shows a change in the temperature inside the tank. 負圧OBD制御を実施したときのタイムチャートの一例であり、外気温の変化を示す。It is an example of a time chart when negative pressure OBD control is performed, and shows a change in outside air temperature. 正圧OBD制御の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the positive pressure OBD control. 正圧OBD制御を実施したときのタイムチャートの一例であり、燃料タンク内の圧力の変化を示す。It is an example of a time chart when positive pressure OBD control is performed, and shows a change in pressure in the fuel tank. 正圧OBD制御を実施したときのタイムチャートの一例であり、タンク内温度の変化を示す。It is an example of a time chart when positive pressure OBD control is performed, and shows a change in the temperature inside the tank. 正圧OBD制御を実施したときのタイムチャートの一例であり、外気温の変化を示す。It is an example of a time chart when positive pressure OBD control is performed, and shows a change in outside air temperature. 第3実施形態の蒸発燃料処理装置を含むエンジンシステムの全体構成を示す概略図である。It is the schematic which shows the whole structure of the engine system including the evaporative fuel processing apparatus of 3rd Embodiment. 負圧OBD制御の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the negative pressure OBD control. 正圧OBD制御の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the positive pressure OBD control. 正圧OBD制御の変形例の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the modification of the positive pressure OBD control. 第4実施形態の蒸発燃料処理装置を含むエンジンシステムの全体構成を示す概略図である。It is the schematic which shows the whole structure of the engine system including the evaporative fuel processing apparatus of 4th Embodiment. 負圧OBD制御の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the negative pressure OBD control. 正圧OBD制御の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the positive pressure OBD control. 第4実施形態の蒸発燃料処理装置を含むエンジンシステムの全体構成を示す概略図である。It is the schematic which shows the whole structure of the engine system including the evaporative fuel processing apparatus of 4th Embodiment. 蒸発燃料処理装置の変形例を示す概略図である。It is the schematic which shows the modification of the evaporative fuel processing apparatus. 蒸発燃料処理装置の別の変形例を示す概略図である。It is the schematic which shows another modification of the evaporative fuel processing apparatus.
[第1実施形態]
 本開示に係る実施形態である蒸発燃料処理装置について、図面を参照しながら詳細に説明する。第1実施形態では、蒸発燃料処理装置を車両のエンジンシステムに対して適用した場合について説明する。
[First Embodiment]
The evaporated fuel treatment apparatus according to the embodiment of the present disclosure will be described in detail with reference to the drawings. In the first embodiment, the case where the evaporative fuel treatment device is applied to the engine system of the vehicle will be described.
<システムの全体構成>
 本実施形態の蒸発燃料処理装置1が適用されるエンジンシステムは、自動車等の車両に搭載されるものであり、図1に示すように、エンジンENGには、エンジンENGに空気(吸気、吸入空気)を供給するための吸気通路IPが接続されている。吸気通路IPには、吸気通路IPを開閉してエンジンENGに流入する空気量(吸入空気量)を制御するスロットルバルブTHRが設けられている。吸気通路IPにおけるスロットルバルブTHRの上流側(吸入空気の流れ方向の上流側)には、吸気通路IPに流入する空気から異物を除去するエアクリーナACが設けられている。これにより、吸気通路IPでは、空気がエアクリーナACを通過してエンジンENGに向けて吸入される。
<Overall system configuration>
The engine system to which the evaporated fuel treatment device 1 of the present embodiment is applied is mounted on a vehicle such as an automobile, and as shown in FIG. 1, the engine ENG includes air (intake air, intake air) in the engine ENG. ) Is connected to the intake passage IP. The intake passage IP is provided with a throttle valve THR that opens and closes the intake passage IP to control the amount of air flowing into the engine ENG (intake air amount). An air cleaner AC for removing foreign matter from the air flowing into the intake passage IP is provided on the upstream side (upstream side in the flow direction of the intake air) of the throttle valve THR in the intake passage IP. As a result, in the intake passage IP, air passes through the air cleaner AC and is sucked toward the engine ENG.
 本実施形態の蒸発燃料処理装置1は、このようなエンジンシステムにおいて、燃料タンクFT内で発生した蒸発燃料を、吸気通路IPを介してエンジンENGに供給して処理するものである。この蒸発燃料処理装置1は、燃料タンクFT、燃料ポンプFP、リターン通路13と、キャニスタ21と、パージ制御弁23、大気開放弁27、圧力センサ31、制御部40等を有する。 In such an engine system, the evaporated fuel processing device 1 of the present embodiment supplies the evaporated fuel generated in the fuel tank FT to the engine ENG via the intake passage IP and processes it. The evaporated fuel processing device 1 includes a fuel tank FT, a fuel pump FP, a return passage 13, a canister 21, a purge control valve 23, an atmosphere release valve 27, a pressure sensor 31, a control unit 40, and the like.
 燃料タンクFTは、エンジンENGに供給する燃料を貯蔵するように構成されている。燃料タンクFTの内部には燃料ポンプFPが設けられ、燃料ポンプFPにより燃料タンクFT内の燃料が、燃料通路12を介してインジェクタ11に供給される。そして、インジェクタ11から燃料がエンジンENG(吸気ポート)に供給される。ここで、燃料通路12には高圧ポンプ14が設けられている。この高圧ポンプ14により、インジェクタ11に高圧の燃料が供給される。高圧ポンプ14は、本開示の「内燃機関からの受熱部」の一例であり、高圧ポンプ14に供給される燃料が加熱される。 The fuel tank FT is configured to store the fuel supplied to the engine ENG. A fuel pump FP is provided inside the fuel tank FT, and the fuel in the fuel tank FT is supplied to the injector 11 by the fuel pump FP via the fuel passage 12. Then, fuel is supplied from the injector 11 to the engine ENG (intake port). Here, a high-pressure pump 14 is provided in the fuel passage 12. High-pressure fuel is supplied to the injector 11 by the high-pressure pump 14. The high-pressure pump 14 is an example of the “heat receiving unit from the internal combustion engine” of the present disclosure, and the fuel supplied to the high-pressure pump 14 is heated.
 また、燃料タンクFTには、内部に貯留されている燃料量(燃料残量)を計測するために燃料液面を検出する液面センサ30が設けられている。さらに、燃料タンクFTには、燃料液面の上部空間の圧力(タンク内圧)を検出する圧力センサ31が設けられている。 Further, the fuel tank FT is provided with a liquid level sensor 30 that detects the fuel liquid level in order to measure the amount of fuel (remaining amount of fuel) stored inside. Further, the fuel tank FT is provided with a pressure sensor 31 that detects the pressure in the upper space of the fuel liquid level (tank internal pressure).
 そして、燃料ポンプFPによって、燃料タンクFTから燃料通路12を介して供給された燃料のうち、高圧ポンプ14で加熱されてインジェクタ11へ供給されなかった燃料を燃料タンクFTに戻すためにリターン通路13が設けられている。すなわち、リターン通路13を介して燃料タンクFTに戻されるリターン燃料により、燃料タンクFT内の燃料が加熱されるようになっている。このリターン通路13には、通路内の燃料の圧力が一定以上に上昇しないように調圧する調圧器15が設けられている。この調圧器15により、リターン通路13の圧力が上昇することがないため、リターン通路13の耐圧性を高める必要がないので、装置の低コスト化を図ることができる。 Then, among the fuel supplied from the fuel tank FT through the fuel passage 12 by the fuel pump FP, the fuel that was heated by the high-pressure pump 14 and was not supplied to the injector 11 is returned to the fuel tank FT in the return passage 13. Is provided. That is, the fuel in the fuel tank FT is heated by the return fuel returned to the fuel tank FT via the return passage 13. The return passage 13 is provided with a pressure regulator 15 that regulates the pressure of the fuel in the passage so that the pressure does not rise above a certain level. Since the pressure in the return passage 13 does not increase due to the pressure regulator 15, it is not necessary to increase the pressure resistance of the return passage 13, so that the cost of the device can be reduced.
 キャニスタ21は、内部に活性炭などの吸着剤が収容され、燃料タンクFT内で発生した蒸発燃料を回収(吸着保持)するものである。このキャニスタ21は、ベーパ通路24を介して燃料タンクFTに接続されており、燃料タンクFT内からベーパ通路24を介して流入する蒸発燃料を一時的に吸着する。また、キャニスタ21は、パージ通路22と大気通路25とに連通している。 The canister 21 contains an adsorbent such as activated carbon inside, and recovers (adsorbs and holds) the evaporated fuel generated in the fuel tank FT. The canister 21 is connected to the fuel tank FT via the vapor passage 24, and temporarily adsorbs the evaporated fuel flowing from the fuel tank FT through the vapor passage 24. Further, the canister 21 communicates with the purge passage 22 and the atmospheric passage 25.
 パージ通路22は、吸気通路IPとキャニスタ21とに接続している。これにより、キャニスタ21から流出するパージガス(蒸発燃料を含む気体)は、パージ通路22を流れて、吸気通路IPに導入される。パージ通路22は、図1に示す例ではスロットルバルブTHRの下流側(吸入空気の流れ方向の下流側)の位置に接続されている。 The purge passage 22 is connected to the intake passage IP and the canister 21. As a result, the purge gas (gas containing evaporated fuel) flowing out of the canister 21 flows through the purge passage 22 and is introduced into the intake passage IP. In the example shown in FIG. 1, the purge passage 22 is connected to a position on the downstream side (downstream side in the flow direction of the intake air) of the throttle valve THR.
 パージ制御弁23は、パージ通路22に設けられている。パージ制御弁23は、パージ通路22を開閉する。パージ制御弁23の閉弁時(弁が閉まった状態のとき)には、パージ通路22のパージガスは、パージ制御弁23によって停止され、吸気通路IPには流れていかない。一方、パージ制御弁23の開弁時(弁が開いた状態のとき)には、パージガスは吸気通路IPに流れていく。なお、パージ制御弁23は、本開示の「制御弁」の一例である。 The purge control valve 23 is provided in the purge passage 22. The purge control valve 23 opens and closes the purge passage 22. When the purge control valve 23 is closed (when the valve is closed), the purge gas in the purge passage 22 is stopped by the purge control valve 23 and does not flow to the intake passage IP. On the other hand, when the purge control valve 23 is opened (when the valve is open), the purge gas flows into the intake passage IP. The purge control valve 23 is an example of the "control valve" of the present disclosure.
 大気通路25は、その一端が大気開放口26として開放され、その他端がキャニスタ21に接続されており、キャニスタ21を大気に連通させている。そして、大気通路25には、大気開放口26から取り込まれた空気が流れる。また、大気通路25には、大気通路25を開閉する大気開放弁27が設けられている。この大気開放弁27は、本開示の「制御弁」の一例である。 One end of the atmospheric passage 25 is opened as an atmospheric opening 26, and the other end is connected to the canister 21 to communicate the canister 21 with the atmosphere. Then, the air taken in from the atmospheric opening 26 flows through the atmospheric passage 25. Further, the atmospheric passage 25 is provided with an atmospheric release valve 27 that opens and closes the atmospheric passage 25. The atmosphere release valve 27 is an example of the "control valve" of the present disclosure.
 ベーパ通路24は、燃料タンクFTとキャニスタ21に接続されている。これにより、燃料タンクFTの蒸発燃料が、ベーパ通路24を介してキャニスタ21に流入する。 The vapor passage 24 is connected to the fuel tank FT and the canister 21. As a result, the evaporated fuel of the fuel tank FT flows into the canister 21 through the vapor passage 24.
 制御部40は、上記のエンジンシステムを備える車両に搭載されたECU(不図示)の一部であり、ECUの他の部分(例えばエンジンENGを制御する部分)と一体的に配置されている。なお、制御部40は、ECUの他の部分と別に配置されていてもよい。制御部40は、CPUとROM,RAM等のメモリを含む。制御部40は、メモリに予め格納されているプログラムに応じて、蒸発燃料処理装置1およびエンジンシステムを制御する。例えば、制御部40は、燃料ポンプFP、パージ制御弁23、及び大気開放弁27等を制御する。また、制御部40は、液面センサ30や圧力センサ31等からの出力信号を取得する。 The control unit 40 is a part of an ECU (not shown) mounted on a vehicle equipped with the above engine system, and is integrally arranged with other parts of the ECU (for example, a part that controls engine ENG). The control unit 40 may be arranged separately from other parts of the ECU. The control unit 40 includes a CPU and memories such as ROM and RAM. The control unit 40 controls the evaporative fuel processing device 1 and the engine system according to a program stored in the memory in advance. For example, the control unit 40 controls the fuel pump FP, the purge control valve 23, the atmosphere release valve 27, and the like. Further, the control unit 40 acquires output signals from the liquid level sensor 30, the pressure sensor 31, and the like.
 このような構成の蒸発燃料処理装置1において、エンジンENGの運転中にパージ条件が成立すると、制御部40は、パージ制御弁23を開弁して、パージ制御を実行する。なお、パージ制御とは、パージガスをキャニスタ21からパージ通路22を介して吸気通路IPに導入する制御である。 In the evaporative fuel processing device 1 having such a configuration, when the purge condition is satisfied during the operation of the engine ENG, the control unit 40 opens the purge control valve 23 and executes the purge control. The purge control is a control for introducing the purge gas from the canister 21 to the intake passage IP via the purge passage 22.
 そして、パージ制御が実行されている間、エンジンENGには、吸気通路IPに吸入される空気と、燃料タンクFTから供給されインジェクタ11を介して噴射される燃料と、パージ制御により吸気通路IPに供給されるパージガスとが供給される。そして、制御部40は、インジェクタ11の噴射時間やパージ制御弁23の開弁時間などを調整することによって、エンジンENGの空燃比(A/F)を最適な空燃比(例えば理想空燃比)に調整する。 Then, while the purge control is being executed, the engine ENG receives the air taken into the intake passage IP, the fuel supplied from the fuel tank FT and injected through the injector 11, and the intake passage IP by the purge control. The purge gas to be supplied is supplied. Then, the control unit 40 adjusts the injection time of the injector 11 and the valve opening time of the purge control valve 23 to adjust the air-fuel ratio (A / F) of the engine ENG to the optimum air-fuel ratio (for example, the ideal air-fuel ratio). adjust.
