WO2021036462A1 - 参数获取方法、像素点对选择方法及相关设备 - Google Patents

参数获取方法、像素点对选择方法及相关设备 Download PDF

Info

Publication number
WO2021036462A1
WO2021036462A1 PCT/CN2020/098544 CN2020098544W WO2021036462A1 WO 2021036462 A1 WO2021036462 A1 WO 2021036462A1 CN 2020098544 W CN2020098544 W CN 2020098544W WO 2021036462 A1 WO2021036462 A1 WO 2021036462A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction block
pixel
pixels
reconstructed
pixel point
Prior art date
Application number
PCT/CN2020/098544
Other languages
English (en)
French (fr)
Inventor
马思伟
张嘉琪
王苫社
王�琦
Original Assignee
咪咕文化科技有限公司
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 咪咕文化科技有限公司, 北京大学 filed Critical 咪咕文化科技有限公司
Publication of WO2021036462A1 publication Critical patent/WO2021036462A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/77Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase

Definitions

  • the embodiments of the present disclosure relate to the field of video technology, and in particular to a parameter acquisition method, a pixel point pair selection method, and related equipment.
  • using a plurality of chroma prediction modes comprises prediction-step chroma prediction mode (Two Step Cross Component Prediction Mode, TSCPM) including , In order to improve the accuracy of chrominance component prediction.
  • TSCPM Two Step Cross Component Prediction Mode
  • the linear model is used to predict the chrominance component by using the linear relationship between the luminance component and the chrominance component.
  • the embodiments of the present disclosure provide a parameter acquisition method, a pixel point pair selection method, and related equipment to solve the problem that the related technology only obtains a set of parameters when calculating the parameters corresponding to the linear model, and the accuracy of the calculated parameters is low. .
  • some embodiments of the present disclosure provide a parameter acquisition method, the method includes:
  • N Determining N pixel point sets corresponding to the chrominance prediction block and N pixel point sets corresponding to the luminance prediction block, where the chrominance prediction block corresponds to the luminance prediction block, and N is an integer greater than 1;
  • N sets of parameters are obtained, and the N sets of parameters are used to predict the color of the chrominance prediction block. Degree value.
  • the method further include:
  • Target parameter set is a set of parameters corresponding to the smallest coding cost among the N sets of parameters
  • the chrominance value of the chrominance prediction block is predicted by using the target parameter group.
  • the upper and left sides of the first prediction block both include reconstructed pixels, and the first prediction block is the chroma prediction block or the luma prediction block;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a first pixel point set where the first pixel point set includes reconstructed pixels directly above the first prediction block and reconstructed pixels directly to the left of the first prediction block;
  • a second pixel point set where the second pixel point set only includes reconstructed pixels directly above the first prediction block
  • a third pixel point set includes the first upper left or upper right reconstructed pixel of the first prediction block, and the first upper left is directly above the first prediction block On the left
  • a fifth pixel point set includes a second upper left or lower left reconstructed pixel of the first prediction block, and the second upper left is the positive left of the first prediction block Above the square.
  • the top of the first prediction block includes reconstructed pixels, the left of the first prediction block does not include reconstructed pixels, and the first prediction block is the chroma prediction block or the luminance prediction Piece;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a second pixel point set where the second pixel point set only includes reconstructed pixels directly above the first prediction block
  • a third pixel point set includes the first upper left or upper right reconstructed pixel of the first prediction block, and the first upper left is directly above the first prediction block On the left
  • a sixth pixel point set where the sixth pixel point set includes unreconstructed pixels on the left of the first prediction block.
  • the top of the first prediction block does not include reconstructed pixels, the left of the first prediction block includes reconstructed pixels, and the first prediction block is the chrominance prediction block or the luminance prediction Piece;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a fifth pixel point set includes a second upper left or lower left reconstructed pixel of the first prediction block, and the second upper left is the positive left of the first prediction block Above the square
  • a seventh pixel point set where the seventh pixel point set includes unreconstructed pixels above the first prediction block.
  • the third pixel point set includes any one of the following:
  • the reconstructed pixel points at the first upper left, right upper, and upper right of the first prediction block.
  • the fifth pixel point set includes any one of the following:
  • the set of N pixels corresponding to the first prediction block includes a first pixel above the first prediction block, and the first prediction block is the chroma prediction block or the luminance prediction block ;
  • the first pixel is: the pixel in the I row of pixels that is closest to the first prediction block among the P rows of pixels above the first prediction block, P is an integer greater than 1, and I is A positive integer less than or equal to 4.
  • the set of N pixels corresponding to the first prediction block includes a second pixel to the left of the first prediction block, and the first prediction block is the chroma prediction block or the luminance prediction Piece;
  • the second pixel is: among the pixels in the Q column on the left of the first prediction block, the pixel in the J column that is closest to the first prediction block, Q is an integer greater than J, J It is a positive integer less than or equal to 4.
  • the first length corresponding to all pixels in the third pixel point set satisfies any one of the following:
  • the first length does not exceed twice the width of the first prediction block
  • the first length does not exceed the sum of the width and height of the first prediction block.
  • the first length L1 satisfies: K1 ⁇ L1 ⁇ K2;
  • K1 is the total length of all pixels included in the first target pixel
  • the first target pixel is R pixels selected from the third pixel set, and the first target pixel is used for When obtaining a set of parameters in the N sets of parameters, R is a positive integer
  • K2 is the total length of all reconstructed pixels included above the first prediction block.
  • the pixels included in the first target pixel are all reconstructed pixels.
  • the first length L1 satisfies: K3 ⁇ L1 ⁇ K4;
  • K3 is the total length of all reconstructed pixels included above the first prediction block
  • K4 is twice the width of the first prediction block or the sum of the width and height of the first prediction block.
  • the first target pixel includes unreconstructed pixels
  • the first target pixel is R pixels selected from the third pixel set, and the first target pixel is used to obtain a set of parameters in the N sets of parameters, and R is positive Integer.
  • the second length corresponding to all pixels in the fifth pixel point set satisfies any one of the following:
  • the second length does not exceed twice the height of the first prediction block
  • the second length does not exceed the sum of the width and height of the first prediction block.
  • the second length L2 satisfies: K5 ⁇ L2 ⁇ K6;
  • K5 is the total length of all pixels included in the second target pixel
  • the second target pixel is R pixels selected from the fifth pixel set
  • the second target pixel is used for When acquiring a set of parameters in the N sets of parameters, R is a positive integer
  • K6 is the total length of all reconstructed pixels included on the left of the first prediction block.
  • the pixels included in the second target pixel are all reconstructed pixels.
  • the second length L2 satisfies: K7 ⁇ L2 ⁇ K8;
  • K7 is the total length of all reconstructed pixels included on the left of the first prediction block
  • K8 is twice the height of the first prediction block or the sum of the width and height of the first prediction block .
  • the second target pixel includes unreconstructed pixels
  • the second target pixel is R pixels selected from the fifth pixel set, and the second target pixel is used to obtain a set of parameters in the N sets of parameters, and R is positive Integer.
  • some embodiments of the present disclosure also provide a pixel point pair selection method, and the pixel point pair selection method includes:
  • the R group of reconstructed pixel point pairs include R reconstructed pixel points corresponding to the chrominance prediction block, and the luminance prediction block corresponds to R reconstructed pixels of, R is a positive integer;
  • the target reconstructed pixel points include: reconstructed pixels directly above and upper right of the second prediction block; or, reconstructed pixels directly left and lower left of the second prediction block.
  • some embodiments of the present disclosure also provide a pixel point pair selection method, and the pixel point pair selection method includes:
  • R is a positive integer
  • the third target pixel includes any one of the following:
  • the third target pixel includes: the reconstructed pixel directly above the second prediction block; or, the Reconstructed pixels on the right and left of the second prediction block;
  • the third target pixel includes: Unreconstructed pixels on the left;
  • the third target pixel includes: The unreconstructed pixels on the top.
  • some embodiments of the present disclosure also provide a parameter acquisition device, and the parameter acquisition device includes:
  • the first determining module is used for N pixel sets corresponding to the chroma prediction block and N pixel sets corresponding to the brightness prediction block, the chroma prediction block corresponds to the brightness prediction block, and N is greater than 1.
  • the obtaining module is used to obtain N sets of parameters corresponding to the prediction model according to the N sets of pixels corresponding to the chrominance prediction block and the N sets of pixels corresponding to the brightness prediction block. To predict the chroma value of the chroma prediction block.
  • some embodiments of the present disclosure also provide a pixel pair selection device, and the pixel pair selection device includes:
  • a second determining module configured to determine a target reconstruction pixel corresponding to a second prediction block, the second prediction block including a chrominance prediction block, and a luminance prediction block corresponding to the chrominance prediction block;
  • the second selection module is configured to select R groups of reconstructed pixel point pairs from the target reconstructed pixel points, where the R group of reconstructed pixel point pairs include R reconstructed pixel points corresponding to the chrominance prediction block, And R reconstructed pixels corresponding to the brightness prediction block, where R is a positive integer;
  • the target reconstructed pixel points include: reconstructed pixels directly above and upper right of the second prediction block; or, reconstructed pixels directly left and lower left of the second prediction block.
  • some embodiments of the present disclosure also provide a pixel pair selection device, and the pixel pair selection device includes:
  • a third determination and acquisition module configured to determine a third target pixel corresponding to a second prediction block, where the second prediction block includes a chroma prediction block and a luminance prediction block corresponding to the chroma prediction block;
  • the third selection module is configured to select an R group of pixel point pairs from the third target pixel point, the R group of pixel point pairs including R pixel points corresponding to the chrominance prediction block, and the luminance prediction block Corresponding R pixels, R is a positive integer;
  • the third target pixel includes any one of the following:
  • the third target pixel includes: the reconstructed pixel directly above the second prediction block; or, the The reconstructed pixels on the right and left of the second prediction block;
  • the third target pixel includes: Unreconstructed pixels on the left;
  • the third target pixel includes: The unreconstructed pixels on the top.
  • some embodiments of the present disclosure also provide a parameter acquisition device, including: a transceiver, a memory, a processor, and a program stored in the memory and running on the processor; wherein, the The processor is configured to read a program in the memory to implement the steps in the parameter acquisition method described in the first aspect.
  • some embodiments of the present disclosure also provide a pixel pair selection device, including: a transceiver, a memory, a processor, and a program stored in the memory and running on the processor; wherein, The processor is configured to read a program in the memory to implement the steps in the pixel pair selection method described in the foregoing second aspect, or the steps in the pixel pair selection method described in the foregoing third aspect.
  • some embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program that, when executed by a processor, implements the steps in the parameter acquisition method described in the foregoing first aspect , Or, the step in the pixel pair selection method as described in the foregoing second aspect, or the step in the pixel pair selection method as described in the foregoing third aspect.
  • N is an integer greater than 1
  • N sets of parameters can be obtained.
  • the group parameters are used to predict the chroma value of the chroma prediction block.
  • the present disclosure can increase the number of parameter acquisition groups, thereby improving the accuracy of the acquired parameters.
  • FIG. 1 is a schematic flowchart of a parameter acquisition method provided by some embodiments of the present disclosure
  • Fig. 2a is a schematic diagram of the upper orientation of a chrominance prediction block provided by some embodiments of the present disclosure
  • 2b is a schematic diagram of the left orientation of a chrominance prediction block provided by some embodiments of the present disclosure
  • Fig. 3a is one of schematic diagrams of reconstructed pixels around a chrominance prediction block provided by some embodiments of the present disclosure
  • FIG. 3b is one of schematic diagrams of reconstructed pixels around a luminance prediction block provided by some embodiments of the present disclosure
  • 4a is the second schematic diagram of reconstructed pixels around a chrominance prediction block provided by some embodiments of the present disclosure
  • 4b is the second schematic diagram of reconstructed pixel points around a luminance prediction block provided by some embodiments of the present disclosure
  • Fig. 5a is the third schematic diagram of reconstructed pixels around a chrominance prediction block provided by some embodiments of the present disclosure
  • Fig. 5b is the third schematic diagram of reconstructed pixel points around a luminance prediction block provided by some embodiments of the present disclosure
  • Fig. 6a is the fourth schematic diagram of reconstructed pixels around a chrominance prediction block provided by some embodiments of the present disclosure
  • FIG. 6b is a fourth schematic diagram of reconstructed pixels around a luminance prediction block provided by some embodiments of the present disclosure.
  • Fig. 7a is the fifth schematic diagram of reconstructed pixels around a chrominance prediction block provided by some embodiments of the present disclosure.
  • Fig. 7b is the fifth schematic diagram of reconstructed pixel points around a luminance prediction block provided by some embodiments of the present disclosure.
  • Fig. 8a is a sixth schematic diagram of reconstructed pixels around a chrominance prediction block provided by some embodiments of the present disclosure.
  • Fig. 8b is a sixth schematic diagram of reconstructed pixel points around a luminance prediction block provided by some embodiments of the present disclosure.
  • FIG. 9 is a seventh schematic diagram of reconstructed pixels around a chrominance prediction block provided by some embodiments of the present disclosure.
  • FIG. 10 is one of the flowcharts of a pixel pair selection method provided by some embodiments of the present disclosure.
  • FIG. 11 is the second flowchart of a pixel pair selection method provided by some embodiments of the present disclosure.
  • FIG. 12 is one of structural schematic diagrams of a parameter acquisition device provided by some embodiments of the present disclosure.
  • FIG. 13 is one of the schematic structural diagrams of a pixel pair selection device provided by some embodiments of the present disclosure.
  • FIG. 14 is the second structural diagram of a pixel pair selection device provided by some embodiments of the present disclosure.
  • 15 is the second structural diagram of a parameter acquisition device provided by some embodiments of the present disclosure.
  • FIG. 16 is the third structural diagram of a pixel pair selection device provided by some embodiments of the present disclosure.
  • Fig. 17 is a fourth structural diagram of a pixel pair selection device provided by some embodiments of the present disclosure.
  • the chrominance component is predicted based on the reconstructed luminance component at the same position, using the following linear model:
  • pred C refers to the chrominance prediction block obtained after linear calculation
  • rec L refers to the luminance component of the luminance coding block at the same position
  • the parameters ⁇ and ⁇ minimize the difference between adjacent reconstructed luminance and chrominance samples.
  • the regression error is derived as follows:
  • L(n) represents the reconstructed luminance sample of the reconstructed pixel adjacent to the left and the adjacent reconstructed pixel above
  • C(n) represents the reconstructed chrominance sample adjacent to the left and above of the current chroma block.
  • ⁇ and ⁇ do not need to be transmitted, and they are calculated in the same way in the decoder.
  • TSCPM In TSCPM, firstly, according to the availability of adjacent block pixels, it is divided into 3 cases to obtain 4 available pixel pairs. The 4 available pixel pairs are used to calculate ⁇ and ⁇ . When ⁇ and ⁇ are obtained, according to the brightness The linear relationship between chrominance and chrominance, and the chrominance predicted value is obtained by reconstructing the pixel by luminance.
  • Case 3 If only the left pixel is available for the current block, the 4 pixel pairs are all selected from the positive left, and the selected position is the height: 0/4, 1/4, 2/4, 3/4.
  • the chrominance coding method After determining the prediction mode of the chrominance component, without considering the redundancy (redundant), the chrominance coding method is as shown in Table 1:
  • context code 0 if binIdx is 0, context code 0 is used; if binIdx is 1 and the mode is TSCPM, context code 1 is used, otherwise, context code 2 is used.
  • a bin string can be generated.
  • the bin string generated by binarizing TSCPM is: 01.
  • binIdx identifies the bin in the bin string.
  • a binIdx of 0 identifies the first bin in the bin string, a binIdx of 1 identifies the second bin in the bin string, and so on.
  • FIG. 1 is a schematic flowchart of a parameter acquisition method provided by some embodiments of the present disclosure.
  • the parameter acquisition method of some embodiments of the present disclosure may include the following steps:
  • Step 101 Determine N pixel point sets corresponding to the chrominance prediction block and N pixel point sets corresponding to the luminance prediction block.
  • the chrominance prediction block corresponds to the luminance prediction block, and N is an integer greater than 1.
  • each pixel point set includes a plurality of pixels, and the pixel points included in the pixel point set may be continuous or discontinuous.
  • the pixel point set corresponding to the chrominance prediction block includes multiple chrominance pixels. Therefore, the pixel point set corresponding to the chrominance prediction block can be called a chrominance pixel point set; the pixel point set corresponding to the luminance prediction block includes multiple chrominance pixels. Luminance pixel points, therefore, the pixel point set corresponding to the luminance prediction block can be referred to as the luminance pixel point set.
  • N chrominance pixel point sets There is a one-to-one correspondence between N chrominance pixel point sets and N luminance pixel point sets.
  • the azimuth information of each chrominance pixel point in the chrominance pixel point set relative to the chrominance prediction block is compared to the luminance prediction of each luminance pixel point in the luminance pixel point set
  • the orientation information of the blocks is the same.
  • each chrominance pixel point in the chrominance pixel point set 1 is directly above the chrominance prediction block, correspondingly, each of the luminance pixel point set 1 The luminance pixel point is directly above the luminance prediction block.
  • the chroma prediction block and the luma prediction block may respectively correspond to at least two pixel point sets.
  • the chroma prediction block and the luma prediction block each correspond to only one pixel point set.
  • the pixel point set enriches the acquisition of the pixel point set corresponding to the chrominance prediction block and the luminance prediction block.
  • Step 102 Obtain N sets of parameters corresponding to the prediction model according to the N sets of pixels corresponding to the chrominance prediction block and the N sets of pixels corresponding to the luminance prediction block, where the N sets of parameters are used for prediction The chrominance value of the chrominance prediction block.
  • R chroma pixel points can be selected from the chroma pixel point set, and R brightness pixel points can be selected from the brightness pixel point set, Obtain R groups of pixel point pairs, and each group of pixel point pairs includes a chrominance pixel point and a luminance pixel point. After that, using the R group of pixel point pairs, a set of parameters ⁇ and ⁇ are calculated through the aforementioned calculation formulas of ⁇ and ⁇ . In practical applications, R can take a value of 4, but it should be understood that the present disclosure does not limit the specific value of R, and the value of R can be determined according to actual requirements.
  • the positions of the 4 pixels selected from the set of pixels can be 0/4, 1/4, 2/4, 3/4 in any orientation in the set of pixels Pixels, where the pixel at position 0/4 can be understood as the starting pixel in the set of pixel points, and the other positions can be deduced by analogy. For example: if a certain pixel set includes 8 pixels in azimuth 1, the 4 pixels selected from the pixel set can be the first pixel and the third pixel among the above 8 pixels , The 5th pixel and the 7th pixel.
  • N sets of parameters can be obtained according to N sets of chrominance pixel points and N sets of luminance pixel points.
  • N sets of parameters can be acquired through N sets of pixels corresponding to the chrominance prediction block and N sets of pixels corresponding to the luminance prediction block, where N is an integer greater than 1.
  • the parameter is used to predict the chroma value of the chroma prediction block.
  • any one of the above-mentioned N groups of parameters may be used to predict the chrominance value of the chrominance prediction block.
  • the method further includes:
  • Target parameter set is a set of parameters corresponding to the smallest coding cost among the N sets of parameters
  • the chrominance value of the chrominance prediction block is predicted by using the target parameter group.
  • the coding cost corresponding to each group of parameters can be calculated to obtain N coding costs.
  • the target parameter group corresponding to the minimum coding cost is selected from the N groups of transmissions, so as to calculate the chrominance value of the chrominance prediction block by using the target parameter group.
  • the coding cost of the chrominance prediction block can be reduced, and the chrominance value can be reduced. It can predict the bit rate required for variable coding, improve coding efficiency, and bring coding gain.
  • Some embodiments of the present disclosure relate to the top, directly above, first top left, top right, left, front left, second top left, and bottom left of the first prediction block (chroma prediction block or luma prediction block)
  • first prediction block chroma prediction block or luma prediction block
  • the upper edge of the chrominance prediction block is taken as the first reference line 21, and the upper part of the first reference line 21 can be regarded as the upper part of the chrominance prediction block. Further, as shown in FIG. 2a, the upper part of the chrominance prediction block can be divided into three parts, specifically the first upper left, right upper and right upper parts.
  • the left side of the chroma prediction block is taken as the second reference line 22, and the left side of the second reference line 22 can be regarded as the left side of the chroma prediction block. Further, as shown in FIG. 2b, the left side of the chroma prediction block can be divided into three parts, specifically the second upper left, the front left and the lower left.
  • the pixel point set corresponding to the first prediction block is related to the availability of pixels in adjacent blocks of the first prediction block. Specifically, the pixel point set corresponding to the first prediction block is related to whether the upper and left sides of the first prediction block include reconstructed pixels. Therefore, based on different determination results of whether the upper and left sides of the first prediction block include reconstructed pixels, the sets of pixels corresponding to the first prediction block may be different.
  • Judging result 1 The upper and left sides of the first prediction block both include reconstructed pixels.
  • the top of the first prediction block can be regarded as including reconstructed pixels.
  • the left of the first prediction block can be regarded as including reconstructed pixels.
  • the first upper left, right upper, second upper left, and right left of the first chromaticity pixel block 31 all include reconstructed pixels, and the upper right and lower left of the first chromaticity pixel block 31 are not Including reconstructed pixels.
  • the first upper left, right upper, second upper left, and right left of the first luminance pixel block 32 all include reconstructed pixels, and the upper right and lower left of the first luminance pixel block 32 do not include reconstruction pixels. Construct pixels.
  • the first upper left, right upper, upper right, second upper left, front left, and lower left of the second chrominance pixel block 41 all include reconstructed pixels.
  • the first upper left, right upper, second upper left, right left, and lower left of the second luminance pixel block 42 all include reconstructed pixel points.
  • distribution positions of reconstructed pixel points in FIGS. 3a to 4b are only examples, and the distribution positions of reconstructed pixel points of the first prediction block corresponding to determination result one are not limited accordingly.
  • the N pixel point sets corresponding to the first prediction block may include the following at least two pixel point sets:
  • a first pixel point set where the first pixel point set includes reconstructed pixels directly above the first prediction block and reconstructed pixels directly to the left of the first prediction block;
  • a second pixel point set where the second pixel point set only includes reconstructed pixels directly above the first prediction block
  • a third pixel point set includes the first upper left or upper right reconstructed pixel of the first prediction block, and the first upper left is directly above the first prediction block On the left
  • a fifth pixel point set includes a second upper left or lower left reconstructed pixel of the first prediction block, and the second upper left is the positive left of the first prediction block Above the square.
  • the first pixel point set includes reconstructed pixels above and to the left of the first prediction block, and the first pixel point set includes at least the reconstruction directly above the first prediction block The pixel and the reconstructed pixel on the right left of the first prediction block.
  • the first pixel point set corresponding to the first prediction block may be composed of reconstructed pixels directly above the first prediction block and reconstructed pixels directly to the left of the first prediction block.
  • the first pixel point set corresponding to the first prediction block may further include reconstructed pixels of at least one of the first upper left, upper right, second upper left, and lower left of the first prediction block point.
  • the second pixel point set it only includes the reconstructed pixel points directly above the first prediction block. Therefore, the second pixel point set corresponding to the first prediction block can be reconstructed directly above the first prediction block. Reconstructed pixel point composition of pixels.
  • the third pixel point set it only includes pixels above the first prediction block, and the third pixel point set includes at least the first upper left or upper right reconstructed pixels of the first prediction block.
  • the third pixel point set may include any one of the following:
  • the reconstructed pixel points at the first upper left, right upper, and upper right of the first prediction block.
  • the pixel points included in the third pixel point set need to be further determined in conjunction with the distribution position of the reconstructed pixel points above the first prediction block.
  • the third set of pixels may include the following Any one:
  • the reconstructed pixel points at the first upper left and right above of the first prediction block.
  • the third set of pixels may include any one of the following:
  • the reconstructed pixel points at the first upper left, right upper, and upper right of the first prediction block.
  • the fourth pixel point set only the reconstructed pixel points on the front left of the first prediction block are included. Therefore, the fourth pixel point set corresponding to the first prediction block can be reproduced from the front left of the first prediction block.
  • the composition of the reconstructed pixel points is not limited to the fourth pixel point set.
  • the fifth pixel point set it only includes the pixels on the left of the first prediction block, and the fifth pixel point set includes at least the second upper left or lower left reconstructed pixels of the first prediction block .
  • the fifth pixel point set may include any one of the following:
  • the pixel points included in the fifth pixel point set need to be further determined in combination with the distribution position of the reconstructed pixel point on the left of the first prediction block.
  • the fifth set of pixels may include Any of the following:
  • the fifth pixel set may include any one of the following:
  • some embodiments of the present disclosure make full use of the first prediction block.
