WO2021036849A1 - Snmp链路检测方法、装置、通信设备及存储介质 - Google Patents

Snmp链路检测方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2021036849A1
WO2021036849A1 PCT/CN2020/109615 CN2020109615W WO2021036849A1 WO 2021036849 A1 WO2021036849 A1 WO 2021036849A1 CN 2020109615 W CN2020109615 W CN 2020109615W WO 2021036849 A1 WO2021036849 A1 WO 2021036849A1
Authority
WO
WIPO (PCT)
Prior art keywords
snmp
link
link detection
interaction information
request message
Prior art date
Application number
PCT/CN2020/109615
Other languages
English (en)
French (fr)
Inventor
万齐根
Original Assignee
南京中兴新软件有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中兴新软件有限责任公司 filed Critical 南京中兴新软件有限责任公司
Publication of WO2021036849A1 publication Critical patent/WO2021036849A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/0213Standardised network management protocols, e.g. simple network management protocol [SNMP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • H04L41/046Network management architectures or arrangements comprising network management agents or mobile agents therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route

Definitions

  • the present invention relates to the field of communication technology, and in particular to an SNMP (Simple Network Management Protocol, Simple Network Management Protocol) link detection method, device, communication equipment and storage medium.
  • SNMP Simple Network Management Protocol, Simple Network Management Protocol
  • SNMP is a set of network management protocols defined by the Internet Engineering Task Force (IETF). The protocol is based on the Simple Gateway Monitoring Protocol (SGMP) and can be loaded onto multiple transmission protocols , Such as the most widely used UDP (User Datagram Protocol, User Datagram Protocol).
  • SGMP Simple Gateway Monitoring Protocol
  • UDP User Datagram Protocol
  • SNMP uses a special form of the client/server model: the management station/agent model.
  • An SNMP management station can remotely manage multiple network devices supporting SNMP protocol (embedded SNMP agent), and an SNMP agent can also be managed by multiple SNMP management stations at the same time, including monitoring network status, modifying network device configuration, and receiving network Event warning, etc.
  • the management and maintenance of the network is realized through the exchange of SNMP messages between the SNMP management station and the SNMP agent.
  • ICMP Internet Control Message Protocol
  • the SNMP link detection method, device, communication equipment, and storage medium provided by the embodiments of the present invention solve the problem of detecting SNMP links based on ICMP messages at the IP layer in related technologies, and cannot perform SNMP detection on the business layer above the IP layer.
  • the link condition is detected, which leads to poor accuracy of SNMP link detection, which affects the operation and maintenance of the system.
  • the embodiment of the present invention provides a simple network management protocol SNMP link detection method, which includes: obtaining the SNMP link between the SNMP management station device and the SNMP agent device, and the SNMP service The interaction information of the link detection message exchange at the layer; and the status of the SNMP link is determined according to the acquired interaction information.
  • the embodiment of the present invention also provides a simple network management protocol SNMP link detection device, including: an information acquisition module for acquiring the SNMP between the SNMP management station device and the SNMP agent device On the link, the interaction information of link detection message interaction is performed at the SNMP service layer; the processing module is used to determine the status of the SNMP link according to the acquired interaction information.
  • an embodiment of the present invention also provides a communication device, including a processor, a memory, and a communication bus; the communication bus is used to connect the processor and the memory; The computer program stored in the memory is executed to realize the steps of the SNMP link detection method as described above.
  • embodiments of the present invention also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program can be executed by a first processor to Implement the steps of the SNMP link detection method described above.
  • FIG. 1 is a schematic flowchart of an SNMP link detection method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flow chart of the SNMP link detection method in application scenario 1 of the first embodiment of the present invention
  • FIG. 3 is a schematic flow chart of the SNMP link detection method in the second application scenario of the first embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of an SNMP link detection method in application scenario 3 of Embodiment 1 of the present invention.
  • FIG. 5 is a schematic flow chart of the SNMP link detection method in application scenario 4 of the first embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an SNMP link detection device according to the third embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of an SNMP link detection method according to the third embodiment of the present invention.
  • FIG. 8 is a schematic diagram of message interaction between a network element device and a network management device according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of the structure of a network element device according to the third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the layer structure of the third embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a communication device according to Embodiment 4 of the present invention.
  • the SNMP link detection method provided in this embodiment includes:
  • S101 Acquire interactive information on the SNMP link between the SNMP management station device and the SNMP agent device, and perform link detection message interaction at the SNMP service layer.
  • the SNMP management station device and the SNMP agent device can be flexibly set according to specific application scenarios.
  • the SNMP management station device may be but not limited to a network management device
  • the SNMP agent device may be but not limited to a network element device provided with an SNMP agent.
  • S102 Determine the status of the SNMP link according to the acquired interaction information.
  • S101 and S102 can be executed by the SNMP agent device, or by the SNMP management station device, or by the SNMP management station device and other third-party communication devices other than the SNMP agent device; Specific application scenarios can be flexibly selected and determined.
  • the interaction information of the link detection message interaction at the SNMP service layer may include, but is not limited to, at least one of the following:
  • Method 1 Obtain the first request message interaction information of the first link detection request message sent by the SNMP management station device to the SNMP agent device, and the first link detection response message sent by the SNMP agent device to the SNMP management station device A response message exchange information; compared with the SNMP agent device, this embodiment calls this method a passive monitoring mode;
  • Method 2 Obtain the second request message interaction information of the second link detection request message sent by the SNMP agent device to the SNM management station device, and the first link detection response message sent by the SNMP management station device to the SNMP agent device 2.
  • Response message interaction information compared with the SNMP agent device, this embodiment refers to this mode as the active monitoring mode.
  • first link detection request message and the second link detection request message in this embodiment may be various messages capable of realizing link state detection, for example, heartbeat detection messages (such as SNMP GET heartbeat message) or keepalive trap message (Keepalive Trap message).
  • heartbeat detection messages such as SNMP GET heartbeat message
  • Keepalive Trap message keepalive Trap message
  • the first link detection request message may be set as a heartbeat detection message
  • the second link detection request message may be a keep-alive trap message.
  • interactive information can be acquired based on any of the above-mentioned methods 1 and 2, and the status of the SNMP link can be determined based on the acquired interactive information; the above-mentioned methods 1 and 2 can also be used flexibly. To determine the status of the SNMP link.
  • this embodiment is described below by taking several application scenarios as examples.
  • Application scenario 1 SNMP link detection based on passive monitoring mode
  • S201 Obtain the first request message interaction information of the first link detection request message sent by the SNMP management station device to the SNMP agent device, and the first link detection response message sent by the SNMP agent device to the SNMP management station device.
  • Response message interaction information that is, the acquired interaction information includes the first request message interaction information and the first response message interaction information.
  • S202 Determine the first link detection request message and/or the first link detection response message interaction between the SNMP management station device and the SNMP agent device according to the first request message interaction information and the first response message interaction information When abnormal, determine the SNMP link status as the SNMP agent device out-of-control status T.
  • the first request message interaction information may be the first request message sending information for the SNMP management station device, and may be the first request message receiving information for the SNMP agent device.
  • Information, the transmission and/or reception of the first link detection request message can be determined according to the first request message interaction information; correspondingly, the first response message interaction information for the SNMP management station device may be the first
  • the response message reception information, for the SNMP agent device may be the first response message sending information, and the sending and/or receiving status of the first link detection response message may be determined according to the first response message interaction information.
  • the first link detection request message and/or the first link detection response message may be determined based on the statistics of the first request message reception information and the first response message transmission information on the SNMP agent device side.
  • the abnormality may include, but is not limited to, SNMP link packet loss (packet loss of the first link detection request message or packet loss of the first link detection response message) and SNMP agent equipment and/or SNMP
  • An internal abnormality in the management station device causes an abnormality in the sending of the first response message and/or the sending of the first request message.
  • the SNMP management station device side may also perform statistics on the first request message sending information and the first response message receiving information to determine the first link detection request message and/or the first link detection Whether the response message interaction is abnormal.
  • the SNMP management station device when the SNMP management station device sends the first link detection request message to the SNMP agent device, it may follow the method of sending the first link detection request message to the SNMP agent device in the adjacent first cycle.
  • the sequence number of the first message is continuous. That is, in this example, the time interval between two first link detection request messages with consecutive first message sequence numbers is a first cycle; therefore, when the SNMP agent device in this embodiment continuously receives When the first message sequence numbers of the two first link detection request messages are not continuous, it means that there is packet loss on the SNMP link between the SNMP management station device and the SNMP agent device.
  • the abnormal position of the first link detection request message sent and received by the intermediate device can also be determined. That is, the location of the point of failure.
  • the application understands that the first link detection response message in this embodiment may also adopt the first message sequence number corresponding to the corresponding first link detection request message.
  • the first period may be a period of a fixed duration; in other examples of this embodiment, the first period may also be dynamically changed. For example, in some examples, when the SNMP service of the SNMP agent device (such as the network element device) is busy, the SNMP management station device may increase the first cycle.
  • the SNMP agent device can determine the current length of the first cycle according to the time interval between two consecutively received first message sequence numbers of consecutive first link detection request messages; the SNMP agent in this embodiment The device can save the obtained duration of the first cycle and the IP address of the corresponding SNMP management station device, etc., and can determine whether the first link sent by the SNMP management station device is received when the first cycle arrives based on the obtained duration of the first cycle Probe request message.
  • Application scenario 2 SNMP link detection based on active monitoring mode
  • the SNMP link detection method in this embodiment is shown in Figure 3, including:
  • S301 Obtain the second request message interaction information of the second link detection request message sent by the SNMP agent device to the SNM management station device, and the second request message interaction information of the second link detection response message sent by the SNMP management station device to the SNMP agent device.