<負圧OBDの制御内容>
 続いて、蒸発燃料処理装置1に係る故障診断(On  Board  Diagnosis:OBD)、つまりリーク検査を行うときの制御について説明する。蒸発燃料処理装置1では、燃料タンクFT内を負圧にしてリーク検査を行う負圧OBDと燃料タンクFT内を正圧にしてリーク検査を行う正圧OBDとのいずれか一方のOBDを実施可能である。
<Control contents of negative pressure OBD>
Subsequently, a failure diagnosis (On Board Diagnosis: OBD) relating to the evaporative fuel processing apparatus 1, that is, a control when performing a leak inspection will be described. In the evaporative fuel treatment device 1, it is possible to carry out either one of the negative pressure OBD in which the inside of the fuel tank FT is negative pressure and the leak inspection is performed and the positive pressure OBD in which the inside of the fuel tank FT is positive pressure and the leak inspection is performed. Is.
 そこでまず、負圧OBDを実施する場合の制御について、図2を参照しながら説明する。本実施形態では、高圧ポンプ14で加熱された燃料をリターン通路13を介して燃料タンクFTに戻して燃料タンクFT内の燃料を加熱した後、パージ制御弁23と大気開放弁27を作動させて燃料タンクFTを密閉して、燃料タンクFT内に負圧を発生させてリーク検査を行う。 Therefore, first, the control when performing negative pressure OBD will be described with reference to FIG. In the present embodiment, the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13 to heat the fuel in the fuel tank FT, and then the purge control valve 23 and the atmosphere release valve 27 are operated. The fuel tank FT is sealed, a negative pressure is generated in the fuel tank FT, and a leak inspection is performed.
 具体的には、制御部40が、図2に示す制御チャートに基づいて、負圧OBD制御を行う。すなわち、イグニッションスイッチ(IG)がONされ(ステップS1)、エンジンENGが駆動(ON)された後(ステップS2)、パージ条件が成立すると(ステップS3:YES)、燃料タンクFT内の燃料の加熱を開始する(ステップS4)。つまり、制御部40は、図1に破線で示すように、燃料ポンプFPを制御してリターン通路13を介して高圧ポンプ14で加熱された燃料を燃料タンクFTに戻し始める。なお、エンジン稼働中に燃料タンクFTに燃料が常時戻されていて、燃料の量を制御している場合には、S4ではリターン燃料の量を増量する処理が行われる。これにより、加熱されたリターン燃料が燃料タンクFT内に導入(又は増量)されるため、燃料タンクFT内の燃料が加熱される。このリターン燃料の燃料タンクFT内への導入は、エンジンENGが駆動されている状態でパージ実行中に継続して行われる。これにより、燃料タンクFT内の燃料が加熱される。 Specifically, the control unit 40 performs negative pressure OBD control based on the control chart shown in FIG. That is, after the ignition switch (IG) is turned on (step S1), the engine ENG is driven (ON) (step S2), and the purge condition is satisfied (step S3: YES), the fuel in the fuel tank FT is heated. Is started (step S4). That is, as shown by the broken line in FIG. 1, the control unit 40 controls the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. When the fuel is constantly returned to the fuel tank FT while the engine is operating and the amount of fuel is controlled, the process of increasing the amount of return fuel is performed in S4. As a result, the heated return fuel is introduced (or increased) into the fuel tank FT, so that the fuel in the fuel tank FT is heated. The introduction of the return fuel into the fuel tank FT is continuously performed during the purge execution with the engine ENG being driven. As a result, the fuel in the fuel tank FT is heated.
 その後、エンジンENGが停止(OFF)されると(ステップS5:YES)、制御部40は、燃料ポンプFPを停止させて、リターン燃料の燃料タンクFT内への導入を停止し、燃料タンクFT内の燃料の加熱を終了する(ステップS6)。そして、IGがOFFされると(ステップS7:YES)、制御部40は、OBD条件を満足するか否かを判断する(ステップS8)。なお、OBD条件とは、OBDが実施される条件で法規に基づき定められたものである。OBD条件として、例えば、パージ履歴や外気温などを判定している。また、S7の処理において、IGがONのままである場合には(S7:NO)、S2の処理に戻り、S2~S7の処理を繰り返す。 After that, when the engine ENG is stopped (OFF) (step S5: YES), the control unit 40 stops the fuel pump FP, stops the introduction of the return fuel into the fuel tank FT, and enters the fuel tank FT. The heating of the fuel of (step S6) is completed. Then, when the IG is turned off (step S7: YES), the control unit 40 determines whether or not the OBD condition is satisfied (step S8). The OBD condition is a condition for OBD to be implemented and is defined based on laws and regulations. As the OBD condition, for example, the purge history and the outside air temperature are determined. Further, in the process of S7, if the IG remains ON (S7: NO), the process returns to the process of S2, and the processes of S2 to S7 are repeated.
 OBD条件を満足する場合(S8:YES)、制御部40は、大気開放弁27とパージ制御弁23を閉弁する(ステップS9)。これにより、燃料タンクFT及びキャニスタ21が密閉状態にされる。そうすると、燃料タンクFT内の燃料が加熱された状態で密閉されているので、燃料タンクFT内の温度が外気温に向かって下がっていき、燃料タンクFT内が負圧になる。 When the OBD condition is satisfied (S8: YES), the control unit 40 closes the atmosphere release valve 27 and the purge control valve 23 (step S9). As a result, the fuel tank FT and the canister 21 are sealed. Then, since the fuel in the fuel tank FT is sealed in a heated state, the temperature in the fuel tank FT decreases toward the outside air temperature, and the inside of the fuel tank FT becomes a negative pressure.
 そして、制御部40は、燃料タンクFT及びキャニスタ21を密閉したときからの燃料タンクFT内の圧力(タンク内圧)の圧力変化(負の差圧)が一定以上、つまり燃料タンクFT内に所定の負圧(例えば、-3kPa)が発生しているか否かを、圧力センサ31の検出値に基づき判断する(ステップS10)。このとき、圧力変化が一定以上であれば(S10:YES)、制御部40は、リーク検査を実行する(ステップS11)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1におけるリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。このように、負圧によるリーク検査を行うため、リーク検査中にキャニスタ21に吸着された蒸発燃料が放出されることを防ぐことができる。なお、判定値は外気温度により補正される。 Then, the control unit 40 determines that the pressure change (negative differential pressure) of the pressure in the fuel tank FT (tank internal pressure) from the time when the fuel tank FT and the canister 21 are sealed is equal to or more than a certain value, that is, in the fuel tank FT. Whether or not a negative pressure (for example, -3 kPa) is generated is determined based on the detected value of the pressure sensor 31 (step S10). At this time, if the pressure change is equal to or higher than a certain level (S10: YES), the control unit 40 executes a leak inspection (step S11). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and determines whether or not there is a leak in the evaporated fuel treatment device 1. The presence or absence of this leak is determined by a known method. Since the leak inspection is performed by the negative pressure in this way, it is possible to prevent the evaporated fuel adsorbed on the canister 21 from being released during the leak inspection. The determination value is corrected by the outside air temperature.
 このような図2に示す制御チャートに基づいて制御が行われることにより、図3Aと図3Bのような制御タイムチャートの一例が実施される。図3Aと図3Bに示すように、時刻T0にて、エンジンENGが始動され、時刻T1にて、パージ条件が成立すると、パージが実行されるとともに、リターン燃料による燃料タンクFT内の燃料の加熱が実施される。このとき、タンク内圧の変化はほとんどない。そして、時刻T2にて、エンジンENGが停止されると、タンク内圧が下がっていき、時刻T3にて、燃料タンクFT内の圧力変化が一定以上となる。その後、時刻T4~T8の一定時間おきにリーク検査が実行される。このときに、タンク内圧が、図3Aに破線で示す判定値の範囲内にあればリーク無しと判定され、判定値の範囲外にあればリーク有りと判定される。 By performing control based on the control chart shown in FIG. 2, an example of the control time chart as shown in FIGS. 3A and 3B is implemented. As shown in FIGS. 3A and 3B, when the engine ENG is started at time T0 and the purge condition is satisfied at time T1, the purge is executed and the fuel in the fuel tank FT is heated by the return fuel. Is carried out. At this time, there is almost no change in the tank internal pressure. Then, when the engine ENG is stopped at time T2, the pressure inside the tank decreases, and at time T3, the pressure change in the fuel tank FT becomes equal to or higher than a certain level. After that, a leak check is executed at regular intervals from time T4 to T8. At this time, if the tank internal pressure is within the range of the determination value shown by the broken line in FIG. 3A, it is determined that there is no leak, and if it is outside the range of the determination value, it is determined that there is a leak.
<正圧OBDの制御内容>
 次に、蒸発燃料処理装置1において、正圧OBDを実施する場合の制御について、図4を参照しながら説明する。この場合には、パージ制御弁23と大気開放弁27を作動させて燃料タンクFTを密閉した後に、高圧ポンプ14で加熱された燃料をリターン通路13を介して燃料タンクFTに戻して燃料タンクFT内の燃料を加熱し、燃料タンクFT内に正圧を発生させてリーク検査を行う。
<Control content of positive pressure OBD>
Next, the control when the positive pressure OBD is performed in the evaporated fuel processing apparatus 1 will be described with reference to FIG. In this case, after operating the purge control valve 23 and the air release valve 27 to seal the fuel tank FT, the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13 to return the fuel tank FT. The fuel inside is heated to generate a positive pressure in the fuel tank FT to perform a leak inspection.
 具体的には、制御部40が、図4に示す制御チャートに基づいて、正圧OBD制御を行う。すなわち、IGがONされ(ステップS20)、エンジンENGが駆動(ON)されて(ステップS21)、エンジンENGの暖機が完了した後にエンジンENGが停止(OFF)されると(ステップS22)、制御部40は、OBD条件を満足するか否かを判断する(ステップS23)。 Specifically, the control unit 40 performs positive pressure OBD control based on the control chart shown in FIG. That is, when the IG is turned on (step S20), the engine ENG is driven (ON) (step S21), and the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S22), control is performed. Part 40 determines whether or not the OBD condition is satisfied (step S23).
 このとき、OBD条件を満足する場合には(S23:YES)、制御部40は、大気開放弁27とパージ制御弁23を閉弁する(ステップS24)。これにより、燃料タンクFT及びキャニスタ21が密閉状態にされる。そして、燃料タンクFT内の燃料の加熱を開始する(ステップS25)。つまり、制御部40は、図1に破線で示すように、燃料ポンプFPの駆動を制御してリターン通路13を介して高圧ポンプ14で加熱された燃料を燃料タンクFTに戻し始める。これにより、加熱されたリターン燃料が燃料タンクFT内に導入されるため、燃料タンクFT内の燃料が加熱される。なお、OBD条件を満足しない場合には(S23:NO)、この処理ルーチンを終了する。 At this time, if the OBD condition is satisfied (S23: YES), the control unit 40 closes the atmosphere release valve 27 and the purge control valve 23 (step S24). As a result, the fuel tank FT and the canister 21 are sealed. Then, heating of the fuel in the fuel tank FT is started (step S25). That is, as shown by the broken line in FIG. 1, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated. If the OBD condition is not satisfied (S23: NO), this processing routine is terminated.
 そして、リターン燃料が予め定められた所定量だけ燃料タンクFT内に導入される(戻される)と(ステップS26:YES)、制御部40は、燃料ポンプFPを停止させて、リターン燃料の燃料タンクFT内への導入を停止し、燃料タンクFT内の燃料の加熱を終了させる(ステップS27)。なお、燃料タンクFTに導入するリターン燃料の所定量は、リーク検査を実施可能なタンク内圧以上となるように燃料タンク内の燃料(満タン時)を加熱することができるリターン燃料量を実験により求めておけばよい。 Then, when the return fuel is introduced (returned) into the fuel tank FT by a predetermined amount (step S26: YES), the control unit 40 stops the fuel pump FP and the fuel tank of the return fuel. The introduction into the FT is stopped, and the heating of the fuel in the fuel tank FT is finished (step S27). In addition, the predetermined amount of return fuel to be introduced into the fuel tank FT is the amount of return fuel that can heat the fuel in the fuel tank (when the tank is full) so that the tank internal pressure at which the leak inspection can be performed is equal to or higher. You just have to ask.
 燃料タンクFT内の燃料の加熱が終了すると、制御部40は、燃料タンクFT及びキャニスタ21を密閉したときからのタンク内圧の圧力変化(正の差圧)が一定以上、つまり燃料タンクFT内に所定の正圧(例えば、3kPa)が発生しているか否かを、圧力センサ31の検出値に基づき判断する(ステップS28)。このとき、圧力変化が一定以上であれば(S28:YES)、制御部40は、リーク検査を実行する(ステップS29)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1におけるリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。なお、圧力変化が一定以上でなければ(S28:NO)、リーク検査を行うことなくこの処理ルーチンを終了する。 When the heating of the fuel in the fuel tank FT is completed, the control unit 40 increases the pressure change (positive differential pressure) of the tank internal pressure from the time when the fuel tank FT and the canister 21 are sealed to a certain level or more, that is, in the fuel tank FT. Whether or not a predetermined positive pressure (for example, 3 kPa) is generated is determined based on the detected value of the pressure sensor 31 (step S28). At this time, if the pressure change is equal to or higher than a certain level (S28: YES), the control unit 40 executes a leak inspection (step S29). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and determines whether or not there is a leak in the evaporated fuel treatment device 1. The presence or absence of this leak is determined by a known method. If the pressure change is not equal to or higher than a certain level (S28: NO), this processing routine is terminated without performing a leak inspection.
 このような図4に示す制御チャートに基づいて制御が行われることにより、図5Aと図5Bのような制御タイムチャートの一例が実施される。図5Aと図5Bに示すように、時刻T0にて、エンジンENGが始動され、時刻T1にて、パージ条件が成立すると、パージが実行される。このとき、タンク内圧の変化はほとんどない。そして、時刻T2にて、エンジンENGが停止されると、リターン燃料による燃料タンクFT内の燃料の加熱が実施される。そうすると、タンク内圧が上がっていき、時刻T3にて、燃料タンクFT内の圧力変化が一定以上となる。その後、時刻T4~T6の一定時間おきにリーク検査が実行される。このときに、タンク内圧が、図5Aに破線で示す判定値の範囲内にあればリーク無しと判定され、判定値の範囲外にあればリーク有りと判定される。 By performing control based on the control chart shown in FIG. 4, an example of the control time chart as shown in FIGS. 5A and 5B is implemented. As shown in FIGS. 5A and 5B, the engine ENG is started at time T0, and when the purge condition is satisfied at time T1, the purge is executed. At this time, there is almost no change in the tank internal pressure. Then, when the engine ENG is stopped at time T2, the fuel in the fuel tank FT is heated by the return fuel. Then, the pressure inside the tank increases, and at time T3, the pressure change inside the fuel tank FT becomes equal to or higher than a certain level. After that, a leak check is executed at regular intervals from time T4 to T6. At this time, if the tank internal pressure is within the range of the determination value shown by the broken line in FIG. 5A, it is determined that there is no leak, and if it is outside the range of the determination value, it is determined that there is a leak.
