WO2021036335A1 - Remote real-time monitoring system for welding robot system - Google Patents

Remote real-time monitoring system for welding robot system Download PDF

Info

Publication number
WO2021036335A1
WO2021036335A1 PCT/CN2020/089505 CN2020089505W WO2021036335A1 WO 2021036335 A1 WO2021036335 A1 WO 2021036335A1 CN 2020089505 W CN2020089505 W CN 2020089505W WO 2021036335 A1 WO2021036335 A1 WO 2021036335A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
capacitor
processor
pin
welding robot
Prior art date
Application number
PCT/CN2020/089505
Other languages
French (fr)
Chinese (zh)
Inventor
王燕
余大泽
Original Assignee
南京涵曦月自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京涵曦月自动化科技有限公司 filed Critical 南京涵曦月自动化科技有限公司
Publication of WO2021036335A1 publication Critical patent/WO2021036335A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0258Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic

Definitions

  • the invention relates to the technical field of robot monitoring, in particular to a remote real-time monitoring system for a welding robot system.
  • the technical task of the present invention is to address the above shortcomings and provide a remote real-time monitoring system for the welding robot system to solve the above problems.
  • the output ends of the network monitoring module are respectively connected with the auxiliary module, the robot module, the management authority module, the system setting module, the main interface module, and the query and statistics module.
  • the inside of the angular position detection module includes a photoelectric encoder module, an optocoupler isolation module, an angular position resolving module, a quadrature encoding module, an SCI communication interface module, and a level conversion module.
  • the output terminal is connected to the input terminal of the optocoupler isolation module, the output terminal of the optocoupler isolation module is connected to the input terminal of the angular position solving module, and the output terminal of the angular position solving module is connected to the positive
  • the input end of the cross-encoding module is connected, the output end of the quadrature encoding module is connected to the input end of the SCI communication interface module, and the output end of the SCI communication interface module is connected to the input end of the level conversion module.
  • the circuit inside the optocoupler isolation module includes a processor U1, a resistor R1, a capacitor C1, a capacitor C2, and a capacitor C3.
  • the pin A0 of the processor U1 is connected to one end of the capacitor C1, and the capacitor
  • the other end of C1 is respectively connected to the pin A1 of the processor U1 and one end of the resistor R1 and grounded.
  • the other end of the resistor R1 is respectively connected to one end of the capacitor C2, one end of the capacitor C3, and the lead of the processor U1.
  • the pin A2 is connected and grounded, the other end of the capacitor C2 is connected to the pin A3 of the processor U1, and the other end of the capacitor C3 is connected to the pin A4 of the processor U1.
  • the circuit inside the SCI communication interface module includes a processor U2, a processor U3, a resistor R2, a resistor R3, a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, and a capacitor C8, and the pins of the processor U2 B0 is connected to one end of the capacitor C4, the other end of the capacitor C4 is connected to the pin B1 of the processor U2, and the pin B2 of the processor U2 is connected to the pin A5 of the processor U3,
  • the pin A6 of the processor U3 is respectively connected to one end of the resistor R2 and the resistor R3, the other end of the resistor R2 is grounded, and the other end of the resistor R3 is connected to the pin B3 of the processor U2.
  • Fig. 1 is a system block diagram of a remote real-time monitoring system for a welding robot system according to an embodiment of the present invention
  • Fig. 5 is a schematic circuit diagram of an optocoupler isolation module according to an embodiment of the present invention.
  • a remote real-time monitoring system for a welding robot system includes an upper computer 1, a central control module 2, a welding robot module 3, and a network monitoring module 4 , Welding robot module 3 can directly communicate with peripheral equipment through its field bus card with PCI slot, signal transmission and I/O processing.
  • Welding robot module 3 can directly communicate with peripheral equipment through its field bus card with PCI slot, signal transmission and I/O processing.
  • a two-level field bus system is adopted.
  • the output terminal is connected to the input terminal of the central control module 2.
  • the output terminal of the central control module 2 is connected to the input terminal of the welding robot module 3 and the network monitoring module 4 respectively.
  • the communication module 8 is used between the robot and the robot. For communication, the communication between the central control module 2 and all robots is realized through industrial Ethernet.
  • Each robot is connected to the central control computer through its Ethernet interface and network switch.
  • the output terminal of the network monitoring module 4 is connected with The input terminal of the welding robot module 3 is connected, and the output terminal of the welding robot module 3 is connected to the input terminals of the acquisition module 5, the control module 6, the motor drive module 7, the communication module 8 and the alarm module 9 respectively.
  • the output end of the module 5 is connected to the input end of the signal conditioning module 10, the angular position detection module 11 and the interface module 12; through the monitoring system, the welding robots scattered in different locations can be monitored and controlled to realize data collection, status control, Measurement, parameter adjustment and various fault signal alarms.
  • the output ends of the network monitoring module 4 are respectively connected to the auxiliary module 13, the robot module 14, the management authority module 15, the system setting module 16, the main interface module 17, and the query and statistics module 18. .
  • the auxiliary module 13 includes interlocking, alarm and vehicle type
  • the robot module 14 includes uploading files, downloading files and information display
  • the management authority module 15 includes adding users and deleting users.
  • the system setting module 16 includes parameter setting and operating parameter setting
  • the main interface module 17 includes power-on inspection, fixture information and parameter query
  • the query and statistics module 18 includes fault statistics, historical data query and year. Monthly report.
  • the information After measuring the angular position and speed of multiple joints, the information is The protocol format is encoded and transmitted to the host computer 1 through the SCI communication interface for real-time display and other processing. After the angular position information is collected by the photoelectric encoder, it needs to be uploaded to the digital signal processor for calculation. The digital signal processor performs calculations on different joints. After calculating the angular position, the code is uploaded to the upper computer 1 for detection through the SCI communication interface according to a certain protocol to realize the real-time display and detection of the angular position. In order to enable the digital signal processor to recognize the signal of the photoelectric encoder, The signal output by the photoelectric encoder needs to be level-converted.
  • the optocoupler uses different power supply voltages at the input and output terminals to make the input and output signals have different levels. At the same time, since the signal propagation of the optocoupler uses light-emitting devices and optical sensitive devices, there is no electrical connection for the output signal, which realizes the electrical isolation of the signal.
  • the capacitance values of the capacitor C4, the capacitor C5, the capacitor C6, the capacitor C7, and the capacitor C8 are all 0.1 ⁇ F
  • the resistance value of the resistor R2 is 2K ⁇
  • the resistance value of the resistor R3 is 1K ⁇ .
  • the host computer 1 is a window for monitoring the production process, which can provide users with a simulation process display screen of the production process, and can dynamically display one or more process data in real time.
  • the screen can be used Flashing, sound prompts, changes in the status text color, and print output remind the operator to deal with faults in time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manipulator (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • General Factory Administration (AREA)

