WO2021038837A1 - Solar cell string and solar power generation system - Google Patents

Solar cell string and solar power generation system Download PDF

Info

Publication number
WO2021038837A1
WO2021038837A1 PCT/JP2019/034163 JP2019034163W WO2021038837A1 WO 2021038837 A1 WO2021038837 A1 WO 2021038837A1 JP 2019034163 W JP2019034163 W JP 2019034163W WO 2021038837 A1 WO2021038837 A1 WO 2021038837A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
terminal box
side terminal
electrode side
negative electrode
Prior art date
Application number
PCT/JP2019/034163
Other languages
French (fr)
Japanese (ja)
Inventor
一仁 荒井
修 富田
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2019/034163 priority Critical patent/WO2021038837A1/en
Priority to JP2021541928A priority patent/JP7439107B2/en
Publication of WO2021038837A1 publication Critical patent/WO2021038837A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the embodiment according to the present invention relates to a solar cell string and a photovoltaic power generation system.
  • the photovoltaic power generation system is equipped with a solar power module that receives light and generates DC power, and a power conditioner that converts the DC power generated by the solar cell module into AC power and sends it to the transmission network.
  • a mega solar system is a photovoltaic power generation system equipped with thousands or more solar cell modules having a power generation capacity of several tens of watts.
  • a photovoltaic system such as a mega solar system includes a plurality of solar cell modules in order to obtain a desired power generation capacity.
  • a plurality of solar cell modules are electrically connected in series in order to increase the output voltage, and the solar cell modules connected in series are electrically connected in parallel to further increase the output current.
  • a plurality of solar cell modules electrically connected in series are referred to as solar cell strings, and a plurality of solar cell strings electrically connected in parallel are referred to as solar cell arrays.
  • FIG. 3 is a schematic view showing a conventional photovoltaic power generation system.
  • the photovoltaic power generation system 1 shown in FIG. 3 includes a solar cell string 3.
  • a plurality of (for example, six) solar cell modules 2 are linearly arranged on the solar cell string 3.
  • the solar cell modules 2 are arranged in the same direction, and a terminal box (also referred to as a junction box) 11 is installed in the center near the upper part of each solar cell module 2.
  • a positive electrode cable 12 and a negative electrode cable 13 (hereinafter, also simply referred to as cables 12 and 13) are attached to the terminal box 11.
  • the cables 12 and 13 electrically connect the solar cell modules 2 in series
  • the cables 12 and 13 of the solar cell modules 2 located next to each other with the solar cell modules 2 arranged in a line are connected to the cables 12 and 13.
  • the cables 12 and 13 are provided with connectors at their respective free ends. The connectors can be electrically connected to each other.
  • the cables 12 and 13 of the solar cell modules 2 located adjacent to each other are electrically connected to form a series circuit 15 that electrically connects the solar cell modules 2 in series. Will be done.
  • the cables 12 and 13 are not attached to one terminal box, but the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are provided.
  • the positive electrode side terminal box 112 is arranged on the left side edge portion.
  • the negative electrode side terminal box 113 is arranged at the right side edge portion.
  • the solar cell string 3 shown in FIG. 3 there are four cable connectors in which the cables 12 and 13 of the solar cell modules 2 are connected by skipping one.
  • the cable lengths of the cable connectors are all substantially the same, and even if the extra length is included, the width dimension of the solar cell module 2 is about twice.
  • the cable connector having a long cable length is the sun from the positive electrode side terminal box 112 of the solar cell module 2B.
  • the cable connector to which the cables 12 and 13 are connected has the longer cable length of 3. It will extend over the number of solar cell modules 2.
  • the terminal boxes 112 and 113 are arranged in two in the left-right direction, so that the cable length of the cable connector connecting the cables 12 and 13 is lengthened. ..
  • the cable lengths of the cables 12 and 13 themselves have to be lengthened, resulting in an increase in power loss and an increase in cost.
  • An object of the present invention is to provide a solar cell string and a photovoltaic power generation system capable of shortening the cable length, increasing power loss and suppressing costs.
  • the solar cell string includes the following components (A) to (D).
  • A) Each has a positive electrode cable and a negative electrode cable, and includes a plurality of solar cell modules arranged in a line.
  • C) The arrangement direction of the solar cell modules is defined as the left-right direction, and each solar cell module has a positive electrode side terminal box to which the positive electrode cable is connected and a negative electrode side terminal box to which the negative electrode cable is connected in the left-right direction. Place them apart.
  • the photovoltaic power generation system is characterized by including the solar cell string.
  • the block diagram which shows the solar power generation system which concerns on embodiment of this invention The rear view of the solar cell module which concerns on other embodiment of this invention.
  • FIG. 1 is a block diagram showing a photovoltaic power generation system according to an embodiment of the present invention.
  • the photovoltaic power generation system 1 according to the present embodiment employs a half-cell module as the solar cell module 2.
  • the upper half of the solar cell module 2 is cluster A, and the lower half is cluster B.
  • the solar cell string 3 having a plurality of solar cell modules 2 electrically connected in series and the solar cell string 3 are connected to the power system 50.
  • Power conditioner 6 to be used a junction box 7 for electrically connecting the solar cell string 3 and the power conditioner 6, and an interconnection transformer 8 for connecting the output of the power conditioner 6 to the power system 50.
  • the photovoltaic power generation system 1 includes a plurality of power conditioners 6, and a plurality of solar cell strings 3 are electrically connected in parallel to each of the power conditioners 6 to obtain a required power generation capacity.
  • the solar cell string 3 is a plurality of (for example, six) solar cell modules 2 arranged in a line, and a solar cell module located at a position adjacent to each other (one adjacent or one skipped).
  • a series circuit 15 that electrically connects the positive electrode cable 12 and the negative electrode cable 13 of 2 and electrically connects the solar cell module 2 in series is provided.
  • the plurality of solar cell modules 2 are arranged linearly by defining the arrangement direction thereof as the left-right direction.
  • the six solar cell modules 2 are 2A, 2B, 2C, 2D, 2E, and 2F in order from the left side of FIG.
  • Each solar cell module 2 has a power generation capacity of several tens of watts, and receives light on a rectangular light receiving surface to generate power.
  • the direction in which the short side extends is the left-right direction
  • the direction in which the long side orthogonal to the extension extends is the vertical direction.
  • the solar cell modules 2 are arranged linearly in the short side direction, but the solar cell modules 2 may be arranged linearly in the long side direction.
  • Each solar cell module 2 is connected to a positive electrode side terminal box 112 and a negative electrode side terminal box 113 located on the non-light receiving surface side, and a positive electrode cable 12 and a negative electrode side terminal box 113 connected to the positive electrode side terminal box 112.
  • a negative electrode cable 13 (hereinafter, also simply referred to as cables 12 and 13) is provided.
  • the outer diameter dimensions of the terminal boxes 112 and 113 are set sufficiently smaller than those of the solar cell module 2.
  • the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged so as to be separated from each other in the left-right direction.
  • the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged at both ends on a line penetrating the center of the long side of the solar cell module 2 in the left-right direction. That is, the positive electrode side terminal box 112 is located at the left edge portion of the solar cell module 2, and the negative electrode side terminal box 113 is located at the right edge portion of the solar cell module 2.
  • the terminal boxes 112 and 113 having different polarities will be close to each other.
  • the solar cell modules 2 adjacent to each other are alternately arranged upside down.
  • the solar cell modules 2A, 2C, and 2E face upward with the upper half as cluster A
  • the solar cell modules 2B, 2D, and 2F face downward with the lower half as cluster A. That is, the solar cell modules 2 adjacent to each other are arranged so as to be rotated 180 degrees, and the left and right positions of the terminal boxes 112 and 113 are exchanged so that the terminal boxes 112 and 113 having the same polarity are close to each other. Will be done.
  • the positive electrode side terminal box 112 is located on the left edge portion, and the negative electrode side terminal box 113 is located on the right side edge portion, respectively.
  • the negative electrode side terminal box 113 is located on the left edge portion, and the positive electrode side terminal box 112 is located on the right side edge portion.
  • the solar cell modules 2 are arranged so that the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged in the same arrangement order in the left-right direction between the solar cell modules 2 located one position next to each other. ing. Specifically, in the solar cell modules 2A, 2C, and 2E, the positive electrode side terminal box 112 is on the left side and the negative electrode side terminal box 113 is on the right side. On the contrary, in the solar cell modules 2B, 2D, and 2F, the positive electrode side terminal box 112 is on the right side and the negative electrode side terminal box 113 is on the left side.
  • the extension cable 4 is connected to the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2A.
  • the negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2A and the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2C are connected by skipping the solar cell module 2B.
  • the negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2C and the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2E are connected by skipping the solar cell module 2D.
  • the negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2E and the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2F are connected in an S shape.
  • the negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2F and the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2D are connected by skipping the solar cell module 2E. Further, the negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2D and the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2B are connected by skipping the solar cell module 2C.
  • the negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2B extends in a gentle S shape, and the extension cable 5 is connected to the free end.
  • the power conditioner 6 includes an inverter (not shown) that converts the DC power output by the solar cell string 3 into AC power of a predetermined frequency (for example, a commercial power frequency), and is a load facility connected to an AC system (not shown). Power is supplied to the power system 50, or is connected in parallel to the power system 50 to supply power.
  • a predetermined frequency for example, a commercial power frequency
  • the power conditioner 6 changes the operation of the solar cell string 3 so as to follow the maximum output point and the sun.
  • Maximum power point tracking MPPT: MaximumPowerPoint Tracking
  • the power line 21 guides the extension cables 4 and 5 to the junction box 7.
  • the positive electrode side terminal box 112 and the negative electrode side terminal box 113 in each solar cell module 2 are arranged so as to be separated from each other in the left-right direction, and the solar cell modules 2 located one ahead of each other. Then, the solar cell modules 2 are arranged so that the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged in the same order in the left-right direction.
  • the positive electrode side terminal box 112 and the negative electrode side terminal box 113 have the same arrangement order in the left-right direction, so a half-cell module is adopted. Even if the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged apart from each other in the left-right direction, the terminal boxes 112 and 113 having different polarities are distanced between the solar cell modules 2 located one position next to each other. Can approach. Therefore, in the present embodiment, the cable length connecting the positive electrode cable 12 and the negative electrode cable 13 can be made close to the length obtained by skipping one solar cell module 2.
  • the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged at both ends of the line penetrating the solar cell module 2 in the left-right direction, so that the positive electrode side terminal box 112 in each solar cell module 2 And the negative electrode side terminal box 113 is the farthest in the left-right direction in a horizontal state. Therefore, the positive electrode side terminal box 112 and the negative electrode side terminal box 113 of the solar cell modules 2 located one position next to each other can be brought closest to each other in the horizontal direction.
  • the negative electrode side terminal box 113 of the module 2C, the positive electrode side terminal box 112 of the solar cell module 2E, the positive electrode side terminal box 112 of the solar cell module 2D, and the negative electrode side terminal box 113 of the solar cell module 2F are the most in the lateral distance. You can get closer. As a result, the cable length of the cable connector connecting the cables 12 and 13 can be shortened, and the cable length of the cables 12 and 13 itself can also be shortened. As a result, it is possible to suppress an increase in power loss and reduce costs.
  • a photovoltaic power generation system 1 having a large amount of solar cell strings 3 such as a mega solar system
  • the efficiency of the power generation system 1 and the solar cell string 3 can be further improved.
  • the cost can be reduced by shortening the cable length, it also contributes to the cost reduction of the photovoltaic power generation system 1 and the solar cell string 3.
  • the solar cell modules 2 adjacent to each other are arranged upside down alternately, and the solar cell modules 2 located one ahead of each other are arranged in the positive electrode side terminal box 112 and the negative electrode side terminal.
  • the solar cell modules 2 can be arranged so that the boxes 113 are arranged in the same order in the left-right direction. Therefore, it is possible to arrange the solar cell modules 2 in a desired arrangement with a simple operation, and the work cost is reduced. Further, since the configuration of the solar cell module 2 itself is not changed, there is no concern about cost increase from the viewpoint of manufacturing cost.
  • the solar cell modules 2 are alternately turned upside down.
  • the horizontal positions of the positive electrode side terminal box 112 and the negative electrode side terminal box 113 do not shift. Therefore, the cable length of the cable connector connecting the positive electrode cable 12 and the negative electrode cable 13 can be minimized. Further, since the cable lengths of the cable connectors can be made uniform, it is easy to standardize the cables 12 and 13, which is economically advantageous.
  • the rated name plate 16 may be attached to the solar cell module 2.
  • the vertical orientation of the solar cell module can be accurately grasped by using the position and notation of the rated name plate 16 as a guide. Therefore, it is easy to arrange the solar cell modules 2 so that the terminal boxes 112 and 113 having the same polarity are close to each other, and the cable lengths of the positive electrode cable 12 and the negative electrode cable 13 are surely shortened to reduce power loss efficiency. It can be suppressed well.
  • the distance between the positive electrode side terminal box 112 and the negative electrode side terminal box 113 in the left-right direction is D
  • the left-right dimension of the solar cell module 2 is W
  • the distance between the positive electrode side terminal box 112 and the negative electrode side terminal box 113 in the left-right direction is one tenth of the width dimension of the solar cell module 2, so that the positive electrode cable 12 and the negative electrode cable 13 are separated. It can be effective in shortening the cable length of.
  • the distance between the positive electrode side terminal box 112 and the negative electrode side terminal box 113 in the left-right direction is D
  • the left-right dimension of the solar cell module 2 is W
  • the gap between the solar cell modules 2 is d.
  • the positions of the positive electrode side terminal box 112 and the negative electrode side terminal box 113 may be arranged apart from each other in the left-right direction, and are not arranged at both ends on a line penetrating the center of the solar cell module 2 in the left-right direction. May be good.
  • the positive electrode side terminal box 112 and the negative electrode side terminal box 113 may be arranged at both ends on a horizontal line shifted in any of the vertical directions from the center of the solar cell module 2.
  • the solar cell modules 2 adjacent to each other are alternately arranged upside down, the positions of the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are displaced in the vertical direction for each solar cell module 2. Therefore, the state of the solar cell module 2 can be confirmed immediately. Moreover, when performing the connection work for connecting the cables 12 and 13, the positive electrode side terminal box 112 and the negative electrode side terminal box 113 do not interfere with the work. Therefore, workability is improved and further cost reduction can be achieved.

