WO2021036731A1 - 指纹识别装置及电子设备 - Google Patents

指纹识别装置及电子设备 Download PDF

Info

Publication number
WO2021036731A1
WO2021036731A1 PCT/CN2020/107382 CN2020107382W WO2021036731A1 WO 2021036731 A1 WO2021036731 A1 WO 2021036731A1 CN 2020107382 W CN2020107382 W CN 2020107382W WO 2021036731 A1 WO2021036731 A1 WO 2021036731A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide ring
invisible
light guide
dot
Prior art date
Application number
PCT/CN2020/107382
Other languages
English (en)
French (fr)
Inventor
贺虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021036731A1 publication Critical patent/WO2021036731A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification

Definitions

  • This application relates to the technical field of electronic equipment, in particular to a fingerprint identification device and an electronic equipment.
  • OLED Organic Light-Emitting Diode
  • LCD Liquid Crystal Display
  • the general under-screen fingerprint recognition device mainly supports OLED screens, but does not support LCD screens. This is because the OLED screen is self-luminous and does not require a backlight, while the LCD screen itself does not emit light and requires a backlight. The backlight will cause obstacles to the setup of the fingerprint identification device.
  • the LCD screen includes a backlight module 91 and a liquid crystal panel arranged above the backlight module 91.
  • the liquid crystal panel includes an optical film 92, a thin film transistor (TFT) layer 93, a color filter (CF) film 94, and a film disposed between the thin film transistor layer 93 and the color filter 94 Crystalline layer 98.
  • the backlight module 91 includes a light guide film (LGF) 911, an LED light source 912, a reflective sheet 913, and a backlight fixing frame 914.
  • LGF light guide film
  • the LED light source 912 is arranged on the side of the light guide film 911, and the light emitted by the LED light source 912 enters the light guide film 911 from the side of the light guide film 911, and is transmitted in the light guide film 911 in a manner of total reflection.
  • the light guide film 911 is provided with dots (not shown in the figure). When light is transmitted in the light guide film 911, if it is transmitted to the dots, since the dots will destroy the total reflection of the light, the light can pass from the light guide film 911 The inside is transmitted to the outside of the light guide film, so as to provide a backlight for the liquid crystal panel disposed above the light guide film 911.
  • a reflective sheet is generally provided under the light guide film 911 913.
  • a backlight fixing frame 914 is also provided under the reflective sheet 913. Since an iron frame is generally used, it is also often referred to as a backlight iron frame.
  • the backlight fixing frame 914 is used to strengthen the fixing and protect the components in the entire backlight module 91.
  • the backlight fixed frame 914 is opaque, and the reflective sheet 913 will reflect the visible light reflected by the target (finger, palm, etc.) upward and scatter it back, causing the fingerprint recognition device to fail to collect the target image , So the fingerprint recognition device cannot be installed under the LCD screen. That is, the LCD screen cannot realize the fingerprint recognition function under the screen.
  • an implementation method adopted by the inventor before this is to use an infrared fingerprint identification device.
  • FIG. 2 is a schematic diagram of a side structure of an LCD screen and an infrared fingerprint identification device
  • FIG. 3 is a schematic diagram of a top view of the infrared fingerprint identification device in FIG.
  • a fixing frame opening 9141 is opened on the backlight fixing frame 914.
  • An infrared fingerprint identification device is provided under the fixed frame opening 9141, including an infrared fingerprint sensor 96 and an infrared light source 97.
  • the reflective sheet originally provided under the light guide film 911 is replaced with an infrared transmissive reflective sheet 915 through which infrared light can pass.
  • the visible light emitted from the lower surface of the light guide film 911 can be reflected back by the infrared-transmitting reflective sheet 915, but the infrared light emitted by the infrared light source 97 below can pass through the infrared-transmitting reflective sheet 915.
  • the user prints his finger on the LCD screen, and the infrared light emitted by the infrared light source 97 can pass through the fixed frame opening 9141, the transparent infrared reflector 915, the light guide film 911, the optical film 92, The thin film transistor layer 93, the liquid crystal layer 98, and the color filter 94 are reflected and scattered by the surface of the user's finger.
  • the reflected and scattered infrared light passes through the color filter 94, the liquid crystal layer 98, the thin film transistor layer 93, the optical film 92, the light guide film 911, the infrared transmissive reflector 915 and the fixed frame opening 9141, and is then opened by the fixed frame
  • the infrared fingerprint sensor 96 below 9141 captures the user's fingerprint image.
  • the infrared light source has a certain luminous angle and brightness distribution curve, it is easy to cause uneven imaging signal intensity of the infrared fingerprint sensor, which affects the uniformity of imaging.
  • the infrared light source 97 is located on one side of the fingerprint sensor 96. The light source 97 is farther away from the finger area, and the light is weaker and the energy is less.
  • the infrared fingerprint sensor 96 captures infrared light for imaging, the signal in the area close to the infrared light source 97 is stronger, and the signal in the area far away from the infrared light source 97 is weaker, which in turn causes the signal captured by the infrared fingerprint sensor 96 in different areas to change.
  • the signal-to-noise ratio is quite different, which affects the uniformity of imaging.
  • the present application provides a fingerprint identification device, which has a light guide ring.
  • the light guide ring can make the light source evenly distributed on the outer periphery above the fingerprint sensor, so that the signal intensity of different areas on the fingerprint sensor is more uniform, thereby improving the imaging uniformity of the fingerprint identification device as a whole.
  • the present application provides a fingerprint identification device, which includes a light guide ring, at least one invisible light source, and an invisible light fingerprint sensor; wherein the light guide ring has a dot surface, a light emitting surface, an outer side surface, and an inner side surface.
  • the dot surface and the light emitting surface are disposed oppositely, the outer side surface is connected to the dot surface and the outer edge of the light emitting surface, respectively, and the inner side surface is connected to the dot surface and the inner edge of the light emitting surface, respectively;
  • the invisible light fingerprint sensor is arranged in the area defined by the inner edge of the dot surface.
  • the outer side surface is further provided with at least one second light-incident surface facing each of the second light-incident surfaces, and at least one first light-incident surface is respectively provided.
  • a visible light source is provided.
  • the light guide ring and the first visible light source through the light guide ring and the first visible light source, stable and uniform visible light can be provided above the light exit surface of the entire light guide ring, thereby providing a local backlight for the liquid crystal panel, so that the LCD screen in the local area corresponding to the light guide ring can be Realize AOD function. Since there is no need to light up the backlight when implementing the AOD function, the power consumption of the electronic device in the AOD mode can be saved. In addition, when fingerprints are collected, these visible rays can also indicate the position of the fingerprint for the user, which improves the user experience.
  • a first reflective sheet is provided on the outer side surface; and/or a first reflective sheet is provided on the inner side surface.
  • the first reflective sheet can reflect the light emitted from the outer side surface and the inner side surface, thereby increasing the light emitted from the light-emitting surface and improving the utilization rate of light.
  • the light guide ring further includes a light incident portion, and a side surface of the light incident portion is provided with the first light incident surface The light incident part is used to change the angle at which the light from the invisible light source enters the light guide ring.
  • the angle at which invisible light enters the light guide ring is changed through the light entrance part.
  • the light is not easily emitted from the first light entrance surface, which improves the utilization rate of light; on the other hand, it is also conducive to the light in the light guide ring. Conduction, so that the light emitted from each area on the light-emitting surface of the light-guiding ring is relatively uniform.
  • the light guide ring partially protrudes toward the outer surface to form the light incident portion.
  • the angle at which invisible light enters the light guide ring can be changed.
  • the light is not easily emitted from the first light entrance surface, which improves the light utilization rate; on the other hand, it is also conducive to the light transmission in the light guide ring, so that The light emitted from each area on the light-emitting surface of the light guide ring is relatively uniform.
  • a second reflective sheet is provided on a side of the dot surface facing away from the light incident surface.
  • the second reflective sheet can reflect the light emitted from the dot surface, thereby increasing the light emitted from the light-emitting surface and improving the utilization rate of light.
  • the second reflective sheet can also prevent the light emitted from the dot surface from reaching the invisible light fingerprint sensor, which affects the quality of the fingerprint image.
  • the light guide ring is a closed ring.
  • the invisible light source is an infrared light source
  • the invisible light fingerprint sensor is an infrared fingerprint sensor
  • the present application provides an electronic device including a fingerprint identification device and a display screen; wherein the fingerprint identification device includes a light guide ring, at least one invisible light source and an invisible light fingerprint sensor; the light guide ring has a dot surface, A light emitting surface, an outer side surface, and an inner side surface, the dot surface and the light emitting surface are disposed oppositely, the outer side surface is connected to the dot surface and the outer edge of the light emitting surface, respectively, and the inner side surface is respectively connected to the dots
  • the surface is connected to the inner edge of the light-emitting surface; the side of the dot surface facing the light-emitting surface is distributed with dots; the outer side surface is provided with at least one first light-incident surface; facing each of the first light-incident surfaces , Each is provided with at least one invisible light source; the invisible light fingerprint sensor is arranged in the area defined by the inner edge of the dot surface; the display screen is arranged on one side of the light-emitting surface of the fingerprint identification device
  • the light guide ring and the invisible light source provide stable and uniform invisible light above the light exit surface of the entire light guide ring, thereby causing the target to reflect
  • the invisible light of the invisible light fingerprint sensor is more stable and uniform. In this way, the intensity of the imaging signal on the invisible light fingerprint sensor can be made more uniform, the imaging uniformity of the fingerprint identification device as a whole can be improved, and the fingerprint identification performance of the electronic device can be improved.
  • the outer side surface is further provided with at least one second light incident surface, facing each of the second light incident surfaces, and at least one first light incident surface is respectively provided A visible light source.
  • a first reflective sheet is provided on the outer side surface; and/or a first reflective sheet is provided on the inner side surface.
  • the light guide ring further includes a light incident portion, and the first light incident surface is provided on a side surface of the light incident portion The light incident part is used to change the angle at which the light from the invisible light source enters the light guide ring.
  • the display screen is an LCD screen.
  • the invisible light source is an infrared light source