  • Reconstructed pixels in all directions improve the utilization of reconstructed pixels in all directions of the first prediction block.
  • the reconstructed pixels above and on the left side of the first prediction block must be used.
  • only the reconstructed pixels above or to the left of the first prediction block may be used, thereby improving the flexibility of using reconstructed pixels.
  • Judging result 2 The top of the first prediction block includes reconstructed pixels, and the left of the first prediction block does not include reconstructed pixels.
  • the first upper left, right upper, second upper left, and right left of the third chromaticity pixel block 51 all include reconstructed pixels, and the upper right and lower left of the third chromaticity pixel block 51 are not Including reconstructed pixels.
  • the first upper left, right upper, second upper left, and right left of the third luminance pixel block 52 all include reconstructed pixels, and the upper right and lower left of the third luminance pixel block 52 do not include reconstruction pixels. Construct pixels.
  • the first upper left, right upper, upper right, second upper left, right left, and lower left of the fourth chrominance pixel block 61 all include reconstructed pixels.
  • the first upper left, right upper, second upper left, right left, and lower left of the fourth luminance pixel block 62 all include reconstructed pixel points.
  • distribution positions of the reconstructed pixel points in FIGS. 5a to 6b are only examples, and the distribution positions of the reconstructed pixel points of the first prediction block corresponding to the second determination result are not limited accordingly.
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a second pixel point set where the second pixel point set only includes reconstructed pixels directly above the first prediction block
  • a third pixel point set includes the first upper left or upper right reconstructed pixel of the first prediction block, and the first upper left is directly above the first prediction block On the left
  • a sixth pixel point set where the sixth pixel point set includes unreconstructed pixels on the left of the first prediction block.
  • the second pixel point set and the third pixel point set in the judgment result two are the same as the second pixel point set and the third pixel point set in the judgment result 1.
  • the pixel information of the unreconstructed pixel points on the left included in it can be filled using a preset filling rule.
  • some embodiments of the present disclosure can make full use of the Reconstructed pixels in various positions above the first prediction block, or unreconstructed pixels on the left of the first prediction block. In this way, compared to the related art using only the reconstructed pixels directly above the first prediction block, some embodiments of the present disclosure improve the utilization of the reconstructed pixels around the first prediction block.
  • Judging result three no reconstructed pixels are included above the first prediction block, and reconstructed pixels are included on the left of the first prediction block.
  • the first upper left, right upper, second upper left, and right left of the fifth chroma pixel block 71 all include reconstructed pixels, and the fifth chroma pixel block 71 is not at the upper right and lower left. Including reconstructed pixels.
  • the first upper left, right upper, second upper left, and right left of the fifth luminance pixel block 72 all include reconstructed pixels, and the upper right and lower left of the fifth luminance pixel block 72 do not include reconstruction pixels. Construct pixels.
  • the first upper left, right upper, upper right, second upper left, front left, and lower left of the sixth chrominance pixel block 81 all include reconstructed pixels.
  • the first upper left, right upper, second upper left, right left, and lower left of the sixth luminance pixel block 82 all include reconstructed pixel points.
  • distribution positions of the reconstructed pixel points in FIGS. 7a to 8b are only examples, and the distribution positions of the reconstructed pixel points are not limited by the determination result.
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a fifth pixel point set includes a second upper left or lower left reconstructed pixel of the first prediction block, and the second upper left is the positive left of the first prediction block Above the square
  • a seventh pixel point set where the seventh pixel point set includes unreconstructed pixels above the first prediction block.
  • the fourth pixel point set and the fifth pixel point set in the judgment result three are the same as the fourth pixel point set and the fifth pixel point set in the judgment result one.
  • the pixel information of the unreconstructed pixels on the left included in it can be filled using a preset filling rule.
  • some embodiments of the present disclosure can make full use of the The reconstructed pixel on the left of the first prediction block, or the unreconstructed pixel on the right of the first prediction block. In this way, compared to the related art using only the reconstructed pixels on the front left of the first prediction block, some embodiments of the present disclosure improve the utilization of the reconstructed pixels around the first prediction block.
  • the set of N pixels corresponding to the first prediction block includes a first pixel above the first prediction block, and the first prediction block is the color Degree prediction block or the luminance prediction block;
  • the first pixel is: the pixel in the I row of pixels that is closest to the first prediction block among the P rows of pixels above the first prediction block, P is an integer greater than 1, and I is A positive integer less than or equal to 4.
  • the plurality of pixels may be pixels in the same row above the first prediction block.
  • the use of the pixels in the I row to obtain the parameters corresponds to a smaller coding cost, so that the utilization of the obtained parameters can be improved.
  • the set of N pixels corresponding to the first prediction block includes a second pixel to the left of the first prediction block, and the first prediction block is the chroma prediction block or the luminance prediction Piece;
  • the second pixel is: among the pixels in the Q column on the left of the first prediction block, the pixel in the J column that is closest to the first prediction block, Q is an integer greater than J, J It is a positive integer less than or equal to 4.
  • J can be 4.
  • the plurality of pixels may be pixels in the same column on the left of the first prediction block.
  • the use of the pixels in the J column to obtain the parameters corresponds to a smaller coding cost, so that the utilization of the obtained parameters can be improved.
  • the third pixel point set may include the first upper left or upper right reconstructed pixel points of the first prediction block
  • the fifth pixel point set may include the The second upper left or lower left reconstructed pixel of the first prediction block.
  • some embodiments of the present disclosure may determine the first length L1 corresponding to all pixels in the third pixel point set.
  • the second length L2 corresponding to all the pixels in the fifth pixel point set is limited.
  • the first prediction block is a chroma prediction block or a luma prediction block. Therefore, it should be understood that the L1 (or L2) corresponding to the chrominance prediction block is determined in the same manner as the L1 (or L2) corresponding to the luma prediction block.
  • the first length corresponding to all pixels in the third pixel point set satisfies any one of the following:
  • the first length does not exceed twice the width of the first prediction block
  • the first length does not exceed the sum of the width and height of the first prediction block.
  • L1 satisfies: L1 ⁇ 2W; or, L1 ⁇ W+H.
  • the coding cost corresponding to the parameter obtained by using the third pixel point set is small, so that the utilization rate of the obtained parameter can be improved.
  • the third pixel point set may include reconstructed pixels, that is, pixels that have been reconstructed, or may include unreconstructed pixels, that is, pixels that have not been reconstructed. .
  • Case 1 The third pixel point set only includes reconstructed pixels, and does not include unreconstructed pixels.
  • K1 is the total length of all pixels included in the first target pixel
  • L1 satisfies: L1 ⁇ 2W; or, under the premise of L1 ⁇ W+H, further satisfies K1 ⁇ L1 ⁇ K2.
  • the pixels included in the first target pixel are all reconstructed pixels.
  • L1 in case 1 can ensure that the pixels included in the first target pixel are all reconstructed pixels, and R pixels can be selected.
  • the third pixel point set includes reconstructed pixels and unreconstructed pixels.
  • K3 is the total length of all reconstructed pixels included above the first prediction block
  • K4 is twice the width of the first prediction block or the sum of the width and height of the first prediction block.
  • L1 in the second case can ensure that the third pixel point set includes unreconstructed pixels.
  • the first target pixel may include unreconstructed pixels, or may not include unreconstructed pixels. Specifically, it needs to be based on the distribution positions of reconstructed pixels and unreconstructed pixels in the third pixel set. , And the selection method for selecting the first target pixel point from the third pixel point set is determined.
  • the first target pixel is R pixels selected from the third pixel set, and the first target pixel is used to obtain a set of parameters in the N sets of parameters, and R is positive Integer.
  • the pixel information of the unreconstructed pixels in a certain pixel set can be filled with the pixel information of the third pixel, and the third pixel is the distance in the pixel set.
  • the nearest reconstructed pixel of the unreconstructed pixel can be filled with the pixel information of the third pixel, and the third pixel is the distance in the pixel set. The nearest reconstructed pixel of the unreconstructed pixel.
  • the seventh chroma prediction block 91 includes 8 ⁇ 8 pixels, the width of the seventh chroma prediction block 91 is W, the height of the seventh chroma prediction block 91 is H, and the seventh chroma prediction block
  • the top of 91 includes 12 reconstructed pixels and 4 unreconstructed pixels, that is, the total length of reconstructed pixels above the seventh chroma prediction block 91 is 1.5W, and the top of the seventh chroma prediction block 91
  • the total length of reconstructed pixels and unreconstructed pixels is 2W.
  • the value of R is 4.
  • L1 needs to satisfy: 4y ⁇ L1 ⁇ 1.5W; in case 2, L1 needs to satisfy: 1.5W ⁇ L1 ⁇ 2W; or, 1.5W ⁇ L1 ⁇ W+H.
  • the second length corresponding to all pixels in the fifth pixel point set satisfies any one of the following:
  • the second length does not exceed twice the height of the first prediction block
  • the second length does not exceed the sum of the width and height of the first prediction block.
  • the fifth pixel point set may include reconstructed pixels, that is, pixels that have been reconstructed, and may also include unreconstructed pixels, that is, pixels that have not been reconstructed. .
  • K5 is the total length of all pixels included in the second target pixel
  • the second target pixel is R pixels selected from the fifth pixel set
  • the second target pixel is used for When acquiring a set of parameters in the N sets of parameters, R is a positive integer
  • K6 is the total length of all reconstructed pixels included on the left of the first prediction block.
  • the pixels included in the second target pixel are all reconstructed pixels.
  • L2 in case three can ensure that the pixels included in the second target pixel are all reconstructed pixels, and R pixels can be selected.
  • the fifth pixel point set includes reconstructed pixels and unreconstructed pixels.
  • K7 is the total length of all reconstructed pixels included on the left of the first prediction block
  • K8 is twice the height of the first prediction block or the sum of the width and height of the first prediction block .
  • L2 in case 4 can ensure that the fifth pixel point set includes unreconstructed pixels.
  • the second target pixel may include unreconstructed pixels, or may not include unreconstructed pixels. Specifically, it needs to be based on the distribution positions of reconstructed pixels and unreconstructed pixels in the fifth pixel set. , And the selection method for selecting the first target pixel point from the fifth pixel point set is determined.
  • the second target pixel is R pixels selected from the third pixel set, and the first target pixel is used to obtain a set of parameters in the N sets of parameters, and R is positive Integer.
  • L2 in the fifth pixel point set is similar to the definition of L1 in the third pixel point set.
  • L1 in the third pixel point set is similar to the definition of L1 in the third pixel point set.
  • Step 1 When predicting the pixel value of the current chrominance prediction block, count the number of reconstructed luminance pixels that can be used on the upper side (including the upper right) and the left side (including the lower left) of the luminance block corresponding to the current chrominance block.
  • Step 2 After obtaining the number of reconstructed pixels that can be used through Step 1, select 4 pixel point pairs at the corresponding positions of the upper luminance reconstruction pixel and the chrominance reconstruction pixel.
  • Step 3 After obtaining the number of reconstructed pixels that can be used in Step 1, select 4 pixel point pairs corresponding to the left side of the luminance reconstruction pixel and the chrominance reconstruction pixel.
  • Step 4 According to the 4 pixel point pairs obtained in steps 2 and 3, the parameters required by the chroma two-step prediction mode to calculate the chroma prediction value are obtained through the method specified by the chroma two-step prediction mode.
  • the first embodiment can significantly improve the coding performance, especially the chrominance component, without affecting the coding time, thereby improving the coding efficiency and bringing the coding gain.
  • Step 1 When obtaining the predicted value of the chrominance prediction block, count the number of reconstructed luminance pixels on the upper side (including the upper right) of the luminance block corresponding to the current chrominance block, denoted as numLenT;
  • Step 2 When obtaining the predicted value of the chrominance prediction block, count the number of reconstructed luminance pixels on the left side (including the lower left) of the luminance block corresponding to the current chrominance block, and mark numLenL;
  • Step 3 Through the calculations of step 1 and step 2, respectively select 4 pixel point pairs in the reconstructed pixels around the current chrominance block and the reconstructed pixels around the corresponding luminance block.
  • the selected Positions are available pixels: pixels at positions 0/4, 1/4, 2/4, 3/4.
  • Step 4 The 4 pixel pairs on the upper side and the 4 pixel pairs on the left obtained by the calculation in step 3 are calculated to obtain the parameters ⁇ and ⁇ according to the methods specified in the AVS3 standard, respectively. According to the calculated two sets of parameters, the predicted value of the corresponding chroma block is calculated respectively, and the corresponding coding cost is calculated.
  • Step 5 According to the two encoding costs obtained in step 4 and the encoding cost calculated by the original TSCPM using the upper and left pixels, a minimum encoding cost is selected.
  • Table 1 is the general test result of the AVS3 test sequence of this embodiment, the test configuration is All Intra, and the test quantization parameter (Quantization Parameter, QP) is 27, 32, 38, and 45.
  • the evaluation standard is the BD-rate calculation method proposed by Bjontegaard.
  • 4 pixel point pairs need to be selected, all of which are from the current chrominance block
  • 4 pixel point pairs need to be selected, all of which are from the same row on the left (including the lower left) of the current chrominance block
  • the reference pixel information of the chrominance block and the reference pixel of the corresponding position of the brightness block corresponding to the chroma block are from the same row on the left (including the lower left) of the current chrominance block.
  • it includes the upper left, right upper, and upper right of the current chrominance block and the corresponding luminance block.
  • the used reference pixels on the left include the upper left, the front left, and the lower left of the current chrominance block and the corresponding luminance block.
  • the reference pixels are within 4 adjacent rows on the upper side of the current block.
  • the position of the reference pixel does not exceed twice the width of the current block or does not exceed the width of the current block The length of the heightened sum.
  • the value range of the number of pixels used is greater than or equal to 4, and less than Any value in the length of the number of reconstructed pixels.
  • the pixel information at the unreconstructed position is specified in the AVS3 standard
  • the number of pixels used is a length greater than the number of pixels that have been reconstructed, and less than or equal to twice the width of the current block or the sum of the width and height of the current block.
  • the reference pixels are within 4 adjacent columns on the left side of the current block.
  • the position of the reference pixel does not exceed twice the height of the current block or does not exceed the height of the current block. Widen the length of the sum.
  • the value range of the number of pixels used is greater than or equal to 4 and less than the existing pixel information. Any value in the length of the number of reconstructed pixels.
  • the pixel information at the unreconstructed position is specified in the AVS3 standard
  • the number of pixels used is a length greater than the number of pixels that have been reconstructed, and less than or equal to twice the width of the current block or the sum of the width and height of the current block.
  • Some embodiments of the present disclosure mainly propose an optimization method for two-step chroma prediction of images and videos, and this technology is applied to the coding and decoding process of chroma component prediction.
  • the purpose is to infer the parameters ⁇ and ⁇ used in the two-step prediction of the degree of accuracy based on as much information about the encoding/decoding around the current encoding block as possible on the encoding/decoding side, so as to reduce the encoding required while basically not increasing the encoding time.
  • the code rate brings coding gain.
  • Some embodiments of the present disclosure also provide a parameter acquisition device that can execute the foregoing method embodiments. Since the principle of the parameter acquisition device to solve the problem is similar to the parameter acquisition method in some embodiments of the present disclosure, the implementation of the parameter acquisition device can refer to the implementation of the method, and the repetition will not be repeated.
  • the pixel pair selection method provided by some embodiments of the present disclosure may include the following steps:
  • Step 1001 Determine a target reconstruction pixel corresponding to a second prediction block, where the second prediction block includes a chrominance prediction block and a luminance prediction block corresponding to the chrominance prediction block.
  • Step 1002 Select an R group of reconstructed pixel point pairs from the target reconstructed pixel points, where the R group of reconstructed pixel point pairs include R reconstructed pixel points corresponding to the chrominance prediction block, and the brightness R reconstructed pixels corresponding to the prediction block, where R is a positive integer;
  • the target reconstructed pixel points include: reconstructed pixels directly above and upper right of the second prediction block; or, reconstructed pixels directly left and lower left of the second prediction block.
  • the specific implementation includes the following two implementation methods:
  • the target reconstructed pixel includes the reconstructed pixel directly above and the upper right of the second prediction block, that is, the target reconstructed pixel includes the positive of the chrominance prediction block.
  • the reconstructed pixel points at the upper and upper right, and the reconstructed pixels directly above and at the upper right of the luminance prediction block.
  • the R reconstructed pixels corresponding to the chrominance prediction block come from the reconstructed pixels directly above and right above the chrominance prediction block, and the R pixels corresponding to the luminance prediction block are The reconstructed pixel points are from the reconstructed pixel points directly above and right above the luminance prediction block.
  • this embodiment provides a new way of selecting pixel point pairs.
  • the target reconstructed pixel includes the reconstructed pixel on the front left and the lower left of the second prediction block, that is, the target reconstructed pixel includes the reconstructed pixel of the chrominance prediction block.
  • the R reconstructed pixels corresponding to the chrominance prediction block come from the reconstructed pixels on the right and bottom left of the chrominance prediction block, and the R pixels corresponding to the luminance prediction block are One reconstructed pixel is from the reconstructed pixel on the right and bottom left of the luminance prediction block.
  • this embodiment provides a new way of selecting pixel point pairs.
  • the R reconstructed pixels corresponding to the chrominance prediction block may be any R reconstructed pixels in the reconstructed pixels on the front left and the lower left of the chrominance prediction block;
  • the R reconstructed pixel points corresponding to the brightness prediction block may be any R reconstructed pixel points of the reconstructed pixel points on the front left and the lower left of the brightness prediction block.
  • the R reconstructed pixels corresponding to the chroma prediction block are: 0/4, 1/4, 2/4, and 3/4 of the reconstructed pixels directly above and at the upper right of the chroma prediction block Reconstructed pixels of the position;
  • the R reconstructed pixels corresponding to the luminance prediction block are: among the reconstructed pixels directly above and at the upper right of the luminance prediction block, those at positions 0/4, 1/4, 2/4, and 3/4 Reconstruct the pixels.
  • the chrominance prediction block directly above and the upper right includes 8 reconstructed pixels
  • the luminance prediction block directly above and the upper right includes 16 reconstructed pixels
  • the R reconstructed pixels corresponding to the chrominance prediction block are: the first, third, and third reconstructed pixels directly above and at the upper right of the chrominance prediction block.
  • the R reconstructed pixel points corresponding to the luminance prediction block are: the first, fifth, ninth, and thirteenth reconstructed pixel points directly above and at the upper right of the luminance prediction block pixel.
  • ⁇ and ⁇ can be calculated in the manner prescribed by TSCPM, and subsequent steps will not be changed.
  • this embodiment provides two new pixel point pair selection methods. Therefore, this embodiment adds two chrominance value prediction modes.
  • the corresponding chrominance prediction mode can be denoted as TSCPM_T; for the R group of pixel point pairs acquired in the foregoing implementation manner 2, the corresponding chrominance prediction mode can be denoted as TSCPM_L .
  • the chrominance coding method After determining the prediction mode of the chrominance component, without considering the redundant, the chrominance coding method can be as shown in Table 3:
  • the bin string corresponding to TSCPM_L adds one bin; the bin string corresponding to TSCPM_T adds two bins compared to the bin string corresponding to TSCPM.
  • the position where binIdx is equal to 0 may use the same context as the position where TSCPM binIdx is equal to 0, and the position where binIdx is equal to 1 may use the same context as the position where TSCPM binIdx is equal to 1.
  • the method further includes:
  • the first bin is the increase of the first bin string relative to the second bin string, and the first bin string corresponds to the target reconstructed pixel
  • the bin string generated by binarization of the prediction mode, the second bin string is the bin string generated by binarizing the chrominance two-step prediction mode TSCPM;
  • the target encoding method is: context encoding; or, bypass Bypass encoding method.
  • the context model corresponding to the target coding mode is: context model No. 1; or, a newly established context model.
  • the newly added bin (that is, the bin whose binIdx is equal to 3) can use the context code No. 1;
  • the newly added bin (that is, the bin whose binIdx is equal to 3) can use Bypass encoding.
  • the newly added bin (that is, the bin with binIdx equal to 3 and the bin with binIdx equal to 4) can use context code No. 1;
  • the newly added bin (that is, the bin with binIdx equal to 3 and the bin with binIdx equal to 4) can use Bypass encoding.
  • the mode corresponding to the newly added pixel pair selection method makes full use of the information of the available pixels around the second prediction block, which significantly increases the gain of the chrominance component, and at the same time there is a slight gain in the brightness.
  • the pixel pair selection method provided by some embodiments of the present disclosure may include the following steps:
  • Step 1101 Determine a third target pixel corresponding to a second prediction block, where the second prediction block includes a chrominance prediction block and a luminance prediction block corresponding to the chrominance prediction block.
  • Step 1102 Select an R group of pixel point pairs from the third target pixel point, the R group of pixel point pairs including R pixel points corresponding to the chrominance prediction block, and R pixel points corresponding to the luminance prediction block Pixels, R is a positive integer.
  • the third target pixel includes any one of the following:
  • the third target pixel includes: the reconstructed pixel directly above the second prediction block; or, the The reconstructed pixels on the right and left of the second prediction block;
  • the third target pixel includes: Unreconstructed pixels on the left;
  • the third target pixel includes: The unreconstructed pixels on the top.
  • the R group of pixel pairs come from:
  • this embodiment compared to selecting pixel pairs from directly above and to the left of the chroma prediction block and the luminance prediction block in the related art, this embodiment only selects pixels from directly above or to the left of the chroma prediction block and the luminance prediction block. Point pairs provide a new way to select pixel point pairs.
  • the R group of pixel pairs come from: the left of the second prediction block Of unreconstructed pixels.
  • this embodiment selects the pixel point pairs from the left side of the chrominance prediction block and the luminance prediction block, providing a new The selection method of pixel pairs.
  • the R group of pixel point pairs come from: above the second prediction block No pixels are reconstructed.
  • this embodiment selects the pixel point pair from the top of the chroma prediction block and the luminance prediction block, which provides a new The selection method of pixel pairs.
  • the method further includes:
  • the second bin is the increase of the third bin string relative to the second bin string
  • the third bin string is the prediction mode corresponding to the third target pixel.
  • a bin string generated by binarization, and the second bin string is a bin string generated by binarizing the chrominance two-step prediction mode TSCPM.
  • context model corresponding to the context encoding method is: context model No. 1; or, a newly established context model.
  • the parameter acquisition device 1200 may include:
  • the first determining module 1201 is configured to obtain N pixel point sets corresponding to the chrominance prediction block and N pixel point sets corresponding to the luminance prediction block.
  • the chrominance prediction block corresponds to the luminance prediction block, and N is greater than An integer of 1;
  • the obtaining module 1202 is configured to obtain N sets of parameters according to the N sets of pixels corresponding to the chrominance prediction block and the N sets of pixels corresponding to the luminance prediction block, and the N sets of parameters are used to predict the The chroma value of the chroma prediction block.
  • the parameter acquisition device 1200 further includes:
  • the first selection module is used for the second acquisition module to obtain N sets of parameters according to the N pixel point sets corresponding to the chrominance prediction block and the N pixel point sets corresponding to the luminance prediction block. Selecting a target parameter group from the N groups of parameters, where the target parameter group is a group of parameters corresponding to the smallest coding cost among the N groups of parameters;
  • the prediction module is configured to use the target parameter group to predict the chrominance value of the chrominance prediction block.
  • the upper and left sides of the first prediction block both include reconstructed pixels, and the first prediction block is the chroma prediction block or the luma prediction block;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a first pixel point set where the first pixel point set includes reconstructed pixels directly above the first prediction block and reconstructed pixels directly to the left of the first prediction block;
  • a second pixel point set where the second pixel point set only includes reconstructed pixels directly above the first prediction block
  • a third pixel point set includes the first upper left or upper right reconstructed pixel of the first prediction block, and the first upper left is directly above the first prediction block On the left
  • a fifth pixel point set includes a second upper left or lower left reconstructed pixel of the first prediction block, and the second upper left is the positive left of the first prediction block Above the square.
  • the top of the first prediction block includes reconstructed pixels, the left of the first prediction block does not include reconstructed pixels, and the first prediction block is the chroma prediction block or the luminance prediction Piece;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a second pixel point set where the second pixel point set only includes reconstructed pixels directly above the first prediction block
  • a third pixel point set includes the first upper left or upper right reconstructed pixel of the first prediction block, and the first upper left is directly above the first prediction block On the left
  • a sixth pixel point set where the sixth pixel point set includes unreconstructed pixels on the left of the first prediction block.
  • the top of the first prediction block does not include reconstructed pixels, the left of the first prediction block includes reconstructed pixels, and the first prediction block is the chrominance prediction block or the luminance prediction Piece;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a fifth pixel point set includes a second upper left or lower left reconstructed pixel of the first prediction block, and the second upper left is the positive left of the first prediction block Above the square
  • a seventh pixel point set where the seventh pixel point set includes unreconstructed pixels above the first prediction block.