Abstract

A remote real-time monitoring system for a welding robot system, comprising an upper computer (1), a central control module (2), a welding robot module (3), and a network monitoring module (4), wherein the upper computer (1) is connected to the central control module (2); the central control module (2) is separately connected to the welding robot module (3) and the network monitoring module (4); the network monitoring module (4) is connected to the welding robot module (3); the welding robot module (3) is separately connected to a collection module (5), a control module (6), a motor driving module (7), a communication module (8), and an alarm module (9); and the collection module (5) is connected to a signal conditioning module (10), an angular position detection module (11), and an interface module (12). The remote real-time monitoring system for the welding robot system guarantees the punctuality and the automation of a production process and implements the reasonable flow of welding members among working units.

Description

一种用于焊接机器人系统的远程实时监控系统A remote real-time monitoring system for welding robot system 技术领域Technical field
本发明涉及机器人监控技术领域,具体来说,涉及一种用于焊接机器人系统的远程实时监控系统。The invention relates to the technical field of robot monitoring, in particular to a remote real-time monitoring system for a welding robot system.
背景技术Background technique
焊接机器人系统是由焊接机器人、焊接电源、夹具、可编程逻辑控制器等组成的自动化焊接系统。该系统中的焊接电源作为自动焊接中的重要组成部分,可有效提升生产的效率及产品的质量。焊接机器人在国内制造业的应用越来越广泛,特别是在汽车制造及其零配件生产企业,已普遍采用焊接机器人进行车身等零部件的焊接作业。但是现有的对焊接机器人生产线进行的监控和管理多为单机控制,使得监控的效率和自动化的程度不高,从而影响生产和加工的效率。The welding robot system is an automated welding system composed of welding robots, welding power supplies, fixtures, and programmable logic controllers. As an important part of automatic welding, the welding power source in this system can effectively improve production efficiency and product quality. The application of welding robots in the domestic manufacturing industry is becoming more and more extensive, especially in automobile manufacturing and its parts production enterprises. Welding robots have been widely used for welding parts such as car bodies. However, the existing monitoring and management of welding robot production lines are mostly single-machine control, which makes the monitoring efficiency and the degree of automation not high, thereby affecting the efficiency of production and processing.
技术问题technical problem
本发明的技术任务是针对以上不足,提供一种用于焊接机器人系统的远程实时监控系统,来解决上述问题。The technical task of the present invention is to address the above shortcomings and provide a remote real-time monitoring system for the welding robot system to solve the above problems.
技术解决方案Technical solutions
一种用于焊接机器人系统的远程实时监控系统,包括上位机、中央控制模块、焊接机器人模块和网络监视模块,所述上位机的输出端与所述中央控制模块的输入端连接,所述中央控制模块的输出端分别与所述焊接机器人模块和网络监视模块的输入端连接,所述网络监视模块的输出端与所述焊接机器人模块的输入端连接,所述焊接机器人模块的输出端分别与采集模块、控制模块、电机驱动模块、通信模块和警报模块的输入端连接,所述采集模块的输出端与信号调理模块、角位置检测模块和接口模块的输入端连接。A remote real-time monitoring system for a welding robot system includes an upper computer, a central control module, a welding robot module, and a network monitoring module. The output end of the upper computer is connected to the input end of the central control module. The output ends of the control module are respectively connected with the input ends of the welding robot module and the network monitoring module, the output ends of the network monitoring module are connected with the input ends of the welding robot module, and the output ends of the welding robot module are respectively connected with The input terminals of the acquisition module, the control module, the motor drive module, the communication module and the alarm module are connected, and the output terminals of the acquisition module are connected with the input terminals of the signal conditioning module, the angular position detection module and the interface module.
作为优选,所述网络监视模块的输出端分别与辅助模块、机器人模块、管理权限模块、系统设置模块、主界面模块和查询与统计模块连接。Preferably, the output ends of the network monitoring module are respectively connected with the auxiliary module, the robot module, the management authority module, the system setting module, the main interface module, and the query and statistics module.
作为优选,所述辅助模块包括联锁、报警和车型,所述机器人模块包括上传文件、下载文件和信息显示,所述管理权限模块包括添加用户、删除用户和修改密码,所述系统设置模块包括参数设置和运行参数设置,所述主界面模块包括开机检查、夹具信息和参数查询,所述查询与统计模块包括故障统计、历史数据查询和年月日报表。Preferably, the auxiliary module includes interlocking, alarm and vehicle type, the robot module includes uploading files, downloading files and information display, the management authority module includes adding users, deleting users and modifying passwords, and the system setting module includes Parameter setting and operating parameter setting, the main interface module includes power-on inspection, fixture information and parameter query, and the query and statistics module includes fault statistics, historical data query, and year, month, and day reports.
作为优选,所述接口模块的输出端分别与摄像头模块、传感器模块和GPRS模块连接。Preferably, the output ends of the interface module are respectively connected with the camera module, the sensor module and the GPRS module.