  • Response message interaction information that is, the interaction information includes the second request message interaction information and the second response message interaction information.
  • S302 Determine the second link detection request message and/or the second link detection response message interaction between the SNMP management station device and the SNMP agent device according to the second request message interaction information and the second response message interaction information When abnormal, determine the SNMP link status as the SNMP agent device out-of-control status T.
  • the second request message interaction information may be the second request message reception information for the SNMP management station device, and may be the second request message sending information for the SNMP agent device.
  • Information, the transmission and/or reception of the second link detection request message can be determined according to the second request message interaction information; correspondingly, the second response message interaction information may be the second response message for the SNMP management station device.
  • the response message sending information, for the SNMP agent device may be the second response message receiving information, and the sending and/or receiving status of the second link detection response message may be determined according to the second response message interaction information.
  • the second link detection request message and/or the second link detection response message may be determined based on the statistics of the second request message sending information and the second response message receiving information on the SNMP agent device side. Whether the text interaction is abnormal, the abnormality may include, but is not limited to, SNMP link packet loss (packet loss of the second link detection request message or packet loss of the second link detection response message) and SNMP agent equipment and/or SNMP
  • the internal abnormality of the management station device causes an abnormality in the second response message sending information and/or the second request message sending information.
  • the second link detection request message and/or the second link detection can also be determined based on the statistics of the second request message reception information and the second response message transmission information on the device side of the SNMP management station. Whether the response message interaction is abnormal.
  • the SNMP agent device when the SNMP agent device sends the second link detection request message to the SNMP management station device, it may follow the method of sending the second link detection request message to the SNMP agent device in the adjacent second cycle.
  • the second message sequence number is continuous. That is, in this example, the time interval between two second link detection request messages with consecutive second message sequence numbers is a second cycle; therefore, when the SNMP management station device in this embodiment continuously receives When the second message sequence numbers of the two second link detection request messages are not continuous, it means that there is packet loss on the SNMP link between the SNMP management station device and the SNMP agent device.
  • the abnormal position of the second link detection request message sent and received by the intermediate device can also be determined. That is, the location of the point of failure.
  • the second link detection response message in this embodiment may also adopt the second message sequence number corresponding to the corresponding second link detection request message.
  • the second period may also be a period of a fixed duration; in other examples of this embodiment, the second period may also be dynamically changed. For example, in some examples, when the SNMP service of the SNMP agent device (for example, the network element device) is busy, the SNMP agent device may increase the second cycle.
  • the SNMP management station device can determine the duration of the current second cycle according to the time interval between two consecutively received second message sequence numbers that are consecutive second link detection request messages; SNMP in this embodiment
  • the management station device can save the obtained duration of the second cycle and the IP address of the corresponding SNMP agent device, and can determine whether the second link sent by the SNMP management station device is received when the second cycle arrives based on the obtained duration of the second cycle Path detection request message.
  • Application scenario 3 SNMP link detection based on the first passive monitoring mode and then combined with the active detection mode
  • the passive monitoring mode can be used to monitor the status of the SNMP link as shown in Figure 2.
  • the SNMP link status is the SNMP agent device disconnected state T, see Figure 4, which may also include:
  • S401 Acquire the second request message interaction information of the second link detection request message sent by the SNMP agent device to the SNM management station device, and the second request message interaction information of the second link detection response message sent by the SNMP management station device to the SNMP agent device Response message exchange information.
  • the method of obtaining the interaction information of the second request message in this application scenario, and the method of judging whether the interaction between the second link detection request message and the second link detection response message is abnormal can be found in but not limited to the second scenario for public appeal The method shown will not be repeated here.
  • Application scenario 4 SNMP link detection based on the first active monitoring mode and then combined with the passive detection mode
  • S501 Obtain the first request message interaction information of the first link detection request message sent by the SNMP management station device to the SNMP agent device, and the first link detection response message sent by the SNMP agent device to the SNMP management station device. Response message exchange information.
  • S502 According to the first request message interaction information and the first response message interaction information, it is determined that the interaction of the first link detection request message and the first link detection response message between the SNMP management station device and the SNMP agent device is normal , The status of the SNMP link is updated from the SNMP agent device out of control status to the SNMP agent device available status.
  • the method of obtaining the interaction information of the first request message in this application scenario and the method of determining whether the interaction between the first link detection request message and the first link detection response message is abnormal can be found in, but not limited to, the above-mentioned application scenario 1.
  • the method of display will not be repeated here.
  • the first request message interaction information and the first response message interaction information, and the second request message interaction information and the second response message interaction information can be acquired at the same time, or the first request can be acquired interactively Message interaction information and first response message interaction information, as well as second request message interaction information and second response message interaction information; in this application scenario, according to the first request message interaction information and the first response message
  • the interaction information, as well as the second request message interaction information and the second response message interaction information determine the first link detection request message and the first link detection response message interaction between the SNMP management station device and the SNMP agent device When it is normal, and/or when it is determined that the interaction of the second link detection request message and the second link detection response message between the SNMP management station device and the SNMP agent device is normal, the status of the SNMP link is determined to be the SNMP agent device Available status; otherwise, it is determined that the interaction between the first link detection request message and the first link detection response message between the SNMP management station device and the SNMP agent device is abnormal, and the
  • the status of the SNMP link when it is determined through but not limited to the above examples that the status of the SNMP link is the SNMP agent device disconnected state, it may further include:
  • the status of the SNMP link is updated from the SNMP agent device out-of-control state T to the SNMP agent device available state R.
  • At least one of the first link detection request message and the second link detection request message May include at least two SNMP basic management information base MIB quantities, that is, at least two basic MIB quantities are combined to distinguish them from real SNMP service access messages.
  • a corresponding detection identifier can also be added to the link detection request message to distinguish the link detection request message from the real SNMP service access message, thereby avoiding conflicts.
  • the content of at least one of the first link detection request message and the second link detection request message may be a combination of sysName, sysDescription, and sysUptime, but is not limited to the above three combinations.
  • the SNMP link detection method provided in this embodiment can well understand the SNMP link status between the SNMP management station device and the SNMP agent device in real time, and effectively eliminate the SNMP link status of the SNMP agent device because the service layer cannot be detected. Circumstances lead to missing alarms, and a means is provided to assist in locating problems with the network lines and SNMP links between the SNMP management station equipment and the SNMP agent equipment.
  • this embodiment takes the SNMP management station device as the network management device and the SNMP agent device as the network element device as an example on the basis of the foregoing embodiment.
  • the detection of the SNMP link status between the network management device and the network element device is Example to illustrate.
  • description will be made with reference to the active detection mode of the network element equipment and the passive detection mode of the network element, as well as the combination of the two.
  • the network management device regularly sends SNMP GET (Heart Beat) messages (that is, the first link detection request message) to the network element devices periodically (that is, the first cycle), and the content of the SNMP GET heartbeat message is sysName, sysDescription, and sysUptime.
  • SNMP GET Heart Beat
  • the SNMP GET heartbeat message is selected as the SNMP basic MIB message, so all SNMP agent devices (that is, all network element devices) support it. In addition, in order to avoid the conflict between the heartbeat message and the real SNMP service access message, it can be accurately distinguished.
  • the SNMP GET heartbeat message selects messages for joint access by multiple MIBs.
  • the MIBs are simple enough to implement. Relatively selecting MIBs with complex services can avoid MIB access exceptions caused by complex services.
  • the SNMP basic MIB in RFC1213 can be selected, and the content of the SNMP GET heartbeat message is selected as sysName, sysDescription, and sysUptime, but it is not limited to the above three combinations.
  • the SNMP GET heartbeat message may use a continuous sequence number (that is, the first message sequence number), that is, the Request Id, which has a value of (0 to 65535). After the Request Id reaches the maximum, it starts from 0 again.
  • the advantages of using consecutive sequence numbers for SNMP GET heartbeat messages may include, but are not limited to: the network element device can accurately confirm the polling cycle, and the SNMP GET heartbeat messages with two consecutive sequence numbers are used as a first In one cycle, if the sequence numbers of two SNMP GET heartbeat messages are not consecutive, there will be packet loss in the SNMP GET heartbeat message, and the calculation in the first cycle also fails.
  • the intermediate device between the network element device and the network management device can monitor the sequence number of the SNMP GET heartbeat message to determine the location of the SNMP network packet loss. For example, on the intermediate device A, it is found that the sequence numbers of two consecutive SNMP GET heartbeat messages are not consecutive. The sequence number of an SNMP GET heartbeat message and the sequence number of the previous SNMP GET heartbeat message are not in the relationship of incrementing the step length by 1. It is considered that the upper layer device of the intermediate device A is away from the network management device, and network packet loss occurs.
  • the network management device periodically sends packets.
  • the first period may be fixed or not.
  • the first period of the network management device can be based on the pre-determined period.
  • the rule is automatically lengthened, and the network element device accurately calculates the first cycle based on two consecutive SNMP GET heartbeat messages with serial numbers.
  • the network element device monitors the SNMP Get heartbeat message sent by the network management device, automatically calculates the first cycle, and records the IP address of the network management device and the first cycle.
  • the network element device monitors that it does not receive the SNMP GET heartbeat message in more than one cycle, it is deemed that the network element device and the network management device are out of control, and the SNMP link may have a link problem, and the SNMP link status is determined to be managed State T.
  • the network element device detects the SNMP Get heartbeat message sent by the network management device, and automatically calculates the first cycle. If the cycle time changes, the network management device IP address and the first cycle record are updated.