  • the third pixel point set includes any one of the following:
  • the reconstructed pixel points at the first upper left, right upper, and upper right of the first prediction block.
  • the fifth pixel point set includes any one of the following:
  • the set of N pixels corresponding to the first prediction block includes a first pixel above the first prediction block, and the first prediction block is the chroma prediction block or the luminance prediction block ;
  • the first pixel is: the pixel in the I row of pixels that is closest to the first prediction block among the P rows of pixels above the first prediction block, P is an integer greater than 1, and I is A positive integer less than or equal to 4.
  • the set of N pixels corresponding to the first prediction block includes a second pixel to the left of the first prediction block, and the first prediction block is the chroma prediction block or the luminance prediction Piece;
  • the second pixel is: among the pixels in the Q column on the left of the first prediction block, the pixel in the J column that is closest to the first prediction block, Q is an integer greater than J, J It is a positive integer less than or equal to 4.
  • the first length corresponding to all pixels in the third pixel point set satisfies any one of the following:
  • the first length does not exceed twice the width of the first prediction block
  • the first length does not exceed the sum of the width and height of the first prediction block.
  • the first length L1 satisfies: K1 ⁇ L1 ⁇ K2;
  • K1 is the total length of all pixels included in the first target pixel
  • the first target pixel is R pixels selected from the third pixel set, and the first target pixel is used for When obtaining a set of parameters in the N sets of parameters, R is a positive integer
  • K2 is the total length of all reconstructed pixels included above the first prediction block.
  • the pixels included in the first target pixel are all reconstructed pixels.
  • the first length L1 satisfies: K3 ⁇ L1 ⁇ K4;
  • K3 is the total length of all reconstructed pixels included above the first prediction block
  • K4 is twice the width of the first prediction block or the sum of the width and height of the first prediction block.
  • the first target pixel includes unreconstructed pixels
  • the first target pixel is R pixels selected from the third pixel set, and the first target pixel is used to obtain a set of parameters in the N sets of parameters, and R is positive Integer.
  • the second length corresponding to all pixels in the fifth pixel point set satisfies any one of the following:
  • the second length does not exceed twice the height of the first prediction block
  • the second length does not exceed the sum of the width and height of the first prediction block.
  • the second length L2 satisfies: K5 ⁇ L2 ⁇ K6;
  • K5 is the total length of all pixels included in the second target pixel
  • the second target pixel is R pixels selected from the fifth pixel set
  • the second target pixel is used for When acquiring a set of parameters in the N sets of parameters, R is a positive integer
  • K6 is the total length of all reconstructed pixels included on the left of the first prediction block.
  • the pixels included in the second target pixel are all reconstructed pixels.
  • the second length L2 satisfies: K7 ⁇ L2 ⁇ K8;
  • K7 is the total length of all reconstructed pixels included on the left of the first prediction block
  • K8 is twice the height of the first prediction block or the sum of the width and height of the first prediction block .
  • the second target pixel includes unreconstructed pixels
  • the second target pixel is R pixels selected from the fifth pixel set, and the second target pixel is used to obtain a set of parameters in the N sets of parameters, and R is positive Integer.
  • the parameter acquisition device 1200 provided by some embodiments of the present disclosure can execute the foregoing embodiment of the parameter acquisition method, and its implementation principles and technical effects are similar, and will not be repeated here in this embodiment.
  • N is an integer greater than 1
  • N sets of parameters can be obtained.
  • the group parameters are used to predict the chroma value of the chroma prediction block.
  • the present disclosure can increase the number of parameter acquisition groups, thereby improving the accuracy of the acquired parameters.
  • the pixel pair selection device 1300 includes:
  • the second determining module 1301 is configured to determine a target reconstruction pixel corresponding to a second prediction block, the second prediction block including a chrominance prediction block, and a luminance prediction block corresponding to the chrominance prediction block;
  • the second selection module 1302 is configured to select R groups of reconstructed pixel point pairs from the target reconstructed pixel points, and the R group of reconstructed pixel point pairs include R reconstructed pixel points corresponding to the chrominance prediction block , And the R reconstructed pixels corresponding to the brightness prediction block, where R is a positive integer;
  • the target reconstructed pixel points include: reconstructed pixels directly above and upper right of the second prediction block; or, reconstructed pixels directly left and lower left of the second prediction block.
  • R is 4;
  • the R reconstructed pixels corresponding to the chroma prediction block are: 0/4, 1/4, 2/4, and 3/4 of the reconstructed pixels directly above and at the upper right of the chroma prediction block Reconstructed pixels of the position;
  • the R reconstructed pixels corresponding to the luminance prediction block are: among the reconstructed pixels directly above and at the upper right of the luminance prediction block, those at positions 0/4, 1/4, 2/4, and 3/4 Reconstruct the pixels.
  • the pixel pair selection device 1300 further includes:
  • the first encoding module is configured to encode the first bit bin by using the target encoding mode, the first bin being the bin that the first bin string is increased relative to the second bin string, and the first bin string is the The bin string generated by binarizing the prediction mode corresponding to the target reconstructed pixel, and the second bin string is the bin string generated by binarizing the chrominance two-step prediction mode TSCPM;
  • the target encoding method is: the context encoding method; or, the bypass encoding method.
  • the context model corresponding to the target coding mode is: context model No. 1; or, a newly established context model.
  • the pixel pair selection device 1300 provided by some embodiments of the present disclosure can execute the above embodiment of the pixel pair selection method corresponding to FIG. 10, and its implementation principles and technical effects are similar, and will not be repeated here in this embodiment.
  • FIG. 14 is the second structural diagram of a pixel pair selection device provided by some embodiments of the present disclosure.
  • the pixel pair selection device 1400 includes:
  • the third determining module 1401 is configured to determine a third target pixel corresponding to a second prediction block, where the second prediction block includes a chroma prediction block and a luminance prediction block corresponding to the chroma prediction block;
  • the third selection module 1402 is configured to select an R group of pixel point pairs from the third target pixel point, the R group of pixel point pairs including R pixel points corresponding to the chrominance prediction block, and the brightness prediction R pixels corresponding to the block, R is a positive integer;
  • the third target pixel includes any one of the following:
  • the third target pixel includes: the reconstructed pixel directly above the second prediction block; or, the The reconstructed pixels on the right and left of the second prediction block;
  • the third target pixel includes: Unreconstructed pixels on the left;
  • the third target pixel includes: The unreconstructed pixels on the top.
  • the pixel pair selection device 1400 further includes:
  • the second encoding module is used to encode a second bin in a context encoding manner, where the second bin is a bin that is an increase of the third bin string relative to the second bin string, and the third bin string is a reference to the third bin string.
  • the bin string generated by binarizing the prediction mode corresponding to the target pixel, and the second bin string is the bin string generated by binarizing the chrominance two-step prediction mode TSCPM.
  • the context model corresponding to the context encoding method is: context model No. 1; or, a newly established context model.
  • the pixel pair selection device 1400 provided by some embodiments of the present disclosure can execute the above-mentioned embodiment of the pixel pair selection method corresponding to FIG. 11, and its implementation principles and technical effects are similar, and will not be repeated here in this embodiment.
  • the parameter acquisition device 1500 may include:
  • the processor 1501 is configured to read a program in the memory 1502 and execute the following process:
  • N Determining N pixel point sets corresponding to the chrominance prediction block and N pixel point sets corresponding to the luminance prediction block, where the chrominance prediction block corresponds to the luminance prediction block, and N is an integer greater than 1;
  • N sets of parameters are obtained, and the N sets of parameters are used to predict the color of the chrominance prediction block. Degree value.
  • the transceiver 1503 is used to receive and send data under the control of the processing 1501.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1501 and various circuits of the memory represented by the memory 1502 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1503 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 1501 is responsible for managing the bus architecture and general processing, and the memory 1502 can store data used by the processor 1501 when performing operations.
  • the processor 1501 is responsible for managing the bus architecture and general processing, and the memory 1502 can store data used by the processor 1501 when performing operations.
  • processor 1501 is further configured to read the program and execute the following steps:
  • Target parameter set is a set of parameters corresponding to the smallest coding cost among the N sets of parameters
  • the chrominance value of the chrominance prediction block is predicted by using the target parameter group.
  • the upper and left sides of the first prediction block both include reconstructed pixels, and the first prediction block is the chroma prediction block or the luma prediction block;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a first pixel point set where the first pixel point set includes reconstructed pixels directly above the first prediction block and reconstructed pixels directly to the left of the first prediction block;
  • a second pixel point set where the second pixel point set only includes reconstructed pixels directly above the first prediction block
  • a third pixel point set includes the first upper left or upper right reconstructed pixel of the first prediction block, and the first upper left is directly above the first prediction block On the left
  • a fifth pixel point set includes a second upper left or lower left reconstructed pixel of the first prediction block, and the second upper left is the positive left of the first prediction block Above the square.
  • the top of the first prediction block includes reconstructed pixels, the left of the first prediction block does not include reconstructed pixels, and the first prediction block is the chroma prediction block or the luminance prediction Piece;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a second pixel point set where the second pixel point set only includes reconstructed pixels directly above the first prediction block
  • a third pixel point set includes the first upper left or upper right reconstructed pixel of the first prediction block, and the first upper left is directly above the first prediction block On the left
  • a sixth pixel point set where the sixth pixel point set includes unreconstructed pixels on the left of the first prediction block.
  • the top of the first prediction block does not include reconstructed pixels, the left of the first prediction block includes reconstructed pixels, and the first prediction block is the chrominance prediction block or the luminance prediction Piece;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a fifth pixel point set includes a second upper left or lower left reconstructed pixel of the first prediction block, and the second upper left is the positive left of the first prediction block Above the square
  • a seventh pixel point set where the seventh pixel point set includes unreconstructed pixels above the first prediction block.
  • the third pixel point set includes any one of the following:
  • the reconstructed pixel points at the first upper left, right upper, and upper right of the first prediction block.
  • the fifth pixel point set includes any one of the following:
  • the set of N pixels corresponding to the first prediction block includes a first pixel above the first prediction block, and the first prediction block is the chroma prediction block or the luminance prediction block ;
  • the first pixel is: the pixel in the I row of pixels that is closest to the first prediction block among the P rows of pixels above the first prediction block, P is an integer greater than 1, and I is A positive integer less than or equal to 4.
  • the set of N pixels corresponding to the first prediction block includes a second pixel to the left of the first prediction block, and the first prediction block is the chroma prediction block or the luminance prediction block ;
  • the second pixel is: among the pixels in the Q column on the left of the first prediction block, the pixel in the J column that is closest to the first prediction block, Q is an integer greater than J, J It is a positive integer less than or equal to 4.
  • the first length corresponding to all pixels in the third pixel point set satisfies any one of the following:
  • the first length does not exceed twice the width of the first prediction block
  • the first length does not exceed the sum of the width and height of the first prediction block.
  • the first length L1 satisfies: K1 ⁇ L1 ⁇ K2;
  • K1 is the total length of all pixels included in the first target pixel
  • the first target pixel is R pixels selected from the third pixel set, and the first target pixel is used for When obtaining a set of parameters in the N sets of parameters, R is a positive integer
  • K2 is the total length of all reconstructed pixels included above the first prediction block.
  • the pixels included in the first target pixel are all reconstructed pixels.
  • the first length L1 satisfies: K3 ⁇ L1 ⁇ K4;
  • K3 is the total length of all reconstructed pixels included above the first prediction block
  • K4 is twice the width of the first prediction block or the sum of the width and height of the first prediction block.
  • the first target pixel includes unreconstructed pixels
  • the first target pixel is R pixels selected from the third pixel set, and the first target pixel is used to obtain a set of parameters in the N sets of parameters, and R is positive Integer.
  • the second length corresponding to all pixels in the fifth pixel point set satisfies any one of the following:
  • the second length does not exceed twice the height of the first prediction block
  • the second length does not exceed the sum of the width and height of the first prediction block.
  • the second length L2 satisfies: K5 ⁇ L2 ⁇ K6;
  • K5 is the total length of all pixels included in the second target pixel
  • the second target pixel is R pixels selected from the fifth pixel set
  • the second target pixel is used for When acquiring a set of parameters in the N sets of parameters, R is a positive integer
  • K6 is the total length of all reconstructed pixels included on the left of the first prediction block.
  • the pixels included in the second target pixel are all reconstructed pixels.
  • the second length L2 satisfies: K7 ⁇ L2 ⁇ K8;
  • K7 is the total length of all reconstructed pixels included on the left of the first prediction block
  • K8 is twice the height of the first prediction block or the sum of the width and height of the first prediction block .
  • the second target pixel includes unreconstructed pixels
  • the second target pixel is R pixels selected from the fifth pixel set, and the second target pixel is used to obtain a set of parameters in the N sets of parameters, and R is positive Integer.
  • the parameter acquisition device provided by some embodiments of the present disclosure can execute the foregoing embodiment of the parameter acquisition method, and its implementation principles and technical effects are similar, and will not be repeated in this embodiment.
  • the pixel pair selection device 1600 may include:
  • the processor 1601 is configured to read a program in the memory 1602 and execute the following process:
  • the R group of reconstructed pixel point pairs include R reconstructed pixel points corresponding to the chrominance prediction block, and the luminance prediction block corresponds to R reconstructed pixels of, R is a positive integer;
  • the target reconstructed pixels include: reconstructed pixels directly above and at the top right of the second prediction block; or, reconstructed pixels at the front left and bottom left of the second prediction block.
  • the transceiver 1603 is used to receive and send data under the control of the processing 1601.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1601 and various circuits of the memory represented by the memory 1602 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1603 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 1601 is responsible for managing the bus architecture and general processing, and the memory 1602 can store data used by the processor 1601 when performing operations.
  • the processor 1601 is responsible for managing the bus architecture and general processing, and the memory 1602 can store data used by the processor 1601 when performing operations.
  • R is 4;
  • the R reconstructed pixels corresponding to the chroma prediction block are: 0/4, 1/4, 2/4, and 3/4 of the reconstructed pixels directly above and at the upper right of the chroma prediction block Reconstructed pixels of the position;
  • the R reconstructed pixels corresponding to the luminance prediction block are: among the reconstructed pixels directly above and at the upper right of the luminance prediction block, those at positions 0/4, 1/4, 2/4, and 3/4 Reconstruct the pixels.
  • processor 1601 is further configured to read the program and execute the following steps:
  • the first bin is the increase of the first bin string relative to the second bin string, and the first bin string corresponds to the target reconstructed pixel
  • the second bin string is a bin string generated by binarizing the chroma two-step prediction mode TSCPM;
  • the target encoding method is: the context encoding method; or, the bypass encoding method.
  • the context model corresponding to the target coding mode is: context model No. 1; or, a newly established context model.
  • the pixel pair selection device provided by some embodiments of the present disclosure can execute the above embodiment of the pixel pair selection method corresponding to FIG. 10, and its implementation principles and technical effects are similar, and will not be repeated here in this embodiment.
  • the pixel pair selection device 1700 may include:
  • the processor 1701 is configured to read a program in the memory 1702 and execute the following process:
  • R is a positive integer
  • the third target pixel includes any one of the following:
  • the third target pixel includes: the reconstructed pixel directly above the second prediction block; or, the The reconstructed pixels on the right and left of the second prediction block;
  • the third target pixel includes: Unreconstructed pixels on the left;
  • the third target pixel includes: The unreconstructed pixels on the top.
  • the transceiver 1703 is used to receive and send data under the control of the processing 1701.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1701 and various circuits of the memory represented by the memory 1702 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1703 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 1701 is responsible for managing the bus architecture and general processing, and the memory 1702 can store data used by the processor 1701 when performing operations.
  • the processor 1701 is responsible for managing the bus architecture and general processing, and the memory 1702 can store data used by the processor 1701 when performing operations.
  • processor 1701 is further configured to read the program and execute the following steps:
  • the second bin is the increase of the third bin string relative to the second bin string
  • the third bin string is the prediction mode corresponding to the third target pixel.
  • a bin string generated by binarization, and the second bin string is a bin string generated by binarizing the chrominance two-step prediction mode TSCPM.
  • the context model corresponding to the context encoding method is: context model No. 1; or, a newly established context model.
  • the pixel pair selection device provided by some embodiments of the present disclosure can execute the above embodiment of the pixel pair selection method corresponding to FIG. 11, and its implementation principles and technical effects are similar, and will not be repeated here in this embodiment.
  • the computer-readable storage medium of some embodiments of the present disclosure is used to store a computer program.
  • the computer program can be executed by a processor to implement the following steps:
  • the N sets of parameters are used to predict the chrominance value of the chrominance prediction block.
  • the computer program may also be processed The implementation of the implementation of the following steps:
  • Target parameter set is a set of parameters corresponding to the smallest coding cost among the N sets of parameters
  • the chrominance value of the chrominance prediction block is predicted by using the target parameter group.
  • the upper and left sides of the first prediction block both include reconstructed pixels, and the first prediction block is the chroma prediction block or the luma prediction block;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a first pixel point set where the first pixel point set includes reconstructed pixels directly above the first prediction block and reconstructed pixels directly to the left of the first prediction block;
  • a second pixel point set where the second pixel point set only includes reconstructed pixels directly above the first prediction block
  • a third pixel point set includes the first upper left or upper right reconstructed pixel of the first prediction block, and the first upper left is directly above the first prediction block On the left
  • a fifth pixel point set includes a second upper left or lower left reconstructed pixel of the first prediction block, and the second upper left is the positive left of the first prediction block Above the square.
  • the top of the first prediction block includes reconstructed pixels, the left of the first prediction block does not include reconstructed pixels, and the first prediction block is the chroma prediction block or the luminance prediction Piece;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a second pixel point set where the second pixel point set only includes reconstructed pixels directly above the first prediction block
  • a third pixel point set includes the first upper left or upper right reconstructed pixel of the first prediction block, and the first upper left is directly above the first prediction block On the left
  • a sixth pixel point set where the sixth pixel point set includes unreconstructed pixels on the left of the first prediction block.
  • the top of the first prediction block does not include reconstructed pixels, the left of the first prediction block includes reconstructed pixels, and the first prediction block is the chrominance prediction block or the luminance prediction Piece;
  • the N pixel point sets corresponding to the first prediction block include the following at least two pixel point sets:
  • a fifth pixel point set includes a second upper left or lower left reconstructed pixel of the first prediction block, and the second upper left is the positive left of the first prediction block Above the square
  • a seventh pixel point set where the seventh pixel point set includes unreconstructed pixels above the first prediction block.
  • the third pixel point set includes any one of the following:
  • the reconstructed pixel points at the first upper left, right upper, and upper right of the first prediction block.
  • the fifth pixel point set includes any one of the following:
  • the set of N pixels corresponding to the first prediction block includes a first pixel above the first prediction block, and the first prediction block is the chroma prediction block or the luminance prediction block ;
  • the first pixel is: the pixel in the I row of pixels that is closest to the first prediction block among the P rows of pixels above the first prediction block, P is an integer greater than 1, and I is A positive integer less than or equal to 4.
  • the set of N pixels corresponding to the first prediction block includes a second pixel to the left of the first prediction block, and the first prediction block is the chroma prediction block or the luminance prediction Piece;
  • the second pixel is: among the pixels in the Q column on the left of the first prediction block, the pixel in the J column that is closest to the first prediction block, Q is an integer greater than J, J It is a positive integer less than or equal to 4.
  • the first length corresponding to all pixels in the third pixel point set satisfies any one of the following:
  • the first length does not exceed twice the width of the first prediction block
  • the first length does not exceed the sum of the width and height of the first prediction block.
  • the first length L1 satisfies: K1 ⁇ L1 ⁇ K2;
  • K1 is the total length of all pixels included in the first target pixel
  • the first target pixel is R pixels selected from the third pixel set, and the first target pixel is used for When obtaining a set of parameters in the N sets of parameters, R is a positive integer
  • K2 is the total length of all reconstructed pixels included above the first prediction block.
  • the pixels included in the first target pixel are all reconstructed pixels.
  • the first length L1 satisfies: K3 ⁇ L1 ⁇ K4;
  • K3 is the total length of all reconstructed pixels included above the first prediction block
  • K4 is twice the width of the first prediction block or the sum of the width and height of the first prediction block.
  • the first target pixel includes unreconstructed pixels
  • the first target pixel is R pixels selected from the third pixel set, and the first target pixel is used to obtain a set of parameters in the N sets of parameters, and R is positive Integer.
  • the second length corresponding to all pixels in the fifth pixel point set satisfies any one of the following:
  • the second length does not exceed twice the height of the first prediction block
  • the second length does not exceed the sum of the width and height of the first prediction block.
  • the second length L2 satisfies: K5 ⁇ L2 ⁇ K6;
  • K5 is the total length of all pixels included in the second target pixel
  • the second target pixel is R pixels selected from the fifth pixel set
  • the second target pixel is used for When acquiring a set of parameters in the N sets of parameters, R is a positive integer
  • K6 is the total length of all reconstructed pixels included on the left of the first prediction block.
  • the pixels included in the second target pixel are all reconstructed pixels.
  • the second length L2 satisfies: K7 ⁇ L2 ⁇ K8;
  • K7 is the total length of all reconstructed pixels included on the left of the first prediction block
  • K8 is twice the height of the first prediction block or the sum of the width and height of the first prediction block .
  • the second target pixel includes unreconstructed pixels
  • the second target pixel is R pixels selected from the fifth pixel set, and the second target pixel is used to obtain a set of parameters in the N sets of parameters, and R is positive Integer.
  • the computer program can be executed by the processor to implement the following steps:
  • the R group of reconstructed pixel point pairs include R reconstructed pixel points corresponding to the chrominance prediction block, and the luminance prediction block corresponds to R reconstructed pixels of, R is a positive integer;
  • the target reconstructed pixel points include: reconstructed pixels directly above and upper right of the second prediction block; or, reconstructed pixels directly left and lower left of the second prediction block.
  • R is 4;
  • the R reconstructed pixels corresponding to the chroma prediction block are: 0/4, 1/4, 2/4, and 3/4 of the reconstructed pixels directly above and at the upper right of the chroma prediction block Reconstructed pixels of the position;
  • the R reconstructed pixels corresponding to the luminance prediction block are: among the reconstructed pixels directly above and at the upper right of the luminance prediction block, those at positions 0/4, 1/4, 2/4, and 3/4 Reconstruct the pixels.
  • the method further includes:
  • the first bin is the increase of the first bin string relative to the second bin string, and the first bin string corresponds to the target reconstructed pixel
  • the second bin string is a bin string generated by binarizing the chroma two-step prediction mode TSCPM;
  • the target encoding method is: the context encoding method; or, the bypass encoding method.
  • the context model corresponding to the target coding mode is: context model No. 1; or, a newly established context model.
  • the computer program may be executed by the processor to implement the following steps:
  • R is a positive integer
  • the third target pixel includes any one of the following:
  • the third target pixel includes: the reconstructed pixel directly above the second prediction block; or, the The reconstructed pixels on the right and left of the second prediction block;
  • the third target pixel includes: Unreconstructed pixels on the left;
  • the third target pixel includes: The unreconstructed pixels on the top.
  • the method further includes:
  • the second bin is the increase of the third bin string relative to the second bin string
  • the third bin string is the prediction mode corresponding to the third target pixel.
  • a bin string generated by binarization, and the second bin string is a bin string generated by binarizing the chrominance two-step prediction mode TSCPM.
  • the context model corresponding to the context encoding method is: context model No. 1; or, a newly established context model.
  • the disclosed method and device can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be separately physically included, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in some embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in some embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.
  • the above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute part of the steps of the parameter acquisition method described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本公开提供一种参数获取方法、像素点对选择方法及相关设备。其中,参数获取方法包括:确定色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,所述色度预测块与所述亮度预测块对应,N为大于1的整数;根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取N组参数,所述N组参数用于预测所述色度预测块的色度值。

