WO2021038922A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2021038922A1
WO2021038922A1 PCT/JP2020/007526 JP2020007526W WO2021038922A1 WO 2021038922 A1 WO2021038922 A1 WO 2021038922A1 JP 2020007526 W JP2020007526 W JP 2020007526W WO 2021038922 A1 WO2021038922 A1 WO 2021038922A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
plate
electrode plate
current collector
Prior art date
Application number
PCT/JP2020/007526
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 水上
雄樹 藤田
浩一 近藤
拓明 三橋
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2021541982A priority Critical patent/JP7126028B2/en
Publication of WO2021038922A1 publication Critical patent/WO2021038922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • Lithium-ion secondary batteries are widely used in various devices that require charging. Many existing lithium-ion secondary batteries employ a powder-dispersed positive electrode (so-called coating electrode) produced by applying and drying a positive electrode mixture containing a positive electrode active material, a conductive auxiliary agent, a binder, and the like. ing.
  • coating electrode powder-dispersed positive electrode
  • a powder-dispersed positive electrode contains a relatively large amount (for example, about 10% by weight) of components (binder and conductive auxiliary agent) that do not contribute to the volume, and therefore, a lithium composite oxide as a positive electrode active material.
  • the packing density is low. Therefore, there is much room for improvement in the powder dispersion type positive electrode in terms of capacity and charge / discharge efficiency. Therefore, attempts have been made to improve the capacity and charge / discharge efficiency by forming the positive electrode or the positive electrode active material layer with a lithium composite oxide sintered body plate.
  • Patent Document 1 Japanese Patent No. 5587052 provides a lithium ion secondary battery including a positive electrode current collector and a positive electrode active material layer bonded to the positive electrode current collector via a conductive bonding layer.
  • the positive electrode of is disclosed.
  • the positive electrode active material layer is said to be made of a lithium composite oxide sintered body plate having a thickness of 30 ⁇ m or more, a porosity of 3 to 30%, and an open pore ratio of 70% or more.
  • Patent Document 2 discloses a lithium composite oxide sintered body plate such as lithium cobalt oxide LiCoO 2 (hereinafter referred to as LCO) used for a positive electrode of a lithium ion secondary battery. ing.
  • This lithium composite oxide sintered body plate has a structure in which a plurality of primary particles having a layered rock salt structure are bonded, has a porosity of 3 to 40%, and has an average pore diameter of 15 ⁇ m or less. It is said that the open porosity ratio is 70% or more, the thickness is 15 to 200 ⁇ m, and the primary particle size, which is the average particle size of the plurality of primary particles, is 20 ⁇ m or less.
  • the average value of the angles formed by the (003) surface of the plurality of primary particles and the plate surface of the lithium composite oxide sintered body plate, that is, the average inclination angle is 0 °. It is said that it exceeds and is 30 ° or less.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2015-185337 discloses a lithium ion secondary battery in which a lithium titanate (Li 4 Ti 5 O 12) sintered body is used for the positive electrode or the negative electrode.
  • Patent Document 4 Patent No. 6392493 discloses a sintered plate of lithium titanate Li 4 Ti 5 O 12 (hereinafter referred to as LTO) used as a negative electrode of a lithium ion secondary battery.
  • This LTO sintered body plate has a structure in which a plurality of primary particles are bonded, has a thickness of 10 to 290 ⁇ m, and has a primary particle size of 1.2 ⁇ m, which is the average particle size of the plurality of primary particles. It is said that the porosity is 21 to 45% and the open pore ratio is 60% or more.
  • a lithium ion secondary battery having a high capacity and a high output while being compact and thin has been desired. Therefore, in anticipation of high capacity and good charge / discharge efficiency, a lithium composite oxide sintered body plate (for example, LCO sintered body plate) that does not contain conductive carbon is used as the positive electrode and does not contain conductive carbon. It has been proposed to use a titanium-containing sintered plate (for example, an LTO sintered plate) as a negative electrode (for example, Patent Document 4). However, it has been found that when a lithium ion secondary battery is actually manufactured using these sintered body plates, that is, a ceramic positive electrode plate and a ceramic negative electrode plate, the expected capacity cannot be obtained.
  • a lithium composite oxide sintered body plate for example, LCO sintered body plate
  • the present inventors have recently introduced a positive electrode current collector and a positive electrode plate in a lithium ion secondary battery including a positive electrode plate which is a lithium composite oxide sintered body plate and a negative electrode plate which is a titanium-containing sintered body plate.
  • the area Sp where is bonded via the positive electrode side conductive bonding layer and the area Sn where the negative electrode current collector and the negative electrode plate are bonded via the negative electrode side conductive bonding layer are 1.0 ⁇ Sn / Sp ⁇ . It was found that both capacitance and cycle characteristics can be improved by satisfying the relationship of 5.0.
  • an object of the present invention is a configuration including a positive electrode plate which is a lithium composite oxide sintered body plate and a negative electrode plate which is a titanium-containing sintered body plate, but both capacity and cycle characteristics are improved.
  • the purpose is to provide a lithium ion secondary battery.
  • a positive electrode plate which is a lithium composite oxide sintered body plate that does not contain conductive carbon
  • a negative electrode plate that is a titanium-containing sintered body plate that does not contain conductive carbon
  • a separator interposed between the positive electrode plate and the negative electrode plate, A positive electrode current collector provided on the surface of the positive electrode plate on the side away from the separator, and A negative electrode current collector provided on the surface of the negative electrode plate on the side away from the separator, and
  • the positive electrode plate, the negative electrode plate, and the electrolytic solution impregnated in the separator It is a lithium-ion secondary battery equipped with At least a part of the surface of the positive electrode plate on the positive electrode current collector side is bonded to the positive electrode current collector via the positive electrode side conductive bonding layer.
  • At least a part of the surface of the negative electrode plate on the negative electrode current collector side is bonded to the negative electrode current collector via the negative electrode side conductive bonding layer.
  • a lithium ion secondary battery is provided in which the area Sn satisfies the relationship of 1.0 ⁇ Sn / Sp ⁇ 5.0.
  • FIG. 6 It is a schematic cross-sectional view of an example of the lithium ion secondary battery of this invention. It is an SEM image which shows an example of the cross section perpendicular to the plate surface of the oriented positive electrode plate. It is an EBSD image in the cross section of the oriented positive electrode plate shown in FIG. 6 is a histogram showing the distribution of the orientation angles of the primary particles in the EBSD image of FIG. 3 on an area basis.
  • FIG. 1 schematically shows an example of the lithium ion secondary battery of the present invention.
  • the lithium ion secondary battery 10 shown in FIG. 1 includes a positive electrode plate 12, a negative electrode plate 14, a separator 16, a positive electrode current collector 18, a negative electrode current collector 20, and an electrolytic solution 22.
  • the positive electrode plate 12 is a lithium composite oxide sintered body plate that does not contain conductive carbon.
  • the negative electrode plate 14 is a titanium-containing sintered body plate that does not contain conductive carbon.
  • the separator 16 is interposed between the positive electrode plate 12 and the negative electrode plate 14.
  • the positive electrode current collector 18 is provided on the surface of the positive electrode plate 12 on the side away from the separator 16.
  • the negative electrode current collector 20 is provided on the surface of the negative electrode plate 14 on the side away from the separator 16.
  • the electrolytic solution 22 is impregnated into the positive electrode plate 12, the negative electrode plate 14, and the separator 16. At least a part of the surface of the positive electrode plate 12 on the positive electrode current collector 18 side is bonded to the positive electrode current collector 18 via the positive electrode side conductive bonding layer 24. At least a part of the surface of the negative electrode plate 14 on the negative electrode current collector 20 side is bonded to the negative electrode current collector 20 via the negative electrode side conductive bonding layer 26.
  • the area Sn to be formed satisfies the relationship of 1.0 ⁇ Sn / Sp ⁇ 5.0.
  • the area Sp in which the positive electrode current collector 18 and the positive electrode plate 12 are bonded via the positive electrode side conductive bonding layer 24 is a positive electrode that contributes to the bonding between the positive electrode current collector 18 and the positive electrode plate 12.
  • the occupied area of the side conductive bonding layer 24 It means the occupied area of the side conductive bonding layer 24, and does not include the area of the region where the positive electrode current collector 18 and the positive electrode plate 12 are in contact with each other or facing each other without the positive electrode side conductive bonding layer 24 intervening. ..
  • the area Sn where the negative electrode current collector 20 and the negative electrode plate 14 are joined via the negative electrode side conductive bonding layer 26 contributes to these bonding between the negative electrode current collector 20 and the negative electrode plate 14.
  • the positive electrode current collector 18 and the positive electrode plate 12 are 1.0 ⁇ .
  • Sn / Sp ⁇ 5.0 both capacitance and cycle characteristics can be improved.
  • a lithium composite oxide sintered body plate containing no conductive carbon (for example, LCO sintered body plate) is used as the positive electrode, and a titanium-containing sintered body plate containing no conductive carbon (for example, LTO sintering) is used.
  • LCO sintered body plate a lithium composite oxide sintered body plate containing no conductive carbon
  • titanium-containing sintered body plate containing no conductive carbon for example, LTO sintering
  • the positive electrode side conductive bonding layer 24 and the negative electrode side conductive bonding layer 26 so as to satisfy the relationship of 1.0 ⁇ Sn / Sp ⁇ 5.0, the above problem can be conveniently solved. At the same time, the cycle characteristics can be improved.
  • the area Sn where the negative electrode current collector 20 and the negative electrode plate 14 are joined via the negative electrode side conductive bonding layer 26 is the positive electrode current collector 18 and the positive electrode.
  • the plate 12 has an area Sp equal to or larger than the area Sp joined via the positive electrode side conductive bonding layer 24. That is, by increasing the joint area Sn of the negative electrode current collector 20 and the negative electrode plate 14 to a size equal to or larger than the area Sp, the negative electrode current collector 20 and the negative electrode side conductive joint layer 26 conduct electron conduction in the negative electrode surface direction. It is thought that it will be possible to supplement the function and take out sufficient capacity.
  • Sn / Sp is 1.0 to 5.0 means that the joint area Sp of the positive electrode current collector 18 and the positive electrode plate 12 is reduced to a size equal to or smaller than the above area Sn, but is excessively small.
  • the joint area Sp of the positive electrode current collector 18 and the positive electrode plate 12 so as to be within such a selective range, it is possible to improve the cycle characteristics.
  • the joint area Sp of the positive electrode current collector 18 and the positive electrode plate 12 is larger than the above area Sn (that is, Sn / Sp is less than 1.0), it faces the negative electrode plate 14 (that is, the negative electrode active material).
  • the portion of the positive electrode plate 12 (positive electrode active material) bonded to the positive electrode current collector 18 also contributes significantly to charging and discharging, and a potential distribution is generated in the positive electrode plate 12 that contributes to charging and discharging, so that the electrolytic solution and the like are charged. It is considered that the cycle characteristics deteriorate due to the non-uniform growth of the film due to oxidative decomposition. Further, when the joint area Sp of the positive electrode current collector 18 and the positive electrode plate 12 is made too small to be less than one-fifth of the area Sn (that is, Sn / Sp exceeds 5.0), the positive electrode plate 12 is formed.
  • the Sn / Sp ratio is 1.0 to 5.0, preferably 1.1 to 5.0, more preferably 1.5 to 5.0, and further preferably 2.5 to 5. It is 0.
  • At least a part of the surface of the negative electrode plate 14 on the negative electrode current collector 20 side is bonded to the negative electrode current collector 20 via the negative electrode side conductive bonding layer 26, and the negative electrode of the negative electrode plate 14 is preferable.
  • At least 70%, more preferably at least 80%, even more preferably 90%, and most preferably all (100%) of the surface on the current collector 20 side is via the negative electrode current collector 20 and the negative electrode side conductive bonding layer 26.
  • the positive electrode plate 12 is a lithium composite oxide sintered body plate that does not contain conductive carbon.
  • the fact that the positive electrode plate 12 is a sintered body plate means that the positive electrode plate 12 does not contain a binder or a conductive auxiliary agent. This is because even if the green sheet contains a binder, the binder disappears or burns out during firing. Since the positive electrode plate 12 does not contain a binder, there is an advantage that deterioration of the positive electrode due to the electrolytic solution 22 can be avoided.
  • the lithium composite oxide constituting the sintered body plate is particularly preferably lithium cobalt oxide (typically LiCoO 2 (hereinafter, may be abbreviated as LCO)).
  • LCO lithium cobalt oxide
  • Various lithium composite oxide sintered plates or LCO sintered plates are known, and those disclosed in, for example, Patent Document 1 (Patent No. 5587052) and Patent Document 2 (Patent No. 6374634) are known. Can be used.
  • the positive electrode plate 12 that is, the lithium composite oxide sintered body plate contains a plurality of primary particles composed of the lithium composite oxide, and the plurality of primary particles are formed on the plate surface of the positive electrode plate.
  • the oriented positive electrode plate is oriented at an average orientation angle of more than 0 ° and 30 ° or less.
  • FIG. 2 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the oriented positive electrode plate 12, while FIG. 3 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the oriented positive electrode plate 12. Is shown. Further, FIG.
  • FIG. 4 shows a histogram showing the distribution of the orientation angles of the primary particles 11 in the EBSD image of FIG. 3 on an area basis.
  • the discontinuity of the crystal orientation can be observed.
  • the orientation angle of each primary particle 11 is shown by the shade of color, and the darker the color, the smaller the orientation angle.
  • the orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction.
  • the portion shown in black inside the oriented positive electrode plate 12 is a pore.
  • the oriented positive electrode plate 12 is an oriented sintered body composed of a plurality of primary particles 11 bonded to each other.
  • Each primary particle 11 is mainly plate-shaped, but may include those formed in a rectangular parallelepiped shape, a cube shape, a spherical shape, or the like.
  • the cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complicated shape other than these.
  • Each primary particle 11 is composed of a lithium composite oxide.
  • the lithium composite oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one transition metal, and M is typically one or more of Co, Ni and Mn. It is an oxide represented by).
  • Lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately laminated with an oxygen layer in between, that is, a transition metal ion layer and a lithium single layer are alternately laminated via oxide ions.
  • lithium composite oxides are Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NimnO 2 (lithium nickel manganate).
  • Li x NiCoO 2 nickel cobalt lithium
  • Li x CoNiMnO 2 cobalt-nickel-lithium manganate
  • Li x CoMnO 2 cobalt-lithium manganate
  • Lithium composite oxides include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba. , Bi, and W may contain one or more elements selected from.
  • the average value of the orientation angles of each primary particle 11, that is, the average orientation angle is more than 0 ° and 30 ° or less.
  • the oriented positive electrode plate 12 is dominated by expansion and contraction in the thickness direction rather than the plate surface direction, so that the expansion and contraction of the oriented positive electrode plate 12 becomes smooth. This is because the lithium ions can enter and exit smoothly.
  • the average orientation angle of the primary particles 11 can be obtained by the following method. First, in an EBSD image in which a rectangular region of 95 ⁇ m ⁇ 125 ⁇ m is observed at a magnification of 1000 as shown in FIG. 3, three horizontal lines that divide the oriented positive electrode plate 12 into four equal parts in the thickness direction and the oriented positive electrode plate 12 Draw three vertical lines that divide the plate into four equal parts in the direction of the plate surface. Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 that intersect at least one of the three horizontal lines and the three vertical lines. The average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics. The average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
  • the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of them are distributed in a region of more than 0 ° and 30 ° or less. Is preferable. That is, when the cross section of the oriented sintered body constituting the oriented positive electrode plate 12 is analyzed by EBSD, the orientation angle of the oriented positive electrode plate 12 with respect to the plate surface of the primary particles 11 included in the analyzed cross section is 0 °.
  • the total area of the primary particles 11 (hereinafter referred to as low-angle primary particles) having an ultra-30 ° or less is the primary particles 11 included in the cross section (specifically, the 30 primary particles 11 used to calculate the average orientation angle).
  • the proportion of the primary particles 11 having high mutual adhesion can be increased, so that the rate characteristics can be further improved.
  • the total area of the low-angle primary particles having an orientation angle of 20 ° or less is 50% or more of the total area of the 30 primary particles 11 used for calculating the average orientation angle. ..
  • the total area of the low-angle primary particles having an orientation angle of 10 ° or less is 15% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. ..
  • the average particle size of the plurality of primary particles constituting the oriented sintered body is preferably 5 ⁇ m or more.
  • the average particle size of the 30 primary particles 11 used in the calculation of the average orientation angle is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, still more preferably 12 ⁇ m or more.
  • the average particle size of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 11.
  • the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
  • the positive electrode plate 12 preferably contains pores.
  • the inclusion of pores, especially open pores, in the sintered body allows the electrolyte to penetrate into the sintered body when incorporated into the battery as a positive electrode plate, resulting in improved lithium ion conductivity. be able to. This is because there are two types of conduction of lithium ions in the sintered body: conduction through the constituent particles of the sintered body and conduction through the electrolytic solution in the pores, but conduction through the electrolytic solution in the pores is better. This is because it is overwhelmingly fast.
  • the positive electrode plate 12 that is, the lithium composite oxide sintered body plate, preferably has a porosity of 20 to 60%, more preferably 25 to 55%, still more preferably 30 to 50%, and particularly preferably 30 to 45%. Is.
  • the stress release effect due to the pores and the increase in capacity can be expected, and the mutual adhesion between the primary particles 11 can be further improved, so that the rate characteristics can be further improved.