  • the invisible light fingerprint sensor is an infrared fingerprint sensor
  • the third reflective sheet It is a reflective sheet through which infrared light can pass.
  • the display screen includes a backlight module, and the backlight module includes a backlight fixing frame and a third reflective sheet;
  • the backlight fixing frame is provided with a fixing frame opening corresponding to the fingerprint identification device;
  • the third reflective sheet is a reflective sheet through which invisible light can pass.
  • Figure 1 is a schematic diagram of the side structure of an LCD screen
  • Figure 2 is a schematic diagram of the side structure of an LCD screen and an infrared fingerprint identification device
  • FIG. 3 is a schematic top view of the structure of the infrared fingerprint identification device in FIG. 2;
  • FIG. 4 is a schematic top view of the first implementation of the fingerprint identification device of this application.
  • FIG. 5 is a schematic top view of the second implementation of the fingerprint identification device of this application.
  • FIG. 6 is a schematic side view of the structure of the second implementation of the fingerprint identification device of this application.
  • FIG. 7 is a schematic top view of a third implementation manner of the fingerprint identification device of this application.
  • FIG. 8 is a schematic top view of a fourth implementation manner of the fingerprint identification device of this application.
  • FIG. 9 is a schematic top view of a fifth implementation manner of the fingerprint identification device of this application.
  • FIG. 10 is a schematic top view of a sixth implementation manner of the fingerprint identification device of this application.
  • FIG. 11 is a schematic top view of the seventh implementation of the fingerprint identification device of this application.
  • FIG. 12 is a schematic structural diagram of a side view of one implementation of the electronic device of this application.
  • backlight module 91 backlight module 91; light guide film 911; LED light source 912; reflective sheet 913; infrared transmissive reflective sheet 915; backlight fixing frame 914; fixing frame opening 9141; optical film 92; thin film transistor layer 93; Color filter 94; fingerprint identification device 95; infrared fingerprint sensor 96; infrared light source 97; liquid crystal layer 98;
  • Figure 4 to Figure 12 Invisible light fingerprint sensor 1; light guide ring 2; dot surface 21; dot 211; light exit surface 22; outer side surface 23; first light incident surface 231; second light incident surface 232; inner side surface 24; A reflective sheet 26; a second reflective sheet 27; a light incident portion 28; an invisible light source 3; a first visible light source 4; a backlight module 51; a light guide film 511; a second visible light source 512; a third reflective sheet 513; backlight Fixed frame 514; fixed frame opening 5141; optical film 52; thin film transistor layer 53; color filter 54; liquid crystal layer 55.
  • the infrared light source 97 is located on one side of the fingerprint sensor 96, which easily affects the uniformity of imaging. Even if infrared light sources 97 are provided on multiple sides of the fingerprint sensor 96, this problem can only be alleviated to a certain extent.
  • the signal intensity of the area close to the infrared light source on the infrared fingerprint sensor is high, and the signal intensity of the area between two or more infrared light sources is weak, so the influence on the imaging uniformity of the infrared fingerprint sensor is still relatively large.
  • a fingerprint identification device has a light guide ring, so that the light source can be evenly distributed on the outer periphery above the fingerprint sensor, so that the signal intensity of different areas on the fingerprint sensor is more uniform, and the imaging uniformity of the fingerprint identification device is improved as a whole.
  • the fingerprint identification device is suitable for use in electronic devices with display screens, especially electronic devices with LCD screens.
  • FIG. 4 is a schematic top view of the first implementation of the fingerprint identification device of the application
  • FIG. 5 is a schematic top view of the second implementation of the fingerprint identification device of the application
  • the fingerprint identification device includes a light guide ring 2, at least one invisible light source 3, and an invisible light fingerprint sensor 1.
  • the light guide ring 2 has a dot surface 21, a light emitting surface 22, an outer side surface 23, and an inner side surface 24.
  • the dot surface 21 and the light emitting surface 22 are disposed oppositely, and the outer side surface 23 is connected to the outer edges of the dot surface 21 and the light emitting surface 22, respectively.
  • the side surfaces 24 are respectively connected with the inner edges of the dot surface 21 and the light-emitting surface 22.
  • At least one first light incident surface 231 is provided on the outer side surface 23. Facing each first light incident surface 231, at least one invisible light source 3 is respectively provided.
  • the invisible light fingerprint sensor 1 is arranged in the area defined by the inner edge of the dot surface 21.
  • the light guide ring itself is a ring body with a uniform material inside.
  • the light guide ring may specifically be made of polycarbonate (PC), polymethyl methacrylate (PMMA), glass, or other materials.
  • the shape of the light guide ring is a closed ring, which can be a circular ring, a square ring, or an irregular ring.
  • the shape of the light guide ring is not limited in this application.
  • the light guide ring 2 has a light emitting surface 22 (for example, the upper surface in FIGS. 5 and 6 ), a dot surface 21 (for example, the lower surface in FIGS. 5 and 6 ), an outer side surface 23 and an inner side surface 24.
  • the dot surface 21 and the light emitting surface 22 are arranged oppositely. Since the overall shape of the dot surface 21 and the light emitting surface 22 is consistent with the light guide ring 2 and is also annular, both surfaces can have an outer edge and an inner edge, as shown in Figures 5 and 6 shown.
  • the outer side surface 23 and the inner side surface 24 are also arranged oppositely.
  • the outer side surface 23 is connected to the outer edges of the dot surface 21 and the light emitting surface 22 respectively, and the inner side surface 24 is connected to the inner edge of the dot surface 21 and the light emitting surface 22 respectively, thereby forming a closed Ring structure.
  • the connection between the outer surface and the dot surface and the light-emitting surface, and the connection between the inner side and the dot surface and the light-emitting surface can maintain a sharp angle or be chamfered, which is not limited in this application. .
  • a first light incident surface 231 may be provided on the outer side surface 23 of the light guide ring, as shown in FIGS. 4 and 5, or multiple first light incident surfaces 231 may be provided, as shown in FIGS. 7 and 8.
  • the specific number of the first light incident surface on the outer surface is not limited.
  • one or more invisible light sources are arranged facing it. These invisible light sources can be arranged perpendicular to the first light entrance surface, so that the invisible light can be perpendicular to the first light entrance surface into the light guide ring, or can be arranged obliquely, so that the invisible light and the first light entrance surface remain constant. Angle shot into the light guide ring.
  • dots 211 are distributed. After the invisible light enters the light guide ring from the first light incident surface, most of the invisible light rays can be guided in the light guide ring in a way of total reflection.
  • the dots on the dot surface can change the reflection angle of invisible light, so that the angle between the invisible light ray and the normal of the light-emitting surface is smaller than the critical angle of total reflection, destroying the total reflection of invisible light. In this way, these invisible lights will be emitted from the light-emitting surface opposite to the dot surface and continue to propagate in the air above the light-emitting surface. For example, as shown in FIG.
  • the angle between the invisible light a, c and the normal of the light-emitting surface is greater than the critical angle of total reflection. Therefore, the light guide ring 2 is conducted to a position relatively far away from the first light incident surface 231 in the manner of total reflection.
  • the invisible light b is transmitted for a relatively short distance in the way of total reflection, it encounters the dots, so that the angle ⁇ between the invisible light b and the normal of the light exit surface becomes smaller than the critical angle of total reflection. In this way, the total reflection of the invisible light b is destroyed by the dots 211 and emitted from the light exit surface 22.
  • the aforementioned invisible light source may be an infrared (Infrared Radiation, IR) light source, or an ultraviolet light source, or both.
  • infrared light refers to light with a wavelength of >780nm
  • ultraviolet light refers to light with a wavelength of ⁇ 400nm.
  • the aforementioned invisible light fingerprint sensor may be an infrared fingerprint sensor, an ultraviolet fingerprint sensor, or a combination of the two.
  • the area defined by the inner edge of the aforementioned dot surface may be a three-dimensional three-dimensional area.
  • the invisible light fingerprint sensor 1 can be arranged under the light guide 2, as shown in FIG. 12, or can be arranged in the space enclosed by the inner surface 24 of the light guide 2, or partly under the light guide 2, and partly located in the light guide. In the space enclosed by the inner surface 24 of the aperture 2.
  • the specific position of the invisible light fingerprint sensor in the vertical direction relative to the light guide ring is not limited in the present application.
  • the orthographic projection of the invisible light fingerprint sensor on the dot surface is in the area defined by the inner edge of the dot surface, so that the light above the light guide can pass through the space enclosed by the inner surface to reach the invisible light fingerprint sensor.
  • the invisible light source When fingerprints need to be collected, the invisible light source is turned on, and the invisible light enters the light guide ring from the first light-incident surface of the light guide ring, and is guided in the light guide ring by way of total reflection. Part of the invisible light rays are reflected by the dots on the dot surface and are emitted from the light-emitting surface. The other part of the invisible light continues to propagate by way of total reflection. This provides stable and uniform invisible light above the light exit surface of the entire light guide ring. The user places his finger at a certain position above the light guide, and the finger reflects and scatters part of the invisible light.
  • the reflected and scattered light passes through the space enclosed by the inner side of the light guide and is collected by the invisible light fingerprint sensor to generate a fingerprint image for fingerprint identification. Since the invisible light fingerprint sensor is arranged in the area defined by the inner edge of the dot surface of the light guide ring, the entire circle of invisible light above it is stable and uniform, so that the imaging signal intensity on the invisible light fingerprint sensor is more uniform. In this way, the imaging uniformity of the fingerprint identification device as a whole is improved, and the fingerprint identification performance is improved.
  • the aforementioned fingerprint identification device can also be used to collect palm prints and other biological characteristics.
  • the outer surface 23 of the light guide ring 2 is provided with a first reflective sheet 26.
  • the inner side surface 24 of the light guide ring is provided with a first reflective sheet 26.
  • the inner side surface and the outer side surface may both be provided with the first reflection sheet, or only one side may be provided with the first reflection sheet.
  • the first reflection sheet By arranging the first reflection sheet on the outer side and inner side of the light guide ring, the light emitted from the outer side and the inner side can be reflected back, thereby increasing the light emitted from the light-emitting surface and improving the utilization rate of light.
  • Part of the invisible light after entering the light guide ring may also be emitted from the dot surface of the light guide ring. This part of the invisible light cannot reach the finger and cannot be used for fingerprint collection, so it is wasted. In addition, this part of the light may also reach the invisible light fingerprint sensor, which will interfere with the light reflected by the finger and cause the quality of the captured fingerprint image to decrease.