Abstract

Provided are a solar cell string and a solar power generation system that are capable of promoting cable length shortening and suppressing costs and increase in power loss. A plurality of solar cell modules 2 each having a positive electrode cable 12 and a negative electrode cable 13 are provided so as to be arranged linearly. A series circuit 15 is provided in which the solar cell modules 2 are electrically connected in series by electrically connecting the negative electrode cables 13 with the positive electrode cables 12 of the solar cell modules 2 that are mutually one ahead of the preceding ones. Each of the solar cell modules 2 has a positive electrode side terminal box 112 to which the positive electrode cable 12 is connected and a negative electrode side terminal box 113 to which the negative electrode cable 13 is connected, in such a manner as to be positioned separately from each other in the left-right direction. The solar cell modules 2 are each disposed such that the positive electrode side terminal box 112 and the negative electrode side terminal box 113 thereof are in the same positional order in the left-right direction as those of the solar cell module 2 that is one cell ahead of the preceding one.

Description

太陽電池ストリングおよび太陽光発電システムSolar string and photovoltaic system
 本発明に係る実施形態は、太陽電池ストリングおよび太陽光発電システムに関する。 The embodiment according to the present invention relates to a solar cell string and a photovoltaic power generation system.
 太陽光発電システムは、光を受けて直流電力を発電する太陽電モジュールと、太陽電池モジュールが発生する直流電力を交流電力に変換して送電網へ送るパワーコンディショナと、を備える。 The photovoltaic power generation system is equipped with a solar power module that receives light and generates DC power, and a power conditioner that converts the DC power generated by the solar cell module into AC power and sends it to the transmission network.
 近年、所謂メガソーラーシステムと呼ばれ、1MWを越える発電能力を有する太陽光発電システムの開発が進んでいる。メガソーラーシステムは、数十Wの発電能力を有する太陽電池モジュールを数千枚以上備える太陽光発電システムである。メガソーラーシステムのような太陽光発電システムは、所望の発電能力を得るために複数の太陽電池モジュールを備える。太陽光発電システムは、出力電圧を高めるために複数の太陽電池モジュールを電気的に直列接続し、さらに出力電流を高めるために直列接続した太陽電池モジュールを電気的に並列接続する。ここで、電気的に直列接続する複数の太陽電池モジュールを太陽電池ストリングと呼び、電気的に並列接続する複数の太陽電池ストリングを太陽電池アレイと呼ぶ。 In recent years, the development of a so-called mega solar system, which has a power generation capacity exceeding 1 MW, is progressing. A mega solar system is a photovoltaic power generation system equipped with thousands or more solar cell modules having a power generation capacity of several tens of watts. A photovoltaic system such as a mega solar system includes a plurality of solar cell modules in order to obtain a desired power generation capacity. In the photovoltaic power generation system, a plurality of solar cell modules are electrically connected in series in order to increase the output voltage, and the solar cell modules connected in series are electrically connected in parallel to further increase the output current. Here, a plurality of solar cell modules electrically connected in series are referred to as solar cell strings, and a plurality of solar cell strings electrically connected in parallel are referred to as solar cell arrays.
 図3は、従来の太陽光発電システムを示す概略図である。図3に示す太陽光発電システム1は太陽電池ストリング3を備える。太陽電池ストリング3には、複数の(例えば、6つの)太陽電池モジュール2が線状に配列されている。太陽電池モジュール2は同じ向きに配列されており、各太陽電池モジュール2の上部寄りの中央に端子箱(ジャンクションボックスとも言う)11が設置されている。端子箱11には正極ケーブル12および負極ケーブル13(以下、単にケーブル12、13とも呼ぶ)が取り付けられる。 FIG. 3 is a schematic view showing a conventional photovoltaic power generation system. The photovoltaic power generation system 1 shown in FIG. 3 includes a solar cell string 3. A plurality of (for example, six) solar cell modules 2 are linearly arranged on the solar cell string 3. The solar cell modules 2 are arranged in the same direction, and a terminal box (also referred to as a junction box) 11 is installed in the center near the upper part of each solar cell module 2. A positive electrode cable 12 and a negative electrode cable 13 (hereinafter, also simply referred to as cables 12 and 13) are attached to the terminal box 11.
 ケーブル12、13は、それぞれの太陽電池モジュール2を電気的に直列に接続するため、太陽電池モジュール2が線状に並んだ状態で先隣の位置にある太陽電池モジュール2のケーブル12、13に接続可能な長さを有する。また、ケーブル12、13は、それぞれの自由端にコネクタを備える。コネクタは相互に電気的に接続することが可能である。太陽電池ストリング3では、互いに先隣の位置にある太陽電池モジュール2同士のケーブル12、13とが電気的に接続されることで、太陽電池モジュール2を電気的に直列接続する直列回路15が構成される。 Since the cables 12 and 13 electrically connect the solar cell modules 2 in series, the cables 12 and 13 of the solar cell modules 2 located next to each other with the solar cell modules 2 arranged in a line are connected to the cables 12 and 13. Has a connectable length. Further, the cables 12 and 13 are provided with connectors at their respective free ends. The connectors can be electrically connected to each other. In the solar cell string 3, the cables 12 and 13 of the solar cell modules 2 located adjacent to each other are electrically connected to form a series circuit 15 that electrically connects the solar cell modules 2 in series. Will be done.
特開2017-174702号公報JP-A-2017-174702
 近年、太陽光発電システムの更なる高効率化が求められている。そのため、太陽電池モジュールとして、セルサイズを半分にしたハーフセルモジュールが提案されている。図4に示すように、ハーフセルモジュールを採用した太陽電池モジュール2では、クラスタAとクラスタBが上下方向に2分割されている。 In recent years, further improvement in the efficiency of photovoltaic power generation systems has been required. Therefore, as a solar cell module, a half-cell module in which the cell size is halved has been proposed. As shown in FIG. 4, in the solar cell module 2 that employs the half-cell module, the cluster A and the cluster B are divided into two in the vertical direction.
 図4に示す太陽電池モジュール2では、ケーブル12、13が取り付けられる端子箱は一つではなく、正極側端子箱112および負極側端子箱113が設けられている。正極側端子箱112は左側の側縁部に配置されている。負極側端子箱113は右側の側縁部に配置されている。 In the solar cell module 2 shown in FIG. 4, the cables 12 and 13 are not attached to one terminal box, but the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are provided. The positive electrode side terminal box 112 is arranged on the left side edge portion. The negative electrode side terminal box 113 is arranged at the right side edge portion.
 ところで、図3に示した太陽電池ストリング3でも、図4に示した太陽電池ストリング3でも、1個飛ばしで太陽電池モジュール2同士のケーブル12、13を接続したケーブル接続体は4本ある。図3に示した太陽電池ストリング3では、ケーブル接続体のケーブル長はどれもほぼ等しく、余長を含めても太陽電池モジュール2の幅寸法の2倍程度である。 By the way, in both the solar cell string 3 shown in FIG. 3 and the solar cell string 3 shown in FIG. 4, there are four cable connectors in which the cables 12 and 13 of the solar cell modules 2 are connected by skipping one. In the solar cell string 3 shown in FIG. 3, the cable lengths of the cable connectors are all substantially the same, and even if the extra length is included, the width dimension of the solar cell module 2 is about twice.