  • the porosity of the sintered body is calculated by polishing the cross section of the positive electrode plate by CP (cross section polisher) polishing, observing the SEM at a magnification of 1000, and binarizing the obtained SEM image.
  • the average circle-equivalent diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 ⁇ m or less.
  • the average circle-equivalent diameter of the pores is a value obtained by arithmetically averaging the circle-equivalent diameters of 10 pores on the EBSD image.
  • the equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image. It is preferable that each pore formed inside the oriented sintered body is an open pore connected to the outside of the positive electrode plate 12.
  • the positive electrode plate 12 that is, the lithium composite oxide sintered body plate, preferably has an average pore diameter of 0.1 to 10.0 ⁇ m, more preferably 0.2 to 5.0 ⁇ m, and further preferably 0.3 to 3. It is 0.0 ⁇ m. Within the above range, the occurrence of local stress concentration in large pores is suppressed, and the stress in the sintered body is easily released uniformly.
  • the thickness of the positive electrode plate 12 is preferably 60 to 450 ⁇ m, more preferably 70 to 350 ⁇ m, and even more preferably 90 to 300 ⁇ m. Within such a range, the active material capacity per unit area is increased to improve the energy density of the lithium ion secondary battery 10, and the battery characteristics deteriorate (particularly, the resistance value increases) due to repeated charging and discharging. Can be suppressed.
  • the negative electrode plate 14 is a titanium-containing sintered body plate that does not contain conductive carbon.
  • the titanium-containing sintered plate preferably contains lithium titanate Li 4 Ti 5 O 12 (hereinafter, LTO) or niobium-titanium composite oxide Nb 2 TiO 7 , and more preferably contains LTO.
  • LTO lithium titanate Li 4 Ti 5 O 12
  • Nb 2 TiO 7 niobium-titanium composite oxide
  • LTO is typically known to have a spinel-type structure, other structures may be adopted during charging / discharging.
  • LTO reacts in a two-phase coexistence of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charging and discharging. Therefore, LTO is not limited to the spinel structure.
  • the fact that the negative electrode plate 14 is a sintered body plate means that the negative electrode plate 14 does not contain a binder or a conductive auxiliary agent. This is because even if the green sheet contains a binder, the binder disappears or burns out during firing. Since the negative electrode plate does not contain a binder, a high capacity and good charge / discharge efficiency can be obtained by increasing the packing density of the negative electrode active material (for example, LTO or Nb 2 TiO 7).
  • the LTO sintered body plate can be produced according to the methods described in Patent Document 3 (Japanese Patent Laid-Open No. 2015-185337) and Patent Document 4 (Patent No. 6392493).
  • the negative electrode plate 14, that is, the titanium-containing sintered body plate, has a structure in which a plurality of (that is, a large number of) primary particles are bonded. Therefore, it is preferable that these primary particles are composed of LTO or Nb 2 TiO 7.
  • the thickness of the negative electrode plate 14 is preferably 70 to 500 ⁇ m, preferably 85 to 400 ⁇ m, and more preferably 95 to 350 ⁇ m.
  • the thickness of the negative electrode plate 14 can be obtained, for example, by measuring the distance between the plate surfaces observed substantially in parallel when the cross section of the negative electrode plate 14 is observed by an SEM (scanning electron microscope).
  • the primary particle size which is the average particle size of the plurality of primary particles constituting the negative electrode plate 14, is preferably 1.2 ⁇ m or less, more preferably 0.02 to 1.2 ⁇ m, and further preferably 0.05 to 0.7 ⁇ m. .. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
  • the negative electrode plate 14 preferably contains pores.
  • pores especially open pores, in the sintered body plate, when incorporated into a battery as a negative electrode plate, the electrolytic solution can permeate the inside of the sintered body plate, and as a result, lithium ion conductivity is improved. Can be improved. This is because there are two types of conduction of lithium ions in the sintered body: conduction through the constituent particles of the sintered body and conduction through the electrolytic solution in the pores, but conduction through the electrolytic solution in the pores is better. This is because it is overwhelmingly fast.
  • the porosity of the negative electrode plate 14 is preferably 20 to 60%, more preferably 30 to 55%, and even more preferably 35 to 50%. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
  • the average pore diameter of the negative electrode plate 14 is 0.08 to 5.0 ⁇ m, preferably 0.1 to 3.0 ⁇ m, and more preferably 0.12 to 1.5 ⁇ m. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
  • the separator 16 is preferably a separator made of cellulose, polyolefin, polyimide, polyester (for example, polyethylene terephthalate (PET)) or ceramic.
  • Cellulose separators are advantageous in that they are inexpensive and have excellent heat resistance.
  • the polyimide, polyester (for example, polyethylene terephthalate (PET)) or cellulose separator is different from the widely used polyolefin separator, which is inferior in heat resistance, and not only has excellent heat resistance in itself, but also. It also has excellent wettability to electrolyte components. Therefore, the electrolytic solution can be sufficiently permeated into the separator (without repelling).
  • the ceramic separator has an advantage that it is excellent in heat resistance and can be manufactured together with the positive electrode plate 12 and the negative electrode plate 14 as one integrally sintered body as a whole.
  • the ceramic constituting the separator is preferably at least one selected from MgO, Al 2 O 3 , ZrO 2 , SiC, Si 3 N 4 , Al N, and cordierite, and more preferably. At least one selected from MgO, Al 2 O 3 , and ZrO 2.
  • the electrolytic solution 22 is not particularly limited, and a commercially available electrolytic solution for lithium batteries, such as a solution in which a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent, may be used.
  • non-aqueous solvents include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), vinylethylene carbonate (VEC), and fluoroethylene carbonate (FEC), and dimethyl carbonate (DMC).
  • DEC Diethyl carbonate
  • EMC Ethylmethyl carbonate
  • THF tetrahydrofuran
  • DME dimethoxyethane
  • GBL ⁇ -butyrolactone
  • AN acetonitrile
  • SL sulfolane
  • PS propane sulton
  • Such a non-aqueous solvent may be used alone or as a mixture of two or more kinds.
  • lithium salts examples include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), and lithium.
  • lithium salts include bisfluorosulfonylimide (LiFSI) and lithium bis (oxalate) borate (LiBOB).
  • Such lithium salts may be used alone or as a mixture of two or more kinds.
  • the lithium salt concentration in the electrolytic solution 22 is preferably 0.5 to 2 mol / L, more preferably 0.6 to 1.9 mol / L, still more preferably 0.7 to 1.7 mol / L, and particularly preferably 0.7 to 1.7 mol / L. It is 0.8 to 1.5 mol / L.
  • the lithium ion secondary battery 10 further includes a pair of exterior films 28, and the outer peripheral edges of the exterior films 28 are sealed with each other to form an internal space, in which the positive electrode current collector 18 and the positive electrode side are formed.
  • Containing the conductive bonding layer 24, the positive electrode plate 12, the separator 16, the negative electrode plate 14, the negative electrode side conductive bonding layer 26, the negative electrode current collector 20, and the electrolytic solution 22 (hereinafter collectively referred to as battery elements). That is, as shown in FIG. 1, the battery elements that are the contents of the lithium ion secondary battery 10 are packaged and sealed with a pair of exterior films 28, and as a result, the lithium ion secondary battery 10 is It is in the form of a so-called film exterior battery.
  • the outer edge of the lithium ion secondary battery 10 is preferably sealed by heat-sealing the exterior films 28 to each other. Sealing by heat fusion is preferably performed using a heat bar (also referred to as a heating bar), which is generally used for heat sealing. Typically, it has a quadrilateral shape of the lithium ion secondary battery 10, and it is preferable that the outer peripheral edge of the pair of exterior films 28 is sealed over all four outer peripheral edges.
  • a heat bar also referred to as a heating bar
  • the thickness of the exterior film 28 is preferably 50 to 80 ⁇ m, more preferably 55 to 70 ⁇ m, and even more preferably 55 to 65 ⁇ m per sheet.
  • the preferred exterior film 28 is a laminated film containing a resin film and a metal foil, and more preferably an aluminum laminated film containing a resin film and an aluminum foil.
  • As the laminated film it is preferable that resin films are provided on both sides of a metal foil such as an aluminum foil.
  • the resin film on one side of the metal foil (hereinafter referred to as the surface protective film) is made of a material having excellent reinforcing properties such as nylon, polyamide, polyethylene terephthalate, polyimide, polytetrafluoroethylene, and polychlorotrifluoroethylene.
  • the resin film on the other side of the metal foil is preferably made of a heat-sealing material such as polypropylene.
  • the positive electrode current collector 18 is provided on the surface of the positive electrode plate 12 on the side away from the separator 16, while the negative electrode current collector 20 is provided on the surface of the negative electrode plate 14 on the side away from the separator 16. Therefore, the positive electrode current collector 15 is interposed between the positive electrode plate 12 and the exterior film 28, while the negative electrode current collector 20 is interposed between the negative electrode plate 14 and the exterior film 28. Preferably, one of the positive electrode current collector 15 and the exterior film 28 is adhered, and the other of the negative electrode current collector 20 and the exterior film 28 is adhered.
  • the positive electrode current collector 15 and the negative electrode current collector 20 are not particularly limited, but are preferably metal foils such as copper foil and aluminum foil.
  • the positive electrode tab terminal 19 is connected to the positive electrode current collector 18 and extends outward from the sealing portion of the pair of exterior films 28, while the negative electrode tab terminal (not shown) is connected to the negative electrode current collector 20. Then, it extends outward from the sealing portion of the pair of exterior films 28. In FIG. 1, the negative electrode tab terminal is not drawn because it is hidden behind the positive electrode tab terminal 19. More specifically, the positive electrode tab terminal 19 and the negative electrode tab terminal extend from different positions or different sides of a common one side of the sealing portion of the exterior film 28.
  • the positive electrode tab terminal 19 and the negative electrode tab terminal are not particularly limited, but may be the same or different materials as the positive electrode current collector 15 and the negative electrode current collector 20, and are preferably metal foils such as copper foil and aluminum foil. ..
  • connection between the positive electrode tab terminal 19 and the positive electrode current collector 15 and the connection between the negative electrode tab terminal and the negative electrode current collector 20 may be performed by a known connection method such as welding or adhesive, and are not particularly limited.
  • the positive electrode tab terminal 19 and the positive electrode current collector 15, or the negative electrode tab terminal and the negative electrode current collector 20 may be an integral product made of the same material.
  • the positive electrode side conductive bonding layer 24 and the negative electrode side conductive bonding layer 26 are not particularly limited as long as a known or commercially available conductive adhesive is used, but for example, a conductive material, a binder, and, if desired, thickening. Examples thereof include those containing an agent in a predetermined compounding ratio.
  • Examples of the conductive material include conductive carbon materials such as carbon black, acetylene black, graphite, carbon fiber, and carbon nanotubes.
  • Examples of the binder include an acrylic binder, a styrene-butadiene rubber binder, and the like.
  • Examples of thickeners include carboxymethyl cellulose and the like.
  • the positive electrode plate 12 that is, the lithium composite oxide sintered body plate may be produced by any method, but preferably (a) preparation of a lithium composite oxide-containing green sheet, (a) b) The green sheet containing an excess lithium source is produced as desired, and (c) the green sheet is laminated and fired.
  • a raw material powder composed of lithium composite oxide is prepared.
  • the powder preferably contains synthetic plate-like particles (eg, LiCoO 2 plate-like particles) having a composition of LiMO 2 (M is as described above).
  • the volume-based D50 particle size of the raw material powder is preferably 0.3 to 30 ⁇ m.
  • the method for producing LiCoO 2- plate particles can be carried out as follows. First, the LiCoO 2 powder is synthesized by mixing the Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder and firing them (500 to 900 ° C. for 1 to 20 hours).
  • LiCoO 2 particles capable of conducting lithium ions parallel to the plate surface can be obtained.
  • Such LiCoO 2 particles are plate-shaped, such as a method of growing a green sheet using LiCoO 2 powder slurry and then crushing it, a flux method, hydrothermal synthesis, single crystal growth using a melt, and a sol-gel method. It can also be obtained by a method of synthesizing crystals.
  • the obtained LiCoO 2 particles are in a state of being easily cleaved along the cleavage plane. By cleaving the LiCoO 2 particles by crushing, LiCoO 2 plate-like particles can be produced.
  • the plate-shaped particles may be used alone as a raw material powder, or a mixed powder of the plate-shaped powder and another raw material powder (for example, Co 3 O 4 particles) may be used as the raw material powder.
  • the plate-like powder functions as template particles for imparting orientation, and other raw material powders (for example, Co 3 O 4 particles) function as matrix particles that can grow along the template particles.
  • the volume-based D50 particle size of the Co 3 O 4 raw material powder is not particularly limited and can be, for example, 0.1 to 1.0 ⁇ m, but the LiCo O 2 template particles. It is preferable that the particle size is smaller than the volume standard D50 particle size of.
  • the matrix particles can also be obtained by heat-treating the Co (OH) 2 raw material at 500 ° C. to 800 ° C. for 1 to 10 hours. Further, as the matrix particles, in addition to Co 3 O 4 , Co (OH) 2 particles may be used, or LiCo O 2 particles may be used.
  • the raw material powder is composed of 100% LiCoO 2 template particles, or when LiCoO 2 particles are used as the matrix particles, a large format (for example, 90 mm ⁇ 90 mm square) and flat LiCoO 2 sintered plate is obtained by firing. Can be done. Although the mechanism is not clear, it is expected that volume change during firing is unlikely to occur or local unevenness is unlikely to occur because synthesis to LiCoO 2 is not performed during the firing process.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • a lithium compound other than LiMO 2 for example, lithium carbonate
  • the green sheet thus obtained is an independent sheet-shaped molded product.
  • An independent sheet (sometimes referred to as a "self-supporting film”) is a sheet that can be handled independently of other supports (including flakes with an aspect ratio of 5 or more). That is, the independent sheet does not include a sheet that is fixed to another support (such as a substrate) and integrated with the support (inseparable or difficult to separate).
  • Sheet molding is preferably performed using a molding method capable of applying a shearing force to plate-shaped particles (for example, template particles) in the raw material powder. By doing so, the average inclination angle of the primary particles can be set to more than 0 ° and 30 ° or less with respect to the plate surface.
  • the doctor blade method is suitable as a molding method capable of applying a shearing force to the plate-shaped particles.
  • the thickness of the lithium composite oxide-containing green sheet may be appropriately set so as to be the desired thickness as described above after firing.
  • an excess lithium source-containing green sheet is prepared separately from the lithium composite oxide-containing green sheet.
  • the excess lithium source is preferably a lithium compound other than LiMO 2 in which components other than Li disappear by firing.
  • a preferred example of such a lithium compound (excess lithium source) is lithium carbonate.
  • the excess lithium source is preferably in the form of powder, and the volume-based D50 particle size of the excess lithium source powder is preferably 0.1 to 20 ⁇ m, more preferably 0.3 to 10 ⁇ m.
  • the lithium source powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • the obtained slurry is stirred under reduced pressure to defoam and the viscosity is adjusted to 1000 to 20000 cP.
  • the obtained slurry is molded into a sheet to obtain a green sheet containing an excess lithium source.
  • the green sheet thus obtained is also an independent sheet-shaped molded product.
  • Sheet molding can be performed by various well-known methods, but it is preferably performed by the doctor blade method.
  • the thickness of the green sheet containing an excess lithium source the molar ratio (Li / Co ratio) of the Li content in the green sheet containing an excess lithium source to the Co content in the lithium composite oxide-containing green sheet is preferably 0.1 or more. , More preferably, the thickness is set so that it can be 0.1 to 1.1.
  • a lithium composite oxide-containing green sheet for example, LiCoO 2 green sheet
  • an excess lithium source-containing green sheet for example, Li 2 CO 3 green sheet
  • the upper setter and lower setter are made of ceramics, preferably zirconia or magnesia. If the setter is made of magnesia, the pores tend to be smaller.
  • the upper setter may have a porous structure or a honeycomb structure, or may have a dense structure. If the upper setter is dense, the pores in the sintered plate tend to be small and the number of pores tends to be large.
  • the excess lithium source-containing green sheet preferably has a molar ratio (Li / Co ratio) of Li content in the excess lithium source-containing green sheet to Co content in the lithium composite oxide-containing green sheet. It is preferably cut out to a size of 1 or more, more preferably 0.1 to 1.1, and used.
  • the green sheet When a lithium composite oxide-containing green sheet (for example, LiCoO 2 green sheet) is placed on the lower setter, the green sheet may be degreased as desired and then pre-baked at 600 to 850 ° C. for 1 to 10 hours. .. In this case, the excess lithium source-containing green sheet (for example, Li 2 CO 3 green sheet) and the upper setter may be placed in order on the obtained temporary baking plate.
  • a lithium composite oxide-containing green sheet for example, LiCoO 2 green sheet
  • the excess lithium source-containing green sheet for example, Li 2 CO 3 green sheet
  • the upper setter may be placed in order on the obtained temporary baking plate.
  • the green sheet and / or the calcined plate is sandwiched between setters, degreased as desired, and then heat-treated (fired) at a firing temperature in a medium temperature range (for example, 700 to 1000 ° C.) to obtain a lithium composite oxide.
  • a sintered plate is obtained.
  • This firing step may be performed in two steps or in one step. When firing in two degrees, it is preferable that the firing temperature of the first firing is lower than the firing temperature of the second firing.
  • the sintered body plate thus obtained is also in the form of an independent sheet.
  • the negative electrode plate 14, that is, the titanium-containing sintered body plate may be manufactured by any method.
  • the LTO sintered body plate is preferably manufactured through (a) preparation of an LTO-containing green sheet and (b) firing of the LTO-containing green sheet.
