WO2021036941A1 - 广播的方法、装置和系统 - Google Patents

广播的方法、装置和系统 Download PDF

Info

Publication number
WO2021036941A1
WO2021036941A1 PCT/CN2020/110565 CN2020110565W WO2021036941A1 WO 2021036941 A1 WO2021036941 A1 WO 2021036941A1 CN 2020110565 W CN2020110565 W CN 2020110565W WO 2021036941 A1 WO2021036941 A1 WO 2021036941A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
broadcast
information
identifier
data
Prior art date
Application number
PCT/CN2020/110565
Other languages
English (en)
French (fr)
Inventor
许胜锋
杨艳梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20855966.6A priority Critical patent/EP4013081A4/en
Publication of WO2021036941A1 publication Critical patent/WO2021036941A1/zh
Priority to US17/677,744 priority patent/US20220182795A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to wireless communication technology, and in particular to a broadcasting method, device and system.
  • Device-to-device communication means that user data can be directly transmitted between terminal devices without going through the wireless network. It has the prospect of improving system performance, enhancing user experience, and expanding wireless communication applications. attention.
  • terminal devices can send application messages to other terminal devices by broadcasting.
  • the sender terminal device distributes application messages to adjacent terminal devices, and the transmission range is limited.
  • Multi-hop broadcast forwards application messages to terminal devices farther away in a multi-hop form through relay terminal devices, realizing application message distribution in a larger range.
  • problems such as serious overlap of broadcasting ranges or insufficient broadcasting coverage, as well as information redundancy, channel competition, or conflict and interference.
  • the embodiments of the present invention provide a broadcasting method, device, and system, which are suitable for multi-hop broadcasting. On the one hand, it can meet the broadcasting coverage requirement, and on the other hand, it can reduce information redundancy, channel competition, or conflict interference.
  • an embodiment of the present application provides a broadcasting method, the method includes: a first device obtains broadcasting decision information of a plurality of first terminals, the broadcasting decision information includes movement information, and the movement information is used to indicate all The location of the first terminal; the first device determines the second terminal from the plurality of first terminals according to the broadcast decision information and the first range, and the first range is the transmission range of the first data; The first device sends configuration information to the second terminal, where the configuration information is used to instruct the second terminal to broadcast the first data.
  • the second terminal may be referred to as a relay terminal.
  • the location information of the terminal is collected by the first device, and the relay terminal is selected in combination with the data transmission range and the location of the terminal.
  • the relay terminal that matches the data transmission range can be selected in the multi-hop broadcast. To meet the needs of broadcast coverage, it can also avoid broadcast flooding and reduce information redundancy, channel competition, or conflict interference.
  • the first device may be a terminal, or a core network element, or a base station; or, the first device may be an independent network element, deployed in an access network or a core network; or, The first device may be a system device composed of multiple network elements, and the multiple network elements may respectively implement the obtaining step, the determining step, and the sending step in the foregoing method.
  • the first device may obtain broadcast decision information from different sources.
  • the first device may obtain broadcast decision information from a network element that stores broadcast decision information.
  • the broadcast decision information may be distributed and stored on different network elements, and the first device may obtain the broadcast decision information from these different network elements.
  • the terminal may report broadcast decision information, and the first device may receive the broadcast decision information from the terminal.
  • the first device determining the second terminal from the plurality of first terminals according to the broadcast decision information and the first range includes: the first device according to the broadcast decision information and The first range determines the connectivity between the multiple third terminals and the multiple third terminals from the multiple first terminals, and the connectivity is related to the locations of the multiple third terminals; The first device selects part of the third terminals from among the plurality of third terminals as the second terminals according to the connectivity.
  • the relay terminal consider the connectivity between the terminals, so that a suitable relay terminal can be selected more accurately.
  • the first device determining the second terminal from the plurality of first terminals according to the broadcast decision information and the first range includes: the first device according to the broadcast decision information and The first range determines a graph including the plurality of third terminals from the plurality of first terminals; wherein, the plurality of vertices of the graph represent the plurality of third terminals, and the graphs of the graph
  • the multiple edges represent the connectivity between the multiple third terminals, and the connectivity is related to the locations of the multiple third terminals; the first device determines from the graph according to the graph theory algorithm. Mentioned second terminal.
  • the weights of the multiple edges represent the connectivity overhead, and the overhead is related to the locations of the multiple third terminals.
  • the graph theory algorithm may be a shortest path algorithm.
  • the second terminal is an intermediate node of the path corresponding to the graph; optionally, the graph theory algorithm may be a spanning tree algorithm.
  • the second terminal is an intermediate node of the spanning tree corresponding to the graph.
  • the shortest path algorithm may include Dijkstra's algorithm or Floyd's algorithm.
  • the spanning tree algorithm may include: a breadth-first spanning tree algorithm or a minimum spanning tree algorithm.
  • the minimum spanning tree algorithm may include Prim algorithm or Kruskal algorithm.
  • the relay terminal By accurately selecting the appropriate relay terminal, on the one hand, fewer relay terminals can be used to meet the broadcast coverage requirements. On the other hand, the relay terminal can use a lower transmission power to achieve the needs of relay broadcast. While meeting broadcast coverage requirements, it further reduces information redundancy, channel competition, or conflict and interference.
  • the broadcast decision information further includes: terminal capability information, where the terminal capability information is used to indicate the communication coverage area of the first terminal.
  • the terminal capability information includes: the communication coverage area of the first terminal; or, the transmit power of the first terminal.
  • the terminal capability information may be used to determine connectivity or connectivity overhead between terminals. Considering the communication coverage of terminals can improve the accuracy of determining connectivity between terminals or the cost of connectivity.
  • the broadcast decision information further includes: channel quality information, and the channel quality information is used to indicate channel quality among the plurality of first terminals.
  • the channel quality information may be used to determine connectivity or connectivity overhead between terminals. Considering the channel quality between the terminals can improve the accuracy of determining the connectivity between the terminals or the connectivity overhead.
  • the movement information further includes: a movement direction or a movement speed of the first terminal.
  • the position of the terminal when it is broadcast can be determined by the moving direction or moving speed. Considering the moving direction or moving speed can improve the accuracy of determining connectivity between terminals or the cost of connectivity.
  • the configuration information includes a first identifier, and the first identifier is used to identify broadcast data; wherein, the first data carries the first identifier.
  • the first identifier may be a data stream identifier of the data. Since different application messages may have the same broadcast coverage requirement, the identifier can be used to reuse determined relay terminals for different application messages, avoiding repeated determination of relay terminals for different application messages with the same broadcast coverage requirement.
  • the carrying of the first identifier in the first data includes: the first data includes the first identifier, or the first data is scrambled using the first identifier.
  • the method further includes: the first device obtains the first identifier from the broadcast initiating terminal.
  • the method further includes: the first device allocates the first identifier or obtains the first identifier from a broadcast control network element; and the first device sends the first identifier to the broadcast initiation terminal One logo.
  • the method further includes: the first device obtains information indicating the first range from the broadcast initiating terminal.
  • the information used to indicate the first range includes application identification, or data type, or data importance.
  • the first range can be obtained through the application identifier, or the data type, or the correspondence between the importance of the data and the transmission range.
  • the information used to indicate the first range may be the first range.
  • the first device receives a first request from the broadcast initiating terminal, and the first request is used to request to broadcast the first data.
  • the first request may include the foregoing first identifier or information used to indicate the first range.
  • the broadcast initiating terminal has the right to request the broadcast of the first data.
  • the first device may authenticate the broadcast initiating terminal to determine whether it has the right to request the broadcast of the first data.
  • the second terminal has the right to broadcast the first data.
  • the first device may authenticate the second terminal to determine whether it has the right to broadcast the first data.
  • the method further includes: the first device obtains updated broadcast decision information; the first device determines whether to update the second terminal according to the updated broadcast decision information; if It is determined to update the second terminal, and a new second terminal is determined according to the updated broadcast decision information and the first range.
  • an embodiment of the present application provides a broadcasting method, including: a first terminal generates broadcasting decision information; wherein the broadcasting decision information is used to determine whether the first terminal broadcasts data with a specific transmission range, so The broadcast decision information includes movement information, and the movement information is used to indicate the location of the first terminal; the first terminal sends the broadcast decision information to the first device.
  • the terminal’s reporting of the terminal’s location it can be combined with the data transmission range and the terminal’s location to determine whether the terminal is used as a relay terminal to broadcast the data, which is helpful for selecting a relay terminal that matches the data transmission range in multi-hop broadcasting, which can satisfy
  • the demand for broadcast coverage can also avoid broadcast flooding and reduce information redundancy, channel competition, or conflict interference.
  • the method further includes: the first terminal receives configuration information from the second device, where the configuration information is used to indicate that the first terminal broadcasts and transmits the first data in the first range.
  • the second device and the first device may be the same device.
  • the configuration information includes a first identifier, and the first identifier is used to identify broadcast data; wherein, the first data carries the first identifier. Since different application messages may have the same broadcast coverage requirement, the identifier can be used to reuse determined relay terminals for different application messages, avoiding repeated determination of relay terminals for different application messages with the same broadcast coverage requirement.
  • the broadcast decision information further includes: terminal capability information, where the terminal capability information is used to indicate the communication coverage area of the first terminal.
  • the broadcast decision information further includes: channel quality information, and the channel quality information is used to indicate the channel quality between the first terminal and other terminals.
  • the movement information further includes: a movement direction or a movement speed of the first terminal.
  • an embodiment of the present application provides a broadcasting method, including: a first terminal sends a first request to a first device, and the first request is used to request to broadcast the first data whose transmission range is the first range; The first terminal receives a first response in response to the first request from the first device, where the first response is used to instruct to broadcast the first data; the first terminal broadcasts the first data.
  • the first request includes a first identifier, and the first identifier is used to identify broadcast data; and the first data carries the first identifier.
  • the first response includes a first identifier, and the first identifier is used to identify broadcast data; and the first data carries the first identifier.
  • the first request includes information for indicating the first range.
  • an embodiment of the present application provides a communication device for implementing the method of the first aspect.
  • the communication device may be the first device in the first aspect, or a device including the first device.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device for implementing the method of the second aspect.
  • the communication device can realize the function of the first terminal in the second aspect.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device for implementing the method of the third aspect.
  • the communication device can realize the function of the first terminal in the third aspect.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, which is used to implement the functions of the communication device in the fifth aspect and the communication device in the sixth aspect.
  • the communication device of the seventh aspect includes corresponding modules, units, or means for realizing the above-mentioned functions.
  • the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, including a processor, configured to read an instruction from a memory, and execute the instruction to implement the method of the first aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device, including a processor, the processor is configured to read instructions from a memory, and execute the instructions to implement the method of the second aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device, including a processor, the processor is configured to read instructions from a memory, and execute the instructions to implement the method of the third aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device, including a processor, the processor is configured to read instructions from a memory, and execute the instructions to implement the methods of the second and third aspects.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, characterized in that, when the instructions are executed on a communication device, the communication device is caused to implement any of the foregoing methods.
  • an embodiment of the present application provides a computer program product, including instructions, characterized in that, when the instructions are executed on a communication device, the communication device is caused to implement any of the foregoing methods.
  • an embodiment of the present application provides a communication system, including the communication device of the fourth aspect or the eighth aspect.
  • the communication system may further include the communication device of the fifth aspect or the ninth aspect.
  • the communication system may further include the communication device of the sixth aspect or the tenth aspect.
  • the communication system may further include the communication device of the seventh aspect or the eleventh aspect.
  • the technical effects of the fourth aspect to the fourteenth aspect can be referred to the beneficial effects of the first aspect to the third aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a broadcasting method provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of a spanning tree provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of another spanning tree provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a path provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of another broadcasting method provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of another broadcasting method provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of yet another broadcasting method provided by an embodiment of this application.
  • FIG. 9 is a schematic flowchart of yet another broadcasting method provided by an embodiment of this application.
  • FIG. 10 is a schematic flowchart of yet another broadcasting method provided by an embodiment of this application.
  • FIG. 11 is a schematic flowchart of yet another broadcasting method provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of still another communication device provided by an embodiment of this application.
  • 15 is a schematic structural diagram of still another communication device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of yet another communication device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of still another communication device provided by an embodiment of this application.
  • Table 1 lists the English abbreviations, full English names and corresponding Chinese names involved in this application.
  • At least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the embodiments of the present application introduce technical solutions based on the use of a 5G communication system for D2D communication.
  • Those skilled in the art should know that the solution of this application can be adapted to use 4G communication systems for D2D communication; and, with the evolution and changes of communication technology, the solution of this application can also be adapted to use other communication systems, such as 6G communication
  • the system performs D2D communication.
  • Fig. 1 shows a schematic diagram of the architecture of a 5G communication system.
  • the communication system includes a core network part and an access network part.
  • the access network may be NG-RAN.
  • the core network may include AMF network elements, SMF network elements, UPF network elements, UDR network elements, UDM network elements, and AF network elements.
  • UPF can be connected to DN, which contains application server.
  • the UE establishes a connection with the DN through the communication system, and the UE's application can access the application server in the DN through a logical interface to obtain application data.
  • the UE is a kind of terminal equipment with wireless transceiver function.
  • the terminal device can be a communication terminal, including handheld devices and notebook computers; it can be other devices that can access the network, including RSU.
  • Vehicles such as vehicles and unmanned aerial vehicles, can be used as a kind of terminal equipment by carrying the above-mentioned communication terminals or deploying wireless transceiver functions on the vehicles.
  • the terminal equipment communicates with the access network equipment through the air interface technology; the terminal equipment can also directly communicate with other terminal equipment.
  • a radio access network (Radio Access Network, RAN) device is a device that provides wireless communication functions for terminal devices. This network element is mainly used for radio resource management, service quality management, data compression and encryption on the air interface side.
  • the access network equipment can be a next-generation base station, an evolved node B, a wireless network controller, a node B, a base station controller, a base transceiver station, a baseband unit, a transmission point, a transmission point, etc. in a 5G network.
  • the BBU of the access network in the 5G network may be reconstructed into a centralized unit and a distributed unit.
  • CU equipment is mainly used to process wireless high-level protocol stack functions, which can meet the higher requirements of future communication networks for emerging services such as virtual reality/augmented reality for network delay;
  • DU equipment is mainly used to process physical layer functions and real-time requirements Higher functionality.
  • AMF network element is a network element used for access and mobility management. This network element is mainly used for access control, mobility management, attach and detach, and SMF network element selection.
  • the network element When the network element provides services for the session in the terminal device, it can provide storage resources of the control plane for the session, which are used to store the session identifier, the SMF network element identifier associated with the session identifier, and so on.
  • This network element can be used as the anchor point of the N1 and N2 signaling connection, providing N1/N2 SM message routing for SMF.
  • the SMF network element is a network element used for session management. This network element is mainly used to provide control plane functions for session management, such as session creation, modification, and release. This network element can assign IP addresses to users, select and redirect UPF network elements.
  • the UPF network element is a network element used for user plane processing. This network element is mainly used for service processing on the user plane, such as data packet routing and forwarding, QoS mapping and execution.
  • the network element may receive user data from the DN and transmit it to the UE through the access network equipment; the network element may also receive user data from the UE through the access network equipment and forward it to the DN.
  • the transmission resources and scheduling functions of the network element that provide services for the UE are managed and controlled by the SMF network element.
  • UDM network element is a kind of network element used for data management. This network element is mainly used to generate authentication parameters, store and manage permanent user IDs in the system, and manage the user's service network element registration management, such as AMF and SMF that currently provide services for terminal devices.
  • the UDR network element is a network element used for unified data storage. This network element is mainly used for storing and retrieving contract data, policy data, and public architecture data; providing relevant data to UDN network elements, PCF network elements, and NEF network elements.
  • the AF network element is a network element used for application services. This network element is mainly used to interact with the core network to provide services, such as influencing data routing decisions, policy control functions, or providing third-party services to the network side.
  • DN is a data network.
  • DN is mainly used to provide users with services, such as operator services, Internet access services, and third-party services.
  • the Internet of Vehicles application server can be deployed in the DN to provide Internet of Vehicles application services for terminal devices.
  • terminal devices can communicate in a direct link through the PC5 interface; at the same time, the terminal device and the base station can establish uplink/downlink communication through the Uu interface. Communication between terminal devices through direct links can be further divided into unicast, multicast, and broadcast according to the communication mode.
  • Unicast is a one-to-one communication mode between terminal devices, and the terminal device that receives unicast data is single.
  • Multicast also known as multicast, is a one-to-many communication mode between terminal devices. The terminal devices that receive multicast data are in a specific group.
  • Broadcasting is a one-to-all communication mode between terminal devices, and the terminal devices around the sending end receive broadcast data.
  • the broadcast mode is divided into single-hop broadcast and multi-hop broadcast. Single-hop broadcast directly distributes the information to neighboring terminal devices without the need for relay terminal devices to forward.
  • Multi-hop broadcasting can broadcast information to more distant terminal devices in a multi-hop form through relay terminal devices, realizing information distribution in a larger range.
  • a terminal device that forwards the received broadcast information in a broadcast manner can be called a relay broadcast, and the terminal device can be called a relay terminal device; the start terminal of a multi-hop broadcast can be called an initiating terminal device ; The terminal device that no longer relays the received broadcast information is called the end terminal device; for the convenience of description, the terminal device can be referred to as the terminal for short.
  • the Internet of Vehicles V2X (vehicle to X) is the key technology of the intelligent transportation system.
  • the Internet of Vehicles includes vehicles and vehicles (V2V), vehicles and infrastructure (V2I), and vehicles and networks (Vehicle to Network). , V2N) and mutual communication between vehicles and pedestrians (V2P).
  • D2D technology can be applied to the Internet of Vehicles to realize the transmission of Internet of Vehicles application messages between terminal devices.
  • the Internet of Vehicles includes a variety of scenarios, such as collision warning, vehicle out-of-control warning, and pedestrian collision prevention. Some applications need to broadcast specific messages.
  • One Internet of Vehicles application message corresponds to a transmission range, and terminal devices within the transmission range need to receive the application message, and different Internet of Vehicles application messages can correspond to the same transmission range.
  • the first embodiment introduces the process of using the technical solution of the present application to perform multi-hop broadcasting in D2D communication.
  • the application message of the initiating terminal is forwarded by the relay terminal to notify the terminal equipment within the transmission range of the application message in a multi-hop broadcast manner.
  • this embodiment includes:
  • the terminal sends terminal capability information or channel quality information to the first network element.
  • terminal A, terminal B, and terminal C The three terminals (terminal A, terminal B, and terminal C) shown in FIG. 2 are taken as examples and do not constitute a limitation on the number of terminals.
  • the terminal capability information is used to indicate the communication coverage capability of the terminal; the channel quality information is used to indicate the wireless channel quality between the terminals.
  • the communication coverage is a manifestation of the communication coverage capability.
  • the terminal may send one or both of terminal capability information and channel quality information to the first network element.
  • the terminal may send terminal capability information and channel quality information through the same message or signaling, or may send terminal capability information and channel quality information through different messages or signaling.
  • the terminal may directly send terminal capability information or channel quality information to the first network element, or may forward the terminal capability information or channel quality information to the first network element through other network elements. During the forwarding process of terminal capability information or channel quality information, the data structure or presentation form of terminal capability information or channel quality information may change.
  • the first network element may store the acquired terminal capability information or channel quality information locally or in other network elements.
  • step S101 is an optional step.
  • the default value of the terminal device capability information or channel quality information can be used.
  • the default value can be specified by the communication protocol or pre-configured.