作为优选,所述角位置检测模块的内部包括光电编码器模块、光耦隔离模块、角位置解算模块、正交编码模块、SCI通信接口模块和电平转换模块,所述光电编码器模块的输出端与所述光耦隔离模块的输入端连接,所述光耦隔离模块的输出端与所述角位置解算模块的输入端连接,所述角位置解算模块的输出端与所述正交编码模块的输入端连接,所述正交编码模块的输出端与所述SCI通信接口模块的输入端连接,所述SCI通信接口模块的输出端与所述电平转换模块的输入端连接。Preferably, the inside of the angular position detection module includes a photoelectric encoder module, an optocoupler isolation module, an angular position resolving module, a quadrature encoding module, an SCI communication interface module, and a level conversion module. The output terminal is connected to the input terminal of the optocoupler isolation module, the output terminal of the optocoupler isolation module is connected to the input terminal of the angular position solving module, and the output terminal of the angular position solving module is connected to the positive The input end of the cross-encoding module is connected, the output end of the quadrature encoding module is connected to the input end of the SCI communication interface module, and the output end of the SCI communication interface module is connected to the input end of the level conversion module.
作为优选,所述光耦隔离模块内部的电路包括处理器U1、电阻R1、电容C1、电容C2和电容C3,所述处理器U1的引脚A0与所述电容C1的一端连接,所述电容C1的另一端分别与所述处理器U1的引脚A1和电阻R1的一端连接并接地,所述电阻R1的另一端分别与所述电容C2的一端、电容C3的一端、处理器U1的引脚A2连接并接地,所述电容C2的另一端与所述处理器U1的引脚A3连接,所述电容C3的另一端与所述处理器U1的引脚A4连接。Preferably, the circuit inside the optocoupler isolation module includes a processor U1, a resistor R1, a capacitor C1, a capacitor C2, and a capacitor C3. The pin A0 of the processor U1 is connected to one end of the capacitor C1, and the capacitor The other end of C1 is respectively connected to the pin A1 of the processor U1 and one end of the resistor R1 and grounded. The other end of the resistor R1 is respectively connected to one end of the capacitor C2, one end of the capacitor C3, and the lead of the processor U1. The pin A2 is connected and grounded, the other end of the capacitor C2 is connected to the pin A3 of the processor U1, and the other end of the capacitor C3 is connected to the pin A4 of the processor U1.
作为优选,所述电容C1、电容C2和电容C3的值均为0.01μF。Preferably, the values of the capacitor C1, the capacitor C2, and the capacitor C3 are all 0.01 μF.
作为优选,所述SCI通信接口模块内部的电路包括处理器U2、处理器U3、电阻R2、电阻R3、电容C4、电容C5、电容C6、电容C7和电容C8,所述处理器U2的引脚B0与所述电容C4的一端连接,所述电容C4的另一端与所述处理器U2的引脚B1连接,所述处理器U2的引脚B2与所述处理器U3的引脚A5连接,所述处理器U3的引脚A6分别与所述电阻R2和所述电阻R3的一端连接,所述电阻R2的另一端接地,所述电阻R3的另一端与所述处理器U2的引脚B3连接,所述处理器U2的引脚B4与所述电容C5的一端连接,所述电容C5的另一端与所述处理器U2的引脚B5连接,所述处理器U2的引脚B6与所述分别与所述电容C6和电容C8的一端连接并接地,所述电容C6的另一端与所述处理器U2的引脚B7连接,所述电容C8的另一端分别与电源连接、电容C7的一端和处理器U2的引脚B9连接,所述电容C7的另一端与所述处理器U2的引脚B8连接。Preferably, the circuit inside the SCI communication interface module includes a processor U2, a processor U3, a resistor R2, a resistor R3, a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, and a capacitor C8, and the pins of the processor U2 B0 is connected to one end of the capacitor C4, the other end of the capacitor C4 is connected to the pin B1 of the processor U2, and the pin B2 of the processor U2 is connected to the pin A5 of the processor U3, The pin A6 of the processor U3 is respectively connected to one end of the resistor R2 and the resistor R3, the other end of the resistor R2 is grounded, and the other end of the resistor R3 is connected to the pin B3 of the processor U2. Connected, the pin B4 of the processor U2 is connected to one end of the capacitor C5, the other end of the capacitor C5 is connected to the pin B5 of the processor U2, and the pin B6 of the processor U2 is connected to the Said is connected to one end of the capacitor C6 and the capacitor C8 and grounded, the other end of the capacitor C6 is connected to the pin B7 of the processor U2, and the other end of the capacitor C8 is connected to the power supply and the capacitor C7. One end is connected to the pin B9 of the processor U2, and the other end of the capacitor C7 is connected to the pin B8 of the processor U2.
作为优选,所述电容C4、电容C5、电容C6、电容C7和电容C8的电容值均为0.1μF,所述电阻R2的阻值为2KΩ,所述电阻R3的阻值为1KΩ。Preferably, the capacitance values of the capacitors C4, C5, C6, C7, and C8 are all 0.1 μF, the resistance value of the resistor R2 is 2KΩ, and the resistance value of the resistor R3 is 1KΩ.
有益效果Beneficial effect
1、可以通过上位机界面进行实时的监视生产的过程,为用户提供生产过程的模拟流程显示画面,提高了人机交互性,更加方便人们的操作和管理,同时提高工作的趣味性。1. The production process can be monitored in real time through the host computer interface, providing users with a simulated process display screen of the production process, which improves the human-computer interaction, more convenient for people's operation and management, and at the same time enhances the fun of the work.
2、保障了生产过程的准时化和自动化,提高了企业的生产效率和管理效率,实现焊接件在工作单元之间的合理流动。2. It ensures the on-time and automation of the production process, improves the production efficiency and management efficiency of the enterprise, and realizes the reasonable flow of welding parts between work units.
3、可以对故障进行及时的警报处理,从而提醒工作人员进行及时有效的处理,减少损失,同时更加安全。3. The fault can be dealt with in time, so as to remind the staff to deal with it in time and effectively, reduce the loss, and be safer at the same time.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following will briefly introduce the drawings that need to be used in the embodiments. Obviously, the drawings in the following description are only some of the present invention. Embodiments, for those of ordinary skill in the art, without creative work, other drawings can be obtained based on these drawings.