<正圧OBDの変形例の制御内容>
 ここで、タンク内圧がリーク検査に必要となる所定圧力以上になれば、燃料タンクFT内の燃料の加熱は不要となる。ところが、上記の正圧OBD制御では、リターン燃料量を一定量に定めているため、タンク内圧が所定圧力以上になっても、燃料タンクFT内の燃料の加熱が継続されてしまう場合がある。そこで、変形例では、リターン燃料による燃料タンクFT内の燃料の加熱を開始した後、燃料タンクFT内に所定の正圧(例えば、3kPa)が発生したときに、燃料タンクFT内の燃料の加熱を終了する。そこで、正圧OBDの変形例について、図6を参照しながら説明する。
<Control content of modified example of positive pressure OBD>
Here, if the internal pressure of the tank becomes equal to or higher than the predetermined pressure required for the leak inspection, the heating of the fuel in the fuel tank FT becomes unnecessary. However, in the above positive pressure OBD control, since the return fuel amount is set to a constant amount, heating of the fuel in the fuel tank FT may continue even if the tank internal pressure becomes equal to or higher than the predetermined pressure. Therefore, in the modified example, after the heating of the fuel in the fuel tank FT by the return fuel is started, when a predetermined positive pressure (for example, 3 kPa) is generated in the fuel tank FT, the fuel in the fuel tank FT is heated. To finish. Therefore, a modified example of the positive pressure OBD will be described with reference to FIG.
 この変形例では、制御部40が、図6に示す制御チャートに基づいて、正圧OBD制御を行う。すなわち、IGがONされ(ステップS30)、エンジンENGが駆動(ON)されて(ステップS31)、エンジンENGの暖機が完了した後にエンジンENGが停止(OFF)されると(ステップS32)、制御部40は、OBD条件を満足するか否かを判断する(ステップS33)。 In this modification, the control unit 40 performs positive pressure OBD control based on the control chart shown in FIG. That is, when the IG is turned on (step S30), the engine ENG is driven (ON) (step S31), and the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S32), control is performed. The unit 40 determines whether or not the OBD condition is satisfied (step S33).
 このとき、OBD条件を満足する場合には(S33:YES)、制御部40は、大気開放弁27とパージ制御弁23を閉弁する(ステップS34)。これにより、燃料タンクFT及びキャニスタ21が密閉状態にされる。そして、燃料タンクFT内の燃料の加熱を開始する(ステップS35)。つまり、制御部40は、図1に破線で示すように、燃料ポンプFPの駆動を制御してリターン通路13を介して高圧ポンプ14で加熱された燃料を燃料タンクFTに戻し始める。これにより、加熱されたリターン燃料が燃料タンクFT内に導入されるため、燃料タンクFT内の燃料が加熱される。なお、OBD条件を満足しない場合には(S33:NO)、この処理ルーチンを終了する。 At this time, if the OBD condition is satisfied (S33: YES), the control unit 40 closes the atmosphere release valve 27 and the purge control valve 23 (step S34). As a result, the fuel tank FT and the canister 21 are sealed. Then, heating of the fuel in the fuel tank FT is started (step S35). That is, as shown by the broken line in FIG. 1, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated. If the OBD condition is not satisfied (S33: NO), this processing routine is terminated.
 その後、制御部40は、燃料タンクFT及びキャニスタ21を密閉したときからのタンク内圧の圧力変化(正の差圧)が一定以上、つまり燃料タンクFT内に所定の正圧(例えば、3kPa)が発生すると(ステップS36:YES)、燃料ポンプFPを停止させて、リターン燃料の燃料タンクFT内への導入を停止し、燃料タンクFT内の燃料の加熱を終了させる(ステップS37)。 After that, in the control unit 40, the pressure change (positive differential pressure) of the tank internal pressure from the time when the fuel tank FT and the canister 21 are sealed is equal to or more than a certain value, that is, a predetermined positive pressure (for example, 3 kPa) is generated in the fuel tank FT. When it occurs (step S36: YES), the fuel pump FP is stopped, the introduction of the return fuel into the fuel tank FT is stopped, and the heating of the fuel in the fuel tank FT is completed (step S37).
 そして、制御部40は、リーク検査を実行する(ステップS38)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1におけるリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 Then, the control unit 40 executes a leak inspection (step S38). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and determines whether or not there is a leak in the evaporated fuel treatment device 1. The presence or absence of this leak is determined by a known method.
 このように変形例では、タンク内圧がリーク検査に必要となる所定圧力以上になれば、燃料タンクFT内の燃料の加熱が停止される。従って、必要以上に燃料タンクFT内の燃料が加熱されてしまうことを防止することができる。また、燃料ポンプFPの駆動時間を減少させることができるため消費電量を削減することができる。 As described above, in the modified example, when the tank internal pressure exceeds the predetermined pressure required for the leak inspection, the heating of the fuel in the fuel tank FT is stopped. Therefore, it is possible to prevent the fuel in the fuel tank FT from being heated more than necessary. Further, since the driving time of the fuel pump FP can be reduced, the electric charge consumption can be reduced.
 以上のように、本実施形態の蒸発燃料処理装置1では、高圧ポンプ14で加熱された燃料をリターン通路13を介して燃料タンクFTに戻して燃料タンクFT内の燃料を加熱した後、大気開放弁27とパージ制御弁23を閉弁して燃料タンクFT及びキャニスタ21を密閉する。これにより、燃料タンクFT内に負圧を生じさせることができるため、圧力センサ31で検出される圧力値の変化に基づいて負圧によるリーク検査を行うことができる。 As described above, in the evaporative fuel processing apparatus 1 of the present embodiment, the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13, the fuel in the fuel tank FT is heated, and then the fuel is released to the atmosphere. The valve 27 and the purge control valve 23 are closed to seal the fuel tank FT and the canister 21. As a result, a negative pressure can be generated in the fuel tank FT, so that a leak inspection due to the negative pressure can be performed based on the change in the pressure value detected by the pressure sensor 31.
 あるいは、本実施形態の蒸発燃料処理装置1では、大気開放弁27とパージ制御弁23を閉弁して燃料タンクFT及びキャニスタ21を密閉した後に、高圧ポンプ14で加熱された燃料をリターン通路13を介して燃料タンクFTに戻して燃料タンクFT内の燃料を加熱する。これにより、燃料タンクFT内に正圧を生じさせることができるため、圧力センサ31で検出される圧力値の変化に基づいて正圧によるリーク検査を行うこともできる。 Alternatively, in the evaporative fuel processing device 1 of the present embodiment, after closing the air release valve 27 and the purge control valve 23 to seal the fuel tank FT and the canister 21, the fuel heated by the high pressure pump 14 is returned to the return passage 13. The fuel is returned to the fuel tank FT via the fuel tank FT to heat the fuel in the fuel tank FT. As a result, a positive pressure can be generated in the fuel tank FT, so that a leak inspection by the positive pressure can be performed based on the change in the pressure value detected by the pressure sensor 31.
 このように、本実施形態の蒸発燃料処理装置1によれば、燃料タンクFT内に差圧を発生させるためのポンプが不要となる。また、外気温度に影響されることなく、確実に燃料タンク内に差圧(負圧又は正圧)を発生させることができる。そして、エンジンENGからの受熱を利用して燃料タンクFT内の燃料を加熱するため、エンジンENGが始動されて暖機が完了すれば、確実にリーク検査を行うことができる。従って、本実施形態の蒸発燃料処理装置1によれば、新たなポンプを設けることなくリーク検出を行うことができ、リーク検出の機会を確保することができる。 As described above, according to the evaporative fuel processing device 1 of the present embodiment, a pump for generating a differential pressure in the fuel tank FT becomes unnecessary. In addition, a differential pressure (negative pressure or positive pressure) can be reliably generated in the fuel tank without being affected by the outside air temperature. Then, since the fuel in the fuel tank FT is heated by using the heat received from the engine ENG, when the engine ENG is started and the warm-up is completed, the leak inspection can be surely performed. Therefore, according to the evaporated fuel treatment device 1 of the present embodiment, leak detection can be performed without providing a new pump, and an opportunity for leak detection can be secured.
[第2実施形態]
 次に、第2実施形態の蒸発燃料処理装置について、図7を参照しながら説明する。第2実施形態は、第1実施形態と基本的な構成は同じであるが、図7に示すように、燃料タンクFT内の温度(タンク内温度)を検出する温度センサ32が設けられている点が異なる。すなわち、第2実施形態の蒸発燃料処理装置1Aでは、燃料タンクFTに温度センサ32が配置されている。本実施形態の蒸発燃料処理装置1Aでも、第1実施形態と同様、負圧OBD制御又は正圧OBD制御を行うことができる。
[Second Embodiment]
Next, the evaporated fuel treatment apparatus of the second embodiment will be described with reference to FIG. 7. The second embodiment has the same basic configuration as the first embodiment, but as shown in FIG. 7, a temperature sensor 32 for detecting the temperature inside the fuel tank FT (the temperature inside the tank) is provided. The point is different. That is, in the evaporated fuel processing apparatus 1A of the second embodiment, the temperature sensor 32 is arranged in the fuel tank FT. The evaporated fuel processing device 1A of the present embodiment can also perform negative pressure OBD control or positive pressure OBD control as in the first embodiment.
 <負圧OBDの制御内容>
 そこでまず、負圧OBDを実施する場合の制御について、図8を参照しながら説明する。まず、制御部40は、IGがONされ(ステップS41)、エンジンENGが駆動(ON)された後(ステップS42)、パージ条件が成立すると(ステップS43:YES)、燃料タンクFT内の温度(タンク内温度)が所定温度以下であるか否かを判断する(ステップS44)。所定温度としては、密閉されたタンク内温度が駐車時に外気温まで下がった場合、負圧OBDに必要な負圧(例えば、-3kPa)を燃料タンクFT内に発生させられる温度を設定すればよい。この所定温度は、実験により予め決定しておけばよい。
<Control contents of negative pressure OBD>
Therefore, first, the control when the negative pressure OBD is performed will be described with reference to FIG. First, when the purge condition is satisfied (step S43: YES) after the IG is turned on (step S41) and the engine ENG is driven (ON) (step S42), the control unit 40 determines the temperature inside the fuel tank FT (step S43: YES). It is determined whether or not the temperature in the tank) is equal to or lower than the predetermined temperature (step S44). As the predetermined temperature, when the temperature inside the sealed tank drops to the outside air temperature during parking, the temperature at which the negative pressure required for the negative pressure OBD (for example, -3 kPa) can be generated in the fuel tank FT may be set. .. This predetermined temperature may be determined in advance by an experiment.
 このとき、タンク内温度が所定温度以下の場合には(S44:YES)、制御部40は、燃料タンクFT内の燃料の加熱を開始する(ステップS45)。つまり、制御部40は、図7に破線で示すように、燃料ポンプFPを制御して、リターン通路13を介して高圧ポンプ14で加熱された燃料を燃料タンクFTに戻し始める、あるいはリターン燃料の量を増量する。これにより、加熱されたリターン燃料が燃料タンクFT内に導入(又は増量)されるため、燃料タンクFT内の燃料が加熱される。このリターン燃料の燃料タンクFT内への導入(又は増量)は、エンジンENGが駆動されている状態でパージ実行中に継続して行われる。これにより、燃料タンクFT内の燃料が加熱され燃料タンクFT内の圧力(タンク内圧)が下がる。 At this time, if the temperature inside the tank is equal to or lower than the predetermined temperature (S44: YES), the control unit 40 starts heating the fuel in the fuel tank FT (step S45). That is, as shown by the broken line in FIG. 7, the control unit 40 controls the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13, or the return fuel. Increase the amount. As a result, the heated return fuel is introduced (or increased) into the fuel tank FT, so that the fuel in the fuel tank FT is heated. The introduction (or increase) of the return fuel into the fuel tank FT is continuously performed during the purge execution with the engine ENG being driven. As a result, the fuel in the fuel tank FT is heated and the pressure in the fuel tank FT (tank internal pressure) is lowered.
 その後、タンク内温度が所定温度以上になると(ステップS46:YES)、制御部40は、燃料ポンプFPを停止(又は燃料ポンプFPの回転数を低下)させて、リターン燃料の燃料タンクFT内への導入を停止し(又はリターン燃料の量を減らし)、燃料タンクFT内の燃料の加熱を終了する(ステップS47)。そして、エンジンENGが停止(OFF)され(ステップS48:YES)、IGがOFFされると(ステップS49:YES)、制御部40は、OBD条件を満足するか否かを判断する(ステップS50)。なお、エンジンENGが停止されない場合には(S48:NO)、S44の処理に戻る。また、IGがOFFされない場合には(S49:NO)、S42の処理に戻る。 After that, when the temperature inside the tank becomes equal to or higher than the predetermined temperature (step S46: YES), the control unit 40 stops the fuel pump FP (or lowers the rotation speed of the fuel pump FP) and enters the fuel tank FT of the return fuel. (Or reduce the amount of return fuel), and end the heating of the fuel in the fuel tank FT (step S47). Then, when the engine ENG is stopped (OFF) (step S48: YES) and the IG is turned OFF (step S49: YES), the control unit 40 determines whether or not the OBD condition is satisfied (step S50). .. If the engine ENG is not stopped (S48: NO), the process returns to S44. If the IG is not turned off (S49: NO), the process returns to the process of S42.
 OBD条件を満足する場合(S50:YES)、制御部40は、大気開放弁27とパージ制御弁23を閉弁する(ステップS51)。これにより、燃料タンクFT及びキャニスタ21が密閉状態にされる。そうすると、燃料タンクFT内の燃料が加熱された状態で密閉されているので、燃料タンクFT内の温度が外気温に向かって下がっていき、燃料タンクFT内が負圧になる。 When the OBD condition is satisfied (S50: YES), the control unit 40 closes the atmosphere release valve 27 and the purge control valve 23 (step S51). As a result, the fuel tank FT and the canister 21 are sealed. Then, since the fuel in the fuel tank FT is sealed in a heated state, the temperature in the fuel tank FT decreases toward the outside air temperature, and the inside of the fuel tank FT becomes a negative pressure.