  • the network element device can set the message matching rules to count SNMP Get heartbeat messages at the packet receiving and sending level, and record the number of SNMP Get heartbeat message requests for each network management device IP and the number of network element devices SNMP Get heartbeat response messages.
  • the network element device If the number of SNMP Get heartbeat message requests is greater than the number of SNMP Get heartbeat messages that the network element device responds to in one cycle, it can be determined that the network element device has a problem, such as abnormal processing of the network element device.
  • the network element device monitors that it has not received the network management device SNMP Get heartbeat message in more than one cycle, but the network port of the network element device monitors the number of SNMP Get heartbeat message requests and the network element device responds to the SNMP Get heartbeat message request. If the numbers are equal, it can be determined that there is a problem with the link between the network element equipment and the network management equipment.
  • the network element device periodically (that is, the second cycle) sends Keepalive Trap (that is, the second link detection request message) to the network management device ), the network management device responds to the Keepalive Trap (that is, the second link detection response message).
  • the Keepalive Trap message may also carry sysName, sysDescription, and sysUptime content, but it is not limited to the above three combinations.
  • the network management device responds to the Keepalive Trap message of the network element device. If the network element device does not receive the Keepalive Trap message response from the network management device within 1 cycle, it is regarded as the network element device and the network management device. When disconnection occurs, the SNMP link status is set to T.
  • the protocol statistics module on the network port side of the network element device can count the number of Keepalive Trap requests and responses. If the network element device does not receive the network management device keepalive Trap message response within one cycle, but the protocol stack of the network element device The message monitoring module counts that the number of keepalive trap requests and responses is equal, and it can be determined that the keepalive trap sent by the network element device is abnormal, that is, the internal sending module of the network element device is abnormal. If the number of keepalive trap request packets is greater than the number of received response packets, it is determined that the line between the network element device and the network management device is abnormal.
  • the network management device can periodically poll for SNMP Get heartbeat messages. After the network element device detects a link problem T, it will proactively report several Keepalive traps, which can reduce the load on the network management device. If the network element device receives To the Keepalive Trap response, reset the link status to R, which avoids unexpected link disconnection alarms caused by abnormal link jitter.
  • the network element device after the network element device actively Keepalive Trap detects a link problem T, if it receives an SNMP Get heartbeat message from the network management device, it can directly reset the SNMP link status to R, or return the SNMP Get heartbeat message normally. When responding to the message, reset the SNMP link state to R.
  • the network element device After the network element device detects the SNMP link status as T in the active or passive mode, if the service channel of the network management device is normally SNMP accessing the network element device at this time, the network element device receives the SNMP access packet and resets the SNMP link status to R.
  • both SNMP heartbeat messages and keepalive trap messages can use consecutive serial numbers. Any intermediate device between the network element device and the network management device can monitor the SNMP heartbeat message and/or keepalive trap. The sequence number of the message. If the sequence number is not continuous, it means that the SNMP link between the intermediate device and the network management device is abnormal. By determining the start position of the discontinuous SNMP heartbeat message and/or keepalive Trap message, you can Determine the distance between the fault point and the network management equipment.
  • This embodiment provides an SNMP link detection device.
  • the SNMP link detection device can be set in SNMP agent equipment, or set in SNMP management station equipment, or set outside of SNMP management station equipment and SNMP agent equipment. Other third-party communication equipment.
  • the SNMP link detection device provided in this embodiment is shown in FIG. 6, and includes:
  • the information acquisition module 601 is used to acquire the interaction information of the SNMP service layer on the SNMP link between the SNMP management station device and the SNMP agent device; for the specific acquisition process, please refer to the interaction in the above embodiments How to obtain the information will not be repeated here.
  • the processing module 602 is configured to determine the status of the SNMP link according to the acquired interaction information; for the specific determination process, please refer to the above-mentioned embodiments, which will not be repeated here.
  • this embodiment will be described below with an application scenario as an example.
  • the process of the SNMP link detection method in this embodiment includes:
  • the network element device receives the SNMP get heartbeat message sent by the network management device.
  • the network management device periodically sends an SNMP get heartbeat message to the network element device.
  • the content of the SNMP Get heartbeat message is sysName, sysDescription, and sysUptime information.
  • the SNMP Get heartbeat message uses continuous Request Id, whose value is (0 ⁇ 65535).
  • the network element responds to the SNMP Get heartbeat message (that is, sends an SNMP Get heartbeat response message), calculates the first cycle t1, and records the network management IP and the first cycle t1.
  • S703 Determine whether the SNMP Get heartbeat message is received normally, if yes, go to S704; otherwise, go to S701.
  • the network element device does not receive the SNMP Get heartbeat message within 1 cycle, or if the Request Id of the SNMP Get heartbeat message is not continuous, set the SNMP link status between the network element device and the network management device to the unmanaged state T .
  • the network element device responds to the SNMP Get heartbeat message and calculates the first cycle. If the first cycle changes, the new cycle time and network management IP are recorded.
  • S704 Set the SNMP link state between the network element device and the network management device to the unmanaged state T.
  • the network element device actively sends a keepalive Trap message to the network manager periodically.
  • Keepalive Trap messages use continuous Request Id, whose value is (0 ⁇ 65535).
  • the network management device confirms the keepalive trap message and responds with the SNMP Set, and the response message RequsetId is the same as the keepalive trap message.
  • the network element device does not receive a Keepalive response from the network device manager within one cycle, the network element is considered to be out of control, and the SNMP link state between the network element and the network manager is set to the unmanaged state T.
  • the network element device receives the SNMP message that the network management device normally SNMP accesses the network element. If the SNMP link state between the network element and the network management device is in the unmanaged state T at this time, it is reset to the state R.
  • the link detection message includes SNMP Get heartbeat message and Keep alive trap message, both of which use continuous Request Id with a value of (0 to 65535).
  • the determination of the corresponding detection period will change.
  • check whether the message is a continuous sequence number Request Id Or statistics on the overall distribution of sequence numbers can easily determine whether there is packet loss upon reaching the intermediate device, and check the statistics of all intermediate devices to determine the exact location of the intermediate device that lost the packet.
  • FIG. 8 is a schematic diagram of message interaction between the network element device and the network management device provided by this embodiment, which includes:
  • the network element device In the passive monitoring mode of the network element device, the message interaction between the network element device and the network management device, the network element device passively receives the SNMP Get heartbeat message periodically sent by the network management device, and sends a response to the network management device.
  • Network element equipment active monitoring mode, message interaction between network element equipment and network management equipment, network element equipment actively periodically sends Keepalive trap messages to network management equipment, network management equipment confirms Keepalive trap, and confirms the message (ie response Message) sent to the network element equipment.
  • Active/passive combined monitoring mode of network element equipment message interaction between network element equipment and network management equipment, active and passive packet sending/response between network element equipment and network management equipment, normal SNMP services between network element equipment and network management equipment Channel, the combined mode of the three detects SNMP links.
  • This embodiment avoids the misjudgment of the state due to the SNMP link jitter in a single detection mechanism, thereby reducing the false alarms of the SNMP link disconnection detection.
  • Fig. 9 is a schematic structural diagram of an exemplary SNMP link detection apparatus for network element equipment provided by an embodiment of the present invention.
  • the information acquisition module and processing module may include, but are not limited to, the network port protocol message statistics module 901, the network element protocol stack module 902, the SNMP heartbeat message processing and statistics module 903, the SNMP keep alive trap message processing and statistics module 904, and SNMP Business message processing and statistics module 905.
  • the SNMP get heartbeat message between the network management device and the network element device passes through the network port protocol message statistics module 901, and the classification statistics are shown in Table 1 below:
  • the number of message requests and responses between the network management 10.1.1.1 and the network element equipment are equal, the detection message from the opposite end can be received every cycle, and the SNMP link is normal.
  • the number of SNMP get heartbeat requests and the number of responses are not equal, and the SNMP link is abnormal.
  • the SNMP heartbeat message processing and statistics module 903 processes the SNMP get heartbeat message record information of the network management device as shown in Table 2:
  • the processing of the SNMP heartbeat message is consistent with the statistics recorded by the statistics module 903 and the statistics of the network port protocol message statistics module 901.
  • the sequence numbers of the SNMP Get detection message are continuous, the time interval between consecutive sequence numbers is detected. This is the first cycle of the current network management system. If it is detected that the sequence numbers of the two probes are not continuous, it means that packet loss has occurred and the SNMP link is abnormal.
  • the number of SNMP get heartbeat message responses is less than the number of requests, but the statistics of the network port protocol message statistics module 901 are equal, which means that the network element device packet sending module sends abnormal messages.
  • the message statistics record information of the SNMP keep alive trap message processing and statistics module 904 is shown in Table 4 below;
  • the network management device 10.1.1.1 correspondingly records that the Keepalive trap response message is less than the Keepalive trap request count. Combined with the statistics of the network port protocol message statistics module 901 in Table 1, the number of requests and responses are equal, indicating that the response message has reached the network element device, but If the SNMP keep alive trap message processing and statistics module 904 is not reached, the internal network element protocol stack module 902 or the SNMP module of the network element may be abnormal, and the link state T is set.
  • the fault diagnosis module post-processing module (not shown in the figure) can collect all key information of the device, including the current time, CPU utilization, memory usage, message pressure, and other critical task logs .
  • the network element device When the network element device subsequently receives any SNMP service message from the current network management device, it can reset the link status to R, and can set the network port protocol message statistics module 901, SNMP heartbeat message processing and statistics module 903, SNMP The statistic value of the keepalive trap message processing and statistic module 904 is cleared to 0 to avoid misjudgment of the SNMP link status in subsequent cycles.