 一方、図4に示した太陽電池ストリング3では、ケーブル接続体のケーブル長が長いものと短いものが存在する。6枚の太陽電池モジュール2を図4の左側から順に2A、2B、2C、2D、2E、2Fとした場合、ケーブル長が長いケーブル接続体は、太陽電池モジュール2Bの正極側端子箱112から太陽電池モジュール2Dの負極側端子箱113まで接続したものと、太陽電池モジュール2Dの正極側端子箱112から太陽電池モジュール2Fの負極側端子箱113まで接続したものである。 On the other hand, in the solar cell string 3 shown in FIG. 4, there are a long cable length and a short cable length of the cable connector. When the six solar cell modules 2 are 2A, 2B, 2C, 2D, 2E, and 2F in order from the left side of FIG. 4, the cable connector having a long cable length is the sun from the positive electrode side terminal box 112 of the solar cell module 2B. The one connected to the negative electrode side terminal box 113 of the battery module 2D and the one connected from the positive electrode side terminal box 112 of the solar cell module 2D to the negative electrode side terminal box 113 of the solar cell module 2F.
 つまり、正極側端子箱112と負極側端子箱113が太陽電池モジュール2の左右の側縁部に設けられたので、ケーブル12、13を接続したケーブル接続体のうちケーブル長が長い方は、3枚分の太陽電池モジュール2にわたって延びることになる。このように、ハーフセルモジュールを採用した場合、端子箱112、113が左右方向に2つに分かれて配置されたことで、ケーブル12、13とを接続したケーブル接続体のケーブル長が長大化していた。その結果、ケーブル12、13自体のケーブル長も長くならざるを得ず、電力損失が増大すると共に、コストの高騰を招いた。 That is, since the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are provided on the left and right side edges of the solar cell module 2, the cable connector to which the cables 12 and 13 are connected has the longer cable length of 3. It will extend over the number of solar cell modules 2. In this way, when the half-cell module is adopted, the terminal boxes 112 and 113 are arranged in two in the left-right direction, so that the cable length of the cable connector connecting the cables 12 and 13 is lengthened. .. As a result, the cable lengths of the cables 12 and 13 themselves have to be lengthened, resulting in an increase in power loss and an increase in cost.
 本発明は、ケーブル長の短縮化を図り、電力損失の増大及びコストを抑えることが可能な太陽電池ストリングおよび太陽光発電システムを提供することを目的とする。 An object of the present invention is to provide a solar cell string and a photovoltaic power generation system capable of shortening the cable length, increasing power loss and suppressing costs.
 前記課題を解決するため、本発明の実施形態に係る太陽電池ストリングは、次の構成要素(A)~(D)を備える。
(A)それぞれが正極ケーブルと負極ケーブルとを有して線状に並ぶ複数の太陽電池モジュールを備える。
(B)互いに先隣の位置にある前記太陽電池モジュールの前記正極ケーブルと前記負極ケーブルとを電気的に接続して前記太陽電池モジュールを電気的に直列接続する直列回路と、を備える。
(C)前記太陽電池モジュールの配列方向を左右方向と定義して、前記各太陽電池モジュールは前記正極ケーブルを接続する正極側端子箱と前記負極ケーブルを接続する負極側端子箱とを左右方向に離して配置する。
(D)1つ先隣の位置にある前記太陽電池モジュール同士では、前記正極側端子箱と前記負極側端子箱が左右方向で同じ配置順になるように前記太陽電池モジュールを配列する。
In order to solve the above problems, the solar cell string according to the embodiment of the present invention includes the following components (A) to (D).
(A) Each has a positive electrode cable and a negative electrode cable, and includes a plurality of solar cell modules arranged in a line.
(B) A series circuit for electrically connecting the positive electrode cable and the negative electrode cable of the solar cell modules located adjacent to each other and electrically connecting the solar cell modules in series is provided.
(C) The arrangement direction of the solar cell modules is defined as the left-right direction, and each solar cell module has a positive electrode side terminal box to which the positive electrode cable is connected and a negative electrode side terminal box to which the negative electrode cable is connected in the left-right direction. Place them apart.
(D) Among the solar cell modules located one position next to each other, the solar cell modules are arranged so that the positive electrode side terminal box and the negative electrode side terminal box are arranged in the same order in the left-right direction.
 また、本発明の実施形態に係る太陽光発電システムは、前記太陽電池ストリングを備えることを特徴とする。 Further, the photovoltaic power generation system according to the embodiment of the present invention is characterized by including the solar cell string.
本発明の実施形態に係る太陽光発電システムを示すブロック図。The block diagram which shows the solar power generation system which concerns on embodiment of this invention. 本発明の他の実施形態に係る太陽電池モジュールの背面図。The rear view of the solar cell module which concerns on other embodiment of this invention. 従来の太陽光発電システムを示す概略図。The schematic diagram which shows the conventional photovoltaic power generation system. 従来の太陽光発電システムを示す概略図。The schematic diagram which shows the conventional photovoltaic power generation system.
(構成)
 本発明に係る太陽電池ストリングおよび太陽光発電システムの実施形態について、図1および図2を参照して説明する。図1は、本発明の実施形態に係る太陽光発電システムを示すブロック図である。本実施形態に係る太陽光発電システム1は、太陽電池モジュール2としてハーフセルモジュールを採用する。太陽電池モジュール2は上半分をクラスタA、下半分をクラスタBとする。
(Constitution)
An embodiment of the solar cell string and the photovoltaic power generation system according to the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a block diagram showing a photovoltaic power generation system according to an embodiment of the present invention. The photovoltaic power generation system 1 according to the present embodiment employs a half-cell module as the solar cell module 2. The upper half of the solar cell module 2 is cluster A, and the lower half is cluster B.
 図1に示すように、本実施形態に係る太陽光発電システム1は、電気的に直列接続する複数の太陽電池モジュール2を有する太陽電池ストリング3と、太陽電池ストリング3を電力系統50に連系するパワーコンディショナ6と、太陽電池ストリング3とパワーコンディショナ6とを電気的に接続する接続箱7と、パワーコンディショナ6の出力を電力系統50に連系する連系用変圧器8と、を備える。太陽光発電システム1は、複数のパワーコンディショナ6を備え、それぞれのパワーコンディショナ6に複数の太陽電池ストリング3を電気的に並列接続して所要の発電能力を得る。 As shown in FIG. 1, in the photovoltaic cell power generation system 1 according to the present embodiment, the solar cell string 3 having a plurality of solar cell modules 2 electrically connected in series and the solar cell string 3 are connected to the power system 50. Power conditioner 6 to be used, a junction box 7 for electrically connecting the solar cell string 3 and the power conditioner 6, and an interconnection transformer 8 for connecting the output of the power conditioner 6 to the power system 50. To be equipped. The photovoltaic power generation system 1 includes a plurality of power conditioners 6, and a plurality of solar cell strings 3 are electrically connected in parallel to each of the power conditioners 6 to obtain a required power generation capacity.
 太陽電池ストリング3は、線状に並ぶ複数の(例えば、6つの)太陽電池モジュール2と、互いに先隣の(隣り合う1つ先の、あるいは1つ飛ばした先の)位置にある太陽電池モジュー2の正極ケーブル12と負極ケーブル13とを電気的に接続して太陽電池モジュール2を電気的に直列接続する直列回路15と、を備える。複数の太陽電池モジュール2は、その配列方向を左右方向と定義して直線状に配列する。6枚の太陽電池モジュール2は、図1の左側から順に2A、2B、2C、2D、2E、2Fとする。 The solar cell string 3 is a plurality of (for example, six) solar cell modules 2 arranged in a line, and a solar cell module located at a position adjacent to each other (one adjacent or one skipped). A series circuit 15 that electrically connects the positive electrode cable 12 and the negative electrode cable 13 of 2 and electrically connects the solar cell module 2 in series is provided. The plurality of solar cell modules 2 are arranged linearly by defining the arrangement direction thereof as the left-right direction. The six solar cell modules 2 are 2A, 2B, 2C, 2D, 2E, and 2F in order from the left side of FIG.
