WO2021037215A1 - Payload segmentation and resource mapping for multi-slot transmissions - Google Patents

Payload segmentation and resource mapping for multi-slot transmissions Download PDF

Info

Publication number
WO2021037215A1
WO2021037215A1 PCT/CN2020/112163 CN2020112163W WO2021037215A1 WO 2021037215 A1 WO2021037215 A1 WO 2021037215A1 CN 2020112163 W CN2020112163 W CN 2020112163W WO 2021037215 A1 WO2021037215 A1 WO 2021037215A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbg
tbs
base station
transmission
payload
Prior art date
Application number
PCT/CN2020/112163
Other languages
French (fr)
Inventor
Jing LEI
Chao Wei
Seyedkianoush HOSSEINI
Wanshi Chen
Peter Pui Lok Ang
Renqiu Wang
Qiaoyu Li
Ruiming Zheng
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Publication of WO2021037215A1 publication Critical patent/WO2021037215A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to a communication systems transmitting multi-slot transmissions.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra reliable low latency communications
  • 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • a multi-slot transmission is helpful for a signaling overhead reduction and a power saving of a user equipment (UE) .
  • the multi-slot transmission may happen in all Radio Resource Control (RRC) states.
  • RRC Radio Resource Control
  • a payload may be segmented based on a configurable threshold.
  • a header may be inserted for an indication of UE-specific transmission parameters.
  • explicit or implicit UE ID may be transmitted.
  • the apparatus may be a UE configured to obtaining, from a base station, configuration information and transmission parameters for a multi-slot transmission.
  • the apparatus may be further configured to generate a payload for the multi-slot transmission.
  • the apparatus may be configured to segment, based on the configuration information, the payload into one or multiple transport blocks (TBs) , where the one or multiple TBs are a set of TBs.
  • the apparatus may be further configured to repeat the set of TBs and concatenating the repeated TBs into a TB group (TBG) .
  • TBG transport blocks
  • the apparatus may be further configured to insert a header within each TB, where the header includes at least one of a flag indicating whether the TB is the last TB in the TBG , a redundancy version (RV) , a new data indicator (NDI) , a TB index, a time frequency resource indication (TFRI) , a frequency hopping pattern, or a least significant bit (LSB) of a UE-specific multiple access signature.
  • the apparatus may be further configured to scramble the TBG by the UE-specific multiple access signature.
  • the apparatus may be further configured to transmit the TBG to the base station using the transmission parameters in a shared time and frequency resource grid configured by the base station.
  • a method, a computer-readable medium, and an apparatus are provided.
  • the apparatus may be a base station configured to configure a shared time and frequency resource grid for multi-slot transmissions by one or more UEs.
  • the apparatus may be configured to transmit, to the one or more UEs, configuration information and transmission parameters of the one or more UEs for the multi-slot transmissions by the one or more UEs.
  • the apparatus may be further configured to receive one or more transport block (TB) groups (TBGs) from the one or more UEs performing the multi-slot transmissions, where each TB of a corresponding TBG may include a header carrying UE specific transmission parameters and resource mapping information of the corresponding TBG, where the header may include at least one of a flag indicating whether the TB is the last TB in the TBG , a redundancy version (RV) , a new data indicator (NDI) , a TB index, a time frequency resource indication (TFRI) , a frequency hopping pattern, or a least significant bit (LSB) of a UE-specific multiple access signature, and where the one or more TBGs from the one or more UEs are received in the shared time and frequency resource grid.
  • TB transport block
  • TBGs transport block groups
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
  • FIG. 3 is a diagram illustrating an example of a base station and a UE in an access network.
  • FIG. 4 is a flow diagram illustrating an example of a payload segmentation with a header insertion.
  • FIG. 5 is a diagram illustrating an example of a TB header construction.
  • FIG. 6 is a diagram illustrating an example of a TB header construction.
  • FIG. 7 is a diagram illustrating another example of a TB header construction.
  • FIG. 8 is a diagram illustrating an example of a UE-Specific frequency hopping pattern for a multi-slot Transmission.
  • FIGs. 9A-9B are diagrams illustrating HARQ feedback for TBG Retransmission.
  • FIG. 10 is a flowchart of a method of wireless communication.
  • FIG. 11 is a conceptual data flow diagram illustrating the data flow between different means/components in an example apparatus.
  • FIG. 12 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • FIG. 13 is a flowchart of a method of wireless communication.
  • FIG. 14 is a conceptual data flow diagram illustrating the data flow between different means/components in an example apparatus.
  • FIG. 15 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through backhaul links 184.
  • NG-RAN Next Generation RAN
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over backhaul links 134 (e.g., X2 interface) .
  • the backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia,
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters.
  • Radio waves in the band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • Communications using the mmW /near mmW radio frequency band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • the base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may be configured to obtaining, from a base station, configuration information and transmission parameters for a multi-slot transmission.
  • the UE 104 may be further configured to generate a payload for the multi-slot transmission.
  • the UE 104 may comprise a segmentation component 198 configured to segment, based on the configuration information, the payload into one or multiple transport blocks (TBs) , where the one or multiple TBs are a set of TBs.
  • the UE 104 may be further configured to repeat the set of TBs and concatenate the repeated TBs into a TB group (TBG) .
  • TBG TB group
  • the TB repetition can be based on similar or different redundancy version.
  • the UE 104 may be further configured to insert a header within each TB, where the header includes at least one of a flag indicating whether the TB is the last TB in the TBG , a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or an LSB of a UE-specific multiple access signature.
  • the UE 104 may be further configured to scramble the TBG by the UE-specific multiple access signature.
  • the UE 104 may be further configured to transmit the TBG to the base station using the transmission parameters configured by the network and in a shared time and frequency resource grid configured by the base station.
  • the base station 180 may comprise a configuration component 199 configured to configure a shared time and frequency resource grid for multi-slot transmissions by one or more UEs.
  • the base station 180 may be configured to transmit, to the UE 104, configuration information and transmission parameters of the UE 104 for a multi-slot TBG transmission by the UE 104.
  • the base station 180 may be further configured to receive, based on the transmission parameters, the TBG from the UE 104, the TBG being based on the configuration information, the TBG being received in the shared time and frequency resource grid.
  • 5G NR the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe.
  • the 5G/NR frame structure may be FDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be TDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and X is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) .
  • slot formats 0, 1 are all DL, UL, respectively.
  • Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 5 allow for 1, 2, 4, 8, 16, and 32 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 5.
  • is the numerology 0 to 5.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the subcarrier spacing is 15 kHz and symbol duration is approximately 66.7 ⁇ s.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block.
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 199 of FIG. 1.
  • a UE may transmit a multi-slot transmission to a base station.
  • a multi-slot transmission may be a transmission that is transmitted on multiple slots. The frequency resources of the transmission may be the same or may be different from slot to slot.
  • the slots of the multi-slot transmission may be contiguous.
  • the slots of the multi-slot transmission may be non-contiguous (e.g., some of the slots may be contiguous, but not all of the slots are contiguous; there is at least one slot between the first slot of the multi-slot transmission and the last slot of the multi-slot transmission on which the UE does not transmit the multi-slot transmission) .
  • a multi-slot transmission may be a grant free transmission.
  • a multi-slot transmission may be a transmission which a UE transmits without being scheduled to transmit by a base station, such as a RACH transmission (e.g., a 2-step RACH transmission) , a small data transfer transmission, massive machine type communications (mMTC) , or NR/LTE internet of things (IoT) transmissions.
  • RACH transmission e.g., a 2-step RACH transmission
  • mMTC massive machine type communications
  • IoT internet of things
  • a UE may make a multi-slot transmission regardless of the RRC state of the UE (e.g., may transmit a multi-slot transmission in RRC_IDLE or RRC_INACTIVE) .
  • a UE may utilize several transmission schemes for the multi-slot transmission, which may facilitate efficient and flexible UE multiplexing with different payload sizes and coupling losses, and/or may reduce the complexity of blind decoding (e.g., at the base station) .
  • an uplink transmission payload may be segmented into one or more TBs based on a configurable threshold.
  • the threshold may be configured by a base station.
  • the one or more TBs may form a TBG.
  • a header may be inserted, e.g., in each TB, for an indication of UE-specific transmission parameters.
  • explicit or implicit UE ID may be carried in the uplink transmission.
  • the TBs in the TBG may be mapped to a predefined time and frequency resource grid according to a mapping pattern. Based on the mapping pattern and a decoding outcome of the TBG, a base station may determine which UE is transmitting and which TBs have failed to be decoded. The UE may retransmit the TBs failed to be decoded by the base station. Aspects described herein may be applied to physical uplink shared channel (PUSCH) transmission for contention-based or uncoordinated multiple access, such as 2-step random access channel (RACH) , small data transfer, Massive Machine Type Communications (mMTC) , NR/LTE IoT.
  • PUSCH physical uplink shared channel
  • RACH 2-step random access channel
  • mMTC Massive Machine Type Communications
  • NR/LTE IoT NR/LTE IoT.
  • FIG. 4 is a flow diagram 400 illustrating an example of payload segmentation and header insertion.
  • the flow diagram 400 may illustrate actions performed by a UE.
  • multi-slot transmission parameters may be configured for the UE by system information (SI) /radio resource control (RRC) from a base station.
  • SI system information
  • RRC radio resource control
  • the base station may configure a time/frequency (T/F) resource size of a PUSCH resource unit (PRU) and an associated modulation and coding scheme (MCS) for the UE.
  • T/F time/frequency
  • MCS modulation and coding scheme
  • the PRU may be configured in terms of slots or mini-slots in the time domain, and in terms of resource block groups (RBGs) or a sub-RBGs in the frequency domain.
  • RBGs resource block groups
  • a UE may obtain configuration information 403 (e.g. PRU size, MCS level, payload segmentation threshold, mapping table between Signal-to-Noise Ratio (SNR) target and repetition level) from the base station.
  • the UE may generate a payload 401 with a size of X bytes for the multi-slot transmission.
  • the UE may segment, based on the configuration information 403, the payload 401 into one or multiple transport blocks (TBs) , as illustrated at 405.
  • the UE may receive a segmentation threshold from the base station, corresponding to a payload size threshold. If the size X of the payload exceeds the segmentation threshold, the UE may segment the payload into multiple TBs. If the size X of the payload does not exceed the segmentation threshold, the UE may include the payload in a single TB.
  • the one or multiple TBs may be a set of TBs.
  • a medium access control (MAC) entity of the UE may generate a MAC protocol data unit (PDU) to physical layer (PHY) .
  • the payload size of the MAC PDU may be X bytes.
  • the UE may decide whether or not to segment the payload (X bytes) into multiple TBs. For example, if X ⁇ T 0 , the UE may not segment the payload (and may include bit padding X ⁇ T 0 ) . If X> T 0 , the UE may segment the payload into TB.
  • the repeated TBs may have the same RV as the original TB or a different RV than the original TB.
  • the UE may determine to repeat the set of TBs in the multi-slot transmission, as illustrated at 405.
  • the UE may take the TBs generated based on the payload (e.g., a single unsegmented TB or multiple segmented TBs) , and may generate additional versions of the TBs (which may be referred to as ‘repeating the TBs’ or ‘repetition of the TBs’ ) to be included in the TBG.
  • the UE may determine a repetition level to use for repeating the TBs. For example, the UE may measure a reference signal received power (RSRP) .
  • RSRP reference signal received power
  • the UE may decide the number of repetitions to be applied for the transmission.
  • the repetition level may be UE-specific. For example, cell-center and cell-edge UEs may determine different repetition levels, as the cell-edge UE may have a lower RSRP than a cell-center UE.
  • the UE may measure the RSRP and determine a repetition level according to the configured mapping table between the SNR target and the repetition level, where the SNR target may depend on an MCS configured for the multi-slot transmission.
  • the UE may insert a header within each TB, as illustrated at 406.
  • the header may be a MAC header.
  • the header may include at least one of a flag indicating whether the TB is the last TB in the TBG of the TB, a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or one or more LSB of a UE-specific multiple access signature (e.g., a subset of the bits of the UE-specific multiple access signature) .
  • the UE may perform cyclic redundancy check (CRC) attachment, channel coding, and rate matching to the TBs.
  • CRC cyclic redundancy check
  • the UE may generate a TBG, as illustrated at 409, based on the TBs generated at 405. As a result, there may be L TBs, as illustrated at 410, where a size of each TB is smaller than the size of the payload 401.
  • the UE may scramble the TBG using the UE-specific multiple access signature, as illustrated at 411.
  • a scrambling ID may be generated by a closed-form formula, for example, the scrambling ID may be a function of a PRU index, a demodulation reference signal (DMRS) resource index, a preamble resource index.
  • DMRS demodulation reference signal
  • the UE may further perform linear modulation, and transform precoding to the scrambled TBG.
  • the UE may multiplex the TBG with DMRS or a preamble resource index 414 in a resource mapping, as illustrated at 412.
  • the DMRS or the preamble resource index may be configured to carry information based on a the transmission parameter selected by the UE for the multi-slot transmission (e.g., the MCS) or a UE identifier.
  • the DMRS or the preamble resource index may carry partial information based on the transmission parameter or the UE identifier.
  • the header for a TB may include a subset of the least significant bits of the UE identifier, and the DMRS or the preamble may include the remaining most significant bits of the UE identifier.
  • the TBs of the TBG may be mapped to PRUs 416. Each TB may be mapped to one PRU. For a total number of L TBs, there may be L PRUs.
  • the base station may configure the UE with a time and frequency resource grid shared with other UEs, and the time and frequency grid may define the PRUs.
  • the UE may transmit the PRUs to the base station.
  • the UE may multiplex each TB of the TBG with the DMRS or further multiplex the TBG and the DMRS with the preamble in resource mapping, wherein the DMRS or the preamble resource index may be configured to carry information for the transmission parameter selected by the UE or a UE identifier.
  • FIG. 5 is a diagram 500 illustrating an example of a TB header construction.
  • the UE may segment a payload into one or multiple TBs, perform TB repetition, and perform header insertion on the resultant TBs.
  • L TB (s) may be generated for a payload size of X bytes and a repetition level N (N ⁇ 1) .
  • N repetition level
  • Each TB may have a TB header (e.g., 505, 509) , e.g., with a size of 1 byte.
  • the TB header may include some or all of the following information: a flag for indicating the last TB of the TBG, a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or a subset of least significant bits of a UE-specific multiple access signature (the remaining bits, the most significant bits, may be carried by DMRS/preamble resource index, etc. ) .
  • FIG. 6 is a diagram 600 illustrating an example of a TB header construction.
  • a TB header 605 may include a flag bit 606.
  • the remaining bits 608of the TB header may include TX parameters of the TBG.