  • the side of the dot surface 21 facing away from the light incident surface 22, that is, below the dot surface 21, is provided with a second reflective sheet 27.
  • the second reflecting sheet By arranging the second reflecting sheet under the dot surface of the light guide ring, the light emitted from the dot surface can be reflected back, thereby increasing the light emitted from the light exit surface and improving the utilization rate of light. At the same time, it can also prevent the light from reaching the invisible light fingerprint sensor, which will affect the quality of the fingerprint image.
  • the light guide ring further includes a light entrance part, a side surface of the light entrance part is provided with a first light entrance surface, and the light entrance part is used to change the angle at which light from the invisible light source enters the light guide ring.
  • the light incident part and the main body of the light guide ring are an integral structure, and the materials of the two are the same.
  • the side surface of the light entrance part is also a part of the outer side surface of the light guide ring, and the side surface of the light entrance part is provided with a first light entrance surface, so that the light from the invisible light source can enter the light guide ring from the first light entrance surface on the light entrance part .
  • the light guide ring 2 partially protrudes toward the outer surface to form a light incident portion 28.
  • the side surface of the light incident portion 28 is provided with a first light incident surface 231.
  • the position of the first light incident surface 231 changes, so that the angle at which the invisible light enters the light guide 2 also changes. Variety.
  • the light enters the light guide ring 2 because it faces the inner side surface 24 of the light guide ring, on the one hand, it is easy to be reflected back, causing part of the light to be emitted from the first light incident surface 231.
  • the angle at which the invisible light enters the light guide 2 is changed.
  • the light is not easily emitted from the first light incident surface 231, which improves the light utilization rate. It is favorable for the light to be transmitted in the light guide ring 2, so that the light emitted from each area on the light exit surface 22 of the light guide ring 2 is relatively uniform.
  • the shape of the light incident portion 28 may be a triangle-like shape as shown in FIG. 5, or other shapes, and the specific shape thereof is not limited in the present application.
  • the Always On Display (AOD) function of the display screen means that part of the display screen is kept on under the premise of not lighting up the entire display screen to display the time, incoming call information, push information and other content.
  • AOD always On Display
  • each pixel can be individually lit, so electronic devices using OLED screens are easier to implement AOD functions.
  • the LCD screen itself does not emit light and requires a backlight module.
  • the backlight module generally lights up as a whole and goes off as a whole, and cannot individually light up a certain part. Therefore, when the electronic device adopting the LCD screen needs to realize the AOD function, the entire backlight module needs to be turned on, so that the entire LCD screen is lit. Then some pixels in the LCD screen display black, and some pixels display time and other content to form a partial display effect. Therefore, to realize the AOD function of the LCD screen, the entire backlight needs to be lit, which consumes a lot of power.
  • the outer surface 23 of the light guide 2 is further provided with at least one second light incident surface 232 facing each second light incident surface.
  • the light surface 232 is respectively provided with at least one first visible light source 4.
  • One second light incident surface 232 may be provided on the outer side surface 23, as shown in FIG. 10, or multiple second light incident surfaces 232 may be provided, as shown in FIG. 11. This application does not limit the specific number of the second light incident surface on the outer surface.
  • one or more first visible light sources 4 are provided facing it. These first visible light sources can be arranged perpendicular to the second light entrance surface, so that visible light can be perpendicular to the second light entrance surface into the light guide ring, or can be arranged obliquely, so that the visible light and the second light entrance surface maintain a certain angle Shot into the light guide ring.
  • the light incident part on the light guide ring can also be used to change the angle at which visible light enters the light guide ring.
  • the side surface of the light incident part for changing the angle at which visible light enters the light guide ring is provided with a second light incident surface.
  • the invisible light source 3 and the first visible light source 4 may respectively correspond to different light incident parts 28, as shown in FIGS. 10 and 11; the invisible light source and the first visible light source may also correspond to the same light incident part , This application does not limit this.
  • the aforementioned first light incident surface and the second light incident surface may be the same light incident surface.
  • the first visible light source When the AOD function needs to be turned on, the first visible light source is turned on, and the visible light enters the light guide ring from the second light entrance surface of the light guide ring, and is guided in the light guide ring in a way of total reflection. Part of the visible light rays are reflected by the dots on the dot surface and are emitted from the light-emitting surface. The other part of the visible light continues to propagate in the form of total reflection. This provides stable and uniform visible light above the light exit surface of the entire light guide ring. These visible light rays are equivalent to the local backlight of the LCD screen, so that the LCD screen in the local area corresponding to the light guide ring can display time and other content, and realize the AOD function. For electronic devices using LCD screens, there is no need to light up the backlight when implementing the AOD function, which can save power consumption in the AOD mode.
  • the visible light source can be turned on to indicate the position of the fingerprint for the user to improve the user experience.
  • an electronic device is provided. Please refer to FIG. 12, which is a schematic side view of the structure of one implementation of the electronic device.
  • the electronic equipment includes a fingerprint identification device and a display screen.
  • the fingerprint identification device may be any fingerprint identification device in the first embodiment.
  • the display screen is arranged on one side of the light-emitting surface 22 of the light guide ring 2 in the fingerprint identification device.
  • the above-mentioned display screen may be an LCD screen.
  • the display screen includes a backlight module 51.
  • the backlight module 51 includes a backlight fixing frame 514 and a third reflective sheet 513.
  • the backlight fixing frame 514 is provided with a fixing frame opening 5141 corresponding to the fingerprint identification device; the third reflective sheet 513 is a reflective sheet through which invisible light can pass.
  • the backlight module 51 also includes other necessary components, such as a light guide film 511 and a second visible light source 512.
  • the light guide film 511 is a transparent film with a high refractive index and light transmittance, and a dot structure (not shown in the figure) is provided on its lower surface.
  • the second visible light source 512 may be disposed on one side of the light guide film 511. The visible light emitted by the second visible light source 512 enters the light guide film 511 from the side of the light guide film 511, and is transmitted in the light guide film 511 in a manner of total reflection.
  • the dot structure When the dot structure is encountered, the dot structure destroys the total reflection of visible light, so that the visible light is transmitted from the upper surface of the light guide film 511 to the outside of the light guide film 511, and provides a backlight for the liquid crystal panel disposed above the light guide film 511.
  • the third reflection sheet 513 is arranged under the light guide film 511, and is used to reflect the light emitted from the lower surface of the light guide film 511 back so that more light can be emitted from the upper surface of the light guide film 511 and provide a better LCD panel. More backlight.
  • the backlight fixing frame 514 fixes the light guide film 511, the second visible light source 512, and the third reflection sheet 513.
  • the display screen may also include other necessary components, such as a liquid crystal panel.
  • the liquid crystal panel may include an optical film 52 disposed above the backlight module 51, a thin film transistor layer 53, a color filter 54, and a liquid crystal layer 55 disposed between the thin film transistor layer 53 and the color filter 54, and so on.
  • the above-mentioned liquid crystal panel may also include polarizers and other devices.
  • the above-mentioned liquid crystal panel may be a TFT liquid crystal panel with a TFT layer, or other types of liquid crystal panels, such as STN (Super Twisted Nematic) liquid crystal panels, TFD (Thin Film Diode) liquid crystal panels, and the like.
  • the electronic equipment in this application includes but is not limited to: mobile phone, tablet computer (Pad), personal computer, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wearable Equipment, etc.
  • the second visible light source in the backlight module is turned on, and the invisible light source in the fingerprint identification device is turned off. If there is a first visible light source in the fingerprint identification device, the first visible light source is also turned off.
  • the backlight module is used to provide backlight for the liquid crystal panel.
  • the invisible light source in the fingerprint recognition device When the electronic device is in the fingerprint recognition mode, that is, when fingerprints need to be collected, the invisible light source in the fingerprint recognition device is turned on, and uniform invisible light is provided through the light guide ring.
  • the invisible light passes through the fixed frame opening in the backlight module, the third reflector, the light guide film, and the necessary components above the backlight module, such as optical films, thin film transistor layers, liquid crystal layers, color filters, etc. , Reflected and scattered by the user’s finger surface.
  • the reflected and scattered invisible light passes through the space enclosed by the color filter, the liquid crystal layer, the thin film transistor layer, the optical film, the light guide film, the third reflector, the fixed frame opening, and the inner surface of the light guide ring. It is captured by the invisible light fingerprint sensor to collect the user's fingerprint image.
  • the second visible light source in the backlight module can be turned on to indicate the position of the fingerprint on the display screen for the user.
  • the backlight module can be turned off and the first visible light source is turned on to provide a partial backlight for the liquid crystal panel, so that the display screen partially displays the position of the fingerprint.
  • the backlight module When the electronic device is in the AOD mode, the backlight module is turned off, and the first visible light source in the fingerprint identification device is turned on. Through the first visible light source and the light guide ring, a partial backlight is provided for the liquid crystal panel, so that the display screen can partially display time and other content.
  • the invisible light source is an infrared light source
  • the invisible light fingerprint sensor is an infrared fingerprint sensor
  • the third reflective sheet is a reflective sheet through which infrared light can pass.
  • the electronic device is a terminal such as a mobile phone or a tablet computer, it is more suitable to use an infrared light source and an infrared fingerprint sensor.
  • the above-mentioned electronic equipment includes any fingerprint identification device in the first embodiment, and therefore has corresponding beneficial effects, which will not be repeated here.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • the meaning of “plurality” means two or more than two, unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Input (AREA)