Description

参数获取方法、像素点对选择方法及相关设备
相关申请的交叉引用
本申请主张在2019年8月27日在中国提交的中国专利申请号No.201910796327.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及视频技术领域,尤其涉及一种参数获取方法、像素点对选择方法及相关设备。
背景技术
在第三代信源编码标准(3 rd Generation Audio Video coding Standard,AVS3),色度预测中使用了包括色度两步预测模式(Two Step Cross Component Prediction Mode,TSCPM)在内的多种预测模式,以此来提高色度分量预测的准确度。
当使用TSCPM预测模式预测色度预测块的色度分量时,利用亮度分量与色度分量之间的线性关系,使用线性模型来对色度分量进行预测。在计算色度分量的过程中,需要计算线性模型对应的参数(α和β),进而基于计算得到的参数来预测色度预测块的色度分量。
在计算线性模型对应的参数时仅得到一组参数,计算得到的参数的准确性较低。
发明内容
本公开实施例提供一种参数获取方法、像素点对选择方法及相关设备,以解决因相关技术在计算线性模型对应的参数时仅得到一组参数,计算得到的参数的准确性较低的问题。
为解决上述问题,本公开是这样实现的:
第一方面,本公开的一些实施例提供了一种参数获取方法,所述方法包括:
确定色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,所述色度预测块与所述亮度预测块对应,N为大于1的整数;
根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取N组参数,所述N组参数用于预测所述色度预测块的色度值。
可选的,所述根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取与预测模型对应的N组参数之后,所述方法还包括:
从所述N组参数中选择目标参数组,所述目标参数组为所述N组参数中对应最小编码代价的一组参数;
利用所述目标参数组,预测所述色度预测块的色度值。
可选的,第一预测块的上方和左方均包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第一像素点集合,所述第一像素点集合包括所述第一预测块的正上方的重构像素点和所述第一预测块的正左方的重构像素点;
第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方。
可选的,第一预测块的上方包括重构像素点,所述第一预测块的左方未包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
第六像素点集合,所述第六像素点集合包括所述第一预测块的左方的未重构像素点。
可选的,第一预测块的上方未包括重构像素点,所述第一预测块的左方包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方;
第七像素点集合,所述第七像素点集合包括所述第一预测块的上方的未重构像素点。
可选的,所述第三像素点集合包括以下任意一项:
所述第一预测块的第一左上方的重构像素点;
所述第一预测块的右上方的重构像素点;
所述第一预测块的第一左上方和右上方的重构像素点;
所述第一预测块的第一左上方和正上方的重构像素点;
所述第一预测块的正上方和右上方的重构像素点;
所述第一预测块的第一左上方、正上方和右上方的重构像素点。
可选的,所述第五像素点集合包括以下任意一项:
所述第一预测块的第二左上方的重构像素点;
所述第一预测块的左下方的重构像素点;
所述第一预测块的第二左上方和左下方的重构像素点;
所述第一预测块的第二左上方和正左方的重构像素点;
所述第一预测块的正左方和左下方的重构像素点;
所述第一预测块的第二左上方、正左方和左下方的重构像素点。
可选的,第一预测块对应的N个像素点集合中包括所述第一预测块的上方的第一像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一像素点为:所述第一预测块的上方的P行像素点中与所述第一预测块距离最近的I行像素点中的像素点,P为大于I的整数,I为小于或等于4的正整数。
可选的,第一预测块对应的N个像素点集合中包括所述第一预测块的左方的第二像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第二像素点为:所述第一预测块的左方的Q列像素点中与所述第一预测块距离最近的J列像素点中的像素点,Q为大于J的整数,J为小于或等于4的正整数。
可选的,所述第三像素点集合的全部像素点对应的第一长度满足以下任意一项:
所述第一长度不超过所述第一预测块的宽度的两倍;
所述第一长度不超过所述第一预测块的宽度和高度之和。
可选的,所述第一长度L1满足:K1≤L1<K2;
其中,K1为第一目标像素点包括的全部像素点的总长度,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数;K2为所述第一预测块的上方包括的全部重构像素点的总长度。
可选的,第一目标像素点包括的像素点均为重构像素点。
可选的,所述第一长度L1满足:K3<L1≤K4;
K3为所述第一预测块的上方包括的全部重构像素点的总长度,K4为所述第一预测块的宽度的两倍或所述第一预测块的宽度和高度之和。
可选的,第一目标像素点包括未重构像素点;
其中,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数。
可选的,所述第五像素点集合的全部像素点对应的第二长度满足以下任 意一项:
所述第二长度不超过所述第一预测块的高度的两倍;
所述第二长度不超过所述第一预测块的宽度和高度之和。
可选的,所述第二长度L2满足:K5≤L2<K6;
其中,K5为第二目标像素点包括的全部像素点的总长度,所述第二目标像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数;K6为所述第一预测块的左方包括的全部重构像素点的总长度。
可选的,所述第二目标像素点包括的像素点均为重构像素点。
可选的,所述第二长度L2满足:K7<L2≤K8;
其中,K7为所述第一预测块的左方包括的全部重构像素点的总长度,K8为所述第一预测块的高度的两倍或所述第一预测块的宽度和高度之和。
可选的,第二目标像素点包括未重构像素点;
其中,所述第二目标像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数。
第二方面,本公开的一些实施例还提供一种像素点对选择方法,所述像素点对选择方法包括:
确定第二预测块对应的目标重构像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
从所述目标重构像素点中选择R组重构像素点对,所述R组重构像素点对包括所述色度预测块对应的R个重构像素点,以及所述亮度预测块对应的R个重构像素点,R为正整数;
其中,所述目标重构像素点包括:所述第二预测块的正上方和右上方的重构像素点;或,所述第二预测块的正左方和左下方的重构像素点。
第三方面,本公开的一些实施例还提供一种像素点对选择方法,所述像素点对选择方法包括:
确定第二预测块对应的第三目标像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
从所述第三目标像素点中选择R组像素点对,所述R组像素点对包括所 述色度预测块对应的R个像素点,以及所述亮度预测块对应的R个像素点,R为正整数;
其中,所述第三目标像素点包括以下任意一项:
在所述第二预测块的上方和左方均包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的正上方的重构像素点;或,所述第二预测块的正左方的重构像素点;
在所述第二预测块的上方包括重构像素点,所述第二预测块的左方未包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的左方的未重构像素点;
在所述第二预测块的上方未包括重构像素点,所述第二预测块的左方包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的上方的未重构像素点。
第四方面,本公开的一些实施例还提供一种参数获取设备,该参数获取设备包括:
第一确定模块,用于色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,所述色度预测块与所述亮度预测块对应,N为大于1的整数;
获取模块,用于根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取与预测模型对应的N组参数,所述N组参数用于预测所述色度预测块的色度值。
第五方面,本公开的一些实施例还提供一种像素点对选择设备,所述像素点对选择设备包括:
第二确定模块,用于确定第二预测块对应的目标重构像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
第二选择模块,用于从所述目标重构像素点中选择R组重构像素点对,所述R组重构像素点对包括所述色度预测块对应的R个重构像素点,以及所述亮度预测块对应的R个重构像素点,R为正整数;
其中,所述目标重构像素点包括:所述第二预测块的正上方和右上方的重构像素点;或,所述第二预测块的正左方和左下方的重构像素点。
第六方面,本公开的一些实施例还提供一种像素点对选择设备,所述像素点对选择设备包括:
第三确定获取模块,用于确定第二预测块对应的第三目标像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
第三选择模块,用于从所述第三目标像素点中选择R组像素点对,所述R组像素点对包括所述色度预测块对应的R个像素点,以及所述亮度预测块对应的R个像素点,R为正整数;
其中,所述第三目标像素点包括以下任意一项:
在所述第二预测块的上方和左方均包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的正上方的重构像素点;或,所述第二预测块的正左方的重构像素点;
在所述第二预测块的上方包括重构像素点,所述第二预测块的左方未包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的左方的未重构像素点;
在所述第二预测块的上方未包括重构像素点,所述第二预测块的左方包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的上方的未重构像素点。
第七方面,本公开的一些实施例还提供一种参数获取设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,所述处理器,用于读取存储器中的程序实现如前述第一方面所述的参数获取方法中的步骤。
第八方面,本公开的一些实施例还提供一种像素点对选择设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,所述处理器,用于读取存储器中的程序实现如前述第二方面所述的像素点对选择方法中的步骤,或,如前述第三方面所述的像素点对选择方法中的步骤。
第九方面,本公开的一些实施例还提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被处理器执行时实现如前述第一方面所述的参数获取方法中的步骤,或,如前述第二方面所述的像素点对选择方法中 的步骤,或,如前述第三方面所述的像素点对选择方法中的步骤。
在本公开的一些实施例中,通过色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,N为大于1的整数,可以获取N组参数,所述N组参数用于预测所述色度预测块的色度值。这样,相比于相关技术中只能获取一组参数,本公开可以增加参数获取的组数,从而可以提高获取到的参数的准确性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开的一些实施例提供的参数获取方法的流程示意图;
图2a是本公开的一些实施例提供的色度预测块的上方方位的示意图;
图2b是本公开的一些实施例提供的色度预测块的左方方位的示意图;
图3a是本公开的一些实施例提供的色度预测块周围的重构像素点的示意图之一;
图3b是本公开的一些实施例提供的亮度预测块周围的重构像素点的示意图之一;
图4a是本公开的一些实施例提供的色度预测块周围的重构像素点的示意图之二;
图4b是本公开的一些实施例提供的亮度预测块周围的重构像素点的示意图之二;
图5a是本公开的一些实施例提供的色度预测块周围的重构像素点的示意图之三;
图5b是本公开的一些实施例提供的亮度预测块周围的重构像素点的示意图之三;
图6a是本公开的一些实施例提供的色度预测块周围的重构像素点的示意图之四;
图6b是本公开的一些实施例提供的亮度预测块周围的重构像素点的示意图之四;
图7a是本公开的一些实施例提供的色度预测块周围的重构像素点的示意图之五;
图7b是本公开的一些实施例提供的亮度预测块周围的重构像素点的示意图之五;
图8a是本公开的一些实施例提供的色度预测块周围的重构像素点的示意图之六;
图8b是本公开的一些实施例提供的亮度预测块周围的重构像素点的示意图之六;
图9是本公开的一些实施例提供的色度预测块周围的重构像素点的示意图之七;
图10是本公开的一些实施例提供的像素点对选择方法的流程图之一;
图11是本公开的一些实施例提供的像素点对选择方法的流程图之二;
图12是本公开的一些实施例提供的参数获取设备的结构示意图之一;
图13是本公开的一些实施例提供的像素点对选择设备的结构示意图之一;
图14是本公开的一些实施例提供的像素点对选择设备的结构示意图之二;
图15是本公开的一些实施例提供的参数获取设备的结构示意图之二;
图16是本公开的一些实施例提供的像素点对选择设备的结构示意图之三;以及
图17是本公开的一些实施例提供的像素点对选择设备的结构示意图之四。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,本申请中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。
为方便理解,以下对本公开的一些实施例涉及的一些内容进行说明:
视频序列不同分量间存在着较强的相关性,编码性能可以通过利用视频序列不同分量间的相关性来提升。为了降低分量间的冗余信息,TSCPM中,色度分量基于相同位置的重构亮度分量来进行预测,使用如下线性模型:
pred C(i,j)=α·rec L(i,j)+β
其中,pred C是指经过线性计算后得到的色度预测块,rec L指相同位置的亮度编码块的亮度分量,参数α和β通过最小化相邻的重构亮度和色度样本之间的回归误差来导出,如下所示:
Figure PCTCN2020098544-appb-000001
Figure PCTCN2020098544-appb-000002
其中,L(n)表示左边相邻的重构像素和上面相邻的重构像素的重构亮度样本,C(n)表示当前色度块左边和上面相邻的重建色度样本。α和β并不需要传输,在解码器中也通过同样的方式计算得到。
在TSCPM中,首先根据相邻块像素的可用性分为了3种情况来得到4个可用的像素点对,通过4个可用的像素点对来计算α和β,当得到α和β后,根据亮度和色度之间的线性关系,通过亮度重构像素得到色度预测值。
在选取4对可用像素点时,需要考虑上侧像素和左侧像素的可用性,分为一下3种情况:
情况一、如果当前块的正上侧和正左侧像素均“可用”,则2个像素点对从上侧选择,2个像素点对从左侧选择。
情况二、如果当前块只有上侧可用,则4个像素点对均从正上侧选择,选择的位置宽度为:0/4,1/4,2/4,3/4。
情况三、如果当前块只有左侧像素可用,则4个像素点对均从正左侧选择,选择的位置为高度的:0/4,1/4,2/4,3/4。
当确定色度分量的预测模式后,在不考虑冗余(redundant)的情况下,色度编码方式为如表一所示:
表一:色度编码方式
模式索引 模式名称 二值化
0 DM 1
1 DC 001
2 Horizontal 0001
3 Vertical 00001
4 Bilinear 00000
5 TSCPM 01
其中,如果binIdx为0时,使用0号上下文编码;如果binIdx为1且模式为TSCPM时,使用1号上下文编码,否则,使用2号上下文编码。
对模式进行二值化后可以产生一个bin串,如在表一中,对TSCPM进行二值化产生的bin串为:01。binIdx标识bin串中的bin。binIdx为0标识的是bin串中的第1个bin,binIdx为1标识的是bin串中的第2个bin,以此类推。
参见图1,图1是本公开的一些实施例提供的参数获取方法的流程示意图。如图1所示,本公开的一些实施例的参数获取方法可以包括以下步骤:
步骤101、确定色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,所述色度预测块与所述亮度预测块对应,N为大于1的整数。
应理解的是,上述N描述的是像素点集合的个数,每个像素点集合包括多个像素点,像素点集合包括的像素点可以连续,也可以不连续。另外,色度预测块对应的像素点集合包括多个色度像素点,因此,色度预测块对应的像素点集合可以称为色度像素点集合;亮度预测块对应的像素点集合包括多 个亮度像素点,因此,亮度预测块对应的像素点集合可以称为亮度像素点集合。
N个色度像素点集合与N个亮度像素点集合具有一一对应关系。对于具有对应关系的色度像素点集合和亮度像素点集合,色度像素点集合中各色度像素点相对于色度预测块的方位信息,与亮度像素点集合中各亮度像素点相对于亮度预测块的方位信息相同。如:假设色度像素点集合1和亮度像素点集合1具有对应关系,色度像素点集合1中各色度像素点在色度预测块的正上方,则相应地,亮度像素点集合1中各亮度像素点在亮度预测块的正上方。
可见,在本公开的一些实施例中,色度预测块和亮度预测块可以分别对应有至少两个像素点集合,这样,相比于相关技术中色度预测块和亮度预测块均只对应一个像素点集合,丰富了色度预测块和亮度预测块对应的像素点集合的获取。
步骤102、根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取与预测模型对应的N组参数,所述N组参数用于预测所述色度预测块的色度值。
具体实现时,针对每个色度像素点集合及其对应的亮度像素点集合,可以从色度像素点集合中选取R个色度像素点,从亮度像素点集合中选取R个亮度像素点,得到R组像素点对,每组像素点对包括一个色度像素点和一个亮度像素点。之后,利用R组像素点对,通过前述α和β的计算公式计算得到一组参数α和β。在实际应用中,R可以取值为4,但应理解的是,本公开并不限制R的具体取值,R的取值可根据实际需求确定。
在R取值为4的场景中,从像素点集合中选取的4个像素点的位置可以为该像素点集合中任意方位的0/4,1/4,2/4,3/4位置的像素点,其中,0/4位置的像素点可以理解为像素点集合中的起始像素点,其他位置以此类推。如:若某个像素点集合在方位1包括8个像素点,则从该像素点集合中选取的4个像素点可以是上述8个像素点中的第1个像素点,第3个像素点,第5个像素点和第7个像素点。
由上述内容可知,根据一个色度像素点集合和一个亮度像素点集合,可以获取一组参数。因此,可以理解的是,可以根据N个色度像素点集合和N 个亮度像素点集合,获取N组参数。
本实施例的参数获取方法,通过色度预测块的对应N个像素点集合,以及亮度预测块的对应N个像素点集合,N为大于1的整数,可以获取N组参数,所述N组参数用于预测所述色度预测块的色度值。这样,相比于相关技术中只能获取一组参数,本公开可以增加参数获取的组数,从而可以提高获取到的参数的准确性。
在本公开的一些实施例中,可以利用上述N组参数中的任一组参数预测所述色度预测块的色度值。可选的,所述根据所述第一预测块对应的N个像素点集合,获取与预测模型对应的N组参数之后,所述方法还包括:
从所述N组参数中选择目标参数组,所述目标参数组为所述N组参数中对应最小编码代价的一组参数;
利用所述目标参数组,预测所述色度预测块的色度值。
具体实现时,可以计算每组参数对应的编码代价,得到N个编码代价。之后,从N组传输中选择对应最小编码代价的目标参数组,以利用目标参数组计算所述色度预测块的色度值。
这样,相比于利用所述N组参数中除目标参数组之外的其他参数组计算所述色度预测块的色度值,可以降低所述色度预测块的编码代价,降低所述色度预测变编码所需要的码率,提高编码效率,带来编码增益。
本公开的一些实施例涉及到第一预测块(色度预测块或亮度预测块)的上方、正上方、第一左上方、右上方、左方、正左方、第二左上方和左下方多个方位信息的描述,为方便区分上述多个方位信息,结合图2a和图2b进行说明:
在图2a中,以色度预测块的上边作第一参考线21,第一参考线21的上方即可视为色度预测块的上方。进一步地,如图2a所示,可以将色度预测块的上方分为三个部分,具体为第一左上方、正上方和右上方。
在图2b中,以色度预测块的左边作第二参考线22,第二参考线22的左方即可视为色度预测块的左方。进一步地,如图2b所示,可以将色度预测块的左方分为三个部分,具体为第二左上方、正左方和左下方。
在本公开的一些实施例中,第一预测块对应的像素点集合与所述第一预 测块的相邻块像素的可用性相关。具体地,第一预测块对应的像素点集合与所述第一预测块上方和左方是否包括重构像素点相关。因此,基于所述第一预测块的上方和左方是否包括重构像素点的不同判定结果,所述第一预测块对应的像素点集合可能不同。
判定结果一、所述第一预测块的上方和左方均包括重构像素点。
在本公开的一些实施例中,只要所述第一预测块的上方的三个方位中的一个方位包括重构像素点,即可视所述第一预测块的上方包括重构像素点。同理,只要所述第一预测块的左方的三个方位中的一个方位包括重构像素点,即可视所述第一预测块的左方包括重构像素点。
如图3a所示,第一色度像素块31的第一左上方、正上方、第二左上方和正左方均包括重构像素点,第一色度像素块31的右上方和左下方未包括重构像素点。如图3b所示,第一亮度像素块32的第一左上方、正上方、第二左上方和正左方均包括重构像素点,第一亮度像素块32的右上方和左下方未包括重构像素点。
如图4a所示,第二色度像素块41的第一左上方、正上方、右上方、第二左上方、正左方和左下方均包括重构像素点。如图4b所示,第二亮度像素块42的第一左上方、正上方、第二左上方、正左方和左下方均包括重构像素点。
应理解的是,图3a至图4b中的重构像素点的分布位置仅为示例,并不因此限制对应于判定结果一的第一预测块的重构像素点的分布位置。
对应于判定结果一,可选的,所述第一预测块对应的N个像素点集合可以包括以下至少两个像素点集合:
第一像素点集合,所述第一像素点集合包括所述第一预测块的正上方的重构像素点和所述第一预测块的正左方的重构像素点;
第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方。
具体实现时,对于第一像素点集合,其包括第一预测块的上方和左方的重构像素点,且所述第一像素点集合至少包括所述第一预测块的正上方的重构像素点和所述第一预测块的正左方的重构像素点。
一种实现方式中,第一预测块对应的第一像素点集合可以由第一预测块的正上方的重构像素点和第一预测块的正左方的重构像素点组成。
另一种实现方式中,第一预测块对应的第一像素点集合还可包括所述第一预测块的第一左上方、右上方、第二左上方和左下方中至少一方的重构像素点。
对于第二像素点集合,其仅包括所述第一预测块的正上方的重构像素点,因此,第一预测块对应的第二像素点集合可以由第一预测块的正上方的重构像素点的重构像素点组成。
对于第三像素点集合,其仅包括第一预测块的上方的像素点,且所述第三像素点集合至少包括所述第一预测块的第一左上方或右上方的重构像素点。
可选的,所述第三像素点集合可包括以下任意一项:
所述第一预测块的第一左上方的重构像素点;
所述第一预测块的右上方的重构像素点;
所述第一预测块的第一左上方和右上方的重构像素点;
所述第一预测块的第一左上方和正上方的重构像素点;
所述第一预测块的正上方和右上方的重构像素点;
所述第一预测块的第一左上方、正上方和右上方的重构像素点。
具体实现时,第三像素点集合中包括的像素点还需要进一步结合所述第一预测块的上方的重构像素点的分布位置确定。
在所述第一预测块的第一左上方和正上方均包括重构像素点,所述第一预测块的右上方未包括重构像素点的情况下,所述第三像素点集合可包括以 下任意一项:
所述第一预测块的第一左上方的重构像素点;
所述第一预测块的第一左上方和正上方的重构像素点。
在所述第一预测块的第一左上方、正上方和右上方均包括重构像素点的情况下,所述第三像素点集合可包括以下任意一项:
所述第一预测块的第一左上方的重构像素点;
所述第一预测块的右上方的重构像素点;
所述第一预测块的第一左上方和右上方的重构像素点;
所述第一预测块的第一左上方和正上方的重构像素点;
所述第一预测块的正上方和右上方的重构像素点;
所述第一预测块的第一左上方、正上方和右上方的重构像素点。
对于第四像素点集合,仅包括所述第一预测块的正左方的重构像素点,因此,第一预测块对应的第四像素点集合可以由第一预测块的正左方的重构像素点的重构像素点组成。
对于第五像素点集合,其仅包括第一预测块的左方的像素点,且所述第五像素点集合至少包括所述第一预测块的第二左上方或左下方的重构像素点。
可选的,所述第五像素点集合可包括以下任意一项:
所述第一预测块的第二左上方的重构像素点;
所述第一预测块的左下方的重构像素点;
所述第一预测块的第二左上方和左下方的重构像素点;
所述第一预测块的第二左上方和正左方的重构像素点;
所述第一预测块的正左方和左下方的重构像素点;
所述第一预测块的第二左上方、正左方和左下方的重构像素点。
具体实现时,第五像素点集合中包括的像素点还需要进一步结合所述第一预测块的左方的重构像素点的分布位置确定。
在所述第一预测块的第二左上方和正左方均包括重构像素点,所述第一预测块的左下方未包括重构像素点的情况下,所述第五像素点集合可包括以下任意一项:
所述第一预测块的第二左上方的重构像素点;
所述第一预测块的第二左上方和正左方的重构像素点;
在所述第一预测块的第二左上方、正左方和左下方均包括重构像素点的情况下,所述第五像素点集合可包括以下任意一项:
所述第一预测块的第二左上方的重构像素点;
所述第一预测块的左下方的重构像素点;
所述第一预测块的第二左上方和左下方的重构像素点;
所述第一预测块的第二左上方和正左方的重构像素点;
所述第一预测块的正左方和左下方的重构像素点;
所述第一预测块的第二左上方、正左方和左下方的重构像素点。
由上述内容可见,一方面,相比于相关技术中仅利用所述第一预测块的正上方和正左方的重构像素点,本公开的一些实施例充分利用了所述第一预测块的各方位的重构像素点,提高了所述第一预测块的各方位的重构像素点的利用率。另一方面,相比于相关技术中在所述第一预测块的上方和左方均包括重构像素点的情况下,必须利用所述第一预测块的上方和左方的重构像素点,本公开的一些实施例可以仅利用所述第一预测块的上方或左方的重构像素点,从而提高了重构像素点利用的灵活度。
判定结果二、所述第一预测块的上方包括重构像素点,所述第一预测块的左方未包括重构像素点。