  • the terminal capability information includes communication coverage or transmission power.
  • the communication coverage area can be used to indicate the communication area that the terminal can cover.
  • the transmit power can also be used to indicate the communication range that the terminal can cover.
  • the channel quality information includes RSRP or RSRQ, and the channel quality information can be obtained by measuring signals between terminals.
  • the terminal may periodically send terminal capability information or channel quality information, or send terminal capability information or channel quality information triggered by an event, or send terminal capability information or channel quality information according to instructions from other network elements.
  • the event trigger may be that the change of the channel quality between the terminals exceeds the threshold or the moving speed exceeds the threshold.
  • the 6 terminals participating in the Internet of Vehicles communication are V2X UE#1, V2X UE#2, V2X UE#3, V2X UE#4, V2X UE#5, V2X UE#6 .
  • the terminal capability information (communication coverage and transmission power) of each terminal can be shown in Table 2.
  • the embodiment of the present application does not limit the correspondence between the power value of the terminal device and the communication coverage range.
  • V2X UE Power value (dBm) Coverage area (radius, m) V2X UE#1 13 300 V2X UE#2 15 320 V2X UE#3 10 260 V2X UE#4 8 240 V2X UE#5 12 280 V2X UE#6 12 280
  • each terminal device taking RSRQ as an example
  • the channel quality information of each terminal device is shown in each row in Table 3.
  • Each RSPQ value in each row indicates the quality of the signal received by the V2X UE from each other V2X UE.
  • the unit is dB. The higher the value is. The better the channel quality.
  • the foregoing terminal may respectively send the terminal capability information shown in Table 2 or the channel quality information shown in Table 3 to the first network element.
  • S102 The terminal sends movement information to the first network element.
  • the movement information is used to indicate the location of the terminal.
  • the movement information may include the location of the terminal.
  • the movement information may further include the movement speed of the terminal, or the movement direction of the terminal, or both the movement speed and the movement direction.
  • the position of the terminal can be more accurately indicated by the moving speed or moving direction of the terminal.
  • the present application does not limit the expression of the terminal position, and it may be a relative position or an absolute position. For example, it can be expressed by two-dimensional coordinate information, three-dimensional coordinate information, or road information where the terminal device is located, or a combination thereof.
  • the first network element may store the acquired movement information locally or in other network elements. Similar to the terminal capability information or channel quality information in S101, the terminal may periodically send movement information, or send movement information based on an event trigger, or send movement information according to instructions from other network elements. For example, the terminal may send movement information based on a lane change, a change in a moving position that exceeds a set range, a change in a moving speed exceeds a set range, or a change in the moving direction of the terminal device.
  • the timing relationship between S102 and S101 is not limited.
  • the two-dimensional coordinate position information of each terminal device is shown in Table 4.
  • V2X UE#1 (30.9399243310,121.6845703125)
  • V2X UE#2 (30.9902406160,121.7307879743)
  • V2X UE#3 (30.9913561602,121.6300692801)
  • V2X UE#4 (31.0102800916,121.6420383940)
  • V2X UE#5 (31.0219439754,121.6551039066)
  • V2X UE#6 (30.8839481029,121.6359394543)
  • Each terminal in Table 4 can send its own GPS coordinates to the first network element.
  • the initiating terminal (terminal A) sends a multi-hop broadcast transmission request to the first network element.
  • terminal A can send a multi-hop broadcast transmission request to the first network element.
  • the multi-hop broadcast transmission request is used to request broadcast application messages.
  • Application messages are one of the data that can be broadcast.
  • the broadcast transmission request may include the transmission range of the application message.
  • the broadcast transmission request may include an application identifier or application type.
  • the application identifier or application type can be used to indicate the transmission range.
  • the transmission range of the data requested to be broadcast can be known.
  • the corresponding relationship may be stored in the first network element or other network elements. Different applications can correspond to the same transmission range, and different application types can also correspond to the same transmission range. If the multi-hop broadcast transmission request does not include information indicating the transmission range, the default transmission range can be used as the transmission range of the requested broadcast data.
  • the default transmission range may be specified by the communication protocol or pre-configured.
  • the application ID can be represented by, for example, Application ID or ProSe Application ID, and is represented by PSID or ITS-AID in Internet of Vehicles applications.
  • the terminal may obtain the transmission range from the application server according to the application identifier or application type, or obtain the transmission range according to the correspondence relationship between the transmission range and the application identifier or application type.
  • the transmission range may be a distance value, or may be a region or region.
  • the transmission range can be a circle represented by a radius, or a rectangle represented by a length and a width.
  • the broadcast transmission request includes a first identifier, and the first identifier is used to identify the data to be broadcast.
  • the first identifier may be acquired by the terminal (for example, terminal A). There may be multiple ways to obtain the first identifier.
  • the terminal may generate the first identifier randomly or according to the terminal identifier. After the first identifier is generated, the terminal may establish a corresponding relationship between the first identifier and the transmission range, or application identifier, or application type.
  • the terminal may obtain the first identifier according to the existing correspondence between the first identifier and the transmission range, or the application identifier, or the application type; the correspondence may be established by the terminal or the application server , Or pre-configured.
  • the corresponding relationship can be stored in the terminal, or the application server, or other network elements.
  • the terminal may obtain the first identifier from the application server.
  • the application server may generate the corresponding first identifier according to the transmission range, or application identifier, or application type.
  • a different value range of the first identifier may be configured for each application server.
  • the specific range can be a cell covered by a single RAN node, a tracking area composed of multiple cells, an administrative geographic district level (for example, Haidian District), or an administrative geographic city level. The scope is not limited.
  • the terminal may obtain the first identifier from the application server, and may store the corresponding relationship between the first identifier and the transmission range, or application identifier, or application type.
  • the terminal can reuse the first identifier for the broadcast of the same application, the broadcast of the same application type, or the broadcast of the same transmission range.
  • the broadcast of the same application, the broadcast of the same application type, or the broadcast of the same transmission range repeatedly requests the first network element to determine the relay terminal.
  • the first identifier may be a data stream identifier.
  • Data flow identification can be represented by creating a Flow ID value, or represented by a Layer 2 address identification (Source L2 ID or Destination L2 ID or a combination of both), or by a Layer 3 address identification (Source IP or Destination IP or a combination of both) Represents, or is represented by any combination of the second-level address identifier and the third-level address identifier.
  • the Flow ID value can be included in the IP packet header.
  • the foregoing multi-hop broadcast transmission request may further include the terminal identifier of the first terminal device.
  • the terminal identifier can be used to verify whether the terminal device is subscribed to authorize a multi-hop broadcast transmission service, that is, whether it has the authority to request broadcast initiation; optionally, the terminal identifier can be used to obtain mobile information of the terminal.
  • the terminal identifier can be IMSI; it can also be PEI; it can also be 5G-S-TMSI.
  • whether the first terminal device subscribes to authorize the multi-hop broadcast transmission service may be obtained from the core network when the first terminal device establishes a connection with the core network.
  • the multi-hop broadcast transmission request information may not be sent, and single-hop broadcast may be performed; if the communication coverage area of the first terminal device is less than the application message transmission range, then Send a multi-hop broadcast transmission request.
  • V2X UE#1 has a tire burst, which may cause road congestion or collision with other vehicles. It is necessary to provide safety warnings to nearby vehicles.
  • the application identifier of the security warning is represented by PSID, and the value is 32/0x20; the transmission range corresponding to this PSID is a circular area with a radius of 2000 meters, and the corresponding relationship is configured on V2X UE#1, within 2000 meters from V2X UE#1
  • the vehicle needs to receive the above security warning application message; V2X UE#1 creates a Flow ID with a value of 00010100, which corresponds to the above transmission range.
  • the broadcast coverage of V2X UE#1 is a circular area with a radius of 1000 meters, and a multi-hop broadcast transmission request is sent to the VCF.
  • the application message transmission range type is a circular area with a value of 2000; Flow ID is 00001010; and the application identification type is PSID with a value of 32/0x20.
  • S104 The first network element selects a relay terminal.
  • S104 may also be expressed as the first network element determining the relay terminal.
  • the first network element may determine the relay terminal according to the movement information in S102 and the transmission range of the application message in S103.
  • the first network element may also determine the relay terminal according to the terminal capability information or channel quality information in S101.
  • mobile information, terminal capability information, and channel quality information are broadcast decision information used by the first network element to determine a relay terminal for relay broadcasting.
  • the first network element may determine a terminal matching the transmission range from a plurality of terminals according to the transmission range and the location of the terminal. For example, determine the terminal within the transmission range, or the terminal close to the transmission range within the transmission range and outside the transmission range. After determining the terminals that match the transmission range, the first network element may select a terminal with a suitable distance from them as the relay terminal according to the location distribution of these terminals. The combination of the respective broadcast coverage areas of these relay terminals can meet the transmission range requirements. When determining these relay terminals, the relay terminal can be determined according to the rule of "using as few relay terminals as possible". It should be noted that the determined number of relay terminals may be one or more. In this embodiment, it may be assumed that there is connectivity between terminals.
  • the first network element determines, according to the transmission range and the movement information of the terminal, the terminals that match the transmission range and the connectivity between these terminals, and the connectivity indicates whether the terminal devices can perform wireless communication. For example, there may be connectivity between terminal devices by default, or the distance between the terminal devices may be calculated according to the location information of the terminal devices, and whether there is connectivity between the terminal devices may be determined according to a set threshold.
  • the first network element determines part of the terminals from the terminals matching the transmission range as relay terminals according to the connectivity between the above-mentioned terminal devices. In this manner, the influence of terminal capability information or channel quality information on connectivity can be considered.
  • a graph theory algorithm may be used to determine the relay terminal.
  • the first network element may determine the map of the terminal matching the transmission range according to the transmission range and the broadcast decision information.
  • the terminal that matches the transmission range is used as the node or vertex of the graph
  • the edge of the graph represents the connectivity between the terminals corresponding to the nodes at both ends of the edge
  • the weight of the edge represents the cost of connectivity.
  • the above-mentioned graph may be a directed graph, in which the edges in the directed graph point from the starting point to the end point, which is called a directed edge; or it may be an undirected graph.
  • whether an edge is established between nodes in the above graph can be calculated based on movement information. For example, when the distance between two terminal devices is calculated based on movement information and is greater than a set threshold, an edge is established between corresponding nodes in the above graph, which can be understood as The two nodes can be connected.
  • terminal capability information or channel quality information can also be considered.
  • the weight of the edge can be calculated according to the movement information of the terminal device:
  • W is the weight of the edge in the above figure
  • F1 represents the function of calculating the weight
  • mob1 is the broadcast decision information of the terminal 1
  • mob2 is the broadcast decision information of the terminal 2
  • the broadcast decision information includes movement information.
  • the broadcast decision information also includes terminal capability information or channel quality information. The greater the distance between two terminals, the greater the connectivity overhead may result.
  • the connectivity overhead may increase.
  • the connectivity overhead may increase.
  • the above-mentioned increase in connectivity overhead will affect the weight.
  • the relay terminal can be selected from the above figure according to the spanning tree algorithm of graph theory.
  • the top node of the spanning tree is called the root node, and the bottom node is called the leaf.
  • the initiating terminal is used as the root node of the spanning tree to establish a minimum spanning tree.
  • intermediate nodes 2 and 3 and 4 in the spanning tree can be selected as relay terminals.
  • the initiating terminal is used as the root node to establish a breadth-first spanning tree.
  • intermediate node 2 and intermediate node 3 are selected as relay terminals.
  • the relay terminal is selected from the above figure according to the shortest path algorithm of graph theory.
  • the starting point of the path is called the source node
  • the end point is called the end point
  • the other nodes are called intermediate nodes.
  • the above-mentioned initiating terminal is used as the source node
  • the shortest path between the source node and other nodes is established, and nodes 3 and 5 in the shortest path are selected as relay terminals, as shown in FIG. 5.
  • the shortest path algorithm may include Dijkstra's algorithm or Floyd's algorithm.
  • the spanning tree algorithm may include: a breadth-first spanning tree algorithm or a minimum spanning tree algorithm.
  • the minimum spanning tree algorithm may include Prim algorithm or Kruskal algorithm.
  • the first network element obtains the subscription information from the UDM network element or the UDR network element, and verifies whether the first terminal device and the terminal device in the application message transmission range subscribe to authorize the multi-hop broadcast transmission service. If the first terminal device passes the verification, the first network element selects the relay terminal from the verified terminal devices within the transmission range of the application message.
  • terminal B is determined to be a relay terminal.
  • S105 The first network element sends a configuration message to the relay terminal (terminal B).
  • the configuration message can be understood as a kind of configuration information.
  • the configuration message includes a first identifier, such as a data stream identifier.
  • the first network element is a core network element, and the first network element sends a NAS message to the relay terminal through the AMF and the RAN node, and the message includes the above configuration message.
  • the first network element is a data plane network element, and the first network element sends a configuration message to the relay terminal through the UPF and the RAN node.
  • the RAN node can send the configuration message to terminal devices within the transmission range of the application message in the form of broadcast, and the configuration message also includes the identifier of the relay terminal, so that the The terminal device corresponding to the identification information learns that it needs to broadcast and forward the application message carrying the above-mentioned data flow identification; or, the RAN node may send the configuration message to the relay terminal through a unicast link, and the configuration message may not include the relay terminal’s Logo.
  • the relay terminal (terminal B) sends instruction information to the first network element, which is used to indicate that the relay terminal sending the instruction information has completed the configuration according to the above configuration message.
  • the first network element sends instruction information to terminal A, where the instruction information is used to indicate that the first network element has determined the relay terminal, and the relay terminal has been configured.
  • S108 Initiate the terminal (terminal A) to broadcast the application message.
  • the application message includes the first identifier in S103, such as a data stream identifier.
  • the first identifier may be included in the IP data packet header.
  • S109 The relay terminal (terminal B) broadcasts the above-mentioned application message.
  • the relay terminal judges the received broadcast application message, and if the first identifier included in the application message is consistent with the first identifier in the received configuration information, the application message is broadcast, otherwise it is not broadcast.
  • the relay terminal broadcasts the application message, the above-mentioned first identifier is included in the application message, so that other relay terminals that receive the application message continue to judge and forward according to the first identifier contained in the application message.
  • the header of the IP data packet contains the first identifier.
  • the application message is not broadcast.
  • the broadcast message sent by the first terminal device and the broadcast message sent by the relay terminal may be sent in the same frequency band.
  • S110 The terminal updates the movement information, and sends the updated movement information to the first network element.
  • the terminal may also report updated terminal capability information or channel quality information.
  • the terminal updates the broadcast decision information, and sends the updated broadcast decision information to the first network element.
  • the broadcast decision information includes mobile information.
  • the broadcast decision information also includes terminal capability information or channel quality information.
  • the first network element confirms whether the relay terminal after the update of the broadcast decision information can still cover the terminals within the transmission range of the above application message. If it can still cover, the current multi-hop broadcast mode is maintained; if it cannot be covered, the first network element reselects For the relay terminal, execute S104.
  • S110 can be executed at any time, which is not limited in the embodiment of the present application.
  • the first network element can be a 5G data plane network element, and the terminal device can communicate with the first network element through RAN and AMF; it can also be a 5G control plane network element, and the terminal device can communicate with the first network element through RAN and UPF.
  • the first network element communicates; it can also be a ProSe Function network element; it can also be a ProSe Control Function network element; it can also be a VCF network element in a car networking application; it can also be a base station; it can also be an independent network element for deployment In the access network or the core network; it may also be a system device composed of multiple network elements, and the multiple network elements may respectively implement part or all of the functions of the first network element in this embodiment.
  • the first network element can select the relay terminal in combination with the transmission range of the application message and the location of the terminal.
  • the relay terminal that matches the data transmission range can be selected in the multi-hop broadcast, which can meet the broadcast coverage. On demand, it can avoid broadcast flooding and reduce information redundancy, channel competition, or conflict interference.
  • the relay terminal consider the connectivity between the terminals, so that a suitable relay terminal can be selected more accurately. By introducing the concept and algorithm of graph theory to select the relay terminal, the appropriate relay terminal can be selected more accurately. By accurately selecting the appropriate relay terminal, on the one hand, fewer relay terminals can be used to meet the broadcast coverage requirements. On the other hand, the relay terminal can use a lower transmission power to achieve the needs of relay broadcast. While meeting broadcast coverage requirements, it further reduces information redundancy, channel competition, or conflict and interference.
  • the second embodiment is a modification of the first embodiment. Similar to the first embodiment, the application message of the initiating terminal is forwarded by the relay terminal, and the terminal within the transmission range of the application message is notified in a multi-hop broadcast manner.
  • the difference from the first embodiment is that in the second embodiment, the first network element obtains the location information of other terminal devices matching the transmission range of the application message from the network element with the location management function. As shown in FIG. 6, this embodiment includes :
  • S201 The terminal sends terminal capability information or channel quality information to the first network element.
  • S201 can refer to S101 for details.
  • Terminal A sends a multi-hop broadcast transmission request to the first network element.
  • Terminal A is the initiating terminal.
  • the multi-hop broadcast transmission request may include terminal A's movement information.
  • the multi-hop broadcast transmission request may include the terminal identifier of the terminal A, which is used to obtain the movement information of the terminal device.
  • the first network element sends a first request message to the location management network element, requesting to obtain the movement information of the terminal matching the transmission range of the application message.
  • the first request includes information for indicating the transmission range of the application message.
  • the first request includes the terminal identification of the terminal A, and the terminal identification is used to obtain the movement information of the terminal A from the location management network element.
  • the first network element may obtain the movement information of the terminal A according to the terminal identification of the terminal A.
  • the location management network element may be a core network element GMLC; it may also be a data plane network element SLP, which is not limited in the embodiment of the application.
  • the location management network element sends the movement information of the terminal matching the transmission range of the application message to the first network element.
  • the location management network element also sends the movement information of the terminal A to the first network element.
  • the first network element may store the received movement information.
  • the movement information can refer to the introduction of movement information in S102.
  • the terminal may report its own movement information to the location management network element.
  • the terminal may send movement information periodically, or based on event triggers, or send movement information according to instructions from other network elements.
  • the terminal may send movement information based on a lane change, a change in a moving position that exceeds a set range, a change in a moving speed exceeds a set range, or a change in the moving direction of the terminal device.
  • the location management network element may obtain the mobile information of the terminal through the positioning function according to the terminal identification.
  • the acquisition behavior may be periodic, triggered based on events, or instructed by other network elements.
  • S205 The first network element determines the relay terminal.
  • S207 The relay terminal (terminal B) sends instruction information to the first network element.
  • the first network element sends instruction information to the initiating terminal (terminal A), where the instruction information is used to indicate that the first network element has determined the relay terminal, and the relay terminal has been configured.
  • S209 Initiate the terminal (terminal A) to broadcast the application message.
  • S210 The relay terminal (terminal B) broadcasts the above-mentioned application message.
  • the location management network element updates the movement information of the terminal within the transmission range of the application message, and sends the updated movement information to the first network element.
  • the first network element confirms whether the relay terminal after the update of the movement information can still cover the vehicles within the transmission range of the application message, if it can still cover, the current multi-hop broadcast mode is maintained; if the coverage is not possible, the first network element Reselect the relay terminal and execute S205.
  • the terminal may report updated terminal capability information or channel quality information.
  • the terminal may report updated terminal capability information or channel quality information.
  • S110 For details, refer to S110.
  • S211 can be executed at any time, which is not limited in the embodiment of the present application.