图1是根据本发明实施例的用于焊接机器人系统的远程实时监控系统的系统框图;Fig. 1 is a system block diagram of a remote real-time monitoring system for a welding robot system according to an embodiment of the present invention;
图2是根据本发明实施例的网络监视模块的框图;Figure 2 is a block diagram of a network monitoring module according to an embodiment of the present invention;
图3是根据本发明实施例的角位置检测模块的系统框图;Fig. 3 is a system block diagram of an angular position detection module according to an embodiment of the present invention;
图4是根据本发明实施例的接口模块的结构框图;Figure 4 is a structural block diagram of an interface module according to an embodiment of the present invention;
图5是根据本发明实施例的光耦隔离模块的电路原理图;Fig. 5 is a schematic circuit diagram of an optocoupler isolation module according to an embodiment of the present invention;
图6是根据本发明实施例的SCI通信接口模块的电路原理图。Fig. 6 is a schematic circuit diagram of an SCI communication interface module according to an embodiment of the present invention.
图中:In the picture:
1、上位机;2、中央控制模块;3、焊接机器人模块;4、网络监视模块;5、采集模块;6、控制模块;7、电机驱动模块;8、通信模块;9、警报模块;10、信号调理模块;11、角位置检测模块;12、接口模块;13、辅助模块;14、机器人模块;15、管理权限模块;16、系统设置模块;17、主界面模块;18、查询与统计模块;19、摄像头模块;20、传感器模块;21、GPRS模块;22、光电编码器模块;23、光耦隔离模块;24、角位置解算模块;25、正交编码模块;26、SCI通信接口模块;27、电平转换模块。1. Host computer; 2. Central control module; 3. Welding robot module; 4. Network monitoring module; 5. Acquisition module; 6. Control module; 7. Motor drive module; 8. Communication module; 9. Alarm module; 10. , Signal conditioning module; 11. Angular position detection module; 12, interface module; 13, auxiliary module; 14, robot module; 15, management authority module; 16, system setting module; 17, main interface module; 18, query and statistics Module; 19, camera module; 20, sensor module; 21, GPRS module; 22, photoelectric encoder module; 23, optocoupler isolation module; 24, angular position calculation module; 25, orthogonal encoding module; 26, SCI communication Interface module; 27, level conversion module.
本发明的实施方式Embodiments of the present invention
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和实施例对本发明做进一步说明。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。In order to be able to understand the above-mentioned objects, features and advantages of the present invention more clearly, the present invention will be further described below with reference to the drawings and embodiments. It should be noted that the embodiments of the application and the features in the embodiments can be combined with each other if there is no conflict.
下面结合附图和具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with the drawings and specific embodiments.
实施例一,如图1至6所示,根据本发明实施例的一种用于焊接机器人系统的远程实时监控系统,包括上位机1、中央控制模块2、焊接机器人模块3和网络监视模块4,焊接机器人模块3可直接通过其带PCI插槽的现场总线卡与周边的设备进行通讯、信号传递和I/O处理,对于每台机器人,采用两级现场总线系统,所述上位机1的输出端与所述中央控制模块2的输入端连接,所述中央控制模块2的输出端分别与所述焊接机器人模块3和网络监视模块4的输入端连接,机器人与机器人之间通过通信模块8进行联系,中央控制模块2与所有机器人之间的通讯都是通过工业以太网实现,每台机器人通过其以太网接口、网络交换机与中央控制计算机进行连接,所述网络监视模块4的输出端与所述焊接机器人模块3的输入端连接,所述焊接机器人模块3的输出端分别与采集模块5、控制模块6、电机驱动模块7、通信模块8和警报模块9的输入端连接,所述采集模块5的输出端与信号调理模块10、角位置检测模块11和接口模块12的输入端连接;通过监控系统可以对分散在不同地点的焊接机器人进行监视和控制,以实现数据采集、状态控制、测量、参数调节和各类故障信号报警。Embodiment 1, as shown in Figures 1 to 6, a remote real-time monitoring system for a welding robot system according to an embodiment of the present invention includes an upper computer 1, a central control module 2, a welding robot module 3, and a network monitoring module 4 , Welding robot module 3 can directly communicate with peripheral equipment through its field bus card with PCI slot, signal transmission and I/O processing. For each robot, a two-level field bus system is adopted. The output terminal is connected to the input terminal of the central control module 2. The output terminal of the central control module 2 is connected to the input terminal of the welding robot module 3 and the network monitoring module 4 respectively. The communication module 8 is used between the robot and the robot. For communication, the communication between the central control module 2 and all robots is realized through industrial Ethernet. Each robot is connected to the central control computer through its Ethernet interface and network switch. The output terminal of the network monitoring module 4 is connected with The input terminal of the welding robot module 3 is connected, and the output terminal of the welding robot module 3 is connected to the input terminals of the acquisition module 5, the control module 6, the motor drive module 7, the communication module 8 and the alarm module 9 respectively. The output end of the module 5 is connected to the input end of the signal conditioning module 10, the angular position detection module 11 and the interface module 12; through the monitoring system, the welding robots scattered in different locations can be monitored and controlled to realize data collection, status control, Measurement, parameter adjustment and various fault signal alarms.
实施例二,如图2所示,所述网络监视模块4的输出端分别与辅助模块13、机器人模块14、管理权限模块15、系统设置模块16、主界面模块17和查询与统计模块18连接。The second embodiment, as shown in Figure 2, the output ends of the network monitoring module 4 are respectively connected to the auxiliary module 13, the robot module 14, the management authority module 15, the system setting module 16, the main interface module 17, and the query and statistics module 18. .