Abstract

一种指纹识别装置和一种电子设备,其中指纹识别装置包括导光圈(2)、至少一个不可见光光源(3),以及不可见光指纹传感器(1),导光圈具有网点面(21)、出光面(22)、外侧面(23)和内侧面(24),网点面和出光面相对设置,外侧面分别与网点面和出光面的外边缘连接,内侧面分别与网点面和出光面的内边缘连接,网点面的朝出光面的一侧分布有网点(211),外侧面设置有至少一个第一入光面(231),面向每一个第一入光面,分别设置有至少一个不可见光光源,不可见光指纹传感器设置于网点面的内边缘所限定的区域内。采用上述指纹识别装置,可以为整个导光圈的出光面上方提供稳定、均匀的不可见光线,从而从整体上提高指纹识别装置的成像均匀性,提升指纹识别性能。

Description

指纹识别装置及电子设备 技术领域
本申请涉及电子设备技术领域,具体涉及一种指纹识别装置,以及一种电子设备。
背景技术
随着全面屏手机的普及,屏下指纹识别装置越来越多地被应用于全面屏手机中。常见的显示屏有有机发光二极管(Organic Light-Emitting Diode,OLED)屏幕和液晶显示(Liquid Crystal Display,LCD)屏幕。一般的屏下指纹识别装置主要支持OLED屏幕,而不支持LCD屏幕。这是因为OLED屏幕是自发光的,不需要背光,而LCD屏幕本身并不能发光,需要背光,背光会给指纹识别装置的设置造成障碍。
请参见图1,图1为一种LCD屏幕的侧面结构示意图。该LCD屏幕包括背光模组91和设置在背光模组91上方的液晶面板。其中,液晶面板包括光学膜片92、薄膜晶体管(Thin Film Transistor,TFT)层93、彩色滤光(Color Filter,CF)片94,以及设置在薄膜晶体管层93和彩色滤光片94之间的液晶层98。背光模组91包括导光膜(Light Guide Film,LGF)911、LED光源912、反射片913和背光固定框914。LED光源912设置在导光膜911的侧面,LED光源912发出的光线从导光膜911侧面进入到导光膜911中,在导光膜911中以全反射的方式传导。导光膜911中设置有网点(图中未示出),当光线在导光膜911内传导时,如果传导到网点上,由于网点会破坏光线的全反射,光线就可以从导光膜911内透射到导光膜外,从而为设置在导光膜911上方的液晶面板提供背光。为了使光线尽可能从导光膜911的上表面透射出来,减少从导光膜911的下表面透射出来的光线,提高光线的利用率,一般还在导光膜911的下方设置一层反射片913。在反射片913下方还设置有一个背光固定框914,由于一般采用铁制框,故而也常称为背光铁框。背光固定框914用于加强固定,保护整个背光模组91中的组件。
如果在LCD屏幕下设置指纹识别装置,由于背光固定框914不透明,并且反射片913会将目标物(手指、手掌等)反射的可见光向上反射、散射回去,导致指纹识别装置无法采集到目标物图像,故而指纹识别装置无法安装在LCD屏幕的下方。即,LCD屏幕无法实现屏下指纹识别功能。
为了将指纹识别装置应用到LCD屏幕中,实现屏下指纹识别的功能,此前发明人采用的一种实现方式是采用红外指纹识别装置。
请参见图2和图3,图2为一种LCD屏幕及红外指纹识别装置的侧面结构示意图,图3为图2中的红外指纹识别装置的俯视结构示意图。为了使光线可以到达背光固定框914下方,在背光固定框914上开设一个固定框开口9141。在固定框开口9141下方设置有红外指纹识别装置,包括红外指纹传感器96以及红外光源97。并且,将原本设置在导光膜911下方的反射片替换为红外光线可以透过的透红外反射片915。这样,导光膜911下表面射出来的可见光可以被该透红外反射片915反射回去,但是下方的红外光源97所发出的红外光可以穿过该透红外反射片915。
当需要采集用户的指纹图像的时候,用户将手指捺印在LCD屏幕上,红外光源97发 出的红外光线可以穿过固定框开口9141、透红外反射片915、导光膜911、光学膜片92、薄膜晶体管层93、液晶层98以及彩色滤光片94,被用户的手指表面反射、散射。反射和散射回来的红外光线再穿过彩色滤光片94、液晶层98、薄膜晶体管层93、光学膜片92、导光膜911、透红外反射片915以及固定框开口9141,被固定框开口9141下方的红外指纹传感器96捕获,从而采集到用户的指纹图像。
由于红外光源具有一定的发光角度和亮度分布曲线,容易造成红外指纹传感器成像信号强度不均匀,影响成像的均匀性。例如图2和图3所示的红外指纹识别装置,红外光源97位于指纹传感器96的一侧,照射到距离红外光源97较近的手指区域的光线较强、能量较高,而照射到距离红外光源97较远的手指区域的光线较弱、能量较少。相应地,手指不同区域反射回红外指纹传感器96的光线强度也存在差异。这导致红外指纹传感器96在捕获红外光线成像时,靠近红外光源97的区域的信号较强,而远离红外光源97的区域的信号较弱,进而导致红外指纹传感器96不同区域所捕获到的信号的信噪比差异较大,影响成像的均匀性。
发明内容
本申请提供一种指纹识别装置,该指纹识别装置具有导光圈。导光圈可以使光源均匀地分布在指纹传感器上方的外周,从而使指纹传感器上不同区域的信号强度更加均匀,进而从整体上提高指纹识别装置的成像均匀性。
第一方面,本申请提供一种指纹识别装置,包括导光圈、至少一个不可见光光源,以及不可见光指纹传感器;其中,所述导光圈具有网点面、出光面、外侧面和内侧面,所述网点面和所述出光面相对设置,所述外侧面分别与所述网点面和所述出光面的外边缘连接,所述内侧面分别与所述网点面和所述出光面的内边缘连接;所述网点面的朝出光面的一侧分布有网点;所述外侧面设置有至少一个第一入光面;面向每一个所述第一入光面,分别设置有至少一个不可见光光源;所述不可见光指纹传感器设置于所述网点面的内边缘所限定的区域内。
采用本实现方式,通过导光圈和不可见光光源,可以为整个导光圈的出光面上方提供稳定、均匀的不可见光线,从而使目标物反射回不可见光指纹传感器的不可见光线更加稳定均匀。这样,就可以使不可见光指纹传感器上的成像信号强度更加均匀,从整体上提高指纹识别装置的成像均匀性,进而提升指纹识别性能。
结合第一方面,在第一方面第一种可能的实现方式中,所述外侧面还设有至少一个第二入光面,面向每一个所述第二入光面,分别设置有至少一个第一可见光光源。
采用本实现方式,通过导光圈和第一可见光光源,可以为整个导光圈的出光面上方提供稳定、均匀的可见光线,从而为液晶面板提供局部背光,使得导光圈对应的局部区域的LCD屏幕可以实现AOD功能。由于在实现AOD功能时无需点亮背光,从而可以节约AOD模式下电子设备的耗电量。此外,在采集指纹时,这些可见光线还可以为用户指示捺印手指的位置,提升用户体验。
结合第一方面及上述可能的实现方式,在第一方面第二种可能的实现方式中,所述外侧面设置有第一反射片;和/或,所述内侧面设置有第一反射片。
采用本实现方式,第一反射片可以将从外侧面和内侧面射出的光线反射回来,从而增加从出光面射出的光线,提高光线利用率。
结合第一方面及上述可能的实现方式,在第一方面第三种可能的实现方式中,所述导光圈还包括入光部,所述入光部的侧面设置有所述第一入光面,所述入光部用于改变所述不可见光光源的光线进入所述导光圈的角度。