 それぞれの太陽電池モジュール2は、数十Wの発電能力を有し、長方形状の受光面で光を受けて発電する。太陽電池モジュール2は、長辺と短辺を持つ長方形状の板状体であり、例えば、長辺=約1235mm、短辺=約641mmの板状体である。各太陽電池モジュール2では短辺が延びる方向を左右方向、それに直交する長辺が延びる方向を上下方向とする。本実施形態に係る太陽電池ストリング3は、太陽電池モジュール2を短辺方向へ直線状に並べたものであるが、太陽電池モジュール2を長辺方向へ直線状に並べてもよい。 Each solar cell module 2 has a power generation capacity of several tens of watts, and receives light on a rectangular light receiving surface to generate power. The solar cell module 2 is a rectangular plate-like body having a long side and a short side, and is, for example, a plate-like body having a long side = about 1235 mm and a short side = about 641 mm. In each solar cell module 2, the direction in which the short side extends is the left-right direction, and the direction in which the long side orthogonal to the extension extends is the vertical direction. In the solar cell string 3 according to the present embodiment, the solar cell modules 2 are arranged linearly in the short side direction, but the solar cell modules 2 may be arranged linearly in the long side direction.
 それぞれの太陽電池モジュール2は、非受光面側に位置する正極側端子箱112および負極側端子箱113と、正極側端子箱112に接続される正極ケーブル12および負極側端子箱113に接続される負極ケーブル13(以下、単にケーブル12、13とも呼ぶ)と、を備える。端子箱112、113の外径寸法は、太陽電池モジュール2に対して十分に小さく設定される。 Each solar cell module 2 is connected to a positive electrode side terminal box 112 and a negative electrode side terminal box 113 located on the non-light receiving surface side, and a positive electrode cable 12 and a negative electrode side terminal box 113 connected to the positive electrode side terminal box 112. A negative electrode cable 13 (hereinafter, also simply referred to as cables 12 and 13) is provided. The outer diameter dimensions of the terminal boxes 112 and 113 are set sufficiently smaller than those of the solar cell module 2.
 各太陽電池モジュール2では正極側端子箱112と負極側端子箱113とを左右方向に離して配置する。本実施形態では、正極側端子箱112および負極側端子箱113が太陽電池モジュール2の長辺の中央を左右方向に貫く線上の両端部に配置する。つまり、正極側端子箱112が太陽電池モジュール2の左側縁部に位置し、負極側端子箱113が太陽電池モジュール2の右側縁部に位置する。このとき、太陽電池モジュール2の上下方向が全て同じであるならば、異なる極性の端子箱112、113が近接することになる。 In each solar cell module 2, the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged so as to be separated from each other in the left-right direction. In the present embodiment, the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged at both ends on a line penetrating the center of the long side of the solar cell module 2 in the left-right direction. That is, the positive electrode side terminal box 112 is located at the left edge portion of the solar cell module 2, and the negative electrode side terminal box 113 is located at the right edge portion of the solar cell module 2. At this time, if the vertical directions of the solar cell modules 2 are all the same, the terminal boxes 112 and 113 having different polarities will be close to each other.
 しかし、本実施形態では、互いに隣り合う太陽電池モジュール2を交互に上下逆向きに配列する。図1に示した例では、太陽電池モジュール2A、2C、2Eが上半分をクラスタAとする上向きとなり、太陽電池モジュール2B、2D、2Fが下半分をクラスタAとする下向きとなっている。すなわち、互いに隣り合う太陽電池モジュール2同士は、180度回転して配置されており、端子箱112、113の左右の位置が入れ替わって、同じ極性の端子箱112、113同士が近接するように配列されることになる。 However, in the present embodiment, the solar cell modules 2 adjacent to each other are alternately arranged upside down. In the example shown in FIG. 1, the solar cell modules 2A, 2C, and 2E face upward with the upper half as cluster A, and the solar cell modules 2B, 2D, and 2F face downward with the lower half as cluster A. That is, the solar cell modules 2 adjacent to each other are arranged so as to be rotated 180 degrees, and the left and right positions of the terminal boxes 112 and 113 are exchanged so that the terminal boxes 112 and 113 having the same polarity are close to each other. Will be done.
 具体的には、上向きである太陽電池モジュール2A、2C、2Eでは左側縁部に正極側端子箱112が位置し、右側縁部に負極側端子箱113が、それぞれ位置する。反対に、下向きである太陽電池モジュール2B、2D、2Fでは左側縁部に負極側端子箱113が、右側縁部に正極側端子箱112が、それぞれ位置する。 Specifically, in the upward facing solar cell modules 2A, 2C, and 2E, the positive electrode side terminal box 112 is located on the left edge portion, and the negative electrode side terminal box 113 is located on the right side edge portion, respectively. On the contrary, in the downward facing solar cell modules 2B, 2D, and 2F, the negative electrode side terminal box 113 is located on the left edge portion, and the positive electrode side terminal box 112 is located on the right side edge portion.
 つまり、本実施形態では、1つ先隣の位置にある太陽電池モジュール2同士では、正極側端子箱112と負極側端子箱113が左右方向で同じ配置順になるように太陽電池モジュール2を配列している。具体的には、太陽電池モジュール2A、2C、2Eでは正極側端子箱112が左側で、負極側端子箱113が右側となる。反対に、太陽電池モジュール2B、2D、2Fでは正極側端子箱112が右側で、負極側端子箱113が左側となる。 That is, in the present embodiment, the solar cell modules 2 are arranged so that the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged in the same arrangement order in the left-right direction between the solar cell modules 2 located one position next to each other. ing. Specifically, in the solar cell modules 2A, 2C, and 2E, the positive electrode side terminal box 112 is on the left side and the negative electrode side terminal box 113 is on the right side. On the contrary, in the solar cell modules 2B, 2D, and 2F, the positive electrode side terminal box 112 is on the right side and the negative electrode side terminal box 113 is on the left side.
 太陽電池モジュール2Aの正極側端子箱112から延びる正極ケーブル12には延長ケーブル4が接続される。太陽電池モジュール2Aの負極側端子箱113から延びる負極ケーブル13と、太陽電池モジュール2Cの正極側端子箱112から延びる正極ケーブル12とは、太陽電池モジュール2Bを飛ばして接続される。 The extension cable 4 is connected to the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2A. The negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2A and the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2C are connected by skipping the solar cell module 2B.
 太陽電池モジュール2Cの負極側端子箱113から延びる負極ケーブル13と、太陽電池モジュール2Eの正極側端子箱112から延びる正極ケーブル12とは、太陽電池モジュール2Dを飛ばして接続される。太陽電池モジュール2Eの負極側端子箱113から延びる負極ケーブル13と、太陽電池モジュール2Fの正極側端子箱112から延びる正極ケーブル12とはS字状に接続される。 The negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2C and the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2E are connected by skipping the solar cell module 2D. The negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2E and the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2F are connected in an S shape.
 太陽電池モジュール2Fの負極側端子箱113から延びる負極ケーブル13と、太陽電池モジュール2Dの正極側端子箱112から延びる正極ケーブル12とは、太陽電池モジュール2Eを飛ばして接続される。さらに、太陽電池モジュール2Dの負極側端子箱113から延びる負極ケーブル13と、太陽電池モジュール2Bの正極側端子箱112から延びる正極ケーブル12とは、太陽電池モジュール2Cを飛ばして接続される。太陽電池モジュール2Bの負極側端子箱113から延びる負極ケーブル13は緩やかなS字状を描いて延び、自由端に延長ケーブル5が接続される。 The negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2F and the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2D are connected by skipping the solar cell module 2E. Further, the negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2D and the positive electrode cable 12 extending from the positive electrode side terminal box 112 of the solar cell module 2B are connected by skipping the solar cell module 2C. The negative electrode cable 13 extending from the negative electrode side terminal box 113 of the solar cell module 2B extends in a gentle S shape, and the extension cable 5 is connected to the free end.