实施例三,如图2所示,所述辅助模块13包括联锁、报警和车型,所述机器人模块14包括上传文件、下载文件和信息显示,所述管理权限模块15包括添加用户、删除用户和修改密码,所述系统设置模块16包括参数设置和运行参数设置,所述主界面模块17包括开机检查、夹具信息和参数查询,所述查询与统计模块18包括故障统计、历史数据查询和年月日报表。The third embodiment, as shown in Figure 2, the auxiliary module 13 includes interlocking, alarm and vehicle type, the robot module 14 includes uploading files, downloading files and information display, and the management authority module 15 includes adding users and deleting users. And modify the password, the system setting module 16 includes parameter setting and operating parameter setting, the main interface module 17 includes power-on inspection, fixture information and parameter query, and the query and statistics module 18 includes fault statistics, historical data query and year. Monthly report.
实施例四,如图4所示,所述接口模块12的输出端分别与摄像头模块19、传感器模块20和GPRS模块21连接;通过摄像头模块19进行实时的检测并传输到上位机1供人们的实时观看,传感器模块20的各种进行检测。Fourth embodiment, as shown in Figure 4, the output ends of the interface module 12 are respectively connected to the camera module 19, sensor module 20 and GPRS module 21; real-time detection is carried out through the camera module 19 and transmitted to the host computer 1 for people’s In real-time viewing, various types of sensor modules 20 are detected.
实施例五,如图3所示,所述角位置检测模块11的内部包括光电编码器模块22、光耦隔离模块23、角位置解算模块24、正交编码模块25、SCI通信接口模块26和电平转换模块27,所述光电编码器模块22的输出端与所述光耦隔离模块23的输入端连接,所述光耦隔离模块23的输出端与所述角位置解算模块24的输入端连接,所述角位置解算模块24的输出端与所述正交编码模块25的输入端连接,所述正交编码模块25的输出端与所述SCI通信接口模块26的输入端连接,所述SCI通信接口模块26的输出端与所述电平转换模块27的输入端连接;检测系统中,对机器人关节角位置的测量主要由光电编码器实现,光电编码器输出的转速-角位置信号通过输出光耦进行信号的调理,实现信号电平的转换,并使光电编码器的信号与控制芯片的电气隔离,通过对多个关节的角位置和转速进行测量后将这些信息按照一定的协议格式进行编码,通过SCI通信接口传输到上位机1进行实时显示等处理,角位置信息由光电编码器采集得到后,需要上传给数字信号处理器进行解算,数字信号处理器对不同关节的角位置进行解算后,按一定的协议编码通过SCI通信接口上传给用于检测的上位机1,实现角位置的实时显示和检测,为了使数字信号处理器能够识别光电编码器的信号,需要对光电编码器输出的信号进行电平转换。Embodiment 5, as shown in FIG. 3, the angular position detection module 11 includes a photoelectric encoder module 22, an optocoupler isolation module 23, an angular position calculation module 24, a quadrature encoding module 25, and an SCI communication interface module 26. And the level conversion module 27, the output end of the photoelectric encoder module 22 is connected to the input end of the optocoupler isolation module 23, and the output end of the optocoupler isolation module 23 is connected to the angle position calculation module 24 The input terminal is connected, the output terminal of the angular position calculation module 24 is connected with the input terminal of the orthogonal encoding module 25, and the output terminal of the orthogonal encoding module 25 is connected with the input terminal of the SCI communication interface module 26 , The output end of the SCI communication interface module 26 is connected to the input end of the level conversion module 27; in the detection system, the measurement of the robot joint angular position is mainly realized by the photoelectric encoder, and the output speed of the photoelectric encoder-angle The position signal adjusts the signal through the output optical coupler, realizes the signal level conversion, and electrically isolates the signal of the photoelectric encoder from the control chip. After measuring the angular position and speed of multiple joints, the information is The protocol format is encoded and transmitted to the host computer 1 through the SCI communication interface for real-time display and other processing. After the angular position information is collected by the photoelectric encoder, it needs to be uploaded to the digital signal processor for calculation. The digital signal processor performs calculations on different joints. After calculating the angular position, the code is uploaded to the upper computer 1 for detection through the SCI communication interface according to a certain protocol to realize the real-time display and detection of the angular position. In order to enable the digital signal processor to recognize the signal of the photoelectric encoder, The signal output by the photoelectric encoder needs to be level-converted.
实施例六,如图5所示,所述光耦隔离模块23内部的电路包括处理器U1、电阻R1、电容C1、电容C2和电容C3,所述处理器U1的引脚A0与所述电容C1的一端连接,所述电容C1的另一端分别与所述处理器U1的引脚A1和电阻R1的一端连接并接地,所述电阻R1的另一端分别与所述电容C2的一端、电容C3的一端、处理器U1的引脚A2连接并接地,所述电容C2的另一端与所述处理器U1的引脚A3连接,所述电容C3的另一端与所述处理器U1的引脚A4连接;为了保障传感器和数字信号处理器之间不产生相互干扰,需要对二者的信号进行必要的电气隔离,光耦通过输入输出端的不同供电电压,使得输入和输出信号具有不同的电平,同时由于光耦的信号传播使用的是发光器件和光学敏感器件,所以输出信号没有电连接,实现了信号的电气隔离。Embodiment 6, as shown in FIG. 5, the internal circuit of the optocoupler isolation module 23 includes a processor U1, a resistor R1, a capacitor C1, a capacitor C2, and a capacitor C3. The pin A0 of the processor U1 and the capacitor C3 One end of C1 is connected, the other end of the capacitor C1 is connected to the pin A1 of the processor U1 and one end of the resistor R1 and grounded, and the other end of the resistor R1 is connected to one end of the capacitor C2 and the capacitor C3. The pin A2 of the processor U1 is connected to the ground, the other end of the capacitor C2 is connected to the pin A3 of the processor U1, and the other end of the capacitor C3 is connected to the pin A4 of the processor U1. Connection; in order to ensure that there is no mutual interference between the sensor and the digital signal processor, the signals of the two need to be electrically isolated. The optocoupler uses different power supply voltages at the input and output terminals to make the input and output signals have different levels. At the same time, since the signal propagation of the optocoupler uses light-emitting devices and optical sensitive devices, there is no electrical connection for the output signal, which realizes the electrical isolation of the signal.