采用本实现方式,通过入光部来改变不可见光进入导光圈的角度,一方面使得光线不容易从第一入光面射出,提高了光线利用率;另一方面也有利于光线在导光圈中传导,从而使导光圈的出光面上各个区域所射出的光线都比较均匀。
结合第一方面及上述可能的实现方式,在第一方面第四种可能的实现方式中,所述导光圈朝向所述外侧面局部突出,形成所述入光部。
采用本实现方式,可以改变不可见光进入导光圈的角度,一方面使得光线不容易从第一入光面射出,提高了光线利用率;另一方面也有利于光线在导光圈中传导,从而使导光圈的出光面上各个区域所射出的光线都比较均匀。
结合第一方面及上述可能的实现方式,在第一方面第五种可能的实现方式中,所述网点面的背向所述入光面的一侧设置有第二反射片。
采用本实现方式,第二反射片可以将从网点面射出的光线反射回来,从而增加从出光面射出的光线,提高光线利用率。同时,第二反射片还可以避免从网点面射出的光线到达不可见光指纹传感器,影响指纹图像的质量。
结合第一方面及上述可能的实现方式,在第一方面第六种可能的实现方式中,所述导光圈为封闭的环状。
采用本实现方式,可以为整个导光圈的出光面上方提供稳定、均匀的不可见光线,从而提高指纹识别装置的成像均匀性,进而提升指纹识别性能。
结合第一方面及上述可能的实现方式,在第一方面第七种可能的实现方式中,所述不可见光光源为红外光源,所述不可见光指纹传感器为红外指纹传感器。
采用本实现方式,可以为整个导光圈的出光面上方提供稳定、均匀的红外光线,提高指纹识别装置的成像均匀性,同时避免对用户的视网膜造成伤害。
第二方面,本申请提供一种电子设备,包括指纹识别装置和显示屏;其中,所述指纹识别装置包括导光圈、至少一个不可见光光源和不可见光指纹传感器;所述导光圈具有网点面、出光面、外侧面和内侧面,所述网点面和所述出光面相对设置,所述外侧面分别与所述网点面和所述出光面的外边缘连接,所述内侧面分别与所述网点面和所述出光面的内边缘连接;所述网点面的朝出光面的一侧分布有网点;所述外侧面设置有至少一个第一入光面;面向每一个所述第一入光面,分别设置有至少一个不可见光光源;所述不可见光指纹传感器设置于所述网点面的内边缘所限定的区域内;所述显示屏设置于所述指纹识别装置的出光面的一侧。
采用本实现方式,电子设备在通过显示屏下的指纹识别装置来采集指纹时,由于导光圈和不可见光光源为整个导光圈的出光面上方提供稳定、均匀的不可见光线,从而使目标物反射回不可见光指纹传感器的不可见光线更加稳定均匀。这样,就可以使不可见光指纹传感器上的成像信号强度更加均匀,从整体上提高指纹识别装置的成像均匀性,进而提升电子设备的指纹识别性能。
结合第二方面,在第二方面第一种可能的实现方式中,所述外侧面还设有至少一个第二入光面,面向每一个所述第二入光面,分别设置有至少一个第一可见光光源。
结合第二方面及上述可能的实现方式,在第二方面第二种可能的实现方式中,所述外侧面设置有第一反射片;和/或,所述内侧面设置有第一反射片。
结合第二方面及上述可能的实现方式,在第二方面第三种可能的实现方式中,所述导光圈还包括入光部,所述入光部的侧面设置有所述第一入光面,所述入光部用于改变所述不可见光光源的光线进入所述导光圈的角度。
结合第二方面及上述可能的实现方式,在第二方面第四种可能的实现方式中,所述显示屏为LCD屏幕。
结合第二方面及上述可能的实现方式,在第二方面第五种可能的实现方式中,所述不可见光光源为红外光源,所述不可见光指纹传感器为红外指纹传感器,所述第三反射片为红外光能够穿过的反射片。
结合第二方面及上述可能的实现方式,在第二方面第六种可能的实现方式中,所述显示屏包括背光模组,所述背光模组包括背光固定框和第三反射片;所述背光固定框上开设有一个与所述指纹识别装置对应的固定框开口;所述第三反射片为不可见光能够穿过的反射片。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所使用的附图作简单介绍。
图1为一种LCD屏幕的侧面结构示意图;
图2为一种LCD屏幕及红外指纹识别装置的侧面结构示意图;
图3为图2中的红外指纹识别装置的俯视结构示意图;
图4为本申请的指纹识别装置的第一实现方式的俯视结构示意图;
图5为本申请的指纹识别装置的第二实现方式的俯视结构示意图;
图6为本申请的指纹识别装置的第二实现方式的侧视结构示意图;
图7为本申请的指纹识别装置的第三实现方式的俯视结构示意图;
图8为本申请的指纹识别装置的第四实现方式的俯视结构示意图;
图9为本申请的指纹识别装置的第五实现方式的俯视结构示意图;
图10为本申请的指纹识别装置的第六实现方式的俯视结构示意图;
图11为本申请的指纹识别装置的第七实现方式的俯视结构示意图;
图12为本申请的电子设备的其中一种实现方式的侧视结构示意图。
附图标记说明:
图1至图3:背光模组91;导光膜911;LED光源912;反射片913;透红外反射片915;背光固定框914;固定框开口9141;光学膜片92;薄膜晶体管层93;彩色滤光片94;指纹识别装置95;红外指纹传感器96;红外光源97;液晶层98;
图4至图12:不可见光指纹传感器1;导光圈2;网点面21;网点211;出光面22;外侧面23;第一入光面231;第二入光面232;内侧面24;第一反射片26;第二反射片27;入光部28;不可见光光源3;第一可见光光源4;背光模组51;导光膜511;第二可见光光源512;第三反射片513;背光固定框514;固定框开口5141;光学膜片52;薄膜晶体管层53;彩色滤光片54;液晶层55。
具体实施方式
如图2和图3所示的红外指纹识别装置,红外光源97位于指纹传感器96的一侧,容 易影响成像的均匀性。即便在指纹传感器96的多侧均设置红外光源97,也只能在一定程度上缓解这个问题。红外指纹传感器上靠近红外光源的区域的信号强度高,处于两个或者多个红外光源之间的区域的信号强度较弱,故而对红外指纹传感器的成像均匀性的影响仍然较大。
为此,在本申请的第一个实施例中,提供一种指纹识别装置。该指纹识别装置具有导光圈,可以使光源均匀地分布在指纹传感器上方的外周,从而使指纹传感器上不同区域的信号强度更加均匀,进而从整体上提高了指纹识别装置的成像均匀性。该指纹识别装置适合应用在具有显示屏的电子设备中,尤其是具有LCD屏幕的电子设备中。
请参见图4至图6,图4为本申请的指纹识别装置的第一实现方式的俯视结构示意图;图5为本申请的指纹识别装置的第二实现方式的俯视结构示意图;图6为本申请的指纹识别装置的第二实现方式的侧视结构示意图。该指纹识别装置包括导光圈2、至少一个不可见光光源3,以及不可见光指纹传感器1。
其中,导光圈2具有网点面21、出光面22、外侧面23和内侧面24,网点面21和出光面22相对设置,外侧面23分别与网点面21和出光面22的外边缘连接,内侧面24分别与网点面21和出光面22的内边缘连接。外侧面23设置有至少一个第一入光面231。面向每一个第一入光面231,分别设置有至少一个不可见光光源3。不可见光指纹传感器1设置于网点面21的内边缘所限定的区域内。