 そして、制御部40は、燃料タンクFT及びキャニスタ21を密閉したときからのタンク内圧の圧力変化(負の差圧)が一定以上、つまり燃料タンクFT内に所定の負圧(例えば、-3kPa)が発生しているか否かを、圧力センサ31の検出値に基づき判断する(ステップS52)。このとき、圧力変化が一定以上であれば(S52:YES)、制御部40は、リーク検査を実行する(ステップS53)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Aにおけるリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。このように、負圧によるリーク検査を行うため、リーク検査中にキャニスタ21に吸着された蒸発燃料が放出されることを防ぐことができる。なお、判定値はタンク内温度により補正される。 Then, in the control unit 40, the pressure change (negative differential pressure) of the tank internal pressure from the time when the fuel tank FT and the canister 21 are sealed is equal to or more than a certain value, that is, a predetermined negative pressure (for example, -3 kPa) in the fuel tank FT. Is determined based on the detected value of the pressure sensor 31 (step S52). At this time, if the pressure change is equal to or higher than a certain level (S52: YES), the control unit 40 executes a leak inspection (step S53). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and determines whether or not there is a leak in the evaporated fuel treatment device 1A. The presence or absence of this leak is determined by a known method. Since the leak inspection is performed by the negative pressure in this way, it is possible to prevent the evaporated fuel adsorbed on the canister 21 from being released during the leak inspection. The judgment value is corrected by the temperature inside the tank.
 このような図8に示す制御チャートに基づいて制御が行われることにより、図9Aと図9Bと図9Cのような制御タイムチャートの一例が実施される。図9Aと図9Bと図9Cに示すように、時刻T10にて、エンジンENGが始動され、時刻T11にて、パージ条件が成立すると、パージが実行されるとともに、リターン燃料による燃料タンクFT内の燃料の加熱が実施される。このとき、タンク内温度が所定温度以上になるように燃料の加熱が制御される。そして、時刻T12にて、エンジンENGが停止されると、タンク内圧が下がっていき、時刻T13にて、燃料タンクFT内の圧力変化が一定以上となる。その後、時刻T14~T18の一定時間おきにリーク検査が実行される。このときに、タンク内圧が、図9Aに破線で示す判定値の範囲内にあればリーク無しと判定され、判定値の範囲外にあればリーク有りと判定される。 By performing control based on the control chart shown in FIG. 8, an example of the control time chart as shown in FIGS. 9A, 9B, and 9C is implemented. As shown in FIGS. 9A, 9B and 9C, when the engine ENG is started at time T10 and the purge condition is satisfied at time T11, purging is executed and the fuel tank FT with return fuel is used. Fuel heating is carried out. At this time, the heating of the fuel is controlled so that the temperature inside the tank becomes equal to or higher than the predetermined temperature. Then, when the engine ENG is stopped at time T12, the pressure inside the tank decreases, and at time T13, the pressure change in the fuel tank FT becomes equal to or higher than a certain level. After that, a leak check is executed at regular intervals from time T14 to T18. At this time, if the tank internal pressure is within the range of the determination value shown by the broken line in FIG. 9A, it is determined that there is no leak, and if it is outside the range of the determination value, it is determined that there is a leak.
 このように本実施形態では、温度センサ32で検出される温度が予め定めた所定温度以下の場合に高圧ポンプ14で加熱された燃料をリターン通路13を介して燃料タンクFTに戻して燃料タンクFT内の燃料を加熱する。その後、温度センサ32で検出される温度が予め定めた所定温度以上になると、燃料ポンプFPを停止して燃料タンクFT内の燃料の加熱を終了する。そして、パージ制御弁23と大気開放弁27を作動させて燃料タンクFTを密閉して、燃料タンクFT内に所定の負圧を発生させてリーク検査を行う。 As described above, in the present embodiment, when the temperature detected by the temperature sensor 32 is equal to or lower than the predetermined temperature, the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13 and returned to the fuel tank FT. Heat the fuel inside. After that, when the temperature detected by the temperature sensor 32 becomes equal to or higher than a predetermined temperature, the fuel pump FP is stopped to finish heating the fuel in the fuel tank FT. Then, the purge control valve 23 and the air release valve 27 are operated to seal the fuel tank FT, and a predetermined negative pressure is generated in the fuel tank FT to perform a leak inspection.
<正圧OBDの制御内容>
 次に、蒸発燃料処理装置1Aにおいて、正圧OBDを実施する場合の制御について、図10を参照しながら説明する。まず、制御部40は、IGがONされ(ステップS60)、エンジンENGが駆動(ON)されて(ステップS61)、エンジンENGの暖機が完了した後にエンジンENGが停止(OFF)されると(ステップS62)、OBD条件を満足するか否かを判断する(ステップS63)。
<Control content of positive pressure OBD>
Next, the control when the positive pressure OBD is performed in the evaporated fuel processing apparatus 1A will be described with reference to FIG. First, in the control unit 40, when the IG is turned on (step S60), the engine ENG is driven (ON) (step S61), and the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S61). Step S62), it is determined whether or not the OBD condition is satisfied (step S63).
 このとき、OBD条件を満足する場合には(S63:YES)、制御部40は、大気開放弁27とパージ制御弁23を閉弁する(ステップS64)。これにより、燃料タンクFT及びキャニスタ21が密閉状態にされる。そして、制御部40は、液面センサ30から燃料タンクFT内の燃料残量を確認する(ステップS65)。また、制御部40は、吸気温センサから外気温度を確認とともに(ステップS66)、温度センサ32からタンク内温度を確認する(ステップS67)。 At this time, if the OBD condition is satisfied (S63: YES), the control unit 40 closes the atmosphere release valve 27 and the purge control valve 23 (step S64). As a result, the fuel tank FT and the canister 21 are sealed. Then, the control unit 40 confirms the remaining amount of fuel in the fuel tank FT from the liquid level sensor 30 (step S65). Further, the control unit 40 confirms the outside air temperature from the intake air temperature sensor (step S66) and confirms the temperature inside the tank from the temperature sensor 32 (step S67).
 そうすると、制御部40は、燃料残量、外気温、及びタンク内温度に基づき、燃料タンクFT内にリーク検査を行うための正圧を発生させるために必要となる、燃料タンクFTに戻すリターン燃料量を設定する(ステップS68)。このリターン燃料の設定量は、基本的に燃料残量に基づいて設定され、外気温度及びタンク内温度により補正される。つまり、燃料残量が少ないほどリターン燃料量の設定量は少なく設定されて、温度が高い場合には、リターン燃料量の設定量が減少するように補正され、温度が低い場合には、リターン燃料量の設定量が増加するように補正される。 Then, the control unit 40 returns the return fuel to the fuel tank FT, which is necessary to generate a positive pressure for performing a leak inspection in the fuel tank FT based on the remaining fuel amount, the outside air temperature, and the temperature inside the tank. The amount is set (step S68). The set amount of the return fuel is basically set based on the remaining amount of fuel, and is corrected by the outside air temperature and the temperature inside the tank. In other words, the smaller the remaining fuel amount, the smaller the set amount of return fuel is set, and when the temperature is high, the set amount of return fuel is corrected to decrease, and when the temperature is low, the set amount of return fuel is corrected. It is corrected so that the set amount of the amount increases.
 そして、制御部40は、燃料タンクFT内の燃料の加熱を開始する(ステップS69)。つまり、制御部40は、図7に破線で示すように、燃料ポンプFPの駆動を制御してリターン通路13を介して高圧ポンプ14で加熱された燃料を燃料タンクFTに戻し始める。これにより、加熱されたリターン燃料が燃料タンクFT内に導入されるため、燃料タンクFT内の燃料が加熱される。なお、OBD条件を満足しない場合には(S63:NO)、この処理ルーチンを終了する。 Then, the control unit 40 starts heating the fuel in the fuel tank FT (step S69). That is, as shown by the broken line in FIG. 7, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated. If the OBD condition is not satisfied (S63: NO), this processing routine is terminated.
 その後、リターン燃料量が設定量に到達する、つまり設定量分のリターン燃料が燃料タンクFT内に導入される(戻される)と(ステップS70:YES)、制御部40は、燃料ポンプFPを停止させて、リターン燃料の燃料タンクFT内への導入を停止し、燃料タンクFT内の燃料の加熱を終了させる(ステップS71)。燃料タンクFT内の燃料の加熱が終了すると、制御部40は、燃料タンクFT及びキャニスタ21を密閉したときからのタンク内圧の圧力変化(正の差圧)が一定以上、つまり燃料タンクFT内に所定の正圧(例えば、3kPa)が発生しているか否かを、圧力センサ31の検出値に基づき判断する(ステップS72)。 After that, when the return fuel amount reaches the set amount, that is, when the set amount of return fuel is introduced (returned) into the fuel tank FT (step S70: YES), the control unit 40 stops the fuel pump FP. Then, the introduction of the return fuel into the fuel tank FT is stopped, and the heating of the fuel in the fuel tank FT is completed (step S71). When the heating of the fuel in the fuel tank FT is completed, the control unit 40 increases the pressure change (positive differential pressure) of the tank internal pressure from the time when the fuel tank FT and the canister 21 are sealed to a certain level or more, that is, in the fuel tank FT. Whether or not a predetermined positive pressure (for example, 3 kPa) is generated is determined based on the detected value of the pressure sensor 31 (step S72).
 このとき、圧力変化が一定以上であれば(S72:YES)、制御部40は、リーク検査を実行する(ステップS73)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1におけるリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。なお、圧力変化が一定以上でなければ(S72:NO)、リーク検査を行うことなくこの処理ルーチンを終了する。 At this time, if the pressure change is equal to or higher than a certain level (S72: YES), the control unit 40 executes a leak inspection (step S73). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and determines whether or not there is a leak in the evaporated fuel treatment device 1. The presence or absence of this leak is determined by a known method. If the pressure change is not equal to or higher than a certain level (S72: NO), this processing routine is terminated without performing a leak inspection.
 このような図10に示す制御チャートに基づいて制御が行われることにより、図11Aと図11Bと図11Cのような制御タイムチャートの一例が実施される。図11Aと図11Bと図11Cに示すように、時刻T10にて、エンジンENGが始動され、時刻T11にて、パージ条件が成立すると、パージが実行される。このとき、タンク内圧の変化はほとんどないが、タンク内温度は、排気管等からの熱により加熱される。そして、時刻T12にて、エンジンENGが停止されると、リターン燃料による燃料タンクFT内の燃料の加熱が実施される。そうすると、タンク内圧が上がっていく。そして、時刻T13にて、リターン燃料量が設定量に達して燃料の加熱が終了する。このとき、燃料タンクFT内の圧力変化が一定以上となっている。そのため、時刻T14~T16の一定時間おきにリーク検査が実行される。このときに、タンク内圧が、図11Aに破線で示す判定値の範囲内にあればリーク無しと判定され、判定値の範囲外にあればリーク有りと判定される。 By performing control based on the control chart shown in FIG. 10, an example of the control time chart as shown in FIGS. 11A, 11B, and 11C is implemented. As shown in FIGS. 11A, 11B, and 11C, the engine ENG is started at time T10, and when the purge condition is satisfied at time T11, purging is executed. At this time, there is almost no change in the tank internal pressure, but the tank internal temperature is heated by the heat from the exhaust pipe or the like. Then, when the engine ENG is stopped at time T12, the fuel in the fuel tank FT is heated by the return fuel. Then, the tank internal pressure will increase. Then, at time T13, the return fuel amount reaches the set amount and the fuel heating is completed. At this time, the pressure change in the fuel tank FT is above a certain level. Therefore, the leak check is executed at regular intervals from time T14 to T16. At this time, if the tank internal pressure is within the range of the determination value shown by the broken line in FIG. 11A, it is determined that there is no leak, and if it is outside the range of the determination value, it is determined that there is a leak.
 このように本実施形態では、パージ制御弁23と大気開放弁27を作動させて燃料タンクFTを密閉した後に、高圧ポンプ14で加熱された燃料をリターン通路13を介して燃料タンクFTに戻して燃料タンクFT内の燃料を加熱する。その後、リターン燃料量が設定量に達すると、燃料ポンプFPを停止して燃料タンクFT内の燃料の加熱を終了する。このようしにして、燃料タンクFT内に所定の正圧を発生させてリーク検査を行う。 As described above, in the present embodiment, after the purge control valve 23 and the atmosphere release valve 27 are operated to seal the fuel tank FT, the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13. The fuel in the fuel tank FT is heated. After that, when the return fuel amount reaches the set amount, the fuel pump FP is stopped and the heating of the fuel in the fuel tank FT is completed. In this way, a predetermined positive pressure is generated in the fuel tank FT to perform a leak inspection.
 以上のように、本実施形態の蒸発燃料処理装置1Aによれば、燃料タンクFT内の燃料を必要以上に加熱することなく、第1実施形態と同様の効果を得ることができる。また、燃料ポンプFPの回転数や駆動時間を減少させることができるため、消費電量が削減され燃費を向上させることができる。 As described above, according to the evaporative fuel treatment device 1A of the present embodiment, the same effect as that of the first embodiment can be obtained without heating the fuel in the fuel tank FT more than necessary. Further, since the rotation speed and the driving time of the fuel pump FP can be reduced, the power consumption can be reduced and the fuel consumption can be improved.
[第3実施形態]
 続いて、第3実施形態の蒸発燃料処理装置について、図12を参照しながら説明する。第3実施形態は、密閉タンクを採用する蒸発燃料処理装置に対して本開示を適用した場合を例示する。具体的には、本実施形態の蒸発燃料処理装置1Bは、図12に示すように、燃料タンクFTを密閉するための封鎖弁35を備えている。すなわち、本実施形態の蒸発燃料処理装置1Bでは、ベーパ通路24に封鎖弁35が設けられており、封鎖弁35が閉弁して燃料タンクFTを密閉状態にする。この封鎖弁35の開閉は、制御部40によって制御される。そして、本実施形態の蒸発燃料処理装置1Bでも、第1実施形態と同様、負圧OBD制御又は正圧OBD制御を行うことができる。
[Third Embodiment]
Subsequently, the evaporative fuel processing apparatus of the third embodiment will be described with reference to FIG. The third embodiment illustrates a case where the present disclosure is applied to an evaporative fuel treatment device that employs a closed tank. Specifically, the evaporative fuel processing device 1B of the present embodiment includes a sealing valve 35 for sealing the fuel tank FT, as shown in FIG. That is, in the evaporative fuel processing device 1B of the present embodiment, the sealing valve 35 is provided in the vapor passage 24, and the blocking valve 35 closes to close the fuel tank FT. The opening and closing of the blocking valve 35 is controlled by the control unit 40. Then, the evaporated fuel treatment device 1B of the present embodiment can also perform negative pressure OBD control or positive pressure OBD control as in the first embodiment.