  • the first network element can select the relay terminal in combination with the transmission range of the application message and the location of the terminal, and can select the relay terminal that matches the data transmission range in the multi-hop broadcast, which can satisfy
  • the demand for broadcast coverage can also avoid broadcast flooding and reduce information redundancy, channel competition, or conflict interference.
  • the relay terminal consider the connectivity between the terminals, so that a suitable relay terminal can be selected more accurately. By introducing the concept and algorithm of graph theory to select the relay terminal, the appropriate relay terminal can be selected more accurately. By accurately selecting the appropriate relay terminal, on the one hand, fewer relay terminals can be used to meet the broadcast coverage requirements. On the other hand, the relay terminal can use a lower transmission power to achieve the needs of relay broadcast. While meeting broadcast coverage requirements, it further reduces information redundancy, channel competition, or conflict and interference.
  • the third embodiment is a modification of the first or second embodiment. Similar to the foregoing embodiment, the application message of the initiating terminal is forwarded by the relay terminal, and the terminal within the transmission range of the application message is notified in a multi-hop broadcast manner.
  • the multi-hop broadcast request sent by the initiating terminal to the first network element in the third embodiment includes the application identifier or the transmission range of the application message, and the first network element generates the first network element corresponding to the transmission range of the application message.
  • S301 The terminal sends terminal capability information or channel quality information to the first network element.
  • S301 can refer to S101 for details.
  • S302 The terminal sends movement information to the first network element.
  • S302 can replace S203 and S204.
  • the initiating terminal (terminal A) sends a multi-hop broadcast transmission request to the first network element.
  • the multi-hop broadcast transmission request includes information for indicating the transmission range.
  • the information used to indicate the transmission range includes application identification, or application type, or transmission range.
  • the first network element may learn the transmission range of the application message requested to be broadcast according to the information used to indicate the transmission range.
  • the first network element After receiving the request, the first network element can obtain the first identifier.
  • the first identifier may be a data stream identifier.
  • the first network element may generate the first identifier randomly or according to the terminal identifier. After the first identifier is generated, the first network element may establish a corresponding relationship between the first identifier and the transmission range, or application identifier, or application type.
  • the first network element may obtain the first identifier according to the existing corresponding relationship between the first identifier and the transmission range, or application identifier, or application type; the corresponding relationship may be established by the first network element , Or established by the application server, or pre-configured.
  • the first network element may obtain the first identifier from the application server.
  • the application server may generate the corresponding first identifier according to the transmission range, or application identifier, or application type.
  • a different value range of the first identifier may be configured for each application server.
  • the specific range can be a cell covered by a single RAN node, a tracking area composed of multiple cells, an administrative geographic district level (for example, Haidian District), or an administrative geographic city level. The scope is not limited.
  • the first network element may obtain the first identifier from the application server and may store the correspondence between the first identifier and the transmission range, or application identifier, or application type.
  • the first network element may send the foregoing corresponding relationship to the terminal.
  • the terminal can reuse the first identifier for the broadcast of the same application, the broadcast of the same application type, or the broadcast of the same transmission range.
  • the broadcast of the same application, the broadcast of the same application type, or the broadcast of the same transmission range repeatedly requests the first network element to determine the relay terminal.
  • S304 The first network element determines the relay terminal.
  • S304 can refer to S104 for details.
  • S305 The first network element sends a configuration message to the relay terminal (terminal B).
  • the configuration message includes the first identifier obtained by the first network element in S303.
  • the relay terminal (terminal B) sends instruction information to the first network element, which is used to indicate that the relay terminal sending the information has completed the configuration according to the above configuration message.
  • the first network element sends instruction information to the initiating terminal (terminal A), where the instruction information is used to indicate that the first network element has determined the relay terminal, and the relay terminal has completed the configuration.
  • the indication information includes the first identifier obtained by the first network element in S303, and the first identifier needs to be carried in the broadcast application message, so that the relay terminal can identify the first identifier after receiving the application message. Relay and broadcast the application message.
  • S308 Initiate the terminal (terminal A) to broadcast the application message.
  • the application message includes the first identifier obtained by the terminal A in S307, such as a data stream identifier.
  • S310 The terminal updates the movement information, and sends the updated movement information to the first network element.
  • the optional terminal can also update terminal capability information or channel quality information.
  • S310 For details of S310, refer to S110.
  • S310 The location management network element updates the movement information of the terminal matching the transmission range of the application message, and sends the updated movement information to the first network element. For details, please refer to S211.
  • the first network element can select the relay terminal in combination with the transmission range of the application message and the location of the terminal, and can select the relay terminal that matches the data transmission range in the multi-hop broadcast, which can meet the broadcast coverage. It can also avoid broadcast flooding and reduce information redundancy, channel competition, or conflict interference.
  • the relay terminal consider the connectivity between the terminals, so that a suitable relay terminal can be selected more accurately. By introducing the concept and algorithm of graph theory to select the relay terminal, the appropriate relay terminal can be selected more accurately. By accurately selecting the appropriate relay terminal, on the one hand, fewer relay terminals can be used to meet the broadcast coverage requirements. On the other hand, the relay terminal can use a lower transmission power to achieve the needs of relay broadcast. While meeting broadcast coverage requirements, it further reduces information redundancy, channel competition, or conflict and interference.
  • the fourth embodiment is another modification of the first, second or third embodiment. Similar to the foregoing embodiment, the application message of the initiating terminal is forwarded by the relay terminal, and the terminal within the transmission range of the application message is notified in a multi-hop broadcast manner. The difference from the foregoing embodiment is that in the fourth embodiment, the initiating terminal implements the function of the first network element in the first network, determines the relay terminal, and sends the configuration information. As shown in Figure 8, this embodiment includes:
  • the terminal sends terminal capability information or channel quality information to other terminals (for example, terminal A).
  • the terminal may send terminal capability information or channel quality information to other terminals through broadcast, multicast, or unicast;
  • the terminal may send the obtained terminal capability information or channel quality information of other terminals to another terminal.
  • the terminal sends movement information to other terminals (for example, terminal A).
  • the terminal can send mobile information to other terminals in a broadcast mode, a multicast mode, or a unicast mode;
  • the terminal may send the obtained movement information of the other terminal to the other terminal.
  • S402 may also be: the initiating terminal obtains the movement information of other terminal devices from the location management network element.
  • the related methods are similar to S203 and S204, and will not be repeated here.
  • S403 The initiating terminal (terminal A) determines the relay terminal.
  • S404 The initiating terminal (terminal A) sends a configuration message to the relay terminal.
  • the initiating terminal may send a configuration message to the relay terminal by broadcasting, and the configuration message also includes the identifier of the relay terminal, so that the terminal device corresponding to the identification information knows that it needs to perform processing on the application message carrying the above-mentioned data stream identifier. Broadcast forwarding.
  • the initiating terminal may send a configuration message to the relay terminal in the multicast group in a multicast manner, and the configuration message includes the identifier of the relay terminal.
  • the initiating terminal may send a configuration message to the relay terminal in a unicast manner, and the configuration message may not include the identifier of the relay terminal.
  • S405 The relay terminal (terminal B) sends instruction information to the initiating terminal (terminal A), which is used to indicate that the relay terminal sending the instruction information has completed the configuration according to the above configuration message.
  • S406 The initiating terminal (terminal A) broadcasts the application message.
  • S408 The terminal updates the movement information, and sends the updated movement information to the initiating terminal (terminal A).
  • S408 may be: the location management network element updates the movement information, and sends the updated movement information to the initiating terminal (terminal A).
  • the location management network element updates the movement information, and sends the updated movement information to the initiating terminal (terminal A).
  • terminal A For details, please refer to S211.
  • the initiating terminal can select the relay terminal in combination with the transmission range of the application message and the location of the terminal, and can select the relay terminal that matches the data transmission range in the multi-hop broadcast, which can meet the needs of broadcast coverage. It can also avoid broadcast flooding and reduce information redundancy, channel competition, or conflict interference.
  • the relay terminal consider the connectivity between the terminals, so that a suitable relay terminal can be selected more accurately. By introducing the concept and algorithm of graph theory to select the relay terminal, the appropriate relay terminal can be selected more accurately. By accurately selecting the appropriate relay terminal, on the one hand, fewer relay terminals can be used to meet the broadcast coverage requirements. On the other hand, the relay terminal can use a lower transmission power to achieve the needs of relay broadcast. While meeting broadcast coverage requirements, it further reduces information redundancy, channel competition, or conflict and interference.
  • the first network element in the first to third embodiments and the initial terminal in the fourth embodiment play the role of determining the relay terminal, which can be called a broadcast decision device.
  • the broadcast decision device can be an independent network element or a system composed of multiple network elements.
  • the connectivity between terminals refers to whether there is a possibility of communication between terminals. Connectivity can be affected by the location of the terminal, the distance between the terminals, the communication coverage capability of the terminal, and the quality of the channel between the terminals.
  • determining the connectivity between some of the multiple terminals may also be understood as determining the connectivity between the multiple terminals. In this application, it is not restricted to select the end node of the path corresponding to the graph as the relay terminal, nor is it restricted to select the leaf node of the spanning tree corresponding to the graph as the relay terminal.
  • the broadcast decision information it is not required that all intermediate nodes of the path corresponding to the graph are used as relay terminals, nor is it required that all intermediate nodes of the spanning tree corresponding to the graph are used as relay terminals.
  • a piece of broadcast decision information can correspond to a terminal; for another example, a piece of broadcast decision information can correspond to a terminal.
  • the broadcast coverage requirement refers to the desired transmission range of data.
  • the data transmission range refers to the physical space range of data transmission. For example, one kilometer around the accident vehicle.
  • the data can be service data, messages, signaling, and so on.
  • Embodiment 5 Based on Embodiments 1 to 4, a broadcasting method provided in this embodiment of the present application is described from the perspective of a broadcasting decision device. As shown in Figure 9, the method includes:
  • S501 The first device acquires broadcast decision information of multiple first terminals.
  • the first device is a broadcast decision device.
  • the broadcast decision information includes movement information, and the movement information is used to indicate the location of the first terminal.
  • the acquisition of broadcast decision information can refer to related content of S101, S102, S201, S203-S204, S301, S302, S401, and S402.
  • the first device determines a second terminal from a plurality of first terminals according to the broadcast decision information and the first range.
  • the first range is a transmission range of the first data
  • the second terminal is a determined relay terminal.
  • S502 For details, refer to S104, S205, S304, and S403.
  • S503 The first device sends configuration information to the second terminal.
  • the configuration information is used to instruct the second terminal to broadcast the first data.
  • the second terminal may be referred to as a relay terminal.
  • the first device may be a terminal, or a core network element, or a base station; or, the first device may be an independent network element, deployed in an access network or a core network; or, the first device It may be a system device composed of multiple network elements, and the multiple network elements may respectively implement parts of S501, S502, and S503 in the foregoing method.
  • the first device may obtain broadcast decision information from different sources.
  • the first device may obtain broadcast decision information from a network element that stores broadcast decision information.
  • the broadcast decision information may be distributed and stored on different network elements, and the first device may obtain the broadcast decision information from these different network elements.
  • the terminal may report broadcast decision information, and the first device may receive the broadcast decision information from the terminal.
  • S502 includes: the first apparatus determines from the plurality of first terminals according to the broadcast decision information and the first range, the relationship between the plurality of third terminals and the plurality of third terminals Connectivity, the connectivity is related to the positions of the plurality of third terminals; the first device selects a part of the third terminals from the plurality of third terminals according to the connectivity as the second terminal.
  • the relay terminal consider the connectivity between the terminals, so that a suitable relay terminal can be selected more accurately.
  • S502 includes: the first device determines from the plurality of first terminals according to the broadcast decision information and the first range to include the graphs of the plurality of third terminals; wherein, the The multiple vertices of the graph represent the multiple third terminals, the multiple edges of the graph represent the connectivity between the multiple third terminals, and the connectivity is related to the multiple third terminals. The location is related; the first device determines the second terminal from the graph according to a graph theory algorithm.
  • the weights of the multiple edges represent the connectivity overhead, and the overhead is related to the locations of the multiple third terminals.
  • the graph theory algorithm may be a shortest path algorithm.
  • the second terminal is an intermediate node of the path corresponding to the graph; optionally, the graph theory algorithm may be a spanning tree algorithm.
  • the second terminal is an intermediate node of the spanning tree corresponding to the graph.
  • the shortest path algorithm may include Dijkstra's algorithm or Floyd's algorithm.
  • the spanning tree algorithm may include: a breadth-first spanning tree algorithm or a minimum spanning tree algorithm.
  • the minimum spanning tree algorithm may include Prim algorithm or Kruskal algorithm.
  • the broadcast decision information further includes: terminal capability information, where the terminal capability information is used to indicate the communication coverage area of the first terminal.
  • the terminal capability information includes: the communication coverage area of the first terminal; or, the transmit power of the first terminal.
  • the terminal capability information may be used to determine connectivity or connectivity overhead between terminals. Considering the communication coverage of terminals can improve the accuracy of determining connectivity between terminals or the cost of connectivity. For details, refer to the introduction of terminal capability information in S101, S201, S301, and S401.
  • the broadcast decision information further includes: channel quality information, where the channel quality information is used to indicate the channel quality between the multiple first terminals.
  • the channel quality information may be used to determine connectivity or connectivity overhead between terminals. Considering the channel quality between the terminals can improve the accuracy of determining the connectivity between the terminals or the connectivity overhead. For details, refer to the introduction of channel quality information in S101, S201, S301, and S401.
  • the movement information further includes: the movement direction or the movement speed of the first terminal.
  • the position of the terminal when it is broadcast can be determined by the moving direction or moving speed. Considering the moving direction or moving speed can improve the accuracy of determining connectivity between terminals or the cost of connectivity.
  • movement information please refer to the introduction of movement information in S102, S204, S302, and S402.
  • the configuration information in S503 includes a first identifier, and the first identifier is used to identify broadcast data; wherein, the first data carries the first identifier.
  • the first identifier may be a data stream identifier of the data. Since different application messages may have the same broadcast coverage requirement, the identifier can be used to reuse determined relay terminals for different application messages, avoiding repeated determination of relay terminals for different application messages with the same broadcast coverage requirement.
  • the carrying of the first identifier in the first data includes: the first data includes the first identifier, or the first data is scrambled using the first identifier.
  • the first device obtains the first identifier from the broadcast initiating terminal.
  • the first device allocates the first identifier or obtains the first identifier from the broadcast control network element; the first device sends the first identifier to the broadcast initiating terminal.
  • the process of acquiring the first identifier by the first device may refer to the process of generating or acquiring the data stream identifier in S103, S202, S303, and S404.
  • the first device obtains information used to indicate the first range from the broadcast initiating terminal.
  • the information used to indicate the first range includes application identification, or data type, or data importance.
  • the first range can be obtained through the application identifier, or the data type, or the correspondence between the importance of the data and the transmission range.
  • the information used to indicate the first range may be the first range. For details, refer to the process of obtaining application message transmission range in S103, S202, and S303.
  • the first device receives a first request from the broadcast initiating terminal, where the first request is used to request to broadcast the first data.
  • the first request may include the foregoing first identifier or information used to indicate the first range.
  • the broadcast initiating terminal has the right to request the broadcast of the first data.
  • the first device may authenticate the broadcast initiating terminal to determine whether it has the right to request the broadcast of the first data.
  • the second terminal has the right to broadcast the first data.
  • the first device may authenticate the second terminal to determine whether it has the right to broadcast the first data.
  • the first device obtains the updated broadcast decision information; the first device determines whether to update the second terminal according to the updated broadcast decision information; if it determines to update the second terminal, according to the The updated broadcast decision information and the first range determine a new second terminal.
  • the first device obtains the updated broadcast decision information; the first device determines whether to update the second terminal according to the updated broadcast decision information; if it determines to update the second terminal, according to the The updated broadcast decision information and the first range determine a new second terminal.
  • the first device obtains the updated broadcast decision information; the first device determines whether to update the second terminal according to the updated broadcast decision information; if it determines to update the second terminal, according to the The updated broadcast decision information and the first range determine a new second terminal.
  • the first device collects the location information of the terminal, and combines the data transmission range and the location of the terminal to select the relay terminal.
  • the relay terminal that matches the data transmission range can be selected in the multi-hop broadcast. It can meet the needs of broadcast coverage, while avoiding broadcast flooding, reducing information redundancy, channel competition, or conflict and interference.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the sixth embodiment describes a broadcasting method provided by the embodiment of the present application from the perspective of the terminal based on the first to fourth embodiments.
  • the first terminal in FIG. 10 may be the terminal C in the above-mentioned embodiment, or the terminal B selected as the relay terminal. As shown in Figure 10, the method includes:
  • the first terminal generates broadcast decision information
  • the broadcast decision information is used to determine whether the first terminal broadcasts data with a specific transmission range, the broadcast decision information includes movement information, and the movement information is used to indicate the location of the first terminal.
  • S602 The first terminal sends the broadcast decision information to the first device.
  • the first terminal receives configuration information from the second device, where the configuration information is used to indicate that the first terminal broadcasts and transmits the first data in the first range.
  • the second device and the first device may be the same device.
  • the first device may be the device for receiving broadcast decision information in the above embodiment
  • the second device may be the device for sending configuration information in the above embodiment.
  • the configuration information includes a first identifier, and the first identifier is used to identify broadcast data; wherein, the first data carries the first identifier.
  • the identifier can be used to reuse determined relay terminals for different application messages, avoiding repeated determination of relay terminals for different application messages with the same broadcast coverage requirement. For details, refer to the description of the first identifier in the foregoing embodiment.
  • the broadcast decision information further includes: terminal capability information, where the terminal capability information is used to indicate the communication coverage area of the first terminal.
  • terminal capability information is used to indicate the communication coverage area of the first terminal.
  • the broadcast decision information further includes: channel quality information, where the channel quality information is used to indicate the channel quality between the first terminal and other terminals.
  • channel quality information is used to indicate the channel quality between the first terminal and other terminals.
  • the movement information further includes: the movement direction or the movement speed of the first terminal.
  • the movement information further includes: the movement direction or the movement speed of the first terminal.
  • the transmission range of the data and the location of the terminal can be combined to determine whether the terminal is used as a relay terminal to broadcast the data, which is conducive to selecting the matching data transmission range in multi-hop broadcasting.
  • the relay terminal can meet the needs of broadcast coverage, while avoiding broadcast flooding, reducing information redundancy, channel competition, or conflict interference.
  • the seventh embodiment describes a broadcasting method provided by the embodiment of the present application from the perspective of the initiating terminal based on the first to fourth embodiments.
  • the first terminal in FIG. 11 may be the initiating terminal in the foregoing embodiment. As shown in Figure 11, the method includes:
  • the first terminal sends a first request to the first device.
  • the first request is used to request to broadcast the first data whose transmission range is the first range.
  • S702 The first terminal receives a first response in response to the first request from the first device.
  • the first response is used to instruct to broadcast the first data.
  • S703 The first terminal broadcasts the first data.
  • S701-S703 please refer to the related content of S103, S107, S108, S202, S208, S209, S303, S307, and S308.
  • relevant content of the transmission range refer to the content in the foregoing embodiment.
  • the first request includes a first identifier, and the first identifier is used to identify broadcast data; the first data carries the first identifier.
  • the first response includes a first identifier, and the first identifier is used to identify broadcast data; the first data carries the first identifier.
  • the first request includes information used to indicate the first range.
  • the information related content used to indicate the first range reference may be made to the related content related to the information used to indicate the transmission range in the foregoing embodiment.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • FIG. 12 is a schematic structural diagram of a communication device 800 provided by an embodiment of this application.