需要说明的是,导光圈本身是一个圈体,其内部为均一的材质。导光圈具体可以采用聚碳酸酯(polycarbonate,PC)、聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)、玻璃等材质。导光圈的形状为封闭的环状,可以是圆环,也可以是方环,还可以是不规则的环形等,本申请对导光圈的形状不作限定。
上述导光圈2具有出光面22(例如图5和图6中的上表面)、网点面21(例如图5和图6中的下表面)、外侧面23和内侧面24。网点面21和出光面22相对设置,由于网点面21和出光面22与导光圈2的整体形状一致,也为环形,故而着两个面都可以具有外边缘和内边缘,如图5和图6所示。外侧面23和内侧面24也相对设置,外侧面23分别与网点面21和出光面22的外边缘连接,内侧面24分别与网点面21和出光面22的内边缘连接,从而形成一个封闭的环形结构。在实际应用中,外侧面与网点面、出光面的连接处,以及内侧面与网点面、出光面的连接处,可以保持尖锐的角度,也可以做倒角等处理,本申请对此不作限定。
上述导光圈的外侧面23上可以设置一个第一入光面231,如图4和图5所示,也可以设置多个第一入光面231,如图7和图8所示,本申请对于外侧面上第一入光面的具体数量不作限定。对于每一个第一入光面而言,面向其设置有一个或者多个不可见光光源。这些不可见光光源可以垂直于第一入光面设置,以使不可见光能够垂直于第一入光面射入导光圈中,也可以倾斜设置,以使不可见光与第一入光面保持一定的角度射入导光圈中。通过设置多个第一入光面和多个不可见光光源,可以为不可见光指纹传感器成像提供更多不可见光能量,从而进一步提升成像品质。
上述导光圈的网点面21的朝出光面的一侧分布有网点211。不可见光从第一入光面进入到导光圈中以后,大部分不可见光光线可以以全反射的方式在导光圈中传导。网点面上的网点可以改变不可见光的反射角度,从而使不可见光光线与出光面的法线之间夹角小于 全反射的临界角,破坏不可见光的全反射。这样,这些不可见光就会从与网点面相对的出光面射出,在出光面上方的空气中继续传播。例如图6所示,不可见光a、b、c从第一入光面231进入到导光圈2中以后,不可见光a、c与出光面的法线之间夹角大于全反射的临界角,故而以全反射的方式在导光圈2中传导到一个距离第一入光面231相对较远的位置。不可见光b在以全反射的方式传导了一段相对较短的距离以后,遇到网点,使不可见光b与出光面的法线之间夹角α变为小于全反射的临界角。这样,不可见光b就被网点211破坏其全反射,从而从出光面22射出。
上述的不可见光光源,可以是红外(Infrared Radiation,IR)光源,也可以是紫外光源,还可以同时包括二者。本申请中的红外光指的是波长>780nm的光线,紫外光指的是波长<400nm的光线。当应用在手机、平板电脑等终端中时,由于紫外光源会对用户的视网膜等造成伤害,故而更适合采用红外光源。
与不可见光光源相对应的,上述的不可见光指纹传感器可以是红外指纹传感器,也可以是紫外指纹传感器,还可以是二者的结合。
上述网点面的内边缘所限定的区域可以是一个立体的三维区域。不可见光指纹传感器1可以设置在导光圈2的下方,例如图12所示,也可以设置在导光圈2的内侧面24所围成的空间内,还可以部分位于导光圈2下方,部分位于导光圈2的内侧面24所围成的空间内。以图12所示的方向为例,在本申请的指纹识别装置中,不可见光指纹传感器在竖直方向上相对于导光圈的具体位置,本申请不作限定。不可见光指纹传感器在网点面的正投影在网点面的内边缘所限定的区域内,使导光圈上方的光线可以穿过内侧面所围成的空间,到达不可见光指纹传感器即可。
当需要采集指纹时,不可见光光源开启,不可见光线从导光圈的第一入光面进入导光圈,在导光圈中以全反射的方式传导。部分不可见光线经过网点面上的网点的反射,从出光面射出。另一部分不可见光线则以全反射的方式继续传播。这为整个导光圈的出光面上方提供了稳定、均匀的不可见光线。用户将手指放在导光圈上方的某个位置,手指将部分不可见光线反射、散射回去。反射、散射的光线穿过导光圈内侧面所围成的空间,被不可见光指纹传感器采集到,进而生成指纹图像,用于识别指纹。由于不可见光指纹传感器设置于导光圈的网点面内边缘所限定的区域内,其上方的一整圈不可见光线稳定、均匀,从而使不可见光指纹传感器上的成像信号强度更加均匀。这样,就从整体上提高了指纹识别装置的成像均匀性,提升了指纹识别性能。
需要说明的是,上述的指纹识别装置除了用于采集指纹以外,也可以用于采集掌纹等其他生物特征。
进入导光圈之后的部分不可见光可能会从导光圈的内侧面或者外侧面射出,这部分不可见光无法到达手指,不能用于指纹的采集,故而被浪费。为此,可选地,请参见图9,导光圈2的外侧面23设置有第一反射片26。可选地,导光圈的内侧面24设置有第一反射片26。内侧面和外侧面可以都设置第一反射片,也可以只在其中一侧设置第一反射片。
通过在导光圈的外侧面和内侧面设置第一反射片,可以将从外侧面和内侧面射出的光线反射回来,从而增加从出光面射出的光线,提高光线利用率。
进入导光圈之后的部分不可见光还可能会从导光圈的网点面射出,这部分不可见光也无法到达手指,不能用于指纹的采集,故而被浪费。此外,这部分光线还可能到达不可见 光指纹传感器,从而对由手指反射回来的光线产生干扰,导致采集的指纹图像质量下降。为此,可选地,请参见图6,网点面21的背向入光面22的一侧,即网点面21的下方,设置有第二反射片27。
通过在导光圈的网点面下方设置第二反射片,可以将从网点面射出的光线反射回来,从而增加从出光面射出的光线,提高光线利用率。同时还可以避免这些光线到达不可见光指纹传感器,影响指纹图像的质量。
可选地,导光圈还包括入光部,入光部的侧面设置有第一入光面,入光部用于改变不可见光光源的光线进入导光圈的角度。
入光部与导光圈的主体为一体的结构,二者材质相同。入光部的侧面也是导光圈的外侧面的一部分,入光部的侧面设置第一入光面,从而使不可见光光源的光线可以从入光部上的第一入光面进入到导光圈中。
请参见图5和图6,在一种实现方式中,导光圈2朝向外侧面局部突出,形成入光部28。入光部28的侧面设置有第一入光面231。与图4所示的导光圈2相比,尽管不可见光光源始终正面朝向第一入光面231,由于第一入光面231的位置发生变化,使得不可见光进入导光圈2的角度也发生了变化。在图4所示的例子中,如果光线射入导光圈2之后,由于直面导光圈的内侧面24,一方面容易被反射回来,导致部分光线又从第一入光面231射出,另一方面也不便于光线在导光圈2中传导。而在图5和图6所示的例子中,由于改变了不可见光进入导光圈2的角度,一方面使得光线不容易从第一入光面231射出,提高了光线利用率,另一方面也有利于光线在导光圈2中传导,从而使导光圈2的出光面22上各个区域所射出的光线都比较均匀。
需要说明的是,入光部28的形状可以是如图5所示的类三角的形状,也可以是其他形状,本申请对其具体形状不作限定。
显示屏的熄屏显示(Always On Display,AOD)功能,是指在不点亮整个显示屏的前提下,在显示屏的部分区域保持常亮,以显示时间、来电信息、推送信息等内容。当手机等终端处于熄屏状态下时,由于显示屏上部分区域显示有时间等内容,故而用户无需通过解锁屏幕或者按电源键等方式来点亮整个显示屏,就可以直接查看时间等内容。