如图5a所示,第三色度像素块51的第一左上方、正上方、第二左上方和正左方均包括重构像素点,第三色度像素块51的右上方和左下方未包括重构像素点。如图5b所示,第三亮度像素块52的第一左上方、正上方、第二左上方和正左方均包括重构像素点,第三亮度像素块52的右上方和左下方未包括重构像素点。
如图6a所示,第四色度像素块61的第一左上方、正上方、右上方、第二左上方、正左方和左下方均包括重构像素点。如图6b所示,第四亮度像素块62的第一左上方、正上方、第二左上方、正左方和左下方均包括重构像素点。
应理解的是,图5a至图6b中的重构像素点的分布位置仅为示例,并不因此限制对应于判定结果二的第一预测块的重构像素点的分布位置。
对于判定结果二,可选的,所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
第六像素点集合,所述第六像素点集合包括所述第一预测块的左方的未重构像素点。
需要说明的是,判定结果二中的第二像素点集合和第三像素点集合,与判定结果一中的第二像素点集合和第三像素点集合相同,具体可参考判断结果一中的描述,此处不再赘述。
对于第六像素点集合,其包括的左方的未重构像素点的像素信息可以使用预设的填充规则进行填充。
由上述内容可见,在所述第一预测块的上方包括重构像素点,所述第一预测块的左方未包括重构像素点的情况下,本公开的一些实施例可充分利用所述第一预测块的上方的各方位的重构像素点,或,第一预测块的左方的未重构像素点。这样,相比于相关技术仅利用所述第一预测块的正上方的重构像素点,本公开的一些实施例提高了所述第一预测块周围的重构像素点的利用率。
判定结果三、所述第一预测块的上方未包括重构像素点,所述第一预测块的左方包括重构像素点。
如图7a所示,第五色度像素块71的第一左上方、正上方、第二左上方和正左方均包括重构像素点,第五色度像素块71的右上方和左下方未包括重构像素点。如图7b所示,第五亮度像素块72的第一左上方、正上方、第二左上方和正左方均包括重构像素点,第五亮度像素块72的右上方和左下方未包括重构像素点。
如图8a所示,第六色度像素块81的第一左上方、正上方、右上方、第二左上方、正左方和左下方均包括重构像素点。如图8b所示,第六亮度像素 块82的第一左上方、正上方、第二左上方、正左方和左下方均包括重构像素点。
应理解的是,图7a至图8b中的重构像素点的分布位置仅为示例,并不因此限制判定结果三下重构像素点的分布位置。
对于判定结果三,可选的,所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方;
第七像素点集合,所述第七像素点集合包括所述第一预测块的上方的未重构像素点。
需要说明的是,判定结果三中的第四像素点集合和第五像素点集合,与判定结果一中的第四像素点集合和第五像素点集合相同,具体可参考判断结果一中的描述,此处不再赘述。
对于第七像素点集合,其包括的左方的未重构像素点的像素信息可以使用预设的填充规则进行填充。
由上述内容可见,在所述第一预测块的上方未包括重构像素点,所述第一预测块的左方包括重构像素点的情况下,本公开的一些实施例可充分利用所述第一预测块的左方的重构像素点,或,第一预测块的右方的未重构像素点。这样,相比于相关技术仅利用所述第一预测块的正左方的重构像素点,本公开的一些实施例提高了所述第一预测块周围的重构像素点的利用率。
在本公开的一些实施例中,可选的,第一预测块对应的N个像素点集合中包括所述第一预测块的上方的第一像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一像素点为:所述第一预测块的上方的P行像素点中与所述第一预测块距离最近的I行像素点中的像素点,P为大于I的整数,I为小于或等于4的正整数。
在实际应用中,I可以为4。另外,在第一像素点包括多个像素点的情况下,该多个像素点可以为所述第一预测块的上方的同一行的像素点。
这样,相比于利用所述P行像素点中的像素点获取参数,利用所述I行像素点中的像素点获取参数所对应的编码代价较小,从而可以提高获取的参数的利用率。
可选的,第一预测块对应的N个像素点集合中包括所述第一预测块的左方的第二像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第二像素点为:所述第一预测块的左方的Q列像素点中与所述第一预测块距离最近的J列像素点中的像素点,Q为大于J的整数,J为小于或等于4的正整数。
在实际应用中,J可以为4。另外,在第二像素点包括多个像素点的情况下,该多个像素点可以为所述第一预测块的左方的同一列的像素点。
这样,相比于利用所述Q列像素点中的像素点获取参数,利用所述J列像素点中的像素点获取参数所对应的编码代价较小,从而可以提高获取的参数的利用率。
在本公开的一些实施例中,由前述内容可知,第三像素点集合可以包括所述第一预测块的第一左上方或右上方的重构像素点,第五像素点集合可以包括所述第一预测块的第二左上方或左下方的重构像素点。为提高根据所述第三像素点集合和/或所述第五像素点集合获取的参数的利用率,本公开的一些实施例可以对第三像素点集合的全部像素点对应的第一长度L1,和/或,第五像素点集合的的全部像素点对应的第二长度L2进行限定。
在本公开的一些实施例中,第一预测块为色度预测块或亮度预测块。因此,应理解的是,色度预测块对应的L1(或L2),与亮度预测块对应的L1(或L2)的确定方式相同。
一、关于第三像素点集合。
可选的,所述第三像素点集合的全部像素点对应的第一长度满足以下任意一项:
所述第一长度不超过所述第一预测块的宽度的两倍;
所述第一长度不超过所述第一预测块的宽度和高度之和。
所述第一长度可以理解为所述第三像素点集合的全部像素点的总长度,具体地,第一长度L1=a×y,其中,a为所述第三像素点集合包括的像素点的数量,y为一个像素点的长度。示例性的,若色度预测块对应的第三像素点集合包括8个像素点,一个像素点的长度为y,则该色度预测块对应的第三像素点集合的全部像素点对应的第一长度L1=8y。
记所述第一预测块的宽度为W,记所述第一预测块的高度为H,则L1满足:L1≤2W;或,L1≤W+H。
这样,利用所述第三像素点集合获取参数所对应的编码代价较小,从而可以提高获取的参数的利用率。
进一步地,在本公开的一些实施例中,所述第三像素点集合可以包括重构像素点,即已经重构的像素点,也可以包括未重构像素点,即未重构的像素点。
情况一、所述第三像素点集合仅包括重构像素点,不包括未重构像素点。
在情况一中,所述第一长度L1满足:
K1≤L1<K2;
其中,K1为第一目标像素点包括的全部像素点的总长度,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数,即K1=R×y;K2为所述第一预测块的上方包括的全部重构像素点的总长度。
应理解的是,L1是在满足:L1≤2W;或,L1≤W+H的前提下,进一步满足K1≤L1<K2。
在情况一中,第一目标像素点包括的像素点均为重构像素点。
这样,情况一中的L1可以保证第一目标像素点包括的像素点均为重构像素点,且可以选取R个像素点。
情况二、所述第三像素点集合包括重构像素点和未重构像素点。
在情况二中,所述第一长度L1满足:
K3<L1≤K4;
K3为所述第一预测块的上方包括的全部重构像素点的总长度,K4为所述第一预测块的宽度的两倍或所述第一预测块的宽度和高度之和。
这样,情况二中的L1可以保证所述第三像素点集合包括未重构像素点。
在情况二中,第一目标像素点可能包括未重构像素点,也可能不包括未重构像素点,具体需根据第三像素点集合中重构像素点和未重构像素点的分布位置,以及从第三像素点集合中选取第一目标像素点的选取方式确定。其中,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数。
需要说明的是,在本公开的一些实施例中,某像素点集合中的未重构像素点的像素信息可以用第三像素点的像素信息填充,第三像素点为该像素点集合中距离该未重构像素点最近的重构像素点。
为方便理解上述情况一和情况二,结合图9示例说明如下:
在图9中,第七色度预测块91包括8×8个像素点,第七色度预测块91的宽度为W,第七色度预测块91的高度为H,第七色度预测块91的上方包括12个重构像素点,4个未重构像素点,即第七色度预测块91的上方的重构像素点的总长度为1.5W,第七色度预测块91的上方的重构像素点和未重构像素点的总长度为2W。另外,假设R的取值为4。
这样,对于图9,在情况一中,L1需满足:4y≤L1<1.5W;在情况二中,L1需满足:1.5W<L1≤2W;或,1.5W<L1≤W+H。
二、关于第五像素点集合。
可选的,所述第五像素点集合的全部像素点对应的第二长度满足以下任意一项:
所述第二长度不超过所述第一预测块的高度的两倍;
所述第二长度不超过所述第一预测块的宽度和高度之和。
进一步地,在本公开的一些实施例中,所述第五像素点集合可以包括重构像素点,即已经重构的像素点,也可以包括未重构像素点,即未重构的像素点。
情况三、所述第五像素点集合仅包括重构像素点,不包括未重构像素点。
在情况一中,所述第二长度L2满足:
K5≤L2<K6;
其中,K5为第二目标像素点包括的全部像素点的总长度,所述第二目标 像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数;K6为所述第一预测块的左方包括的全部重构像素点的总长度。
在情况三中,所述第二目标像素点包括的像素点均为重构像素点。
这样,情况三中的L2可以保证第二目标像素点包括的像素点均为重构像素点,且可以选取R个像素。
情况四、所述第五像素点集合包括重构像素点和未重构像素点。
在情况四中,所述第二长度L2满足:
K7<L2≤K8;
其中,K7为所述第一预测块的左方包括的全部重构像素点的总长度,K8为所述第一预测块的高度的两倍或所述第一预测块的宽度和高度之和。
这样,情况四中的L2可以保证所述第五像素点集合包括未重构像素点。
在情况四中,第二目标像素点可能包括未重构像素点,也可能不包括未重构像素点,具体需根据第五像素点集合中重构像素点和未重构像素点的分布位置,以及从第五像素点集合中选取第一目标像素点的选取方式确定。其中,所述第二目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数。
需要说明的是,第五像素点集合中L2的限定,与第三像素点集合中L1的限定类似,具体可参考关于第三像素点集合的描述,此处不再赘述。
需要说明的是,本公开的一些实施例中介绍的多种可选的实施方式,在彼此不冲突的情况下可以相互结合实现,也可以单独实现,对此本公开的一些实施例不作限定。
为方便理解,示例说明如下:
实施方式一
步骤一、在预测当前色度预测块的像素值时,统计当前色度块对应的亮度块的上侧(包括右上)和左侧(包括左下)可使用的已经重构的亮度像素的数量。
步骤二、通过步骤一得到可使用的重构像素的数量后,选取上侧亮度重构像素和色度重构像素对应位置的4个像素点对。
步骤三、通过步骤一得到可使用的重构像素的数量后,选取左侧亮度重构像素和色度重构像素对应位置的4个像素点对。
步骤四、分别根据步骤二、三得到的4个像素点对,通过色度两步预测模式规定的方式,得到色度两步预测模式计算色度预测值所需的参数。
实施方式一可以在不影响编码时间的情况下显著提升了编码的性能,特别是色度分量,从而提升了编码效率,带来了编码增益。
实施方式二
步骤一、当获取色度预测块的预测值时,统计当前色度块对应的亮度块上侧(包括右上)已经重构的亮度像素的数量,记为numLenT;
步骤二、当获取色度预测块的预测值时,统计当前色度块对应的亮度块左侧(包括左下)已经重构的亮度像素的数量,记位numLenL;
步骤三、通过步骤一、步骤二的计算,分别选取当前色度块周围已经重构像素和对应的亮度块的周围已重构像素中的4个像素点对,在本实施方式中,选取的位置为可用像素的:0/4,1/4,2/4,3/4位置的像素。
步骤四、通过步骤三的计算得到的上侧的4个像素点对和左侧的4个像素点对,分别按照AVS3标准中规定的方式,计算得到参数α和β。根据计算得到的两组参数,分别计算对应的色度块的预测值,计算得到对应的编码代价。
步骤五、根据步骤四得到的两个编码代价、以及原始的TSCPM使用上侧和左侧像素的方式计算得到的编码代价,从中选择一个最小的编码代价。
表一是本实施方式在AVS3测试序列的通测结果,测试配置为All Intra,测试量化参数(Quantization Parameter,QP)为27,32,38,45。评价的标准为Bjontegaard提出的BD-rate计算方法。
表二:AVS3测试序列的通测结果
Figure PCTCN2020098544-appb-000003
Figure PCTCN2020098544-appb-000004
从表一可以看出,本公开可以提高编码效率,带来编码增益。
在本公开的一些实施例中,可选的,在推导色度两步预测模式的参数α和β信息时,需要选择4个像素点对,这4个像素点对均来自当前色度块的上侧(包括右上)的参考像素信息,以及色度块对应的亮度块对应位置的参考像素。
可选的,在推导色度两步预测模式的参数α和β信息时,需要选择4个像素点对,这4个像素点对均来自当前色度块的左侧(包括左下)的同一行的参考像素信息,以及色度块对应的亮度块对应位置的参考像素。
可选的,包括当前色度块和对应亮度块的左上,正上方以及右上。
可选的,使用的左侧的参考像素,包括当前色度块和对应亮度块的左上,正左方以及左下。
可选的,当4个像素点对使用的像素为当前色度块和对应亮度块的上侧的参考像素信息时,参考像素为当前块的上侧的相邻4行以内。
可选的,当4个像素点对使用的像素为当前色度块和对应亮度块的上侧的参考像素信息时,参考像素的位置不超过当前块的两倍宽度或者不超过当前块的宽加高之和的长度。
可选的,当4个像素点对使用的像素为当前色度块和对应亮度块的上侧的已经重构的像素信息时,使用的像素数量的取值范围为大于等于4,并且小于已经重构的像素数量的长度中的任意值。
可选的,当4个像素点对使用的像素包括当前色度块和对应亮度块的上侧的未重构的参考像素信息时,此时,未重构位置的像素信息使用AVS3标 准中规定的帧内参考像素的填充规则,使用的像素数量为大于已经重构的像素数量的长度,并且小于等于当前块的两倍宽度或者当前块的宽加高之和。
可选的,当4个像素点对使用的像素为当前色度块和对应亮度块的左侧的参考像素信息时,参考像素为当前块的左侧的相邻4列以内。
可选的,当4个像素点对使用的像素为当前色度块和对应亮度块的左侧的参考像素信息时,参考像素的位置不超过当前块的两倍高度或者不超过当前块的高加宽之和的长度。
可选的,当4个像素点对使用的像素为当前色度块和对应亮度块的左侧的已经重构的像素信息时,使用的像素数量的取值范围为大于等于4,并且小于已经重构的像素数量的长度中的任意值。
可选的,当4个像素点对使用的像素包括当前色度块和对应亮度块的左侧的未重构的参考像素信息时,此时,未重构位置的像素信息使用AVS3标准中规定的帧内参考像素的填充规则,使用的像素数量为大于已经重构的像素数量的长度,并且小于等于当前块的两倍宽度或者当前块的宽加高之和。
本公开的一些实施例主要提出了一种针对图像、视频的色度两步预测的优化方式,该技术应用于色度分量预测的编解码过程中。目的是在编/解码端根据尽可能多的当前编码块周围已编/解码的信息推断出色度两步预测中使用的参数α和β,从而在基本不增加编码时间的同时降低编码所需要的码率,带来编码增益。
本公开的一些实施例还提供了一种可以执行上述方法实施例的参数获取设备。由于参数获取设备解决问题的原理与本公开的一些实施例中参数获取方法相似,因此该参数获取设备的实施可以参见方法的实施,重复之处不再赘述。
参见图10,图10是本公开的一些实施例提供的像素点对选择方法的流程图之一。如图10所示,本公开的一些实施例提供的像素点对选择方法可以包括以下步骤:
步骤1001、确定第二预测块对应的目标重构像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块。
步骤1002、从所述目标重构像素点中选择R组重构像素点对,所述R组 重构像素点对包括所述色度预测块对应的R个重构像素点,以及所述亮度预测块对应的R个重构像素点,R为正整数;
其中,所述目标重构像素点包括:所述第二预测块的正上方和右上方的重构像素点;或,所述第二预测块的正左方和左下方的重构像素点。
具体实现时,包括以下两种实现方式:
实现方式一、所述目标重构像素点包括所述第二预测块的正上方和右上方的重构像素点,也就是说,所述目标重构像素点包括所述色度预测块的正上方和右上方的重构像素点,以及所述亮度预测块的正上方和右上方的重构像素点。
可见,在实现方式一中,所述色度预测块对应的R个重构像素点来自所述色度预测块的正上方和右上方的重构像素点,所述亮度预测块对应的R个重构像素点来自所述亮度预测块的正上方和右上方的重构像素点。这样,相比于相关技术中仅从色度预测块和亮度预测块的正上方选择像素点对,本实施例提供了一种新的像素点对的选择方式。
实现方式二、所述目标重构像素点包括所述第二预测块的正左方和左下方的重构像素点,也就是说,所述目标重构像素点包括所述色度预测块的的正左方和左下方的重构像素点,以及所述亮度预测块的的正左方和左下方的重构像素点。
可见,在实现方式二中,所述色度预测块对应的R个重构像素点来自所述色度预测块的正左方和左下方的重构像素点,所述亮度预测块对应的R个重构像素点来自所述亮度预测块的正左方和左下方的重构像素点。这样,相比于相关技术中仅从色度预测块和亮度预测块的正左方选择像素点对,本实施例提供了一种新的像素点对的选择方式。
在本实施例中,所述色度预测块对应的R个重构像素点可以是所述色度预测块的正左方和左下方的重构像素点中的任意R个重构像素点;所述亮度预测块对应的R个重构像素点可以是所述亮度预测块的正左方和左下方的重构像素点中的任意R个重构像素点。
在R为4的情况下,可选的:
所述色度预测块对应的R个重构像素点为:所述色度预测块的正上方和 右上方的重构像素点中,0/4、1/4、2/4和3/4位置的重构像素点;
所述亮度预测块对应的R个重构像素点为:所述亮度预测块的正上方和右上方的重构像素点中,0/4、1/4、2/4和3/4位置的重构像素点。
示例性的,假设所述色度预测块的正上方和右上方包括8个重构像素点,所述亮度预测块的正上方和右上方包括16个重构像素点。
则在该示例中,所述色度预测块对应的R个重构像素点为:所述色度预测块的正上方和右上方的重构像素点中的第1个、第3个、第5个和第7个重构像素点。
所述亮度预测块对应的R个重构像素点为:所述亮度预测块的正上方和右上方的重构像素点中的第1个、第5个、第9个、第13个重构像素点。
在本实施例中,在得到R组重构像素点对后,可以按照TSCPM规定的方式计算α和β,后续步骤不做改变。对于不同方式获取的R组重构像素点,其对应的色度值预测模式不同。
由上述内容可知,本实施例提供了两种新的像素点对的选择方法,因此,本实施例增加了两种色度值预测模式。对于上述实现方式一中获取的R组像素点对,其对应的色度预测模式可以记为TSCPM_T;对于上述实现方式二获取的R组像素点对,其对应的色度预测模式可以记为TSCPM_L。
当确定色度分量的预测模式后,在不考虑redundant的情况下,色度编码方式可如表三所示:
表三:色度编码方式
模式索引 模式名称 二值化
0 DM 1
1 DC 00001
2 Horizontal 000001
3 Vertical 0000001
4 Bilinear 0000000
5 TSCPM 01
6 TSCPM_L 001
7 TSCPM_T 0001
由表三可知,TSCPM_L对应的bin串相比于TSCPM对应的bin串,增加了一个bin;TSCPM_T对应的bin串相比于TSCPM对应的bin串,增加了两个bin。
在本实施例中,对于TSCPM_L和TSCPM_T,其binIdx等于0的位置可以采用和TSCPM binIdx等于0的位置相同的上下文,其binIdx等于1的位置可以采用和TSCPM binIdx等于1的位置相同的上下文。
对于新增的bin的编码方式,具体说明如下:
可选的,所述从所述目标重构像素点中选择R组重构像素点对之后,所述方法还包括:
采用目标编码方式对第一比特位bin进行编码,所述第一bin为第一bin串相对于第二bin串增加的bin,所述第一bin串为对所述目标重构像素点对应的预测模式进行二值化产生的bin串,所述第二bin串为对色度两步预测模式TSCPM进行二值化产生的bin串;所述目标编码方式为:上下文编码方式;或,旁路Bypass编码方式。
进一步地,在所述目标编码方式为上下文编码方式的情况下,所述目标编码方式对应的上下文模型为:1号上下文模型;或,新建立的上下文模型。
可见,在本实施例中,对于TSCPM T:
第一方式中,新增的bin(即binIdx等于3的bin)可以使用1号上下文编码;
第二方式中,新增的bin(即binIdx等于3的bin)可以使用Bypass编码。
对于TSCPM_L:
第一方式中,新增的bin(即binIdx等于3的bin和binIdx等于4的bin)可以使用1号上下文编码;
第二方式中,新增的bin(即binIdx等于3的bin和binIdx等于4的bin)可以使用Bypass编码。
在通过第一方式对新增的bin进行编码的场景中,其测试性能如表四所示:
表四:测试性能
Figure PCTCN2020098544-appb-000005
Figure PCTCN2020098544-appb-000006
由上可知,新增的像素对选择方式对应的模式充分利用了第二预测块周边可得像素的信息,显著提升了色度分量的增益的同时,亮度也有微小的增益。
参见图11,图11是本公开的一些实施例提供的像素点对选择方法的流程图之二。如图11所示,本公开的一些实施例提供的像素点对选择方法可以包括以下步骤:
步骤1101、确定第二预测块对应的第三目标像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块。
步骤1102、从所述第三目标像素点中选择R组像素点对,所述R组像素点对包括所述色度预测块对应的R个像素点,以及所述亮度预测块对应的R个像素点,R为正整数。
其中,所述第三目标像素点包括以下任意一项:
在所述第二预测块的上方和左方均包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的正上方的重构像素点;或,所述第二预测块的正左方的重构像素点;
在所述第二预测块的上方包括重构像素点,所述第二预测块的左方未包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的左方的未重构像素点;
在所述第二预测块的上方未包括重构像素点,所述第二预测块的左方包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的上方 的未重构像素点。
由上述内容可知,在所述第二预测块的上方和左方均包括重构像素点的情况下,R组像素点对来自:
所述第二预测块的正上方的重构像素点;或,
所述第二预测块的正左方的重构像素点。
可见,相比于相关技术中从色度预测块和亮度预测块的正上方和正左方选择像素点对,本实施例仅从色度预测块和亮度预测块的正上方或正左方选择像素点对,提供了一种新的像素点对的选择方式。
在所述第二预测块的上方包括重构像素点,所述第二预测块的左方未包括重构像素点的情况下,R组像素点对来自:所述第二预测块的左方的未重构像素点。
可见,相比于相关技术中从色度预测块和亮度预测块的正上方选择像素点对,本实施例从色度预测块和亮度预测块的左方选择像素点对,提供了一种新的像素点对的选择方式。
在所述第二预测块的上方未包括重构像素点,所述第二预测块的左方包括重构像素点的情况下,R组像素点对来自:所述第二预测块的上方的未重构像素点。
可见,相比于相关技术中从色度预测块和亮度预测块的正左方选择像素点对,本实施例从色度预测块和亮度预测块的上方选择像素点对,提供了一种新的像素点对的选择方式。
可选的,所述从所述第三目标像素点中选择R组像素点对之后,所述方法还包括:
采用上下文编码方式对第二bin进行编码,所述第二bin为第三bin串相对于第二bin串增加的bin,所述第三bin串为对所述第三目标像素点对应的预测模式进行二值化产生的bin串,所述第二bin串为对色度两步预测模式TSCPM进行二值化产生的bin串。
进一步地,所述上下文编码方式对应的上下文模型为:1号上下文模型;或,新建立的上下文模型。
可见,在本实施例中,对于新增的bin,可以使用1号上下文编码。
参见图12,图12是本公开的一些实施例提供的参数获取设备的结构图之一。如图12所示,参数获取设备1200可以包括:
第一确定模块1201,用于获取色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,所述色度预测块与所述亮度预测块对应,N为大于1的整数;
获取模块1202,用于根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取N组参数,所述N组参数用于预测所述色度预测块的色度值。
可选的,所述参数获取设备1200还包括:
第一选择模块,用于所述第二获取模块根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取N组参数之后,从所述N组参数中选择目标参数组,所述目标参数组为所述N组参数中对应最小编码代价的一组参数;
预测模块,用于利用所述目标参数组,预测所述色度预测块的色度值。
可选的,第一预测块的上方和左方均包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第一像素点集合,所述第一像素点集合包括所述第一预测块的正上方的重构像素点和所述第一预测块的正左方的重构像素点;
第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方。
可选的,第一预测块的上方包括重构像素点,所述第一预测块的左方未包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
第六像素点集合,所述第六像素点集合包括所述第一预测块的左方的未重构像素点。
可选的,第一预测块的上方未包括重构像素点,所述第一预测块的左方包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方;
第七像素点集合,所述第七像素点集合包括所述第一预测块的上方的未重构像素点。
可选的,所述第三像素点集合包括以下任意一项:
所述第一预测块的第一左上方的重构像素点;
所述第一预测块的右上方的重构像素点;
所述第一预测块的第一左上方和右上方的重构像素点;
所述第一预测块的第一左上方和正上方的重构像素点;
所述第一预测块的正上方和右上方的重构像素点;
所述第一预测块的第一左上方、正上方和右上方的重构像素点。
可选的,所述第五像素点集合包括以下任意一项:
所述第一预测块的第二左上方的重构像素点;
所述第一预测块的左下方的重构像素点;
所述第一预测块的第二左上方和左下方的重构像素点;
所述第一预测块的第二左上方和正左方的重构像素点;
所述第一预测块的正左方和左下方的重构像素点;
所述第一预测块的第二左上方、正左方和左下方的重构像素点。
可选的,第一预测块对应的N个像素点集合中包括所述第一预测块的上方的第一像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一像素点为:所述第一预测块的上方的P行像素点中与所述第一预测块距离最近的I行像素点中的像素点,P为大于I的整数,I为小于或等于4的正整数。