 <負圧OBDの制御内容>
 そこでまず、負圧OBDを実施する場合の制御について、図13を参照しながら説明する。本実施形態でも、高圧ポンプ14で加熱された燃料をリターン通路13を介して燃料タンクFTに戻して燃料タンクFT内の燃料を加熱した後、燃料タンクFT内に負圧を発生させてリーク検査を行う。
<Control contents of negative pressure OBD>
Therefore, first, the control when the negative pressure OBD is performed will be described with reference to FIG. Also in this embodiment, the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13 to heat the fuel in the fuel tank FT, and then a negative pressure is generated in the fuel tank FT to perform a leak inspection. I do.
 具体的には、制御部40が、図13に示す制御チャートに基づいて、負圧OBD制御を行う。すなわち、IGがONされ(ステップS81)、エンジンENGが駆動(ON)された後(ステップS82)、パージ条件が成立すると(ステップS83:YES)、制御部40は、タンク内圧が大気圧付近であるか否かを判断する(ステップS84)。このとき、パージが実行されることにより、燃料タンクFT内の圧力(タンク内圧)が下がる。 Specifically, the control unit 40 performs negative pressure OBD control based on the control chart shown in FIG. That is, after the IG is turned on (step S81), the engine ENG is driven (ON) (step S82), and the purge condition is satisfied (step S83: YES), the control unit 40 has the tank internal pressure near the atmospheric pressure. It is determined whether or not there is (step S84). At this time, the pressure in the fuel tank FT (tank internal pressure) is lowered by executing the purge.
 そして、タンク内圧が大気圧付近である場合には(S84:YES)、制御部40は、封鎖弁35をON(開弁)して(ステップS85)、燃料タンクFT内の燃料の加熱を開始する(ステップS86)。つまり、制御部40は、図12に破線で示すように、燃料ポンプFPを制御してリターン通路13を介して高圧ポンプ14で加熱された燃料を燃料タンクFTに戻し始める。なお、タンク内圧が大気圧付近でない場合には(S84:NO)、後述するS90の処理に進む。 Then, when the tank internal pressure is near the atmospheric pressure (S84: YES), the control unit 40 turns on (opens) the blocking valve 35 (step S85) and starts heating the fuel in the fuel tank FT. (Step S86). That is, as shown by the broken line in FIG. 12, the control unit 40 controls the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. If the tank internal pressure is not near the atmospheric pressure (S84: NO), the process proceeds to S90 described later.
 その後、エンジンENGが停止(OFF)されると(ステップS87:YES)、制御部40は、燃料ポンプFPを停止させて、リターン燃料の燃料タンクFT内への導入を停止し、燃料タンクFT内の燃料の加熱を終了する(ステップS88)。次いで、制御部40は、封鎖弁35をOFF(閉弁)する(ステップS89)。そして、IGがOFFされると(ステップS90:YES)、制御部40は、OBD条件を満足するか否かを判断する(ステップS91)。なお、IGがONのままである場合には(S90:NO)、S82の処理に戻り、S82~S90の処理を繰り返す。 After that, when the engine ENG is stopped (OFF) (step S87: YES), the control unit 40 stops the fuel pump FP, stops the introduction of the return fuel into the fuel tank FT, and enters the fuel tank FT. The heating of the fuel of (step S88) is completed. Next, the control unit 40 turns off (closes) the blocking valve 35 (step S89). Then, when the IG is turned off (step S90: YES), the control unit 40 determines whether or not the OBD condition is satisfied (step S91). If the IG remains ON (S90: NO), the process returns to the process of S82, and the processes of S82 to S90 are repeated.
 OBD条件を満足する場合(S91:YES)、制御部40は、封鎖弁35を閉弁して燃料タンクFTを密閉したときからの燃料タンクFT内の圧力(タンク内圧)の圧力変化(負の差圧)が一定以上、つまり燃料タンクFT内に所定の負圧(例えば、-3kPa)が発生しているか否かを、圧力センサ31の検出値に基づき判断する(ステップS92)。このとき、圧力変化が一定以上であれば(S92:YES)、制御部40は、燃料タンクFT内のリーク検査を実行する(ステップS93)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Bにおいて燃料タンクFT内のリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 When the OBD condition is satisfied (S91: YES), the control unit 40 changes the pressure in the fuel tank FT (tank internal pressure) from the time when the closing valve 35 is closed and the fuel tank FT is closed (negative). Whether or not the differential pressure) is above a certain level, that is, whether or not a predetermined negative pressure (for example, -3 kPa) is generated in the fuel tank FT is determined based on the detected value of the pressure sensor 31 (step S92). At this time, if the pressure change is equal to or higher than a certain level (S92: YES), the control unit 40 executes a leak inspection in the fuel tank FT (step S93). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and the evaporative fuel processing device 1B determines whether or not the leak in the fuel tank FT occurs. Judge the presence or absence. The presence or absence of this leak is determined by a known method.
 その後、制御部40は、大気開放弁27とパージ制御弁23を閉弁して(ステップS94)、封鎖弁35をON(開弁)する(ステップS95)。これにより、キャニスタ21とパージ通路22及びベーパ通路24の配管内が密閉状態にされる。そして、制御部40は、キャニスタ21とパージ通路22及びベーパ通路24の各配管のリーク検査を実行する(ステップS96)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Bにおいてキャニスタ21とパージ通路22及びベーパ通路24の各配管のリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 After that, the control unit 40 closes the air release valve 27 and the purge control valve 23 (step S94), and turns on (opens) the blockade valve 35 (step S95). As a result, the inside of the canister 21, the purge passage 22, and the vapor passage 24 is sealed. Then, the control unit 40 executes a leak inspection of each pipe of the canister 21, the purge passage 22, and the vapor passage 24 (step S96). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and in the evaporated fuel processing device 1B, the canister 21 and the purge passage 22 and It is determined whether or not there is a leak in each pipe of the vapor passage 24. The presence or absence of this leak is determined by a known method.
<正圧OBDの制御内容>
 次に、蒸発燃料処理装置1Bにおいて、正圧OBDを実施する場合の制御について、図14を参照しながら説明する。この場合には、燃料タンクFTを密閉した後に、高圧ポンプ14で加熱された燃料をリターン通路13を介して燃料タンクFTに戻して燃料タンクFT内の燃料を加熱し、燃料タンクFT内に正圧を発生させてリーク検査を行う。
<Control content of positive pressure OBD>
Next, the control when the positive pressure OBD is performed in the evaporated fuel processing apparatus 1B will be described with reference to FIG. In this case, after the fuel tank FT is sealed, the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13 to heat the fuel in the fuel tank FT, and the fuel in the fuel tank FT is positive. Perform leak inspection by generating pressure.
 具体的には、制御部40が、図14に示す制御チャートに基づいて、正圧OBD制御を行う。すなわち、IGがONされ(ステップS100)、エンジンENGが駆動(ON)されると、(ステップS101:YES)、制御部40は、封鎖弁35をON(開弁)する(ステップS102)。なお、エンジンENGが駆動されていない場合には(S101:NO)、制御部40は、IGがOFFか否かを判断する(ステップS115)。このとき、IGがOFFであれば(S115:YES)、S105の処理に進む。一方、IGがOFFでなければ(S115:NO)、S100の処理に戻る。 Specifically, the control unit 40 performs positive pressure OBD control based on the control chart shown in FIG. That is, when the IG is turned on (step S100) and the engine ENG is driven (ON) (step S101: YES), the control unit 40 turns on (opens) the blocking valve 35 (step S102). When the engine ENG is not driven (S101: NO), the control unit 40 determines whether or not the IG is OFF (step S115). At this time, if IG is OFF (S115: YES), the process proceeds to S105. On the other hand, if IG is not OFF (S115: NO), the process returns to S100.
 そして、エンジンENGの暖機が完了した後にエンジンENGが停止(OFF)されると(ステップS103)、制御部40は、封鎖弁35をOFF(閉弁)して(ステップS104)、OBD条件を満足するか否かを判断する(ステップS105)。このとき、OBD条件を満足する場合には(S105:YES)、制御部40は、タンク内圧が大気圧付近であるか否かを判断する(ステップS106)。なお、OBD条件を満足しない場合には(S105:NO)、この処理ルーチンを終了する。 Then, when the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S103), the control unit 40 turns off (closes) the blocking valve 35 (step S104), and sets the OBD condition. It is determined whether or not it is satisfied (step S105). At this time, if the OBD condition is satisfied (S105: YES), the control unit 40 determines whether or not the tank internal pressure is near the atmospheric pressure (step S106). If the OBD condition is not satisfied (S105: NO), this processing routine is terminated.
 タンク内圧が大気圧付近である場合には(S106:YES)、制御部40は、燃料タンクFT内の燃料の加熱を開始する(ステップS107)。つまり、制御部40は、図12に破線で示すように、燃料ポンプFPの駆動を制御してリターン通路13を介して高圧ポンプ14で加熱された燃料を燃料タンクFTに戻し始める。これにより、加熱されたリターン燃料が燃料タンクFT内に導入されるため、燃料タンクFT内の燃料が加熱される。なお、タンク内圧が大気圧付近でない場合には(S106:NO)、後述するS111の処理に進む。そして、リターン燃料が予め定められた所定量だけ燃料タンクFT内に導入される(戻される)と(ステップS108:YES)、制御部40は、燃料ポンプFPを停止させて、リターン燃料の燃料タンクFT内への導入を停止し、燃料タンクFT内の燃料の加熱を終了させる(ステップS109)。 When the tank internal pressure is near atmospheric pressure (S106: YES), the control unit 40 starts heating the fuel in the fuel tank FT (step S107). That is, as shown by the broken line in FIG. 12, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated. If the tank internal pressure is not near the atmospheric pressure (S106: NO), the process proceeds to S111, which will be described later. Then, when the return fuel is introduced (returned) into the fuel tank FT by a predetermined amount (step S108: YES), the control unit 40 stops the fuel pump FP and the fuel tank of the return fuel. The introduction into the FT is stopped, and the heating of the fuel in the fuel tank FT is finished (step S109).
 燃料タンクFT内の燃料の加熱が終了すると、制御部40は、封鎖弁35を閉弁して燃料タンクFTを密閉したときからのタンク内圧の圧力変化(正の差圧)が一定以上、つまり燃料タンクFT内に所定の正圧(例えば、3kPa)が発生しているか否かを、圧力センサ31の検出値に基づき判断する(ステップS110)。このとき、圧力変化が一定以上であれば(S110:YES)、制御部40は、燃料タンクFT内のリーク検査を実行する(ステップS111)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Bにおいて燃料タンクFT内のリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 When the heating of the fuel in the fuel tank FT is completed, the control unit 40 closes the sealing valve 35 and the pressure change (positive differential pressure) of the tank internal pressure from the time when the fuel tank FT is closed is more than a certain value, that is, Whether or not a predetermined positive pressure (for example, 3 kPa) is generated in the fuel tank FT is determined based on the detected value of the pressure sensor 31 (step S110). At this time, if the pressure change is equal to or higher than a certain level (S110: YES), the control unit 40 executes a leak inspection in the fuel tank FT (step S111). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and the evaporative fuel processing device 1B determines whether or not the leak in the fuel tank FT occurs. Judge the presence or absence. The presence or absence of this leak is determined by a known method.
 その後、制御部40は、大気開放弁27とパージ制御弁23を閉弁して(ステップS112)、封鎖弁35をON(開弁)する(ステップS113)。これにより、キャニスタ21とパージ通路22及びベーパ通路24の配管内が密閉状態にされる。そして、制御部40は、キャニスタ21とパージ通路22及びベーパ通路24の各配管のリーク検査を実行する(ステップS114)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Bにおいてキャニスタ21とパージ通路22及びベーパ通路24の各配管のリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 After that, the control unit 40 closes the air release valve 27 and the purge control valve 23 (step S112), and turns on (opens) the blockade valve 35 (step S113). As a result, the inside of the canister 21, the purge passage 22, and the vapor passage 24 is sealed. Then, the control unit 40 executes a leak inspection of each pipe of the canister 21, the purge passage 22, and the vapor passage 24 (step S114). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and in the evaporated fuel processing device 1B, the canister 21 and the purge passage 22 and It is determined whether or not there is a leak in each pipe of the vapor passage 24. The presence or absence of this leak is determined by a known method.
<正圧OBDの変形例の制御内容>
 本実施形態でも、第1実施形態と同様に正圧OBDの変形例を適用することができる。つまり、この変形例では、リターン燃料による燃料タンクFT内の燃料の加熱を開始した後、燃料タンクFT内に所定の正圧(例えば、3kPa)が発生したときに、燃料タンクFT内の燃料の加熱を終了して、無駄な燃料加熱を防ぐことができる。そこで、正圧OBDの変形例について、図15を参照しながら説明する。
<Control content of modified example of positive pressure OBD>
In this embodiment as well, a modified example of positive pressure OBD can be applied as in the first embodiment. That is, in this modification, after starting heating of the fuel in the fuel tank FT by the return fuel, when a predetermined positive pressure (for example, 3 kPa) is generated in the fuel tank FT, the fuel in the fuel tank FT The heating can be completed to prevent unnecessary fuel heating. Therefore, a modified example of the positive pressure OBD will be described with reference to FIG.
 この変形例では、制御部40が、図15に示す制御チャートに基づいて、正圧OBD制御を行う。すなわち、IGがONされ(ステップS120)、エンジンENGが駆動(ON)されると(ステップS121:YES)、制御部40は、封鎖弁35をON(開弁)する(ステップS122)。なお、エンジンENGが駆動されていない場合には(S121:NO)、制御部40は、IGがOFFか否かを判断する(ステップS134)。このとき、IGがOFFであれば(S134:YES)、S125の処理に進む。一方、IGがOFFでなければ(S134:NO)、S120の処理に戻る。 In this modification, the control unit 40 performs positive pressure OBD control based on the control chart shown in FIG. That is, when the IG is turned on (step S120) and the engine ENG is driven (ON) (step S121: YES), the control unit 40 turns on (opens) the blocking valve 35 (step S122). When the engine ENG is not driven (S121: NO), the control unit 40 determines whether or not the IG is OFF (step S134). At this time, if IG is OFF (S134: YES), the process proceeds to S125. On the other hand, if IG is not OFF (S134: NO), the process returns to S120.