  • the TX parameters may include RV (2 bits) , NDI (1 bit) , TB index (2 bits) , and/or a frequency hopping pattern index (2 bits) , etc.
  • the base station may look to the header of a TB and determine the next TB to be combined with the TB (e.g., concatenated with the TB) , or determine that the TB is the last TB to be combined.
  • the TB may include a segmented portion of the payload 607 with T 0 bytes.
  • Full or partial UE ID information may be included in the TB, may be used for a scrambling ID generation of the CRC, or may be mapped to a DMRS/preamble resource.
  • FIG. 7 is a diagram 700 illustrating another example of a TB header construction.
  • the TB header (e.g., 701a, 702a, 703a) of the TB may include a TFRI (e.g., a group TFRI (G-TFRI) ) .
  • the TFRI may indicate a set of PRUs selected by a UE for payload transmission.
  • the UE may be configured with a table mapping TFRIs to sets of PRUs.
  • the base station may configure multiple UEs with the same TFRI table.
  • the table may be predefined at the UE (e.g., configured by OEM) or may be configured for the UE by the base station.
  • a given PRU may be included in multiple sets of PRUs, corresponding to multiple TFRIs.
  • the TFRI may be a bitmap with bits corresponding to PRUs of the time and frequency resource grid (e.g., the resource pool) .
  • the bitmap may include a value of “1” indicating that the PRU corresponding to that bit is included in the TFRI. If the length of bitmap is smaller than a total number of PRUs in the resource pool, the pattern may be repeated.
  • the total number of bits with a “1” value in the time and frequency resource pattern may indicate a total number of PRUs used for the payload transmission.
  • the UE may select the TFRI based on the number of TBs in the TBG and/or based on a UE identity.
  • the TFRI may be included in the header (e.g., 701a, 702a, 703a) and available for joint CRC and a channel coding with the payload.
  • the TFRI may additionally or alternatively be L1 information (e.g., similar to an uplink control information (UCI) ) multiplexed on a PUSCH with separate channel coding from the payload.
  • UCI uplink control information
  • the base station may determine the PRUs that the UE transmitted portions of the multi-slot transmission on.
  • the UE may order the received TBs based on the PRU resource index to reconstruct the transmission payload.
  • FIG. 8 is a diagram 800 illustrating an example of a UE-Specific frequency hopping pattern for a multi-slot transmission.
  • a common time/frequency grid of dimension [T min , F min , T max , F max ] may be configured by a base station for multi-slot transmissions of multiple UEs (e.g., 801, 802, 803) .
  • the multiple UEs e.g., 801, 802, 803 may share the common time/frequency grid.
  • the time/frequency grid may indicate resources configured for the base station for multi-slot transmissions, and multiple UEs may be configured to transmit multi-slot transmissions on the configured resources.
  • the UEs may transmit multi-slot transmissions including one or multiple TBs.
  • UE A transmits a multi-slot transmission including four RBs
  • UE B transmits a multi-slot transmission including two RBs
  • UE C transmits a multi-slot transmission including two RBs.
  • Each TB of a transmission may be mapped to one PRU based on a frequency hopping pattern.
  • the UE may select a hopping pattern from a set of hopping patterns configured for the UE by the base station, and may map the TBs of the TBG to a set of PRUs based on the selected hopping pattern.
  • Different UEs may select different numbers of hops (e.g. equal to L) , different starting points (e.g.
  • the UE may select a sequence of consecutive or non-consecutive PRU resource indexes based on the frequency hopping pattern, where the number of PRUs in the sequence of the selected PRU resource indexes may equal to number of TBs in the TBG.
  • Two or more UEs transmitting multi-slot transmissions on the time and frequency resource grid may determine to transmit on the same PRU. For example, as illustrated in FIG. 8, UE A 801 and UE C 803 may both transmit on the same PRU 806, and UE B 802 and UE C 803 may both transmit on the same PRU 805. If the UEs used different DMRS and/or different PRUs (e.g., time-frequency resources) for their transmission, the base station may still be able to decode the received PRUs. Because the transmissions are multi-slot transmissions, and the UEs and base station may not coordinate the transmissions, it may be possible that two UEs may choose the same DMRS and the same PRU for their transmission.
  • the base station may not be able to decode transmissions transmitted on the same PRU with the same DMRS. Thus, the base station may request retransmission of the TBs that have failed to be decoded by the base station.
  • the base station may determine that it failed to decode a transmission from a particular UE (e.g., as a result of a collision) based on receiving another PRU from the UE with a TFRI including the PRU with the collision or based on receiving another PRU from the UE with a header indicating that the next PRU would be in the PRU with the collision.
  • FIGs. 9A-9B are diagrams 900a and 900b illustrating examples of hybrid automatic repeat request (HARQ) feedback for TBG retransmission.
  • HARQ feedback for a TBG transmission may be UE-specific (e. g, may be addressed to a UE ID or to a TFRI) .
  • a CRC of a PDCCH carrying the HARQ feedback may be masked based on the UE ID or a UE specific multiple access signature (e.g., a preamble ID) or a TFRI.
  • the payload may include the TBG decoding outcome for a TBG transmitted by the UE.
  • the base station may include separate HARQ feedback for different UEs.
  • HARQ feedback 903 may be for UE A
  • HARQ feedback 904 may be for UE B.
  • the TBG decoding outcome of each UE may be indicated in the HARQ feedback by a bitmap.
  • the bits in the bitmap may correspond to TBs of the TBG transmitted by the UE.
  • a value of “1” in the bitmap 903 may indicate that the TB was decoded successfully, and the value of “0” in the bitmap may indicate that the TB was not decoded successfully.
  • the UE may retransmit TBs that were not decoded successfully to the base station.
  • UE A may have transmitted a TBG with L A TBs.
  • the length of the bitmap in the HARQ feedback 903 for UE A may be L A .
  • the bitmap of UE B 904 may have a similar structure to the bitmap of UE B.
  • UE B may have transmitted a TBG with L B TBs, where L B is different than L A .
  • the length of the bitmap in the HARQ feedback 904 for UE B may be L B .
  • HARQ feedback for a TBG transmission may be PRU-specific.
  • the HARQ feedback may be transmitted to multiple UEs (e.g., may be addressed to a group radio network temporary identifier (RNTI) ) , and a receiving UE may check portions of the HARQ feedback corresponding to PRUs where that UE transmitted to determine whether the transmitted PRU was successfully decoded.
  • RNTI group radio network temporary identifier
  • a CRC of a PDCCH carrying HARQ feedback 910 may be masked based on a group RNTI, which may be a function of the TFRI of PRU.
  • Each field of the HARQ feedback 910 may correspond to a PRU.
  • the fields may include one or more UE ID, indicating that the base station received and successfully decoded a transmission from that UE during the corresponding PRU.
  • a field corresponding to PRU1 may carry a UE ID of UE A, which may indicate that the base station received a transmission from UE A during PRU 1 and successfully decoded the transmission (e.g., recovered the TB)
  • UE A may receive the HARQ feedback 910, may determine that its UE ID is present in the field corresponding to PRU 1, and may determine not to retransmit the TB transmitted on PRU 1.
  • the UE may retransmit the failed TB.
  • the UE may receive the HARQ feedback from the base station for the decoding outcome of the TBG, and retransmit the TBs failed to be decoded by the base station based on the HARQ feedback. For example, the UE may look at the bitmap (e.g., 903, 904) , or look at the table (e. g, 910) , determine the TBs failed to be decoded by the base station, and retransmit the TBs failed to be decoded by the base station. In this way, the retransmission may be more efficient than retransmitting the entire payload.
  • a UE may determine an order of a UE-specific multiple access multiple access signature. For example, the UE may calculate the UE-specific multiple access signature based on at least one of a preamble resource index, a DMRS resource index, a G-TFRI or a PRU index.
  • the UE may calculate the preamble resource index by a weighted combination of an RO index and a preamble sequence index, where the RO may be sorted sequentially in an order of a frequency occasion index, a time occasion index within a RACH slot, and an RACH slot index.
  • the preamble resource index may be formed as “P1*RO_index + P2*preamble_sequence_index” , where P1 and P2 are constant scalers.
  • the UE may determine an order of RO_index, for example, frequency occasion first, time occasion second, RACH slot last.
  • the UE may determine an order of preamble_sequence_index, for example, cyclic shift first, (logical) root index second.
  • the UE may determine an order of DMRS resource index. For example, antenna port first, base sequence index second. In some aspects, the UE may sort DMRS resources sequentially in the order of an antenna port index, a base sequence index, where one or multiple base sequences may be configured for each antenna port by the base station.
  • the UE may determine an order of PRU index in time/frequency. For example, frequency occasion first, time occasion second.
  • the UE may sort PRU resources sequentially in the order of a frequency occasion index, a time occasion index, and a PRU group index, where each PRU group may share identical transmission parameters including a MCS , a TB size and a waveform.
  • FIG. 10 is a flowchart 1000 of a method of wireless communication.
  • the method may be performed by a UE (e.g., the UE 104, 1450; the apparatus 1102/1102'; the processing system 1214, which may include the memory 360 and which may be the entire apparatus 1102/1102'or a component of the apparatus 1102/1102', such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • the method of flowchart 1000 may be discussed with reference to the examples illustrated in FIGs. 4-9. Optional aspects may be illustrated in dashed lines.
  • aspects presented herein provide several transmission schemes for the multi-slot transmission to facilitate efficient and flexible UE multiplexing with different payload sizes and coupling losses, and to reduce the complexity of blind decoding, several transmission schemes for the multi-slot transmission. In this way, a signaling overhead may be reduced and a power of a UE may be saved.
  • the UE may obtain, from a base station, configuration information and transmission parameters for a multi-slot transmission.
  • 1002 may be performed by a configuration component 1108 from FIG. 11.
  • multi-slot transmission parameters may be configured by SI/RRC from a base station.
  • the base station may pre-define or configure a T/F resource size of a PRU, which may be a slot or mini-slot, a RBG or a sub-RBG, and an associated MCS.
  • a UE may obtain configuration information 403 (e.g. PUSCH resource unit size, MCS level, payload segmentation threshold, mapping table between SNR target and repetition level) from the base station.
  • configuration information 403 e.g. PUSCH resource unit size, MCS level, payload segmentation threshold, mapping table between SNR target and repetition level
  • the UE may generate a payload for the multi-slot transmission.
  • 1002 may be performed by a payload component 1110 from FIG. 11.
  • the UE may generate a payload 401 with a size of X for the multi-slot transmission.
  • the UE may segment, based on the configuration information, the payload into one or multiple transport blocks (TBs) , where the one or multiple TBs is a set of TBs.
  • 1006 may be performed by a segmentation component 1112 from FIG. 11.
  • the UE may segment, based on the configuration information 403, the payload 401 into one or multiple transport blocks (TBs) , as illustrated at 405.
  • the one or multiple TBs may be a set of TBs.
  • the UE may decide whether or not to segment the payload (X bytes) into multiple TBs.
  • the UE may receive the payload segmentation threshold T 0 , where the UE may determine whether to segment the payload into the set of TBs or to add padded bits to the payload based on the payload segmentation threshold T 0 .
  • the UE may repeat the set of TBs and concatenate the repeated TBs into a TB group (TBG) .
  • 1002 may be performed by a repetition component 1114 from FIG. 11.
  • the UE may make a determination of repetition levels.
  • the UE may measure a reference signal received power (RSRP) . Based on the RSRP measurements and a configured mapping table between a SNR target and repetition levels, the UE may decide the number of repetitions to be applied for the transmission.
  • the repetition level may be UE-specific. For example, cell-center and cell-edge UEs may use different repetition levels.
  • the UE may measure the RSRP and determine a repetition level according to the configured mapping table between the SNR target and the repetition level, where the SNR target may depend on an MCS configured for the multi-slot transmission.
  • the UE may insert a header within each TB, where the header may include at least one of a flag indicating whether the TB is the last TB in the TBG , a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or an LSB of a UE-specific multiple access signature.
  • 1002 may be performed by a header component 1116 from FIG. 11. For example, referring back to FIGs.
  • the TB header may include a subset of the following information: a flag for a last TB indication, a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or an LSB of a UE-specific multiple access signature (a most significant bit (MSB) may be carried by DMRS/preamble resource index, etc. ) .
  • the TB header (e.g., 701a, 702a, 703a) of the TB may be a group TFRI (G-TFRI) based on a size of the TBG and a UE identity.
  • the G-TFRI may be based on a size of the TBG and a UE identity.
  • the G-TFRI may indicate a set of PRUs selected by a UE for payload transmission. For example, a table for the mapping of group TFRI to PRUs may be predefined or configured. The PRU may be mapped to different group TFRIs.
  • the G-TFRI may be a bitmap with a value of “1” indicating an associated PRU used for the transmission. If a length of bitmap is smaller than a total number of PRUs in the resource pool, the pattern may be repeated. The total number of “1” in T/F resource pattern may indicate a total number of PRUs used for the payload transmission. In some aspects, the G-TFRI may be a bitmap with a value of “1” indicating the associated PRU used for the multi-slot transmission. If the length of the bitmap is smaller than the total number of PRUs in the resource pool, the G-TFRI pattern indicated in the bitmap may be repeated and the multi-slot transmission of the UE may follow the repeated pattern of the G-TFRI pattern.
  • the UE may scramble the TBG by the UE-specific multiple access signature.
  • 1012 may be performed by a scrambling component 1118 from FIG. 11.
  • the UE may scramble the TBG by the UE-specific multiple access signature, as illustrated at 411.
  • a scrambling ID may be generated by a closed-form formula, for example, the scrambling ID may be a function of a PRU index, a demodulation reference signal (DMRS) resource index, a preamble resource index.
  • DMRS demodulation reference signal
  • the UE may further perform linear modulation, and transform precoding.
  • the UE may select a hopping pattern from a set of predefined hopping patterns configured by the base station, and maps the TBG to a set of PRUs corresponding to the selected hopping pattern. Different UEs may select different number of hops (e.g. equal to L) , different starting points (e.g. a PRU index in a T/F domain) , and different frequency offsets (e.g. measured in RBG or sub-RBG level) . In some aspects, the UE may select a sequence of consecutive or non-consecutive PRU resource indexes based on the frequency hopping pattern, where a size of the sequence of the selected PRU resource indexes may equal to a size of the TBG. For example, as illustrated in FIG.
  • the UE 801 and the UE 803 may collide at a same time/frequency grid 806, and the UE 802 and the UE 803 may collide at a same time/frequency grid 805. Because the transmission is multi-slot transmission, there is a chance that two UEs may choose a same DMRS and a same PRU, the base station may not be able to decode the collided TBs. Thus, the base station may ask the UEs (e.g., 301, 302, and 302) to retransmit the TBs that have failed to be decoded by the base station.
  • the UEs e.g., 301, 302, and 302
  • the UE may multiplex each TB of the TBG with a DMRS or further multiplex the TBG and the DMRS with a preamble in resource mapping, wherein the DMRS or the preamble resource index may be configured to carry information for the transmission parameter selected by the UE or a UE identifier.
  • the UE may multiplex the TBG with the DMRS or preamble 414 in a resource mapping, as illustrated at 412.
  • the DMRS or the preamble resource index may be configured to carry information for the transmission parameter selected by the UE or a UE identifier.
  • the TBG may be multiplexed with the DMRS or preamble 414 and mapped to a PRU 416.
  • Each TB (e.g., 410) may be mapped to one PRU (e.g., 416) .
  • PRU e.g., 416)
  • the UEs may be further configured to transmit the TBG to the base station using the transmission parameters in a shared time and frequency resource grid configured by the base station.