  • a raw material powder (LTO powder) composed of lithium titanate Li 4 Ti 5 O 12 is prepared.
  • LTO powder a commercially available LTO powder may be used, or may be newly synthesized.
  • a powder obtained by hydrolyzing a mixture of titanium tetraisopropoxyalcohol and isopropoxylithium may be used, or a mixture containing lithium carbonate, titania and the like may be fired.
  • the volume-based D50 particle size of the raw material powder is preferably 0.05 to 5.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m. When the particle size of the raw material powder is large, the pores tend to be large.
  • pulverization treatment for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • a lithium compound other than LiMO 2 for example, lithium carbonate
  • the slurry is stirred under reduced pressure to defoam and the viscosity is adjusted to 4000 to 10000 cP.
  • the obtained slurry is formed into a sheet to obtain an LTO-containing green sheet.
  • the green sheet thus obtained is an independent sheet-shaped molded product.
  • An independent sheet (sometimes referred to as a "self-supporting film") is a sheet that can be handled independently of other supports (including flakes with an aspect ratio of 5 or more). That is, the independent sheet does not include a sheet that is fixed to another support (such as a substrate) and integrated with the support (inseparable or difficult to separate).
  • Sheet molding can be performed by various well-known methods, but it is preferably performed by the doctor blade method.
  • the thickness of the LTO-containing green sheet may be appropriately set so as to be the desired thickness as described above after firing.
  • (B) Firing of LTO-containing green sheet Place the LTO-containing green sheet on the setter.
  • the setter is made of ceramics, preferably zirconia or magnesia.
  • the setter is preferably embossed.
  • the green sheet placed on the setter in this way is put into the sheath.
  • the sheath is also made of ceramics, preferably alumina.
  • the LTO sintered body plate is obtained by firing. This firing is preferably performed at 600 to 900 ° C. for 1 to 50 hours, more preferably 700 to 800 ° C. for 3 to 20 hours.
  • the sintered body plate thus obtained is also in the form of an independent sheet.
  • the rate of temperature rise during firing is preferably 100 to 1000 ° C./h, more preferably 100 to 600 ° C./h.
  • this heating rate is preferably adopted in the heating process of 300 ° C. to 800 ° C., and more preferably adopted in the heating process of 400 ° C. to 800 ° C.
  • the LTO sintered body plate can be preferably manufactured as described above. In this preferred production method, it is effective to 1) adjust the particle size distribution of the LTO powder and / or 2) change the rate of temperature rise during firing, and these realize various characteristics of the LTO sintered body plate. It is thought that it contributes to.
  • LiCoO 2 will be abbreviated as “LCO” and Li 4 Ti 5 O 12 will be abbreviated as “LTO”.
  • LCO manufactured by Nippon Kagaku Kogyo Co., Ltd.
  • Binder Polyvinyl butyral: Part No. BM-2,
  • a slurry was prepared by stirring the obtained mixture under reduced pressure to defoam and adjusting the viscosity to 4000 cP. The viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form a green sheet. The thickness of the LCO green sheet after drying was 110 ⁇ m.
  • LCO sintered body plate The LCO green sheet peeled off from the PET film was cut into a 35 mm square with a cutter and placed in the center of a magnesia setter (dimensions 90 mm square, height 1 mm) as a lower setter. As the upper setter, a porous alumina setter (dimensions 40 mm square, height 3 mm) was placed in the center on a green sheet. The green sheet on the setter was fired at 900 ° C. for 15 hours to obtain an LCO sintered body plate. In this way, the LCO sintered body plate was obtained as a positive electrode plate. The obtained positive electrode plate was laser-processed into a shape of 32 mm ⁇ 32 mm square.
  • the LTO slurry was prepared by stirring the obtained negative electrode raw material mixture under reduced pressure to defoam and adjusting the viscosity to 4000 cP. The viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet. The thickness of the LTO green sheet after drying was 110 ⁇ m.
  • conductive adhesive 30 parts by weight of conductive material (acetylene black), 60 parts by weight of binder (acrylic binder), and 10 parts by weight of thickener (carboxymethyl cellulose) are mixed, and pure water is added. A conductive adhesive was prepared.
  • non-aqueous electrolyte electrolyte solution
  • electrolyte electrolyte solution
  • non-aqueous electrolyte a mixture of ethylene carbonate and ethyl methyl carbonate at a ratio of 1: 1 was used as the non-aqueous solvent, and 1 mol / l lithium hexafluoride phosphate was used as the electrolyte.
  • Example 2 A battery was prepared and evaluated in the same manner as in Example 1 except that the conductive adhesive for the positive electrode was applied in an area of 162 mm 2 in (5) above.
  • Example 3 Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 630 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 630 mm 2 in (6) above.
  • the batteries were manufactured and evaluated.
  • Example 4 The same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 126 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 630 mm 2 in (6) above. Batteries were manufactured and evaluated.
  • Example 5 Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 900 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above.
  • the batteries were manufactured and evaluated.
  • Example 6 Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 818 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above.
  • the batteries were manufactured and evaluated.
  • Example 7 Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 360 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above.
  • the batteries were manufactured and evaluated.
  • Example 8 Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 180 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above.
  • the batteries were manufactured and evaluated.
  • Example 9 Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 1000 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above.
  • the batteries were manufactured and evaluated.
  • Example 10 (comparison) Except that the positive electrode conductive adhesive was applied in an area of 176.5 mm 2 in (5) above, and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above.
  • the batteries were prepared and evaluated in the same manner.
  • Example 11 Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 700 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 630 mm 2 in (6) above.
  • the batteries were manufactured and evaluated.
  • Table 1 shows the evaluation results of the batteries produced in Examples 1 to 11.
  • Sn / Sp is such that the negative electrode current collector and the negative electrode plate are conductive with respect to the area Sp where the positive electrode current collector and the positive electrode plate are bonded via the conductive adhesive (positive electrode side conductive bonding layer). It means the ratio of the area Sn bonded via the sex adhesive (negative electrode side conductive bonding layer).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a lithium ion secondary battery which has a configuration comprising a positive electrode plate that is composed of a lithium composite oxide sintered material plate and a negative electrode plate that is composed of a titanium-containing sintered material plate, and which still has both improved capacity and improved cycle characteristics. This lithium ion secondary battery is provided with a positive electrode plate that is composed of a lithium composite oxide sintered material plate, a negative electrode plate that is composed of a titanium-containing sintered material plate, a separator, a positive electrode collector, a negative electrode collector and an electrolyte solution; at least a part of the positive electrode collector-side surface of the positive electrode plate is bonded to the positive electrode collector, with a positive electrode-side electroconductive bonding layer being interposed therebetween; at least a part of the negative electrode collector-side surface of the negative electrode plate is bonded to the negative electrode collector, with a negative electrode-side electroconductive bonding layer being interposed therebetween; and the bonded area Sp, where the positive electrode collector and the positive electrode plate are bonded to each other with the positive electrode-side electroconductive bonding layer being interposed therebetween, and the bonded area Sn, where the negative electrode collector and the negative electrode plate are bonded to each other with the negative electrode-side electroconductive bonding layer being interposed therebetween, satisfy the relational expression 1.0 ≤ Sn/Sp ≤ 5.0.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関するものである。 The present invention relates to a lithium ion secondary battery.
 充電を必要とする様々なデバイスにリチウムイオン二次電池が広く利用されている。既存の多くのリチウムイオン二次電池では、正極活物質、導電助剤、バインダー等を含む正極合剤を塗布及び乾燥させて作製された、粉末分散型の正極(いわゆる塗工電極)が採用されている。 Lithium-ion secondary batteries are widely used in various devices that require charging. Many existing lithium-ion secondary batteries employ a powder-dispersed positive electrode (so-called coating electrode) produced by applying and drying a positive electrode mixture containing a positive electrode active material, a conductive auxiliary agent, a binder, and the like. ing.
 一般的に、粉末分散型の正極は、容量に寄与しない成分(バインダーや導電助剤)を比較的多量に(例えば10重量%程度)含んでいるため、正極活物質としてのリチウム複合酸化物の充填密度が低くなる。このため、粉末分散型の正極は、容量や充放電効率の面で改善の余地が大きかった。そこで、正極ないし正極活物質層をリチウム複合酸化物焼結体板で構成することにより、容量や充放電効率を改善しようとする試みがなされている。この場合、正極又は正極活物質層にはバインダーや導電助剤(例えば導電性カーボン)が含まれないため、リチウム複合酸化物の充填密度が高くなることで、高容量や良好な充放電効率が得られることが期待される。例えば、特許文献1(特許第5587052号公報)には、正極集電体と、導電性接合層を介して正極集電体と接合された正極活物質層とを備えた、リチウムイオン二次電池の正極が開示されている。この正極活物質層は、厚さが30μm以上であり、空隙率が3~30%であり、開気孔比率が70%以上であるリチウム複合酸化物焼結体板からなるとされている。また、特許文献2(特許第6374634号公報)には、リチウムイオン二次電池の正極に用いられる、コバルト酸リチウムLiCoO(以下、LCOという)等のリチウム複合酸化物焼結体板が開示されている。このリチウム複合酸化物焼結体板は、層状岩塩構造を有する複数の一次粒子が結合した構造を有しており、かつ、気孔率が3~40%であり、平均気孔径が15μm以下であり、開気孔比率が70%以上であり、厚さが15~200μmであり、複数の一次粒子の平均粒径である一次粒径が20μm以下であるとされている。また、このリチウム複合酸化物焼結体板は、上記複数の一次粒子の(003)面とリチウム複合酸化物焼結体板の板面とがなす角度の平均値、すなわち平均傾斜角が0°を超え30°以下であるとされている。 In general, a powder-dispersed positive electrode contains a relatively large amount (for example, about 10% by weight) of components (binder and conductive auxiliary agent) that do not contribute to the volume, and therefore, a lithium composite oxide as a positive electrode active material. The packing density is low. Therefore, there is much room for improvement in the powder dispersion type positive electrode in terms of capacity and charge / discharge efficiency. Therefore, attempts have been made to improve the capacity and charge / discharge efficiency by forming the positive electrode or the positive electrode active material layer with a lithium composite oxide sintered body plate. In this case, since the positive electrode or the positive electrode active material layer does not contain a binder or a conductive auxiliary agent (for example, conductive carbon), a high packing density of the lithium composite oxide results in high capacity and good charge / discharge efficiency. Expected to be obtained. For example, Patent Document 1 (Japanese Patent No. 5587052) provides a lithium ion secondary battery including a positive electrode current collector and a positive electrode active material layer bonded to the positive electrode current collector via a conductive bonding layer. The positive electrode of is disclosed. The positive electrode active material layer is said to be made of a lithium composite oxide sintered body plate having a thickness of 30 μm or more, a porosity of 3 to 30%, and an open pore ratio of 70% or more. Further, Patent Document 2 (Patent No. 6374634) discloses a lithium composite oxide sintered body plate such as lithium cobalt oxide LiCoO 2 (hereinafter referred to as LCO) used for a positive electrode of a lithium ion secondary battery. ing. This lithium composite oxide sintered body plate has a structure in which a plurality of primary particles having a layered rock salt structure are bonded, has a porosity of 3 to 40%, and has an average pore diameter of 15 μm or less. It is said that the open porosity ratio is 70% or more, the thickness is 15 to 200 μm, and the primary particle size, which is the average particle size of the plurality of primary particles, is 20 μm or less. Further, in this lithium composite oxide sintered body plate, the average value of the angles formed by the (003) surface of the plurality of primary particles and the plate surface of the lithium composite oxide sintered body plate, that is, the average inclination angle is 0 °. It is said that it exceeds and is 30 ° or less.
 一方、負極としてチタン含有焼結体板を用いることも提案されている。例えば、特許文献3(特開2015-185337号公報)には、正極又は負極にチタン酸リチウム(LiTi12)焼結体を用いたリチウムイオン二次電池が開示されている。特許文献4(特許第6392493号公報)には、リチウムイオン二次電池の負極に用いられるチタン酸リチウムLiTi12(以下、LTOという)の焼結体板が開示されている。このLTO焼結体板は、複数の一次粒子が結合した構造を有しており、かつ、厚さが10~290μmであり、複数の一次粒子の平均粒径である一次粒径が1.2μm以下であり、気孔率が21~45%であり、開気孔比率が60%以上であるとされている。 On the other hand, it has also been proposed to use a titanium-containing sintered plate as the negative electrode. For example, Patent Document 3 (Japanese Unexamined Patent Publication No. 2015-185337) discloses a lithium ion secondary battery in which a lithium titanate (Li 4 Ti 5 O 12) sintered body is used for the positive electrode or the negative electrode. Patent Document 4 (Patent No. 6392493) discloses a sintered plate of lithium titanate Li 4 Ti 5 O 12 (hereinafter referred to as LTO) used as a negative electrode of a lithium ion secondary battery. This LTO sintered body plate has a structure in which a plurality of primary particles are bonded, has a thickness of 10 to 290 μm, and has a primary particle size of 1.2 μm, which is the average particle size of the plurality of primary particles. It is said that the porosity is 21 to 45% and the open pore ratio is 60% or more.
特許第5587052号公報Japanese Patent No. 5587052 特許第6374634号公報Japanese Patent No. 6374634 特開2015-185337号公報Japanese Unexamined Patent Publication No. 2015-185337 特許第6392493号公報Japanese Patent No. 6392493
 近年、小型薄型でありながら高容量かつ高出力のリチウムイオン二次電池が望まれている。そこで、高容量や良好な充放電効率を期待して、導電性カーボンを含有しないリチウム複合酸化物焼結体板(例えばLCO焼結体板)を正極に用い、かつ、導電性カーボンを含有しないチタン含有焼結体板(例えばLTO焼結体板)を負極に用いることが提案されている(例えば特許文献4)。しかしながら、これらの焼結体板、すなわちセラミック正極板及びセラミック負極板を用いてリチウムイオン二次電池を実際に作製すると、期待したほどの容量が得られないことが判明した。 In recent years, a lithium ion secondary battery having a high capacity and a high output while being compact and thin has been desired. Therefore, in anticipation of high capacity and good charge / discharge efficiency, a lithium composite oxide sintered body plate (for example, LCO sintered body plate) that does not contain conductive carbon is used as the positive electrode and does not contain conductive carbon. It has been proposed to use a titanium-containing sintered plate (for example, an LTO sintered plate) as a negative electrode (for example, Patent Document 4). However, it has been found that when a lithium ion secondary battery is actually manufactured using these sintered body plates, that is, a ceramic positive electrode plate and a ceramic negative electrode plate, the expected capacity cannot be obtained.
 本発明者らは、今般、リチウム複合酸化物焼結体板である正極板と、チタン含有焼結体板である負極板とを備えたリチウムイオン二次電池において、正極集電体及び正極板が正極側導電性接合層を介して接合される面積Spと、負極集電体及び負極板が負極側導電性接合層を介して接合される面積Snとが、1.0≦Sn/Sp≦5.0の関係を満たすことで、容量とサイクル特性の両方を向上できるとの知見を得た。 The present inventors have recently introduced a positive electrode current collector and a positive electrode plate in a lithium ion secondary battery including a positive electrode plate which is a lithium composite oxide sintered body plate and a negative electrode plate which is a titanium-containing sintered body plate. The area Sp where is bonded via the positive electrode side conductive bonding layer and the area Sn where the negative electrode current collector and the negative electrode plate are bonded via the negative electrode side conductive bonding layer are 1.0 ≦ Sn / Sp ≦. It was found that both capacitance and cycle characteristics can be improved by satisfying the relationship of 5.0.
 したがって、本発明の目的は、リチウム複合酸化物焼結体板である正極板と、チタン含有焼結体板である負極板とを備えた構成でありながら、容量とサイクル特性の両方が向上されたリチウムイオン二次電池を提供することにある。 Therefore, an object of the present invention is a configuration including a positive electrode plate which is a lithium composite oxide sintered body plate and a negative electrode plate which is a titanium-containing sintered body plate, but both capacity and cycle characteristics are improved. The purpose is to provide a lithium ion secondary battery.
 本発明の一態様によれば、
 導電性カーボンを含有しないリチウム複合酸化物焼結体板である正極板と、
 導電性カーボンを含有しないチタン含有焼結体板である負極板と、
 前記正極板と前記負極板との間に介在されるセパレータと、
 前記正極板の前記セパレータから離れた側の面に設けられる正極集電体と、
 前記負極板の前記セパレータから離れた側の面に設けられる負極集電体と、
 前記正極板、前記負極板、及び前記セパレータに含浸される電解液と、
を備えた、リチウムイオン二次電池であって、
 前記正極板の前記正極集電体側の面の少なくとも一部が、前記正極集電体と正極側導電性接合層を介して接合されており、
 前記負極板の前記負極集電体側の面の少なくとも一部が、前記負極集電体と負極側導電性接合層を介して接合されており、
 前記正極集電体及び前記正極板が前記正極側導電性接合層を介して接合される面積Spと、前記負極集電体及び前記負極板が前記負極側導電性接合層を介して接合される面積Snとが、1.0≦Sn/Sp≦5.0の関係を満たす、リチウムイオン二次電池が提供される。
According to one aspect of the invention
A positive electrode plate, which is a lithium composite oxide sintered body plate that does not contain conductive carbon,
A negative electrode plate that is a titanium-containing sintered body plate that does not contain conductive carbon,
A separator interposed between the positive electrode plate and the negative electrode plate,
A positive electrode current collector provided on the surface of the positive electrode plate on the side away from the separator, and
A negative electrode current collector provided on the surface of the negative electrode plate on the side away from the separator, and
The positive electrode plate, the negative electrode plate, and the electrolytic solution impregnated in the separator,
It is a lithium-ion secondary battery equipped with
At least a part of the surface of the positive electrode plate on the positive electrode current collector side is bonded to the positive electrode current collector via the positive electrode side conductive bonding layer.