  • the SNMP service packet processing and statistics module 905 detects that the SNMP access frequency reaches the threshold (for example, 256pps), and can increase the second cycle of Keepalive trap. Similarly, during the period when the network manager frequently accesses the network element equipment, it will also get the first SNMP get heartbeat packet. The dynamic increase in one cycle can reduce the load of the network management.
  • the threshold for example, 256pps
  • the network port protocol message statistics module 901, the SNMP heartbeat message processing and statistics module 903, and the SNMP keepalive trap message processing and statistics module 904 are designed separately to count the number of received and sent packets in different modules of the network element device. , Determine whether the SNMP link is abnormal due to the problem of the network element itself through the difference of the count, and record the key log information that caused the SNMP link abnormality to assist in positioning; in addition, adjust the detection period according to the packet threshold of the statistics module, which can effectively reduce The network management burden is caused by frequent network element messages arriving at the network management equipment.
  • the related technology judges that the SNMP link between the network element device and the network management device uses ICMP messages for link detection.
  • ICMP message detection belongs to the IP layer, and IP layer detection cannot determine the link of the SNMP service layer. Status, so that the ICMP packet detection detection link status cannot accurately determine the SNMP link status.
  • This embodiment uses SNMP Get heartbeat messages and/or Keepalive trap messages between the network element device and the network management device. Both of these messages are located at the SNMP service layer, which solves that ICMP messages can only detect the IP layer chain.
  • This embodiment also provides a communication device, which may be an SNMP agent device, an SNMP management station device, or a third-party communication device other than the SNMP management station device and the SNMP agent device.
  • the communication device in this embodiment includes a processor 1101, a memory 1102, and a communication bus 1103;
  • the communication bus 1103 is used to implement a communication connection between the processor 1101 and the memory 1102;
  • the processor 1101 may be used to execute a computer program stored in the memory 1102 to implement the steps of the SNMP link detection method in the above embodiments.
  • This embodiment also provides a computer-readable storage medium, which is included in any method or technology for storing information (such as computer-readable instructions, data structures, computer program modules, or other data). Volatile or non-volatile, removable or non-removable media.
  • Computer-readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, charged Erasable Programmable Read-Only Memory) ), flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and that can be accessed by a computer.
  • the computer-readable storage medium in this embodiment can be used to store a computer program, and the computer program can be executed by one or more processors to implement the steps of the SNMP link detection method in the above embodiments. .
  • This embodiment also provides a computer program (or computer software).
  • the computer program can be distributed on a computer-readable medium and executed by a computable device to implement the SNMP link detection method shown in the above embodiments.
  • at least one step shown or described can be performed in a different order from that described in the above-mentioned embodiments.
  • This embodiment also provides a computer program product, including a computer readable device, and the computer readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include the computer-readable storage medium as shown above.
  • the embodiments of the present invention by acquiring the SNMP link between the SNMP management station device and the SNMP agent device, link detection message interaction is performed at the SNMP service layer The interactive information; and then determine the status of the SNMP link according to the acquired interactive information; the embodiment of the present invention can realize the detection of the SNMP link based on the link detection message of the SNMP service layer, so the SNMP link of the service layer can be realized Perform detection to improve the accuracy of SNMP link detection and ensure the normal operation and maintenance of the system.
  • the functional modules/units in the system, and the device can be implemented as software (which can be implemented by computer program code executable by a computing device. ), firmware, hardware and their appropriate combination.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, a physical component may have multiple functions, or a function or step may consist of several physical components. The components are executed cooperatively.
  • Some physical components or all physical components can be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • communication media usually contain computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery medium. Therefore, the present invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Computer And Data Communications (AREA)