  • the UE may transmit the TBG to the base station using the transmission parameters in a shared time and frequency resource grid configured by the base station.
  • 1014 may be performed by a transmission component 1106 from FIG. 11.
  • a common time/frequency grid of dimension [T min , F min , T max , F max ] may be configured by a base station for multi-slot transmissions of multiple UEs (e.g., 801, 802, 803) .
  • the multiple UEs e.g., 801, 802, 803 may share the common time/frequency grid.
  • Each UE may transmit one or multiple TBs.
  • Each TB may be mapped to one PRU, based on a predefined frequency hopping patterns.
  • the UE may receive HARQ feedback from the base station for a decoding outcome of the TBG.
  • 1016 may be performed by a reception component 1104 from FIG. 11.
  • a HARQ feedback for a TBG Transmission may be UE-specific (addressed to a UE ID or group-TFRI) .
  • a CRC of PDCCH may be masked by the UE ID or a UE specific multiple access signature (e.g., a preamble ID) or a G-TFRI.
  • a PDCCH may be addressed to the UE, where the payload may comprise the TBG decoding outcome for the UE, where the CRC of the PDCCH may be masked by the UE ID or the G-TFRI selected by the UE, and where the UE ID many be based on a preamble resource index, a DMRS resource index or a configured UE identifier, or other multiple access signature.
  • a HARQ feedback for a TBG Transmission may be PRU-specific (addressed to a group Radio Network Temporary Identifier (RNTI) ) . For example, as illustrated in FIG.
  • RNTI Radio Network Temporary Identifier
  • a CRC of PDCCH may be masked by the group RNTI, which may be a function of the TFRI of PRU.
  • a PDCCH may be addressed to a group of UEs, where the group of UEs may share a same RO or a same PRU group, where the payload may comprises a decoding outcome for one or multiple UEs in the group of UEs, and where a CRC of a PDCCH may be masked by the G-TFRI shared by the group of UEs.
  • the UE may retransmit the set of TBs failed to be decoded by the base station based on the HARQ feedback.
  • 1014 may be performed by a transmission component 1106 from FIG. 11.
  • the UE may look at the bitmap (e.g., 903, 904) in one option, or look at the multiple fields table 910, determine the TBs or the TBG failed to be decoded by the base station, and retransmit only the TBs or the TBG failed to be decoded by the base station. In this way, the retransmission may be more efficient than retransmitting the entire payload.
  • FIG. 11 is a conceptual data flow diagram 1100 illustrating the data flow between different means/components in an example apparatus 1102.
  • the apparatus may be a UE (e.g., the UE 104, 1450; the apparatus 1102/1102'; the processing system 1214, which may include the memory 360 and which may be the entire apparatus 1102/1102'or a component of the apparatus 1102/1102', such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • the apparatus includes a reception component 1104 that receives from a base station, e.g., as described in connection with 1002 in FIG. 10.
  • the apparatus includes a configuration component 1108 that obtains, via the reception component 1104, from a base station, configuration information and transmission parameters for a multi-slot transmission, e.g., as described in connection with 1002 in FIG. 10.
  • the apparatus includes a payload component 1110 that generates a payload for the multi-slot transmission, e.g., as described in connection with 1004 in FIG. 10.
  • the apparatus includes a segmentation component 1112 that segments, based on the configuration information, the payload into one or multiple transport blocks (TBs) , e.g., as described in connection with 1006 in FIG. 10.
  • TBs transport blocks
  • the apparatus includes a repetition component 1114 that repeats the set of TBs and concatenates the repeated TBs into a TB group (TBG) , e.g., as described in connection with 1006 in FIG. 10.
  • the apparatus includes a header component 1116 that inserts a header within each TB, e.g., as described in connection with 1010 in FIG. 10.
  • the apparatus includes a scrambling component 1118 that scrambles the TBG by the UE-specific multiple access signature, e.g., as described in connection with 1012 in FIG. 10.
  • the apparatus includes a transmission component 1106 that transmits the TBG to the base station using the transmission parameters in a shared time and frequency resource grid configured by the base station, e.g., as described in connection with 1014 in FIG. 10.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4-10. As such, each block in the aforementioned flowcharts of FIGs. 4-10 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 12 is a diagram 1200 illustrating an example of a hardware implementation for an apparatus 1102' employing a processing system 1214.
  • the processing system 1214 may be implemented with a bus architecture, represented generally by the bus 1224.
  • the bus 1224 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1214 and the overall design constraints.
  • the bus 1224 links together various circuits including one or more processors and/or hardware components, represented by the processor 1204, the components 1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118, and the computer-readable medium /memory 1206.
  • the bus 1224 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1214 may be coupled to a transceiver 1210.
  • the transceiver 1210 is coupled to one or more antennas 1220.
  • the transceiver 1210 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1210 receives a signal from the one or more antennas 1220, extracts information from the received signal, and provides the extracted information to the processing system 1214, specifically the reception component 1104.
  • the transceiver 1210 receives information from the processing system 1214, specifically the transmission component 1106, and based on the received information, generates a signal to be applied to the one or more antennas 1220.
  • the processing system 1214 includes a processor 1204 coupled to a computer-readable medium /memory 1206.
  • the processor 1204 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1206.
  • the software when executed by the processor 1204, causes the processing system 1214 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1206 may also be used for storing data that is manipulated by the processor 1204 when executing software.
  • the processing system 1214 further includes at least one of the components 1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118.
  • the components may be software components running in the processor 1204, resident/stored in the computer readable medium /memory 1206, one or more hardware components coupled to the processor 1204, or some combination thereof.
  • the processing system 1214 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. Alternatively, the processing system 1214 may be the entire UE (e.g., see 350 of FIG. 3) .
  • the apparatus 1102/1102' for wireless communication includes means for obtaining, from a base station, configuration information and transmission parameters for a multi-slot transmission.
  • the apparatus includes means for generating a payload for the multi-slot transmission.
  • the apparatus includes means for segmenting, based on the configuration information, the payload into one or multiple TBs, where the one or multiple TBs are a set of TBs.
  • the apparatus includes means for repeating the set of TBs and concatenating the repeated TBs into a TBG.
  • the apparatus includes means for inserting a header within each TB, where the header includes at least one of a flag indicating whether the TB is the last TB in the TBG , a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or an LSB of a UE-specific multiple access signature.
  • the apparatus includes means for scrambling the TBG by the UE-specific multiple access signature.
  • the apparatus further includes means for transmitting the TBG to the base station using the transmission parameters in a shared time and frequency resource grid configured by the base station.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1102 and/or the processing system 1214 of the apparatus 1102' configured to perform the functions recited by the aforementioned means.
  • the processing system 1214 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • FIG. 13 is a flowchart 1300 of a method of wireless communication.
  • the method may be performed by a base station (e.g., the base station 102/180, 1150; the apparatus 1402/1402'; the processing system 1514, which may include the memory 376 and which may be the entire base station or a component of the base station, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) .
  • the method of flowchart 1300 may be discussed with reference to the examples illustrated in FIGs. 4-9. Optional aspects may be illustrated in dashed lines.
  • aspects presented herein provide several transmission schemes for the multi-slot transmission to facilitate efficient and flexible UE multiplexing with different payload sizes and coupling losses, and to reduce the complexity of blind decoding, several transmission schemes for the multi-slot transmission. In this way, a signaling overhead may be reduced and a power of a UE may be saved.
  • the base station may configure a shared time and frequency resource grid for multi-slot transmissions by one or more UEs.
  • 1302 may be performed by a T/F component 1408 from FIG. 14.
  • multi-slot transmission parameters may be configured by SI/RRC from a base station.
  • the base station may pre-define or configure a T/F resource size of a PRU, which may be a slot or mini-slot, a RBG or a sub-RBG, and an associated MCS.
  • the base station may transmit, to the one or more UEs, configuration information and transmission parameters of the one or more UEs for the multi-slot transmissions by the one or more UEs.
  • 1304 may be performed by a configuration component 1410 from FIG. 14.
  • a UE may obtain configuration information 403 (e.g. PUSCH resource unit size, MCS level, payload segmentation threshold, mapping table between SNR target and repetition level) from the base station.
  • configuration information 403 e.g. PUSCH resource unit size, MCS level, payload segmentation threshold, mapping table between SNR target and repetition level
  • the base station may receive one or more TBGs from the one or more UEs performing the multi-slot transmissions, where each TB of a corresponding TBG may include a header carrying UE specific transmission parameters and resource mapping information of the corresponding TBG, where the header may include at least one of a flag indicating whether the TB is the last TB in the TBG, a redundancy version (RV) , a new data indicator (NDI) , a TB index, a time frequency resource indication (TFRI) , a frequency hopping pattern, or a least significant bit (LSB) of a UE-specific multiple access signature, and where the one or more TBGs from the one or more UEs are received in the shared time and frequency resource grid.
  • RV redundancy version
  • NDI new data indicator
  • TFRI time frequency resource indication
  • LSB least significant bit
  • 1006 may be performed by a segmentation component 1112 from FIG. 11.
  • the UE may segment, based on the configuration information 403, the payload 401 into one or multiple transport blocks (TBs) , as illustrated at 405.
  • the UE may repeat the set of TBs and concatenate the repeated TBs into the TBG.
  • the UE may transmit the TBG to the base station using the transmission parameters in the shared time and frequency resource grid configured by the base station.
  • a common time/frequency grid of dimension [T min , F min , T max , F max ] may be configured by a base station for multi-slot transmissions of multiple UEs (e.g., 801, 802, 803) .
  • the multiple UEs (e.g., 801, 802, 803) may share the common time/frequency grid.
  • Each UE may transmit one or multiple TBs.
  • Each TB may be mapped to one PRU, based on a predefined frequency hopping patterns.
  • FIG. 14 is a conceptual data flow diagram 1400 illustrating the data flow between different means/components in an example apparatus 1402.
  • the apparatus may be a base station (e.g., the base station 102/180, 1150; the apparatus 1402/1402'; the processing system 1514, which may include the memory 376 and which may be the entire base station or a component of the base station, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) .
  • the apparatus includes a reception component 1404 that receives from UEs, e.g., as described in connection with 1306 in FIG. 13.
  • the apparatus includes a transmission component 1406 that transmits to UEs, e.g., as described in connection with 1304 in FIG. 13.
  • the apparatus includes a T/F component 1408 that configures a shared time and frequency resource grid for multi-slot transmissions by one or more UEs, e.g., as described in connection with 1302 in FIG. 13.
  • the apparatus includes a configuration component 1410 that transmits to a UE, via the transmission component 1406, configuration information and transmission parameters of the one or more UEs for multi-slot transmissions by the one or more UEs, e.g., as described in connection with 1304 in FIG. 13.
  • the apparatus includes a TBG component 1412 that receives, via the reception component 1304, TBGs of the multi-slot transmissions from the one or more UEs, e.g., as described in connection with 1306 in FIG. 13.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4-9 and 13. As such, each block in the aforementioned flowcharts of FIGs. 4-9 and 13 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 15 is a diagram 1500 illustrating an example of a hardware implementation for an apparatus 1402' employing a processing system 1514.
  • the processing system 1514 may be implemented with a bus architecture, represented generally by the bus 1524.
  • the bus 1524 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1514 and the overall design constraints.
  • the bus 1524 links together various circuits including one or more processors and/or hardware components, represented by the processor 1504, the components 1404, 1406, 1408, 1410, 1412, and the computer-readable medium /memory 1506.
  • the bus 1524 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1514 may be coupled to a transceiver 1510.
  • the transceiver 1510 is coupled to one or more antennas 1520.
  • the transceiver 1510 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1510 receives a signal from the one or more antennas 1520, extracts information from the received signal, and provides the extracted information to the processing system 1514, specifically the reception component 1404.
  • the transceiver 1510 receives information from the processing system 1514, specifically the transmission component 1406, and based on the received information, generates a signal to be applied to the one or more antennas 1520.
  • the processing system 1514 includes a processor 1504 coupled to a computer-readable medium /memory 1506.
  • the processor 1504 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1506.
  • the software when executed by the processor 1504, causes the processing system 1514 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1506 may also be used for storing data that is manipulated by the processor 1504 when executing software.
  • the processing system 1514 further includes at least one of the components 1504, 1506, 1508, 1510, 1512.
  • the components may be software components running in the processor 1504, resident/stored in the computer readable medium /memory 1506, one or more hardware components coupled to the processor 1504, or some combination thereof.
  • the processing system 1514 may be a component of the base station 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375. Alternatively, the processing system 1214 may be the entire base station (e.g., see 310 of FIG. 3) .
  • the apparatus 1402/1402' for wireless communication includes means for configuring a shared time and frequency resource grid for multi-slot transmissions by one or more UEs.
  • the apparatus further includes means for transmitting, to a UE, configuration information and transmission parameters of the UE for a multi-slot transmission by the UE.
  • the apparatus further includes means for receiving, based on the transmission parameters, a transport block (TB) group (TBG) of the multi-slot transmission from the UE, the TBG being based on the configuration information, the TBG being received in the shared time and frequency resource grid.
  • TB transport block
  • TBG transport block group
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1402 and/or the processing system 1514 of the apparatus 1402' configured to perform the functions recited by the aforementioned means.
  • the processing system 1514 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station may configure a time and frequency resource grid for multi-slot transmissions by user equipments (UEs). A UE may obtain from the base station the configuration information and transmission parameters for a multi-slot transmission generate a payload for the transmission of uplink data and communication on the configured time and frequency grid, segment the payload into one or multiple transport blocks (TBs), and map them to multiple consecutive and non-consecutive slots or min-slots. The UE may measure reference signal received power (RSRP), repeat the set of TBs, and concatenate the repeated TBs into a transport block group (TBG). The UE may insert a header within each TB, which may carry the transmission parameters and resource mapping information for the TBG. The UE may scramble the TBG by a UE-specific multiple access signature. The UE may retransmit a subset of the TBG based on hybrid automatic repeat request (HARQ) feedback from the base station.