 パワーコンディショナ6は、太陽電池ストリング3が出力する直流電力を所定周波数(例えば、商用電源周波数)の交流電力に変換するインバータ(図示省略)を備え、交流系統に接続する負荷設備(図示省略)に電力供給したり、電力系統50に並列接続して電力供給したりする。 The power conditioner 6 includes an inverter (not shown) that converts the DC power output by the solar cell string 3 into AC power of a predetermined frequency (for example, a commercial power frequency), and is a load facility connected to an AC system (not shown). Power is supplied to the power system 50, or is connected in parallel to the power system 50 to supply power.
 また、パワーコンディショナ6は、日射強度や太陽電池モジュール2の表面温度によって太陽電池ストリング3の出力が変動するために、最大出力点を追従するように太陽電池ストリング3の動作を変化して太陽電池ストリング3の最大電力を取り出す最大電力追従制御(MPPT:MaximumPowerPointTracking)を行う。ここで、太陽電池ストリング3を接続箱7に接続する電力線21に着目する。電力線21は、延長ケーブル4、5を接続箱7に導く。 Further, since the output of the solar cell string 3 fluctuates depending on the solar radiation intensity and the surface temperature of the solar cell module 2, the power conditioner 6 changes the operation of the solar cell string 3 so as to follow the maximum output point and the sun. Maximum power point tracking (MPPT: MaximumPowerPoint Tracking) is performed to extract the maximum power of the battery string 3. Here, attention is paid to the power line 21 that connects the solar cell string 3 to the junction box 7. The power line 21 guides the extension cables 4 and 5 to the junction box 7.
(作用および効果)
 以上の構成を有する本実施形態では、各太陽電池モジュール2における正極側端子箱112と負極側端子箱113とを左右方向に離して配置し、1つ先隣の位置にある太陽電池モジュール2同士では、正極側端子箱112と負極側端子箱113が左右方向で同じ配置順になるように太陽電池モジュール2を配列する。
(Action and effect)
In the present embodiment having the above configuration, the positive electrode side terminal box 112 and the negative electrode side terminal box 113 in each solar cell module 2 are arranged so as to be separated from each other in the left-right direction, and the solar cell modules 2 located one ahead of each other. Then, the solar cell modules 2 are arranged so that the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged in the same order in the left-right direction.
 このような本実施形態によれば、1つ先隣の位置にある太陽電池モジュール2同士では、正極側端子箱112と負極側端子箱113が左右方向で同じ配置順なので、ハーフセルモジュールを採用して正極側端子箱112と負極側端子箱113とを左右方向に離して配置しても、1つ先隣の位置にある太陽電池モジュール2同士では、極性の異なる端子箱112、113が距離的に近づくことができる。従って、本実施形態においては、正極ケーブル12および負極ケーブル13を接続したケーブル長を、太陽電池モジュール2を1個飛ばしただけの長さに近づけることができる。 According to this embodiment, in the solar cell modules 2 located one position next to each other, the positive electrode side terminal box 112 and the negative electrode side terminal box 113 have the same arrangement order in the left-right direction, so a half-cell module is adopted. Even if the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged apart from each other in the left-right direction, the terminal boxes 112 and 113 having different polarities are distanced between the solar cell modules 2 located one position next to each other. Can approach. Therefore, in the present embodiment, the cable length connecting the positive electrode cable 12 and the negative electrode cable 13 can be made close to the length obtained by skipping one solar cell module 2.
 このとき、本実施形態では、正極側端子箱112および負極側端子箱113を、太陽電池モジュール2を左右方向に貫く線上の両端部に配置したので、各太陽電池モジュール2における正極側端子箱112および負極側端子箱113は、水平な状態で左右方向に最も離れている。そのため、1つ先隣の位置にある太陽電池モジュール2同士の正極側端子箱112と負極側端子箱113とを左右方向の距離で最も近づけることができる。具体的には太陽電池モジュール2Aの負極側端子箱113と太陽電池モジュール2Cの正極側端子箱112、太陽電池モジュール2Bの正極側端子箱112と太陽電池モジュール2Dの負極側端子箱113、太陽電池モジュール2Cの負極側端子箱113と太陽電池モジュール2Eの正極側端子箱112、太陽電池モジュール2Dの正極側端子箱112と太陽電池モジュール2Fの負極側端子箱113を、それぞれ左右方向の距離で最も近づけることができる。その結果、ケーブル12、13を接続したケーブル接続体のケーブル長を短縮化することができ、ケーブル12、13自体のケーブル長も短くすることができる。これにより、電力損失の増大を抑えると共に、コストダウンを図ることが可能である。 At this time, in the present embodiment, the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged at both ends of the line penetrating the solar cell module 2 in the left-right direction, so that the positive electrode side terminal box 112 in each solar cell module 2 And the negative electrode side terminal box 113 is the farthest in the left-right direction in a horizontal state. Therefore, the positive electrode side terminal box 112 and the negative electrode side terminal box 113 of the solar cell modules 2 located one position next to each other can be brought closest to each other in the horizontal direction. Specifically, the negative electrode side terminal box 113 of the solar cell module 2A and the positive electrode side terminal box 112 of the solar cell module 2C, the positive electrode side terminal box 112 of the solar cell module 2B, the negative electrode side terminal box 113 of the solar cell module 2D, and the solar cell. The negative electrode side terminal box 113 of the module 2C, the positive electrode side terminal box 112 of the solar cell module 2E, the positive electrode side terminal box 112 of the solar cell module 2D, and the negative electrode side terminal box 113 of the solar cell module 2F are the most in the lateral distance. You can get closer. As a result, the cable length of the cable connector connecting the cables 12 and 13 can be shortened, and the cable length of the cables 12 and 13 itself can also be shortened. As a result, it is possible to suppress an increase in power loss and reduce costs.
 特に、メガソーラーシステムのように大量の太陽電池ストリング3を備える太陽光発電システム1では、ケーブル長の長大化に起因する電力損失の排除は有効であって、ハーフセルモジュールの採用と相まって、太陽光発電システム1および太陽電池ストリング3の高効率化をいっそう進めることができる。さらに、本実施形態では、ケーブル長の短縮化による費用削減を図ることができるので、太陽光発電システム1および太陽電池ストリング3の低コスト化にも寄与する。 In particular, in a photovoltaic power generation system 1 having a large amount of solar cell strings 3 such as a mega solar system, it is effective to eliminate power loss due to an increase in cable length, and in combination with the adoption of a half-cell module, solar power is used. The efficiency of the power generation system 1 and the solar cell string 3 can be further improved. Further, in the present embodiment, since the cost can be reduced by shortening the cable length, it also contributes to the cost reduction of the photovoltaic power generation system 1 and the solar cell string 3.