At least a part of the surface of the negative electrode plate on the negative electrode current collector side is bonded to the negative electrode current collector via the negative electrode side conductive bonding layer.
The area Sp where the positive electrode current collector and the positive electrode plate are bonded via the positive electrode side conductive bonding layer, and the negative electrode current collector and the negative electrode plate are bonded via the negative electrode side conductive bonding layer. A lithium ion secondary battery is provided in which the area Sn satisfies the relationship of 1.0 ≦ Sn / Sp ≦ 5.0.
本発明のリチウムイオン二次電池の一例の模式断面図である。It is a schematic cross-sectional view of an example of the lithium ion secondary battery of this invention. 配向正極板の板面に垂直な断面の一例を示すSEM像である。It is an SEM image which shows an example of the cross section perpendicular to the plate surface of the oriented positive electrode plate. 図2に示される配向正極板の断面におけるEBSD像である。It is an EBSD image in the cross section of the oriented positive electrode plate shown in FIG. 図3のEBSD像における一次粒子の配向角度の分布を面積基準で示すヒストグラムである。6 is a histogram showing the distribution of the orientation angles of the primary particles in the EBSD image of FIG. 3 on an area basis.
 図1に本発明のリチウムイオン二次電池の一例を模式的に示す。図1に示されるリチウムイオン二次電池10は、正極板12と、負極板14と、セパレータ16と、正極集電体18と、負極集電体20と、電解液22とを備える。正極板12は、導電性カーボンを含有しないリチウム複合酸化物焼結体板である。負極板14は、導電性カーボンを含有しないチタン含有焼結体板である。セパレータ16は、正極板12と負極板14との間に介在される。正極集電体18は、正極板12のセパレータ16から離れた側の面に設けられる。負極集電体20は、負極板14のセパレータ16から離れた側の面に設けられる。電解液22は、正極板12、負極板14、及びセパレータ16に含浸される。正極板12の正極集電体18側の面の少なくとも一部は、正極集電体18と正極側導電性接合層24を介して接合されている。負極板14の負極集電体20側の面の少なくとも一部は、負極集電体20と負極側導電性接合層26を介して接合されている。 FIG. 1 schematically shows an example of the lithium ion secondary battery of the present invention. The lithium ion secondary battery 10 shown in FIG. 1 includes a positive electrode plate 12, a negative electrode plate 14, a separator 16, a positive electrode current collector 18, a negative electrode current collector 20, and an electrolytic solution 22. The positive electrode plate 12 is a lithium composite oxide sintered body plate that does not contain conductive carbon. The negative electrode plate 14 is a titanium-containing sintered body plate that does not contain conductive carbon. The separator 16 is interposed between the positive electrode plate 12 and the negative electrode plate 14. The positive electrode current collector 18 is provided on the surface of the positive electrode plate 12 on the side away from the separator 16. The negative electrode current collector 20 is provided on the surface of the negative electrode plate 14 on the side away from the separator 16. The electrolytic solution 22 is impregnated into the positive electrode plate 12, the negative electrode plate 14, and the separator 16. At least a part of the surface of the positive electrode plate 12 on the positive electrode current collector 18 side is bonded to the positive electrode current collector 18 via the positive electrode side conductive bonding layer 24. At least a part of the surface of the negative electrode plate 14 on the negative electrode current collector 20 side is bonded to the negative electrode current collector 20 via the negative electrode side conductive bonding layer 26.
 そして、正極集電体18及び正極板12が正極側導電性接合層24を介して接合される面積Spと、負極集電体20及び負極板14が負極側導電性接合層26を介して接合される面積Snとが、1.0≦Sn/Sp≦5.0の関係を満たす。なお、正極集電体18及び正極板12が正極側導電性接合層24を介して接合される面積Spは、正極集電体18と正極板12の間でこれらの接合に寄与している正極側導電性接合層24の占有面積を意味し、正極側導電性接合層24が介在することなく正極集電体18及び正極板12が接触又は対向している領域の面積は含まないものとする。同様に、負極集電体20及び負極板14が負極側導電性接合層26を介して接合される面積Snは、負極集電体20と負極板14の間でこれらの接合に寄与している負極側導電性接合層26の占有面積を意味し、負極側導電性接合層26が介在することなく負極集電体20及び負極板14が接触又は対向している領域の面積は含まないものとする。このようにリチウム複合酸化物焼結体板である正極板12と、チタン含有焼結体板である負極板14とを備えたリチウムイオン二次電池10において、正極集電体18及び正極板12が正極側導電性接合層24を介して接合される面積Spと、負極集電体20及び負極板14が負極側導電性接合層26を介して接合される面積Snとが、1.0≦Sn/Sp≦5.0の関係を満たすことで、容量とサイクル特性の両方を向上することができる。 Then, the area Sp where the positive electrode current collector 18 and the positive electrode plate 12 are bonded via the positive electrode side conductive bonding layer 24, and the negative electrode current collector 20 and the negative electrode plate 14 are bonded via the negative electrode side conductive bonding layer 26. The area Sn to be formed satisfies the relationship of 1.0 ≦ Sn / Sp ≦ 5.0. The area Sp in which the positive electrode current collector 18 and the positive electrode plate 12 are bonded via the positive electrode side conductive bonding layer 24 is a positive electrode that contributes to the bonding between the positive electrode current collector 18 and the positive electrode plate 12. It means the occupied area of the side conductive bonding layer 24, and does not include the area of the region where the positive electrode current collector 18 and the positive electrode plate 12 are in contact with each other or facing each other without the positive electrode side conductive bonding layer 24 intervening. .. Similarly, the area Sn where the negative electrode current collector 20 and the negative electrode plate 14 are joined via the negative electrode side conductive bonding layer 26 contributes to these bonding between the negative electrode current collector 20 and the negative electrode plate 14. It means the occupied area of the negative electrode side conductive bonding layer 26, and does not include the area of the region where the negative electrode current collector 20 and the negative electrode plate 14 are in contact with or opposed to each other without the negative electrode side conductive bonding layer 26 intervening. To do. In the lithium ion secondary battery 10 including the positive electrode plate 12 which is a lithium composite oxide sintered body plate and the negative electrode plate 14 which is a titanium-containing sintered body plate, the positive electrode current collector 18 and the positive electrode plate 12 The area Sp where is bonded via the positive electrode side conductive bonding layer 24 and the area Sn where the negative electrode current collector 20 and the negative electrode plate 14 are bonded via the negative electrode side conductive bonding layer 26 are 1.0 ≦. By satisfying the relationship of Sn / Sp ≦ 5.0, both capacitance and cycle characteristics can be improved.
 前述のとおり、導電性カーボンを含有しないリチウム複合酸化物焼結体板(例えばLCO焼結体板)を正極に用い、かつ、導電性カーボンを含有しないチタン含有焼結体板(例えばLTO焼結体板)を負極に用いてリチウムイオン二次電池を実際に作製すると、期待したほどの容量が得られないことが判明した。これは、負極面方向の電子伝導の機能をチタン含有焼結体板で確保しようとした場合、負極面方向の電子伝導性の乏しさに起因して十分に容量を取り出せないためと考えられる。そして、1.0≦Sn/Sp≦5.0の関係を満たすように正極側導電性接合層24及び負極側導電性接合層26を配設することで上記問題が好都合に解消される。それと同時にサイクル特性も向上させることができる。 As described above, a lithium composite oxide sintered body plate containing no conductive carbon (for example, LCO sintered body plate) is used as the positive electrode, and a titanium-containing sintered body plate containing no conductive carbon (for example, LTO sintering) is used. When a lithium ion secondary battery was actually manufactured using the body plate as the negative electrode, it was found that the expected capacity could not be obtained. It is considered that this is because when the titanium-containing sintered plate is used to secure the function of electron conduction in the direction of the negative electrode surface, the capacity cannot be sufficiently taken out due to the lack of electron conductivity in the direction of the negative electrode surface. Then, by arranging the positive electrode side conductive bonding layer 24 and the negative electrode side conductive bonding layer 26 so as to satisfy the relationship of 1.0 ≦ Sn / Sp ≦ 5.0, the above problem can be conveniently solved. At the same time, the cycle characteristics can be improved.
 このことは以下のようなものと考えられる。すなわち、Sn/Spが1.0以上であるということは、負極集電体20及び負極板14が負極側導電性接合層26を介して接合される面積Snが、正極集電体18及び正極板12が正極側導電性接合層24を介して接合される面積Spと同等以上であることを意味する。すなわち、負極集電体20及び負極板14の接合面積Snを上記面積Spと同等以上のサイズに大きくすることで、負極集電体20及び負極側導電性接合層26が負極面方向の電子伝導機能を補い、十分な容量を取り出せるようになるものと考えられる。また、Sn/Spが1.0~5.0であるということは、正極集電体18及び正極板12の接合面積Spを上記面積Snと同等以下のサイズに小さくするが過度に小さくしすぎないことを意味し、かかる選択的な範囲となるように正極集電体18及び正極板12の接合面積Spを調整することでサイクル特性の向上を実現することができる。この点、正極集電体18及び正極板12の接合面積Spを上記面積Snよりも大きくした場合(すなわちSn/Spが1.0未満)、負極板14(すなわち負極活物質)に対向していない正極集電体18に接合された正極板12(正極活物質)の部分も充放電に大きく寄与してしまい、充放電に寄与する正極板12内に電位分布が発生し、電解液等の酸化分解による被膜が不均一に成長してしまうことでサイクル特性が悪化するものと考えられる。また、正極集電体18及び正極板12の接合面積Spを上記面積Snの5分の1未満にまで小さくしすぎた場合(すなわちSn/Spが5.0超)、正極板12を構成するリチウム複合酸化物(例えばLCO)のリチウム吸蔵/放出に伴う膨張収縮が負極板14を構成するチタン含有焼結体(例えばLTO)に対して大きいため、充放電に伴う正極板12の膨張収縮により正極板12と正極集電体18の剥離が進行しサイクル特性が悪化するものと考えられる。上記観点から、Sn/Sp比は1.0~5.0であるが、好ましくは1.1~5.0、より好ましくは1.5~5.0、さらに好ましくは2.5~5.0である。 This is considered to be as follows. That is, when Sn / Sp is 1.0 or more, the area Sn where the negative electrode current collector 20 and the negative electrode plate 14 are joined via the negative electrode side conductive bonding layer 26 is the positive electrode current collector 18 and the positive electrode. This means that the plate 12 has an area Sp equal to or larger than the area Sp joined via the positive electrode side conductive bonding layer 24. That is, by increasing the joint area Sn of the negative electrode current collector 20 and the negative electrode plate 14 to a size equal to or larger than the area Sp, the negative electrode current collector 20 and the negative electrode side conductive joint layer 26 conduct electron conduction in the negative electrode surface direction. It is thought that it will be possible to supplement the function and take out sufficient capacity. Further, the fact that Sn / Sp is 1.0 to 5.0 means that the joint area Sp of the positive electrode current collector 18 and the positive electrode plate 12 is reduced to a size equal to or smaller than the above area Sn, but is excessively small. By adjusting the joint area Sp of the positive electrode current collector 18 and the positive electrode plate 12 so as to be within such a selective range, it is possible to improve the cycle characteristics. In this respect, when the joint area Sp of the positive electrode current collector 18 and the positive electrode plate 12 is larger than the above area Sn (that is, Sn / Sp is less than 1.0), it faces the negative electrode plate 14 (that is, the negative electrode active material). The portion of the positive electrode plate 12 (positive electrode active material) bonded to the positive electrode current collector 18 also contributes significantly to charging and discharging, and a potential distribution is generated in the positive electrode plate 12 that contributes to charging and discharging, so that the electrolytic solution and the like are charged. It is considered that the cycle characteristics deteriorate due to the non-uniform growth of the film due to oxidative decomposition. Further, when the joint area Sp of the positive electrode current collector 18 and the positive electrode plate 12 is made too small to be less than one-fifth of the area Sn (that is, Sn / Sp exceeds 5.0), the positive electrode plate 12 is formed. Since the expansion and contraction of the lithium composite oxide (for example, LCO) due to occlusion / release of lithium is larger than that of the titanium-containing sintered body (for example, LTO) constituting the negative electrode plate 14, due to the expansion and contraction of the positive electrode plate 12 due to charge and discharge. It is considered that the positive electrode plate 12 and the positive electrode current collector 18 are separated from each other and the cycle characteristics are deteriorated. From the above viewpoint, the Sn / Sp ratio is 1.0 to 5.0, preferably 1.1 to 5.0, more preferably 1.5 to 5.0, and further preferably 2.5 to 5. It is 0.
 前述のとおり、負極板14の負極集電体20側の面の少なくとも一部が、負極集電体20と負極側導電性接合層26を介して接合されており、好ましくは負極板14の負極集電体20側の面の少なくとも70%、より好ましくは少なくとも80%、さらに好ましくは90%、最も好ましくは全部(100%)が、負極集電体20と負極側導電性接合層26を介して接合されている。このように負極側導電性接合層26による接合面積割合を大きくすることで、負極集電体20及び負極側導電性接合層26が負極面方向の電子伝導機能をより効果的に補うことができ、より多くの容量を取り出せるようになる。 As described above, at least a part of the surface of the negative electrode plate 14 on the negative electrode current collector 20 side is bonded to the negative electrode current collector 20 via the negative electrode side conductive bonding layer 26, and the negative electrode of the negative electrode plate 14 is preferable. At least 70%, more preferably at least 80%, even more preferably 90%, and most preferably all (100%) of the surface on the current collector 20 side is via the negative electrode current collector 20 and the negative electrode side conductive bonding layer 26. Are joined together. By increasing the ratio of the bonding area by the negative electrode side conductive bonding layer 26 in this way, the negative electrode current collector 20 and the negative electrode side conductive bonding layer 26 can more effectively supplement the electron conduction function in the negative electrode surface direction. , You will be able to take out more capacity.
 正極板12は、導電性カーボンを含有しないリチウム複合酸化物焼結体板である。正極板12が焼結体板であるということは、正極板12がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。そして、正極板12がバインダーを含まないことで、電解液22による正極の劣化を回避できるとの利点がある。なお、焼結体板を構成するリチウム複合酸化物は、コバルト酸リチウム(典型的にはLiCoO(以下、LCOと略称することがある))であるのが特に好ましい。様々なリチウム複合酸化物焼結体板ないしLCO焼結体板が知られており、例えば特許文献1(特許第5587052号公報)や特許文献2(特許第6374634号公報)に開示されるものを使用することができる。 The positive electrode plate 12 is a lithium composite oxide sintered body plate that does not contain conductive carbon. The fact that the positive electrode plate 12 is a sintered body plate means that the positive electrode plate 12 does not contain a binder or a conductive auxiliary agent. This is because even if the green sheet contains a binder, the binder disappears or burns out during firing. Since the positive electrode plate 12 does not contain a binder, there is an advantage that deterioration of the positive electrode due to the electrolytic solution 22 can be avoided. The lithium composite oxide constituting the sintered body plate is particularly preferably lithium cobalt oxide (typically LiCoO 2 (hereinafter, may be abbreviated as LCO)). Various lithium composite oxide sintered plates or LCO sintered plates are known, and those disclosed in, for example, Patent Document 1 (Patent No. 5587052) and Patent Document 2 (Patent No. 6374634) are known. Can be used.
 本発明の好ましい態様によれば、正極板12、すなわちリチウム複合酸化物焼結体板は、リチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板である。図2に配向正極板12の板面に垂直な断面SEM像の一例を示す一方、図3に配向正極板12の板面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す。また、図4に、図3のEBSD像における一次粒子11の配向角度の分布を面積基準で示すヒストグラムを示す。図3に示されるEBSD像では、結晶方位の不連続性を観測することができる。図3では、各一次粒子11の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子11の(003)面が板面方向に対して成す傾斜角度である。なお、図2及び3において、配向正極板12の内部で黒表示されている箇所は気孔である。 According to a preferred embodiment of the present invention, the positive electrode plate 12, that is, the lithium composite oxide sintered body plate contains a plurality of primary particles composed of the lithium composite oxide, and the plurality of primary particles are formed on the plate surface of the positive electrode plate. On the other hand, the oriented positive electrode plate is oriented at an average orientation angle of more than 0 ° and 30 ° or less. FIG. 2 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the oriented positive electrode plate 12, while FIG. 3 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the oriented positive electrode plate 12. Is shown. Further, FIG. 4 shows a histogram showing the distribution of the orientation angles of the primary particles 11 in the EBSD image of FIG. 3 on an area basis. In the EBSD image shown in FIG. 3, the discontinuity of the crystal orientation can be observed. In FIG. 3, the orientation angle of each primary particle 11 is shown by the shade of color, and the darker the color, the smaller the orientation angle. The orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction. In addition, in FIGS. 2 and 3, the portion shown in black inside the oriented positive electrode plate 12 is a pore.
 配向正極板12は、互いに結合された複数の一次粒子11で構成された配向焼結体である。各一次粒子11は、主に板状であるが、直方体状、立方体状及び球状などに形成されたものが含まれていてもよい。各一次粒子11の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。 The oriented positive electrode plate 12 is an oriented sintered body composed of a plurality of primary particles 11 bonded to each other. Each primary particle 11 is mainly plate-shaped, but may include those formed in a rectangular parallelepiped shape, a cube shape, a spherical shape, or the like. The cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complicated shape other than these.