Description

PAYLOAD SEGMENTATION AND RESOURCE MAPPING FOR MULTI-SLOT TRANSMISSIONS
CROSS REFERENCE TO RELATED APPLICATION (S)
This application claims the benefit of Patent Cooperation Treaty Application Serial No. PCT/CN2019/103022, entitled “PAYLOAD SEGMENTATION AND RESOURCE MAPPING FOR GF TRANSMISSIONS” and filed on August 28, 2019, which is expressly incorporated by reference herein in its entirety.
BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to a communication systems transmitting multi-slot transmissions.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra reliable low latency  communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
A multi-slot transmission is helpful for a signaling overhead reduction and a power saving of a user equipment (UE) . The multi-slot transmission may happen in all Radio Resource Control (RRC) states. In order to facilitate efficient and flexible UE multiplexing with different payload sizes and coupling losses, and to reduce the complexity of blind decoding, several transmission schemes for the multi-slot transmission may be advantageous. For example, a payload may be segmented based on a configurable threshold. For another example, a header may be inserted for an indication of UE-specific transmission parameters. For yet another example, explicit or implicit UE ID may be transmitted.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE configured to obtaining, from a base station, configuration information and transmission parameters for a multi-slot transmission. The apparatus may be further configured to generate a payload for the multi-slot transmission. The apparatus may be configured to segment, based on the configuration information, the payload into one or multiple transport blocks (TBs) , where the one or multiple TBs are a set of TBs. The apparatus may be further configured to repeat the set of TBs and concatenating the repeated TBs into a TB group (TBG) . The apparatus may be further configured to insert a header within each TB, where the header includes at least one of a flag indicating whether the TB is the last TB in the TBG , a redundancy version (RV) , a new data indicator (NDI) , a  TB index, a time frequency resource indication (TFRI) , a frequency hopping pattern, or a least significant bit (LSB) of a UE-specific multiple access signature. The apparatus may be further configured to scramble the TBG by the UE-specific multiple access signature. The apparatus may be further configured to transmit the TBG to the base station using the transmission parameters in a shared time and frequency resource grid configured by the base station.
In another aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a base station configured to configure a shared time and frequency resource grid for multi-slot transmissions by one or more UEs. The apparatus may be configured to transmit, to the one or more UEs, configuration information and transmission parameters of the one or more UEs for the multi-slot transmissions by the one or more UEs. The apparatus may be further configured to receive one or more transport block (TB) groups (TBGs) from the one or more UEs performing the multi-slot transmissions, where each TB of a corresponding TBG may include a header carrying UE specific transmission parameters and resource mapping information of the corresponding TBG, where the header may include at least one of a flag indicating whether the TB is the last TB in the TBG , a redundancy version (RV) , a new data indicator (NDI) , a TB index, a time frequency resource indication (TFRI) , a frequency hopping pattern, or a least significant bit (LSB) of a UE-specific multiple access signature, and where the one or more TBGs from the one or more UEs are received in the shared time and frequency resource grid.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
FIG. 3 is a diagram illustrating an example of a base station and a UE in an access network.
FIG. 4 is a flow diagram illustrating an example of a payload segmentation with a header insertion.
FIG. 5 is a diagram illustrating an example of a TB header construction.
FIG. 6 is a diagram illustrating an example of a TB header construction.
FIG. 7 is a diagram illustrating another example of a TB header construction.
FIG. 8 is a diagram illustrating an example of a UE-Specific frequency hopping pattern for a multi-slot Transmission.
FIGs. 9A-9B are diagrams illustrating HARQ feedback for TBG Retransmission.
FIG. 10 is a flowchart of a method of wireless communication.
FIG. 11 is a conceptual data flow diagram illustrating the data flow between different means/components in an example apparatus.
FIG. 12 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
FIG. 13 is a flowchart of a method of wireless communication.
FIG. 14 is a conceptual data flow diagram illustrating the data flow between different means/components in an example apparatus.
FIG. 15 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be  used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over backhaul links 134 (e.g., X2 interface) . The backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group  (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the IEEE 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by  the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol  (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
The base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small  kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to obtaining, from a base station, configuration information and transmission parameters for a multi-slot transmission. The UE 104 may be further configured to generate a payload for the multi-slot transmission. The UE 104 may comprise a segmentation component 198 configured to segment, based on the configuration information, the payload into one or multiple transport blocks (TBs) , where the one or multiple TBs are a set of TBs. The UE 104 may be further configured to repeat the set of TBs and concatenate the repeated TBs into a TB group (TBG) . The TB repetition can be based on similar or different redundancy version. The UE 104 may be further configured to insert a header within each TB, where the header includes at least one of a flag indicating whether the TB is the last TB in the TBG , a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or an LSB of a UE-specific multiple access signature. The UE 104 may be further configured to scramble the TBG by the UE-specific multiple access signature. The UE 104 may be further configured to transmit the TBG to the base station using the transmission parameters configured by the network and in a shared time and frequency resource grid configured by the base station. In certain aspects, the base station 180 may comprise a configuration component 199 configured to configure a shared time and frequency resource grid for multi-slot transmissions by one or more UEs. The base station 180 may be configured to transmit, to the UE 104, configuration information and transmission parameters of the UE 104 for a multi-slot TBG transmission by the UE 104. The base station 180 may be further configured to receive, based on the transmission parameters, the TBG from the UE 104, the TBG being based on the configuration information, the TBG being received in the shared time and frequency resource grid. Although the following description may be focused on 5G NR, the  concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe. The 5G/NR frame structure may be FDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be TDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and X is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G/NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single  stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 5 allow for 1, 2, 4, 8, 16, and 32 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 5. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=5 has a subcarrier spacing of 480 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=0 with 1 slot per subframe. The subcarrier spacing is 15 kHz and symbol duration is approximately 66.7 μs.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can  determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block. The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. Although not shown, the UE may transmit sounding reference signals (SRS) . The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection  establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with  mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations. At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1. At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 199 of FIG. 1.
A UE may transmit a multi-slot transmission to a base station. A multi-slot transmission may be a transmission that is transmitted on multiple slots. The frequency resources of the transmission may be the same or may be different from slot to slot. In some aspects, the slots of the multi-slot transmission may be contiguous. In some aspects, the slots of the multi-slot transmission may be non-contiguous (e.g., some of the slots may be contiguous, but not all of the slots are contiguous; there is at least one slot between the first slot of the multi-slot  transmission and the last slot of the multi-slot transmission on which the UE does not transmit the multi-slot transmission) . In some aspects, a multi-slot transmission may be a grant free transmission. A multi-slot transmission may be a transmission which a UE transmits without being scheduled to transmit by a base station, such as a RACH transmission (e.g., a 2-step RACH transmission) , a small data transfer transmission, massive machine type communications (mMTC) , or NR/LTE internet of things (IoT) transmissions. Using multi-slot transmissions may result in a signaling overhead reduction and may reduce power consumption (e.g., of the UE) . A UE may make a multi-slot transmission regardless of the RRC state of the UE (e.g., may transmit a multi-slot transmission in RRC_IDLE or RRC_INACTIVE) . A UE may utilize several transmission schemes for the multi-slot transmission, which may facilitate efficient and flexible UE multiplexing with different payload sizes and coupling losses, and/or may reduce the complexity of blind decoding (e.g., at the base station) . For example, an uplink transmission payload may be segmented into one or more TBs based on a configurable threshold. The threshold may be configured by a base station. The one or more TBs may form a TBG. For another example, a header may be inserted, e.g., in each TB, for an indication of UE-specific transmission parameters. For yet another example, explicit or implicit UE ID may be carried in the uplink transmission. The TBs in the TBG may be mapped to a predefined time and frequency resource grid according to a mapping pattern. Based on the mapping pattern and a decoding outcome of the TBG, a base station may determine which UE is transmitting and which TBs have failed to be decoded. The UE may retransmit the TBs failed to be decoded by the base station. Aspects described herein may be applied to physical uplink shared channel (PUSCH) transmission for contention-based or uncoordinated multiple access, such as 2-step random access channel (RACH) , small data transfer, Massive Machine Type Communications (mMTC) , NR/LTE IoT.
FIG. 4 is a flow diagram 400 illustrating an example of payload segmentation and header insertion. The flow diagram 400 may illustrate actions performed by a UE. multi-slot transmission parameters may be configured for the UE by system information (SI) /radio resource control (RRC) from a base station. The base station may configure a time/frequency (T/F) resource size of a PUSCH resource unit (PRU) and an associated modulation and coding scheme (MCS) for the UE. The PRU may  be configured in terms of slots or mini-slots in the time domain, and in terms of resource block groups (RBGs) or a sub-RBGs in the frequency domain.
Before the start of the multi-slot transmission, a UE may obtain configuration information 403 (e.g. PRU size, MCS level, payload segmentation threshold, mapping table between Signal-to-Noise Ratio (SNR) target and repetition level) from the base station. The UE may generate a payload 401 with a size of X bytes for the multi-slot transmission. The UE may segment, based on the configuration information 403, the payload 401 into one or multiple transport blocks (TBs) , as illustrated at 405. For example, the UE may receive a segmentation threshold from the base station, corresponding to a payload size threshold. If the size X of the payload exceeds the segmentation threshold, the UE may segment the payload into multiple TBs. If the size X of the payload does not exceed the segmentation threshold, the UE may include the payload in a single TB. The one or multiple TBs may be a set of TBs.
In generating the multi-slot transmission, a medium access control (MAC) entity of the UE may generate a MAC protocol data unit (PDU) to physical layer (PHY) . For example, the payload size of the MAC PDU may be X bytes. Based on a network configured payload segmentation threshold T 0, the UE may decide whether or not to segment the payload (X bytes) into multiple TBs. For example, if X ≤ T 0, the UE may not segment the payload (and may include bit padding X< T 0) . If X> T 0, the UE may segment the payload into 
Figure PCTCN2020112163-appb-000001
TB. When the UE repeats TBs, the repeated TBs may have the same RV as the original TB or a different RV than the original TB.
The UE may determine to repeat the set of TBs in the multi-slot transmission, as illustrated at 405. The UE may take the TBs generated based on the payload (e.g., a single unsegmented TB or multiple segmented TBs) , and may generate additional versions of the TBs (which may be referred to as ‘repeating the TBs’ or ‘repetition of the TBs’ ) to be included in the TBG. The UE may determine a repetition level to use for repeating the TBs. For example, the UE may measure a reference signal received power (RSRP) . Based on the RSRP measurements and a configured mapping table between a SNR target and repetition levels, the UE may decide the number of repetitions to be applied for the transmission. The repetition level may be UE-specific. For example, cell-center and cell-edge UEs may determine different repetition levels, as the cell-edge UE may have a lower RSRP than a cell-center UE.  In some aspects, the UE may measure the RSRP and determine a repetition level according to the configured mapping table between the SNR target and the repetition level, where the SNR target may depend on an MCS configured for the multi-slot transmission.
Figure PCTCN2020112163-appb-000002
The UE may insert a header within each TB, as illustrated at 406. The header may be a MAC header. The header may include at least one of a flag indicating whether the TB is the last TB in the TBG of the TB, a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or one or more LSB of a UE-specific multiple access signature (e.g., a subset of the bits of the UE-specific multiple access signature) .
The UE may perform cyclic redundancy check (CRC) attachment, channel coding, and rate matching to the TBs.
The UE may generate a TBG, as illustrated at 409, based on the TBs generated at 405. As a result, there may be L TBs, as illustrated at 410, where a size of each TB is smaller than the size of the payload 401. The UE may scramble the TBG using the UE-specific multiple access signature, as illustrated at 411. A scrambling ID may be generated by a closed-form formula, for example, the scrambling ID may be a function of a PRU index, a demodulation reference signal (DMRS) resource index, a preamble resource index. The UE may further perform linear modulation, and transform precoding to the scrambled TBG.
The UE may multiplex the TBG with DMRS or a preamble resource index 414 in a resource mapping, as illustrated at 412. The DMRS or the preamble resource index may be configured to carry information based on a the transmission parameter selected by the UE for the multi-slot transmission (e.g., the MCS) or a UE identifier. The DMRS or the preamble resource index may carry partial information based on the transmission parameter or the UE identifier. For example, the header for a TB may include a subset of the least significant bits of the UE identifier, and the DMRS or the preamble may include the remaining most significant bits of the UE identifier.
The TBs of the TBG may be mapped to PRUs 416. Each TB may be mapped to one PRU. For a total number of L TBs, there may be L PRUs. The base station may configure the UE with a time and frequency resource grid shared with other UEs, and the time and frequency grid may define the PRUs. The UE may transmit the PRUs to the base station.
In some aspects, the UE may multiplex each TB of the TBG with the DMRS or further multiplex the TBG and the DMRS with the preamble in resource mapping, wherein the DMRS or the preamble resource index may be configured to carry information for the transmission parameter selected by the UE or a UE identifier.
FIG. 5 is a diagram 500 illustrating an example of a TB header construction. The UE may segment a payload into one or multiple TBs, perform TB repetition, and perform header insertion on the resultant TBs. As illustrated in FIG. 5, L TB (s) may be generated for a payload size of X bytes and a repetition level N (N≥1) . After TB repetition, there may be a total number L of TBs, for example, TB #1 501, .. TB #L 503, as illustrated in FIG. 5. Each TB may have a TB header (e.g., 505, 509) , e.g., with a size of 1 byte. The TB header may include some or all of the following information: a flag for indicating the last TB of the TBG, a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or a subset of least significant bits of a UE-specific multiple access signature (the remaining bits, the most significant bits, may be carried by DMRS/preamble resource index, etc. ) .