 そして、エンジンENGの暖機が完了した後にエンジンENGが停止(OFF)されると(ステップS123)、制御部40は、封鎖弁35をOFF(閉弁)して(ステップS124)、OBD条件を満足するか否かを判断する(ステップS125)。このとき、OBD条件を満足する場合には(S125:YES)、制御部40は、タンク内圧が大気圧付近であるか否かを判断する(ステップS126)。なお、OBD条件を満足しない場合には(S125:NO)、この処理ルーチンを終了する。 Then, when the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S123), the control unit 40 turns off (closes) the blocking valve 35 (step S124), and sets the OBD condition. It is determined whether or not it is satisfied (step S125). At this time, if the OBD condition is satisfied (S125: YES), the control unit 40 determines whether or not the tank internal pressure is near the atmospheric pressure (step S126). If the OBD condition is not satisfied (S125: NO), this processing routine is terminated.
 タンク内圧が大気圧付近である場合には(S126:YES)、制御部40は、燃料タンクFT内の燃料の加熱を開始する(ステップS127)。つまり、制御部40は、図12に破線で示すように、燃料ポンプFPの駆動を制御してリターン通路13を介して高圧ポンプ14で加熱された燃料を燃料タンクFTに戻し始める。これにより、加熱されたリターン燃料が燃料タンクFT内に導入されるため、燃料タンクFT内の燃料が加熱される。なお、タンク内圧が大気圧付近でない場合には(S126:NO)、後述するS130の処理に進む。 When the tank internal pressure is near the atmospheric pressure (S126: YES), the control unit 40 starts heating the fuel in the fuel tank FT (step S127). That is, as shown by the broken line in FIG. 12, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated. If the tank internal pressure is not near the atmospheric pressure (S126: NO), the process proceeds to S130, which will be described later.
 その後、制御部40は、封鎖弁35を閉弁して燃料タンクFTを密閉したときからのタンク内圧の圧力変化(正の差圧)が一定以上、つまり燃料タンクFT内に所定の正圧(例えば、3kPa)が発生すると(ステップS128:YES)、燃料ポンプFPを停止させて、リターン燃料の燃料タンクFT内への導入を停止し、燃料タンクFT内の燃料の加熱を終了させる(ステップS129)。 After that, the control unit 40 closes the sealing valve 35 to seal the fuel tank FT, and the pressure change (positive differential pressure) in the tank internal pressure is equal to or more than a certain value, that is, a predetermined positive pressure (positive differential pressure) in the fuel tank FT. For example, when 3 kPa) occurs (step S128: YES), the fuel pump FP is stopped, the introduction of the return fuel into the fuel tank FT is stopped, and the heating of the fuel in the fuel tank FT is completed (step S129). ).
 燃料タンクFT内の燃料の加熱が終了すると、制御部40は、燃料タンクFT内のリーク検査を実行する(ステップS130)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Bにおいて燃料タンクFT内のリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 When the heating of the fuel in the fuel tank FT is completed, the control unit 40 executes a leak inspection in the fuel tank FT (step S130). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and the evaporative fuel processing device 1B determines whether or not the leak in the fuel tank FT occurs. Judge the presence or absence. The presence or absence of this leak is determined by a known method.
 その後、制御部40は、大気開放弁27とパージ制御弁23を閉弁して(ステップS131)、封鎖弁35をON(開弁)する(ステップS132)。これにより、キャニスタ21とパージ通路22及びベーパ通路24の配管内が密閉状態にされる。そして、制御部40は、キャニスタ21とパージ通路22及びベーパ通路24の各配管のリーク検査を実行する(ステップS133)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Bにおいてキャニスタ21とパージ通路22及びベーパ通路24の各配管のリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 After that, the control unit 40 closes the air release valve 27 and the purge control valve 23 (step S131), and turns on (opens) the blockade valve 35 (step S132). As a result, the inside of the canister 21, the purge passage 22, and the vapor passage 24 is sealed. Then, the control unit 40 executes a leak inspection of each pipe of the canister 21, the purge passage 22, and the vapor passage 24 (step S133). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and in the evaporated fuel processing device 1B, the canister 21 and the purge passage 22 and It is determined whether or not there is a leak in each pipe of the vapor passage 24. The presence or absence of this leak is determined by a known method.
 以上のように、本実施形態の蒸発燃料処理装置1Bによれば、第1実施形態と同様の効果を得ることができる。また、本実施形態の蒸発燃料処理装置1Bによれば、封鎖弁35が備わっているため、燃料タンクFTのリークの有無と、キャニスタ21とパージ通路22及びベーパ通路24の各配管のリークの有無とを別々に判定することができる高精度なリーク検査を行うことができる。そして、燃料タンクFTを密閉するための制御弁として、密閉タンクシステムに備わっている封鎖弁35を使用しているため、装置の低コスト化を図りつつ、このような高精度なリーク検査を行うことができる。 As described above, according to the evaporated fuel treatment device 1B of the present embodiment, the same effect as that of the first embodiment can be obtained. Further, according to the evaporative fuel treatment device 1B of the present embodiment, since the sealing valve 35 is provided, the presence or absence of a leak in the fuel tank FT and the presence or absence of a leak in each pipe of the canister 21, the purge passage 22, and the vapor passage 24. It is possible to perform a highly accurate leak inspection that can determine and separately. Since the sealing valve 35 provided in the sealing tank system is used as the control valve for sealing the fuel tank FT, such a highly accurate leak inspection is performed while reducing the cost of the device. be able to.
[第4実施形態]
 次に、第4実施形態の蒸発燃料処理装置について、図16を参照しながら説明する。第4実施形態は、第3実施形態と基本的な構成は同じであるが、図16に示すように、燃料タンクFT内の温度(タンク内温度)を検出する温度センサ32が設けられている点が異なる。すなわち、第4実施形態の蒸発燃料処理装置1Cでは、燃料タンクFTに温度センサ32が配置されている。本実施形態の蒸発燃料処理装置1Cでも、第3実施形態と同様、負圧OBD制御又は正圧OBD制御を行うことができる。
[Fourth Embodiment]
Next, the evaporated fuel treatment apparatus of the fourth embodiment will be described with reference to FIG. The fourth embodiment has the same basic configuration as the third embodiment, but as shown in FIG. 16, a temperature sensor 32 for detecting the temperature inside the fuel tank FT (the temperature inside the tank) is provided. The point is different. That is, in the evaporated fuel processing apparatus 1C of the fourth embodiment, the temperature sensor 32 is arranged in the fuel tank FT. The evaporated fuel processing device 1C of the present embodiment can also perform negative pressure OBD control or positive pressure OBD control as in the third embodiment.
 <負圧OBDの制御内容>
 そこでまず、負圧OBDを実施する場合の制御について、図17を参照しながら説明する。まず、制御部40は、イグニッションスイッチ(IG)がONされ(ステップS141)、エンジンENGが駆動(ON)された後(ステップS142)、パージ条件が成立すると(ステップS143:YES)、制御部40は、タンク内圧が大気圧付近であるか否かを判断する(ステップS144)。このとき、パージが実行されることにより、燃料タンクFT内の圧力(タンク内圧)が下がる。
<Control contents of negative pressure OBD>
Therefore, first, the control when the negative pressure OBD is performed will be described with reference to FIG. First, in the control unit 40, when the ignition switch (IG) is turned on (step S141), the engine ENG is driven (ON) (step S142), and the purge condition is satisfied (step S143: YES), the control unit 40 Determines whether or not the tank internal pressure is near the atmospheric pressure (step S144). At this time, the pressure in the fuel tank FT (tank internal pressure) is lowered by executing the purge.
 そして、タンク内圧が大気圧付近である場合には(S144:YES)、制御部40は、封鎖弁35をON(開弁)して(ステップS145)、燃料タンクFT内の温度(タンク内温度)が所定温度以下であるか否かを判断する(ステップS146)。なお、タンク内圧が大気圧付近でない場合には(S144:NO)、後述するS152の処理に進む。このとき、タンク内温度が所定温度以下の場合には(S146:YES)、制御部40は、図16に破線で示すように、燃料タンクFT内の燃料の加熱を開始する(ステップS147)。つまり、制御部40は、燃料ポンプFPを制御して、リターン通路13を介して高圧ポンプ14で加熱された燃料を燃料タンクFTに戻し始める、あるいはリターン燃料の量を増量する。これにより、加熱されたリターン燃料が燃料タンクFT内に導入(又は増量)されるため、燃料タンクFT内の燃料が加熱される。このリターン燃料の燃料タンクFT内への導入(又は増量)は、エンジンENGが駆動されている状態でパージ実行中に継続して行われる。 Then, when the tank internal pressure is near the atmospheric pressure (S144: YES), the control unit 40 turns on (opens) the blocking valve 35 (step S145), and the temperature inside the fuel tank FT (tank temperature). ) Is below the predetermined temperature (step S146). If the tank internal pressure is not near the atmospheric pressure (S144: NO), the process proceeds to S152, which will be described later. At this time, if the temperature inside the tank is equal to or lower than the predetermined temperature (S146: YES), the control unit 40 starts heating the fuel in the fuel tank FT as shown by the broken line in FIG. 16 (step S147). That is, the control unit 40 controls the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13, or increases the amount of the return fuel. As a result, the heated return fuel is introduced (or increased) into the fuel tank FT, so that the fuel in the fuel tank FT is heated. The introduction (or increase) of the return fuel into the fuel tank FT is continuously performed during the purge execution with the engine ENG being driven.
 その後、タンク内温度が所定温度以上になると(ステップS148:YES)、制御部40は、燃料ポンプFPを停止(又は燃料ポンプFPの回転数を低下)させて、リターン燃料の燃料タンクFT内への導入を停止し(又はリターン燃料の量を減らし)、燃料タンクFT内の燃料の加熱を終了する(ステップS149)。そして、エンジンENGが停止(OFF)されると(ステップS150:YES)、制御部40は、封鎖弁35をOFF(閉弁)する(ステップS151)。 After that, when the temperature inside the tank becomes equal to or higher than the predetermined temperature (step S148: YES), the control unit 40 stops the fuel pump FP (or lowers the rotation speed of the fuel pump FP) and enters the fuel tank FT of the return fuel. (Or reduce the amount of return fuel), and end the heating of the fuel in the fuel tank FT (step S149). Then, when the engine ENG is stopped (OFF) (step S150: YES), the control unit 40 turns off (closes) the blocking valve 35 (step S151).
 そして、IGがOFFされると(ステップS152:YES)、制御部40は、OBD条件を満足するか否かを判断する(ステップS153)。なお、IGがONのままである場合には(S153:NO)、S142の処理に戻り、S142~S151の処理を繰り返す。 Then, when the IG is turned off (step S152: YES), the control unit 40 determines whether or not the OBD condition is satisfied (step S153). If the IG remains ON (S153: NO), the process returns to the process of S142, and the processes of S142 to S151 are repeated.
 OBD条件を満足する場合(S153:YES)、制御部40は、封鎖弁35を閉弁して燃料タンクFTを密閉したときからの燃料タンクFT内の圧力(タンク内圧)の圧力変化(負の差圧)が一定以上、つまり燃料タンクFT内に所定の負圧(例えば、-3kPa)が発生しているか否かを、圧力センサ31の検出値に基づき判断する(ステップS154)。このとき、圧力変化が一定以上であれば(S154:YES)、制御部40は、燃料タンクFT内のリーク検査を実行する(ステップS155)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Cにおいて燃料タンクFT内のリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 When the OBD condition is satisfied (S153: YES), the control unit 40 changes the pressure (negative) of the pressure in the fuel tank FT (tank internal pressure) from the time when the closing valve 35 is closed and the fuel tank FT is closed. Whether or not the differential pressure) is above a certain level, that is, whether or not a predetermined negative pressure (for example, -3 kPa) is generated in the fuel tank FT is determined based on the detected value of the pressure sensor 31 (step S154). At this time, if the pressure change is equal to or higher than a certain level (S154: YES), the control unit 40 executes a leak inspection in the fuel tank FT (step S155). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and the evaporative fuel processing device 1C determines whether or not the leak in the fuel tank FT occurs. Judge the presence or absence. The presence or absence of this leak is determined by a known method.
 その後、制御部40は、大気開放弁27とパージ制御弁23を閉弁して(ステップS156)、封鎖弁35をON(開弁)する(ステップS157)。これにより、キャニスタ21とパージ通路22及びベーパ通路24の配管内が密閉状態にされる。そして、制御部40は、キャニスタ21とパージ通路22及びベーパ通路24の各配管のリーク検査を実行する(ステップS158)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Cにおいてキャニスタ21とパージ通路22及びベーパ通路24の各配管のリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 After that, the control unit 40 closes the air release valve 27 and the purge control valve 23 (step S156), and turns on (opens) the blockade valve 35 (step S157). As a result, the inside of the canister 21, the purge passage 22, and the vapor passage 24 is sealed. Then, the control unit 40 executes a leak inspection of each pipe of the canister 21, the purge passage 22, and the vapor passage 24 (step S158). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and in the evaporated fuel processing device 1C, the canister 21 and the purge passage 22 and It is determined whether or not there is a leak in each pipe of the vapor passage 24. The presence or absence of this leak is determined by a known method.
<正圧OBDの制御内容>
 次に、蒸発燃料処理装置1Cにおいて、正圧OBDを実施する場合の制御について、図18を参照しながら説明する。この場合には、燃料タンクFTを密閉した後に、高圧ポンプ14で加熱された燃料をリターン通路13を介して燃料タンクFTに戻して燃料タンクFT内の燃料を加熱し、燃料タンクFT内に正圧を発生させてリーク検査を行う。
<Control content of positive pressure OBD>
Next, the control when the positive pressure OBD is performed in the evaporated fuel processing apparatus 1C will be described with reference to FIG. In this case, after the fuel tank FT is sealed, the fuel heated by the high-pressure pump 14 is returned to the fuel tank FT via the return passage 13 to heat the fuel in the fuel tank FT, and the fuel in the fuel tank FT is positive. Perform leak inspection by generating pressure.