Abstract

一种SNMP链路检测方法、装置、通信设备及存储介质,该方法包括:通过获取SNMP管理站设备与SNMP代理设备之间的SNMP链路上,在SNMP业务层进行链路探测报文交互的交互信息(S101);进而根据获取到的交互信息确定SNMP链路的状态(S102)。

Description

SNMP链路检测方法、装置、通信设备及存储介质
相关申请的交叉引用
本申请基于申请号为201910785079.6、申请日为2019年8月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信技术领域,尤其涉及一种SNMP(Simple Network Management Protocol,简单网络管理协议)链路检测方法、装置、通信设备及存储介质。
背景技术
SNMP是由国际互联网工程任务组(The Internet Engineering Task Force,IETF)定义的一套网络管理协议,该协议基于简单网关监视协议(Simple Gateway Monitoring Protocol,SGMP),并可以加载到多种传输协议上,如目前使用最广泛的UDP(User Datagram Protocol,用户数据报协议)。SNMP采用了客户端/服务器(Client/Server)模型的特殊形式:管理站/代理模型。一个SNMP管理站可以远程管理多个支持SNMP协议的网络设备(内嵌SNMP代理),同时一个SNMP代理端也可以同时被多个SNMP管理站管理,包括监视网络状态、修改网络设备配置、接收网络事件警告等。对网络的管理与维护是通过SNMP管理站与SNMP代理之间交互SNMP报文消息来实现的。
当今的网络系统越来越复杂,SNMP数据传输过程中,网络传输错误或丢包及线路中断等现象无法完全避免,运营商迫切需要了解SNMP管理状态和定位出SNMP管理网络问题。在相关技术中,基于IP层的互联网控制报文协议(Internet Control Message Protocol,ICMP)对SNMP链路进行检测,这种检测方式不能对IP层之上的业务层的SNMP的链路情况进行检测,导致SNMP链路检测的准确性差,影响系统的运行维护。
发明内容
本发明实施例提供的一种SNMP链路检测方法、装置、通信设备及存储介质,解决相关技术中基于IP层的ICMP报文对SNMP链路进行检测,不能对IP层之上的业务层SNMP的链路情况进行检测,导致SNMP链路检测准确性差,影响系统的运行维护的问题。
为在至少一定程度上解决上述技术问题,本发明实施例提供一种简单网络管理协议SNMP链路检测方法,包括:获取SNMP管理站设备与SNMP代理设备之间的SNMP链路上,在SNMP业务层进行链路探测报文交互的交互信息;根据获取到的交互信息确定所 述SNMP链路的状态。
为在至少一定程度上解决上述技术问题,本发明实施例还提供一种简单网络管理协议SNMP链路检测装置,包括:信息获取模块,用于获取SNMP管理站设备与SNMP代理设备之间的SNMP链路上,在SNMP业务层进行链路探测报文交互的交互信息;处理模块,用于根据获取到的交互信息确定所述SNMP链路的状态。
为在至少一定程度上解决上述技术问题,本发明实施例还提供一种通信设备,包括处理器、存储器和通信总线;所述通信总线用于将所述处理器和存储器连接;所述处理器用于执行所述存储器中存储的计算机程序,以实现如上所述的SNMP链路检测方法的步骤。
为在至少一定程度上解决上述技术问题,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序可被第一处理器执行,以实现如上所述的SNMP链路检测方法的步骤。
本发明其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本发明说明书中的记载变的显而易见。
附图说明
图1为本发明实施例一的SNMP链路检测方法流程示意图;
图2为本发明实施例一的应用场景一中SNMP链路检测方法流程示意图;
图3为本发明实施例一的应用场景二中SNMP链路检测方法流程示意图;
图4为本发明实施例一的应用场景三中SNMP链路检测方法流程示意图;
图5为本发明实施例一的应用场景四中SNMP链路检测方法流程示意图;
图6为本发明实施例三的SNMP链路检测装置结构示意图;
图7为本发明实施例三的SNMP链路检测方法流程示意图;
图8为本发明实施例三的网元设备和网管设备之间的报文交互示意图;
图9为本发明实施例三的网元设备结构示意图;
图10为本发明实施例三的层结构示意图;
图11为本发明实施例四的通信设备结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一:
本实施例基于SNMP业务层的链路探测报文实现对SNMP链路的检测,因此可实现对业务层SNMP链路进行检测,提升SNMP链路检测的准确性,保证系统的正常运行维护。 为了便于理解,请参见图1所示,本实施例提供的SNMP链路检测方法包括:
S101:获取SNMP管理站设备与SNMP代理设备之间的SNMP链路上,在SNMP业务层进行链路探测报文交互的交互信息。
在本实施例中,SNMP管理站设备和SNMP代理设备可以根据具体应用场景灵活设定。例如在一种应用场景中,SNMP管理站设备可为但不限于网管设备,SNMP代理设备可为但不限于设置有SNMP代理的网元设备。
S102:根据获取到的交互信息确定SNMP链路的状态。
在本实施例的一些示例中,S101和S102可以由SNMP代理设备执行,也可以由SNMP管理站设备执行,或者由SNMP管理站设备和SNMP代理设备之外的其他第三方通信设备执行;可以根据具体应用场景灵活选择确定。
本实施例中,获取SNMP管理站设备与SNMP代理设备之间的SNMP链路上,在SNMP业务层进行链路探测报文交互的交互信息可包括但不限于以下至少之一:
方式一:获取SNMP管理站设备向SNMP代理设备发送第一链路探测请求报文的第一请求报文交互信息,以及SNMP代理设备向SNMP管理站设备发送第一链路探测响应报文的第一响应报文交互信息;相对于SNMP代理设备而言,本实施例称这种方式为被动监测模式;
方式二:获取SNMP代理设备向SNM管理站设备发送第二链路探测请求报文的第二请求报文交互信息,以及SNMP管理站设备向SNMP代理设备发送第二链路探测响应报文的第二响应报文交互信息;相对于SNMP代理设备而言,本实施例称这种方式为主动监测模式。
应当理解的是,本实施例中的第一链路探测请求报文和第二链路探测请求报文可以为各种能实现链路状态检测的报文,例如可以为心跳检测报文(如SNMP GET心跳报文)或保活陷阱报文(Keepalive Trap报文)。例如,一种应用场景中,可设置第一链路探测请求报文为心跳检测报文,第二链路探测请求报文为保活陷阱报文。
应当理解的是,本实施例中可基于上述方式一和方式二中的任意一种获取交互信息,并基于获取的交互信息确定SNMP链路的状态;也可将上述方式一和方式二进行灵活的结合以确定SNMP链路的状态。为了便于理解,本实施例下面以几种应用场景为示例进行说明。
应用场景一:基于被动监测模式实现SNMP链路的检测
本实施例中的SNMP链路检测方法请参见图2所示,包括:
S201:获取SNMP管理站设备向SNMP代理设备发送第一链路探测请求报文的第一请求报文交互信息,以及SNMP代理设备向SNMP管理站设备发送第一链路探测响应报文 的第一响应报文交互信息;也即获取的交互信息包括第一请求报文交互信息和第一响应报文交互信息。
S202:根据第一请求报文交互信息和第一响应报文交互信息确定SNMP管理站设备与SNMP代理设备之间的第一链路探测请求报文和/或第一链路探测响应报文交互异常时,确定SNMP链路的状态为SNMP代理设备脱管状态T。
可选的,在本实施例中,第一请求报文交互信息对于SNMP管理站设备而言,可以为第一请求报文发送信息,对于SNMP代理设备而言,可以为第一请求报文接收信息,可以根据第一请求报文交互信息确定第一链路探测请求报文发送和/或接收的情况;相应的,第一响应报文交互信息对于SNMP管理站设备而言,可以为第一响应报文接收信息,对于SNMP代理设备而言,可以为第一响应报文发送信息,可以根据第一响应报文交互信息确定第一链路探测响应报文发送和/或接收的情况。在一些应用示例中,可以基于SNMP代理设备侧进行第一请求报文接收信息和第一响应报文发送信息的统计,确定第一链路探测请求报文和/或第一链路探测响应报文交互是否异常,该异常可以包括但不限于SNMP链路丢包(第一链路探测请求报文的丢包或第一链路探测响应报文的丢包)以及SNMP代理设备和/或SNMP管理站设备内部异常,导致第一响应报文发送信息和/或第一请求报文发送信息发送异常。在另一些示例中,也可基于SNMP管理站设备侧进行第一请求报文发送信息和第一响应报文接收信息的统计,确定第一链路探测请求报文和/或第一链路探测响应报文交互是否异常。
在本实施例的一些示例中,SNMP管理站设备向SNMP代理设备发送第一链路探测请求报文时,可以遵循在相邻第一周期向SNMP代理设备发送第一链路探测请求报文的第一报文序号为相连续。也即在本示例中,两个第一报文序号连续的两个第一链路探测请求报文之间的时间间隔为一个第一周期;因此当本实施例中SNMP代理设备连续接收到的两个第一链路探测请求报文的第一报文序号不连续时,代表SNMP管理站设备与SNMP代理设备之间的SNMP链路上存在丢包情况。且也可根据SNMP管理站设备与SNMP代理设备之间的中间设备收发第一链路探测请求报文的第一序号的情况,确定中间设备收发第一链路探测请求报文异常的位置,也即出现故障点的位置。且应用理解的是,本实施例中第一链路探测响应报文也可采用与对应第一链路探测请求报文相对应的第一报文序号。
且在本实施例的一些示例中,第一周期可以为固定时长的周期;在本实施例的另一些示例中,第一周期也可以动态变化。例如在一些示例中,当SNMP代理设备(例如网元设备)的SNMP业务繁忙时,SNMP管理站设备可以增长第一周期。且SNMP代理设备可以根据连续接收到的两个第一报文序号为连续的第一链路探测请求报文之间的时间间隔确定出当前的第一周期的时长;本实施例中的SNMP代理设备可以保存得到的第一周期的时 长以及相应SNMP管理站设备的IP地址等,并可基于得到的第一周期的时长确定第一周期到达时是否接收到SNMP管理站设备发送的第一链路探测请求报文。
应用场景二:基于主动监测模式实现SNMP链路的检测
本实施例中的SNMP链路检测方法请参见图3所示,包括:
S301:获取SNMP代理设备向SNM管理站设备发送第二链路探测请求报文的第二请求报文交互信息,以及SNMP管理站设备向SNMP代理设备发送第二链路探测响应报文的第二响应报文交互信息;也即交互信息包括第二请求报文交互信息和第二响应报文交互信息。
S302:根据第二请求报文交互信息和第二响应报文交互信息确定SNMP管理站设备与SNMP代理设备之间的第二链路探测请求报文和/或第二链路探测响应报文交互异常时,确定SNMP链路的状态为SNMP代理设备脱管状态T。
可选的,在本实施例中,第二请求报文交互信息对于SNMP管理站设备而言,可以为第二请求报文接收信息,对于SNMP代理设备而言,可以为第二请求报文发送信息,可以根据第二请求报文交互信息确定第二链路探测请求报文发送和/或接收的情况;相应的,第二响应报文交互信息对于SNMP管理站设备而言,可以为第二响应报文发送信息,对于SNMP代理设备而言,可以为第二响应报文接收信息,可以根据第二响应报文交互信息确定第二链路探测响应报文发送和/或接收的情况。在一些应用示例中,可以基于SNMP代理设备侧进行第二请求报文发送信息和第二响应报文接收信息的统计,确定第二链路探测请求报文和/或第二链路探测响应报文交互是否异常,该异常可以包括但不限于SNMP链路丢包(第二链路探测请求报文的丢包或第二链路探测响应报文的丢包)以及SNMP代理设备和/或SNMP管理站设备内部异常,导致第二响应报文发送信息和/或第二请求报文发送信息发送异常。在另一些示例中,也可基于SNMP管理站设备侧进行第二请求报文接收信息和第二响应报文发送信息的统计,确定第二链路探测请求报文和/或第二链路探测响应报文交互是否异常。