可选的,第一预测块对应的N个像素点集合中包括所述第一预测块的左方的第二像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第二像素点为:所述第一预测块的左方的Q列像素点中与所述第一预测块距离最近的J列像素点中的像素点,Q为大于J的整数,J为小于或等于4的正整数。
可选的,所述第三像素点集合的全部像素点对应的第一长度满足以下任意一项:
所述第一长度不超过所述第一预测块的宽度的两倍;
所述第一长度不超过所述第一预测块的宽度和高度之和。
可选的,所述第一长度L1满足:K1≤L1<K2;
其中,K1为第一目标像素点包括的全部像素点的总长度,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数;K2为所述第一预测块的上方包括的全部重构像素点的总长度。
可选的,第一目标像素点包括的像素点均为重构像素点。
可选的,所述第一长度L1满足:K3<L1≤K4;
K3为所述第一预测块的上方包括的全部重构像素点的总长度,K4为所述第一预测块的宽度的两倍或所述第一预测块的宽度和高度之和。
可选的,第一目标像素点包括未重构像素点;
其中,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数。
可选的,所述第五像素点集合的全部像素点对应的第二长度满足以下任意一项:
所述第二长度不超过所述第一预测块的高度的两倍;
所述第二长度不超过所述第一预测块的宽度和高度之和。
可选的,所述第二长度L2满足:K5≤L2<K6;
其中,K5为第二目标像素点包括的全部像素点的总长度,所述第二目标像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数;K6为所述第一预测块的左方包括的全部重构像素点的总长度。
可选的,所述第二目标像素点包括的像素点均为重构像素点。
可选的,所述第二长度L2满足:K7<L2≤K8;
其中,K7为所述第一预测块的左方包括的全部重构像素点的总长度,K8为所述第一预测块的高度的两倍或所述第一预测块的宽度和高度之和。
可选的,第二目标像素点包括未重构像素点;
其中,所述第二目标像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数。
本公开的一些实施例提供的参数获取设备1200,可以执行上述参数获取方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
在本公开的一些实施例中,通过色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,N为大于1的整数,可以获取N组参数,所述N组参数用于预测所述色度预测块的色度值。这样,相比于相关技术中只能获取一组参数,本公开可以增加参数获取的组数,从而可以提高获取到的参数的准确性。
参见图13,图13是本公开的一些实施例提供的像素点对选择设备的结构图之一。如图13所示,像素点对选择设备1300包括:
第二确定模块1301,用于确定第二预测块对应的目标重构像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
第二选择模块1302,用于从所述目标重构像素点中选择R组重构像素点对,所述R组重构像素点对包括所述色度预测块对应的R个重构像素点,以及所述亮度预测块对应的R个重构像素点,R为正整数;
其中,所述目标重构像素点包括:所述第二预测块的正上方和右上方的重构像素点;或,所述第二预测块的正左方和左下方的重构像素点。
可选的,R为4;
所述色度预测块对应的R个重构像素点为:所述色度预测块的正上方和右上方的重构像素点中,0/4、1/4、2/4和3/4位置的重构像素点;
所述亮度预测块对应的R个重构像素点为:所述亮度预测块的正上方和右上方的重构像素点中,0/4、1/4、2/4和3/4位置的重构像素点。
可选的,像素点对选择设备1300还包括:
第一编码模块,用于采用目标编码方式对第一比特位bin进行编码,所述第一bin为第一bin串相对于第二bin串增加的bin,所述第一bin串为对所述目标重构像素点对应的预测模式进行二值化产生的bin串,所述第二bin串为对色度两步预测模式TSCPM进行二值化产生的bin串;
所述目标编码方式为:上下文编码方式;或,旁路Bypass编码方式。
可选的,在所述目标编码方式为上下文编码方式的情况下,所述目标编码方式对应的上下文模型为:1号上下文模型;或,新建立的上下文模型。
本公开的一些实施例提供的像素点对选择设备1300,可以执行上述图10对应的像素对选择方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
在本公开的一些实施例中,参见图14,图14是本公开的一些实施例提供的像素点对选择设备的结构图之二。如图14所示,像素点对选择设备1400包括:
第三确定模块1401,用于确定第二预测块对应的第三目标像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
第三选择模块1402,用于从所述第三目标像素点中选择R组像素点对,所述R组像素点对包括所述色度预测块对应的R个像素点,以及所述亮度预测块对应的R个像素点,R为正整数;
其中,所述第三目标像素点包括以下任意一项:
在所述第二预测块的上方和左方均包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的正上方的重构像素点;或,所述第二预测块的正左方的重构像素点;
在所述第二预测块的上方包括重构像素点,所述第二预测块的左方未包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的左方的未重构像素点;
在所述第二预测块的上方未包括重构像素点,所述第二预测块的左方包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的上方的未重构像素点。
可选的,像素点对选择设备1400还包括:
第二编码模块,用于采用上下文编码方式对第二bin进行编码,所述第二bin为第三bin串相对于第二bin串增加的bin,所述第三bin串为对所述第三目标像素点对应的预测模式进行二值化产生的bin串,所述第二bin串为对色度两步预测模式TSCPM进行二值化产生的bin串。
可选的,所述上下文编码方式对应的上下文模型为:1号上下文模型;或,新建立的上下文模型。
本公开的一些实施例提供的像素点对选择设备1400,可以执行上述图11对应的像素对选择方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图15,图15是本公开的一些实施例提供的参数获取设备的结构图之二。如图15所示,参数获取设备1500可以包括:
处理器1501,用于读取存储器1502中的程序,执行下列过程:
确定色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,所述色度预测块与所述亮度预测块对应,N为大于1的整数;
根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取N组参数,所述N组参数用于预测所述色度预测块的色度值。
收发机1503,用于在处理1501的控制下接收和发送数据。
其中,在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1501代表的一个或多个处理器和存储器1502代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1503可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1501负责管理总线架构和通常的处理,存储器1502可以存储处理器1501在执行操作时所使用的数据。
处理器1501负责管理总线架构和通常的处理,存储器1502可以存储处理器1501在执行操作时所使用的数据。
可选的,处理器1501还用于读取所述程序,执行如下步骤:
从所述N组参数中选择目标参数组,所述目标参数组为所述N组参数中对应最小编码代价的一组参数;
利用所述目标参数组,预测所述色度预测块的色度值。
可选的,第一预测块的上方和左方均包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第一像素点集合,所述第一像素点集合包括所述第一预测块的正上方的重构像素点和所述第一预测块的正左方的重构像素点;
第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方。
可选的,第一预测块的上方包括重构像素点,所述第一预测块的左方未包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
第六像素点集合,所述第六像素点集合包括所述第一预测块的左方的未重构像素点。
可选的,第一预测块的上方未包括重构像素点,所述第一预测块的左方包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方;
第七像素点集合,所述第七像素点集合包括所述第一预测块的上方的未重构像素点。
可选的,所述第三像素点集合包括以下任意一项:
所述第一预测块的第一左上方的重构像素点;
所述第一预测块的右上方的重构像素点;
所述第一预测块的第一左上方和右上方的重构像素点;
所述第一预测块的第一左上方和正上方的重构像素点;
所述第一预测块的正上方和右上方的重构像素点;
所述第一预测块的第一左上方、正上方和右上方的重构像素点。
可选的,所述第五像素点集合包括以下任意一项:
所述第一预测块的第二左上方的重构像素点;
所述第一预测块的左下方的重构像素点;
所述第一预测块的第二左上方和左下方的重构像素点;
所述第一预测块的第二左上方和正左方的重构像素点;
所述第一预测块的正左方和左下方的重构像素点;
所述第一预测块的第二左上方、正左方和左下方的重构像素点。
可选的,第一预测块对应的N个像素点集合中包括所述第一预测块的上方的第一像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一像素点为:所述第一预测块的上方的P行像素点中与所述第一预测块距离最近的I行像素点中的像素点,P为大于I的整数,I为小于或等于4的正整数。
可选的,第一预测块对应的N个像素点集合中包括所述第一预测块的左方的第二像素点所述第一预测块为所述色度预测块或所述亮度预测块;
所述第二像素点为:所述第一预测块的左方的Q列像素点中与所述第一预测块距离最近的J列像素点中的像素点,Q为大于J的整数,J为小于或等于4的正整数。
可选的,所述第三像素点集合的全部像素点对应的第一长度满足以下任意一项:
所述第一长度不超过所述第一预测块的宽度的两倍;
所述第一长度不超过所述第一预测块的宽度和高度之和。
可选的,所述第一长度L1满足:K1≤L1<K2;
其中,K1为第一目标像素点包括的全部像素点的总长度,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数;K2为所述第一预测块的上方包括的全部重构像素点的总长度。
可选的,第一目标像素点包括的像素点均为重构像素点。
可选的,所述第一长度L1满足:K3<L1≤K4;
K3为所述第一预测块的上方包括的全部重构像素点的总长度,K4为所述第一预测块的宽度的两倍或所述第一预测块的宽度和高度之和。
可选的,第一目标像素点包括未重构像素点;
其中,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数。
可选的,所述第五像素点集合的全部像素点对应的第二长度满足以下任意一项:
所述第二长度不超过所述第一预测块的高度的两倍;
所述第二长度不超过所述第一预测块的宽度和高度之和。
可选的,所述第二长度L2满足:K5≤L2<K6;
其中,K5为第二目标像素点包括的全部像素点的总长度,所述第二目标像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数;K6为所述第一预测块的左方包括的全部重构像素点的总长度。
可选的,所述第二目标像素点包括的像素点均为重构像素点。
可选的,所述第二长度L2满足:K7<L2≤K8;
其中,K7为所述第一预测块的左方包括的全部重构像素点的总长度,K8为所述第一预测块的高度的两倍或所述第一预测块的宽度和高度之和。
可选的,第二目标像素点包括未重构像素点;
其中,所述第二目标像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数。
本公开的一些实施例提供的参数获取设备,可以执行上述参数获取方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图16,图16是本公开的一些实施例提供的像素对选择设备的结构图之三。如图16所示,像素对选择设备1600可以包括:
处理器1601,用于读取存储器1602中的程序,执行下列过程:
确定第二预测块对应的目标重构像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
从所述目标重构像素点中选择R组重构像素点对,所述R组重构像素点对包括所述色度预测块对应的R个重构像素点,以及所述亮度预测块对应的R个重构像素点,R为正整数;
其中,所述目标重构像素点包括:所述第二预测块的正上方和右上方的 重构像素点;或,所述第二预测块的正左方和左下方的重构像素点。
收发机1603,用于在处理1601的控制下接收和发送数据。
其中,在图16中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1601代表的一个或多个处理器和存储器1602代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1603可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1601负责管理总线架构和通常的处理,存储器1602可以存储处理器1601在执行操作时所使用的数据。
处理器1601负责管理总线架构和通常的处理,存储器1602可以存储处理器1601在执行操作时所使用的数据。
可选的,R为4;
所述色度预测块对应的R个重构像素点为:所述色度预测块的正上方和右上方的重构像素点中,0/4、1/4、2/4和3/4位置的重构像素点;
所述亮度预测块对应的R个重构像素点为:所述亮度预测块的正上方和右上方的重构像素点中,0/4、1/4、2/4和3/4位置的重构像素点。
可选的,处理器1601还用于读取所述程序,执行如下步骤:
采用目标编码方式对第一比特位bin进行编码,所述第一bin为第一bin串相对于第二bin串增加的bin,所述第一bin串为对所述目标重构像素点对应的预测模式进行二值化产生的bin串,所述第二bin串为对色度两步预测模式TSCPM进行二值化产生的bin串;
所述目标编码方式为:上下文编码方式;或,旁路Bypass编码方式。
可选的,在所述目标编码方式为上下文编码方式的情况下,所述目标编码方式对应的上下文模型为:1号上下文模型;或,新建立的上下文模型。
本公开的一些实施例提供的像素对选择设备,可以执行上述图10对应的像素对选择方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图17,图17是本公开的一些实施例提供的像素对选择设备的结构 图之四。如图17所示,像素对选择设备1700可以包括:
处理器1701,用于读取存储器1702中的程序,执行下列过程:
确定第二预测块对应的第三目标像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
从所述第三目标像素点中选择R组像素点对,所述R组像素点对包括所述色度预测块对应的R个像素点,以及所述亮度预测块对应的R个像素点,R为正整数;
其中,所述第三目标像素点包括以下任意一项:
在所述第二预测块的上方和左方均包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的正上方的重构像素点;或,所述第二预测块的正左方的重构像素点;
在所述第二预测块的上方包括重构像素点,所述第二预测块的左方未包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的左方的未重构像素点;
在所述第二预测块的上方未包括重构像素点,所述第二预测块的左方包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的上方的未重构像素点。
收发机1703,用于在处理1701的控制下接收和发送数据。
其中,在图17中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1701代表的一个或多个处理器和存储器1702代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1703可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1701负责管理总线架构和通常的处理,存储器1702可以存储处理器1701在执行操作时所使用的数据。
处理器1701负责管理总线架构和通常的处理,存储器1702可以存储处理器1701在执行操作时所使用的数据。
可选的,处理器1701还用于读取所述程序,执行如下步骤:
采用上下文编码方式对第二bin进行编码,所述第二bin为第三bin串相对于第二bin串增加的bin,所述第三bin串为对所述第三目标像素点对应的预测模式进行二值化产生的bin串,所述第二bin串为对色度两步预测模式TSCPM进行二值化产生的bin串。
可选的,所述上下文编码方式对应的上下文模型为:1号上下文模型;或,新建立的上下文模型。
本公开的一些实施例提供的像素对选择设备,可以执行上述图11对应的像素对选择方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
此外,本公开的一些实施例的计算机可读存储介质,用于存储计算机程序。
情况一中,所述计算机程序可被处理器执行实现以下步骤:
获取色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,所述色度预测块与所述亮度预测块对应,N为大于1的整数;
根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,所述N组参数用于预测所述色度预测块的色度值。
可选的,所述根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取的N组参数之后,所述计算机程序还可被处理器执行实现以下步骤:
从所述N组参数中选择目标参数组,所述目标参数组为所述N组参数中对应最小编码代价的一组参数;
利用所述目标参数组,预测所述色度预测块的色度值。
可选的,第一预测块的上方和左方均包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第一像素点集合,所述第一像素点集合包括所述第一预测块的正上方的重构像素点和所述第一预测块的正左方的重构像素点;
第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方。
可选的,第一预测块的上方包括重构像素点,所述第一预测块的左方未包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
第六像素点集合,所述第六像素点集合包括所述第一预测块的左方的未重构像素点。
可选的,第一预测块的上方未包括重构像素点,所述第一预测块的左方包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方;
第七像素点集合,所述第七像素点集合包括所述第一预测块的上方的未重构像素点。
可选的,所述第三像素点集合包括以下任意一项:
所述第一预测块的第一左上方的重构像素点;
所述第一预测块的右上方的重构像素点;
所述第一预测块的第一左上方和右上方的重构像素点;
所述第一预测块的第一左上方和正上方的重构像素点;
所述第一预测块的正上方和右上方的重构像素点;
所述第一预测块的第一左上方、正上方和右上方的重构像素点。
可选的,所述第五像素点集合包括以下任意一项:
所述第一预测块的第二左上方的重构像素点;
所述第一预测块的左下方的重构像素点;
所述第一预测块的第二左上方和左下方的重构像素点;
所述第一预测块的第二左上方和正左方的重构像素点;
所述第一预测块的正左方和左下方的重构像素点;
所述第一预测块的第二左上方、正左方和左下方的重构像素点。
可选的,第一预测块对应的N个像素点集合中包括所述第一预测块的上方的第一像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第一像素点为:所述第一预测块的上方的P行像素点中与所述第一预测块距离最近的I行像素点中的像素点,P为大于I的整数,I为小于或等于4的正整数。
可选的,第一预测块对应的N个像素点集合中包括所述第一预测块的左方的第二像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
所述第二像素点为:所述第一预测块的左方的Q列像素点中与所述第一预测块距离最近的J列像素点中的像素点,Q为大于J的整数,J为小于或等于4的正整数。
可选的,所述第三像素点集合的全部像素点对应的第一长度满足以下任意一项:
所述第一长度不超过所述第一预测块的宽度的两倍;
所述第一长度不超过所述第一预测块的宽度和高度之和。
可选的,所述第一长度L1满足:K1≤L1<K2;
其中,K1为第一目标像素点包括的全部像素点的总长度,所述第一目标 像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数;K2为所述第一预测块的上方包括的全部重构像素点的总长度。
可选的,第一目标像素点包括的像素点均为重构像素点。
可选的,所述第一长度L1满足:K3<L1≤K4;
K3为所述第一预测块的上方包括的全部重构像素点的总长度,K4为所述第一预测块的宽度的两倍或所述第一预测块的宽度和高度之和。
可选的,第一目标像素点包括未重构像素点;
其中,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数。
可选的,所述第五像素点集合的全部像素点对应的第二长度满足以下任意一项:
所述第二长度不超过所述第一预测块的高度的两倍;
所述第二长度不超过所述第一预测块的宽度和高度之和。
可选的,所述第二长度L2满足:K5≤L2<K6;
其中,K5为第二目标像素点包括的全部像素点的总长度,所述第二目标像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数;K6为所述第一预测块的左方包括的全部重构像素点的总长度。
可选的,所述第二目标像素点包括的像素点均为重构像素点。
可选的,所述第二长度L2满足:K7<L2≤K8;
其中,K7为所述第一预测块的左方包括的全部重构像素点的总长度,K8为所述第一预测块的高度的两倍或所述第一预测块的宽度和高度之和。
可选的,第二目标像素点包括未重构像素点;
其中,所述第二目标像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数。
在情况二中,所述计算机程序可被处理器执行实现以下步骤:
获取第二预测块对应的目标重构像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
从所述目标重构像素点中选择R组重构像素点对,所述R组重构像素点对包括所述色度预测块对应的R个重构像素点,以及所述亮度预测块对应的R个重构像素点,R为正整数;
其中,所述目标重构像素点包括:所述第二预测块的正上方和右上方的重构像素点;或,所述第二预测块的正左方和左下方的重构像素点。
可选的,R为4;
所述色度预测块对应的R个重构像素点为:所述色度预测块的正上方和右上方的重构像素点中,0/4、1/4、2/4和3/4位置的重构像素点;
所述亮度预测块对应的R个重构像素点为:所述亮度预测块的正上方和右上方的重构像素点中,0/4、1/4、2/4和3/4位置的重构像素点。
可选的,所述从所述目标重构像素点中选择R组重构像素点对之后,所述方法还包括:
采用目标编码方式对第一比特位bin进行编码,所述第一bin为第一bin串相对于第二bin串增加的bin,所述第一bin串为对所述目标重构像素点对应的预测模式进行二值化产生的bin串,所述第二bin串为对色度两步预测模式TSCPM进行二值化产生的bin串;
所述目标编码方式为:上下文编码方式;或,旁路Bypass编码方式。
可选的,在所述目标编码方式为上下文编码方式的情况下,所述目标编码方式对应的上下文模型为:1号上下文模型;或,新建立的上下文模型。
在情况三中,所述计算机程序可被处理器执行实现以下步骤:
获取第二预测块对应的第三目标像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
从所述第三目标像素点中选择R组像素点对,所述R组像素点对包括所述色度预测块对应的R个像素点,以及所述亮度预测块对应的R个像素点,R为正整数;
其中,所述第三目标像素点包括以下任意一项:
在所述第二预测块的上方和左方均包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的正上方的重构像素点;或,所述第二预测块的正左方的重构像素点;
在所述第二预测块的上方包括重构像素点,所述第二预测块的左方未包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的左方的未重构像素点;
在所述第二预测块的上方未包括重构像素点,所述第二预测块的左方包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的上方的未重构像素点。
可选的,所述从所述第三目标像素点中选择R组像素点对之后,所述方法还包括:
采用上下文编码方式对第二bin进行编码,所述第二bin为第三bin串相对于第二bin串增加的bin,所述第三bin串为对所述第三目标像素点对应的预测模式进行二值化产生的bin串,所述第二bin串为对色度两步预测模式TSCPM进行二值化产生的bin串。
可选的,所述上下文编码方式对应的上下文模型为:1号上下文模型;或,新建立的上下文模型。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、 数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开的一些实施例所述功能的模块(例如过程、函数等)来实现本公开的一些实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述参数获取方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (32)