FIG. 6 is a diagram 600 illustrating an example of a TB header construction. As illustrated in FIG. 6, a TB header 605 may include a flag bit 606. The flag bit 606 may indicate whether the TB is the last TB of the TBG (e.g., there are no remaining TBs in the TBG that will be transmitted later in time) . For example, if E =1, the flag bit 606 may indicate that the TB is the last TB in a TBG. If E =0, the flag bit 606 may indicate one or more additional TBs of the TBG may follow. Where the TB is the last TB in the TBG, the remaining bits 608 of the header may be reserved (e.g., may not include any information) . Where the TB is not the last TB in the TBG, the remaining bits 608of the TB header may include TX parameters of the TBG. For example, the TX parameters may include RV (2 bits) , NDI (1 bit) , TB index (2 bits) , and/or a frequency hopping pattern index (2 bits) , etc. Accordingly, when receiving the PRUs generated based on the TBs and reconstructing the transmission payload based on the payloads of received TBs, the base station may look to the header of a TB and determine the next TB to be combined with the TB (e.g., concatenated with the TB) , or determine that the TB is the last TB to be combined.
The TB may include a segmented portion of the payload 607 with T 0 bytes. Full or partial UE ID information may be included in the TB, may be used for a scrambling ID generation of the CRC, or may be mapped to a DMRS/preamble resource.
FIG. 7 is a diagram 700 illustrating another example of a TB header construction. The TB header (e.g., 701a, 702a, 703a) of the TB (e.g., 701, 702, 703) may include a TFRI (e.g., a group TFRI (G-TFRI) ) . The TFRI may indicate a set of PRUs selected by a UE for payload transmission. In some aspects, the UE may be configured with a table mapping TFRIs to sets of PRUs. The base station may configure multiple UEs with the same TFRI table. The table may be predefined at the UE (e.g., configured by OEM) or may be configured for the UE by the base station. A given PRU may be included in multiple sets of PRUs, corresponding to multiple TFRIs. The TFRI may be a bitmap with bits corresponding to PRUs of the time and frequency resource grid (e.g., the resource pool) . The bitmap may include a value of “1” indicating that the PRU corresponding to that bit is included in the TFRI. If the length of bitmap is smaller than a total number of PRUs in the resource pool, the pattern may be repeated. The total number of bits with a “1” value in the time and frequency resource pattern may indicate a total number of PRUs used for the payload transmission. In some aspects, the UE may select the TFRI based on the number of TBs in the TBG and/or based on a UE identity.
As illustrated in FIG. 7, in some aspects, the TFRI may be included in the header (e.g., 701a, 702a, 703a) and available for joint CRC and a channel coding with the payload. In some aspects, the TFRI may additionally or alternatively be L1 information (e.g., similar to an uplink control information (UCI) ) multiplexed on a PUSCH with separate channel coding from the payload.
Based on the TFRI, the base station may determine the PRUs that the UE transmitted portions of the multi-slot transmission on. The UE may order the received TBs based on the PRU resource index to reconstruct the transmission payload.
FIG. 8 is a diagram 800 illustrating an example of a UE-Specific frequency hopping pattern for a multi-slot transmission. As illustrated in FIG. 8, a common time/frequency grid of dimension [T min, F min, T max, F max] may be configured by a base station for multi-slot transmissions of multiple UEs (e.g., 801, 802, 803) . The multiple UEs (e.g., 801, 802, 803) may share the common time/frequency grid. For example, the time/frequency grid may indicate resources configured for the base station for multi-slot transmissions, and multiple UEs may be configured to transmit multi-slot transmissions on the configured resources. The UEs may transmit multi-slot transmissions including one or multiple TBs. For example, as illustrated in FIG.  8, UE A transmits a multi-slot transmission including four RBs, UE B transmits a multi-slot transmission including two RBs, and UE C transmits a multi-slot transmission including two RBs. Each TB of a transmission may be mapped to one PRU based on a frequency hopping pattern. In some aspects, the UE may select a hopping pattern from a set of hopping patterns configured for the UE by the base station, and may map the TBs of the TBG to a set of PRUs based on the selected hopping pattern. Different UEs may select different numbers of hops (e.g. equal to L) , different starting points (e.g. a PRU index in a T/F domain) , and different frequency offsets (e.g. measured in RBG or sub-RBG level) . In some aspects, the UE may select a sequence of consecutive or non-consecutive PRU resource indexes based on the frequency hopping pattern, where the number of PRUs in the sequence of the selected PRU resource indexes may equal to number of TBs in the TBG.
Two or more UEs transmitting multi-slot transmissions on the time and frequency resource grid may determine to transmit on the same PRU. For example, as illustrated in FIG. 8, UE A 801 and UE C 803 may both transmit on the same PRU 806, and UE B 802 and UE C 803 may both transmit on the same PRU 805. If the UEs used different DMRS and/or different PRUs (e.g., time-frequency resources) for their transmission, the base station may still be able to decode the received PRUs. Because the transmissions are multi-slot transmissions, and the UEs and base station may not coordinate the transmissions, it may be possible that two UEs may choose the same DMRS and the same PRU for their transmission. The base station may not be able to decode transmissions transmitted on the same PRU with the same DMRS. Thus, the base station may request retransmission of the TBs that have failed to be decoded by the base station. The base station may determine that it failed to decode a transmission from a particular UE (e.g., as a result of a collision) based on receiving another PRU from the UE with a TFRI including the PRU with the collision or based on receiving another PRU from the UE with a header indicating that the next PRU would be in the PRU with the collision.
FIGs. 9A-9B are diagrams 900a and 900b illustrating examples of hybrid automatic repeat request (HARQ) feedback for TBG retransmission. In some aspects, HARQ feedback for a TBG transmission may be UE-specific (e. g, may be addressed to a UE ID or to a TFRI) . For example, a CRC of a PDCCH carrying the HARQ feedback may be masked based on the UE ID or a UE specific multiple access  signature (e.g., a preamble ID) or a TFRI. The payload may include the TBG decoding outcome for a TBG transmitted by the UE.
As illustrated in FIG. 9A, the base station may include separate HARQ feedback for different UEs. For example, HARQ feedback 903 may be for UE A, and HARQ feedback 904 may be for UE B. The TBG decoding outcome of each UE may be indicated in the HARQ feedback by a bitmap. The bits in the bitmap may correspond to TBs of the TBG transmitted by the UE. A value of “1” in the bitmap 903 may indicate that the TB was decoded successfully, and the value of “0” in the bitmap may indicate that the TB was not decoded successfully. The UE may retransmit TBs that were not decoded successfully to the base station. UE A may have transmitted a TBG with L A TBs. The length of the bitmap in the HARQ feedback 903 for UE A may be L A. The bitmap of UE B 904 may have a similar structure to the bitmap of UE B. UE B may have transmitted a TBG with L B TBs, where L B is different than L A. The length of the bitmap in the HARQ feedback 904 for UE B may be L B.
In some aspects, HARQ feedback for a TBG transmission may be PRU-specific. The HARQ feedback may be transmitted to multiple UEs (e.g., may be addressed to a group radio network temporary identifier (RNTI) ) , and a receiving UE may check portions of the HARQ feedback corresponding to PRUs where that UE transmitted to determine whether the transmitted PRU was successfully decoded. For example, as illustrated in FIG. 9B, a CRC of a PDCCH carrying HARQ feedback 910 may be masked based on a group RNTI, which may be a function of the TFRI of PRU. Each field of the HARQ feedback 910 may correspond to a PRU. The fields may include one or more UE ID, indicating that the base station received and successfully decoded a transmission from that UE during the corresponding PRU. For example, as illustrated in FIG. 9B, a field corresponding to PRU1 may carry a UE ID of UE A, which may indicate that the base station received a transmission from UE A during PRU 1 and successfully decoded the transmission (e.g., recovered the TB) UE A may receive the HARQ feedback 910, may determine that its UE ID is present in the field corresponding to PRU 1, and may determine not to retransmit the TB transmitted on PRU 1.
Based on the HARQ feedback from the base station, the UE may retransmit the failed TB. In some aspects, the UE may receive the HARQ feedback from the base station for the decoding outcome of the TBG, and retransmit the TBs failed to be  decoded by the base station based on the HARQ feedback. For example, the UE may look at the bitmap (e.g., 903, 904) , or look at the table (e. g, 910) , determine the TBs failed to be decoded by the base station, and retransmit the TBs failed to be decoded by the base station. In this way, the retransmission may be more efficient than retransmitting the entire payload.
In some aspects, a UE may determine an order of a UE-specific multiple access multiple access signature. For example, the UE may calculate the UE-specific multiple access signature based on at least one of a preamble resource index, a DMRS resource index, a G-TFRI or a PRU index.
In some aspects, the UE may calculate the preamble resource index by a weighted combination of an RO index and a preamble sequence index, where the RO may be sorted sequentially in an order of a frequency occasion index, a time occasion index within a RACH slot, and an RACH slot index. For example, the preamble resource index may be formed as “P1*RO_index + P2*preamble_sequence_index” , where P1 and P2 are constant scalers. The UE may determine an order of RO_index, for example, frequency occasion first, time occasion second, RACH slot last. The UE may determine an order of preamble_sequence_index, for example, cyclic shift first, (logical) root index second.
The UE may determine an order of DMRS resource index. For example, antenna port first, base sequence index second. In some aspects, the UE may sort DMRS resources sequentially in the order of an antenna port index, a base sequence index, where one or multiple base sequences may be configured for each antenna port by the base station.
The UE may determine an order of PRU index in time/frequency. For example, frequency occasion first, time occasion second. In some aspects, the UE may sort PRU resources sequentially in the order of a frequency occasion index, a time occasion index, and a PRU group index, where each PRU group may share identical transmission parameters including a MCS , a TB size and a waveform.
FIG. 10 is a flowchart 1000 of a method of wireless communication. The method may be performed by a UE (e.g., the  UE  104, 1450; the apparatus 1102/1102'; the processing system 1214, which may include the memory 360 and which may be the entire apparatus 1102/1102'or a component of the apparatus 1102/1102', such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . To facilitate an understanding of the techniques and concepts described herein, the  method of flowchart 1000 may be discussed with reference to the examples illustrated in FIGs. 4-9. Optional aspects may be illustrated in dashed lines. Aspects presented herein provide several transmission schemes for the multi-slot transmission to facilitate efficient and flexible UE multiplexing with different payload sizes and coupling losses, and to reduce the complexity of blind decoding, several transmission schemes for the multi-slot transmission. In this way, a signaling overhead may be reduced and a power of a UE may be saved.
At 1002, the UE may obtain, from a base station, configuration information and transmission parameters for a multi-slot transmission. For example, 1002 may be performed by a configuration component 1108 from FIG. 11. For example, referring back to FIGs. 4-9, multi-slot transmission parameters may be configured by SI/RRC from a base station. To reduce the complexity of resource assignment for a multi-slot transmission, the base station may pre-define or configure a T/F resource size of a PRU, which may be a slot or mini-slot, a RBG or a sub-RBG, and an associated MCS. Before the start of the multi-slot transmission, a UE may obtain configuration information 403 (e.g. PUSCH resource unit size, MCS level, payload segmentation threshold, mapping table between SNR target and repetition level) from the base station.
At 1004, the UE may generate a payload for the multi-slot transmission. For example, 1002 may be performed by a payload component 1110 from FIG. 11. For example, referring back to FIGs. 4-9, the UE may generate a payload 401 with a size of X for the multi-slot transmission.
At 1006, the UE may segment, based on the configuration information, the payload into one or multiple transport blocks (TBs) , where the one or multiple TBs is a set of TBs. For example, 1006 may be performed by a segmentation component 1112 from FIG. 11. For example, referring back to FIGs. 4-9, the UE may segment, based on the configuration information 403, the payload 401 into one or multiple transport blocks (TBs) , as illustrated at 405. The one or multiple TBs may be a set of TBs. Based on a network configured payload segmentation threshold T 0, the UE may decide whether or not to segment the payload (X bytes) into multiple TBs. For example, if X ≤ T 0, no need to segment (bit padding may be needed if X< T 0) ; If X>T 0, the payload may be segmented into
Figure PCTCN2020112163-appb-000003
TB. When TB repetition may be considered, the replicas may have an identical or different RV. In some aspects, the UE may receive the payload segmentation threshold T 0, where the UE may  determine whether to segment the payload into the set of TBs or to add padded bits to the payload based on the payload segmentation threshold T 0.
At 1008, the UE may repeat the set of TBs and concatenate the repeated TBs into a TB group (TBG) . For example, 1002 may be performed by a repetition component 1114 from FIG. 11. For example, referring back to FIGs. 4-9, the UE may make a determination of repetition levels. The UE may measure a reference signal received power (RSRP) . Based on the RSRP measurements and a configured mapping table between a SNR target and repetition levels, the UE may decide the number of repetitions to be applied for the transmission. The repetition level may be UE-specific. For example, cell-center and cell-edge UEs may use different repetition levels. In some aspects, the UE may measure the RSRP and determine a repetition level according to the configured mapping table between the SNR target and the repetition level, where the SNR target may depend on an MCS configured for the multi-slot transmission.
At 1010, the UE may insert a header within each TB, where the header may include at least one of a flag indicating whether the TB is the last TB in the TBG , a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or an LSB of a UE-specific multiple access signature. For example, 1002 may be performed by a header component 1116 from FIG. 11. For example, referring back to FIGs. 4-9, the TB header may include a subset of the following information: a flag for a last TB indication, a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or an LSB of a UE-specific multiple access signature (a most significant bit (MSB) may be carried by DMRS/preamble resource index, etc. ) . The TB header 605 may include the flag E 606 indicating for a last TB. For example, if E =1, the flag E 606 may indicate the TB may be the last TB in a TBG, the rest of the TB header 608 may be reserved. If E =0, the flag E 606 may indicate more TBs of the TBG may follow. Instead of having a flag, the TB header (e.g., 701a, 702a, 703a) of the TB (e.g., 701, 702, 703) may be a group TFRI (G-TFRI) based on a size of the TBG and a UE identity. In some aspects, the G-TFRI may be based on a size of the TBG and a UE identity. The G-TFRI may indicate a set of PRUs selected by a UE for payload transmission. For example, a table for the mapping of group TFRI to PRUs may be predefined or configured. The PRU may be mapped to different group TFRIs. The G-TFRI may be a bitmap with a value of “1” indicating an associated PRU used for the transmission. If a length of bitmap is smaller than a total number  of PRUs in the resource pool, the pattern may be repeated. The total number of “1” in T/F resource pattern may indicate a total number of PRUs used for the payload transmission. In some aspects, the G-TFRI may be a bitmap with a value of “1” indicating the associated PRU used for the multi-slot transmission. If the length of the bitmap is smaller than the total number of PRUs in the resource pool, the G-TFRI pattern indicated in the bitmap may be repeated and the multi-slot transmission of the UE may follow the repeated pattern of the G-TFRI pattern.
At 1012, the UE may scramble the TBG by the UE-specific multiple access signature. For example, 1012 may be performed by a scrambling component 1118 from FIG. 11. For example, referring back to FIGs. 4-9, the UE may scramble the TBG by the UE-specific multiple access signature, as illustrated at 411. A scrambling ID may be generated by a closed-form formula, for example, the scrambling ID may be a function of a PRU index, a demodulation reference signal (DMRS) resource index, a preamble resource index. The UE may further perform linear modulation, and transform precoding.
In some aspects, the UE may select a hopping pattern from a set of predefined hopping patterns configured by the base station, and maps the TBG to a set of PRUs corresponding to the selected hopping pattern. Different UEs may select different number of hops (e.g. equal to L) , different starting points (e.g. a PRU index in a T/F domain) , and different frequency offsets (e.g. measured in RBG or sub-RBG level) . In some aspects, the UE may select a sequence of consecutive or non-consecutive PRU resource indexes based on the frequency hopping pattern, where a size of the sequence of the selected PRU resource indexes may equal to a size of the TBG. For example, as illustrated in FIG. 8, the UE 801 and the UE 803 may collide at a same time/frequency grid 806, and the UE 802 and the UE 803 may collide at a same time/frequency grid 805. Because the transmission is multi-slot transmission, there is a chance that two UEs may choose a same DMRS and a same PRU, the base station may not be able to decode the collided TBs. Thus, the base station may ask the UEs (e.g., 301, 302, and 302) to retransmit the TBs that have failed to be decoded by the base station.