 各一次粒子11はリチウム複合酸化物で構成される。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni及びMnの1種以上を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。 Each primary particle 11 is composed of a lithium composite oxide. The lithium composite oxide is Li x MO 2 (0.05 <x <1.10, M is at least one transition metal, and M is typically one or more of Co, Ni and Mn. It is an oxide represented by). Lithium composite oxide has a layered rock salt structure. The layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately laminated with an oxygen layer in between, that is, a transition metal ion layer and a lithium single layer are alternately laminated via oxide ions. It refers to a laminated crystal structure (typically, an α-NaFeO type 2 structure, that is, a structure in which a transition metal and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure). Examples of lithium composite oxides are Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NimnO 2 (lithium nickel manganate). , Li x NiCoO 2 (nickel cobalt lithium), Li x CoNiMnO 2 (cobalt-nickel-lithium manganate), Li x CoMnO 2 (cobalt-lithium manganate), and the like, particularly preferably Li x CoO 2 (Lithium cobaltate, typically LiCoO 2 ). Lithium composite oxides include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba. , Bi, and W may contain one or more elements selected from.
 図3及び4に示されるように、各一次粒子11の配向角度の平均値、すなわち平均配向角度は0°超30°以下である。これにより、以下の様々な利点がもたらされる。第一に、各一次粒子11が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子11と当該一次粒子11の長手方向両側に隣接する他の一次粒子11との間におけるリチウムイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、レート特性をより向上させることができる。これは、上述のとおり、リチウムイオンの出入りに際して、配向正極板12では、板面方向よりも厚み方向における膨張収縮が優勢となるため、配向正極板12の膨張収縮がスムーズになるところ、それに伴ってリチウムイオンの出入りもスムーズになるからである。 As shown in FIGS. 3 and 4, the average value of the orientation angles of each primary particle 11, that is, the average orientation angle is more than 0 ° and 30 ° or less. This brings the following various advantages: First, since each of the primary particles 11 is laid in a direction inclined with respect to the thickness direction, the adhesion between the primary particles can be improved. As a result, the lithium ion conductivity between a certain primary particle 11 and the other primary particles 11 adjacent to both sides in the longitudinal direction of the primary particle 11 can be improved, so that the rate characteristic can be improved. Secondly, the rate characteristics can be further improved. This is because, as described above, when lithium ions enter and exit, the oriented positive electrode plate 12 is dominated by expansion and contraction in the thickness direction rather than the plate surface direction, so that the expansion and contraction of the oriented positive electrode plate 12 becomes smooth. This is because the lithium ions can enter and exit smoothly.
 一次粒子11の平均配向角度は、以下の手法によって得られる。まず、図3に示されるような、95μm×125μmの矩形領域を1000倍の倍率で観察したEBSD像において、配向正極板12を厚み方向に四等分する3本の横線と、配向正極板12を板面方向に四等分する3本の縦線とを引く。次に、3本の横線と3本の縦線のうち少なくとも1本の線と交差する一次粒子11すべての配向角度を算術平均することによって、一次粒子11の平均配向角度を得る。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。 The average orientation angle of the primary particles 11 can be obtained by the following method. First, in an EBSD image in which a rectangular region of 95 μm × 125 μm is observed at a magnification of 1000 as shown in FIG. 3, three horizontal lines that divide the oriented positive electrode plate 12 into four equal parts in the thickness direction and the oriented positive electrode plate 12 Draw three vertical lines that divide the plate into four equal parts in the direction of the plate surface. Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 that intersect at least one of the three horizontal lines and the three vertical lines. The average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics. The average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
 図4に示されるように、各一次粒子11の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°超30°以下の領域に分布していることが好ましい。すなわち、配向正極板12を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうち配向正極板12の板面に対する配向角度が0°超30°以下である一次粒子11(以下、低角一次粒子という)の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子11の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して15%以上であることがより好ましい。 As shown in FIG. 4, the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of them are distributed in a region of more than 0 ° and 30 ° or less. Is preferable. That is, when the cross section of the oriented sintered body constituting the oriented positive electrode plate 12 is analyzed by EBSD, the orientation angle of the oriented positive electrode plate 12 with respect to the plate surface of the primary particles 11 included in the analyzed cross section is 0 °. The total area of the primary particles 11 (hereinafter referred to as low-angle primary particles) having an ultra-30 ° or less is the primary particles 11 included in the cross section (specifically, the 30 primary particles 11 used to calculate the average orientation angle). It is preferably 70% or more, more preferably 80% or more, based on the total area of the particles. As a result, the proportion of the primary particles 11 having high mutual adhesion can be increased, so that the rate characteristics can be further improved. Further, it is more preferable that the total area of the low-angle primary particles having an orientation angle of 20 ° or less is 50% or more of the total area of the 30 primary particles 11 used for calculating the average orientation angle. .. Further, it is more preferable that the total area of the low-angle primary particles having an orientation angle of 10 ° or less is 15% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. ..
 配向焼結体を構成する複数の一次粒子の平均粒径が5μm以上であるのが好ましい。具体的には、平均配向角度の算出に用いた30個の一次粒子11の平均粒径が、5μm以上であることが好ましく、より好ましくは7μm以上、さらに好ましくは12μm以上である。これにより、リチウムイオンが伝導する方向における一次粒子11同士の粒界数が少なくなって全体としてのリチウムイオン伝導性が向上するため、レート特性をより向上させることができる。一次粒子11の平均粒径は、各一次粒子11の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各一次粒子11と同じ面積を有する円の直径のことである。 The average particle size of the plurality of primary particles constituting the oriented sintered body is preferably 5 μm or more. Specifically, the average particle size of the 30 primary particles 11 used in the calculation of the average orientation angle is preferably 5 μm or more, more preferably 7 μm or more, still more preferably 12 μm or more. As a result, the number of grain boundaries between the primary particles 11 in the direction in which the lithium ions are conducted is reduced, and the lithium ion conductivity as a whole is improved, so that the rate characteristics can be further improved. The average particle size of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 11. The equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
 正極板12は気孔を含んでいるのが好ましい。焼結体が気孔、特に開気孔を含むことで、正極板として電池に組み込まれた場合に、電解液を焼結体の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。これは、焼結体内におけるリチウムイオンの伝導は、焼結体の構成粒子を経る伝導と、気孔内の電解液を経る伝導の2種類があるところ、気孔内の電解液を経る伝導の方が圧倒的に速いためである。 The positive electrode plate 12 preferably contains pores. The inclusion of pores, especially open pores, in the sintered body allows the electrolyte to penetrate into the sintered body when incorporated into the battery as a positive electrode plate, resulting in improved lithium ion conductivity. be able to. This is because there are two types of conduction of lithium ions in the sintered body: conduction through the constituent particles of the sintered body and conduction through the electrolytic solution in the pores, but conduction through the electrolytic solution in the pores is better. This is because it is overwhelmingly fast.
 正極板12、すなわちリチウム複合酸化物焼結体板は気孔率が20~60%であるのが好ましく、より好ましくは25~55%、さらに好ましくは30~50%、特に好ましくは30~45%である。気孔による応力開放効果、及び高容量化が期待できるとともに、一次粒子11同士の相互密着性をより向上できるため、レート特性をより向上させることができる。焼結体の気孔率は、正極板の断面をCP(クロスセクションポリッシャ)研磨にて研磨した後に1000倍率でSEM観察して、得られたSEM画像を2値化することで算出される。配向焼結体の内部に形成される各気孔の平均円相当径は特に制限されないが、好ましくは8μm以下である。各気孔の平均円相当径が小さいほど、一次粒子11同士の相互密着性をさらに向上することができ、その結果、レート特性をさらに向上させることができる。気孔の平均円相当径は、EBSD像上の10個の気孔の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各気孔と同じ面積を有する円の直径のことである。配向焼結体の内部に形成される各気孔は、正極板12の外部につながる開気孔であるのが好ましい。 The positive electrode plate 12, that is, the lithium composite oxide sintered body plate, preferably has a porosity of 20 to 60%, more preferably 25 to 55%, still more preferably 30 to 50%, and particularly preferably 30 to 45%. Is. The stress release effect due to the pores and the increase in capacity can be expected, and the mutual adhesion between the primary particles 11 can be further improved, so that the rate characteristics can be further improved. The porosity of the sintered body is calculated by polishing the cross section of the positive electrode plate by CP (cross section polisher) polishing, observing the SEM at a magnification of 1000, and binarizing the obtained SEM image. The average circle-equivalent diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 μm or less. The smaller the average circle equivalent diameter of each pore, the more the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved. The average circle-equivalent diameter of the pores is a value obtained by arithmetically averaging the circle-equivalent diameters of 10 pores on the EBSD image. The equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image. It is preferable that each pore formed inside the oriented sintered body is an open pore connected to the outside of the positive electrode plate 12.
 正極板12、すなわちリチウム複合酸化物焼結体板の平均気孔径は0.1~10.0μmであるのが好ましく、より好ましくは0.2~5.0μm、さらに好ましくは0.3~3.0μmである。上記範囲内であると、大きな気孔の局所における応力集中の発生を抑制して、焼結体内における応力が均一に開放されやすくなる。 The positive electrode plate 12, that is, the lithium composite oxide sintered body plate, preferably has an average pore diameter of 0.1 to 10.0 μm, more preferably 0.2 to 5.0 μm, and further preferably 0.3 to 3. It is 0.0 μm. Within the above range, the occurrence of local stress concentration in large pores is suppressed, and the stress in the sintered body is easily released uniformly.
 正極板12の厚さは60~450μmであるのが好ましく、より好ましくは70~350μm、さらに好ましくは90~300μmである。このような範囲内であると、単位面積当りの活物質容量を高めてリチウムイオン二次電池10のエネルギー密度を向上するとともに、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制できる。 The thickness of the positive electrode plate 12 is preferably 60 to 450 μm, more preferably 70 to 350 μm, and even more preferably 90 to 300 μm. Within such a range, the active material capacity per unit area is increased to improve the energy density of the lithium ion secondary battery 10, and the battery characteristics deteriorate (particularly, the resistance value increases) due to repeated charging and discharging. Can be suppressed.
 負極板14は、導電性カーボンを含有しないチタン含有焼結体板である。チタン含有焼結体板は、チタン酸リチウムLiTi12(以下、LTO)又はニオブチタン複合酸化物NbTiOを含むのが好ましく、より好ましくはLTOを含む。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLiTi12(スピネル構造)とLiTi12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。 The negative electrode plate 14 is a titanium-containing sintered body plate that does not contain conductive carbon. The titanium-containing sintered plate preferably contains lithium titanate Li 4 Ti 5 O 12 (hereinafter, LTO) or niobium-titanium composite oxide Nb 2 TiO 7 , and more preferably contains LTO. Although LTO is typically known to have a spinel-type structure, other structures may be adopted during charging / discharging. For example, LTO reacts in a two-phase coexistence of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charging and discharging. Therefore, LTO is not limited to the spinel structure.
 負極板14が焼結体板であるということは、負極板14がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。負極板にはバインダーが含まれないため、負極活物質(例えばLTO又はNbTiO)の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。LTO焼結体板は、特許文献3(特開2015-185337号公報)及び特許文献4(特許第6392493号公報)に記載される方法に従って製造することができる。 The fact that the negative electrode plate 14 is a sintered body plate means that the negative electrode plate 14 does not contain a binder or a conductive auxiliary agent. This is because even if the green sheet contains a binder, the binder disappears or burns out during firing. Since the negative electrode plate does not contain a binder, a high capacity and good charge / discharge efficiency can be obtained by increasing the packing density of the negative electrode active material (for example, LTO or Nb 2 TiO 7). The LTO sintered body plate can be produced according to the methods described in Patent Document 3 (Japanese Patent Laid-Open No. 2015-185337) and Patent Document 4 (Patent No. 6392493).
 負極板14、すなわちチタン含有焼結体板は、複数の(すなわち多数の)一次粒子が結合した構造を有している。したがって、これらの一次粒子がLTO又はNbTiOで構成されるのが好ましい。 The negative electrode plate 14, that is, the titanium-containing sintered body plate, has a structure in which a plurality of (that is, a large number of) primary particles are bonded. Therefore, it is preferable that these primary particles are composed of LTO or Nb 2 TiO 7.
 負極板14の厚さは、70~500μmが好ましく、好ましくは85~400μm、より好ましくは95~350μmである。LTO焼結体板が厚いほど、高容量及び高エネルギー密度の電池を実現しやすくなる。負極板14の厚さは、例えば、負極板14の断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される板面間の距離を測定することで得られる。 The thickness of the negative electrode plate 14 is preferably 70 to 500 μm, preferably 85 to 400 μm, and more preferably 95 to 350 μm. The thicker the LTO sintered body plate, the easier it is to realize a battery with a high capacity and a high energy density. The thickness of the negative electrode plate 14 can be obtained, for example, by measuring the distance between the plate surfaces observed substantially in parallel when the cross section of the negative electrode plate 14 is observed by an SEM (scanning electron microscope).
 負極板14を構成する複数の一次粒子の平均粒径である一次粒径は1.2μm以下が好ましく、より好ましくは0.02~1.2μm、さらに好ましくは0.05~0.7μmである。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。 The primary particle size, which is the average particle size of the plurality of primary particles constituting the negative electrode plate 14, is preferably 1.2 μm or less, more preferably 0.02 to 1.2 μm, and further preferably 0.05 to 0.7 μm. .. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
 負極板14は気孔を含んでいるのが好ましい。焼結体板が気孔、特に開気孔を含むことで、負極板として電池に組み込まれた場合に、電解液を焼結体板の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。これは、焼結体内におけるリチウムイオンの伝導は、焼結体の構成粒子を経る伝導と、気孔内の電解液を経る伝導の2種類があるところ、気孔内の電解液を経る伝導の方が圧倒的に速いためである。 The negative electrode plate 14 preferably contains pores. By including pores, especially open pores, in the sintered body plate, when incorporated into a battery as a negative electrode plate, the electrolytic solution can permeate the inside of the sintered body plate, and as a result, lithium ion conductivity is improved. Can be improved. This is because there are two types of conduction of lithium ions in the sintered body: conduction through the constituent particles of the sintered body and conduction through the electrolytic solution in the pores, but conduction through the electrolytic solution in the pores is better. This is because it is overwhelmingly fast.
 負極板14の気孔率は20~60%が好ましく、より好ましくは30~55%、さらに好ましくは35~50%である。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。 The porosity of the negative electrode plate 14 is preferably 20 to 60%, more preferably 30 to 55%, and even more preferably 35 to 50%. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
 負極板14の平均気孔径は0.08~5.0μmであり、好ましくは0.1~3.0μm、より好ましく0.12~1.5μmである。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。 The average pore diameter of the negative electrode plate 14 is 0.08 to 5.0 μm, preferably 0.1 to 3.0 μm, and more preferably 0.12 to 1.5 μm. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
 セパレータ16は、セルロース製、ポリオレフィン製、ポリイミド製、ポリエステル製(例えばポリエチレンテレフタレート(PET))又はセラミック製のセパレータであるのが好ましい。セルロース製のセパレータは安価でかつ耐熱性に優れる点で有利である。また、ポリイミド製、ポリエステル製(例えばポリエチレンテレフタレート(PET))又はセルロース製のセパレータは、広く用いられている、耐熱性に劣るポリオレフィン製セパレータとは異なり、それ自体の耐熱性に優れるだけでなく、電解液成分に対する濡れ性にも優れる。したがって、電解液をセパレータに(弾かせることなく)十分に浸透させることができる。一方、セラミック製のセパレータは、耐熱性に優れるのは勿論のこと、正極板12及び負極板14と一緒に全体として1つの一体焼結体として製造できるとの利点がある。セラミックセパレータの場合、セパレータを構成するセラミックはMgO、Al、ZrO、SiC、Si、AlN、及びコーディエライトから選択される少なくとも1種であるのが好ましく、より好ましくはMgO、Al、及びZrOから選択される少なくとも1種である。 The separator 16 is preferably a separator made of cellulose, polyolefin, polyimide, polyester (for example, polyethylene terephthalate (PET)) or ceramic. Cellulose separators are advantageous in that they are inexpensive and have excellent heat resistance. Further, the polyimide, polyester (for example, polyethylene terephthalate (PET)) or cellulose separator is different from the widely used polyolefin separator, which is inferior in heat resistance, and not only has excellent heat resistance in itself, but also. It also has excellent wettability to electrolyte components. Therefore, the electrolytic solution can be sufficiently permeated into the separator (without repelling). On the other hand, the ceramic separator has an advantage that it is excellent in heat resistance and can be manufactured together with the positive electrode plate 12 and the negative electrode plate 14 as one integrally sintered body as a whole. In the case of a ceramic separator, the ceramic constituting the separator is preferably at least one selected from MgO, Al 2 O 3 , ZrO 2 , SiC, Si 3 N 4 , Al N, and cordierite, and more preferably. At least one selected from MgO, Al 2 O 3 , and ZrO 2.