对于OLED屏幕来说,由于其是自发光的,每一个像素都可以单独点亮,故而采用OLED屏幕的电子设备比较容易实现AOD功能。而LCD屏幕本身并不能发光,需要背光模组。背光模组一般都是整体点亮整体熄灭,无法单独点亮某一个局部。故而当采用LCD屏幕的电子设备需要实现AOD功能时,需要打开整个背光模组,从而使整个LCD屏幕都被点亮。然后LCD屏幕中部分像素显示黑色,部分像素显示时间等内容,以形成局部显示的效果。因此,LCD屏幕要实现AOD功能,需要点亮整个背光,十分耗电。
为了解决该问题,可选地,请参见图10和图11,在本申请的实施例中,导光圈2的外侧面23还设有至少一个第二入光面232,面向每一个第二入光面232,分别设置有至少一个第一可见光光源4。
外侧面23上可以设置一个第二入光面232,如图10所示,也可以设置多个第二入光面232,如图11所示。本申请对于外侧面上第二入光面的具体数量不作限定。对于每一个第二入光面232而言,面向其设置有一个或者多个第一可见光光源4。这些第一可见光源可以垂直于第二入光面设置,以使可见光能够垂直于第二入光面射入导光圈中,也可以倾 斜设置,以使可见光与第二入光面保持一定的角度射入导光圈中。
与前述用于改变不可见光进入导光圈的角度的入光部类似地,导光圈上的入光部也可以用于改变可见光进入导光圈的角度。用于改变可见光进入导光圈的角度的入光部,其侧面设置有第二入光面。关于入光部可以参考前述的相关描述,此处不再赘述。需要说明的是,不可见光光源3和第一可见光光源4可以分别对应不同的入光部28,如图10和图11所示;不可见光光源和第一可见光光源也可以对应同一个入光部,本申请对此不作限定。当不可见光光源和第一可见光光源对应同一个入光部时,前述的第一入光面和第二入光面可以是同一个入光面。
当需要开启AOD功能时,第一可见光光源开启,可见光线从导光圈的第二入光面进入导光圈,在导光圈中以全反射的方式传导。部分可见光线经过网点面上的网点的反射,从出光面射出。另一部分可见光线则以全反射的方式继续传播。这为整个导光圈的出光面上方提供了稳定、均匀的可见光线。这些可见光光线相当于LCD屏幕的局部背光,从而使得导光圈对应的局部区域的LCD屏幕可以显示时间等内容,实现AOD功能。对于采用LCD屏幕的电子设备而言,在实现AOD功能时无需点亮背光,从而可以节约AOD模式下的耗电量。
此外,当需要采集指纹时,由于不可见光光源发出的光线用户并不能看到,故而用户无法准确地获知手指捺印的位置。此时,可以将可见光光源打开,为用户指示捺印手指的位置,提升用户体验。
在本申请的第二个实施例中,提供一种电子设备。请参见图12,图12为电子设备的其中一种实现方式的侧视结构示意图。该电子设备包括指纹识别装置和显示屏。
其中,指纹识别装置可以是第一个实施例中的任一种指纹识别装置,具体可以参考第一个实施例中的描述,此处不再赘述。显示屏设置于指纹识别装置中导光圈2的出光面22的一侧。可选地,上述的显示屏可以为LCD屏幕。
显示屏包括背光模组51。背光模组51包括背光固定框514和第三反射片513。背光固定框514上开设有一个与指纹识别装置对应的固定框开口5141;第三反射片513为不可见光能够穿过的反射片。
背光模组51中还包括其他必要的组件,例如导光膜511和第二可见光光源512。导光膜511是有着高折射率和光穿透率的透明薄膜,其下表面设置有网点结构(图中未示出)。第二可见光光源512可以设置在导光膜511的一侧。第二可见光光源512发出的可见光线,从导光膜511侧面进入到导光膜511中,在导光膜511中以全反射的方式传导。当遇到网点结构时,由于网点结构破坏可见光线的全反射,从而使可见光线从导光膜511上表面透射到导光膜511外,为设置在导光膜511上方的液晶面板提供背光。第三反射片513设置在导光膜511下方,用于将从导光膜511下表面射出的光线反射回去,以便更多的光线可以从导光膜511的上表面射出,为液晶面板提供更多的背光。背光固定框514将导光膜511、第二可见光光源512和第三反射片513固定起来。
需要说明的是,除了背光模组51之外,显示屏还可以包括其他必要的组件,例如液晶面板。液晶面板可以包括设置在背光模组51上方的光学膜片52、薄膜晶体管层53、彩色滤光片54,以及设置在薄膜晶体管层53和彩色滤光片54之间的液晶层55等。
可以理解地,上述液晶面板还可以包括偏光片等器件。上述液晶面板可以是具有TFT层的TFT液晶面板,也可以是其他类型的液晶面板,比如STN(Super Twisted Nematic, 超扭转向列)液晶面板,TFD(Thin Film Diode)液晶面板等。
本申请中的电子设备包括但不限于:手机(mobile phone)、平板电脑(Pad)、个人计算机、虚拟现实(virtual reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、可穿戴设备等。
当电子设备处于正常工作模式时,背光模组中的第二可见光源打开,指纹识别装置中的不可见光光源关闭。如果指纹识别装置中存在第一可见光源,第一可见光源也关闭。通过背光模组来为液晶面板提供背光。
当电子设备处于指纹识别模式,即需要采集指纹时,指纹识别装置中的不可见光光源打开,通过导光圈提供均匀的不可见光线。这些不可见光穿过背光模组中的固定框开口、第三反射片、导光膜,以及背光模组上方的必要的组件,例如光学膜片、薄膜晶体管层、液晶层、彩色滤光片等,被用户的手指表面反射、散射。反射和散射回来的不可见光线再穿过彩色滤光片、液晶层、薄膜晶体管层、光学膜片、导光膜、第三反射片、固定框开口、导光圈内侧面所围成的空间,被不可见光指纹传感器捕获,从而采集到用户的指纹图像。
此外,当电子设备处于指纹识别模式时,背光模组中的第二可见光源可以打开,以便在显示屏上为用户指示捺印指纹的位置。当指纹识别装置中存在第一可见光源时,背光模组可以关闭,打开第一可见光源,以便为液晶面板提供局部背光,从而使显示屏局部显示捺印指纹的位置。
当电子设备处于AOD模式时,背光模组关闭,指纹识别装置中的第一可见光源打开。通过第一可见光源和导光圈,为液晶面板提供局部背光,从而使显示屏局部显示时间等内容。
可选地,当不可见光光源为红外光源时,相应地,不可见光指纹传感器为红外指纹传感器,第三反射片为红外光能够穿过的反射片。当该电子设备为手机、平板电脑等终端时,更适合采用红外光源和红外指纹传感器。
上述的电子设备包括了第一个实施例中的任一种指纹识别装置,故而具有相应的有益效果,此处不再赘述。
应理解,在本申请的描述中,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
还应理解,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本说明书中各个实施例之间相同相似的部分互相参见即可。上述实施例中的不同实现方式,只要不相互矛盾,均可以相互结合。以上所述的本发明实施方式并不构成对本发明保护范围的限定。