In some aspects, the UE may multiplex each TB of the TBG with a DMRS or further multiplex the TBG and the DMRS with a preamble in resource mapping, wherein the DMRS or the preamble resource index may be configured to carry information for the transmission parameter selected by the UE or a UE identifier.  For example, referring back to FIGs. 4-9, the UE may multiplex the TBG with the DMRS or preamble 414 in a resource mapping, as illustrated at 412. The DMRS or the preamble resource index may be configured to carry information for the transmission parameter selected by the UE or a UE identifier. The TBG may be multiplexed with the DMRS or preamble 414 and mapped to a PRU 416. Each TB (e.g., 410) may be mapped to one PRU (e.g., 416) . For TBs with a total number of L, there may be PRUs with a total number of L. The UEs may be further configured to transmit the TBG to the base station using the transmission parameters in a shared time and frequency resource grid configured by the base station.
At 1014, the UE may transmit the TBG to the base station using the transmission parameters in a shared time and frequency resource grid configured by the base station. For example, 1014 may be performed by a transmission component 1106 from FIG. 11. For example, referring back to FIGs. 4-9, a common time/frequency grid of dimension [T min, F min, T max, F max] may be configured by a base station for multi-slot transmissions of multiple UEs (e.g., 801, 802, 803) . The multiple UEs (e.g., 801, 802, 803) may share the common time/frequency grid. Each UE may transmit one or multiple TBs. Each TB may be mapped to one PRU, based on a predefined frequency hopping patterns.
At 1016, the UE may receive HARQ feedback from the base station for a decoding outcome of the TBG. For example, 1016 may be performed by a reception component 1104 from FIG. 11. For example, referring back to FIGs. 4-9, in one option, a HARQ feedback for a TBG Transmission may be UE-specific (addressed to a UE ID or group-TFRI) . For example, a CRC of PDCCH may be masked by the UE ID or a UE specific multiple access signature (e.g., a preamble ID) or a G-TFRI. In some aspects, a PDCCH may be addressed to the UE, where the payload may comprise the TBG decoding outcome for the UE, where the CRC of the PDCCH may be masked by the UE ID or the G-TFRI selected by the UE, and where the UE ID many be based on a preamble resource index, a DMRS resource index or a configured UE identifier, or other multiple access signature. In another option, a HARQ feedback for a TBG Transmission may be PRU-specific (addressed to a group Radio Network Temporary Identifier (RNTI) ) . For example, as illustrated in FIG. 9B, a CRC of PDCCH may be masked by the group RNTI, which may be a function of the TFRI of PRU. In some aspects, a PDCCH may be addressed to a group of UEs, where the group of UEs may share a same RO or a same PRU group,  where the payload may comprises a decoding outcome for one or multiple UEs in the group of UEs, and where a CRC of a PDCCH may be masked by the G-TFRI shared by the group of UEs.
At 1018, the UE may retransmit the set of TBs failed to be decoded by the base station based on the HARQ feedback. For example, 1014 may be performed by a transmission component 1106 from FIG. 11. For example, referring back to FIGs. 4-9, the UE may look at the bitmap (e.g., 903, 904) in one option, or look at the multiple fields table 910, determine the TBs or the TBG failed to be decoded by the base station, and retransmit only the TBs or the TBG failed to be decoded by the base station. In this way, the retransmission may be more efficient than retransmitting the entire payload.
FIG. 11 is a conceptual data flow diagram 1100 illustrating the data flow between different means/components in an example apparatus 1102. The apparatus may be a UE (e.g., the  UE  104, 1450; the apparatus 1102/1102'; the processing system 1214, which may include the memory 360 and which may be the entire apparatus 1102/1102'or a component of the apparatus 1102/1102', such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . The apparatus includes a reception component 1104 that receives from a base station, e.g., as described in connection with 1002 in FIG. 10. The apparatus includes a configuration component 1108 that obtains, via the reception component 1104, from a base station, configuration information and transmission parameters for a multi-slot transmission, e.g., as described in connection with 1002 in FIG. 10. The apparatus includes a payload component 1110 that generates a payload for the multi-slot transmission, e.g., as described in connection with 1004 in FIG. 10. The apparatus includes a segmentation component 1112 that segments, based on the configuration information, the payload into one or multiple transport blocks (TBs) , e.g., as described in connection with 1006 in FIG. 10. The apparatus includes a repetition component 1114 that repeats the set of TBs and concatenates the repeated TBs into a TB group (TBG) , e.g., as described in connection with 1006 in FIG. 10. The apparatus includes a header component 1116 that inserts a header within each TB, e.g., as described in connection with 1010 in FIG. 10. The apparatus includes a scrambling component 1118 that scrambles the TBG by the UE-specific multiple access signature, e.g., as described in connection with 1012 in FIG. 10. The apparatus includes a transmission component 1106 that transmits the TBG to the  base station using the transmission parameters in a shared time and frequency resource grid configured by the base station, e.g., as described in connection with 1014 in FIG. 10.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4-10. As such, each block in the aforementioned flowcharts of FIGs. 4-10 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
FIG. 12 is a diagram 1200 illustrating an example of a hardware implementation for an apparatus 1102' employing a processing system 1214. The processing system 1214 may be implemented with a bus architecture, represented generally by the bus 1224. The bus 1224 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1214 and the overall design constraints. The bus 1224 links together various circuits including one or more processors and/or hardware components, represented by the processor 1204, the  components  1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118, and the computer-readable medium /memory 1206. The bus 1224 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1214 may be coupled to a transceiver 1210. The transceiver 1210 is coupled to one or more antennas 1220. The transceiver 1210 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1210 receives a signal from the one or more antennas 1220, extracts information from the received signal, and provides the extracted information to the processing system 1214, specifically the reception component 1104. In addition, the transceiver 1210 receives information from the processing system 1214, specifically the transmission component 1106, and based on the received information, generates a signal to be applied to the one or more antennas 1220. The processing system 1214 includes a processor 1204 coupled to a computer-readable medium /memory 1206. The processor 1204 is responsible for general processing, including the  execution of software stored on the computer-readable medium /memory 1206. The software, when executed by the processor 1204, causes the processing system 1214 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1206 may also be used for storing data that is manipulated by the processor 1204 when executing software. The processing system 1214 further includes at least one of the  components  1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118. The components may be software components running in the processor 1204, resident/stored in the computer readable medium /memory 1206, one or more hardware components coupled to the processor 1204, or some combination thereof. The processing system 1214 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. Alternatively, the processing system 1214 may be the entire UE (e.g., see 350 of FIG. 3) .
In one configuration, the apparatus 1102/1102' for wireless communication includes means for obtaining, from a base station, configuration information and transmission parameters for a multi-slot transmission. The apparatus includes means for generating a payload for the multi-slot transmission. The apparatus includes means for segmenting, based on the configuration information, the payload into one or multiple TBs, where the one or multiple TBs are a set of TBs. The apparatus includes means for repeating the set of TBs and concatenating the repeated TBs into a TBG. The apparatus includes means for inserting a header within each TB, where the header includes at least one of a flag indicating whether the TB is the last TB in the TBG , a RV, a NDI, a TB index, a TFRI, a frequency hopping pattern, or an LSB of a UE-specific multiple access signature. The apparatus includes means for scrambling the TBG by the UE-specific multiple access signature. The apparatus further includes means for transmitting the TBG to the base station using the transmission parameters in a shared time and frequency resource grid configured by the base station. The aforementioned means may be one or more of the aforementioned components of the apparatus 1102 and/or the processing system 1214 of the apparatus 1102' configured to perform the functions recited by the aforementioned means. As described supra, the processing system 1214 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX  Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
FIG. 13 is a flowchart 1300 of a method of wireless communication. The method may be performed by a base station (e.g., the base station 102/180, 1150; the apparatus 1402/1402'; the processing system 1514, which may include the memory 376 and which may be the entire base station or a component of the base station, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) . To facilitate an understanding of the techniques and concepts described herein, the method of flowchart 1300 may be discussed with reference to the examples illustrated in FIGs. 4-9. Optional aspects may be illustrated in dashed lines. Aspects presented herein provide several transmission schemes for the multi-slot transmission to facilitate efficient and flexible UE multiplexing with different payload sizes and coupling losses, and to reduce the complexity of blind decoding, several transmission schemes for the multi-slot transmission. In this way, a signaling overhead may be reduced and a power of a UE may be saved.
At 1302, the base station may configure a shared time and frequency resource grid for multi-slot transmissions by one or more UEs. For example, 1302 may be performed by a T/F component 1408 from FIG. 14. For example, referring back to FIGs. 4-9, multi-slot transmission parameters may be configured by SI/RRC from a base station. To reduce the complexity of resource assignment for a multi-slot transmission, the base station may pre-define or configure a T/F resource size of a PRU, which may be a slot or mini-slot, a RBG or a sub-RBG, and an associated MCS.
At 1304, the base station may transmit, to the one or more UEs, configuration information and transmission parameters of the one or more UEs for the multi-slot transmissions by the one or more UEs. For example, 1304 may be performed by a configuration component 1410 from FIG. 14. For example, referring back to FIGs. 4-9, before the start of the multi-slot transmission, a UE may obtain configuration information 403 (e.g. PUSCH resource unit size, MCS level, payload segmentation threshold, mapping table between SNR target and repetition level) from the base station.
At 1306, the base station may receive one or more TBGs from the one or more UEs performing the multi-slot transmissions, where each TB of a corresponding TBG may include a header carrying UE specific transmission parameters and resource  mapping information of the corresponding TBG, where the header may include at least one of a flag indicating whether the TB is the last TB in the TBG, a redundancy version (RV) , a new data indicator (NDI) , a TB index, a time frequency resource indication (TFRI) , a frequency hopping pattern, or a least significant bit (LSB) of a UE-specific multiple access signature, and where the one or more TBGs from the one or more UEs are received in the shared time and frequency resource grid. For example, 1006 may be performed by a segmentation component 1112 from FIG. 11. For example, referring back to FIGs. 4-9, the UE may segment, based on the configuration information 403, the payload 401 into one or multiple transport blocks (TBs) , as illustrated at 405. The UE may repeat the set of TBs and concatenate the repeated TBs into the TBG. The UE may transmit the TBG to the base station using the transmission parameters in the shared time and frequency resource grid configured by the base station. For example, a common time/frequency grid of dimension [T min, F min, T max, F max] may be configured by a base station for multi-slot transmissions of multiple UEs (e.g., 801, 802, 803) . The multiple UEs (e.g., 801, 802, 803) may share the common time/frequency grid. Each UE may transmit one or multiple TBs. Each TB may be mapped to one PRU, based on a predefined frequency hopping patterns.
FIG. 14 is a conceptual data flow diagram 1400 illustrating the data flow between different means/components in an example apparatus 1402. The apparatus may be a base station (e.g., the base station 102/180, 1150; the apparatus 1402/1402'; the processing system 1514, which may include the memory 376 and which may be the entire base station or a component of the base station, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) . The apparatus includes a reception component 1404 that receives from UEs, e.g., as described in connection with 1306 in FIG. 13. The apparatus includes a transmission component 1406 that transmits to UEs, e.g., as described in connection with 1304 in FIG. 13. The apparatus includes a T/F component 1408 that configures a shared time and frequency resource grid for multi-slot transmissions by one or more UEs, e.g., as described in connection with 1302 in FIG. 13. The apparatus includes a configuration component 1410 that transmits to a UE, via the transmission component 1406, configuration information and transmission parameters of the one or more UEs for multi-slot transmissions by the one or more UEs, e.g., as described in connection with 1304 in FIG. 13. The apparatus includes a TBG component  1412 that receives, via the reception component 1304, TBGs of the multi-slot transmissions from the one or more UEs, e.g., as described in connection with 1306 in FIG. 13.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4-9 and 13. As such, each block in the aforementioned flowcharts of FIGs. 4-9 and 13 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
FIG. 15 is a diagram 1500 illustrating an example of a hardware implementation for an apparatus 1402' employing a processing system 1514. The processing system 1514 may be implemented with a bus architecture, represented generally by the bus 1524. The bus 1524 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1514 and the overall design constraints. The bus 1524 links together various circuits including one or more processors and/or hardware components, represented by the processor 1504, the  components  1404, 1406, 1408, 1410, 1412, and the computer-readable medium /memory 1506. The bus 1524 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1514 may be coupled to a transceiver 1510. The transceiver 1510 is coupled to one or more antennas 1520. The transceiver 1510 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1510 receives a signal from the one or more antennas 1520, extracts information from the received signal, and provides the extracted information to the processing system 1514, specifically the reception component 1404. In addition, the transceiver 1510 receives information from the processing system 1514, specifically the transmission component 1406, and based on the received information, generates a signal to be applied to the one or more antennas 1520. The processing system 1514 includes a processor 1504 coupled to a computer-readable medium /memory 1506. The processor 1504 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1506.  The software, when executed by the processor 1504, causes the processing system 1514 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1506 may also be used for storing data that is manipulated by the processor 1504 when executing software. The processing system 1514 further includes at least one of the  components  1504, 1506, 1508, 1510, 1512. The components may be software components running in the processor 1504, resident/stored in the computer readable medium /memory 1506, one or more hardware components coupled to the processor 1504, or some combination thereof. The processing system 1514 may be a component of the base station 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375. Alternatively, the processing system 1214 may be the entire base station (e.g., see 310 of FIG. 3) .
In one configuration, the apparatus 1402/1402' for wireless communication includes means for configuring a shared time and frequency resource grid for multi-slot transmissions by one or more UEs. The apparatus further includes means for transmitting, to a UE, configuration information and transmission parameters of the UE for a multi-slot transmission by the UE. The apparatus further includes means for receiving, based on the transmission parameters, a transport block (TB) group (TBG) of the multi-slot transmission from the UE, the TBG being based on the configuration information, the TBG being received in the shared time and frequency resource grid.
The aforementioned means may be one or more of the aforementioned components of the apparatus 1402 and/or the processing system 1514 of the apparatus 1402' configured to perform the functions recited by the aforementioned means. As described supra, the processing system 1514 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various  blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (20)