 具体的には、制御部40が、図18に示す制御チャートに基づいて、正圧OBD制御を行う。すなわち、IGがONされ(ステップS160)、エンジンENGが駆動(ON)されると、(ステップS161:YES)、制御部40は、封鎖弁35をON(開弁)する(ステップS162)。なお、エンジンENGが駆動されていない場合には(S161:NO)、制御部40は、IGがOFFか否かを判断する(ステップS179)。このとき、IGがOFFであれば(S179:YES)、S165の処理に進む。一方、IGがOFFでなければ(S179:NO)、S160の処理に戻る。 Specifically, the control unit 40 performs positive pressure OBD control based on the control chart shown in FIG. That is, when the IG is turned on (step S160) and the engine ENG is driven (ON) (step S161: YES), the control unit 40 turns on (opens) the blocking valve 35 (step S162). When the engine ENG is not driven (S161: NO), the control unit 40 determines whether or not the IG is OFF (step S179). At this time, if IG is OFF (S179: YES), the process proceeds to S165. On the other hand, if IG is not OFF (S179: NO), the process returns to S160.
 そして、エンジンENGの暖機が完了した後にエンジンENGが停止(OFF)されると(ステップS163)、制御部40は、封鎖弁35をOFF(閉弁)して(ステップS164)、OBD条件を満足するか否かを判断する(ステップS165)。このとき、OBD条件を満足する場合には(S165:YES)、制御部40は、タンク内圧が大気圧付近であるか否かを判断する(ステップS166)。なお、OBD条件を満足しない場合には(S165:NO)、この処理ルーチンを終了する。 Then, when the engine ENG is stopped (OFF) after the warm-up of the engine ENG is completed (step S163), the control unit 40 turns off (closes) the blocking valve 35 (step S164) to set the OBD condition. It is determined whether or not it is satisfied (step S165). At this time, if the OBD condition is satisfied (S165: YES), the control unit 40 determines whether or not the tank internal pressure is near the atmospheric pressure (step S166). If the OBD condition is not satisfied (S165: NO), this processing routine is terminated.
 タンク内圧が大気圧付近である場合には(S166:YES)、制御部40は、液面センサ30から燃料タンクFT内の燃料残量を確認する(ステップS167)。また、制御部40は、吸気温センサから外気温度を確認とともに(ステップS168)、温度センサ32からタンク内温度を確認する(ステップS169)。 When the tank internal pressure is near atmospheric pressure (S166: YES), the control unit 40 confirms the remaining amount of fuel in the fuel tank FT from the liquid level sensor 30 (step S167). Further, the control unit 40 confirms the outside air temperature from the intake air temperature sensor (step S168) and confirms the temperature inside the tank from the temperature sensor 32 (step S169).
 そうすると、制御部40は、燃料残量、外気温、及びタンク内温度に基づき、燃料タンクFT内にリーク検査を行うための正圧を発生させるために必要となる、燃料タンクFTに戻すリターン燃料量を設定する(ステップS170)。このリターン燃料の設定量は、基本的に燃料残量に基づいて設定され、外気温度及びタンク内温度により補正される。つまり、燃料残量が少ないほどリターン燃料量の設定量は少なく設定されて、温度が高い場合には、リターン燃料量の設定量が減少するように補正され、温度が低い場合には、リターン燃料量の設定量が増加するように補正される。 Then, the control unit 40 returns the return fuel to the fuel tank FT, which is necessary to generate a positive pressure for performing a leak inspection in the fuel tank FT based on the remaining fuel amount, the outside air temperature, and the temperature inside the tank. The amount is set (step S170). The set amount of the return fuel is basically set based on the remaining amount of fuel, and is corrected by the outside air temperature and the temperature inside the tank. In other words, the smaller the remaining fuel amount, the smaller the set amount of return fuel is set, and when the temperature is high, the set amount of return fuel is corrected to decrease, and when the temperature is low, the set amount of return fuel is corrected. It is corrected so that the set amount of the amount increases.
 そして、制御部40は、燃料タンクFT内の燃料の加熱を開始する(ステップS171)。つまり、制御部40は、図16に破線で示すように、燃料ポンプFPの駆動を制御してリターン通路13を介して高圧ポンプ14で加熱された燃料を燃料タンクFTに戻し始める。これにより、加熱されたリターン燃料が燃料タンクFT内に導入されるため、燃料タンクFT内の燃料が加熱される。 Then, the control unit 40 starts heating the fuel in the fuel tank FT (step S171). That is, as shown by the broken line in FIG. 16, the control unit 40 controls the drive of the fuel pump FP and starts returning the fuel heated by the high pressure pump 14 to the fuel tank FT via the return passage 13. As a result, the heated return fuel is introduced into the fuel tank FT, so that the fuel in the fuel tank FT is heated.
 その後、リターン燃料量が設定量に到達する、つまり設定量分のリターン燃料が燃料タンクFT内に導入される(戻される)と(ステップS172:YES)、制御部40は、燃料ポンプFPを停止させて、リターン燃料の燃料タンクFT内への導入を停止し、燃料タンクFT内の燃料の加熱を終了させる(ステップS173)。 After that, when the return fuel amount reaches the set amount, that is, when the set amount of return fuel is introduced (returned) into the fuel tank FT (step S172: YES), the control unit 40 stops the fuel pump FP. Then, the introduction of the return fuel into the fuel tank FT is stopped, and the heating of the fuel in the fuel tank FT is completed (step S173).
 燃料タンクFT内の燃料の加熱が終了すると、制御部40は、封鎖弁35を閉弁して燃料タンクFTを密閉したときからのタンク内圧の圧力変化(正の差圧)が一定以上、つまり燃料タンクFT内に所定の正圧(例えば、3kPa)が発生しているか否かを、圧力センサ31の検出値に基づき判断する(ステップS174)。このとき、圧力変化が一定以上であれば(S174:YES)、制御部40は、燃料タンクFT内のリーク検査を実行する(ステップS175)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Cにおいて燃料タンクFT内のリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 When the heating of the fuel in the fuel tank FT is completed, the control unit 40 closes the sealing valve 35 and the pressure change (positive differential pressure) of the tank internal pressure from the time when the fuel tank FT is closed is more than a certain value, that is, Whether or not a predetermined positive pressure (for example, 3 kPa) is generated in the fuel tank FT is determined based on the detected value of the pressure sensor 31 (step S174). At this time, if the pressure change is equal to or higher than a certain level (S174: YES), the control unit 40 executes a leak inspection in the fuel tank FT (step S175). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and the evaporative fuel processing device 1C determines whether or not the leak in the fuel tank FT occurs. Judge the presence or absence. The presence or absence of this leak is determined by a known method.
 その後、制御部40は、大気開放弁27とパージ制御弁23を閉弁して(ステップS176)、封鎖弁35をON(開弁)する(ステップS177)。これにより、キャニスタ21とパージ通路22及びベーパ通路24の配管内が密閉状態にされる。そして、制御部40は、キャニスタ21とパージ通路22及びベーパ通路24の各配管のリーク検査を実行する(ステップS178)。すなわち、一定時間おきに、制御部40は、圧力センサ31で検出されるタンク内圧が、判定値の範囲にあるか否かを判定して、蒸発燃料処理装置1Cにおいてキャニスタ21とパージ通路22及びベーパ通路24の各配管のリークの有無を判断する。このリークの有無の判断は、公知の方法で行われる。 After that, the control unit 40 closes the air release valve 27 and the purge control valve 23 (step S176), and turns on (opens) the blockade valve 35 (step S177). As a result, the inside of the canister 21, the purge passage 22, and the vapor passage 24 is sealed. Then, the control unit 40 executes a leak inspection of each pipe of the canister 21, the purge passage 22, and the vapor passage 24 (step S178). That is, at regular intervals, the control unit 40 determines whether or not the tank internal pressure detected by the pressure sensor 31 is within the range of the determination value, and in the evaporated fuel processing device 1C, the canister 21 and the purge passage 22 and It is determined whether or not there is a leak in each pipe of the vapor passage 24. The presence or absence of this leak is determined by a known method.
 このように本実施形態の蒸発燃料処理装置1Cによれば、密閉タンクシステムを採用する場合においても、燃料タンクFT内の燃料を必要以上に加熱することなく、第3実施形態と同様の効果を得ることができる。 As described above, according to the evaporative fuel treatment device 1C of the present embodiment, even when the closed tank system is adopted, the same effect as that of the third embodiment can be obtained without heating the fuel in the fuel tank FT more than necessary. Obtainable.
[第5実施形態]
 最後に、第5実施形態の蒸発燃料処理装置について、図19を参照しながら説明する。第5実施形態は、第1実施形態と基本的な構成は同じであるが、図19に示すように、受熱部である高圧ポンプ14を通過させずに燃料を燃料タンクFTに戻すバイパス通路16と、バイパス通路16を開通させる切換弁17とが設けられている点が異なる。この切換弁17は、本開示の「開閉弁」の一例であり、本実施形態では三方弁である。
[Fifth Embodiment]
Finally, the evaporative fuel processing apparatus of the fifth embodiment will be described with reference to FIG. The fifth embodiment has the same basic configuration as the first embodiment, but as shown in FIG. 19, a bypass passage 16 for returning fuel to the fuel tank FT without passing through the high-pressure pump 14 which is a heat receiving portion. The difference is that a switching valve 17 for opening the bypass passage 16 is provided. The switching valve 17 is an example of the "opening / closing valve" of the present disclosure, and is a three-way valve in the present embodiment.
 本実施形態の蒸発燃料処理装置1Dでは、燃料通路12とリターン通路13とを接続するバイパス通路16が燃料タンクFT内に設けられており、切換弁17によりバイパス通路16が開通又は遮断される。そして、調圧器15が切換弁17を介して燃料タンクFT内に配置されている。 In the evaporated fuel processing device 1D of the present embodiment, a bypass passage 16 connecting the fuel passage 12 and the return passage 13 is provided in the fuel tank FT, and the bypass passage 16 is opened or shut off by the switching valve 17. Then, the pressure regulator 15 is arranged in the fuel tank FT via the switching valve 17.
 切換弁17は、制御部40に接続されており、制御部40によりON/OFF制御されることにより、バイパス通路16が開通又は遮断される。本実施形態では、制御部40が燃料タンク内の燃料の加熱が不要であると判断した場合(例えば、リターン燃料量が所定量に達した場合など)に、切換弁17がONされて、バイパス通路16が開通して、燃料ポンプFPにより燃料タンクFT内から燃料通路12に供給される燃料は、バイパス通路16を介して燃料タンクFTに戻される。なお、切換弁17がOFFの場合には、バイパス通路16が遮断され、燃料ポンプFPにより燃料タンクFT内から燃料通路12に供給される燃料は、高圧ポンプ14を通過してリターン通路13を介して燃料タンクFTに戻される。 The switching valve 17 is connected to the control unit 40, and the bypass passage 16 is opened or shut off by being ON / OFF controlled by the control unit 40. In the present embodiment, when the control unit 40 determines that heating of the fuel in the fuel tank is unnecessary (for example, when the return fuel amount reaches a predetermined amount), the switching valve 17 is turned on and bypassed. The passage 16 is opened, and the fuel supplied from the inside of the fuel tank FT to the fuel passage 12 by the fuel pump FP is returned to the fuel tank FT via the bypass passage 16. When the switching valve 17 is OFF, the bypass passage 16 is shut off, and the fuel supplied from the fuel tank FT to the fuel passage 12 by the fuel pump FP passes through the high pressure pump 14 and passes through the return passage 13. Is returned to the fuel tank FT.
 このような本実施形態の蒸発燃料処理装置1Dでは、燃料タンクFT内における燃料の加熱が不要である場合、制御部40により切換弁17がONされてバイパス通路16が開通されると、図19に破線で示すように、燃料が高圧ポンプ14を通過することなくバイパス通路16を介して燃料タンクFT内に戻される。そのため、加熱されたリターン燃料が燃料タンクFTに戻されることを防ぐことができる。これにより、必要以上に燃料タンクFT内の燃料が加熱されてしまうことを防止することができる。 In the evaporated fuel processing apparatus 1D of the present embodiment as described above, when it is not necessary to heat the fuel in the fuel tank FT, the switching valve 17 is turned on by the control unit 40 and the bypass passage 16 is opened. As shown by the broken line, the fuel is returned into the fuel tank FT through the bypass passage 16 without passing through the high pressure pump 14. Therefore, it is possible to prevent the heated return fuel from being returned to the fuel tank FT. As a result, it is possible to prevent the fuel in the fuel tank FT from being heated more than necessary.
 本実施形態では、調圧器15、バイパス通路16及び切換弁17を燃料タンクFT内に配置したものを例示しているが、調圧器15、バイパス通路16及び切換弁17の配置位置は、燃料タンクFT内に限られることはない。ただし、本実施形態のように、これらを燃料タンクFT内に配置することにより、これらを燃料ポンプモジュールに一体化することができるため、組付コストの低減を図ることができる。 In the present embodiment, the pressure regulator 15, the bypass passage 16 and the switching valve 17 are arranged in the fuel tank FT, but the pressure adjusting device 15, the bypass passage 16 and the switching valve 17 are arranged in the fuel tank. It is not limited to within the FT. However, by arranging them in the fuel tank FT as in the present embodiment, these can be integrated with the fuel pump module, so that the assembly cost can be reduced.
 なお、上記した実施の形態は単なる例示にすぎず、本開示を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。例えば、上記の実施形態では、高圧ポンプ14を備えるエンジンシステムを例示しているが、高圧ポンプ14を備えていないエンジンシステムにも本開示を適用することができる。この場合には、例えば図20に示すように、デリバリパイプ18が設けられ、このデリバリパイプ18内でエンジンENGからの受熱により燃料が加熱され、加熱された燃料がリターン通路13を介して燃料タンクFTに戻される(図20の破線参照)。このデリバリパイプ18は、本開示の「内燃機からの受熱部」の一例である。なお、ここでは、第1実施形態においてデリバリパイプ18が設けられた装置を例示しているが、第2~第5実施形態においても、高圧ポンプ14を設けずにデリバリパイプ18を設けることもできる。 It should be noted that the above-described embodiment is merely an example and does not limit the present disclosure in any way, and it goes without saying that various improvements and modifications can be made without departing from the gist thereof. For example, in the above embodiment, the engine system including the high pressure pump 14 is illustrated, but the present disclosure can be applied to the engine system not provided with the high pressure pump 14. In this case, for example, as shown in FIG. 20, a delivery pipe 18 is provided, the fuel is heated by receiving heat from the engine ENG in the delivery pipe 18, and the heated fuel is passed through the return passage 13 to the fuel tank. Returned to FT (see dashed line in FIG. 20). The delivery pipe 18 is an example of the “heat receiving portion from the internal combustion engine” of the present disclosure. Although the device in which the delivery pipe 18 is provided is illustrated in the first embodiment, the delivery pipe 18 can also be provided in the second to fifth embodiments without providing the high pressure pump 14. ..