在本实施例的一些示例中,SNMP代理设备向SNMP管理站设备发送第二链路探测请求报文时,可以遵循在相邻第二周期向SNMP代理设备发送第二链路探测请求报文的第二报文序号为相连续。也即在本示例中,两个第二报文序号连续的两个第二链路探测请求报文之间的时间间隔为一个第二周期;因此当本实施例中SNMP管理站设备连续接收到的两个第二链路探测请求报文的第二报文序号不连续时,代表SNMP管理站设备与SNMP代理设备之间的SNMP链路上存在丢包情况。且也可根据SNMP管理站设备与SNMP代理设备之间的中间设备收发第二链路探测请求报文的第二序号的情况,确定中间设备收发第二链路探测请求报文异常的位置,也即出现故障点的位置。且应用理解的是,本实施例中第 二链路探测响应报文也可采用与对应第二链路探测请求报文相对应的第二报文序号。
且在本实施例的一些示例中,第二周期也可以为固定时长的周期;在本实施例的另一些示例中,第二周期也可以动态变化。例如在一些示例中,当SNMP代理设备(例如网元设备)的SNMP业务繁忙时,SNMP代理设备可以增长第二周期。且SNMP管理站设备可以根据连续接收到的两个第二报文序号为连续的第二链路探测请求报文之间的时间间隔确定出当前的第二周期的时长;本实施例中的SNMP管理站设备可以保存得到的第二周期的时长以及相应SNMP代理设备的IP地址等,并可基于得到的第二周期的时长确定第二周期到达时是否接收到SNMP管理站设备发送的第二链路探测请求报文。
对于SNMP管理站设备和SNMP代理设备之外的其他第三方设备执行上述步骤时则以此类推,在此不再赘述。
应用场景三:基于先被动监测模式再结合主动检测模式实现SNMP链路的检测
在本应用场景中,可以先采用被动监测模式采用图2所示的方式进行SNMP链路的状态的监测。当确定SNMP链路的状态为SNMP代理设备脱管状态T后,请参见图4所示,还可包括:
S401:获取SNMP代理设备向SNM管理站设备发送第二链路探测请求报文的第二请求报文交互信息,以及SNMP管理站设备向SNMP代理设备发送第二链路探测响应报文的第二响应报文交互信息。
S402:根据第二请求报文交互信息和第二响应报文交互信息确定SNMP管理站设备与SNMP代理设备之间的第二链路探测请求报文和第二链路探测响应报文交互正常时,将SNMP链路的状态由SNMP代理设备脱管状态更新为SNMP代理设备可用状态R(Ready)。
本应用场景中第二请求报文交互信息的获取方式,以及第二链路探测请求报文和第二链路探测响应报文交互是否异常的判断方式可参见但不限于上诉因公场景二中所示的方式,在此不再赘述。
应用场景四:基于先主动监测模式再结合被动检测模式实现SNMP链路的检测
在本应用场景中,可以先采用主动监测模式采用图3所示的方式进行SNMP链路的状态的监测。当确定SNMP链路的状态为SNMP代理设备脱管状态T后,请参见图5所示,还可包括:
S501:获取SNMP管理站设备向SNMP代理设备发送第一链路探测请求报文的第一请求报文交互信息,以及SNMP代理设备向SNMP管理站设备发送第一链路探测响应报文的第一响应报文交互信息。
S502:根据第一请求报文交互信息和第一响应报文交互信息确定SNMP管理站设备与SNMP代理设备之间的第一链路探测请求报文和第一链路探测响应报文交互正常时,将 SNMP链路的状态由SNMP代理设备脱管状态更新为SNMP代理设备可用状态。
本应用场景中第一请求报文交互信息的获取方式,以及第一链路探测请求报文和第一链路探测响应报文交互是否异常的判断方式可参见但不限于上述应用场景一中所示的方式,在此不再赘述。
应用场景五:
在本应用场景中,可以同时进行第一请求报文交互信息和第一响应报文交互信息,以及第二请求报文交互信息和第二响应报文交互信息的获取,或者交互获取第一请求报文交互信息和第一响应报文交互信息,以及第二请求报文交互信息和第二响应报文交互信息;在本应用场景中,根据第一请求报文交互信息和第一响应报文交互信息,以及第二请求报文交互信息和第二响应报文交互信息,确定SNMP管理站设备与SNMP代理设备之间的第一链路探测请求报文和第一链路探测响应报文交互正常时,和/或,确定SNMP管理站设备与SNMP代理设备之间的第二链路探测请求报文和第二链路探测响应报文交互正常时,确定SNMP链路的状态为SNMP代理设备可用状态;否则,确定SNMP管理站设备与SNMP代理设备之间的第一链路探测请求报文和第一链路探测响应报文交互异常,且第二链路探测请求报文和第二链路探测响应报文交互异常时,确定SNMP链路的状态为SNMP代理设备脱管状态。
在本实施例的一些示例中,当通过但不限于上述示例确定SNMP链路的状态为SNMP代理设备脱管状态后,还可包括:
监测到SNMP管理站设备与SNMP代理设备之间的SNMP业务报文交互正常时,将SNMP链路的状态由SNMP代理设备脱管状态T更新为SNMP代理设备可用状态R。
在本实施例的一些应用场景中,为了避免链路探测报文与业务层的真实SNMP业务访问报文冲突,第一链路探测请求报文和第二链路探测请求报文中的至少一个,可以包括至少两个SNMP基础管理信息库MIB量,也即采用至少两个基础MIB量联合,以与真实SNMP业务访问报文区分开。当然,在本实施例中的一些示例中,也可在链路探测请求报文中添加相应的探测标识,以将链路探测请求报文与真实SNMP业务访问报文区分开,从而避免冲突。
例如,一种示例中,第一链路探测请求报文和第二链路探测请求报文中的至少一个的内容可以为sysName,sysDescription,sysUptime的组合,但不限于上述三种组合。
可见,本实施例提供的SNMP链路检测方法可以很好地实时了解SNMP管理站设备与SNMP代理设备间的SNMP链路状态,有效地消除SNMP代理设备SNMP链路状态因检测不到业务层的情况而导致漏告警,并且提供了一种手段协助定位SNMP管理站设备与SNMP代理设备间的网络线路和SNMP链路的问题。
实施例二:
为了便于理解,本实施例在上述实施例基础上,以SNMP管理站设备为网管设备,SNMP代理设备为网元设备为示例,对网管设备与网元设备之间的SNMP链路状态的检测为示例进行说明。本实施例中,结合网元设备主动检测模式和网元被动检测模式以及二者的结合示例进行说明。
网元设备被动监测模式:
网管设备定时向网元设备周期性(即第一周期)发送SNMP GET(Heart Beat)报文(即第一链路探测请求报文),SNMP GET心跳报文的内容为sysName,sysDescription,sysUptime。
SNMP GET心跳报文选取为SNMP基础MIB报文,如此所有的SNMP代理设备(也即所有网元设备)都支持,另外为了避免心跳报文和真实SNMP业务访问报文冲突,可以准确区分出来,SNMP GET心跳报文选择多个MIB量联合访问的报文,MIB量实现足够简单,相对选择业务复杂的MIB,可避免业务复杂而导致的MIB访问异常。例如本实施例可选择RFC1213中SNMP基础MIB,选取SNMP GET心跳报文内容为sysName,sysDescription,sysUptime,但不限于上述三种组合。
在本实施例中,SNMP GET心跳报文可采用连续的序列号(即第一报文序号),即Request Id,值为(0~65535),Request Id达到最大之后,重新从0开始。
在本实施例中,SNMP GET心跳报文采用连续的序列号的好处可包括但不限于:网元设备能够准确确认轮询周期,及两个连续的序列号的SNMP GET心跳报文作为一个第一周期,如果两个SNMP GET心跳报文的序列号不连续,则存在SNMP GET心跳报文丢包,此时第一周期计算也失败。
网元设备和网管设备之间的中间设备可以监控SNMP GET心跳报文的序列号,判断SNMP网络丢包位置,例如中间设备A上发现连续两个SNMP GET心跳报文的序列号不连续,后一个SNMP GET心跳报文的序列号和前SNMP GET心跳报文一个序列号不是步长增1的关系,则认为在中间设备A距离网管设备的更上层设备,出现网络丢包。
另外,在本实施例中,网管设备周期性发送报文,第一周期可以是固定的,也可以是不固定的,当网元设备的SNMP业务繁忙时,网管设备的第一周期可根据预设规则自动加长,网元设备根据序列号连续的两个SNMP GET心跳报文,准确计算出第一周期。
在本实施例中,网元设备监测网管设备发送的SNMP Get心跳报文,自动计算出第一周期,并将网管设备IP地址和第一周期记录。
网元设备监测到在超过1个周期内,未收到SNMP GET心跳报文,则认定为网元设备和网管设备脱管,SNMP链路可能出现链路问题,确定SNMP链路的状态为托管状态T。
网元设备监测到网管设备发送的SNMP Get心跳报文,自动计算出第一周期,如果周期时间发生变化,更新网管设备IP地址和第一周期记录。
在网元设备可通过设置报文匹配规则,在收发包层面统计SNMP Get心跳报文,记录每个网管设备IP的SNMP Get心跳报文请求数目,和网元设备SNMP Get心跳应答报文数目。
如果1个周期内,SNMP Get心跳报文请求数目大于网元设备应答SNMP Get心跳报文的数目,可以判断网元设备出现问题,比如网元设备处理异常。
网元设备监测到在超过1个周期内,未收到网管设备SNMP Get心跳报文,但网元设备的网口监控SNMP Get心跳报文请求数目和网元设备应答SNMP Get心跳报文请求的数目相等,则可以判定出,网元设备和网管设备之间链路出现问题。
网元设备主动监测模式:
在一定场景下,例如网管设备性能足够或者管理的网元设备数目相对较少情况下,网元设备向网管设备周期性(即第二周期)发送Keepalive Trap(即第二链路探测请求报文),网管设备对该Keepalive Trap进行应答确认(即第二链路探测响应报文)。
在本实施例中,Keepalive Trap报文也可携带sysName,sysDescription,sysUptime内容,但不限于上述三种组合。
在本实施例中,网管设备对网元设备的Keepalive Trap报文应答,如果网元设备在1个周期内,未收到网管设备Keepalive Trap报文应答,则认定为,网元设备和网管设备出现脱管,SNMP链路状态设置为T。
网元设备的网口侧的协议统计模块可统计出Keepalive Trap的请求和应答数目,如果网元设备1个周期内未收到网管设备keepalive Trap报文应答,但是网元设备的协议栈下面的报文监测模块统计keepalive Trap的请求和应答数目相等,可以判定出网元设备发送keepalive Trap出现异常,亦即网元设备内部发送模块出现异常。如果keepalive trap请求报文个数大于接受到的应答报文个数,则判定为网元设备和网管设备之间的线路异常。
网元设备被动监测模式和主动监测模式的结合示例
一种示例中,网管设备可周期性进行SNMP Get心跳报文轮询,网元设备检测出链路问题T后,主动上报若干次Keepalive Trap,如此可降低网管设备的负荷,如果网元设备接收到Keepalive Trap应答,重置链路状态为R,避免了链路异常抖动而产生意外的链路断告警。
另一种示例中,网元设备主动Keepalive Trap检测出链路问题T后,如果接收到网管设备的SNMP Get心跳报文,可直接重置SNMP链路状态为R,或者在正常反馈SNMP Get心跳响应报文时,重置SNMP链路状态为R。
网元设备主动或者被动模式检测SNMP链路状态为T后,如果此时网管设备业务通道,正常SNMP访问网元设备,网元设备收到SNMP访问报文,重置SNMP链路状态为R。
在本实施例中,SNMP心跳报文和keepalive Trap报文,都可使用连续的序列号,网元设备和网管设备之间的任意中间设备上,可以监测该SNMP心跳报文和/或keepalive Trap报文的序列号,如果序列号不连续,说明该中间设备到网管设备之间的SNMP链路出现异常,通过确定不连续SNMP心跳报文和/或keepalive Trap报文的起始位置,从而可判定故障点距离网管设备的距离。
实施例三:
本实施例提供了一种SNMP链路检测装置,该SNMP链路检测装置可以设置于SNMP代理设备中,也可设置于SNMP管理站设备中,或设置于SNMP管理站设备和SNMP代理设备之外的其他第三方通信设备中。本实施例提供的SNMP链路检测装置请参见图6所示,包括:
信息获取模块601,用于获取SNMP管理站设备与SNMP代理设备之间的SNMP链路上,在SNMP业务层进行链路探测报文交互的交互信息;具体获取过程请参见上述各实施例中交互信息的获取方式,在此不再赘述。
处理模块602,用于根据获取到的交互信息确定SNMP链路的状态;具体确定过程请参见上述各实施例所示,在此也不再赘述。