 また、本実施形態では、互いに隣り合う太陽電池モジュール2を交互に上下逆向きに配列するだけで、1つ先隣の位置にある太陽電池モジュール2同士で、正極側端子箱112と負極側端子箱113が左右方向で同じ配置順になるように太陽電池モジュール2を配列することができる。従って、簡単な作業で太陽電池モジュール2を所望の配列とすることが可能であり、作業コストが低減する。また、太陽電池モジュール2の構成自体には変更を加えることないので、製造コストの観点からもコスト増大の心配がない。 Further, in the present embodiment, the solar cell modules 2 adjacent to each other are arranged upside down alternately, and the solar cell modules 2 located one ahead of each other are arranged in the positive electrode side terminal box 112 and the negative electrode side terminal. The solar cell modules 2 can be arranged so that the boxes 113 are arranged in the same order in the left-right direction. Therefore, it is possible to arrange the solar cell modules 2 in a desired arrangement with a simple operation, and the work cost is reduced. Further, since the configuration of the solar cell module 2 itself is not changed, there is no concern about cost increase from the viewpoint of manufacturing cost.
 さらに、本実施形態では、正極側端子箱112および負極側端子箱113を、太陽電池モジュール2の中央を左右方向に貫く線上の両端部に配置したので、太陽電池モジュール2を交互に上下逆向きに配列した場合に、正極側端子箱112および負極側端子箱113の水平位置がずれない。従って、正極ケーブル12および負極ケーブル13を接続したケーブル接続体のケーブル長を最短化することができる。また、ケーブル接続体のケーブル長を揃えることができるので、ケーブル12、13の標準化が容易であり、経済的にも有利である。 Further, in the present embodiment, since the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are arranged at both ends on a line penetrating the center of the solar cell module 2 in the left-right direction, the solar cell modules 2 are alternately turned upside down. When arranged in, the horizontal positions of the positive electrode side terminal box 112 and the negative electrode side terminal box 113 do not shift. Therefore, the cable length of the cable connector connecting the positive electrode cable 12 and the negative electrode cable 13 can be minimized. Further, since the cable lengths of the cable connectors can be made uniform, it is easy to standardize the cables 12 and 13, which is economically advantageous.
(他の実施形態)
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
(Other embodiments)
Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 例えば、図2に示すように、太陽電池モジュール2に定格銘板16を取り付けてもよい。この実施形態によれば、定格銘板16の位置や表記などを目安として、太陽電池モジュールの上下の向きを的確に把握することができる。そのため、同じ極性の端子箱112、113同士が近接するように太陽電池モジュール2を配列することが容易であり、正極ケーブル12および負極ケーブル13のケーブル長を確実に短縮化して、電力損失を効率良く抑えることが可能である。 For example, as shown in FIG. 2, the rated name plate 16 may be attached to the solar cell module 2. According to this embodiment, the vertical orientation of the solar cell module can be accurately grasped by using the position and notation of the rated name plate 16 as a guide. Therefore, it is easy to arrange the solar cell modules 2 so that the terminal boxes 112 and 113 having the same polarity are close to each other, and the cable lengths of the positive electrode cable 12 and the negative electrode cable 13 are surely shortened to reduce power loss efficiency. It can be suppressed well.
 さらには、図2に示すように、正極側端子箱112および負極側端子箱113の左右方向の距離をD、太陽電池モジュール2の左右方向の寸法をWとして、D/W≧0.1とした実施形態も包含する。このような実施形態では、正極側端子箱112および負極側端子箱113の左右方向の距離が、太陽電池モジュール2の幅寸法の10分の1は離れているので、正極ケーブル12および負極ケーブル13のケーブル長の短縮化に効果を発揮することができる。 Further, as shown in FIG. 2, the distance between the positive electrode side terminal box 112 and the negative electrode side terminal box 113 in the left-right direction is D, and the left-right dimension of the solar cell module 2 is W, and D / W ≧ 0.1. Also includes the embodiments described above. In such an embodiment, the distance between the positive electrode side terminal box 112 and the negative electrode side terminal box 113 in the left-right direction is one tenth of the width dimension of the solar cell module 2, so that the positive electrode cable 12 and the negative electrode cable 13 are separated. It can be effective in shortening the cable length of.
 また、図2に示すように、正極側端子箱112および負極側端子箱113の左右方向の距離をD、太陽電池モジュール2の左右方向の寸法をW、太陽電池モジュール2同士の間隙をdとする。また、ケーブルの余長をleとし、太陽電池モジュール2を一つ飛ばした時の正極ケーブル12および負極ケーブル13のケーブル接続体のケーブル長を2Lmとすると、
Lm=(W-D)/2+d+W/2+le
という式が成り立つ。ここで、Lmが最小となるように設定することで、正極ケーブル12および負極ケーブル13のケーブル長の最短化を簡単に実現することができる。
Further, as shown in FIG. 2, the distance between the positive electrode side terminal box 112 and the negative electrode side terminal box 113 in the left-right direction is D, the left-right dimension of the solar cell module 2 is W, and the gap between the solar cell modules 2 is d. To do. Further, assuming that the extra length of the cable is le and the cable length of the cable connector of the positive electrode cable 12 and the negative electrode cable 13 when one solar cell module 2 is skipped is 2 Lm.
Lm = (WD) / 2 + d + W / 2 + le
The formula holds. Here, by setting the Lm to be the minimum, the cable lengths of the positive electrode cable 12 and the negative electrode cable 13 can be easily minimized.
 また、正極側端子箱112および負極側端子箱113の位置は、左右方向に離して配置されていればよく、太陽電池モジュール2の中央を左右方向に貫く線上の両端部に配置されていなくてもよい。例えば、正極側端子箱112および負極側端子箱113は、太陽電池モジュール2の中央から、上下方向のいずれかにずらした水平な線上の両端部に配置されもよい。 Further, the positions of the positive electrode side terminal box 112 and the negative electrode side terminal box 113 may be arranged apart from each other in the left-right direction, and are not arranged at both ends on a line penetrating the center of the solar cell module 2 in the left-right direction. May be good. For example, the positive electrode side terminal box 112 and the negative electrode side terminal box 113 may be arranged at both ends on a horizontal line shifted in any of the vertical directions from the center of the solar cell module 2.
 このような実施形態では、互いに隣り合う太陽電池モジュール2を交互に上下逆向きに配列した場合に、太陽電池モジュール2ごとに正極側端子箱112および負極側端子箱113の位置が上下方向にずれるので、太陽電池モジュール2の状態を即座に確認することができる。しかも、ケーブル12、13同士を接続する接続作業を行う際、正極側端子箱112および負極側端子箱113が作業の邪魔にならないに。従って、作業性が向上し、さらなるコストダウンを図ることができる。 In such an embodiment, when the solar cell modules 2 adjacent to each other are alternately arranged upside down, the positions of the positive electrode side terminal box 112 and the negative electrode side terminal box 113 are displaced in the vertical direction for each solar cell module 2. Therefore, the state of the solar cell module 2 can be confirmed immediately. Moreover, when performing the connection work for connecting the cables 12 and 13, the positive electrode side terminal box 112 and the negative electrode side terminal box 113 do not interfere with the work. Therefore, workability is improved and further cost reduction can be achieved.
 また、図1の接続箱7に代えて、PCS6と変圧器8の間に交流の集電箱が設置された太陽光発電システムであっても各実施形態同様の効果を奏する。 Further, even in a photovoltaic power generation system in which an AC current collector box is installed between the PCS 6 and the transformer 8 instead of the junction box 7 in FIG. 1, the same effect as in each embodiment is obtained.
1…太陽光発電システム
2…太陽電池モジュール
3…太陽電池ストリング
4、5…延長ケーブル
6…パワーコンディショナ
7…接続箱
8…連系用変圧器
11…端子箱
12…正極ケーブル
13…負極ケーブル
15…直列回路
16…定格銘板
21…電力線
50…電力系統
1 ... Photovoltaic system 2 ... Solar cell module 3 ... Solar cell strings 4, 5 ... Extension cable 6 ... Power conditioner 7 ... Junction box 8 ... Interconnect transformer 11 ... Terminal box 12 ... Positive cable 13 ... Negative cable 15 ... Series circuit 16 ... Rating plate 21 ... Power line 50 ... Power system