  • the communication device 800 includes one or more processors 801, a communication line 802, and at least one communication interface (in FIG. 12, the communication interface 803 and one processor 801 are taken as an example for illustration), optional
  • the memory 804 may also be included.
  • the processor 801 can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 802 is used to connect different components.
  • the communication interface 803 may be a transceiver module used to communicate with other equipment or communication devices or communication networks, such as Ethernet.
  • the transceiver module may be a network card or an optical fiber switching device.
  • the communication interface 803 may also be a transceiver circuit located in the processor 801 to implement signal input and signal output of the processor.
  • the memory 804 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory may exist independently, and is connected to the processor through a communication line 802. The memory can also be integrated with the processor.
  • the memory 804 is used to store computer-executed instructions for executing the solution of the present application, and the processor 801 controls the execution.
  • the processor 801 is configured to execute computer-executable instructions stored in the memory 804, so as to realize the function of the first network element in the first embodiment of the present application, or the function of the first network element in the second embodiment, or the first network element in the third embodiment. Yuan function, or the function of the first device in the fifth embodiment.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 801 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 12.
  • the communication device 800 may include multiple processors, such as the processor 801 and the processor 805 in FIG. 12. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the aforementioned communication device 600 may be a general-purpose device or a dedicated device.
  • the communication device 600 may be a network server, an embedded device, or a device having a similar structure in FIG. 12.
  • the embodiment of the present application does not limit the type of the communication device 800.
  • the methods and/or steps implemented by the first network element or the first device may also be implemented by a chip system that implements the functions of the first network element or the first device.
  • FIG. 13 is a schematic structural diagram of a communication device 900 provided by an embodiment of this application.
  • the communication device 900 includes an antenna 901, a radio frequency device 902, and a baseband device 903.
  • the antenna 901 is connected to the radio frequency device 902.
  • the radio frequency device 902 receives the information sent by the terminal through the antenna 901, and sends the information sent by the user equipment to the baseband device 903 for processing.
  • the baseband device 903 processes the information of the terminal and sends it to the radio frequency device 902, and the radio frequency device 902 processes the information of the user equipment and sends it to the terminal via the antenna 901.
  • the baseband device 903 may include one or more processing elements 9031, for example, including a main control CPU and other integrated circuits.
  • the baseband device 903 may also include a storage element 9032 and an interface 9033.
  • the storage element 9032 is used to store computer-executed instructions for executing the solution of the application, and the processing element 9031 controls the execution; the interface 9033 is used to exchange information with the radio frequency device 902
  • the interface is, for example, a common public radio interface (CPRI).
  • the processing element 9031 is used to execute the computer-executable instructions stored in the storage element 9032, so as to realize the function of the first network element in the first embodiment of the present application, or the function of the first network element in the second embodiment, or the first network element in the third embodiment.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the methods and/or steps implemented by the first network element or the first device can also be implemented by a chip on the baseband device 903.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used for Each step of any method executed by the first network element or the first device above is executed, and the interface circuit is used to communicate with other devices.
  • the disclosed system, device, and method may be implemented in other ways.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the aforementioned communication device 900 may be a general-purpose device or a dedicated device.
  • the communication device 900 may be a network server, a base station, or a device having a similar structure in FIG. 12.
  • the embodiment of the present application does not limit the type of the communication device 900.
  • the methods and/or steps implemented by the first network element or the first device may also be implemented by a chip system that implements the functions of the first network element or the first device.
  • FIG. 14 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the application.
  • the communication device 1000 includes one or more processors 1001, a communication line 1002, and at least one communication interface (in FIG. 14 it is only an example that includes a communication interface 1003 and a processor 1001 as an example), optional
  • the memory 1004 may also be included.
  • the processor 1001 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of the application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 1002 is used to connect different components.
  • the communication interface 1003 may be a transceiver module for communicating with other equipment or communication devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and so on.
  • the transceiver module may be a device such as a transceiver or a transceiver, or may also be a network card or an optical fiber switching device.
  • the communication interface 1003 may also be a transceiver circuit located in the processor 1001 to implement signal input and signal output of the processor.
  • the memory 1004 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 1002. The memory can also be integrated with the processor.
  • the memory 1004 is used to store computer-executed instructions for executing the solution of the present application, and the processor 1001 controls the execution.
  • the processor 1001 is configured to execute computer-executable instructions stored in the memory 1004, so as to realize the function of the first terminal device in the fourth embodiment of the present application, or the function of the first device in the fifth embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the communication apparatus 1000 may further include an output device 106 and an input device 1007.
  • the output device 1006 communicates with the processor 1001 and can display information in a variety of ways.
  • the processor 1001 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 14.
  • the communication device 1000 may include multiple processors, such as the processor 1001 and the processor 1005 in FIG. 14. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the aforementioned communication device 1000 may be a general-purpose device or a dedicated device.
  • the communication device 1000 may be a network server, an embedded device, a desktop computer, a portable computer, a mobile phone, a tablet computer, a wireless terminal device, or a device having a similar structure in FIG. 14.
  • the embodiment of the present application does not limit the type of the communication device 1000.
  • the methods and/or steps implemented by the first terminal or the first device may also be implemented by a chip system that implements the functions of the first terminal or the first device.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • This embodiment provides a communication device, which can be used to implement, for example, the functions of the relay terminal in Embodiment 1 to Embodiment 4, and the first terminal in Embodiment 6. Refer to FIG. 14 for the structure diagram of the communication device.
  • the memory is used to store computer execution instructions for executing the solution of the present application, and the processor controls the execution.
  • the processor is configured to execute computer-executable instructions stored in the memory, so as to realize the functions of the relay terminal in the first to fourth embodiments of the present application, or the first terminal in the sixth embodiment.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the methods and/or steps implemented by the relay terminal in Embodiment 1 to Embodiment 4, or the function of the first terminal in Embodiment 6 can also be implemented by implementing the above embodiment 1 to The relay terminal in Example 4 or the function of the first terminal in Example 6 is implemented by a chip system.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • This embodiment provides a communication device, which can be used to implement, for example, the function of the initiating terminal in Embodiment 1 to Embodiment 4, or the function of the first terminal in Embodiment 7.
  • a communication device which can be used to implement, for example, the function of the initiating terminal in Embodiment 1 to Embodiment 4, or the function of the first terminal in Embodiment 7.
  • the memory is used to store computer execution instructions for executing the solution of the present application, and the processor controls the execution.
  • the processor is configured to execute the computer-executable instructions stored in the memory, so as to realize the functions of the initiating terminal in the first to fourth embodiments of the present application, or the first terminal in the seventh embodiment.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the method and/or steps implemented by the initiating terminal in Embodiment 1 to Embodiment 4 or the function of the first terminal in Embodiment 7 can also be implemented by implementing the above embodiment 1 to embodiment.
  • Embodiment 13 is a diagrammatic representation of Embodiment 13:
  • This embodiment provides a communication device that can be used to implement, for example, the function of the first network element in the first embodiment, or the function of the first network element in the second embodiment, or the function of the first network element in the third embodiment, or implement The function of the terminal is initiated in Example 4, or the function of the first device in Example 5.
  • the embodiments of the present application may divide the communication device into functional units according to the foregoing method embodiments. For example, each functional unit may be divided corresponding to each function, or two or more units may be integrated into one processing module.
  • the above-mentioned integrated unit can be realized in the form of hardware or software function module. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 15 is a schematic structural diagram of a communication device 1300 provided by an embodiment of this application.
  • the communication device 1300 includes a processing unit 1301 and a transceiver unit 1302.
  • the processing unit 1301 is specifically configured to: select the function of the relay terminal in S104, S205, S304, S403, and S502.
  • the transceiver unit 1302 is specifically used for: the function of receiving terminal capability information or channel quality information in S101, S201, S301, S401, and S501.
  • the transceiver unit 1302 is specifically used for the function of receiving movement information in S102, S204, S302, S402, and S501.
  • the transceiving unit 1302 is specifically used for: the function of receiving a multi-hop broadcast transmission request in S103, S202, and S303.
  • the transceiver unit 1302 is specifically configured to: send the first request message in S203.
  • the transceiver unit 1302 is specifically used for the function of sending configuration messages in S105, S206, S305, S404, and S503.
  • the transceiver unit 1302 is specifically used for: the function of receiving indication information in S106, S207, S306, and S405.
  • the transceiver unit 1302 is specifically used for: the function of sending indication information in S107, S208, and S307.
  • the functions/implementation process of the transceiving unit 1302 and the processing unit 1301 in FIG. 15 may be implemented by the processor 801 in the communication device 800 shown in FIG. 12 calling the computer execution instructions stored in the memory 804.
  • the function/implementation process of the processing unit 1301 in FIG. 15 can be implemented by the processor 801 in the communication device 800 shown in FIG. 12 calling a computer execution instruction stored in the memory 804, and the function of the transceiver unit 1302 in FIG. 15
  • the implementation process can be implemented through the communication interface 803 in the communication device 800 shown in FIG. 12.
  • the processing element 9031 in the communication device 900 shown in FIG. 13 calling the computer execution instructions stored in the storage element 9032.
  • the function/implementation process of the processing unit 1301 in FIG. 15 can be implemented by the processing element 9031 in the communication device 900 shown in FIG. 13 calling the computer execution instructions stored in the storage element 9032, and the transceiver unit 1302 in FIG.
  • the function/implementation process can be implemented through the interface 9033, the radio frequency device 902, and the antenna 901 in the communication device 900 shown in FIG. 13.
  • the functions/implementation process of the transceiving unit 1302 and the processing unit 1301 in FIG. 15 may be implemented by the processor 1001 in the communication device 1000 shown in FIG.
  • the function/implementation process of the processing unit 1301 in FIG. 15 may be implemented by the processor 1001 in the communication device 1000 shown in FIG. 14 calling a computer execution instruction stored in the memory 1004, and the function of the transceiver unit 1302 in FIG. 15
  • the implementation process can be implemented through the communication interface 1003 in the communication device 1000 shown in FIG. 14.
  • This embodiment provides a communication device, which can be used to implement, for example, the functions of the relay terminal in Embodiment 1 to Embodiment 4, or the function of the first terminal in Embodiment 6.
  • the embodiments of the present application may divide the communication device into functional units according to the foregoing method embodiments. For example, each functional unit may be divided corresponding to each function, or two or more units may be integrated into one processing module.
  • the above-mentioned integrated unit can be realized in the form of hardware or software function module. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 16 is a schematic structural diagram of a communication device 1400 provided by an embodiment of the application.
  • the communication device 1400 includes a processing unit 1401 and a transceiver unit 1402.
  • the processing unit 1401 is specifically configured to: the function of generating broadcast decision information in S601.
  • processing unit 1401 is specifically configured to perform configuration according to the configuration message in S105, S206, S305, and S404.
  • the processing unit 1401 is specifically configured to: in S108, S209, S308, and S406, the function of identifying the application message according to the configuration information.
  • the transceiver unit 1402 is specifically used for: the function of sending terminal capability information or channel quality information in S101, S201, S301, S401, and S602.
  • the transceiving unit 1402 is specifically used for the function of sending movement information in S102, S302, S402, and S602.
  • the transceiver unit 1402 is specifically used for the function of receiving configuration information in S105, S206, S305, S404, and S602.
  • the transceiver unit 1402 is specifically used for: the function of receiving application messages in S108, S209, S308, and S406.
  • the functions/implementation process of the transceiving unit 1402 and the processing unit 1401 in FIG. 16 can be implemented by invoking the computer execution instructions stored in the memory by the processor in the communication device in the eleventh embodiment.
  • the function/implementation process of the processing unit 1401 in FIG. 16 can be implemented by the processor in the communication device in the eleventh embodiment calling the computer execution instructions stored in the memory.
  • the function/implementation process of the transceiver unit 1402 in FIG. 16 It can be implemented through the communication interface in the communication device in the eleventh embodiment.
  • Embodiment 15 is a diagrammatic representation of Embodiment 15:
  • This embodiment provides a communication device, which can be used to implement, for example, the function of the initiating terminal in Embodiment 1 to Embodiment 3, or the function of the first terminal in Embodiment 7.
  • the embodiments of the present application may divide the communication device into functional units according to the foregoing method embodiments. For example, each functional unit may be divided corresponding to each function, or two or more units may be integrated into one processing module.
  • the above-mentioned integrated unit can be realized in the form of hardware or software function module. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 17 is a schematic structural diagram of a communication device 1500 provided by an embodiment of the application.
  • the communication device 1500 includes a processing unit 1501 and a transceiver unit 1502.
  • the processing unit 1501 is specifically configured to: generate an application identifier in S103, S202, S303, and S701, or generate an application message transmission range, or generate a data stream identifier.
  • the processing unit 1501 is specifically configured to include the function of the first identifier in the broadcasted first data in S108, S209, S308, and S703.
  • the transceiver unit 1502 is specifically configured to: send terminal capability information or channel quality information in S101, S201, and S301.
  • the transceiving unit 1502 is specifically used for: the function of sending mobile information in S102 and S302.
  • the transceiving unit 1502 is specifically used for: the function of sending the first request in S103, S202, S303, and S702.
  • the transceiver unit 1502 is specifically used for: the function of broadcasting the first data in S108, S209, S308, and S703.
  • the functions/implementation process of the transceiving unit 1502 and the processing unit 1501 in FIG. 17 may be implemented by the processor in the communication device in the twelfth embodiment calling the computer execution instructions stored in the memory.
  • the function/implementation process of the processing unit 1501 in FIG. 17 can be implemented by the processor in the communication device in the twelfth embodiment calling the computer execution instructions stored in the memory.
  • the function/implementation process of the transceiver unit 1502 in FIG. 17 It can be implemented through the communication interface in the communication device in the twelfth embodiment.
  • the functions of the initiator terminal and the relay terminal in this application can be implemented by one terminal device.
  • the relay terminal can be selected in combination with the transmission range of the application message and the location of the terminal, and the relay terminal that matches the data transmission range can be selected in the multi-hop broadcast, which can meet the needs of broadcast coverage, and Can avoid broadcast flooding, reduce information redundancy, channel competition, or conflict interference.
  • the relay terminal consider the connectivity between the terminals, so that a suitable relay terminal can be selected more accurately.
  • the appropriate relay terminal can be selected more accurately.