实施例七,如图5所示,所述电容C1、电容C2和电容C3的值均为0.01μF。In the seventh embodiment, as shown in FIG. 5, the values of the capacitor C1, the capacitor C2, and the capacitor C3 are all 0.01 μF.
实施例八,如图6所示,所述SCI通信接口模块26内部的电路包括处理器U2、处理器U3、电阻R2、电阻R3、电容C4、电容C5、电容C6、电容C7和电容C8,所述处理器U2的引脚B0与所述电容C4的一端连接,所述电容C4的另一端与所述处理器U2的引脚B1连接,所述处理器U2的引脚B2与所述处理器U3的引脚A5连接,所述处理器U3的引脚A6分别与所述电阻R2和所述电阻R3的一端连接,所述电阻R2的另一端接地,所述电阻R3的另一端与所述处理器U2的引脚B3连接,所述处理器U2的引脚B4与所述电容C5的一端连接,所述电容C5的另一端与所述处理器U2的引脚B5连接,所述处理器U2的引脚B6与所述分别与所述电容C6和电容C8的一端连接并接地,所述电容C6的另一端与所述处理器U2的引脚B7连接,所述电容C8的另一端分别与电源连接、电容C7的一端和处理器U2的引脚B9连接,所述电容C7的另一端与所述处理器U2的引脚B8连接;通信接口的控制主要由SCI通信控制寄存器SCICCR和SCICTL控制实现,其中SCICCR主要控制芯片启动通信接口、设置通信模式和数据格式,寄存器主要用于检测通信接口的状态的监测。The eighth embodiment, as shown in FIG. 6, the circuit inside the SCI communication interface module 26 includes a processor U2, a processor U3, a resistor R2, a resistor R3, a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, and a capacitor C8, The pin B0 of the processor U2 is connected to one end of the capacitor C4, the other end of the capacitor C4 is connected to the pin B1 of the processor U2, and the pin B2 of the processor U2 is connected to the processor U2. The pin A5 of the processor U3 is connected, the pin A6 of the processor U3 is respectively connected to one end of the resistor R2 and the resistor R3, the other end of the resistor R2 is grounded, and the other end of the resistor R3 is connected to the ground. The pin B3 of the processor U2 is connected, the pin B4 of the processor U2 is connected to one end of the capacitor C5, and the other end of the capacitor C5 is connected to the pin B5 of the processor U2. The pin B6 of the device U2 is connected to one end of the capacitor C6 and the capacitor C8 and grounded, the other end of the capacitor C6 is connected to the pin B7 of the processor U2, and the other end of the capacitor C8 is connected to the pin B7 of the processor U2. Connected to the power supply, one end of the capacitor C7 is connected to the pin B9 of the processor U2, and the other end of the capacitor C7 is connected to the pin B8 of the processor U2; the communication interface is controlled mainly by the SCI communication control register SCICCR and SCICTL control is realized, among which SCICCR mainly controls the chip to start the communication interface, set the communication mode and data format, and the register is mainly used to detect the monitoring of the state of the communication interface.
实施例九,所述电容C4、电容C5、电容C6、电容C7和电容C8的电容值均为0.1μF,所述电阻R2的阻值为2KΩ,所述电阻R3的阻值为1KΩ。In the ninth embodiment, the capacitance values of the capacitor C4, the capacitor C5, the capacitor C6, the capacitor C7, and the capacitor C8 are all 0.1 μF, the resistance value of the resistor R2 is 2KΩ, and the resistance value of the resistor R3 is 1KΩ.
为了方便理解本发明的上述技术方案,以下就本发明在实际过程中的工作原理或者操作方式进行详细说明。In order to facilitate the understanding of the above technical solutions of the present invention, the working principle or operation mode of the present invention in the actual process will be described in detail below.
在实际应用时,上位机1为监视生产过程的窗口,可以为用户提供生产过程的模拟流程显示画面,可以对一个或者多个过程数据进行实时动态显示,当焊接机器人生产线出现异常时可以通过画面闪烁、音响提示、状态文字颜色发生变化、打印输出等方式来提醒操作人员及时处理故障,通过中央控制模块2与各个焊接机器人模块3之间的连接,可以方便实现对每个机器人的控制,并通过网络监视模块4进行实时的检测,保障了检测的精度,便于技术管理人员在上位机1管理平台完成状态检测、故障恢复、系统更新和升级等工作,并配合企业的生产进行流程的安排和管理,实现了焊接件在工作单元之间的合理流动,提高了企业的生产效率和管理效率。In actual application, the host computer 1 is a window for monitoring the production process, which can provide users with a simulation process display screen of the production process, and can dynamically display one or more process data in real time. When the welding robot production line is abnormal, the screen can be used Flashing, sound prompts, changes in the status text color, and print output remind the operator to deal with faults in time. The connection between the central control module 2 and each welding robot module 3 can facilitate the control of each robot, and Real-time detection through the network monitoring module 4 guarantees the accuracy of the detection, which is convenient for technical managers to complete the status detection, fault recovery, system update and upgrade work on the management platform of the host computer 1, and cooperate with the production process of the enterprise to arrange and Management realizes the reasonable flow of welding parts between work units, and improves the production efficiency and management efficiency of the enterprise.
通过上面具体实施方式,所述技术领域的技术人员可容易的实现本发明。但是应当理解,本发明并不限于上述的具体实施方式。在公开的实施方式的基础上,所述技术领域的技术人员可任意组合不同的技术特征,从而实现不同的技术方案。Through the above specific embodiments, those skilled in the technical field can easily implement the present invention. However, it should be understood that the present invention is not limited to the specific embodiments described above. Based on the disclosed embodiments, those skilled in the technical field can arbitrarily combine different technical features to realize different technical solutions.