Claims (6)

  1.  それぞれが正極ケーブルと負極ケーブルとを有して線状に配列した太陽電池モジュールと、
     互いに先隣の位置にある前記太陽電池モジュールの前記正極ケーブルと前記負極ケーブルとを電気的に接続して前記太陽電池モジュールを電気的に直列接続する直列回路と、を備え、
     前記太陽電池モジュールの配列方向を左右方向と定義して、前記各太陽電池モジュールは前記正極ケーブルを接続する正極側端子箱と前記負極ケーブルを接続する負極側端子箱とを左右方向に離して配置し、
     1つ先隣の位置にある前記太陽電池モジュール同士では、前記正極側端子箱と前記負極側端子箱が左右方向で同じ配置順になるように前記太陽電池モジュールを配列することを特徴とする太陽電池ストリング。
    A solar cell module, each of which has a positive electrode cable and a negative electrode cable and is arranged linearly.
    A series circuit for electrically connecting the positive electrode cable and the negative electrode cable of the solar cell module located adjacent to each other and electrically connecting the solar cell modules in series is provided.
    The arrangement direction of the solar cell modules is defined as the left-right direction, and each solar cell module is arranged so that the positive electrode side terminal box to which the positive electrode cable is connected and the negative electrode side terminal box to which the negative electrode cable is connected are separated from each other in the left-right direction. And
    A solar cell in which the solar cell modules located one position next to each other are arranged so that the positive electrode side terminal box and the negative electrode side terminal box are arranged in the same arrangement order in the left-right direction. string.
  2.  互いに隣り合う前記太陽電池モジュールを交互に上下逆向きに配列することを特徴とする請求項1に記載の太陽電池ストリング。 The solar cell string according to claim 1, wherein the solar cell modules adjacent to each other are alternately arranged upside down.
  3.  前記正極側端子箱および前記負極側端子箱を、前記太陽電池モジュールを左右方向に貫く線上の両端部に配置することを特徴とする請求項1又は2に記載の太陽電池ストリング。 The solar cell string according to claim 1 or 2, wherein the positive electrode side terminal box and the negative electrode side terminal box are arranged at both ends on a line penetrating the solar cell module in the left-right direction.
  4.  前記太陽電池モジュールは、定格銘板を取り付けたことを特徴とする請求項1~3のいずれか1項に記載の太陽電池ストリング。 The solar cell string according to any one of claims 1 to 3, wherein the solar cell module is provided with a rated name plate.
  5.  前記正極側端子箱および前記負極側端子箱の左右方向の距離をD、前記太陽電池モジュールの左右方向の寸法をWとして、D/W≧0.1であることを特徴とする請求項1~4のいずれか1項に記載の太陽電池ストリング。 1 to claim 1, wherein the distance between the positive electrode side terminal box and the negative electrode side terminal box in the left-right direction is D, and the dimension in the left-right direction of the solar cell module is W, and D / W ≧ 0.1. Item 4. The solar cell string according to any one of 4.
  6.  請求項1~5のいずれか1項に記載の太陽電池ストリングを備えることを特徴とする太陽光発電システム。