  • the relay terminal can use a lower transmission power to achieve the needs of relay broadcast. While meeting broadcast coverage requirements, it further reduces information redundancy, channel competition, or conflict and interference.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种广播的方法、装置和系统。根据本发明实施例提供的方案,广播决策装置获取多个终端的广播决策信息,该广播决策信息至少包括终端的位置信息,根据广播决策信息和数据的传输范围,广播决策装置从多个终端中选择部分终端作为中继终端,并向中继终端发送配置信息来指示中继终端广播该数据。通过该方案可以在数据的传输范围内选择合适的终端进行数据的广播,在满足广播覆盖需求的同时,又可以减少广播泛洪造成的信息冗余、信道竞争以及冲突干扰。该方案可用于车联网的多跳广播场景。

Description

广播的方法、装置和系统
本申请要求于2019年08月23日提交中国专利局、申请号为201910785975.2、申请名称为“广播的方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术,特别涉及一种广播的方法、装置和系统。
背景技术
设备到设备通信(Device-to-Device,D2D)是指用户数据可以不经过无线网络中转而直接在终端设备之间传输,具有提高系统性能、提升用户体验、扩展无线通信应用的前景,受到广泛关注。
在D2D通信中,终端设备可以通过广播的方式向其他终端设备发送应用消息。单跳广播中发送端终端设备把应用消息分发给相邻终端设备,传输范围有限。多跳广播通过中继终端设备以多跳形式将应用消息转发给更远的终端设备,实现更大范围内的应用消息分发。在上述多跳广播过程中,可能会出现广播范围重叠严重或者广播覆盖不满足需求,以及信息冗余、信道竞争、或者冲突干扰等问题。
发明内容
本发明实施例提供了一种广播的方法、装置和系统,适用于多跳广播,一方面能够在满足广播覆盖需求,另一方面可以减少信息冗余、信道竞争、或者冲突干扰。
第一方面,本申请实施例提供一种广播的方法,该方法包括:第一装置获取多个第一终端的广播决策信息,所述广播决策信息包括移动信息,所述移动信息用于指示所述第一终端的位置;所述第一装置根据所述广播决策信息和第一范围从所述多个第一终端中确定第二终端,所述第一范围是第一数据的传输范围;所述第一装置向所述第二终端发送配置信息,所述配置信息用于指示所述第二终端广播所述第一数据。其中,第二终端可以称为中继终端。
根据第一方面的方法,由第一装置收集终端的位置信息,并且结合数据的传输范围和终端的位置来选择中继终端,可以在多跳广播中选择匹配数据传输范围的中继终端,可以满足广播覆盖的需求,又能避免广播泛洪,减少信息冗余、信道竞争、或者冲突干扰。
作为一种可选的设计,该第一装置可以是终端、或者核心网网元、或者基站;或者,该第一装置可以是一个独立的网元,部署在接入网或者核心网;或者,该第一装置可以是多个网元组成的系统装置,该多个网元可以分别实现上述方法中获取步骤、确定步骤、以及发送步骤。
作为一种可选的设计,第一装置可以从不同的来源获取广播决策信息。例如:第一装置可以从存储有广播决策信息的网元获取广播决策信息。又例如,该广播决策信息可以分布存储在不同的网元上,第一装置可以从这些不同的网元获取广播决策信息。 再例如,终端可以上报广播决策信息,第一装置可以从终端接收广播决策信息。
作为一种可选的设计,所述第一装置根据所述广播决策信息和第一范围从所述多个第一终端中确定第二终端包括:所述第一装置根据所述广播决策信息和所述第一范围从所述多个第一终端中确定多个第三终端和所述多个第三终端之间的连通性,所述连通性与所述多个第三终端的位置有关;所述第一装置根据所述连通性在所述多个第三终端中选择部分所述第三终端作为所述第二终端。在确定中继终端时考虑终端之间的连通性,可以更加准确的选择合适的中继终端。
作为一种可选的设计,所述第一装置根据所述广播决策信息和第一范围从所述多个第一终端中确定第二终端包括:所述第一装置根据所述广播决策信息和所述第一范围从所述多个第一终端中确定包括所述多个第三终端的图graph;其中,所述图的多个顶点vertex表示所述多个第三终端,所述图的多条边edge表示所述多个第三终端之间的连通性,所述连通性与所述多个第三终端的位置有关;所述第一装置根据图论算法从所述图中确定所述第二终端。可选的,所述多条边的权重表示所述连通性的开销,所述开销与所述多个第三终端的位置有关。可选的,所述图论算法可以是最短路径算法。可选的,所述第二终端为所述图对应的路径的中间节点;可选的,所述图论算法那可以是生成树算法。可选的,所述第二终端为所述图对应的生成树的中间节点。可选的,最短路径算法可以包括迪杰斯特拉Dijkstra算法或者弗洛伊德Floyd算法。可选的,生成树算法可以包括:广度优先生成树算法、或者最小生成树算法。可选的,最小生成树算法可以包括普里姆Prim算法或者克鲁斯卡尔Kruskal算法。通过引入图论的概念和算法进行中继终端的选择,可以更加准确的选择合适的中继终端。
通过准确的选择合适的中继终端,一方面可以使用较少的中继终端来满足广播覆盖需求,另一方面,中继终端使用较低的发射功率即可实现中继广播的需求,因此在满足广播覆盖需求的同时进一步减少信息冗余、信道竞争、或者冲突干扰。
作为一种可选的设计,所述广播决策信息还包括:终端能力信息,所述终端能力信息用于指示所述第一终端的通信覆盖范围。可选的,所述终端能力信息包括:所述第一终端的通信覆盖范围;或者,所述第一终端的发送功率。可选的,该终端能力信息可用于确定终端之间的连通性或者连通性的开销。考虑终端通信覆盖范围可以提高确定终端之间的连通性或者连通性的开销的准确性。
作为一种可选的设计,所述广播决策信息还包括:信道质量信息,所述信道质量信息用于指示所述多个第一终端之间的信道质量。可选的,该信道质量信息可用于确定终端之间的连通性或者连通性的开销。考虑终端之间的信道质量可以提高确定终端之间的连通性或者连通性的开销的准确性。
作为一种可选的设计,所述移动信息还包括:所述第一终端的移动方向或者移动速度。通过移动方向或者移动速度可以确定终端广播时所在的位置。考虑移动方向或者移动速度可以提高确定终端之间的连通性或者连通性的开销的准确性。
作为一种可选的设计,所述配置信息包括第一标识,所述第一标识用于识别广播的数据;其中,所述第一数据携带所述第一标识。可选的,该第一标识可以是数据的数据流标识。由于不同应用消息可能具有相同广播覆盖需求,通过该标识可以使不同的应用消息复用确定的中继终端,避免为具有相同广播覆盖需求的不同应用消息重复 确定中继终端。可选的,第一数据携带第一标识包括:第一数据包括第一标识,或者第一数据使用第一标识加扰。
作为一种可选的设计,该方法还包括:所述第一装置从广播发起终端获取所述第一标识。
作为一种可选的设计,该方法还包括:所述第一装置分配所述第一标识或者从广播控制网元获取所述第一标识;所述第一装置向广播发起终端发送所述第一标识。
作为一种可选的设计,该方法还包括:所述第一装置从广播发起终端获取用于指示所述第一范围的信息。可选的,用于指示所述第一范围的信息包括应用标识、或者数据类型、或者数据重要程度。通过应用标识、或者数据类型、或者数据重要程度与传输范围的对应关系可以获取第一范围。可选的,用于指示所述第一范围的信息可以是第一范围。
作为一种可选的设计,所述第一装置从广播发起终端接收第一请求,所述第一请求用于请求广播所述第一数据。可选的,该第一请求可以包括上述第一标识、或者用于指示第一范围的信息。
作为一种可选的设计,所述广播发起终端具有请求广播所述第一数据的权限。第一装置可以对广播发起终端进行鉴权以确定其是否具有请求广播所述第一数据的权限。
作为一种可选的设计,所述第二终端具有广播所述第一数据的权限。第一装置可以对第二终端进行鉴权以确定其是否具有广播所述第一数据的权限。
作为一种可选的设计,该方法还包括:所述第一装置获取更新后的广播决策信息;所述第一装置根据所述更新后的广播决策信息判断是否更新所述第二终端;若判断更新所述第二终端,根据所述更新后的广播决策信息和所述第一范围确定新的第二终端。
第二方面,本申请实施例提供一种广播的方法,包括:第一终端生成广播决策信息;其中,所述广播决策信息用于确定所述第一终端是否广播具有特定传输范围的数据,所述广播决策信息包括移动信息,所述移动信息用于指示所述第一终端的位置;所述第一终端向第一装置发送所述广播决策信息。
通过终端上报终端的位置,可以结合数据的传输范围和终端的位置来确定该终端是否作为中继终端来广播该数据,有利于在多跳广播中选择匹配数据传输范围的中继终端,可以满足广播覆盖的需求,又能避免广播泛洪,减少信息冗余、信道竞争、或者冲突干扰。
作为一种可选的设计,该方法还包括:所述第一终端从第二装置接收配置信息,所述配置信息用于指示所述第一终端广播传输范围为第一范围第一数据。可选的,第二装置和第一装置可以是同一个设备。
作为一种可选的设计,所述配置信息包括第一标识,所述第一标识用于识别广播的数据;其中,所述第一数据携带所述第一标识。由于不同应用消息可能具有相同广播覆盖需求,通过该标识可以使不同的应用消息复用确定的中继终端,避免为具有相同广播覆盖需求的不同应用消息重复确定中继终端。
作为一种可选的设计,所述广播决策信息还包括:终端能力信息,所述终端能力信息用于指示所述第一终端的通信覆盖范围。
作为一种可选的设计,所述广播决策信息还包括:信道质量信息,所述信道质量 信息用于指示所述第一终端与其他终端之间的信道质量。
作为一种可选的设计,所述移动信息还包括:所述第一终端的移动方向或者移动速度。
第二方面中所列出的设计的具体说明可参照第一方面的相关内容。第一方面中其余的设计同样可适用于第二方面。
第三方面,本申请实施例提供一种广播的方法,包括:第一终端向第一装置发送第一请求,所述第一请求用于请求广播传输范围为第一范围的第一数据;所述第一终端从第一装置接收响应于所述第一请求的第一响应,所述第一响应用于指示广播所述第一数据;所述第一终端广播所述第一数据。
作为一种可选的设计,所述第一请求包括第一标识,所述第一标识用于识别广播的数据;所述第一数据携带所述第一标识。
作为一种可选的设计,所述第一响应包括第一标识,所述第一标识用于识别广播的数据;所述第一数据携带所述第一标识。
作为一种可选的设计,所述第一请求包括用于指示所述第一范围的信息。
第三方面中所列出的设计的具体说明可参照第一方面的相关内容。第一方面中其余的设计同样可适用于第二方面。
第四方面,本申请实施例提供一种通信装置,用于实现第一方面的方法。该通信装置可以是第一方面中的第一装置,或者是包含该第一装置的设备。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,本申请实施例提供一种通信装置,用于实现第二方面的方法。该通信装置可以实现第二方面中第一终端的功能。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第六方面,本申请实施例提供一种通信装置,用于实现第三方面的方法。该通信装置可以实现第三方面中第一终端的功能。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第七方面,本申请实施例提供一种通信装置,用于实现第五方面的通信装置和第六方面的通信装置的功能。第七方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第八方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第一方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第九方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第二方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第三方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十一方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第二方面和第三方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十二方面,本申请实施例提供一种计算机可读存储介质,包括指令,其特征在于,当所述指令在通信装置上执行时,使得所述通信装置实现上述任一种方法。
第十三方面,本申请实施例提供一种计算机程序产品,包括指令,其特征在于,当所述指令在通信装置上执行时,使得所述通信装置实现上述任一种方法。
第十四方面,本申请实施例提供一种通信系统,包括第四方面或者第八方面的通信装置。可选的,该通信系统还可以包括第五方面或者第九方面的通信装置。可选的,该通信系统还可以包括第六方面或者第十方面的通信装置。可选的,该通信系统还可以包括第七方面或者第十一方面的通信装置。
其中,第四方面至第十四方面的技术效果可参见第一方面至第三方面的有益效果。
附图说明
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种广播方法的流程示意图;
图3为本申请实施例提供的一种生成树的示意图;
图4为本申请实施例提供的另一种生成树的示意图;
图5为本申请实施例提供的一种路径的示意图;
图6为本申请实施例提供的另一种广播方法的流程示意图;
图7为本申请实施例提供的又一种广播方法的流程示意图;
图8为本申请实施例提供的再一种广播方法的流程示意图;
图9为本申请实施例提供的再一种广播方法的流程示意图;
图10为本申请实施例提供的再一种广播方法的流程示意图;
图11为本申请实施例提供的再一种广播方法的流程示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的又一种通信装置的结构示意图;
图14为本申请实施例提供的再一种通信装置的结构示意图;
图15为本申请实施例提供的再一种通信装置的结构示意图;
图16为本申请实施例提供的再一种通信装置的结构示意图;
图17为本申请实施例提供的再一种通信装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。
为了便于描述,表1列出了本申请涉及的英文缩略语,英文全称和对应的中文。
英文缩略语 完整的英文表述/英文标准用语 中文表述/中文术语
AMF Access and Mobility Management Function 接入与移动性管理功能
SMF Session Management Function 会话管理功能
UPF User Plane Function 用户面功能
PCF Policy Control Function 策略控制功能
NEF Network Exposure Function 网络暴露功能
UDM Unified Data Management 统一数据管理
AF Application Function 应用功能
UDR Unified Data Repository 统一数据库
RAN Radio Access Network (无线)接入网络
NG-RAN next generation radio access network 下一代无线接入网
UE User Equipment 用户设备
DN Data Network 数据网络
ITS Intelligent Transport Systems 智能交通系统
RSU Road Side Unit 路边单元
V2X vehicle to X 车联网
V2X UE vehicle to X user equipment 车联网终端
IP internet protocol 互联网协议
QoS quality of service 服务质量
RSRP reference signal received power 参考信号接收功率
RSRQ reference signal received quality 参考信号接收质量
dBm decibel-milliwatt 分贝毫瓦
dB decibel 分贝
GPS global positioning system 全球卫星定位系统
DD   小数度数
IMSI international mobile subscriber identity 国际移动用户识别码
PEI permanent equipment identifier 永久设备标识
GMLC gateway mobile location centre 网关移动定位中心
SUPL secure user plane location 安全用户平面定位
SLP SUPL Location Platform SUPL定位平台
表1
其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请 实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例以利用5G通信系统进行D2D通信为基础进行技术方案的介绍。本领域技术人员应知,本申请的方案可以适用于利用4G通信系统进行D2D通信;并且,随着通信技术的演进和变化,本申请的方案也可适用于利用其他通信系统,例如利用6G通信系统进行D2D通信。
图1示出了一种5G通信系统的架构示意图,该通信系统包括核心网部分和接入网部分。接入网可以是NG-RAN。核心网可以包括AMF网元、SMF网元、UPF网元、UDR网元、UDM网元、AF网元。UPF可以和DN相连,DN中包含应用服务器。UE通过该通信系统与DN建立连接,UE的应用可以通过逻辑接口访问DN中的应用服务器,获取应用数据。
UE是一种终端设备,具有无线收发功能。终端设备可以是通信终端,包括手持设备、笔记本电脑;可以是其他能够接入网络的设备,包括RSU。交通工具,例如车辆和无人机,可以通过载有上述通信终端,或在交通工具上部署无线收发功能而作为一种终端设备。终端设备通过空口技术与接入网设备进行通信;终端设备也可以直接与其他终端设备进行通信。
无线接入网(Radio Access Network,RAN)设备是一种为终端设备提供无线通信功能的设备。该网元主要用于空口侧的无线资源管理、服务质量管理、数据压缩和加密。接入网设备可以是5G网络中的下一代基站、演进型节点B、无线网络控制器、节点B、基站控制器、基站收发台、基带单元、传输点、发射点等。5G网络中接入网的BBU可能被重构为集中式单元和分布式单元。其中,CU设备主要用来处理无线高层协议栈功能,能够满足未来通信网络对于新兴业务例如虚拟现实/增强现实对于网络时延的更高要求;DU设备主要用来处理物理层功能和实时性需求较高的功能。
AMF网元是一种用于接入和移动性管理的网元。该网元主要用于接入控制、移动性管理、附着与去附着、和SMF网元选择。该网元为终端设备中的会话提供服务时,可以为该会话提供控制面的存储资源,用于存储会话标识、与会话标识关联的SMF网元标识等。该网元可以作为N1和N2信令连接的锚点,为SMF提供N1/N2 SM消息的路由。
SMF网元是一种用于会话管理的网元。该网元主要用于提供会话管理的控制面功能,如会话创建、修改、释放。该网元可以为用户分配IP地址、选择和重定向UPF网元。
UPF网元是一种用于用户面处理的网元。该网元主要用于用户面的业务处理,例如数据包的路由转发、QoS映射和执行。该网元可以从DN接收用户数据,通过接入网设备传输给UE;该网元还可以通过接入网设备从UE接收用户数据,转发到DN。 该网元中为UE提供服务的传输资源和调度功能由SMF网元管理控制。
UDM网元是一种用于数据管理的网元。该网元主要用于产生鉴权参数、存储和管理系统中永久性用户的ID、用户的服务网元注册管理,例如当前为终端设备提供业务的AMF、SMF。
UDR网元是一种用于统一数据存储的网元。该网元主要用于存储和检索签约数据、策略数据和公共架构数据;向UDN网元、PCF网元和NEF网元提供相关数据。
AF网元是一种用于应用服务的网元。该网元主要用于与核心网交互来提供服务,例如影响数据路由决策,策略控制功能或者向网络侧提供第三方的一些服务。
DN是一种数据网络。DN主要用于为用户提供业务,比如运营商的业务、互联网接入业务和第三方业务。DN中可以部署车联网应用服务器,用于为终端设备提供车联网应用服务。
基于5G的D2D通信中,终端设备之间可以通过PC5接口以直通链路的方式进行通信;同时终端设备与基站之间可以通过Uu接口建立上/下行链路方式进行通信。终端设备之间以直通链路进行通信可以进一步根据通信模式区分为单播、多播和广播。单播为终端设备之间一对一的通信模式,接收单播数据的终端设备是单一的。多播,也称为组播,为终端设备之间一对多的通信模式,接收多播数据的终端设备是特定组内的。广播为终端设备之间一对所有的通信模式,发送端周围的终端设备都接收广播数据。广播方式分为单跳广播和多跳广播。单跳广播直接把信息分发给邻居终端设备,无需中继终端设备转发。多跳广播可以通过中继终端设备以多跳形式将信息广播到更远的终端设备,实现更大范围内的信息分发。
在本申请中,终端设备将接收到的广播信息以广播的方式进行转发可称为中继广播,该终端设备可称为中继终端设备;多跳广播的起始终端可称为发起终端设备;对接收到的广播信息不再进行中继广播的终端设备称为终点终端设备;为了便于叙述,终端设备可以简称为终端。
车联网V2X(vehicle to X)是智能交通运输系统的关键技术,车联网包括车辆与车辆(vehicle to vehicle,V2V),车辆与基础设施(vehicle to infrastructure,V2I),车辆与网络(Vehicle to Network,V2N)以及车辆与行人(vehicle to pedestrian,V2P)之间的相互通信。D2D技术可以应用在车联网中,实现终端设备间车联网应用消息的传输。车联网包括多种场景,例如碰撞预警、车辆失控预警、预防行人碰撞等场景,部分应用需要广播特定消息。一个车联网应用消息对应一个传输范围,该传输范围内的终端设备需要接收到该应用消息,不同的车联网应用消息可以对应相同的传输范围。
基于上述的D2D通信,本申请提供了多种实施例以对本申请的技术方案进行详细描述。
实施例一:
实施例一介绍了在D2D通信中,利用本申请的技术方案进行多跳广播的过程。发起终端的应用消息通过中继终端的转发,以多跳广播方式通知应用消息传输范围内的终端设备。如图2所示,该实施例包括:
S101:终端向第一网元发送终端能力信息或者信道质量信息。
图2中示出的三个终端(终端A、终端B、终端C)作为示例,并不构成对于终端数量的限制。
该终端能力信息用于指示终端的通信覆盖能力;该信道质量信息用于指示终端之间的无线信道质量通信覆盖范围是通信覆盖能力的一种体现。
S101中终端可以向第一网元发送终端能力信息和信道质量信息之一或两者。终端可以通过同一条消息或者信令发送终端能力信息和信道质量信息,或者可以通过不同消息或者信令发送终端能力信息和信道质量信息。终端可以直接向第一网元发送终端能力信息或者信道质量信息,或者可以通过其他网元向第一网元转发终端能力信息或者信道质量信息。在终端能力信息或者信道质量信息的转发过程中,终端能力信息或者信道质量信息的数据结构或者表现形式可能会发生变化。
第一网元可以将获取的终端能力信息或者信道质量信息存储在本地或者其他网元。
需要说明的是,S101步骤为可选步骤。在后续流程中如果需要使用到终端设备能力信息或者信道质量信息可以使用终端设备能力信息或者信道质量信息的默认值。该默认值可以是通信协议规定的,或者是预先配置的。