为了便于理解,本实施例下面仍结合一种应用场景为示例进行说明。本应用场景中,以SNMP管理站设备为网管设备,SNMP代理设备为网元设备为示例,且SNMP链路的检测在网元设备端执行为示例进行说明(在网管设备端执行或第三方通信设备执行的方式以此类推,在此不再赘述。)
本实施例中,结合网元设备主动检测模式和网元被动检测模式的一种组合示例进行说明。
请参见图7所示,本实施例中的SNMP链路检测方法的过程包括:
S701:网元设备接收网管设备发送的SNMP get心跳报文。
该步骤中,网管设备向网元设备周期性发送SNMP get心跳报文。
在本示例中,SNMP Get心跳报文内容为sysName,sysDescription,sysUptime信息。
SNMP Get心跳报文使用连续的Request Id,值为(0~65535)。
S702:网元应答SNMP Get心跳报文(即发送SNMP Get心跳响应报文),并计算出第一周期t1,记录网管IP和第一周期t1。
S703:确定SNMP Get心跳报文接收是否正常,如是,转至S704;否则,转至S701。
网元设备如果在1个周期内未收到SNMP Get心跳报文,或者收到SNMP Get心跳报 文的Request Id不连续,设置网元设备和网管设备之间SNMP链路状态为脱管状态T。
网元设备应答SNMP Get心跳报文,计算第一周期,如果第一周期发生变化,将新的周期时间和网管IP记录。
S704:设置网元设备和网管设备之间SNMP链路状态为脱管状态T。
S705:网元设备在脱管状态为T时,主动向网管设备发送若干keepalive Trap报文,以告知网管此时网元是存活的,避免因为网络丢包,线路抖动而引起的意外中断警告。
S706:网元设备在脱管状态为T后,收到keepalive Trap应答或者SNMP Get心跳报文,重置SNMP链路状态为R(Ready)。
在一种示例中,网元设备主动向网管周期性发送keepalive Trap报文。
keepalive Trap报文使用连续的Request Id,值为(0~65535)。
网管设备确认keepalive trap报文并SNMP Set应答,应答报文RequsetId和keepalive trap报文相同。
网元设备在1个周期内,未收到网设备管的Keep alive应答,则认为网元脱管,设置网元和网管之间SNMP链路状态为脱管状态T。
网元设备接收到网管设备正常SNMP访问网元的SNMP报文,若此时网元和网管设备之间SNMP链路状态为脱管状态T,重置为状态R。
本实施例的上述示例中链路探测报文包括SNMP Get心跳报文和Keep alive trap报文,均采用连续的Request Id,值为(0~65535),如此,相应的探测周期的判定将变得更加准确和简单,只需要比较两个连续的报文之间的时间戳即可,同时在网元设备和网管设备连接的所有中间设备上,通过检查报文是否是连续的序列号Request Id或者统计序列号的总体分布,可以非常容易判断出到达该中间设备是否存在丢包,以及检查所有中间设备报文统计情况,确定丢包的中间设备准确位置。
图8是本实施例提供的网元设备和网管设备之间的报文交互示意图,其中包括:
网元设备被动监测模式,网元设备和网管设备之间的报文交互,网元设备被动接收网管设备周期性发送的SNMP Get心跳报文,并发送应答给网管设备。
网元设备主动监测模式,网元设备和网管设备之间的报文交互,网元设备主动周期性发送Keepalive trap报文到网管设备,网管设备进行Keepalive trap确认,并将确认报文(即响应报文)发送到网元设备。
网元设备主动/被动结合监测模式,网元设备和网管设备之间的报文交互,网元设备和网管设备之间同时维持主被动发包/应答,网元设备和网管设备之间正常SNMP业务通道,三者结合的模式检测SNMP链路,该实施例避免了由于单种探测机制中SNMP链路抖动而产生状态误判,从而减少了SNMP链路断检测的误告警。
图9是本发明实施例提供的一种示例的网元设备的SNMP链路检测装置结构示意图。
信息获取模块和处理模块可包括但不限于网口协议报文统计模块901,网元协议栈模块902,SNMP心跳报文处理与统计模块903,SNMP keep alive trap报文处理与统计模块904,SNMP业务报文处理与统计模块905。
一种示例中,网管设备和网元设备之间SNMP get心跳报文,Keepalive trap报文经过网口协议报文统计模块901,分类统计如下表1所示:
表1
Figure PCTCN2020109615-appb-000001
网管10.1.1.1和网元设备之间的报文请求数目和应答数目相等,每个周期都能够收到对端的检测报文,SNMP链路正常。
网管10.1.1.2和网元之间的被动检测模式,SNMP get心跳请求数和应答数目不相等,SNMP链路异常。
SNMP心跳报文处理与统计模块903处理网管设备的SNMP get心跳报文记录信息如下表2所示:
表2
Figure PCTCN2020109615-appb-000002
该SNMP心跳报文处理与统计模块903记录报文统计和网口协议报文统计模块901统计一致,另外因为SNMP Get探测报文的序列号是连续的,检测连续序列号之间的时间间隔,即为当前网管的第一周期,如果检测到两次探测的报文序列号不连续,说明产生丢包,SNMP链路异常。
如果SNMP心跳报文处理与统计模块903记录如下表3所示:
表3
Figure PCTCN2020109615-appb-000003
SNMP get心跳报文应答数目小于请求数目,但是网口协议报文统计模块901统计为相等,则说明网元设备发包模块报文发送异常。
SNMP keep alive trap报文处理与统计模块904的报文统计记录信息如下表4所示;
表4
Figure PCTCN2020109615-appb-000004
网管设备10.1.1.1对应记录Keepalive trap应答报文少于Keepalive trap请求计数,结合表1中网口协议报文统计模块901统计,请求和应答数目相等,说明应答报文已经到达网元设备,但是没有达到SNMP keep alive trap报文处理与统计模块904,网元内部网元协议栈模块902或者SNMP模块可能出现异常,设置链路状态T。
当链路状态变为T时,故障诊断模块后处理模块(图中未示出)可收集设备各关键信息,包括当前时间,CPU利用率,内存使用情况,报文压力,及其它关键任务日志。
网元设备后续收到当前网管设备的任何SNMP业务报文时,可将链路状态重置为R,并可将网口协议报文统计模块901,SNMP心跳报文处理与统计模块903,SNMP keep alive trap报文处理与统计模块904的统计值清0,避免引起后续周期SNMP链路状态误判。
SNMP业务报文处理与统计模块905检测到SNMP访问频率达到阈值(比如256pps),可将Keepalive trap的第二周期增长,同理网管频繁访问网元设备期间,也将SNMP get心跳报文的第一周期动态加大,从而能够降低网管的负荷。
可见,本实施例中通过分别设计网口协议报文统计模块901,SNMP心跳报文处理与统计模块903,SNMP keep alive trap报文处理与统计模块904,在网元设备不同模块统计收发包计数,通过计数的差异确定是否网元本身问题导致的SNMP链路异常,同时记录引起该SNMP链路异常关键日志信息,辅助定位;另外根据设置统计模块的报文阈值,调整探测周期,可以有效降低因为频繁网元报文到达网管设备,而造成的网管管理负担。
请参见图10所示,相关技术判断网元设备和网管设备之间的SNMP链路采用ICMP报文进行链路探测,ICMP报文探测属于IP层,IP层探测无法确定SNMP业务层的链路状态,这样ICMP报文探测检测链路状态无法准确判断SNMP链路状态。本实施例通过网元设备和网管设备之间的SNMP Get心跳报文和/或Keep alive trap报文,这两种报文都位于SNMP业务层,解决了ICMP报文只能探测到IP层链路状态的弊端,并在网元设备侧或网管设备侧或第三方通信设备侧监控报文收发情况,可以很好地了解实时网元和网管间的SNMP链路状态,有效地消除网元SNMP链路状态中断检测异常而导致误告警,并且提供 了一种协助定位网元设备和网管设备间的网络线路和SNMP链路的问题。
实施例四:
本实施例还提供了一种通信设备,该通信设备可以为SNMP代理设备,也可为SNMP管理站设备,或为SNMP管理站设备和SNMP代理设备之外的其他第三方通信设备。参见图11所示,本实施例中的通信设备包括处理器1101、存储器1102以及通信总线1103;
通信总线1103用于实现处理器1101与存储器1102之间的通信连接;
一种示例中,处理器1101可用于执行存储器1102中存储的计算机程序,以实现如上各实施例中的SNMP链路检测方法的步骤。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
在一种示例中,本实施例中的计算机可读存储介质可用于存储计算机程序,该计算机程序可被一个或者多个处理器执行,以实现如上各实施例中的SNMP链路检测方法的步骤。
本实施例还提供了一种计算机程序(或称计算机软件),该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现如上各实施例所示的SNMP链路检测方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
有益效果
根据本发明实施例提供的SNMP链路检测方法、装置、通信设备及存储介质,通过获取SNMP管理站设备与SNMP代理设备之间的SNMP链路上,在SNMP业务层进行链路探测报文交互的交互信息;进而根据获取到的交互信息确定SNMP链路的状态;本发明实施例可基于SNMP业务层的链路探测报文实现对SNMP链路的检测,因此可实现对业务层SNMP链路进行检测,提升SNMP链路检测的准确性,保证系统的正常运行维护。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、 装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本发明不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (14)

  1. 一种简单网络管理协议SNMP链路检测方法,包括:
    获取SNMP管理站设备与SNMP代理设备之间的SNMP链路上,在SNMP业务层进行链路探测报文交互的交互信息;
    根据获取到的交互信息确定所述SNMP链路的状态。
  2. 如权利要求1所述的SNMP链路检测方法,其中,所述获取SNMP管理站设备与SNMP代理设备之间的SNMP链路上,在SNMP业务层进行链路探测报文交互的交互信息包括以下至少之一:
    获取所述SNMP管理站设备向所述SNMP代理设备发送第一链路探测请求报文的第一请求报文交互信息,以及所述SNMP代理设备向所述SNMP管理站设备发送第一链路探测响应报文的第一响应报文交互信息;
    获取所述SNMP代理设备向所述SNM管理站设备发送第二链路探测请求报文的第二请求报文交互信息,以及所述SNMP管理站设备向所述SNMP代理设备发送第二链路探测响应报文的第二响应报文交互信息。
  3. 如权利要求2所述的SNMP链路检测方法,其中,所述交互信息包括所述第一请求报文交互信息和第一响应报文交互信息;根据获取到的交互信息确定所述SNMP链路的状态包括:
    根据所述第一请求报文交互信息和所述第一响应报文交互信息确定所述SNMP管理站设备与SNMP代理设备之间的第一链路探测请求报文和/或第一链路探测响应报文交互异常时,确定所述SNMP链路的状态为SNMP代理设备脱管状态。
  4. 如权利要求3所述的SNMP链路检测方法,其中,所述确定所述SNMP链路的状态为SNMP代理设备脱管状态后,还包括:
    获取所述SNMP代理设备向所述SNM管理站设备发送第二链路探测请求报文的第二请求报文交互信息,以及所述SNMP管理站设备向所述SNMP代理设备发送第二链路探测响应报文的第二响应报文交互信息;
    根据所述第二请求报文交互信息和所述第二响应报文交互信息确定所述SNMP管理站设备与SNMP代理设备之间的第二链路探测请求报文和第二链路探测响应报文交互正常时,将所述SNMP链路的状态由SNMP代理设备脱管状态更新为SNMP代理设备可用状态。
  5. 如权利要求2所述的SNMP链路检测方法,其中,所述交互信息包括所述第二请求报文交互信息和第二响应报文交互信息;所述根据获取到的交互信息确定所述SNMP链路的状态包括:
    根据所述第二请求报文交互信息和所述第二响应报文交互信息确定所述SNMP管理站设备与SNMP代理设备之间的第二链路探测请求报文和/或第二链路探测响应报文交互异常时,确定所述SNMP链路的状态为SNMP代理设备脱管状态。
  6. 如权利要求5所述的SNMP链路检测方法,其中,所述确定所述SNMP链路的状态为SNMP代理设备脱管状态后,还包括:
    获取所述SNMP管理站设备向所述SNMP代理设备发送第一链路探测请求报文的第一请求报文交互信息,以及所述SNMP代理设备向所述SNMP管理站设备发送第一链路探测响应报文的第一响应报文交互信息;
    根据所述第一请求报文交互信息和所述第一响应报文交互信息确定所述SNMP管理站设备与SNMP代理设备之间的第一链路探测请求报文和第一链路探测响应报文交互正常时,将所述SNMP链路的状态由SNMP代理设备脱管状态更新为SNMP代理设备可用状态。
  7. 如权利要求2所述的SNMP链路检测方法,其中,所述交互信息包括所述第一请求报文交互信息和第一响应报文交互信息,以及第二请求报文交互信息和第二响应报文交互信息;所述根据获取到的交互信息确定所述SNMP链路的状态包括:
    根据所述第一请求报文交互信息和第一响应报文交互信息,以及第二请求报文交互信息和第二响应报文交互信息,确定所述SNMP管理站设备与SNMP代理设备之间的第一链路探测请求报文和第一链路探测响应报文交互正常时,和/或,确定所述SNMP管理站设备与SNMP代理设备之间的第二链路探测请求报文和第二链路探测响应报文交互正常时,确定所述SNMP链路的状态为SNMP代理设备可用状态;否则,确定所述SNMP链路的状态为SNMP代理设备脱管状态。
  8. 如权利要求2-7任一项所述的SNMP链路检测方法,其中,所述确定所述SNMP链路的状态为SNMP代理设备脱管状态后,还包括:
    监测到所述SNMP管理站设备与SNMP代理设备之间的SNMP业务报文交互正常时,将所述SNMP链路的状态由SNMP代理设备脱管状态更新为SNMP代理设备可用状态。
  9. 如权利要求2-7任一项所述的SNMP链路检测方法,其中,所述第一链路探测请求报文为心跳检测报文,所述第二链路探测请求报文为保活陷阱报文。
  10. 如权利要求2-7任一项所述的SNMP链路检测方法,其中,所述第一链路探测请求报文和所述第二链路探测请求报文中的至少一个,包括至少两个SNMP基础管理信息库MIB量。
  11. 如权利要求2-7任一项所述的SNMP链路检测方法,其中,所述SNMP管理站设备在相邻第一周期向所述SNMP代理设备发送第一链路探测请求报文的第一报文序号为相连续;
    和/或,
    所述SNMP代理设备在相邻第二周期向所述SNM管理站设备发送的第二链路探测请求报文的第二报文序号相连续。
  12. 一种简单网络管理协议SNMP链路检测装置,包括:
    信息获取模块,用于获取SNMP管理站设备与SNMP代理设备之间的SNMP链路上,在SNMP业务层进行链路探测报文交互的交互信息;
    处理模块,用于根据获取到的交互信息确定所述SNMP链路的状态。
  13. 一种通信设备,包括处理器、存储器和通信总线;其中:
    所述通信总线用于将所述处理器和存储器连接;
    所述处理器用于执行所述存储器中存储的计算机程序,以实现如权利要求1-11任一项所述的SNMP链路检测方法的步骤。
  14. 一种计算机可读存储介质,存储有计算机程序,其中所述计算机程序可被第一处理器执行,以实现如权利要求1-11任一项所述的SNMP链路检测方法的步骤。
PCT/CN2020/109615 2019-08-23 2020-08-17 Snmp链路检测方法、装置、通信设备及存储介质 WO2021036849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910785079.6 2019-08-23
CN201910785079.6A CN112532465A (zh) 2019-08-23 2019-08-23 Snmp链路检测方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021036849A1 true WO2021036849A1 (zh) 2021-03-04

Family

ID=74685137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109615 WO2021036849A1 (zh) 2019-08-23 2020-08-17 Snmp链路检测方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN112532465A (zh)
WO (1) WO2021036849A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040122972A1 (en) * 2002-12-20 2004-06-24 Gibson Edward S. Method of guaranteed delivery of SNMP traps across a wide area network
CN101404587A (zh) * 2008-11-04 2009-04-08 中国电信股份有限公司 基于简单网络管理协议的代理设备的管理方法和设备
CN103457791A (zh) * 2013-08-19 2013-12-18 国家电网公司 一种智能变电站网络采样和控制链路的自诊断方法
WO2018057098A1 (en) * 2016-09-20 2018-03-29 Hewlett-Packard Development Company, L.P. Print job resumption using alternate network interfaces
CN108964955A (zh) * 2017-05-23 2018-12-07 中兴通讯股份有限公司 一种丢失Trap报文查找方法和网络管理系统及一种SNMP代理
CN109257218A (zh) * 2018-09-19 2019-01-22 上海电子信息职业技术学院 一种基于snmp协议网络系统孤岛自愈方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040122972A1 (en) * 2002-12-20 2004-06-24 Gibson Edward S. Method of guaranteed delivery of SNMP traps across a wide area network
CN101404587A (zh) * 2008-11-04 2009-04-08 中国电信股份有限公司 基于简单网络管理协议的代理设备的管理方法和设备
CN103457791A (zh) * 2013-08-19 2013-12-18 国家电网公司 一种智能变电站网络采样和控制链路的自诊断方法
WO2018057098A1 (en) * 2016-09-20 2018-03-29 Hewlett-Packard Development Company, L.P. Print job resumption using alternate network interfaces
CN108964955A (zh) * 2017-05-23 2018-12-07 中兴通讯股份有限公司 一种丢失Trap报文查找方法和网络管理系统及一种SNMP代理
CN109257218A (zh) * 2018-09-19 2019-01-22 上海电子信息职业技术学院 一种基于snmp协议网络系统孤岛自愈方法

Also Published As

Publication number Publication date
CN112532465A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
US8135979B2 (en) Collecting network-level packets into a data structure in response to an abnormal condition
EP2197179B1 (en) Apparatus and method for fast detection of communication path failures
US10097433B2 (en) Dynamic configuration of entity polling using network topology and entity status
US7017082B1 (en) Method and system for a process manager
US10868709B2 (en) Determining the health of other nodes in a same cluster based on physical link information
US7016955B2 (en) Network management apparatus and method for processing events associated with device reboot
US7536632B2 (en) Method for monitoring data processing system availability
US10909008B2 (en) Methods and apparatus for detecting, eliminating and/or mitigating split brain occurrences in high availability systems
US20040024865A1 (en) Method and apparatus for outage measurement
US20180309620A1 (en) Reliable isp access cloud state detection method and apparatus
EP3930261A1 (en) Method and device for monitoring link fault
WO2016182772A1 (en) Uplink performance management
JP2016536920A (ja) ネットワークパフォーマンス監視のための機器および方法
US11165629B1 (en) Managing a network element operating on a network
US9509777B2 (en) Connection method and management server
WO2021036849A1 (zh) Snmp链路检测方法、装置、通信设备及存储介质
US11652682B2 (en) Operations management apparatus, operations management system, and operations management method
WO2017054734A1 (zh) 一种锁定文件管理方法和装置
US9432275B2 (en) Transmission monitoring method and device
TWI649989B (zh) 估算網路可用頻寬之系統及其方法
CN110752939B (zh) 一种业务进程故障处理方法、通知方法和装置
JP6057470B2 (ja) ネットワークのアラーム処理システム
US11956287B2 (en) Method and system for automated switchover timers tuning on network systems or next generation emergency systems
US20240146848A1 (en) Systems and methods for monitoring voice services
Noor et al. On affirmative adaptive failure detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858464

Country of ref document: EP

Kind code of ref document: A1