 また、第1~第4実施形態において、調圧器15をエンジンENG近傍に設けているが、調圧器15はリターン通路13の途中に設けられていればよい。そのため、例えば図21に示すように、第5実施形態と同様に燃料タンクFT内に設けてもよい。こうすることにより、燃料ポンプモジュールに調圧器15を一体化することができるため、組付コストの低減を図ることができる。 Further, in the first to fourth embodiments, the pressure regulator 15 is provided near the engine ENG, but the pressure regulator 15 may be provided in the middle of the return passage 13. Therefore, for example, as shown in FIG. 21, it may be provided in the fuel tank FT as in the fifth embodiment. By doing so, the pressure regulator 15 can be integrated with the fuel pump module, so that the assembly cost can be reduced.
1   蒸発燃料処理装置
12  燃料通路
13  リターン通路
14  高圧ポンプ
15  調圧器
21  キャニスタ
23  パージ制御弁
27  大気開放弁
30  液面センサ
31  圧力センサ
32  温度センサ
35  封鎖弁
40  制御部
ENG エンジン
FP  燃料ポンプ
FT  燃料タンク
1 Evaporated fuel processing device 12 Fuel passage 13 Return passage 14 High pressure pump 15 Pressure regulator 21 Canister 23 Purge control valve 27 Air release valve 30 Liquid level sensor 31 Pressure sensor 32 Temperature sensor 35 Block valve 40 Control unit ENG engine FP Fuel pump FT Fuel tank

Claims (10)

  1.  燃料を貯蔵する燃料タンクと、前記燃料タンク内の燃料を燃料通路を介して内燃機関に圧送する燃料ポンプと、前記燃料タンクからベーパ通路を介して送られる蒸発燃料を貯留するキャニスタと、前記燃料ポンプで圧送された燃料の一部又は全部を前記燃料タンクに戻すリターン通路と、前記燃料タンクを密閉する少なくとも2つの制御弁と、前記燃料タンク内の圧力を検出する圧力センサと、前記燃料ポンプ及び前記制御弁を制御する制御部と、を有する蒸発燃料処理装置において、
     前記燃料通路又は前記リターン通路は、内燃機関からの受熱部を備えており、
     前記制御部は、内燃機関の暖機完了後に、前記燃料ポンプを駆動させることにより、前記受熱部で加熱された燃料を前記リターン通路を介して前記燃料タンクに戻し、前記燃料タンク内の燃料を加熱して前記燃料タンク内に差圧を発生させた後、前記圧力センサで検出される圧力値の変化に基づいてリーク検査を行う
    ことを特徴とする蒸発燃料処理装置。
    A fuel tank for storing fuel, a fuel pump for pumping fuel in the fuel tank to the internal combustion engine via a fuel passage, a canister for storing evaporated fuel sent from the fuel tank via a vapor passage, and the fuel. A return passage that returns a part or all of the fuel pumped by the pump to the fuel tank, at least two control valves that seal the fuel tank, a pressure sensor that detects the pressure in the fuel tank, and the fuel pump. And a control unit for controlling the control valve, in an evaporative fuel processing apparatus.
    The fuel passage or the return passage includes a heat receiving portion from an internal combustion engine.
    After the warm-up of the internal combustion engine is completed, the control unit drives the fuel pump to return the fuel heated by the heat receiving unit to the fuel tank via the return passage, and the fuel in the fuel tank is returned. An evaporative fuel treatment apparatus characterized in that after heating to generate a differential pressure in the fuel tank, a leak inspection is performed based on a change in a pressure value detected by the pressure sensor.
  2.  請求項1に記載する蒸発燃料処理装置において、
     前記制御部は、前記制御弁を作動させて前記燃料タンクを密閉した後に、前記受熱部で加熱された燃料を前記リターン通路を介して前記燃料タンクに戻して前記燃料タンク内の燃料を加熱し、前記燃料タンク内に正圧を発生させてリーク検査を行う
    ことを特徴とする蒸発燃料処理装置。
    In the evaporated fuel treatment apparatus according to claim 1,
    After operating the control valve to seal the fuel tank, the control unit returns the fuel heated by the heat receiving unit to the fuel tank via the return passage to heat the fuel in the fuel tank. , An evaporative fuel treatment apparatus characterized in that a positive pressure is generated in the fuel tank to perform a leak inspection.
  3.  請求項1に記載する蒸発燃料処理装置において、
     前記制御部は、前記受熱部で加熱された燃料を前記リターン通路を介して前記燃料タンクに戻して前記燃料タンク内の燃料を加熱した後、前記制御弁を作動させて前記燃料タンクを密閉して、前記燃料タンク内に負圧を発生させてリーク検査を行う
    ことを特徴とする蒸発燃料処理装置。
    In the evaporated fuel treatment apparatus according to claim 1,
    The control unit returns the fuel heated by the heat receiving unit to the fuel tank via the return passage to heat the fuel in the fuel tank, and then operates the control valve to seal the fuel tank. An evaporative fuel processing apparatus characterized in that a negative pressure is generated in the fuel tank to perform a leak inspection.
  4.  請求項2に記載する蒸発燃料処理装置において、
     前記制御部は、前記燃料タンク内の燃料量に基づいて、前記燃料タンクに戻すリターン燃料量を変更する
    ことを特徴とする蒸発燃料処理装置。
    In the evaporated fuel treatment apparatus according to claim 2.
    The control unit is an evaporative fuel processing apparatus characterized in that the amount of return fuel returned to the fuel tank is changed based on the amount of fuel in the fuel tank.
  5.  請求項2に記載する蒸発燃料処理装置において、
     前記制御部は、前記圧力センサで検出される圧力が予め定めた所定圧力以上になると、前記燃料ポンプを停止して前記燃料タンク内の燃料の加熱を終了する
    ことを特徴とする蒸発燃料処理装置。
    In the evaporated fuel treatment apparatus according to claim 2.
    The control unit is an evaporative fuel processing apparatus characterized in that when the pressure detected by the pressure sensor becomes equal to or higher than a predetermined pressure, the fuel pump is stopped to end the heating of the fuel in the fuel tank. ..
  6.  請求項3に記載する蒸発燃料処理装置において、
     前記制御部は、前記キャニスタに貯蔵された蒸発燃料が内燃機関に供給されるパージが実行されている間に、前記受熱部で加熱された燃料を前記リターン通路を介して前記燃料タンクに戻して前記燃料タンク内の燃料を加熱し、内燃機関が停止すると、前記燃料ポンプを停止して前記燃料タンク内の燃料の加熱を終了する
    ことを特徴とする蒸発燃料処理装置。
    In the evaporated fuel treatment apparatus according to claim 3.
    The control unit returns the fuel heated by the heat receiving unit to the fuel tank via the return passage while the purge in which the evaporated fuel stored in the canister is supplied to the internal combustion engine is being executed. An evaporative fuel treatment apparatus characterized in that when the fuel in the fuel tank is heated and the internal combustion engine is stopped, the fuel pump is stopped to end the heating of the fuel in the fuel tank.
  7.  請求項3に記載する蒸発燃料処理装置において、
     前記燃料タンク内の温度を検出する温度センサを備え、
     前記制御部は、前記温度センサで検出される温度が予め定めた所定温度以上の場合、前記燃料ポンプを停止して前記燃料タンク内の燃料の加熱を終了する
    ことを特徴とする蒸発燃料処理装置。
    In the evaporated fuel treatment apparatus according to claim 3.
    A temperature sensor for detecting the temperature inside the fuel tank is provided.
    The control unit is an evaporative fuel processing apparatus characterized in that when the temperature detected by the temperature sensor is equal to or higher than a predetermined temperature, the fuel pump is stopped to end the heating of the fuel in the fuel tank. ..
  8.  請求項1から請求項7に記載するいずれか1つの蒸発燃料処理装置において、
     前記受熱部を通過させずに燃料を前記燃料タンクに戻すバイパス通路と、
     前記バイパス通路を開閉する開閉弁とを備え、
     前記制御部は、前記燃料タンク内における燃料の加熱が不要である場合に、前記開閉弁を制御して前記バイパス通路を開通させる
    ことを特徴とする蒸発燃料処理装置。
    In any one of the evaporated fuel treatment devices according to claims 1 to 7.
    A bypass passage that returns fuel to the fuel tank without passing through the heat receiving section,
    It is equipped with an on-off valve that opens and closes the bypass passage.
    The control unit is an evaporative fuel processing device, which controls the on-off valve to open the bypass passage when it is not necessary to heat the fuel in the fuel tank.
  9.  請求項1から請求項8に記載するいずれか1つの蒸発燃料処理装置において、
     前記リターン通路には、通路内の燃料の圧力が一定以上に上昇しないように調圧する調圧器が設けられている
    ことを特徴とする蒸発燃料処理装置。
    In any one of the evaporated fuel treatment devices according to claims 1 to 8.
    An evaporative fuel processing apparatus characterized in that the return passage is provided with a pressure regulator that regulates the pressure of the fuel in the passage so that the pressure does not rise above a certain level.
  10.  請求項1から請求項9に記載するいずれか1つの蒸発燃料処理装置において、
     前記燃料タンクを密閉する封鎖弁を備える密閉タンクシステムの場合には、前記制御弁のうちの1つに、前記封鎖弁を使用する
    ことを特徴とする蒸発燃料処理装置。
    In any one of the evaporated fuel treatment devices according to claims 1 to 9.
    In the case of a closed tank system including a closed valve for sealing the fuel tank, the evaporative fuel treatment device is characterized in that the closed valve is used as one of the control valves.
PCT/JP2020/027100 2019-08-30 2020-07-10 Vaporized fuel treatment device WO2021039152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019158642A JP2021038674A (en) 2019-08-30 2019-08-30 Evaporation fuel treatment device
JP2019-158642 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021039152A1 true WO2021039152A1 (en) 2021-03-04

Family

ID=74685857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027100 WO2021039152A1 (en) 2019-08-30 2020-07-10 Vaporized fuel treatment device

Country Status (2)

Country Link
JP (1) JP2021038674A (en)
WO (1) WO2021039152A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681727A (en) * 1992-08-31 1994-03-22 Toyota Motor Corp Failure diagnosing device for evaporative purging system
JPH11218457A (en) * 1998-01-30 1999-08-10 Mazda Motor Corp Failure detector for fuel tank internal pressure sensor
JP2003035215A (en) * 2001-07-25 2003-02-07 Denso Corp Fuel temperature estimating device and abnormality diagnosing device
JP2003056416A (en) * 2001-08-09 2003-02-26 Denso Corp Leak diagnostic device for evaporated gas purge system
JP2009275685A (en) * 2008-05-19 2009-11-26 Toyota Motor Corp Failure diagnosis device for vehicle
JP2010133363A (en) * 2008-12-05 2010-06-17 Honda Motor Co Ltd Leak determination device of evaporated fuel treatment system
JP2013137035A (en) * 2013-04-08 2013-07-11 Toyota Motor Corp Evaporative system leakage diagnostic apparatus
JP2015516065A (en) * 2012-05-04 2015-06-04 イナジー・オートモーティブ・システムズ・リサーチ・(ソシエテ・アノニム) Method and system for detecting fuel system leaks

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681727A (en) * 1992-08-31 1994-03-22 Toyota Motor Corp Failure diagnosing device for evaporative purging system
JPH11218457A (en) * 1998-01-30 1999-08-10 Mazda Motor Corp Failure detector for fuel tank internal pressure sensor
JP2003035215A (en) * 2001-07-25 2003-02-07 Denso Corp Fuel temperature estimating device and abnormality diagnosing device
JP2003056416A (en) * 2001-08-09 2003-02-26 Denso Corp Leak diagnostic device for evaporated gas purge system
JP2009275685A (en) * 2008-05-19 2009-11-26 Toyota Motor Corp Failure diagnosis device for vehicle
JP2010133363A (en) * 2008-12-05 2010-06-17 Honda Motor Co Ltd Leak determination device of evaporated fuel treatment system
JP2015516065A (en) * 2012-05-04 2015-06-04 イナジー・オートモーティブ・システムズ・リサーチ・(ソシエテ・アノニム) Method and system for detecting fuel system leaks
JP2013137035A (en) * 2013-04-08 2013-07-11 Toyota Motor Corp Evaporative system leakage diagnostic apparatus

Also Published As

Publication number Publication date
JP2021038674A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US7152587B2 (en) Evaporated fuel treatment device of internal combustion engine and evaporated fuel treatment method
US7204239B2 (en) Failure diagnostic apparatus and failure diagnostic method for in-tank canister system
CN105937464B (en) Evaporated fuel treating apparatus
CN110945230B (en) Leak detection device for evaporated fuel treatment device
JP6299867B2 (en) Evaporative fuel processing equipment
US7441549B2 (en) Fuel supply apparatus for and pressure control method of internal combustion engine
JP4807296B2 (en) Evaporative fuel processing equipment
US20120222657A1 (en) Evaporative emission control device for internal combustion engine
WO2013133237A1 (en) Device and method for diagnosing evaporated fuel processing device
WO2013133236A1 (en) Device and method for diagnosing evaporated fuel processing device
EP3315755B1 (en) Evaporated fuel processing device
US9845745B2 (en) EVAP system with valve to improve canister purging
US10428769B2 (en) Fuel vapor treatment apparatus
CN110878726B (en) Evaporated fuel treatment device
WO2021039152A1 (en) Vaporized fuel treatment device
WO2020105246A1 (en) Vaporized fuel processing device
JP4172167B2 (en) Oil supply control device for closed tank system
WO2017130708A1 (en) Evaporated fuel treatment device and method for learning valve-opening start position of blocking valve in evaporated fuel treatment device
US10941718B2 (en) Evaporated fuel processing apparatus
JP3830859B2 (en) Failure detector for pressure detector
US20220205417A1 (en) Evaporated fuel treatment apparatus
KR100717949B1 (en) Method for controlling purge valve of car
US11118539B2 (en) Evaporated fuel treatment apparatus
JP6641971B2 (en) Evaporative fuel processing device
JP6657911B2 (en) Evaporative fuel processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858633

Country of ref document: EP

Kind code of ref document: A1