可选的,终端能力信息包括通信覆盖范围,或者发送功率。通信覆盖范围可用于指示终端能够覆盖的通信范围。发送功率也可以用于指示终端能够覆盖的通信范围。
可选的,信道质量信息包括RSRP或者RSRQ,信道质量信息可以通过测量终端之间的信号获得。
可选的,终端可以周期性的发送终端能力信息或者信道质量信息,或者由事件触发发送终端能力信息或者信道质量信息,或者根据其他网元的指示来发送终端能力信息或者信道质量信息。例如,事件触发可以是终端之间的信道质量的变化超过阈值或者移动速度超过阈值等。
作为一种示例,在车联网应用中,参与车联网通信的6个终端分别为V2X UE#1,V2X UE#2,V2X UE#3,V2X UE#4,V2X UE#5,V2X UE#6。各终端的终端能力信息(通信覆盖范围和发送功率)可以如表2所示。本申请实施例对终端设备的功率值和通信覆盖范围的对应关系不作限定。
V2X UE 功率值(dBm) 覆盖范围(半径,m)
V2X UE#1 13 300
V2X UE#2 15 320
V2X UE#3 10 260
V2X UE#4 8 240
V2X UE#5 12 280
V2X UE#6 12 280
表2
各终端设备的信道质量信息(以RSRQ为例)如表3中每一行所示,每一行的各RSPQ值指示该V2X UE从各其他V2X UE接收信号的质量,单位为dB,数值越高无线信道质量越好。
Figure PCTCN2020110565-appb-000001
Figure PCTCN2020110565-appb-000002
表3
上述终端可以分别向第一网元发送表2所示的终端能力信息或表3所示的信道质量信息。
S102:终端向第一网元发送移动信息。
该移动信息用于指示终端的位置。可选的,该移动信息可以包括终端的位置。可选的,该移动信息还可以包括终端的移动速度、或者终端的移动方向、或者移动速度和移动方向两者。通过终端的移动速度或者移动方向可以更准确的指示出终端的位置。本申请对于终端位置的表达方式不作限定,可以是相对位置,也可以是绝对位置。例如可以通过二维坐标信息、三维坐标信息、或者终端设备所在的道路信息,或者它们的组合来表达。
第一网元可以将获取的移动信息在本地或者其他网元存储。与S101中的终端能力信息或者信道质量信息类似,终端可以周期性的发送移动信息、或者基于事件触发来发送移动信息、或者根据其他网元指示来发送移动信息。例如:终端可以基于车道变更、移动位置变化超过设定范围、移动速度变化超过设定范围、或终端设备移动方向发生变化来发送移动信息。
S102与S101的时序关系不作限定。
作为一个示例,各终端设备的二维坐标位置信息如表4所示。
终端设备 GPS坐标(DD)
V2X UE#1 (30.9399243310,121.6845703125)
V2X UE#2 (30.9902406160,121.7307879743)
V2X UE#3 (30.9913561602,121.6300692801)
V2X UE#4 (31.0102800916,121.6420383940)
V2X UE#5 (31.0219439754,121.6551039066)
V2X UE#6 (30.8839481029,121.6359394543)
表4
表4中的各个终端可以向第一网元发送自己的GPS坐标。
S103:发起终端(终端A)向第一网元发送多跳广播传输请求。
终端A作为发起终端可以向第一网元发送多跳广播传输请求。
该多跳广播传输请求用于请求广播应用消息。应用消息是可进行广播的数据之一。
可选的,该广播传输请求可以包括应用消息的传输范围。可选的,该广播传输请求可以包括应用标识或者应用类型。应用标识或者应用类型可用于指示传输范围。例如通过应用标识或者应用类型与传输范围的对应关系,可以获知所请求广播的数据的传输范围。该对应关系可以存储在第一网元或者其他网元。不同的应用可以对应相同 的传输范围,不同的应用类型也可以对应相同的传输范围。若多跳广播传输请求中不包括用于指示传输范围的信息时,可以将默认的传输范围作为所请求广播的数据的传输范围。该默认的传输范围可以是通信协议规定的、或者是预先配置的。应用标识可以使用例如Application ID或ProSe Application ID表示,在车联网应用中由PSID或ITS-AID表示。可选的,终端可以根据应用标识或者应用类型从应用服务器获取传输范围、或者根据传输范围与应用标识或者应用类型的对应关系获取传输范围。
本申请中,传输范围可以是一个距离的值,或者可以是一个地区或者地域。例如传输范围可以是以半径表示的圆形,或以长度和宽度表示的矩形等。
可选的,该广播传输请求包括第一标识,该第一标识用于识别要广播的数据。第一标识可以由终端(例如终端A)获取。获取第一标识的方式可以有多种。
作为第一种实施方式,终端可以随机生成、或者根据终端标识生成第一标识。生成第一标识后,终端可以建立第一标识与传输范围、或者应用标识、或者应用类型的对应关系。
作为第二种实施方式,终端可以根据已存在的第一标识与传输范围、或者应用标识、或者应用类型的对应关系来获取第一标识;该对应关系可以是终端建立的、或者应用服务器建立的、或者预先配置的。该对应关系可以存储在终端、或者应用服务器、或者其他网元。
作为第三种实施方式,终端可以从应用服务器获取第一标识。应用服务器可以根据传输范围、或者应用标识、或者应用类型来生成对应的第一标识。为保证多个应用服务器生成的第一标识在特定范围内不重复,可以为每个应用服务器配置不同的第一标识的取值范围。该特定范围可以是单个RAN节点覆盖的一个小区,可以是由多个小区组成的一个跟踪区,可以是行政地理区级(例如海淀区),可以是行政地理市级,本申请实施例对该范围不作限定。终端可以从应用服务器获取第一标识可以保存第一标识与传输范围、或者应用标识、或者应用类型的对应关系。
根据第一标识与传输范围、或者应用标识、或者应用类型的对应关系,终端在对于相同应用的广播、相同应用类型的广播、或者相同传输范围的广播可以复用该第一标识,可以避免对于相同应用的广播、相同应用类型的广播、或者相同传输范围的广播重复请求第一网元确定中继终端。
可选的,第一标识可以是数据流标识。数据流标识可以通过创建Flow ID值来表示,或由二层地址标识(Source L2 ID或Destination L2 ID或二者组合)表示,或由三层地址标识(Source IP或Destination IP或二者组合)表示,或由二层地址标识和三层地址标识的任意组合表示。作为一种可选的设计,Flow ID值可以包含在IP包包头中。
可选的,上述多跳广播传输请求还可以包括第一终端设备的终端标识。可选的,该终端标识可用于验证该终端设备是否签约授权多跳广播传输服务,即是否有请求发起广播的权限;可选的,该终端标识可用于获取该终端的移动信息。该终端标识可以是IMSI;还可以是PEI;还可以是5G-S-TMSI。可选的,第一终端设备是否签约授权多跳广播传输服务可以在第一终端设备与核心网建立连接时从核心网获取。
需要说明的是,若发起终端的通信覆盖范围不小于应用消息传输范围时,可不发送多跳广播传输请求信息,进行单跳广播;若第一终端设备的通信覆盖范围小于应用 消息传输范围则可发送多跳广播传输请求。
作为一种示例,V2X UE#1发生爆胎,可能造成道路拥堵或与其他车辆发生碰撞,需要向附近车辆提供安全警告。该安全警告的应用标识由PSID表示,值为32/0x20;该PSID对应的传输范围是半径2000米的圆形区域,该对应关系配置在V2X UE#1上,距离V2X UE#1 2000米以内的车辆需要接收到上述安全警告应用消息;V2X UE#1创建Flow ID,取值为00010100,对应上述传输范围。V2X UE#1的广播覆盖范围是半径为1000米的圆形区域,向VCF发送多跳广播传输请求。该请求中应用消息传输范围类型为圆形区域,值为2000;Flow ID为00001010;应用标识类型为PSID,值为32/0x20。
S104:第一网元选择中继终端。
S104也可以表述为第一网元确定中继终端。
具体的,第一网元可以根据S102中的移动信息和S103中应用消息的传输范围来确定中继终端。可选的,在S102中的移动信息和S103中应用消息的传输范围的基础上,第一网元还可以根据S101中的终端能力信息或者信道质量信息来确定中继终端。本申请中,移动信息、终端能力信息和信道质量信息是一种广播决策信息,用于第一网元确定进行中继广播的中继终端。
作为S104的一种实施方式,第一网元可以根据传输范围和终端的位置从多个终端中确定匹配传输范围的终端。例如确定出在传输范围内的终端,或者在传输范围内以及在传输范围外接近传输范围的终端。在确定出匹配传输范围的终端后,第一网元可以根据这些终端的位置分布,从中选择间距合适的终端作为中继终端。这些中继终端各自广播覆盖范围的组合可以满足传输范围的需求。在确定这些中继终端时,可以根据“采用尽可能少的中继终端”的规则进行中继终端的确定。需要说明的是,确定的中继终端的数量可以是一个或者多个。该实施方式中,可以默认终端之间具有连通性。
作为S104的另一种实施方式,第一网元根据传输范围和终端的移动信息确定匹配该传输范围内的终端和这些终端之间的连通性,连通性表示终端设备间是否能够进行无线通信。例如,终端设备间可以默认存在连通性,或者可以根据终端设备的位置信息计算得到终端设备间的距离,根据设定的阈值判断终端设备间是否存在连通性。第一网元根据上述终端设备间的连通性从匹配传输范围的终端中确定部分终端作为中继终端。在该方式中,可以考虑终端能力信息或者信道质量信息对于连通性的影响。
作为S104的再一种实施方式,可以考虑采用图论算法来确定中继终端。
第一网元可以根据传输范围和广播决策信息确定匹配传输范围的终端的图。匹配传输范围的终端作为图的节点或顶点,图的边表示边的两端的节点对应的终端之间的连通性,边的权重表示连通性的开销。可选的,上述图可以是有向图,有向图中边从始点指向终点,称为有向边;或者可以是无向图。
可选的,上述图中节点之间是否建立边可以根据移动信息计算得到,例如根据移动信息计算两个终端设备间的距离大于设定阈值时在上述图中对应节点间建立边,可以理解为两个节点间能够连通。在建立边的时候还可以考虑终端能力信息或者信道质量信息。
可选的,边的权重可以根据终端设备的移动信息计算得到:
W=F1(mob1,mob 2)。
其中,W是上述图中边的权重,F1表示计算权重的函数,mob1是终端1的广播决策信息,mob2是终端2的广播决策信息,广播决策信息包括移动信息。可选的,广播决策信息还包括终端能力信息或者信道质量信息。两个终端之间的距离越大,可能会导致其连通性的开销越大。一个终端位于另一个终端的通信覆盖范围的边缘时,可能会导致连通性的开销增大。终端间的信道质量变差时,可能会导致连通性的开销增大。上述连通性的开销增大会影响权重。
可选的,可以根据图论的生成树算法从上述图中选择中继终端。生成树的最上层节点称为根节点,最下层节点称为叶子。可以选择生成树的部分或者全部中间节点作为中继终端。例如将发起终端作为生成树的根节点,建立最小生成树。如图3所示,可以选择生成树中中间节点2和节点3和节点4作为中继终端。再例如,将发起终端作为根节点建立广度优先生成树,如图4所示,选择中间节点2和中间节点3作为中继终端。
可选的,根据图论的最短路径算法从上述图中选择中继终端。路径的起点称为源节点,终点称为终点,其他节点称为中间节点。例如,将上述发起终端作为源节点,建立源节点与其他节点的最短路径,选择最短路径中的节点3和节点5作为中继终端,如图5所示。
可选的,最短路径算法可以包括迪杰斯特拉Dijkstra算法或者弗洛伊德Floyd算法。可选的,生成树算法可以包括:广度优先生成树算法、或者最小生成树算法。可选的,最小生成树算法可以包括普里姆Prim算法或者克鲁斯卡尔Kruskal算法。
需要说明的是,本申请中,并不排除将叶子节点或者终点确定为中继终端。
可选的,第一网元从UDM网元或者UDR网元获取签约信息,验证第一终端设备与应用消息传输范围的终端设备是否签约授权多跳广播传输服务。若第一终端设备验证通过,第一网元从应用消息传输范围内的验证通过的终端设备中选择中继终端。
如图2所示,终端B被确定为中继终端。
S105:第一网元向中继终端(终端B)发送配置消息。
配置消息可以理解为是一种配置信息。
其中,配置消息包括第一标识,例如数据流标识。
可选的,第一网元是一种核心网网元,第一网元通过AMF和RAN节点向中继终端发送NAS消息,该消息中包含上述配置消息。
可选的,第一网元是一种数据面网元,第一网元通过UPF和RAN节点向中继终端发送配置消息。可选的,若上述配置消息通过RAN节点向中继终端发送,RAN节点可以以广播形式向应用消息传输范围内的终端设备发送该配置消息,则配置消息还包括中继终端的标识,使该标识信息对应的终端设备获知其需要对携带上述数据流标识的应用消息进行广播转发;或者,RAN节点可以通过单播链路向中继终端发送该配置消息,配置消息可以不包括中继终端的标识。
S106:中继终端(终端B)向第一网元发送指示信息,用于指示发送该指示信息的中继终端已根据上述配置消息完成配置。
S107:第一网元向终端A发送指示信息,该指示信息用于指示第一网元已确定中 继终端,且中继终端已完成配置。
S108:发起终端(终端A)广播应用消息。
其中,应用消息中包含S103中的第一标识,例如数据流标识。
可选的,第一标识可以包含在IP数据包包头中。
S109:中继终端(终端B)广播上述应用消息。
中继终端对接收的广播的应用消息进行判断,若该应用消息中包含的第一标识与其接收的上述配置信息中的第一标识一致,则广播该应用消息,否则不广播。中继终端广播该应用消息时,在该应用消息中包含上述第一标识,用于使其他接收到该应用消息的中继终端继续根据其包含的第一标识进行判断和转发。作为一种示例,IP数据包的包头中包含该第一标识。
可选的,若上述传输范围内非中继终端的终端设备接收到该应用消息,不广播该应用消息。
可选的,第一终端设备发送的广播消息和中继终端发送的广播消息可以在相同的频段中发送。
S110:终端更新移动信息,向第一网元发送更新后的移动信息。
可选的,终端还可以上报更新的终端能力信息或者信道质量信息。
S110还可以表述为:终端更新广播决策信息,向第一网元发送更新后的广播决策信息。广播决策信息包括移动信息。可选的,广播决策信息还包括终端能力信息或者信道质量信息。
第一网元确认广播决策信息更新后的中继终端是否仍然能够覆盖上述应用消息传输范围内的终端,若仍然能够覆盖则保持当前的多跳广播方式;若不能覆盖则第一网元重新选择中继终端,执行S104。
可选的,S110可以在任意时刻执行,本申请实施例对此不作限定。
本实施例中,第一网元可以是5G的数据面网元,终端设备可以通过RAN和AMF与第一网元通信;还可以是5G的控制面网元,终端设备可以通过RAN和UPF与第一网元通信;还可以是ProSe Function网元;还可以是ProSe Control Function网元;还可以是车联网应用中的VCF网元;还可以是基站;还可以是一个独立的网元,部署在接入网或者核心网;还可以是多个网元组成的系统装置,该多个网元可以分别实现本实施例中第一网元的部分或者全部功能。
通过上述S102、S104、和S105第一网元可以结合应用消息的传输范围和终端的位置来选择中继终端,可以在多跳广播中选择匹配数据传输范围的中继终端,可以满足广播覆盖的需求,又能避免广播泛洪,减少信息冗余、信道竞争、或者冲突干扰。在确定中继终端时考虑终端之间的连通性,可以更加准确的选择合适的中继终端。通过引入图论的概念和算法进行中继终端的选择,可以更加准确的选择合适的中继终端。通过准确的选择合适的中继终端,一方面可以使用较少的中继终端来满足广播覆盖需求,另一方面,中继终端使用较低的发射功率即可实现中继广播的需求,因此在满足广播覆盖需求的同时进一步减少信息冗余、信道竞争、或者冲突干扰。
实施例二:
实施例二是实施例一的变形。与实施例一类似,发起终端的应用消息通过中继终端的转发,以多跳广播方式通知应用消息传输范围内的终端。与实施例一不同的是,实施例二中第一网元从具有位置管理功能的网元获取与应用消息的传输范围匹配的其他终端设备的位置信息,如图6所示,该实施例包括:
S201:终端向第一网元发送终端能力信息或者信道质量信息。
S201具体可参考S101。
S202:终端A向第一网元发送多跳广播传输请求。
终端A为发起终端。
可选的,多跳广播传输请求可包括终端A的移动信息。可选的,多跳广播传输请求可包括终端A的终端标识,用于获取该终端设备的移动信息。
S202具体可参考S103。
S203:第一网元向位置管理网元发送第一请求消息,请求获取与应用消息传输范围匹配的的终端的移动信息。
该第一请求包括用于指示应用消息传输范围的信息。
可选的,该第一请求包括终端A的终端标识,该终端标识用于向位置管理网元获取终端A的移动信息。
可选的,第一网元可根据终端A的终端标识获取终端A的移动信息。
可选的,位置管理网元可以是核心网网元GMLC;还可以是数据面网元SLP,本申请实施例对此不作限定。
S204:位置管理网元向第一网元发送匹配应用消息传输范围的终端的移动信息。
可选的,位置管理网元还向第一网元发送终端A的移动信息。
第一网元可存储接收到的移动信息。
其中,移动信息具体可以参考S102中对移动信息的介绍。
可选的,终端可以向位置管理网元上报自己的移动信息。终端可以周期性的发送移动信息、或者基于事件触发来发送移动信息、或者根据其他网元指示来发送移动信息。例如:终端可以基于车道变更、移动位置变化超过设定范围、移动速度变化超过设定范围、或终端设备移动方向发生变化来发送移动信息。
可选的,位置管理网元可以根据终端标识通过定位功能获取终端的移动信息。该获取行为可以是周期性的,基于事件触发的,或者根据其他网元指示的。
S205:第一网元确定中继终端。
S205具体可参考S104。
S206:第一网元向中继终端(终端B)发送配置消息。
S206具体可参考S105。
S207:中继终端(终端B)向第一网元发送指示信息。
S207具体可参考S106。
S208:第一网元向发起终端(终端A)发送指示信息,该指示信息用于指示第一网元已确定中继终端,且中继终端已完成配置。
S208具体可参考S107。
S209:发起终端(终端A)广播应用消息。
S209具体可参考S108。
S210:中继终端(终端B)广播上述应用消息。
S210具体可参考S109。
S211:位置管理网元更新应用消息传输范围内的终端的移动信息,向第一网元发送更新后的移动信息。
具体的,第一网元确认移动信息更新后的中继终端是否仍然能够覆盖上述应用消息传输范围内的车辆,若仍然能够覆盖则保持当前的多跳广播方式;若不能覆盖则第一网元重新选择中继终端,执行S205。
可选的,终端可以上报更新的终端能力信息或者信道质量信息,具体可参考S110。
可选的,S211可以在任意时刻执行,本申请实施例对此不作限定。
通过上述S203,S204,S205,和S206,第一网元可以结合应用消息的传输范围和终端的位置来选择中继终端,可以在多跳广播中选择匹配数据传输范围的中继终端,可以满足广播覆盖的需求,又能避免广播泛洪,减少信息冗余、信道竞争、或者冲突干扰。在确定中继终端时考虑终端之间的连通性,可以更加准确的选择合适的中继终端。通过引入图论的概念和算法进行中继终端的选择,可以更加准确的选择合适的中继终端。通过准确的选择合适的中继终端,一方面可以使用较少的中继终端来满足广播覆盖需求,另一方面,中继终端使用较低的发射功率即可实现中继广播的需求,因此在满足广播覆盖需求的同时进一步减少信息冗余、信道竞争、或者冲突干扰。
实施例三:
实施例三是实施例一或二的一种变形。与上述实施例类似,发起终端的应用消息通过中继终端的转发,以多跳广播方式通知应用消息传输范围内的终端。与上述实施例不同的是,实施例三中发起终端向第一网元发送的多跳广播请求中,包含应用标识或者应用消息的传输范围,由第一网元生成对应应用消息传输范围的第一,如图7所示,包括:
S301:终端向第一网元发送终端能力信息或者信道质量信息。
S301具体可参考S101。
S302:终端向第一网元发送移动信息。
S302具体可参考S102。
作为一种替换,S302可以替换S203和S204。
S303:发起终端(终端A)向第一网元发送多跳广播传输请求。
该多跳广播传输请求包括用于指示传输范围的信息。用于指示传输范围的信息包括应用标识、或者应用类型、或者传输范围。S303的相关内容,具体可参考S103。
第一网元可以根据用于指示传输范围的信息获知请求广播的应用消息的传输范围。
第一网元收到请求后可以获取第一标识。第一标识可以为数据流标识。
作为第一种实施方式,第一网元可以随机生成、或者根据终端标识生成第一标识。生成第一标识后,第一网元可以建立第一标识与传输范围、或者应用标识、或者应用类型的对应关系。
作为第二种实施方式,第一网元可以根据已存在的第一标识与传输范围、或者应用标识、或者应用类型的对应关系来获取第一标识;该对应关系可以是第一网元建立 的、或者应用服务器建立的、或者预先配置的。
作为第三种实施方式,第一网元可以从应用服务器获取第一标识。应用服务器可以根据传输范围、或者应用标识、或者应用类型来生成对应的第一标识。为保证多个应用服务器生成的第一标识在特定范围内不重复,可以为每个应用服务器配置不同的第一标识的取值范围。该特定范围可以是单个RAN节点覆盖的一个小区,可以是由多个小区组成的一个跟踪区,可以是行政地理区级(例如海淀区),可以是行政地理市级,本申请实施例对该范围不作限定。第一网元可以从应用服务器获取第一标识可以保存第一标识与传输范围、或者应用标识、或者应用类型的对应关系。
可选的,第一网元可以将上述对应关系发送给终端。
根据第一标识与传输范围、或者应用标识、或者应用类型的对应关系,终端在对于相同应用的广播、相同应用类型的广播、或者相同传输范围的广播可以复用该第一标识,可以避免对于相同应用的广播、相同应用类型的广播、或者相同传输范围的广播重复请求第一网元确定中继终端。
S303的其他内容可参考S103。
S304:第一网元确定中继终端。
S304具体可参考S104。
S305:第一网元向中继终端(终端B)发送配置消息。
S305具体可参考S105。
其中,该配置消息包含上述S303中第一网元获取的第一标识。
S306:中继终端(终端B)向第一网元发送指示信息,用于指示发送该信息的中继终端已根据上述配置消息完成配置。
S306具体可参考S106。
S307:第一网元向发起终端(终端A)发送指示信息,该指示信息用于指示第一网元已确定中继终端,且中继终端已完成配置。
其中,指示信息包含上述S303中第一网元获取的第一标识,该第一标识需要被携带在广播的应用消息中,使中继终端能够在接收到该应用消息后通过识别该第一标识对该应用消息进行中继广播。
S308:发起终端(终端A)广播应用消息。
其中,应用消息中包含S307中终端A获取的第一标识,例如数据流标识。
S309:中继终端(终端B)广播上述应用消息。
S309具体可参考S109。
S310:终端更新移动信息,向第一网元发送更新后的移动信息。
可选的终端还可以更新终端能力信息或者信道质量信息。S310具体可参考S110。
作为另一种实施方式,S310:位置管理网元更新匹配应用消息传输范围的终端的移动信息,向第一网元发送更新后的移动信息。具体可参考S211。
通过上述S302,S304,和S305,第一网元可以结合应用消息的传输范围和终端的位置来选择中继终端,可以在多跳广播中选择匹配数据传输范围的中继终端,可以满足广播覆盖的需求,又能避免广播泛洪,减少信息冗余、信道竞争、或者冲突干扰。在确定中继终端时考虑终端之间的连通性,可以更加准确的选择合适的中继终端。通 过引入图论的概念和算法进行中继终端的选择,可以更加准确的选择合适的中继终端。通过准确的选择合适的中继终端,一方面可以使用较少的中继终端来满足广播覆盖需求,另一方面,中继终端使用较低的发射功率即可实现中继广播的需求,因此在满足广播覆盖需求的同时进一步减少信息冗余、信道竞争、或者冲突干扰。