 電解液22は特に限定されず、有機溶媒等の非水溶媒中にリチウム塩を溶解させた液等、リチウム電池用の市販の電解液を使用すればよい。非水溶媒の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、フルオロエチレンカーボネート(FEC)等の環状カーボネートや、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネートや、テトラヒドロフラン(THF)等の環状エーテルや、ジメトキシエタン(DME)等の鎖状エーテル、γ-ブチロラクトン(GBL)等のラクトン、アセトニトリル(AN)等のニトリル、スルホラン(SL)等の環状スルホン、プロパンスルトン(PS)等の環状スルホン酸エステル等が挙げられる。こうした非水溶媒は単独でも2種類以上の混合物として用いてもよい。リチウム塩の例としては、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)四フッ化ホウ酸リチウム(LiBF)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビスフルオロスルホニルイミド(LiFSI)、リチウムビス(オキサレート)ボレート(LiBOB)等が挙げられる。こうしたリチウム塩は単独でも2種類以上の混合物として用いてもよい。電解液22におけるリチウム塩濃度は0.5~2mol/Lであるのが好ましく、より好ましくは0.6~1.9mol/L、さらに好ましくは0.7~1.7mol/L、特に好ましくは0.8~1.5mol/Lである。 The electrolytic solution 22 is not particularly limited, and a commercially available electrolytic solution for lithium batteries, such as a solution in which a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent, may be used. Examples of non-aqueous solvents include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), vinylethylene carbonate (VEC), and fluoroethylene carbonate (FEC), and dimethyl carbonate (DMC). , Diethyl carbonate (DEC), Ethylmethyl carbonate (EMC) and other chain carbonates, tetrahydrofuran (THF) and other cyclic ethers, dimethoxyethane (DME) and other chain ethers, γ-butyrolactone (GBL) and other lactones. , Nitrile such as acetonitrile (AN), cyclic sulfone such as sulfolane (SL), cyclic sulfonic acid ester such as propane sulton (PS) and the like. Such a non-aqueous solvent may be used alone or as a mixture of two or more kinds. Examples of lithium salts include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), and lithium. Examples thereof include bisfluorosulfonylimide (LiFSI) and lithium bis (oxalate) borate (LiBOB). Such lithium salts may be used alone or as a mixture of two or more kinds. The lithium salt concentration in the electrolytic solution 22 is preferably 0.5 to 2 mol / L, more preferably 0.6 to 1.9 mol / L, still more preferably 0.7 to 1.7 mol / L, and particularly preferably 0.7 to 1.7 mol / L. It is 0.8 to 1.5 mol / L.
 好ましくは、リチウムイオン二次電池10は1対の外装フィルム28をさらに備え、外装フィルム28の外周縁が互いに封止されて内部空間を成し、この内部空間に正極集電体18、正極側導電性接合層24、正極板12、セパレータ16、負極板14、負極側導電性接合層26、負極集電体20及び電解液22(以下、まとめて電池要素という)を収容する。すなわち、図1に示されるように、リチウムイオン二次電池10の中身である電池要素は、1対の外装フィルム28で包装され且つ封止されており、その結果、リチウムイオン二次電池10はいわゆるフィルム外装電池の形態とされる。リチウムイオン二次電池10の外縁は外装フィルム28同士が熱融着されることで封止されるのが好ましい。熱融着による封止はヒートシール用途で一般的に使用される、ヒートバー(加熱バーとも称される)を用いて行うのが好ましい。典型的には、リチウムイオン二次電池10の四辺形の形状であり、1対の外装フィルム28の外周縁が外周4辺の全てにわたって封止されるのが好ましい。 Preferably, the lithium ion secondary battery 10 further includes a pair of exterior films 28, and the outer peripheral edges of the exterior films 28 are sealed with each other to form an internal space, in which the positive electrode current collector 18 and the positive electrode side are formed. Containing the conductive bonding layer 24, the positive electrode plate 12, the separator 16, the negative electrode plate 14, the negative electrode side conductive bonding layer 26, the negative electrode current collector 20, and the electrolytic solution 22 (hereinafter collectively referred to as battery elements). That is, as shown in FIG. 1, the battery elements that are the contents of the lithium ion secondary battery 10 are packaged and sealed with a pair of exterior films 28, and as a result, the lithium ion secondary battery 10 is It is in the form of a so-called film exterior battery. The outer edge of the lithium ion secondary battery 10 is preferably sealed by heat-sealing the exterior films 28 to each other. Sealing by heat fusion is preferably performed using a heat bar (also referred to as a heating bar), which is generally used for heat sealing. Typically, it has a quadrilateral shape of the lithium ion secondary battery 10, and it is preferable that the outer peripheral edge of the pair of exterior films 28 is sealed over all four outer peripheral edges.
 外装フィルム28は、市販の外装フィルムを使用すればよい。外装フィルム28の厚さは1枚当たり50~80μmが好ましく、より好ましくは55~70μm、さらに好ましくは55~65μmである。好ましい外装フィルム28は、樹脂フィルムと金属箔とを含むラミネートフィルムであり、より好ましくは樹脂フィルムとアルミニウム箔とを含むアルミラミネートフィルムである。ラミネートフィルムはアルミニウム箔等の金属箔の両面に樹脂フィルムが設けられているのが好ましい。この場合、金属箔の一方の側の樹脂フィルム(以下、表面保護膜という)がナイロン、ポリアミド、ポリエチレンテレフタレート、ポリイミド、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン等の補強性に優れた材料で構成され、金属箔の他方の側の樹脂フィルムがポリプロピレン等のヒートシール材料で構成されるのが好ましい。 As the exterior film 28, a commercially available exterior film may be used. The thickness of the exterior film 28 is preferably 50 to 80 μm, more preferably 55 to 70 μm, and even more preferably 55 to 65 μm per sheet. The preferred exterior film 28 is a laminated film containing a resin film and a metal foil, and more preferably an aluminum laminated film containing a resin film and an aluminum foil. As the laminated film, it is preferable that resin films are provided on both sides of a metal foil such as an aluminum foil. In this case, the resin film on one side of the metal foil (hereinafter referred to as the surface protective film) is made of a material having excellent reinforcing properties such as nylon, polyamide, polyethylene terephthalate, polyimide, polytetrafluoroethylene, and polychlorotrifluoroethylene. The resin film on the other side of the metal foil is preferably made of a heat-sealing material such as polypropylene.
 正極集電体18は正極板12のセパレータ16から離れた側の面に設けられる一方、負極集電体20は負極板14のセパレータ16から離れた側の面に設けられる。したがって、正極集電体15は正極板12と外装フィルム28との間に介在する一方、負極集電体20は負極板14と外装フィルム28との間に介在する。好ましくは、正極集電体15と外装フィルム28の一方が接着されており、かつ、負極集電体20と外装フィルム28の他方が接着されている。正極集電体15及び負極集電体20は特に限定されないが、好ましくは銅箔やアルミニウム箔等の金属箔である。 The positive electrode current collector 18 is provided on the surface of the positive electrode plate 12 on the side away from the separator 16, while the negative electrode current collector 20 is provided on the surface of the negative electrode plate 14 on the side away from the separator 16. Therefore, the positive electrode current collector 15 is interposed between the positive electrode plate 12 and the exterior film 28, while the negative electrode current collector 20 is interposed between the negative electrode plate 14 and the exterior film 28. Preferably, one of the positive electrode current collector 15 and the exterior film 28 is adhered, and the other of the negative electrode current collector 20 and the exterior film 28 is adhered. The positive electrode current collector 15 and the negative electrode current collector 20 are not particularly limited, but are preferably metal foils such as copper foil and aluminum foil.
 正極タブ端子19は、正極集電体18に接続し、1対の外装フィルム28の封止部分から外側に延出する一方、負極タブ端子(図示せず)は、負極集電体20に接続し、1対の外装フィルム28の封止部分から外側に延出する。なお、図1では負極タブ端子は正極タブ端子19に奥に隠れているため描かれていない。より具体的には、正極タブ端子19及び負極タブ端子は、外装フィルム28の封止部分の共通の1辺の異なる位置又は異なる辺から延出している。正極タブ端子19及び負極タブ端子は特に限定されないが、正極集電体15及び負極集電体20とそれぞれ同じ又は異なる材料であることができ、好ましくは銅箔やアルミニウム箔等の金属箔である。また、正極タブ端子19と正極集電体15との接続、及び負極タブ端子と負極集電体20との接続は、溶接、接着剤等の公知の接続手法により行えばよく特に限定されない。あるいは、正極タブ端子19及び正極集電体15、又は負極タブ端子及び負極集電体20は、同じ材料で作製された一体品であってもよい。 The positive electrode tab terminal 19 is connected to the positive electrode current collector 18 and extends outward from the sealing portion of the pair of exterior films 28, while the negative electrode tab terminal (not shown) is connected to the negative electrode current collector 20. Then, it extends outward from the sealing portion of the pair of exterior films 28. In FIG. 1, the negative electrode tab terminal is not drawn because it is hidden behind the positive electrode tab terminal 19. More specifically, the positive electrode tab terminal 19 and the negative electrode tab terminal extend from different positions or different sides of a common one side of the sealing portion of the exterior film 28. The positive electrode tab terminal 19 and the negative electrode tab terminal are not particularly limited, but may be the same or different materials as the positive electrode current collector 15 and the negative electrode current collector 20, and are preferably metal foils such as copper foil and aluminum foil. .. Further, the connection between the positive electrode tab terminal 19 and the positive electrode current collector 15 and the connection between the negative electrode tab terminal and the negative electrode current collector 20 may be performed by a known connection method such as welding or adhesive, and are not particularly limited. Alternatively, the positive electrode tab terminal 19 and the positive electrode current collector 15, or the negative electrode tab terminal and the negative electrode current collector 20 may be an integral product made of the same material.
 正極板12の正極集電体18側の面の少なくとも一部は、正極集電体18と正極側導電性接合層24を介して接合されている。負極板14の負極集電体20側の面の少なくとも一部は、負極集電体20と負極側導電性接合層26を介して接合されている。正極側導電性接合層24及び負極側導電性接合層26はいずれも、公知ないし市販の導電性接着剤を用いればよく特に限定されないが、例えば、導電材、結着剤、及び所望により増粘剤を所定の配合割合で含むものが挙げられる。導電材の例としては、カーボンブラック、アセチレンブラック、黒鉛、カーボンファイバー、カーボンナノチューブ等の導電性カーボン材料が挙げられる。結着剤の例としては、アクリルバインダー、スチレンブタジエンゴムバインダー等が挙げられる。増粘剤の例としては、カルボキシメチルセルロース等が挙げられる。 At least a part of the surface of the positive electrode plate 12 on the positive electrode current collector 18 side is bonded to the positive electrode current collector 18 via the positive electrode side conductive bonding layer 24. At least a part of the surface of the negative electrode plate 14 on the negative electrode current collector 20 side is bonded to the negative electrode current collector 20 via the negative electrode side conductive bonding layer 26. The positive electrode side conductive bonding layer 24 and the negative electrode side conductive bonding layer 26 are not particularly limited as long as a known or commercially available conductive adhesive is used, but for example, a conductive material, a binder, and, if desired, thickening. Examples thereof include those containing an agent in a predetermined compounding ratio. Examples of the conductive material include conductive carbon materials such as carbon black, acetylene black, graphite, carbon fiber, and carbon nanotubes. Examples of the binder include an acrylic binder, a styrene-butadiene rubber binder, and the like. Examples of thickeners include carboxymethyl cellulose and the like.
 正極板の製造方法
 正極板12、すなわちリチウム複合酸化物焼結体板はいかなる方法で製造されたものであってもよいが、好ましくは、(a)リチウム複合酸化物含有グリーンシートの作製、(b)所望により行われる過剰リチウム源含有グリーンシートの作製、並びに(c)グリーンシートの積層及び焼成を経て製造される。
Method for Producing Positive Electrode Plate The positive electrode plate 12, that is, the lithium composite oxide sintered body plate may be produced by any method, but preferably (a) preparation of a lithium composite oxide-containing green sheet, (a) b) The green sheet containing an excess lithium source is produced as desired, and (c) the green sheet is laminated and fired.
(a)リチウム複合酸化物含有グリーンシートの作製
 まず、リチウム複合酸化物で構成される原料粉末を用意する。この粉末は、LiMOなる組成(Mは前述したとおりである)の合成済みの板状粒子(例えばLiCoO板状粒子)を含むのが好ましい。原料粉末の体積基準D50粒径は0.3~30μmが好ましい。例えば、LiCoO板状粒子の作製方法は次のようにして行うことができる。まず、Co原料粉末とLiCO原料粉末とを混合して焼成(500~900℃、1~20時間)することによって、LiCoO粉末を合成する。得られたLiCoO粉末をポットミルにて体積基準D50粒径0.2μm~10μmに粉砕することによって、板面と平行にリチウムイオンを伝導可能な板状のLiCoO粒子が得られる。このようなLiCoO粒子は、LiCoO粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。得られたLiCoO粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO粒子を解砕によって劈開させることで、LiCoO板状粒子を作製することができる。
(A) Preparation of Lithium Composite Oxide-Containing Green Sheet First, a raw material powder composed of lithium composite oxide is prepared. The powder preferably contains synthetic plate-like particles (eg, LiCoO 2 plate-like particles) having a composition of LiMO 2 (M is as described above). The volume-based D50 particle size of the raw material powder is preferably 0.3 to 30 μm. For example, the method for producing LiCoO 2- plate particles can be carried out as follows. First, the LiCoO 2 powder is synthesized by mixing the Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder and firing them (500 to 900 ° C. for 1 to 20 hours). By pulverizing the obtained LiCoO 2 powder to a volume-based D50 particle size of 0.2 μm to 10 μm with a pot mill, plate-shaped LiCoO 2 particles capable of conducting lithium ions parallel to the plate surface can be obtained. Such LiCoO 2 particles are plate-shaped, such as a method of growing a green sheet using LiCoO 2 powder slurry and then crushing it, a flux method, hydrothermal synthesis, single crystal growth using a melt, and a sol-gel method. It can also be obtained by a method of synthesizing crystals. The obtained LiCoO 2 particles are in a state of being easily cleaved along the cleavage plane. By cleaving the LiCoO 2 particles by crushing, LiCoO 2 plate-like particles can be produced.
 上記板状粒子を単独で原料粉末として用いてもよいし、上記板状粉末と他の原料粉末(例えばCo粒子)との混合粉末を原料粉末として用いてもよい。後者の場合、板状粉末を配向性を与えるためのテンプレート粒子として機能させ、他の原料粉末(例えばCo粒子)をテンプレート粒子に沿って成長可能なマトリックス粒子として機能させるのが好ましい。この場合、テンプレート粒子とマトリックス粒子を100:0~3:97に混合した粉末を原料粉末とするのが好ましい。Co原料粉末をマトリックス粒子として用いる場合、Co原料粉末の体積基準D50粒径は特に制限されず、例えば0.1~1.0μmとすることができるが、LiCoOテンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)原料を500℃~800℃で1~10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Coのほか、Co(OH)粒子を用いてもよいし、LiCoO粒子を用いてもよい。 The plate-shaped particles may be used alone as a raw material powder, or a mixed powder of the plate-shaped powder and another raw material powder (for example, Co 3 O 4 particles) may be used as the raw material powder. In the latter case, it is preferable that the plate-like powder functions as template particles for imparting orientation, and other raw material powders (for example, Co 3 O 4 particles) function as matrix particles that can grow along the template particles. In this case, it is preferable to use a powder obtained by mixing template particles and matrix particles in a ratio of 100: 0 to 3:97 as a raw material powder. When the Co 3 O 4 raw material powder is used as the matrix particles, the volume-based D50 particle size of the Co 3 O 4 raw material powder is not particularly limited and can be, for example, 0.1 to 1.0 μm, but the LiCo O 2 template particles. It is preferable that the particle size is smaller than the volume standard D50 particle size of. The matrix particles can also be obtained by heat-treating the Co (OH) 2 raw material at 500 ° C. to 800 ° C. for 1 to 10 hours. Further, as the matrix particles, in addition to Co 3 O 4 , Co (OH) 2 particles may be used, or LiCo O 2 particles may be used.
 原料粉末がLiCoOテンプレート粒子100%で構成される場合、又はマトリックス粒子としてLiCoO粒子を用いる場合、焼成により、大判(例えば90mm×90mm平方)でかつ平坦なLiCoO焼結体板を得ることができる。そのメカニズムは定かではないが、焼成過程でLiCoOへの合成が行われないため、焼成時の体積変化が生じにくい若しくは局所的なムラが生じにくいことが予想される。 When the raw material powder is composed of 100% LiCoO 2 template particles, or when LiCoO 2 particles are used as the matrix particles, a large format (for example, 90 mm × 90 mm square) and flat LiCoO 2 sintered plate is obtained by firing. Can be done. Although the mechanism is not clear, it is expected that volume change during firing is unlikely to occur or local unevenness is unlikely to occur because synthesis to LiCoO 2 is not performed during the firing process.
 原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してリチウム複合酸化物含有グリーンシートを得る。こうして得られるグリーンシートは独立したシート状の成形体である。独立したシート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、独立したシートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能ないし分離困難となった)ものは含まれない。シート成形は、原料粉末中の板状粒子(例えばテンプレート粒子)にせん断力を印加可能な成形手法を用いて行われるのが好ましい。こうすることで、一次粒子の平均傾斜角を板面に対して0°超30°以下にすることができる。板状粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。リチウム複合酸化物含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。 The raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry. A lithium compound other than LiMO 2 (for example, lithium carbonate) may be excessively added to the slurry in an amount of about 0.5 to 30 mol% for the purpose of promoting grain growth or compensating for volatile matter during the firing step described later. It is desirable not to add a pore-forming material to the slurry. It is preferable that the slurry is stirred under reduced pressure to defoam and the viscosity is adjusted to 4000 to 10000 cP. The obtained slurry is molded into a sheet to obtain a lithium composite oxide-containing green sheet. The green sheet thus obtained is an independent sheet-shaped molded product. An independent sheet (sometimes referred to as a "self-supporting film") is a sheet that can be handled independently of other supports (including flakes with an aspect ratio of 5 or more). That is, the independent sheet does not include a sheet that is fixed to another support (such as a substrate) and integrated with the support (inseparable or difficult to separate). Sheet molding is preferably performed using a molding method capable of applying a shearing force to plate-shaped particles (for example, template particles) in the raw material powder. By doing so, the average inclination angle of the primary particles can be set to more than 0 ° and 30 ° or less with respect to the plate surface. The doctor blade method is suitable as a molding method capable of applying a shearing force to the plate-shaped particles. The thickness of the lithium composite oxide-containing green sheet may be appropriately set so as to be the desired thickness as described above after firing.