Claims (9)

  1. 一种用于焊接机器人系统的远程实时监控系统,其特征在于,包括上位机(1)、中央控制模块(2)、焊接机器人模块(3)和网络监视模块(4),所述上位机(1)的输出端与所述中央控制模块(2)的输入端连接,所述中央控制模块(2)的输出端分别与所述焊接机器人模块(3)和网络监视模块(4)的输入端连接,所述网络监视模块(4)的输出端与所述焊接机器人模块(3)的输入端连接,所述焊接机器人模块(3)的输出端分别与采集模块(5)、控制模块(6)、电机驱动模块(7)、通信模块(8)和警报模块(9)的输入端连接,所述采集模块(5)的输出端与信号调理模块(10)、角位置检测模块(11)和接口模块(12)的输入端连接。A remote real-time monitoring system for a welding robot system, characterized in that it includes an upper computer (1), a central control module (2), a welding robot module (3) and a network monitoring module (4). The upper computer ( The output terminal of 1) is connected to the input terminal of the central control module (2), and the output terminal of the central control module (2) is respectively connected to the input terminal of the welding robot module (3) and the network monitoring module (4) The output end of the network monitoring module (4) is connected to the input end of the welding robot module (3), and the output end of the welding robot module (3) is connected to the acquisition module (5) and the control module (6). ), the input terminals of the motor drive module (7), the communication module (8) and the alarm module (9) are connected, and the output terminal of the acquisition module (5) is connected to the signal conditioning module (10) and the angular position detection module (11) Connect with the input terminal of the interface module (12).
  2. 根据权利要求1所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述网络监视模块(4)的输出端分别与辅助模块(13)、机器人模块(14)、管理权限模块(15)、系统设置模块(16)、主界面模块(17)和查询与统计模块(18)连接。The remote real-time monitoring system for a welding robot system according to claim 1, characterized in that the output end of the network monitoring module (4) is respectively connected with the auxiliary module (13), the robot module (14), and the management The authority module (15), the system setting module (16), the main interface module (17) and the query and statistics module (18) are connected.
  3. 根据权利要求2所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述辅助模块(13)包括联锁、报警和车型,所述机器人模块(14)包括上传文件、下载文件和信息显示,所述管理权限模块(15)包括添加用户、删除用户和修改密码,所述系统设置模块(16)包括参数设置和运行参数设置,所述主界面模块(17)包括开机检查、夹具信息和参数查询,所述查询与统计模块(18)包括故障统计、历史数据查询和年月日报表。The remote real-time monitoring system for a welding robot system according to claim 2, characterized in that the auxiliary module (13) includes interlocking, alarm and vehicle type, and the robot module (14) includes uploading files, Download files and information display, the management authority module (15) includes adding users, deleting users and modifying passwords, the system setting module (16) includes parameter settings and operating parameter settings, and the main interface module (17) includes booting Check, fixture information and parameter query. The query and statistics module (18) includes fault statistics, historical data query and year, month, and day reports.
  4. 根据权利要求1所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述接口模块(12)的输出端分别与摄像头模块(19)、传感器模块(20)和GPRS模块(21)连接。The remote real-time monitoring system for a welding robot system according to claim 1, wherein the output end of the interface module (12) is connected to the camera module (19), the sensor module (20) and the GPRS module respectively. (21) Connection.
  5. 根据权利要求1所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述角位置检测模块(11)的内部包括光电编码器模块(22)、光耦隔离模块(23)、角位置解算模块(24)、正交编码模块(25)、SCI通信接口模块(26)和电平转换模块(27),所述光电编码器模块(22)的输出端与所述光耦隔离模块(23)的输入端连接,所述光耦隔离模块(23)的输出端与所述角位置解算模块(24)的输入端连接,所述角位置解算模块(24)的输出端与所述正交编码模块(25)的输入端连接,所述正交编码模块(25)的输出端与所述SCI通信接口模块(26)的输入端连接,所述SCI通信接口模块(26)的输出端与所述电平转换模块(27)的输入端连接。The remote real-time monitoring system for a welding robot system according to claim 1, wherein the angular position detection module (11) includes a photoelectric encoder module (22) and an optocoupler isolation module (23). ), angular position calculation module (24), quadrature encoding module (25), SCI communication interface module (26) and level conversion module (27). The output terminal of the photoelectric encoder module (22) is connected to the The input end of the optocoupler isolation module (23) is connected, and the output end of the optocoupler isolation module (23) is connected to the input end of the angular position resolving module (24), and the angular position resolving module (24) The output end of the quadrature encoding module (25) is connected to the input end of the quadrature encoding module (25), the output end of the quadrature encoding module (25) is connected to the input end of the SCI communication interface module (26), and the SCI communication interface The output terminal of the module (26) is connected to the input terminal of the level conversion module (27).
  6. 根据权利要求5所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述光耦隔离模块(23)内部的电路包括处理器U1、电阻R1、电容C1、电容C2和电容C3,所述处理器U1的引脚A0与所述电容C1的一端连接,所述电容C1的另一端分别与所述处理器U1的引脚A1和电阻R1的一端连接并接地,所述电阻R1的另一端分别与所述电容C2的一端、电容C3的一端、处理器U1的引脚A2连接并接地,所述电容C2的另一端与所述处理器U1的引脚A3连接,所述电容C3的另一端与所述处理器U1的引脚A4连接。The remote real-time monitoring system for a welding robot system according to claim 5, wherein the circuit inside the optocoupler isolation module (23) includes a processor U1, a resistor R1, a capacitor C1, and a capacitor C2. Capacitor C3, the pin A0 of the processor U1 is connected to one end of the capacitor C1, and the other end of the capacitor C1 is respectively connected to the pin A1 of the processor U1 and one end of the resistor R1 and grounded. The other end of the resistor R1 is respectively connected to one end of the capacitor C2, one end of the capacitor C3, and the pin A2 of the processor U1 and connected to ground, and the other end of the capacitor C2 is connected to the pin A3 of the processor U1, so The other end of the capacitor C3 is connected to the pin A4 of the processor U1.
  7. 根据权利要求6所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述电容C1、电容C2和电容C3的值均为0.01μF。The remote real-time monitoring system for a welding robot system according to claim 6, wherein the values of the capacitor C1, the capacitor C2, and the capacitor C3 are all 0.01 μF.
  8. 根据权利要求5所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述SCI通信接口模块(26)内部的电路包括处理器U2、处理器U3、电阻R2、电阻R3、电容C4、电容C5、电容C6、电容C7和电容C8,所述处理器U2的引脚B0与所述电容C4的一端连接,所述电容C4的另一端与所述处理器U2的引脚B1连接,所述处理器U2的引脚B2与所述处理器U3的引脚A5连接,所述处理器U3的引脚A6分别与所述电阻R2和所述电阻R3的一端连接,所述电阻R2的另一端接地,所述电阻R3的另一端与所述处理器U2的引脚B3连接,所述处理器U2的引脚B4与所述电容C5的一端连接,所述电容C5的另一端与所述处理器U2的引脚B5连接,所述处理器U2的引脚B6与所述分别与所述电容C6和电容C8的一端连接并接地,所述电容C6的另一端与所述处理器U2的引脚B7连接,所述电容C8的另一端分别与电源连接、电容C7的一端和处理器U2的引脚B9连接,所述电容C7的另一端与所述处理器U2的引脚B8连接。The remote real-time monitoring system for a welding robot system according to claim 5, wherein the circuit inside the SCI communication interface module (26) includes a processor U2, a processor U3, a resistor R2, and a resistor R3. , Capacitor C4, capacitor C5, capacitor C6, capacitor C7, and capacitor C8, the pin B0 of the processor U2 is connected to one end of the capacitor C4, and the other end of the capacitor C4 is connected to the pin of the processor U2 B1 is connected, the pin B2 of the processor U2 is connected to the pin A5 of the processor U3, and the pin A6 of the processor U3 is connected to one end of the resistor R2 and the resistor R3, respectively. The other end of the resistor R2 is grounded, the other end of the resistor R3 is connected to the pin B3 of the processor U2, the pin B4 of the processor U2 is connected to one end of the capacitor C5, and the other end of the capacitor C5 One end is connected to the pin B5 of the processor U2, the pin B6 of the processor U2 is connected to and grounded to one end of the capacitor C6 and the capacitor C8 respectively, and the other end of the capacitor C6 is connected to the The pin B7 of the processor U2 is connected, the other end of the capacitor C8 is connected to the power supply, one end of the capacitor C7 is connected to the pin B9 of the processor U2, and the other end of the capacitor C7 is connected to the lead of the processor U2. Pin B8 is connected.
  9. 根据权利要求8所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述电容C4、电容C5、电容C6、电容C7和电容C8的电容值均为0.1μF,所述电阻R2的阻值为2KΩ,所述电阻R3的阻值为1KΩ。The remote real-time monitoring system for a welding robot system according to claim 8, wherein the capacitance values of the capacitor C4, the capacitor C5, the capacitor C6, the capacitor C7, and the capacitor C8 are all 0.1 μF, and the The resistance value of the resistor R2 is 2KΩ, and the resistance value of the resistor R3 is 1KΩ.
PCT/CN2020/089505 2019-08-27 2020-05-10 Remote real-time monitoring system for welding robot system WO2021036335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910794157.9A CN110524155B (en) 2019-08-27 2019-08-27 Remote real-time monitoring system for welding robot system
CN201910794157.9 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021036335A1 true WO2021036335A1 (en) 2021-03-04