实施例四:
实施例四是实施例一、二或三的另一种变形。与上述实施例类似,发起终端的应用消息通过中继终端的转发,以多跳广播方式通知应用消息传输范围内的终端。与上述实施例不同的是,实施例四中由发起终端实现实施利一中第一网元的功能,确定中继终端,并发送配置信息。如图8所示,该实施例包括:
S401:终端向其他终端(例如终端A)发送终端能力信息或者信道质量信息。
S401的相关内容可参考S101的相关内容。
可选的,终端可以通过广播方式、多播方式、或者单播方式向其他终端发送终端能力信息或信道质量信息;
可选的,终端可以将获得的其他终端的终端能力信息或信道质量信息发送给另外的终端。
S402:终端向其他终端(例如终端A)发送移动信息。
S402的相关内容可参考S102的相关内容。
可选的,终端可以通过广播方式、多播方式、或者单播方式向其他终端发送移动信息;
可选的,终端可以将获得的其他终端的移动信息发送给另外的终端。
作为另一种实施方式,S402也可以是:发起终端从位置管理网元获取其他终端设备的移动信息。相关方式与S203和S204类似,此处不作赘述。
S403:发起终端(终端A)确定中继终端。
S403具体可参考S104。
其中,有关第一标识,应用标识,应用类型、传输范围等相关内容可参见上述实施例一、二和三的相关内容。
S404:发起终端(终端A)向中继终端发送配置消息。
S404可参考上述S105、S206、S305的相关内容。
生成或获取数据流标识的过程可以参考例如S103的相关内容。
可选的,发起终端可以通过广播方式向中继终端发送配置消息,则配置消息还包括中继终端的标识,使该标识信息对应的终端设备获知其需要对携带上述数据流标识的应用消息进行广播转发。
可选的,发起终端可以通过组播方式向组播组中的中继终端发送配置消息,配置消息包括中继终端的标识。
可选的,发起终端可以通过单播方式向中继终端发送配置消息,配置消息可以不包括中继终端的标识。
S405:中继终端(终端B)向发起终端(终端A)发送指示信息,用于指示发送该指示信息的中继终端已根据上述配置消息完成配置。
S405具体可参考S106。
S406:发起终端(终端A)广播应用消息。
S406具体可参考S108。
S407:中继终端广播上述应用消息。
S407具体可参考S109。
S408:终端更新移动信息,向发起终端(终端A)发送更新后的移动信息。
S408具体可参考S110。
作为另一种实施方式,S408可以是:位置管理网元更新移动信息,向发起终端(终端A)发送更新后的移动信息。具体可参考S211。
本领域技术人员可知,根据实施例四,除了发起终端,其他终端也可以作为广播决策节点。在实施例四的基础上进行变形,即可实现,本申请不作赘述。
通过上述S402,S403,和S404发起终端可以结合应用消息的传输范围和终端的位置来选择中继终端,可以在多跳广播中选择匹配数据传输范围的中继终端,可以满足广播覆盖的需求,又能避免广播泛洪,减少信息冗余、信道竞争、或者冲突干扰。在确定中继终端时考虑终端之间的连通性,可以更加准确的选择合适的中继终端。通过引入图论的概念和算法进行中继终端的选择,可以更加准确的选择合适的中继终端。通过准确的选择合适的中继终端,一方面可以使用较少的中继终端来满足广播覆盖需求,另一方面,中继终端使用较低的发射功率即可实现中继广播的需求,因此在满足广播覆盖需求的同时进一步减少信息冗余、信道竞争、或者冲突干扰。
上述实施中,实施例一至三中的第一网元和实施例四中的起始终端起到了确定中继终端的作用,可以称为广播决策装置。在本申请中,广播决策装置可以是独立的网元,也可以是多个网元组成的系统。
在本申请中,终端之间的连通性是指终端之间是否具有通信的可能。连通性可以受到终端的位置、终端之间的距离、终端的通信覆盖能力、终端之间的信道质量的影响。在本申请中,确定多个终端中部分终端之间的连通性也可以理解为是确定该多个终端之间的连通性。在本申请中,并不限制选择图对应路径的终点节点作为中继终端,也不限制选择图对应的生成树的叶子节点作为中继终端。在本申请中,并不要求将图对应的路径的所有中间节点都作为中继终端,也不要求将图对应的生成树的所有的中间节点都作为中继终端。在本申请中,广播决策信息的呈现方式可以有多种。例如一条广播决策信息可以对应终端;再例如一条广播决策信息可以对应一个终端。在本申请中,广播覆盖需求是指数据希望的传输范围。在本申请中,数据的传输范围是指数据传输的物理空间范围。例如事故车辆周围一公里。在本申请中,数据可以是业务数据、消息、信令等。
实施例五:
实施例五基于实施例一至四,从广播决策装置的角度描述了本申请实施例提供的一种广播方法。如图9所示,该方法包括:
S501:第一装置获取多个第一终端的广播决策信息。
该第一装置为广播决策装置。
其中,广播决策信息包括移动信息,移动信息用于指示第一终端的位置。
其中,广播决策信息的获取可以参考S101,S102,S201,S203-S204,S301,S302,S401,以及S402的相关内容。
S502:第一装置根据广播决策信息和第一范围从多个第一终端中确定第二终端。
其中,第一范围是第一数据的传输范围,第二终端为确定的中继终端。
S502:具体可参考S104,S205,S304,S403。
S503:第一装置向第二终端发送配置信息。
其中,配置信息用于指示第二终端广播第一数据。第二终端可以称为中继终端。
具体可参考S105,S206,S305,S404。
可选的,该第一装置可以是终端、或者核心网网元、或者基站;或者,该第一装置可以是一个独立的网元,部署在接入网或者核心网;或者,该第一装置可以是多个网元组成的系统装置,该多个网元可以分别实现上述方法中S501,S502,S503的部分。
可选的,第一装置可以从不同的来源获取广播决策信息。例如:第一装置可以从存储有广播决策信息的网元获取广播决策信息。又例如,该广播决策信息可以分布存储在不同的网元上,第一装置可以从这些不同的网元获取广播决策信息。再例如,终端可以上报广播决策信息,第一装置可以从终端接收广播决策信息。
可选的,S502包括:所述第一装置根据所述广播决策信息和所述第一范围从所述多个第一终端中确定多个第三终端和所述多个第三终端之间的连通性,所述连通性与所述多个第三终端的位置有关;所述第一装置根据所述连通性在所述多个第三终端中选择部分所述第三终端作为所述第二终端。在确定中继终端时考虑终端之间的连通性,可以更加准确的选择合适的中继终端。
可选的,S502包括:所述第一装置根据所述广播决策信息和所述第一范围从所述多个第一终端中确定包括所述多个第三终端的图graph;其中,所述图的多个顶点vertex表示所述多个第三终端,所述图的多条边edge表示所述多个第三终端之间的连通性,所述连通性与所述多个第三终端的位置有关;所述第一装置根据图论算法从所述图中确定所述第二终端。可选的,所述多条边的权重表示所述连通性的开销,所述开销与所述多个第三终端的位置有关。可选的,所述图论算法可以是最短路径算法。可选的,所述第二终端为所述图对应的路径的中间节点;可选的,所述图论算法那可以是生成树算法。可选的,所述第二终端为所述图对应的生成树的中间节点。可选的,最短路径算法可以包括迪杰斯特拉Dijkstra算法或者弗洛伊德Floyd算法。可选的,生成树算法可以包括:广度优先生成树算法、或者最小生成树算法。可选的,最小生成树算法可以包括普里姆Prim算法或者克鲁斯卡尔Kruskal算法。通过引入图论的概念和算法进行中继终端的选择,可以更加准确的选择合适的中继终端。
可选的,广播决策信息还包括:终端能力信息,所述终端能力信息用于指示所述第一终端的通信覆盖范围。可选的,所述终端能力信息包括:所述第一终端的通信覆盖范围;或者,所述第一终端的发送功率。可选的,该终端能力信息可用于确定终端之间的连通性或者连通性的开销。考虑终端通信覆盖范围可以提高确定终端之间的连通性或者连通性的开销的准确性。具体可参考S101,S201,S301,S401中对终端能力信息的介绍。
可选的,广播决策信息还包括:信道质量信息,所述信道质量信息用于指示所述多个第一终端之间的信道质量。可选的,该信道质量信息可用于确定终端之间的连通性或者连通性的开销。考虑终端之间的信道质量可以提高确定终端之间的连通性或者连通性的开销的准确性。具体可参考S101,S201,S301,S401中对信道质量信息的介绍。
可选的,移动信息还包括:所述第一终端的移动方向或者移动速度。通过移动方向或者移动速度可以确定终端广播时所在的位置。考虑移动方向或者移动速度可以提高确定终端之间的连通性或者连通性的开销的准确性。具体可参考S102,S204,S302,S402中对移动信息的介绍。
可选的,S503中配置信息包括第一标识,所述第一标识用于识别广播的数据;其中,所述第一数据携带所述第一标识。可选的,该第一标识可以是数据的数据流标识。由于不同应用消息可能具有相同广播覆盖需求,通过该标识可以使不同的应用消息复用确定的中继终端,避免为具有相同广播覆盖需求的不同应用消息重复确定中继终端。可选的,第一数据携带第一标识包括:第一数据包括第一标识,或者第一数据使用第一标识加扰。
可选的,第一装置从广播发起终端获取所述第一标识。可选的,第一装置分配所述第一标识或者从广播控制网元获取所述第一标识;所述第一装置向广播发起终端发送所述第一标识。第一装置获取第一标识的过程可以参考S103,S202,S303,S404中生成或者获取数据流标识的过程。
可选的,第一装置从广播发起终端获取用于指示所述第一范围的信息。可选的,用于指示所述第一范围的信息包括应用标识、或者数据类型、或者数据重要程度。通过应用标识、或者数据类型、或者数据重要程度与传输范围的对应关系可以获取第一范围。可选的,用于指示所述第一范围的信息可以是第一范围。具体可以参考S103,S202,S303中获取应用消息传输范围的过程。
可选的,第一装置从广播发起终端接收第一请求,所述第一请求用于请求广播所述第一数据。可选的,该第一请求可以包括上述第一标识、或者用于指示第一范围的信息。具体可以参考S103,S202,S303中第一终端发送多跳广播传输请求的过程。
可选的,广播发起终端具有请求广播所述第一数据的权限。第一装置可以对广播发起终端进行鉴权以确定其是否具有请求广播所述第一数据的权限。
可选的,第二终端具有广播所述第一数据的权限。第一装置可以对第二终端进行鉴权以确定其是否具有广播所述第一数据的权限。
可选的,第一装置获取更新后的广播决策信息;所述第一装置根据所述更新后的广播决策信息判断是否更新所述第二终端;若判断更新所述第二终端,根据所述更新后的广播决策信息和所述第一范围确定新的第二终端。具体可参考S110,S211,S310,S408。
通过上述S501,S502,S503,由第一装置收集终端的位置信息,并且结合数据的传输范围和终端的位置来选择中继终端,可以在多跳广播中选择匹配数据传输范围的中继终端,可以满足广播覆盖的需求,又能避免广播泛洪,减少信息冗余、信道竞争、或者冲突干扰。
实施例六:
实施例六基于实施例一至四,从终端的角度描述了本申请实施例提供的一种广播方法。图10中的第一终端可以是上述实施例中的终端C,或者被选为中继终端的终端B。如图10所示,该方法包括:
S601:第一终端生成广播决策信息
其中,所述广播决策信息用于确定所述第一终端是否广播具有特定传输范围的数据,所述广播决策信息包括移动信息,所述移动信息用于指示所述第一终端的位置。
S602:第一终端向第一装置发送所述广播决策信息。
S601和S602具体可参考上述实施例中S101,S102,S201,S203-S204,S301,S302,S401,以及S402的相关内容。可选的,第一终端从第二装置接收配置信息,所述配置信息用于指示所述第一终端广播传输范围为第一范围第一数据。可选的,第二装置和第一装置可以是同一个设备。第一装置可以是上述实施例中接收广播决策信息的装置,第二装置可以是上述实施例中发送配置信息的装置。
可选的,配置信息包括第一标识,所述第一标识用于识别广播的数据;其中,所述第一数据携带所述第一标识。由于不同应用消息可能具有相同广播覆盖需求,通过该标识可以使不同的应用消息复用确定的中继终端,避免为具有相同广播覆盖需求的不同应用消息重复确定中继终端。具体可参考上述实施例中关于第一标识的描述。
可选的,广播决策信息还包括:终端能力信息,所述终端能力信息用于指示所述第一终端的通信覆盖范围。具体可参考S101,S201,S301,S401中对终端能力信息的介绍。
可选的,广播决策信息还包括:信道质量信息,所述信道质量信息用于指示所述第一终端与其他终端之间的信道质量。具体可参考S101,S201,S301,S401中对信道质量信息的介绍。
可选的,移动信息还包括:所述第一终端的移动方向或者移动速度。具体可参考S102,S204,S302,S402中对移动信息的介绍。
通过上述S601,S602,通过终端上报终端的位置,可以结合数据的传输范围和终端的位置来确定该终端是否作为中继终端来广播该数据,有利于在多跳广播中选择匹配数据传输范围的中继终端,可以满足广播覆盖的需求,又能避免广播泛洪,减少信息冗余、信道竞争、或者冲突干扰。
实施例七:
实施例七基于实施例一至四从发起终端的角度描述了本申请实施例提供的一种广播方法。图11中的第一终端可以是上述实施例中的发起终端。如图11所示,该方法包括:
S701:第一终端向第一装置发送第一请求。
其中,第一请求用于请求广播传输范围为第一范围的第一数据。
S702:第一终端从第一装置接收响应于所述第一请求的第一响应。
其中,第一响应用于指示广播所述第一数据。
S703:第一终端广播第一数据。
S701-S703的相关说明可以参见S103,S107,S108,S202,S208,S209,S303,S307,以及S308的相关内容。传输范围的相关内容可以参考上述实施例中的内容。
可选的,第一请求包括第一标识,所述第一标识用于识别广播的数据;所述第一数据携带所述第一标识。可选的,第一响应包括第一标识,所述第一标识用于识别广播的数据;所述第一数据携带所述第一标识。第一标识的相关内容可以参见上述实施例中的相关内容,此处不再赘述。
可选的,第一请求包括用于指示所述第一范围的信息。用于指示所述第一范围的信息相关内容可以参考上述实施例中关于用于指示传输范围的信息的相关内容。
实施例八:
本实施例提供一种通信装置,可用于实现例如实施例一中第一网元的功能,或者实施例二中第一网元的功能,或者实施例三中第一网元的功能,或者实施例五中第一装置的功能。该通信装置可以部署在核心网侧。图12所示为本申请实施例提供的通信装置800的结构示意图。该通信装置800包括一个或多个处理器801,通信线路802,以及至少一个通信接口(图12中仅是示例性的以包括通信接口803,以及一个处理器801为例进行说明),可选的还可以包括存储器804。
处理器801可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路802用于连接不同组件。
通信接口803,可以是收发模块用于与其他设备或通信装置或通信网络,如以太网等。例如,所述收发模块可以是网卡,光纤交换装置。可选的,通信接口803也可以是位于处理器801内的收发电路,用以实现处理器的信号输入和信号输出。
存储器804可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路802与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器804用于存储执行本申请方案的计算机执行指令,并由处理器801来控制执行。处理器801用于执行存储器804中存储的计算机执行指令,从而实现本申请实施例一中第一网元的功能,或者实施例二中第一网元的功能,或者实施例三中第一网元的功能,或者实施例五中第一装置的功能。本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器801可以包括一个或多个CPU,例如图 12中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置800可以包括多个处理器,例如图12中的处理器801和处理器805。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述的通信装置600可以是一个通用装置或者是一个专用装置。例如通信装置600可以是网络服务器、嵌入式设备或具有图12中类似结构的设备。本申请实施例不限定通信装置800的类型。
可以理解的是,以上各个实施例中,由第一网元或者第一装置实现的方法和/或步骤,也可以由实现上述第一网元或者第一装置功能的芯片系统实现。
实施例九:
本实施例提供一种通信装置,可用于实现例如实施例一中第一网元的功能,或者实施例二中第一网元的功能,或者实施例三中第一网元的功能,或者实施例五中第一装置的功能。该通信装置可以部署在接入网侧。图13所示为本申请实施例提供的通信装置900的结构示意图。该通信装置900包括天线901、射频装置902、基带装置903。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收终端发送的信息,将用户设备发送的信息发送给基带装置903进行处理。在下行方向上,基带装置903对终端的信息进行处理,并发送给射频装置902,射频装置902对用户设备的信息进行处理后经过天线901发送给终端。
基带装置903可以包括一个或多个处理元件9031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置903还可以包括存储元件9032和接口9033,存储元件9032用于存储执行本申请方案的计算机执行指令,并由处理元件9031来控制执行;接口9033用于与射频装置902交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。处理元件9031用于执行存储元件9032中存储的计算机执行指令,从而实现本申请实施例一中第一网元的功能,或者实施例二中第一网元的功能,或者实施例三中第一网元的功能,或者实施例五中第一装置的功能。本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。以上各个实施例中,由第一网元或者第一装置实现的方法和/或步骤,也可以由基带装置903上的芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上第一网元或者第一装置执行的任一种方法的各个步骤,接口电路用于与其它装置通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
上述的通信装置900可以是一个通用装置或者是一个专用装置。例如通信装置900可以是网络服务器、基站或具有图12中类似结构的设备。本申请实施例不限定通信装置900的类型。
可以理解的是,以上各个实施例中,由第一网元或者第一装置实现的方法和/或步骤,也可以由实现上述第一网元或者第一装置功能的芯片系统实现。
实施例十:
本实施例提供一种通信装置,可用于实现例如实施例四中发起终端的功能,或者实施例五中第一装置的功能。图14所示为本申请实施例提供的通信装置1000的结构示意图。该通信装置1000包括一个或多个处理器1001,通信线路1002,以及至少一个通信接口(图14中仅是示例性的以包括通信接口1003,以及一个处理器1001为例进行说明),可选的还可以包括存储器1004。
处理器1001可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路1002用于连接不同组件。
通信接口1003,可以是收发模块用于与其他设备或通信装置或通信网络,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置,还可以是网卡,光纤交换装置。可选的,通信接口1003也可以是位于处理器1001内的收发电路,用以实现处理器的信号输入和信号输出。
存储器1004可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1002与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1004用于存储执行本申请方案的计算机执行指令,并由处理器1001来控制执行。处理器1001用于执行存储器1004中存储的计算机执行指令,从而实现本申请实施例四中第一终端设备的功能,或者实施例五中第一装置的功能。本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限 定。
在具体实现中,作为一种实施例,通信装置1000还可以包括输出设备106和输入设备1007。输出设备1006和处理器1001通信,可以以多种方式来显示信息。
在具体实现中,作为一种实施例,处理器1001可以包括一个或多个CPU,例如图14中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1000可以包括多个处理器,例如图14中的处理器1001和处理器1005。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述的通信装置1000可以是一个通用装置或者是一个专用装置。例如通信装置1000可以是网络服务器、嵌入式设备、台式机、便携式电脑、移动手机、平板电脑、无线终端设备或具有图14中类似结构的设备。本申请实施例不限定通信装置1000的类型。
可以理解的是,以上各个实施例中,由第一终端或者第一装置实现的方法和/或步骤,也可以由实现上述第一终端或者第一装置功能的芯片系统实现。
实施例十一:
本实施例提供一种通信装置,可用于实现例如实施例一至实施例四中中继终端,以及实施例六中第一终端的功能。该通信装置的结构图可以参考图14。
存储器用于存储执行本申请方案的计算机执行指令,并由处理器来控制执行。处理器用于执行存储器中存储的计算机执行指令,从而实现本申请实施例一至实施例四中中继终端,或实施例六中第一终端的功能。本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
可以理解的是,以上各个实施例中,由实施例一至实施例四中中继终端,或实施例六中第一终端的功能实现的方法和/或步骤,也可以由实现上述实施例一至实施例四中中继终端,或实施例六中第一终端的功能的芯片系统实现。
实施例十二:
本实施例提供一种通信装置,可用于实现例如实施例一至实施例四中发起终端,或者实施例七中第一终端的功能。本申请实施例提供的通信装置的结构示意图可以参考图14
存储器用于存储执行本申请方案的计算机执行指令,并由处理器来控制执行。处理器用于执行存储器中存储的计算机执行指令,从而实现本申请实施例一至实施例四中发起终端,或者实施例七中第一终端的功能。本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
可以理解的是,以上各个实施例中,由实施例一至实施例四中发起终端,或者实施例七中第一终端的功能实现的方法和/或步骤,也可以由实现上述实施例一至实施例四中发起终端,或者实施例七中第一终端的功能的芯片系统实现。
实施例十三:
本实施例提供一种通信装置,可用于实现例如实施例一中第一网元的功能,或者实施例二中第一网元的功能,或者实施例三中第一网元的功能,或者实施例四中发起终端的功能,或者实施例五中第一装置的功能。本申请实施例可以根据上述方法实施例中对通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的单元集成在一个处理模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图15所示为本申请实施例提供的通信装置1300的结构示意图。该通信装置1300包括处理单元1301和收发单元1302。