     
    A photovoltaic power generation system comprising the solar cell string according to any one of claims 1 to 5.

PCT/JP2019/034163 2019-08-30 2019-08-30 Solar cell string and solar power generation system WO2021038837A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/034163 WO2021038837A1 (en) 2019-08-30 2019-08-30 Solar cell string and solar power generation system
JP2021541928A JP7439107B2 (en) 2019-08-30 2019-08-30 Solar strings and solar power systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034163 WO2021038837A1 (en) 2019-08-30 2019-08-30 Solar cell string and solar power generation system

Publications (1)

Publication Number Publication Date
WO2021038837A1 true WO2021038837A1 (en) 2021-03-04

Family

ID=74685291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034163 WO2021038837A1 (en) 2019-08-30 2019-08-30 Solar cell string and solar power generation system

Country Status (2)

Country Link
JP (1) JP7439107B2 (en)
WO (1) WO2021038837A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068537A (en) * 1998-06-12 2000-03-03 Canon Inc Solar cell module, string, system, and management method
JP2004221479A (en) * 2003-01-17 2004-08-05 Kyocera Corp Solar power generator
JP2012174702A (en) * 2011-02-17 2012-09-10 Toshiba Corp Solar cell string, photovoltaic power generation system, and method for electrically connecting solar cell module
US20140053890A1 (en) * 2012-08-27 2014-02-27 Au Optronics Corporation Photovoltaic apparatus
CN205453631U (en) * 2016-03-16 2016-08-10 上海熠搜能源科技有限公司 Line length and novel subassembly square matrix structure are dragged to terminal box
US20170187328A1 (en) * 2015-12-29 2017-06-29 Solarcity Corporation Photovoltaic modules with corner junction boxes and array of the same
CN109067354A (en) * 2018-08-08 2018-12-21 华润电力(贺州)有限公司 A kind of low-loss flat uniaxial photovoltaic module connection system of novel, practical drop

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068537A (en) * 1998-06-12 2000-03-03 Canon Inc Solar cell module, string, system, and management method
JP2004221479A (en) * 2003-01-17 2004-08-05 Kyocera Corp Solar power generator
JP2012174702A (en) * 2011-02-17 2012-09-10 Toshiba Corp Solar cell string, photovoltaic power generation system, and method for electrically connecting solar cell module
US20140053890A1 (en) * 2012-08-27 2014-02-27 Au Optronics Corporation Photovoltaic apparatus
US20170187328A1 (en) * 2015-12-29 2017-06-29 Solarcity Corporation Photovoltaic modules with corner junction boxes and array of the same
CN205453631U (en) * 2016-03-16 2016-08-10 上海熠搜能源科技有限公司 Line length and novel subassembly square matrix structure are dragged to terminal box
CN109067354A (en) * 2018-08-08 2018-12-21 华润电力(贺州)有限公司 A kind of low-loss flat uniaxial photovoltaic module connection system of novel, practical drop

Also Published As

Publication number Publication date
JPWO2021038837A1 (en) 2021-03-04
JP7439107B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
US20230158593A1 (en) Solar cell assembly
US9391380B2 (en) Electrical cable harness and assembly for transmitting AC electrical power
KR101077110B1 (en) Connection device for junction box of solar battery module
US9859841B2 (en) Photovoltaic junction box with heat conduction angle between 180°-360°
WO2021051929A1 (en) Sliced photovoltaic assembly
JP5740172B2 (en) Solar cell string, solar power generation system, and solar cell module electrical connection method
EP2858124B1 (en) Bridged solar cell and solar power generation system
CN208422933U (en) Photovoltaic module
US9099587B2 (en) Educational solar cell module
US20140053890A1 (en) Photovoltaic apparatus
JP2012256728A (en) Solar cell module
KR101505186B1 (en) Photovoltaic module
TW201244303A (en) Junction box
WO2021038837A1 (en) Solar cell string and solar power generation system
KR102237578B1 (en) One-touch connector integral photovoltaics module assembly and installing method thereof
US20160027945A1 (en) Systems and methods for wiring solar panel arrays
CN108493281A (en) A kind of solar photovoltaic assembly
KR200331886Y1 (en) Battery charger and discharger
CN211046865U (en) Photovoltaic device and photovoltaic power station system
CN209859961U (en) Solar cell module
CN111710741A (en) Photovoltaic power generation device
JP2016001971A (en) Solar battery module
CN212342647U (en) Photovoltaic power generation device
CN214756241U (en) Novel photovoltaic cable junction box device
KR101523048B1 (en) Junction box

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943198

Country of ref document: EP

Kind code of ref document: A1