  1. A method of wireless communication of a user equipment (UE) , comprising:
    obtaining, from a base station, configuration information and transmission parameters for a multi-slot uplink transmission;
    generating a payload for the uplink transmission;
    generating, based on the payload and the configuration information, multiple transport blocks (TBs) , the multiple TBs being a set of TBs, wherein the payload is segmented into multiple TBs of the set of TBs;
    generating a TB group (TBG) based on the set of TBs, wherein the TBs of the set of TBs are repeated within the TBG;
    generating a header within each TB of the TBG, the header including a flag indicating whether the TB is the last TB in the TBG, a redundancy version (RV) , a new data indicator (NDI) , a TB index, a time frequency resource indication (TFRI) , a frequency hopping pattern, or a least significant bit (LSB) of a UE-specific multiple access signature;
    scrambling the TBG based on the UE-specific multiple access signature; and
    transmitting the TBG to the base station based on the selected transmission parameters in a time and frequency resource grid configured by the base station.
  2. The method of claim 1, further comprising multiplexing each TB of the TBG with a demodulation reference signal (DMRS) or multiplexing the TBG and DMRS with a preamble in resource mapping, wherein the DMRS or the preamble resource index is configured to carry information on the transmission parameter selected by the UE or on a UE identifier.
  3. The method of claim 1, further comprising:
    receiving a payload segmentation threshold;
    determining to segment the payload into the multiple TBs based on the payload segmentation threshold.
  4. The method of claim 1, wherein the UE selects a hopping pattern from a set of hopping patterns configured by the base station, and maps the TBG to a set of physical uplink shared channel (PUSCH) resource block units (PRUs) based on the selected hopping pattern and a repetition level.
  5. The method of claim 4, wherein the set of PRUs are mapped to consecutive or non-consecutive slots or mini-slots, and a PRU of the set of PRUs is repeated in time domain and mapped to one or multiple slots or mini-slots.
  6. The method of claim 1, further comprising:
    measuring a reference signal received power (RSRP) ; and
    determining a repetition level based on the RSRP and a table mapping signal-to-noise ratio (SNR) targets and repetition levels, wherein the TBs of the set of TBs are repeated in the TBG based on the repetition level.
  7. The method of claim 1, further comprising:
    calculating the UE-specific multiple access signature based on at least one of a preamble resource index, a DMRS resource index, a G-TFRI or a PRU index.
  8. The method of claim 1, wherein the UE transmits the TBG to the base station on a set of physical uplink shared channel (PUSCH) resource block units (PRUs) of the time and frequency resource grid configured for multi-slot transmission, and wherein the TFRI identifies the set of PRUs.
  9. A method of wireless communication of a base station (BS) , comprising:
    configuring a time and frequency resource grid for multi-slot uplink transmissions by one or more user equipment (UEs) ;
    transmitting, to the one or more UEs, configuration information and transmission parameters for the multi-slot uplink transmissions by the one or more UEs;
    receiving one or more transport block (TB) groups (TBGs) from the one or more UEs, wherein each TB of a corresponding TBG includes a header carrying UE specific transmission parameters and resource mapping information of the corresponding TBG, the header including at least one of a flag indicating whether the TB is the last TB in the TBG, a redundancy version (RV) , a new data indicator (NDI) , a TB index, a time frequency resource indication (TFRI) , a frequency hopping pattern, or a least significant bit (LSB) of a UE-specific multiple access signature, and wherein the one or more TBGs from the one or more UEs are received in the time and frequency resource grid configured for multi-slot transmission.
  10. The method of claim 9, further comprising transmitting a payload segmentation threshold T 0 to the one or more UEs.
  11. The method of claim 9, wherein the TFRI in the TB header is a group TFRI (G-TFRI) based on a size of the corresponding TBG and a UE identity.
  12. The method of claim 9, further comprising:
    transmitting hybrid automatic repeat request (HARQ) feedback to a UE of the one or more UEs based on a decoding outcome of a TBG received in the time and frequency resource grid; and
    receiving a retransmission of a TB of the TBG from the UE.
  13. The method of claim 12, wherein the base station transmits the HARQ feedback on a physical downlink control channel (PDCCH) , wherein the PDCCH is addressed to the UE, wherein the HARQ feedback comprises a TBG decoding outcome for the TBG, and wherein a CRC of the PDCCH is masked by a TFRI received with the TBG or a UE ID received with the TBG and based on a preamble resource index, a DMRS resource index or a configured UE identifier, or other multiple access signature.
  14. The method of claim 12, wherein the base station transmits the HARQ feedback on a physical downlink control channel (PDCCH) , wherein the PDCCH is addressed to the one or more UEs, wherein the one or more UEs share a same RO, a same PRU group, or a same pattern of G-TFRI, wherein the HARQ feedback is based on a decoding outcome for one or multiple 
    UEs of the one or more UEs, and wherein a CRC of the PDCCH is masked by a G-TFRI shared by the one or more UEs.
  15. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    obtain, from a base station, configuration information and transmission parameters for multi-slot uplink transmission of data or control information;
    generate a payload for the uplink data or control information transmission;
    generate, based on the payload and the configuration information, multiple transport blocks (TBs) , the multiple TBs being a set of TBs, wherein the payload is segmented into multiple TBs of the set of TBs;
    generate a TB group (TBG) based on the set of TBs, wherein the TBs of the set of TBs are repeated within the TBG;
    generate a header within each TB of the TBG, the header including a flag indicating whether the TB is the last TB in the TBG, a redundancy version (RV) , a new data indicator (NDI) , a TB index, a time frequency resource indication (TFRI) , a frequency hopping pattern, or a least significant bit (LSB) of a UE-specific multiple access signature;
    scramble the TBG based on the UE-specific multiple access signature; and
    transmitting the TBG to the base station based on the transmission parameters in a time and frequency resource grid configured by the base station for multi-slot transmission.
  16. The apparatus of claim 15, wherein the at least one processor is further configured to:
    receive a payload segmentation threshold; and
    determine to segment the payload into the o multiple TBs based on the payload segmentation threshold.
  17. The apparatus of claim 15, wherein the UE selects a hopping pattern from a set of hopping patterns configured by the base station, and maps the TBG to a set of physical uplink shared channel (PUSCH) resource block units (PRUs) based on the selected hopping pattern.
  18. The apparatus of claim 17, wherein the set of PRUs are mapped to consecutive or non-consecutive slots, and a PRU of the set of PRUs is repeated in time domain and mapped to one or multiple slots.
  19. The apparatus of claim 15, wherein the processor is further configured to:
    measure a reference signal received power (RSRP) ; and
    determine a repetition level based on the RSRP and a table mapping signal-to-noise ratio (SNR) targets and repetition levels, wherein the TBs of the set of TBs are repeated in the TBG based on the repetition level.
  20. The apparatus of claim 15, wherein the UE transmits the TBG to the base station on a set of physical uplink shared channel (PUSCH) resource block units (PRUs) of the time and frequency resource grid configured for multi-slot transmission, and wherein the TFRI identifies the set of PRUs.
PCT/CN2020/112163 2019-08-28 2020-08-28 Payload segmentation and resource mapping for multi-slot transmissions WO2021037215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/103022 WO2021035573A1 (en) 2019-08-28 2019-08-28 Payload segmentation and resource mapping for gf transmissions
CNPCT/CN2019/103022 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021037215A1 true WO2021037215A1 (en) 2021-03-04