可选的,处理单元1301具体用于:S104,S205,S304,S403,S502中选择中继终端的功能。
可选的,收发单元1302具体用于:S101,S201,S301,S401,S501中接收终端能力信息或者信道质量信息的功能。
可选的,收发单元1302具体用于:S102,S204,S302,S402,S501中接收移动信息的功能。
可选的,收发单元1302具体用于:S103,S202,S303中接收多跳广播传输请求的功能。
可选的,收发单元1302具体用于:S203中发送第一请求消息的功能。
可选的,收发单元1302具体用于:S105,S206,S305,S404,S503中发送配置消息的功能。
可选的,收发单元1302具体用于:S106,S207,S306,S405中接收指示信息的功能。
可选的,收发单元1302具体用于:S107,S208,S307中发送指示信息的功能。
具体的,图15中的收发单元1302和处理单元1301的功能/实现过程可以通过图12所示的通信设备800中的处理器801调用存储器804中存储的计算机执行指令来实现。或者,图15中的处理单元1301的功能/实现过程可以通过图12所示的通信设备800中的处理器801调用存储器804中存储的计算机执行指令来实现,图15中的收发单元1302的功能/实现过程可以通过图12中所示的通信设备800中的通信接口803来实现。或者,图15中的收发单元1302和处理单元1301的功能/实现过程可以通过图13所示的通信设备900中的处理元件9031调用存储元件9032中存储的计算机执行指令来实现。或者,图15中的处理单元1301的功能/实现过程可以通过图13所示的通信设备900中的处理元件9031调用存储元件9032中存储的计算机执行指令来实现,图15中的收发单元1302的功能/实现过程可以通过图13中所示的通信设备900中的接口9033和射频装置902和天线901来实现。或者,图15中的收发单元1302和处理单元1301的功能/实现过程可以通过图14所示的通信设备1000中的处理器1001调用存储器1004中存储的计算机执行指令来实现。或者,图15中的处理单元1301的功能/实现过程可以通过图14所示的通信设备1000中的处理器1001调用存储器1004中存 储的计算机执行指令来实现,图15中的收发单元1302的功能/实现过程可以通过图14中所示的通信设备1000中的通信接口1003来实现。
实施例十四:
本实施例提供一种通信装置,可用于实现例如实施例一至实施例四中中继终端,或实施例六中第一终端的功能。本申请实施例可以根据上述方法实施例中对通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的单元集成在一个处理模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图16所示为本申请实施例提供的通信装置1400的结构示意图。该通信装置1400包括处理单元1401和收发单元1402。
可选的,处理单元1401具体用于:S601中生成广播决策信息的功能。
可选的,处理单元1401具体用于:S105,S206,S305,S404中根据配置消息进行配置的功能。
可选的,处理单元1401具体用于:S108,S209,S308,S406中根据配置信息识别应用消息的功能。
可选的,收发单元1402具体用于:S101,S201,S301,S401,S602中发送终端能力信息或者信道质量信息的功能。
可选的,收发单元1402具体用于:S102,S302,S402,S602中发送移动信息的功能。
可选的,收发单元1402具体用于:S105,S206,S305,S404,S602中接收配置信息的功能。
可选的,收发单元1402具体用于:S108,S209,S308,S406中接收应用消息的功能。
具体的,图16中的收发单元1402和处理单元1401的功能/实现过程可以通过实施例十一中通信设备中的处理器调用存储器中存储的计算机执行指令来实现。或者,图16中的处理单元1401的功能/实现过程可以通过实施例十一中通信设备中的处理器调用存储器中存储的计算机执行指令来实现,图16中的收发单元1402的功能/实现过程可以通过实施例十一中通信设备中的通信接口来实现。
实施例十五:
本实施例提供一种通信装置,可用于实现例如实施例一至实施例三中发起终端,或实施例七中第一终端的功能。本申请实施例可以根据上述方法实施例中对通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的单元集成在一个处理模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图17所示为本申请实施例提供的通信装置1500的结构示意图。该通信装置1500 包括处理单元1501和收发单元1502。
可选的,处理单元1501具体用于:S103,S202,S303,S701中生成应用标识,或者生成应用消息传输范围,或者生成数据流标识的功能。
可选的,处理单元1501具体用于:S108,S209,S308,S703中在广播的第一数据中包括第一标识的功能。
可选的,收发单元1502具体用于:S101,S201,S301中发送终端能力信息或者信道质量信息的功能。
可选的,收发单元1502具体用于:S102,S302中发送移动信息的功能。
可选的,收发单元1502具体用于:S103,S202,S303,S702中发送第一请求的功能。
可选的,收发单元1502具体用于:S108,S209,S308,S703中广播第一数据的功能。
具体的,图17中的收发单元1502和处理单元1501的功能/实现过程可以通过实施例十二中通信设备中的处理器调用存储器中存储的计算机执行指令来实现。或者,图17中的处理单元1501的功能/实现过程可以通过实施例十二中通信设备中的处理器调用存储器中存储的计算机执行指令来实现,图17中的收发单元1502的功能/实现过程可以通过实施例十二中通信设备中的通信接口来实现。
需要说明的是,本申请中发起终端和中继终端的功能可以由一个终端设备实现。
通过本申请实施例提供的装置,可以结合应用消息的传输范围和终端的位置来选择中继终端,可以在多跳广播中选择匹配数据传输范围的中继终端,可以满足广播覆盖的需求,又能避免广播泛洪,减少信息冗余、信道竞争、或者冲突干扰。在确定中继终端时考虑终端之间的连通性,可以更加准确的选择合适的中继终端。通过引入图论的概念和算法进行中继终端的选择,可以更加准确的选择合适的中继终端。通过准确的选择合适的中继终端,一方面可以使用较少的中继终端来满足广播覆盖需求,另一方面,中继终端使用较低的发射功率即可实现中继广播的需求,因此在满足广播覆盖需求的同时进一步减少信息冗余、信道竞争、或者冲突干扰。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括 前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种广播的方法,其特征在于,包括:
    第一装置获取多个第一终端的广播决策信息,所述广播决策信息包括移动信息,所述移动信息用于指示所述第一终端的位置;
    所述第一装置根据所述广播决策信息和第一范围从所述多个第一终端中确定第二终端,所述第一范围是第一数据的传输范围;
    所述第一装置向所述第二终端发送配置信息,所述配置信息用于指示所述第二终端广播所述第一数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一装置根据所述广播决策信息和第一范围从所述多个第一终端中确定第二终端包括:
    所述第一装置根据所述广播决策信息和所述第一范围从所述多个第一终端中确定包括所述多个第三终端的图graph;其中,所述图的多个顶点vertex表示所述多个第三终端,所述图的多条边edge表示所述多个第三终端之间的连通性,所述连通性与所述多个第三终端的位置有关;
    所述第一装置根据图论算法从所述图中确定所述第二终端。
  3. 根据权利要求2所述的方法,其特征在于,所述多条边的权重表示所述连通性的开销,所述开销与所述多个第三终端的位置有关。
  4. 根据权利要求2或3所述的方法,其特征在于,所述图论算法包括:
    最短路径算法,其中所述第二终端为所述图对应的路径的中间节点;或者,
    生成树算法,其中所述第二终端为所述图对应的生成树的中间节点。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述广播决策信息还包括:终端能力信息,所述终端能力信息用于指示所述第一终端的通信覆盖范围。
  6. 根据权利要求5所述的方法,其特征在于,所述终端能力信息包括:
    所述第一终端的通信覆盖范围;或者,
    所述第一终端的发送功率。
  7. 根据权利要求1-6任一所述的方法,所述广播决策信息还包括:
    信道质量信息,所述信道质量信息用于指示所述多个第一终端之间的信道质量。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述移动信息还包括:
    所述第一终端的移动方向或者移动速度。
  9. 根据权利要求1-8任一所述的方法,其特征在于,所述配置信息包括第一标识,所述第一标识用于识别广播的数据;其中,所述第一数据携带所述第一标识。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    所述第一装置从广播发起终端获取所述第一标识。
  11. 根据权利要求9所述的方法,其特征在于,还包括:
    所述第一装置分配所述第一标识或者从广播控制网元获取所述第一标识;
    所述第一装置向广播发起终端发送所述第一标识。
  12. 根据权利要求1-11任一所述的方法,其特征在于,还包括:
    所述第一装置从广播发起终端获取用于指示所述第一范围的信息。
  13. 根据权利要求1-12任一所述的方法,其特征在于,还包括:
    所述第一装置从广播发起终端接收第一请求,所述第一请求用于请求广播所述第一数据。
  14. 根据权利要求10-13任一所述的方法,其特征在于,所述广播发起终端具有请求广播所述第一数据的权限。
  15. 根据权利要求1-14任一所述的方法,其特征在于,所述第二终端具有广播所述第一数据的权限。
  16. 根据权利要求1-15任一所述的方法,其特征在于,还包括:
    所述第一装置获取更新后的广播决策信息;
    所述第一装置根据所述更新后的广播决策信息判断是否更新所述第二终端;
    若判断更新所述第二终端,根据所述更新后的广播决策信息和所述第一范围确定新的第二终端。
  17. 一种广播的方法,其特征在于,包括:
    第一终端生成广播决策信息;其中,所述广播决策信息用于确定所述第一终端是否广播具有特定传输范围的数据,所述广播决策信息包括移动信息,所述移动信息用于指示所述第一终端的位置;
    所述第一终端向第一装置发送所述广播决策信息。
  18. 根据权利要求17所述的方法,其特征在于,还包括:
    所述第一终端从第二装置接收配置信息,所述配置信息用于指示所述第一终端广播传输范围为第一范围第一数据。
  19. 根据权利要求18所述的方法,其特征在于,所述配置信息包括第一标识,所述第一标识用于识别广播的数据;其中,所述第一数据携带所述第一标识。
  20. 根据权利要求17-19任一所述的方法,其特征在于,所述广播决策信息还包括:
    终端能力信息,所述终端能力信息用于指示所述第一终端的通信覆盖范围。
  21. 根据权利要求17-20任一所述的方法,其特征在于,所述广播决策信息还包括:
    信道质量信息,所述信道质量信息用于指示所述第一终端与其他终端之间的信道质量。
  22. 根据权利要求17-21任一所述的方法,其特征在于,所述移动信息还包括:
    所述第一终端的移动方向或者移动速度。
  23. 一种广播的方法,其特征在于,包括:
    第一终端向第一装置发送第一请求,所述第一请求用于请求广播传输范围为第一范围的第一数据;
    所述第一终端从第一装置接收响应于所述第一请求的第一响应,所述第一响应用于指示广播所述第一数据;
    所述第一终端广播所述第一数据。
  24. 根据权利要求23所述的方法,其特征在于,
    所述第一请求包括第一标识,所述第一标识用于识别广播的数据;
    所述第一数据携带所述第一标识。
  25. 根据权利要求23所述的方法,其特征在于,
    所述第一响应包括第一标识,所述第一标识用于识别广播的数据;
    所述第一数据携带所述第一标识。
  26. 根据权利要求23-25任一所述的方法,其特征在于,所述第一请求包括用于指示所述第一范围的信息。
  27. 一种通信装置,包括处理器,其特征在于,
    所述处理器用于从存储器读取指令,运行所述指令以实现如权利要求1-16任一所述的方法。
  28. 一种通信装置,包括处理器,其特征在于,
    所述处理器用于从存储器读取指令,运行所述指令以实现如权利要求17-22任一所述的方法。
  29. 一种通信装置,包括处理器,其特征在于,
    所述处理器用于从存储器读取指令,运行所述指令以实现如权利要求23-26任一所述的方法。
  30. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在通信装置上执行时,使得所述通信装置实现如权利要求1-26任一所述的方法。
PCT/CN2020/110565 2019-08-23 2020-08-21 广播的方法、装置和系统 WO2021036941A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20855966.6A EP4013081A4 (en) 2019-08-23 2020-08-21 BROADCASTING METHOD, DEVICE AND SYSTEM
US17/677,744 US20220182795A1 (en) 2019-08-23 2022-02-22 Broadcast method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910785975.2 2019-08-23
CN201910785975.2A CN112423239B (zh) 2019-08-23 2019-08-23 广播的方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/677,744 Continuation US20220182795A1 (en) 2019-08-23 2022-02-22 Broadcast method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2021036941A1 true WO2021036941A1 (zh) 2021-03-04

Family

ID=74685579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110565 WO2021036941A1 (zh) 2019-08-23 2020-08-21 广播的方法、装置和系统

Country Status (4)

Country Link
US (1) US20220182795A1 (zh)
EP (1) EP4013081A4 (zh)
CN (1) CN112423239B (zh)
WO (1) WO2021036941A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197144A1 (en) * 2022-04-12 2023-10-19 Qualcomm Incorporated Groupcast or broadcast user equipment to user equipment relaying
CN115022232B (zh) * 2022-07-06 2023-05-16 中国联合网络通信集团有限公司 组播组的管理方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130281110A1 (en) * 2012-04-18 2013-10-24 Google Inc. Using peer devices to locate a mobile device
CN103404202A (zh) * 2012-08-08 2013-11-20 华为终端有限公司 一种确定中继设备的方法、站点、接入点、中继设备及系统
WO2016074137A1 (zh) * 2014-11-10 2016-05-19 华为技术有限公司 一种近距离业务实现的方法、相关装置和系统
CN107040995A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 车联网通信v2x消息的广播方法及装置、mbms承载的建立方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716803B (zh) * 2013-12-03 2017-06-27 西安交通大学 一种无线传感器网络中继节点部署方法
CN103686743B (zh) * 2013-12-31 2017-02-15 遵义天义利威机电有限责任公司 基于图论的d2d通信信道资源分配方法
CN103747507B (zh) * 2014-01-28 2015-08-12 宇龙计算机通信科技(深圳)有限公司 通信模式的选择方法和选择装置、终端、基站
CN105992157A (zh) * 2015-02-06 2016-10-05 北京信威通信技术股份有限公司 一种网络辅助的d2d中继多播方法
WO2018119667A1 (zh) * 2016-12-27 2018-07-05 华为技术有限公司 一种中继传输的方法、相关设备及系统
CN109996306B (zh) * 2017-12-29 2022-02-25 华为技术有限公司 通信方法和通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130281110A1 (en) * 2012-04-18 2013-10-24 Google Inc. Using peer devices to locate a mobile device
CN103404202A (zh) * 2012-08-08 2013-11-20 华为终端有限公司 一种确定中继设备的方法、站点、接入点、中继设备及系统
WO2016074137A1 (zh) * 2014-11-10 2016-05-19 华为技术有限公司 一种近距离业务实现的方法、相关装置和系统
CN107040995A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 车联网通信v2x消息的广播方法及装置、mbms承载的建立方法

Also Published As

Publication number Publication date
EP4013081A4 (en) 2023-01-11
EP4013081A1 (en) 2022-06-15
CN112423239A (zh) 2021-02-26
US20220182795A1 (en) 2022-06-09
CN112423239B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
Shrestha et al. Challenges of future VANET and cloud-based approaches
CN106162511B (zh) 一种d2d中继节点的确定、使用方法及装置
CN110167190A (zh) 会话建立方法和设备
Altintas et al. Making cars a main ICT resource in smart cities
Sami Oubbati et al. U2RV: UAV‐assisted reactive routing protocol for VANETs
JP6983169B2 (ja) メッセージマルチキャスト方法、メッセージブロードキャスト方法およびデバイス
US20210099870A1 (en) Method and apparatus for performing authorization for unmanned aerial system service in wireless communication system
US20220182795A1 (en) Broadcast method, apparatus, and system
CN107005890B (zh) 用于下行链路机器对机器通信的系统和方法
EP3863314A1 (en) Method and apparatus for determining security protection mode
Hagenauer et al. Parked cars as virtual network infrastructure: Enabling stable V2I access for long-lasting data flows
TW202239229A (zh) 位置輔助的車載系統(ivs)數據機配置管理
JP2019502331A (ja) ネットワーク管理側及びユーザー装置側の装置及び方法、中央管理装置
Silva et al. Towards the opportunistic combination of mobile ad-hoc networks with infrastructure access
US10993177B2 (en) Network slice instance creation
CN113727331B (zh) 5g基站部署方法及装置
Zhou et al. Trajectory-based reliable content distribution in D2D-based cooperative vehicular networks: A coalition formation approach
Ho et al. An efficient broadcast technique for vehicular networks
CN116250214A (zh) 避免环路的方法及装置
Shafiee et al. Hybrid multi-technology routing in heterogeneous vehicular networks
Picone et al. Communication paradigms and literature analysis
Hagenauer et al. Cars as a main ICT resource of smart cities
Prasad et al. Performance of tracking public transport in heterogeneous networks
EP4319436A1 (en) Wireless communications for sidelink ranging
US20240031929A1 (en) Connection Establishment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020855966

Country of ref document: EP

Effective date: 20220309