  1. 一种参数获取方法,包括:
    确定色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,所述色度预测块与所述亮度预测块对应,N为大于1的整数;
    根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取N组参数,所述N组参数用于预测所述色度预测块的色度值。
  2. 根据权利要求1所述的方法,其中,所述根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取与预测模型对应的N组参数之后,所述方法还包括:
    从所述N组参数中选择目标参数组,所述目标参数组为所述N组参数中对应最小编码代价的一组参数;
    利用所述目标参数组,预测所述色度预测块的色度值。
  3. 根据权利要求1所述的方法,其中,第一预测块的上方和左方均包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
    所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
    第一像素点集合,所述第一像素点集合包括所述第一预测块的正上方的重构像素点和所述第一预测块的正左方的重构像素点;
    第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
    第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
    第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
    第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方。
  4. 根据权利要求1所述的方法,其中,第一预测块的上方包括重构像素点,所述第一预测块的左方未包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
    所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
    第二像素点集合,所述第二像素点集合仅包括所述第一预测块的正上方的重构像素点;
    第三像素点集合,所述第三像素点集合包括所述第一预测块的第一左上方或右上方的重构像素点,所述第一左上方为所述第一预测块的正上方的左方;
    第六像素点集合,所述第六像素点集合包括所述第一预测块的左方的未重构像素点。
  5. 根据权利要求1所述的方法,其中,第一预测块的上方未包括重构像素点,所述第一预测块的左方包括重构像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
    所述第一预测块对应的N个像素点集合包括以下至少两个像素点集合:
    第四像素点集合,所述第四像素点集合仅包括所述第一预测块的正左方的重构像素点;
    第五像素点集合,所述第五像素点集合包括所述第一预测块的第二左上方或左下方的重构像素点,所述第二左上方为所述第一预测块的正左方的上方;
    第七像素点集合,所述第七像素点集合包括所述第一预测块的上方的未重构像素点。
  6. 根据权利要求3或4所述的方法,其中,所述第三像素点集合包括以下任意一项:
    所述第一预测块的第一左上方的重构像素点;
    所述第一预测块的右上方的重构像素点;
    所述第一预测块的第一左上方和右上方的重构像素点;
    所述第一预测块的第一左上方和正上方的重构像素点;
    所述第一预测块的正上方和右上方的重构像素点;
    所述第一预测块的第一左上方、正上方和右上方的重构像素点。
  7. 根据权利要求3或5所述的方法,其中,所述第五像素点集合包括以下任意一项:
    所述第一预测块的第二左上方的重构像素点;
    所述第一预测块的左下方的重构像素点;
    所述第一预测块的第二左上方和左下方的重构像素点;
    所述第一预测块的第二左上方和正左方的重构像素点;
    所述第一预测块的正左方和左下方的重构像素点;
    所述第一预测块的第二左上方、正左方和左下方的重构像素点。
  8. 根据权利要求1所述的方法,其中,第一预测块对应的N个像素点集合中包括所述第一预测块的上方的第一像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
    所述第一像素点为:所述第一预测块的上方的P行像素点中与所述第一预测块距离最近的I行像素点中的像素点,P为大于I的整数,I为小于或等于4的正整数。
  9. 根据权利要求1所述的方法,其中,第一预测块对应的N个像素点集合中包括所述第一预测块的左方的第二像素点,所述第一预测块为所述色度预测块或所述亮度预测块;
    所述第二像素点为:所述第一预测块的左方的Q列像素点中与所述第一预测块距离最近的J列像素点中的像素点,Q为大于J的整数,J为小于或等于4的正整数。
  10. 根据权利要求3或4所述的方法,其中,所述第三像素点集合的全部像素点对应的第一长度满足以下任意一项:
    所述第一长度不超过所述第一预测块的宽度的两倍;
    所述第一长度不超过所述第一预测块的宽度和高度之和。
  11. 根据权利要求10所述的方法,其中,所述第一长度L1满足:K1≤L1<K2;
    其中,K1为第一目标像素点包括的全部像素点的总长度,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点 用于获取所述N组参数中的一组参数,R为正整数;K2为所述第一预测块的上方包括的全部重构像素点的总长度。
  12. 根据权利要求11所述的方法,其中,第一目标像素点包括的像素点均为重构像素点。
  13. 根据权利要求10所述的方法,其中,所述第一长度L1满足:K3<L1≤K4;
    K3为所述第一预测块的上方包括的全部重构像素点的总长度,K4为所述第一预测块的宽度的两倍或所述第一预测块的宽度和高度之和。
  14. 根据权利要求13所述的方法,其中,第一目标像素点包括未重构像素点;
    其中,所述第一目标像素点为从所述第三像素点集合中选取的R个像素点,所述第一目标像素点用于获取所述N组参数中的一组参数,R为正整数。
  15. 根据权利要求3或5所述的方法,其中,所述第五像素点集合的全部像素点对应的第二长度满足以下任意一项:
    所述第二长度不超过所述第一预测块的高度的两倍;
    所述第二长度不超过所述第一预测块的宽度和高度之和。
  16. 根据权利要求15所述的方法,其中,所述第二长度L2满足:K5≤L2<K6;
    其中,K5为第二目标像素点包括的全部像素点的总长度,所述第二目标像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数;K6为所述第一预测块的左方包括的全部重构像素点的总长度。
  17. 根据权利要求16所述的方法,其中,所述第二目标像素点包括的像素点均为重构像素点。
  18. 根据权利要求15所述的方法,其中,所述第二长度L2满足:K7<L2≤K8;
    其中,K7为所述第一预测块的左方包括的全部重构像素点的总长度,K8为所述第一预测块的高度的两倍或所述第一预测块的宽度和高度之和。
  19. 根据权利要求18所述的方法,其中,第二目标像素点包括未重构像 素点;
    其中,所述第二目标像素点为从所述第五像素点集合中选取的R个像素点,所述第二目标像素点用于获取所述N组参数中的一组参数,R为正整数。
  20. 一种像素点对选择方法,包括:
    确定第二预测块对应的目标重构像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
    从所述目标重构像素点中选择R组重构像素点对,所述R组重构像素点对包括所述色度预测块对应的R个重构像素点,以及所述亮度预测块对应的R个重构像素点,R为正整数;
    其中,所述目标重构像素点包括:所述第二预测块的正上方和右上方的重构像素点;或,所述第二预测块的正左方和左下方的重构像素点。
  21. 根据权利要求20所述的方法,其中,R为4;
    所述色度预测块对应的R个重构像素点为:所述色度预测块的正上方和右上方的重构像素点中,0/4、1/4、2/4和3/4位置的重构像素点;
    所述亮度预测块对应的R个重构像素点为:所述亮度预测块的正上方和右上方的重构像素点中,0/4、1/4、2/4和3/4位置的重构像素点。
  22. 根据权利要求20所述的方法,其中,所述从所述目标重构像素点中选择R组重构像素点对之后,所述方法还包括:
    采用目标编码方式对第一比特位bin进行编码,所述第一bin为第一bin串相对于第二bin串增加的bin,所述第一bin串为对所述目标重构像素点对应的预测模式进行二值化产生的bin串,所述第二bin串为对色度两步预测模式TSCPM进行二值化产生的bin串;
    所述目标编码方式为:上下文编码方式;或,旁路Bypass编码方式。
  23. 根据权利要求22所述的方法,其中,在所述目标编码方式为上下文编码方式的情况下,所述目标编码方式对应的上下文模型为:1号上下文模型;或,新建立的上下文模型。
  24. 一种像素点对选择方法,包括:
    确定第二预测块对应的第三目标像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
    从所述第三目标像素点中选择R组像素点对,所述R组像素点对包括所述色度预测块对应的R个像素点,以及所述亮度预测块对应的R个像素点,R为正整数;
    其中,所述第三目标像素点包括以下任意一项:
    在所述第二预测块的上方和左方均包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的正上方的重构像素点;或,所述第二预测块的正左方的重构像素点;
    在所述第二预测块的上方包括重构像素点,所述第二预测块的左方未包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的左方的未重构像素点;
    在所述第二预测块的上方未包括重构像素点,所述第二预测块的左方包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的上方的未重构像素点。
  25. 根据权利要求24所述的方法,其中,所述从所述第三目标像素点中选择R组像素点对之后,所述方法还包括:
    采用上下文编码方式对第二bin进行编码,所述第二bin为第三bin串相对于第二bin串增加的bin,所述第三bin串为对所述第三目标像素点对应的预测模式进行二值化产生的bin串,所述第二bin串为对色度两步预测模式TSCPM进行二值化产生的bin串。
  26. 根据权利要求25所述的方法,其中,所述上下文编码方式对应的上下文模型为:1号上下文模型;或,新建立的上下文模型。
  27. 一种参数获取设备,包括:
    第一确定模块,用于确定色度预测块对应的N个像素点集合,以及亮度预测块对应的N个像素点集合,所述色度预测块与所述亮度预测块对应,N为大于1的整数;
    获取模块,用于根据所述色度预测块对应的N个像素点集合,以及所述亮度预测块对应的N个像素点集合,获取与预测模型对应的N组参数,所述N组参数用于预测所述色度预测块的色度值。
  28. 一种像素点对选择设备,包括:
    第二确定模块,用于确定第二预测块对应的目标重构像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
    第二选择模块,用于从所述目标重构像素点中选择R组重构像素点对,所述R组重构像素点对包括所述色度预测块对应的R个重构像素点,以及所述亮度预测块对应的R个重构像素点,R为正整数;
    其中,所述目标重构像素点包括:所述第二预测块的正上方和右上方的重构像素点;或,所述第二预测块的正左方和左下方的重构像素点。
  29. 一种像素点对选择设备,包括:
    第三确定模块,用于确定第二预测块对应的第三目标像素点,所述第二预测块包括色度预测块,以及与所述色度预测块对应的亮度预测块;
    第三选择模块,用于从所述第三目标像素点中选择R组像素点对,所述R组像素点对包括所述色度预测块对应的R个像素点,以及所述亮度预测块对应的R个像素点,R为正整数;
    其中,所述第三目标像素点包括以下任意一项:
    在所述第二预测块的上方和左方均包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的正上方的重构像素点;或,所述第二预测块的正左方的重构像素点;
    在所述第二预测块的上方包括重构像素点,所述第二预测块的左方未包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的左方的未重构像素点;
    在所述第二预测块的上方未包括重构像素点,所述第二预测块的左方包括重构像素点的情况下,所述第三目标像素点包括:所述第二预测块的上方的未重构像素点。
  30. 一种参数获取设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,所述处理器,用于读取存储器中的程序实现如权利要求1至19中任一项所述的参数获取方法中的步骤。
  31. 一种像素点对选择设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,所述处理器,用于读取存储器中的程序实现如权利要求20至23中任一项所述的像素点对选择方 法中的步骤,或,如权利要求24至26中任一项所述的像素点对选择方法中的步骤。
  32. 一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至19中任一项所述的参数获取方法中的步骤,或,如权利要求20至23中任一项所述的像素点对选择方法中的步骤,或,如权利要求24至26中任一项所述的像素点对选择方法中的步骤。
PCT/CN2020/098544 2019-08-27 2020-06-28 参数获取方法、像素点对选择方法及相关设备 WO2021036462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910796327.7A CN110557621B (zh) 2019-08-27 2019-08-27 参数获取方法、像素点对选择方法及相关设备
CN201910796327.7 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021036462A1 true WO2021036462A1 (zh) 2021-03-04