Family

ID=74683315

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/103022 WO2021035573A1 (en) 2019-08-28 2019-08-28 Payload segmentation and resource mapping for gf transmissions
PCT/CN2020/112163 WO2021037215A1 (en) 2019-08-28 2020-08-28 Payload segmentation and resource mapping for multi-slot transmissions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103022 WO2021035573A1 (en) 2019-08-28 2019-08-28 Payload segmentation and resource mapping for gf transmissions

Country Status (1)

Country Link
WO (2) WO2021035573A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990237A (en) * 2009-07-29 2011-03-23 中兴通讯股份有限公司 Relay link data transmission method and system
US20190074952A1 (en) * 2017-09-06 2019-03-07 Qualcomm Incorporated Multiplexing code block group level and transport block level feedback
US20190074937A1 (en) * 2017-09-06 2019-03-07 Qualcomm Incorporated Multiplexing code block group level and transport block level transmission and new data indications
EP3471305A1 (en) * 2017-05-18 2019-04-17 LG Electronics Inc. -1- Method for performing uplink transmission in wireless communication system, and apparatus therefor
US20190150164A1 (en) * 2017-11-16 2019-05-16 Qualcomm Incorporated Multi-slot scheduling with repetitive transmission of a transport block with different redundancy versions
WO2019160863A1 (en) * 2018-02-14 2019-08-22 Idac Holdings, Inc. Data transmission associated with nr v2x

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106358239B (en) * 2015-07-14 2020-07-10 Oppo广东移动通信有限公司 Data transmission method, sending equipment and receiving equipment
US10009152B2 (en) * 2016-03-04 2018-06-26 Huawei Technologies Co., Ltd. System and method for rate-less multiple access
US11102786B2 (en) * 2017-03-27 2021-08-24 Huawei Technologies Co., Ltd. Methods and apparatus for enhanced spectral efficiency and reliability of transmission without grant
BR112020002699A8 (en) * 2017-08-10 2023-04-25 Sharp Kk PROCEDURES, BASE STATIONS AND USER EQUIPMENT FOR UPLINK TRANSMISSION WITHOUT CONCESSION

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990237A (en) * 2009-07-29 2011-03-23 中兴通讯股份有限公司 Relay link data transmission method and system
EP3471305A1 (en) * 2017-05-18 2019-04-17 LG Electronics Inc. -1- Method for performing uplink transmission in wireless communication system, and apparatus therefor
US20190074952A1 (en) * 2017-09-06 2019-03-07 Qualcomm Incorporated Multiplexing code block group level and transport block level feedback
US20190074937A1 (en) * 2017-09-06 2019-03-07 Qualcomm Incorporated Multiplexing code block group level and transport block level transmission and new data indications
US20190150164A1 (en) * 2017-11-16 2019-05-16 Qualcomm Incorporated Multi-slot scheduling with repetitive transmission of a transport block with different redundancy versions
WO2019160863A1 (en) * 2018-02-14 2019-08-22 Idac Holdings, Inc. Data transmission associated with nr v2x

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Resource allocation and TBS", 3GPP DRAFT; R1-1716320 INTEL TBS_RA, vol. RAN WG1, 12 September 2017 (2017-09-12), Nagoya, Japan, pages 1 - 10, XP051329911 *
INTERDIGITAL INC: "Code Block based HARQ for NR", 3GPP DRAFT; R1-1709013, vol. RAN WG1, 6 May 2017 (2017-05-06), Hangzhou P R China, pages 1 - 4, XP051262812 *

Also Published As

Publication number Publication date
WO2021035573A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US11259237B2 (en) System and method for locating a downlink data channel
US11558159B2 (en) Configurable set of overloaded downlink control information fields used for demodulation reference signal bundling
US11424884B2 (en) Demodulation reference signal having a reduced overhead
WO2021067889A1 (en) Phase tracking reference signal for multi-transmit/receive points
CN112335198B (en) Signaling overhead reduction in NOMA
WO2020238574A9 (en) Mapping one preamble to multiple physical uplink shared channel resource units for two-step random access procedure
WO2022152195A1 (en) Pusch dmrs bundling indication for pusch repetitions
WO2020123047A1 (en) Signaling a subset of coresets selected in cot
WO2022152217A1 (en) Pucch dmrs bundling indication for pucch repetitions
WO2022152207A1 (en) Pusch dmrs bundling indication for different transport blocks
US11723025B2 (en) Radio PDCCH rate-matching for long term evolution cell-specific reference signals
US20220232574A1 (en) Channel coding with unequal error protection for lp uci and hp uci multiplexing in nr
US20220272691A1 (en) Indicating pucch repetition factor using reference signal of preceding pdcch
WO2021037215A1 (en) Payload segmentation and resource mapping for multi-slot transmissions
US11838231B2 (en) Encoding for uplink channel repetition
US11617178B2 (en) Sib PDSCH beam clustering for initial access information
WO2022067691A1 (en) Transmission of downlink feedback information using downlink control information format 0_2
US20220225346A1 (en) Modulation and coding scheme capability for high band wireless communication
US20220116892A1 (en) Uplink spatial filter and power control for joint channel estimation across physical uplink control channels
EP4278497A1 (en) Modulation and coding scheme capability for high band wireless communication
WO2023081073A1 (en) Management of uplink signal transmission repetitions in a user equipment (ue) configured with one or more portions of a frequency band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858166

Country of ref document: EP

Kind code of ref document: A1