(b)過剰リチウム源含有グリーンシートの作製(任意工程)
 所望により、上記リチウム複合酸化物含有グリーンシートとは別に、過剰リチウム源含有グリーンシートを作製する。この過剰リチウム源は、Li以外の成分が焼成により消失するようなLiMO以外のリチウム化合物であるのが好ましい。そのようなリチウム化合物(過剰リチウム源)の好ましい例としては炭酸リチウムが挙げられる。過剰リチウム源は粉末状であるのが好ましく、過剰リチウム源粉末の体積基準D50粒径は0.1~20μmが好ましく、より好ましくは0.3~10μmである。そして、リチウム源粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。得られたスラリーを減圧下で撹拌して脱泡するとともに、粘度を1000~20000cPに調整するのが好ましい。得られたスラリーをシート状に成形して過剰リチウム源含有グリーンシートを得る。こうして得られるグリーンシートもまた独立したシート状の成形体である。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。過剰リチウム源含有グリーンシートの厚さは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1~1.1とすることができるような厚さに設定するのが好ましい。
(B) Preparation of green sheet containing excess lithium source (arbitrary step)
If desired, an excess lithium source-containing green sheet is prepared separately from the lithium composite oxide-containing green sheet. The excess lithium source is preferably a lithium compound other than LiMO 2 in which components other than Li disappear by firing. A preferred example of such a lithium compound (excess lithium source) is lithium carbonate. The excess lithium source is preferably in the form of powder, and the volume-based D50 particle size of the excess lithium source powder is preferably 0.1 to 20 μm, more preferably 0.3 to 10 μm. Then, the lithium source powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry. It is preferable that the obtained slurry is stirred under reduced pressure to defoam and the viscosity is adjusted to 1000 to 20000 cP. The obtained slurry is molded into a sheet to obtain a green sheet containing an excess lithium source. The green sheet thus obtained is also an independent sheet-shaped molded product. Sheet molding can be performed by various well-known methods, but it is preferably performed by the doctor blade method. Regarding the thickness of the green sheet containing an excess lithium source, the molar ratio (Li / Co ratio) of the Li content in the green sheet containing an excess lithium source to the Co content in the lithium composite oxide-containing green sheet is preferably 0.1 or more. , More preferably, the thickness is set so that it can be 0.1 to 1.1.
(c)グリーンシートの積層及び焼成
 下部セッターに、リチウム複合酸化物含有グリーンシート(例えばLiCoOグリーンシート)、及び所望により過剰リチウム源含有グリーンシート(例えばLiCOグリーンシート)を順に載置し、その上に上部セッターを載置する。上部セッター及び下部セッターはセラミックス製であり、好ましくはジルコニア又はマグネシア製である。セッターがマグネシア製であると気孔が小さくなる傾向がある。上部セッターは多孔質構造やハニカム構造のものであってもよいし、緻密質構造であってもよい。上部セッターが緻密質であると焼結体板において気孔が小さくなり、気孔の数が多くなる傾向がある。必要に応じて、過剰リチウム源含有グリーンシートは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1~1.1となるようなサイズに切り出して用いられるのが好ましい。
(C) Lamination and firing of green sheets A lithium composite oxide-containing green sheet (for example, LiCoO 2 green sheet) and, if desired, an excess lithium source-containing green sheet (for example, Li 2 CO 3 green sheet) are placed in this order on the lower setter. Then place the upper setter on it. The upper setter and lower setter are made of ceramics, preferably zirconia or magnesia. If the setter is made of magnesia, the pores tend to be smaller. The upper setter may have a porous structure or a honeycomb structure, or may have a dense structure. If the upper setter is dense, the pores in the sintered plate tend to be small and the number of pores tends to be large. If necessary, the excess lithium source-containing green sheet preferably has a molar ratio (Li / Co ratio) of Li content in the excess lithium source-containing green sheet to Co content in the lithium composite oxide-containing green sheet. It is preferably cut out to a size of 1 or more, more preferably 0.1 to 1.1, and used.
 下部セッターにリチウム複合酸化物含有グリーンシート(例えばLiCoOグリーンシート)を載置した段階で、このグリーンシートを、所望により脱脂した後、600~850℃で1~10時間仮焼してもよい。この場合、得られた仮焼板の上に過剰リチウム源含有グリーンシート(例えばLiCOグリーンシート)及び上部セッターを順に載置すればよい。 When a lithium composite oxide-containing green sheet (for example, LiCoO 2 green sheet) is placed on the lower setter, the green sheet may be degreased as desired and then pre-baked at 600 to 850 ° C. for 1 to 10 hours. .. In this case, the excess lithium source-containing green sheet (for example, Li 2 CO 3 green sheet) and the upper setter may be placed in order on the obtained temporary baking plate.
 そして、上記グリーンシート及び/又は仮焼板をセッターで挟んだ状態で、所望により脱脂した後、中温域の焼成温度(例えば700~1000℃)で熱処理(焼成)することで、リチウム複合酸化物焼結体板が得られる。この焼成工程は、2度に分けて行ってもよいし、1度に行なってもよい。2度に分けて焼成する場合には、1度目の焼成温度が2度目の焼成温度より低いことが好ましい。こうして得られる焼結体板もまた独立したシート状である。 Then, the green sheet and / or the calcined plate is sandwiched between setters, degreased as desired, and then heat-treated (fired) at a firing temperature in a medium temperature range (for example, 700 to 1000 ° C.) to obtain a lithium composite oxide. A sintered plate is obtained. This firing step may be performed in two steps or in one step. When firing in two degrees, it is preferable that the firing temperature of the first firing is lower than the firing temperature of the second firing. The sintered body plate thus obtained is also in the form of an independent sheet.
 負極板の製造方法
 負極板14、すなわちチタン含有焼結体板はいかなる方法で製造されたものであってもよい。例えば、LTO焼結体板は、(a)LTO含有グリーンシートの作製及び(b)LTO含有グリーンシートの焼成を経て製造されるのが好ましい。
Method for Manufacturing Negative Electrode Plate The negative electrode plate 14, that is, the titanium-containing sintered body plate may be manufactured by any method. For example, the LTO sintered body plate is preferably manufactured through (a) preparation of an LTO-containing green sheet and (b) firing of the LTO-containing green sheet.
(a)LTO含有グリーンシートの作製
 まず、チタン酸リチウムLiTi12で構成される原料粉末(LTO粉末)を用意する。原料粉末は市販のLTO粉末を使用してもよいし、新たに合成してもよい。例えば、チタンテトライソプロポキシアルコールとイソプロポキシリチウムの混合物を加水分解して得た粉末を用いてもよいし、炭酸リチウム、チタニア等を含む混合物を焼成してもよい。原料粉末の体積基準D50粒径は0.05~5.0μmが好ましく、より好ましくは0.1~2.0μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してLTO含有グリーンシートを得る。こうして得られるグリーンシートは独立したシート状の成形体である。独立したシート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、独立したシートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能ないし分離困難となった)ものは含まれない。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。LTO含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(A) Preparation of LTO-containing green sheet First, a raw material powder (LTO powder) composed of lithium titanate Li 4 Ti 5 O 12 is prepared. As the raw material powder, a commercially available LTO powder may be used, or may be newly synthesized. For example, a powder obtained by hydrolyzing a mixture of titanium tetraisopropoxyalcohol and isopropoxylithium may be used, or a mixture containing lithium carbonate, titania and the like may be fired. The volume-based D50 particle size of the raw material powder is preferably 0.05 to 5.0 μm, more preferably 0.1 to 2.0 μm. When the particle size of the raw material powder is large, the pores tend to be large. When the raw material particle size is large, pulverization treatment (for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.) may be performed so as to have a desired particle size. Then, the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry. A lithium compound other than LiMO 2 (for example, lithium carbonate) may be excessively added to the slurry in an amount of about 0.5 to 30 mol% for the purpose of promoting grain growth or compensating for volatile matter during the firing step described later. It is desirable not to add a pore-forming material to the slurry. It is preferable that the slurry is stirred under reduced pressure to defoam and the viscosity is adjusted to 4000 to 10000 cP. The obtained slurry is formed into a sheet to obtain an LTO-containing green sheet. The green sheet thus obtained is an independent sheet-shaped molded product. An independent sheet (sometimes referred to as a "self-supporting film") is a sheet that can be handled independently of other supports (including flakes with an aspect ratio of 5 or more). That is, the independent sheet does not include a sheet that is fixed to another support (such as a substrate) and integrated with the support (inseparable or difficult to separate). Sheet molding can be performed by various well-known methods, but it is preferably performed by the doctor blade method. The thickness of the LTO-containing green sheet may be appropriately set so as to be the desired thickness as described above after firing.
(b)LTO含有グリーンシートの焼成
 セッターにLTO含有グリーンシート載置する。セッターはセラミックス製であり、好ましくはジルコニア製又はマグネシア製である。セッターにはエンボス加工が施されているのが好ましい。こうしてセッター上に載置されたグリーンシートを鞘に入れる。鞘もセラミックス製であり、好ましくはアルミナ製である。そして、この状態で、所望により脱脂した後、焼成することで、LTO焼結体板が得られる。この焼成は600~900℃で1~50時間行うのが好ましく、より好ましくは700~800℃で3~20時間である。こうして得られる焼結体板もまた独立したシート状である。焼成時の昇温速度は100~1000℃/hが好ましく、より好ましくは100~600℃/hである。特に、この昇温速度は、300℃~800℃の昇温過程で採用されるのが好ましく、より好ましくは400℃~800℃の昇温過程で採用される。
(B) Firing of LTO-containing green sheet Place the LTO-containing green sheet on the setter. The setter is made of ceramics, preferably zirconia or magnesia. The setter is preferably embossed. The green sheet placed on the setter in this way is put into the sheath. The sheath is also made of ceramics, preferably alumina. Then, in this state, after degreasing as desired, the LTO sintered body plate is obtained by firing. This firing is preferably performed at 600 to 900 ° C. for 1 to 50 hours, more preferably 700 to 800 ° C. for 3 to 20 hours. The sintered body plate thus obtained is also in the form of an independent sheet. The rate of temperature rise during firing is preferably 100 to 1000 ° C./h, more preferably 100 to 600 ° C./h. In particular, this heating rate is preferably adopted in the heating process of 300 ° C. to 800 ° C., and more preferably adopted in the heating process of 400 ° C. to 800 ° C.
(c)まとめ
 上述のようにしてLTO焼結体板を好ましく製造することができる。この好ましい製造方法においては、1)LTO粉末の粒度分布を調整する、及び/又は2)焼成時の昇温速度を変えるのが効果的であり、これらがLTO焼結体板の諸特性の実現に寄与するものと考えられる。
(C) Summary The LTO sintered body plate can be preferably manufactured as described above. In this preferred production method, it is effective to 1) adjust the particle size distribution of the LTO powder and / or 2) change the rate of temperature rise during firing, and these realize various characteristics of the LTO sintered body plate. It is thought that it contributes to.
 本発明を以下の例によってさらに具体的に説明する。なお、以下の例において、LiCoOを「LCO」と略称し、LiTi12を「LTO」と略称するものとする。 The present invention will be described in more detail with reference to the following examples. In the following examples, LiCoO 2 will be abbreviated as "LCO" and Li 4 Ti 5 O 12 will be abbreviated as "LTO".
 例1
(1)正極板の作製
(1a)LCOグリーンシートの作製
 まず、LCO(日本化学工業株式会社製)原料粉末100重量部と、分散媒(キシレン:n-ブタノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)4.5重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、スラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、グリーンシートを形成した。乾燥後のLCOグリーンシートの厚さは110μmであった。
Example 1
(1) Preparation of positive electrode plate (1a) Preparation of LCO green sheet First, 100 parts by weight of LCO (manufactured by Nippon Kagaku Kogyo Co., Ltd.) raw material powder and 100 parts by weight of dispersion medium (xylene: n-butanol = 1: 1). , Binder (Polyvinyl butyral: Part No. BM-2, manufactured by Sekisui Chemical Co., Ltd.), 10 parts by weight, Plasticizer (DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.), 2 parts by weight, Dispersant (Product name Leodor SP-O30, manufactured by Kao Corporation) 4.5 parts by weight was mixed. A slurry was prepared by stirring the obtained mixture under reduced pressure to defoam and adjusting the viscosity to 4000 cP. The viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form a green sheet. The thickness of the LCO green sheet after drying was 110 μm.
(1b)LCO焼結体板の作製
 PETフィルムから剥がしたLCOグリーンシートをカッターで35mm角に切り出し、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置した。上部セッターとして、グリーンシートの上に多孔質アルミナ製セッター(寸法40mm角、高さ3mm)を中央に載置した。セッター上のグリーンシートを900℃で15時間焼成して、LCO焼結体板を得た。こうしてLCO焼結体板を正極板として得た。得られた正極板を32mm×32mm平方の形状にレーザー加工した。
(1b) Preparation of LCO sintered body plate The LCO green sheet peeled off from the PET film was cut into a 35 mm square with a cutter and placed in the center of a magnesia setter (dimensions 90 mm square, height 1 mm) as a lower setter. As the upper setter, a porous alumina setter (dimensions 40 mm square, height 3 mm) was placed in the center on a green sheet. The green sheet on the setter was fired at 900 ° C. for 15 hours to obtain an LCO sintered body plate. In this way, the LCO sintered body plate was obtained as a positive electrode plate. The obtained positive electrode plate was laser-processed into a shape of 32 mm × 32 mm square.
(2)負極板の作製
(2a)LTOグリーンシートの作製
 まず、LTO粉末(シグマアルドリッチジャパン合同会社製)100重量部と、分散媒(キシレン:n-ブタノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)1重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは110μmであった。
(2) Preparation of negative electrode plate (2a) Preparation of LTO green sheet First, 100 parts by weight of LTO powder (manufactured by Sigma Aldrich Japan GK), 100 parts by weight of dispersion medium (xylene: n-butanol = 1: 1), and 100 parts by weight. 10 parts by weight of binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), 2 parts by weight of plasticizer (DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.), and dispersant (dispersant) Product name Leodor SP-O30, manufactured by Kao Corporation) 1 part by weight was mixed. The LTO slurry was prepared by stirring the obtained negative electrode raw material mixture under reduced pressure to defoam and adjusting the viscosity to 4000 cP. The viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet. The thickness of the LTO green sheet after drying was 110 μm.
(2b)LTO焼結体板の作製
 得られたグリーンシートを35mm角にカッターナイフで切り出し、マグネシア製セッター(寸法90mm角、高さ1mm)上に載置した。上部セッターとして、グリーンシートの上に多孔質アルミナ製セッター(寸法40mm角、高さ3mm)を中央に載置した。セッター上のグリーンシートを760℃で5時間焼成して、LTO焼結体板を得た。こうしてLTO焼結体板を負極板として得た。得られた負極板を30mm×30mm平方の形状にレーザー加工した。
(2b) Preparation of LTO sintered body plate The obtained green sheet was cut into a 35 mm square with a cutter knife and placed on a magnesia setter (dimensions 90 mm square, height 1 mm). As the upper setter, a porous alumina setter (dimensions 40 mm square, height 3 mm) was placed in the center on a green sheet. The green sheet on the setter was fired at 760 ° C. for 5 hours to obtain an LTO sintered plate. In this way, the LTO sintered body plate was obtained as a negative electrode plate. The obtained negative electrode plate was laser-machined into a shape of 30 mm × 30 mm square.
(3)集電体の作製
 20μmのアルミニウム箔を35mm×45mmに切り出した。切り出したアルミニウム箔の短辺側の端部から突出するようにタブリードを配置し、アルミニウム箔とタブリードを超音波接合することで集電体を得た。
(3) Preparation of current collector A 20 μm aluminum foil was cut out to a size of 35 mm × 45 mm. A tab lead was arranged so as to protrude from the end on the short side of the cut out aluminum foil, and the aluminum foil and the tab lead were ultrasonically bonded to obtain a current collector.
(4)導電性接着剤の作製
 導電材(アセチレンブラック)30重量部、結着剤(アクリルバインダー)60重量部、及び増粘剤(カルボキシメチルセルロース)10重量部を混合し、純水を加えて導電性接着剤を作製した。
(4) Preparation of conductive adhesive 30 parts by weight of conductive material (acetylene black), 60 parts by weight of binder (acrylic binder), and 10 parts by weight of thickener (carboxymethyl cellulose) are mixed, and pure water is added. A conductive adhesive was prepared.
(5)正極の作製
 集電体を構成するアルミニウム箔に導電性接着剤を810mmの面積で塗布し、導電性接着剤で塗布された部分の全てを覆うよう正極板を接着した。これを100℃で12時間乾燥することで正極を得た。
(5) Preparation of Positive Electrode A conductive adhesive was applied to the aluminum foil constituting the current collector in an area of 810 mm 2, and a positive electrode plate was adhered so as to cover the entire portion coated with the conductive adhesive. This was dried at 100 ° C. for 12 hours to obtain a positive electrode.