Claims (15)

  1. 一种指纹识别装置,其特征在于,包括导光圈、至少一个不可见光光源,以及不可见光指纹传感器;其中,
    所述导光圈具有网点面、出光面、外侧面和内侧面,所述网点面和所述出光面相对设置,所述外侧面分别与所述网点面和所述出光面的外边缘连接,所述内侧面分别与所述网点面和所述出光面的内边缘连接;所述网点面的朝出光面的一侧分布有网点;所述外侧面设置有至少一个第一入光面;
    面向每一个所述第一入光面,分别设置有至少一个不可见光光源;
    所述不可见光指纹传感器设置于所述网点面的内边缘所限定的区域内。
  2. 根据权利要求1所述的装置,其特征在于,所述外侧面还设有至少一个第二入光面,面向每一个所述第二入光面,分别设置有至少一个第一可见光光源。
  3. 根据权利要求1或2所述的装置,其特征在于,
    所述外侧面设置有第一反射片;和/或,
    所述内侧面设置有第一反射片。
  4. 根据权利要求1-3任一项所述的装置,其特征在于,所述导光圈还包括入光部,所述入光部的侧面设置有所述第一入光面,所述入光部用于改变所述不可见光光源的光线进入所述导光圈的角度。
  5. 根据权利要求4所述的装置,其特征在于,所述导光圈朝向所述外侧面局部突出,形成所述入光部。
  6. 根据权利要求1-5任一项所述的装置,其特征在于,所述网点面的背向所述入光面的一侧设置有第二反射片。
  7. 根据权利要求1-6任一项所述的装置,其特征在于,所述导光圈为封闭的环状。
  8. 根据权利要求1-7任一项所述的装置,其特征在于,所述不可见光光源为红外光源,所述不可见光指纹传感器为红外指纹传感器。
  9. 一种电子设备,其特征在于,包括指纹识别装置和显示屏;其中,
    所述指纹识别装置包括导光圈、至少一个不可见光光源和不可见光指纹传感器;
    所述导光圈具有网点面、出光面、外侧面和内侧面,所述网点面和所述出光面相对设置,所述外侧面分别与所述网点面和所述出光面的外边缘连接,所述内侧面分别与所述网点面和所述出光面的内边缘连接;所述网点面的朝出光面的一侧分布有网点;所述外侧面设置有至少一个第一入光面;
    面向每一个所述第一入光面,分别设置有至少一个不可见光光源;
    所述不可见光指纹传感器设置于所述网点面的内边缘所限定的区域内;
    所述显示屏设置于所述指纹识别装置的出光面的一侧。
  10. 根据权利要求9所述的电子设备,其特征在于,所述外侧面还设有至少一个第二入光面,面向每一个所述第二入光面,分别设置有至少一个第一可见光光源。
  11. 根据权利要求9或10所述的电子设备,其特征在于,
    所述外侧面设置有第一反射片;和/或,
    所述内侧面设置有第一反射片。
  12. 根据权利要求9-11任一项所述的电子设备,其特征在于,所述导光圈还包括入 光部,所述入光部的侧面设置有所述第一入光面,所述入光部用于改变所述不可见光光源的光线进入所述导光圈的角度。
  13. 根据权利要求9-12任一项所述的电子设备,其特征在于,所述显示屏为LCD屏幕。
  14. 根据权利要求9-13任一项所述的电子设备,其特征在于,所述不可见光光源为红外光源,所述不可见光指纹传感器为红外指纹传感器,所述第三反射片为红外光能够穿过的反射片。
  15. 根据权利要求9-14任一项所述的电子设备,其特征在于,所述显示屏包括背光模组,所述背光模组包括背光固定框和第三反射片;
    所述背光固定框上开设有一个与所述指纹识别装置对应的固定框开口;
    所述第三反射片为不可见光能够穿过的反射片。
PCT/CN2020/107382 2019-08-30 2020-08-06 指纹识别装置及电子设备 WO2021036731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910816020.9A CN112446250A (zh) 2019-08-30 2019-08-30 指纹识别装置及电子设备
CN201910816020.9 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021036731A1 true WO2021036731A1 (zh) 2021-03-04

Family

ID=74685631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107382 WO2021036731A1 (zh) 2019-08-30 2020-08-06 指纹识别装置及电子设备

Country Status (2)

Country Link
CN (1) CN112446250A (zh)
WO (1) WO2021036731A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220265B (zh) * 2022-07-20 2023-11-10 福州大学 含有环形导光圈的背光模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842026A (zh) * 2011-06-24 2012-12-26 金佶科技股份有限公司 指纹辨识装置
CN103942559A (zh) * 2013-01-21 2014-07-23 义明科技股份有限公司 影像感测装置以及影像感测装置的解码电路
US20180211085A1 (en) * 2016-01-04 2018-07-26 Boe Technology Group Co., Ltd. Optical fingerprint identification display screen and display device
CN108446677A (zh) * 2018-05-03 2018-08-24 东莞市美光达光学科技有限公司 一种用于屏幕下方的指纹识别模组
CN207764818U (zh) * 2018-02-07 2018-08-24 南昌欧菲生物识别技术有限公司 指纹识别模组和终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183982A (zh) * 2017-12-26 2018-06-19 维沃移动通信有限公司 一种移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842026A (zh) * 2011-06-24 2012-12-26 金佶科技股份有限公司 指纹辨识装置
CN103942559A (zh) * 2013-01-21 2014-07-23 义明科技股份有限公司 影像感测装置以及影像感测装置的解码电路
US20180211085A1 (en) * 2016-01-04 2018-07-26 Boe Technology Group Co., Ltd. Optical fingerprint identification display screen and display device
CN207764818U (zh) * 2018-02-07 2018-08-24 南昌欧菲生物识别技术有限公司 指纹识别模组和终端
CN108446677A (zh) * 2018-05-03 2018-08-24 东莞市美光达光学科技有限公司 一种用于屏幕下方的指纹识别模组

Also Published As

Publication number Publication date
CN112446250A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
KR100568833B1 (ko) 액정 표시 장치 및 전자 기기
WO2018161541A1 (zh) 一种指纹识别显示装置及其驱动方法
CN111033518B (zh) Lcd指纹识别系统、屏下光学指纹识别装置和电子装置
EP3819898B1 (en) Display screen and terminal
KR970008351B1 (ko) 액정 표시 장치
US20150346856A1 (en) Touch-sensing lcd panel
WO2020077498A1 (zh) 发光装置、生物特征检测装置和电子设备
JP7042900B2 (ja) 直下型バックライト表示モジュール及び表示装置
TWI635306B (zh) 光學裝置
CN111095289B (zh) 屏下指纹识别装置以及终端设备
WO2015108477A1 (en) Touch-sensing quantum dot lcd panel
KR20110066038A (ko) 투명표시소자 및 이를 구비한 전자기기
JP2003279988A (ja) 液晶表示装置および電子機器
US9086761B2 (en) Display apparatus
CN206741360U (zh) 显示装置和电子设备
JP3007735B2 (ja) 液晶表示装置
CN212010175U (zh) 光学盖板及显示装置
US20220326560A1 (en) Image Capturing Apparatus
WO2016169173A1 (zh) 导光板、背光源和显示装置
WO2021036731A1 (zh) 指纹识别装置及电子设备
CN210666264U (zh) 显示屏组件及终端设备
CN211653351U (zh) 背光模组、显示装置以及电子设备
JP2003172931A (ja) 液晶表示装置および電子機器
JP2002062526A (ja) 反射型液晶表示装置
CN211319234U (zh) 屏下指纹识别装置以及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858694

Country of ref document: EP

Kind code of ref document: A1