Family

ID=68738336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098544 WO2021036462A1 (zh) 2019-08-27 2020-06-28 参数获取方法、像素点对选择方法及相关设备

Country Status (2)

Country Link
CN (2) CN110557621B (zh)
WO (1) WO2021036462A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557621B (zh) * 2019-08-27 2022-06-14 咪咕文化科技有限公司 参数获取方法、像素点对选择方法及相关设备
CN113497937B (zh) * 2020-03-20 2023-09-05 Oppo广东移动通信有限公司 图像编码方法、图像解码方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045207A1 (en) * 2016-08-31 2018-03-08 Qualcomm Incorporated Cross-component filter
CN109005408A (zh) * 2018-08-01 2018-12-14 北京奇艺世纪科技有限公司 一种帧内预测方法、装置及电子设备
CN109274969A (zh) * 2017-07-17 2019-01-25 华为技术有限公司 色度预测的方法和设备
CN110100436A (zh) * 2017-01-13 2019-08-06 高通股份有限公司 使用导出色度模式译码视频数据
CN110557621A (zh) * 2019-08-27 2019-12-10 咪咕文化科技有限公司 参数获取方法、像素点对选择方法及相关设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193305B (zh) * 2006-11-21 2010-05-12 安凯(广州)微电子技术有限公司 用于视频编解码芯片中帧内预测的数据存储和交换方法
US8265152B2 (en) * 2008-10-10 2012-09-11 Arecont Vision, Llc. System and method for low-latency processing of intra-frame video pixel block prediction
CN101605263B (zh) * 2009-07-09 2012-06-27 杭州士兰微电子股份有限公司 帧内预测的方法和装置
CN103096055B (zh) * 2011-11-04 2016-03-30 华为技术有限公司 一种图像信号帧内预测及解码的方法和装置
CN105306944B (zh) * 2015-11-30 2018-07-06 哈尔滨工业大学 混合视频编码标准中色度分量预测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045207A1 (en) * 2016-08-31 2018-03-08 Qualcomm Incorporated Cross-component filter
CN110100436A (zh) * 2017-01-13 2019-08-06 高通股份有限公司 使用导出色度模式译码视频数据
CN109274969A (zh) * 2017-07-17 2019-01-25 华为技术有限公司 色度预测的方法和设备
CN109005408A (zh) * 2018-08-01 2018-12-14 北京奇艺世纪科技有限公司 一种帧内预测方法、装置及电子设备
CN110557621A (zh) * 2019-08-27 2019-12-10 咪咕文化科技有限公司 参数获取方法、像素点对选择方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG KAI; CHEN JIANLE; ZHANG LI; LI XIANG; KARCZEWICZ MARTA: "Multi-Model Based Cross-Component Linear Model Chroma Intra-Prediction for Video Coding", 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 10 December 2017 (2017-12-10), pages 1 - 4, XP033325781, DOI: 10.1109/VCIP.2017.8305103 *

Also Published As

Publication number Publication date
CN110557621B (zh) 2022-06-14
CN113596429B (zh) 2023-04-14
CN113596429A (zh) 2021-11-02
CN110557621A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
US11051028B2 (en) Video encoding and decoding method
US20170302939A1 (en) Adaptive screen and video coding scheme
US10455229B2 (en) Prediction mode selection method, apparatus and device
US20200007872A1 (en) Video decoding method, video decoder, video encoding method and video encoder
CN103957415B (zh) 基于屏幕内容视频的cu分割方法和装置
WO2021036462A1 (zh) 参数获取方法、像素点对选择方法及相关设备
CN104853209A (zh) 图像编码、解码方法及装置
US20160100161A1 (en) Decoder, encoder, decoding method, encoding method, and codec system
CN106170093B (zh) 一种帧内预测性能提升编码方法
CN104754361A (zh) 图像编码、解码方法及装置
CN112672149B (zh) 一种视频处理方法、装置、存储介质及服务器
WO2019114225A1 (zh) 编码单元划分确定方法及装置、计算设备及可读存储介质
CN113347416B (zh) 色度帧内预测方法和装置、及计算机存储介质
CN103702122A (zh) 编码模式选择方法、装置及编码器
US20190222838A1 (en) Video coding processing method and apparatus, and storage medium
CN105681812B (zh) Hevc帧内编码处理方法和装置
CN103313055B (zh) 一种基于分割的色度帧内预测方法、及视频编码解码方法
WO2022095871A1 (zh) 一种视频处理方法、视频处理装置、智能设备及存储介质
CN115190312B (zh) 一种基于神经网络的跨分量色度预测方法及装置
CN114040211A (zh) 一种基于avs3的帧内预测快速决策方法
JP7046219B2 (ja) ビデオ符号化方法、ビデオ符号化装置、電子機器およびコンピュータプログラム
WO2023093377A1 (zh) 编解码方法及电子设备
Gao et al. Two-step fast mode decision for intra coding of screen content
CN115278225A (zh) 色度编码模式的选择方法、装置和计算机设备
Zhang et al. Fast CU splitting in HEVC intra coding for screen content coding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856990

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/11/2022)