(6)負極の作製
 別の集電体を構成するアルミニウム箔に導電性接着剤を810mmの面積で塗布し、導電性接着剤で塗布された部分の全てを覆うように負極板を接着した。これを100℃で12時間乾燥することで負極を得た。
(6) Preparation of Negative Electrode A conductive adhesive was applied to an aluminum foil constituting another current collector with an area of 810 mm 2 , and a negative electrode plate was adhered so as to cover the entire portion coated with the conductive adhesive. .. This was dried at 100 ° C. for 12 hours to obtain a negative electrode.
(7)電極群の作製
 こうして得られた正極と負極とをセパレータを介して対向させ、外周にテープを巻いて固定した。この際、正極のタブリードと負極のタブリードとは、互いに向き合う異なる辺から反対方向に延出するように配置した。また、負極を構成する負極板の全体が正極を構成する正極板と対向するようにした。
(7) Preparation of Electrode Group The positive electrode and the negative electrode thus obtained were opposed to each other via a separator, and tape was wrapped around the outer circumference to fix them. At this time, the tab lead of the positive electrode and the tab lead of the negative electrode were arranged so as to extend in opposite directions from different sides facing each other. Further, the entire negative electrode plate constituting the negative electrode was made to face the positive electrode plate constituting the positive electrode.
(8)注液前電池の作製
 ラミネートフィルムを2枚準備し、電極群の正極及び負極の外側の面に配置した。次いで、正極側に配置したラミネートフィルムと負極側に配置したラミネートフィルムとを、電極群の周縁部3辺で熱融着した。この際、タブリードが配置される2辺は、タブリードに設けられた絶縁フィルムとラミネートとが重なる部分が熱融着されるように位置調整し、タブリードの一部がラミネートフィルムから突出するようにした。この突出したタブリードを充放電の際に装置と接続する端子とした。また、タブリードが配置されない他の1辺は、タブリードが配置された2つの封止辺に直行するように熱融着した。
(8) Preparation of Pre-Liquid Injection Battery Two laminated films were prepared and placed on the outer surfaces of the positive electrode and the negative electrode of the electrode group. Next, the laminated film arranged on the positive electrode side and the laminated film arranged on the negative electrode side were heat-sealed at the three peripheral edges of the electrode group. At this time, the positions of the two sides on which the tab leads are arranged are adjusted so that the portion where the insulating film provided on the tab leads and the laminate overlap is heat-sealed so that a part of the tab leads protrudes from the laminate film. .. This protruding tab lead was used as a terminal to be connected to the device during charging and discharging. Further, the other side on which the tab leads were not arranged was heat-sealed so as to be orthogonal to the two sealing sides on which the tab leads were arranged.
(9)非水電解質の注入
 熱溶着しなかった辺から非水電解質(電解液)を注入した。非水電解質には、非水溶媒としてエチレンカーボネートとエチルメチルカーボネートとを1:1で混合したものを用い、電解質として1mol/lの6フッ化リン酸リチウムを用いた。
(9) Injection of non-aqueous electrolyte A non-aqueous electrolyte (electrolyte solution) was injected from the side where heat welding was not performed. As the non-aqueous electrolyte, a mixture of ethylene carbonate and ethyl methyl carbonate at a ratio of 1: 1 was used as the non-aqueous solvent, and 1 mol / l lithium hexafluoride phosphate was used as the electrolyte.
(10)電池の作製
 非水電解質の注入後、残りの1辺を熱融着することで充放電サイクル試験用電池を得た。
(10) Preparation of Battery After injection of the non-aqueous electrolyte, the remaining one side was heat-sealed to obtain a battery for charge / discharge cycle test.
(11)サイクル前0.2C放電容量評価
 得られた電池を用いて、25℃の環境下で電池容量を確認した。充電は定電流定電圧充電とし、具体的には0.2Cで2.7Vに達するまで定電流充電した後、電流値が0.02Cに達するまで2.7Vで定電圧充電することにより行った。放電は0.2Cで定電流放電し、電圧が1.5Vに達するまで行った。こうして得られた放電容量を予め測定しておいた負極板の重量で除し、サイクル前0.2C放電容量とした。
(11) Evaluation of 0.2C discharge capacity before cycle The battery capacity was confirmed in an environment of 25 ° C. using the obtained battery. Charging was carried out by constant current constant voltage charging, specifically, constant current charging at 0.2 C until 2.7 V was reached, and then constant voltage charging at 2.7 V until the current value reached 0.02 C. .. The discharge was carried out at a constant current of 0.2 C until the voltage reached 1.5 V. The discharge capacity thus obtained was divided by the weight of the negative electrode plate measured in advance to obtain 0.2 C discharge capacity before the cycle.
(12)サイクル試験
 次いで、充放電サイクル試験を実施した。充放電サイクル試験は25℃の環境下で、充放電を1000回繰り返すことにより行った。充電は、2.7Vで定電圧充電し、電流値が0.2Cに達するまで行った。放電は、1Cで定電流放電し、電圧が1.5Vに達するまで行った。
(12) Cycle test Next, a charge / discharge cycle test was carried out. The charge / discharge cycle test was performed by repeating charging / discharging 1000 times in an environment of 25 ° C. Charging was carried out at a constant voltage of 2.7 V until the current value reached 0.2 C. The discharge was carried out by constant current discharge at 1C until the voltage reached 1.5V.
(13)1000サイクル後容量維持率評価
 1000サイクル充放電を繰り返した電池について、25℃の環境下で電池容量を確認した。充電は定電流定電圧充電とし、具体的には0.2Cで2.7Vに達するまで定電流充電した後、電流値が0.02Cに達するまで2.7Vで定電圧充電することにより行った。放電は0.2Cで定電流放電し、電圧が1.5Vに達するまで行った。こうして得られた放電容量を予め測定しておいた負極板の重量で除し、1000サイクル後0.2C放電容量とした。また、この値をサイクル前0.2C放電容量で除し、100を乗じることにより、1000サイクル後容量維持率(%)とした。
(13) Evaluation of capacity retention rate after 1000 cycles The battery capacity of a battery that was repeatedly charged and discharged for 1000 cycles was confirmed in an environment of 25 ° C. Charging was carried out by constant current constant voltage charging, specifically, constant current charging at 0.2 C until 2.7 V was reached, and then constant voltage charging at 2.7 V until the current value reached 0.02 C. .. The discharge was carried out at a constant current of 0.2 C until the voltage reached 1.5 V. The discharge capacity thus obtained was divided by the weight of the negative electrode plate measured in advance to obtain a 0.2C discharge capacity after 1000 cycles. Further, this value was divided by the 0.2C discharge capacity before the cycle and multiplied by 100 to obtain the capacity retention rate (%) after 1000 cycles.
 例2
 上記(5)において正極の導電性接着剤を162mmの面積で塗布したこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 2
A battery was prepared and evaluated in the same manner as in Example 1 except that the conductive adhesive for the positive electrode was applied in an area of 162 mm 2 in (5) above.
 例3
 上記(5)において正極の導電性接着剤を630mmの面積で塗布し、かつ、上記(6)において負極の導電性接着剤を630mmの面積で塗布したこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 3
Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 630 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 630 mm 2 in (6) above. The batteries were manufactured and evaluated.
 例4
 上記(5)において正極の導電性接着剤を126mmの面積で塗布し、かつ、上記(6)において負極の導電性接着剤を630mmの面積で塗布したこと以外は例1と同様にして電池の作製及び評価を行った。
Example 4
The same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 126 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 630 mm 2 in (6) above. Batteries were manufactured and evaluated.
 例5
 上記(5)において正極の導電性接着剤を900mmの面積で塗布し、かつ、上記(6)において負極の導電性接着剤を900mmの面積で塗布したこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 5
Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 900 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above. The batteries were manufactured and evaluated.
 例6
 上記(5)において正極の導電性接着剤を818mmの面積で塗布し、かつ、上記(6)において負極の導電性接着剤を900mmの面積で塗布したこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 6
Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 818 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above. The batteries were manufactured and evaluated.
 例7
 上記(5)において正極の導電性接着剤を360mmの面積で塗布し、かつ、上記(6)において負極の導電性接着剤を900mmの面積で塗布したこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 7
Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 360 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above. The batteries were manufactured and evaluated.
 例8
 上記(5)において正極の導電性接着剤を180mmの面積で塗布し、かつ、上記(6)において負極の導電性接着剤を900mmの面積で塗布したこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 8
Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 180 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above. The batteries were manufactured and evaluated.
 例9(比較)
 上記(5)において正極の導電性接着剤を1000mmの面積で塗布し、かつ、上記(6)において負極の導電性接着剤を900mmの面積で塗布したこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 9 (comparison)
Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 1000 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above. The batteries were manufactured and evaluated.
 例10(比較)
 上記(5)において正極の導電性接着剤を176.5mmの面積で塗布し、かつ、上記(6)において負極の導電性接着剤を900mmの面積で塗布したこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 10 (comparison)
Except that the positive electrode conductive adhesive was applied in an area of 176.5 mm 2 in (5) above, and the negative electrode conductive adhesive was applied in an area of 900 mm 2 in (6) above. The batteries were prepared and evaluated in the same manner.
 例11(比較)
 上記(5)において正極の導電性接着剤を700mmの面積で塗布し、かつ、上記(6)において負極の導電性接着剤を630mmの面積で塗布したこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 11 (comparison)
Same as in Example 1 except that the positive electrode conductive adhesive was applied in an area of 700 mm 2 in (5) above and the negative electrode conductive adhesive was applied in an area of 630 mm 2 in (6) above. The batteries were manufactured and evaluated.
 結果
 表1に例1~11において作製した電池の評価結果を示す。なお、表1において、Sn/Spは、正極集電体及び正極板が導電性接着剤(正極側導電性接合層)を介して接合される面積Spに対する、負極集電体及び負極板が導電性接着剤(負極側導電性接合層)を介して接合される面積Snの比を意味する。
Results Table 1 shows the evaluation results of the batteries produced in Examples 1 to 11. In Table 1, Sn / Sp is such that the negative electrode current collector and the negative electrode plate are conductive with respect to the area Sp where the positive electrode current collector and the positive electrode plate are bonded via the conductive adhesive (positive electrode side conductive bonding layer). It means the ratio of the area Sn bonded via the sex adhesive (negative electrode side conductive bonding layer).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、1.0≦Sn/Sp≦5.0の関係を満たす例1~8においては、上記関係を満たさない例9~11と比較して、格段に高い1000サイクル後容量維持率が実現された。 As is clear from Table 1, in Examples 1 to 8 satisfying the relationship of 1.0 ≦ Sn / Sp ≦ 5.0, after 1000 cycles, which is significantly higher than in Examples 9 to 11 not satisfying the above relationship. Capacity retention rate has been achieved.

Claims (7)

  1.  導電性カーボンを含有しないリチウム複合酸化物焼結体板である正極板と、
     導電性カーボンを含有しないチタン含有焼結体板である負極板と、
     前記正極板と前記負極板との間に介在されるセパレータと、
     前記正極板の前記セパレータから離れた側の面に設けられる正極集電体と、
     前記負極板の前記セパレータから離れた側の面に設けられる負極集電体と、
     前記正極板、前記負極板、及び前記セパレータに含浸される電解液と、
    を備えた、リチウムイオン二次電池であって、
     前記正極板の前記正極集電体側の面の少なくとも一部が、前記正極集電体と正極側導電性接合層を介して接合されており、
     前記負極板の前記負極集電体側の面の少なくとも一部が、前記負極集電体と負極側導電性接合層を介して接合されており、
     前記正極集電体及び前記正極板が前記正極側導電性接合層を介して接合される面積Spと、前記負極集電体及び前記負極板が前記負極側導電性接合層を介して接合される面積Snとが、1.0≦Sn/Sp≦5.0の関係を満たす、リチウムイオン二次電池。
    A positive electrode plate, which is a lithium composite oxide sintered body plate that does not contain conductive carbon,
    A negative electrode plate that is a titanium-containing sintered body plate that does not contain conductive carbon,
    A separator interposed between the positive electrode plate and the negative electrode plate,
    A positive electrode current collector provided on the surface of the positive electrode plate on the side away from the separator, and
    A negative electrode current collector provided on the surface of the negative electrode plate on the side away from the separator, and
    The positive electrode plate, the negative electrode plate, and the electrolytic solution impregnated in the separator,
    It is a lithium-ion secondary battery equipped with
    At least a part of the surface of the positive electrode plate on the positive electrode current collector side is bonded to the positive electrode current collector via the positive electrode side conductive bonding layer.
    At least a part of the surface of the negative electrode plate on the negative electrode current collector side is bonded to the negative electrode current collector via the negative electrode side conductive bonding layer.
    The area Sp where the positive electrode current collector and the positive electrode plate are bonded via the positive electrode side conductive bonding layer, and the negative electrode current collector and the negative electrode plate are bonded via the negative electrode side conductive bonding layer. A lithium ion secondary battery in which the area Sn satisfies the relationship of 1.0 ≦ Sn / Sp ≦ 5.0.
  2.  前記負極板の前記負極集電体側の面の少なくとも70%が、前記負極集電体と前記負極側導電性接合層を介して接合されている、請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein at least 70% of the surface of the negative electrode plate on the negative electrode current collector side is bonded to the negative electrode current collector via the negative electrode side conductive bonding layer.
  3.  前記負極板の前記負極集電体側の面の全部が、前記負極集電体と前記負極側導電性接合層を介して接合されている、請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the entire surface of the negative electrode plate on the negative electrode current collector side is bonded to the negative electrode current collector via the negative electrode side conductive bonding layer.
  4.  前記正極板の厚さが60~450μmである、請求項1~3のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the positive electrode plate has a thickness of 60 to 450 μm.
  5.  前記リチウム複合酸化物がコバルト酸リチウムである、請求項1~4のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 4, wherein the lithium composite oxide is lithium cobalt oxide.
  6.  前記負極板の厚さが70~500μmである、請求項1~5のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 5, wherein the negative electrode plate has a thickness of 70 to 500 μm.
  7.  前記チタン含有焼結体が、チタン酸リチウム又はニオブチタン複合酸化物を含む、請求項1~6のいずれか一項に記載のリチウムイオン二次電池。

     
    The lithium ion secondary battery according to any one of claims 1 to 6, wherein the titanium-containing sintered body contains lithium titanate or a niobium-titanium composite oxide.

PCT/JP2020/007526 2019-08-23 2020-02-25 Lithium ion secondary battery WO2021038922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021541982A JP7126028B2 (en) 2019-08-23 2020-02-25 lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019153283 2019-08-23
JP2019-153283 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021038922A1 true WO2021038922A1 (en) 2021-03-04

Family

ID=74684296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007526 WO2021038922A1 (en) 2019-08-23 2020-02-25 Lithium ion secondary battery

Country Status (3)

Country Link
JP (1) JP7126028B2 (en)
TW (1) TWI771657B (en)
WO (1) WO2021038922A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212161A (en) * 2009-03-11 2010-09-24 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and its manufacturing method
WO2018123479A1 (en) * 2016-12-27 2018-07-05 日本碍子株式会社 Lithium ion cell and method for manufacturing same
JP2018206541A (en) * 2017-05-31 2018-12-27 日本碍子株式会社 Sealing method of battery element and manufacturing method of film sheathing battery using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147387A1 (en) * 2017-02-13 2018-08-16 日本碍子株式会社 Lithium composite oxide sintered body plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212161A (en) * 2009-03-11 2010-09-24 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and its manufacturing method
WO2018123479A1 (en) * 2016-12-27 2018-07-05 日本碍子株式会社 Lithium ion cell and method for manufacturing same
JP2018206541A (en) * 2017-05-31 2018-12-27 日本碍子株式会社 Sealing method of battery element and manufacturing method of film sheathing battery using the same

Also Published As

Publication number Publication date
TWI771657B (en) 2022-07-21
JP7126028B2 (en) 2022-08-25
TW202109960A (en) 2021-03-01
JPWO2021038922A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
KR20190117199A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
US11658280B2 (en) Lithium secondary battery and card with built-in battery
JP7189163B2 (en) lithium secondary battery
JP7041256B2 (en) Coin-type lithium secondary battery and IoT device
US20200203773A1 (en) Lithium secondary battery and method for manufacturing battery-incorporating device
JPWO2020090802A1 (en) Coin rechargeable battery
JP6901632B2 (en) Coin-type lithium secondary battery and IoT device
WO2021038922A1 (en) Lithium ion secondary battery
JPWO2019221144A1 (en) Lithium secondary battery
US11996544B2 (en) Coin-shaped lithium secondary battery and IoT device
JPWO2019221143A1 (en) Lithium secondary battery
WO2022208982A1 (en) Coin-type lithium ion secondary battery
WO2021100283A1 (en) Lithium secondary battery and method for measuring state of charge of same
US20210202929A1 (en) Lithium secondary battery
WO2023042801A1 (en) Production method for circuit board assembly
JP6959281B2 (en) Lithium secondary battery and built-in battery card
WO2023042802A1 (en) Method for manufacturing circuit board assembly
JP2022101165A (en) Lithium ion secondary battery
TW202220267A (en) Lithium ion secondary battery
JPWO2020090800A1 (en) Coin rechargeable battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021541982

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859467

Country of ref document: EP

Kind code of ref document: A1