Family

ID=68664334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089505 WO2021036335A1 (en) 2019-08-27 2020-05-10 Remote real-time monitoring system for welding robot system

Country Status (2)

Country Link
CN (2) CN110524155B (en)
WO (1) WO2021036335A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110524155B (en) * 2019-08-27 2020-05-12 南京涵曦月自动化科技有限公司 Remote real-time monitoring system for welding robot system
CN114161050A (en) * 2021-11-03 2022-03-11 北京星航机电装备有限公司 Control system of welding auxiliary tool and positioning welding method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767911A (en) * 1987-02-26 1988-08-30 Rockwell International Corporation Optical weld contour monitor for penetration control
JP2000334690A (en) * 1999-05-25 2000-12-05 Fanuc Ltd Robot control device provided with work abnormality monitoring function
CN1715010A (en) * 2004-06-29 2006-01-04 发那科株式会社 Programming device for returning robot to waiting position
CN102451950A (en) * 2010-10-27 2012-05-16 西安扩力机电科技有限公司 Automatic control system for spot welder
CN205983161U (en) * 2016-08-30 2017-02-22 青岛思锐自动化工程有限公司 Production line management system is always pieced together to car
CN110524155A (en) * 2019-08-27 2019-12-03 南京涵曦月自动化科技有限公司 A kind of remote real-time monitoring system for welding robot system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737591A (en) * 2013-12-23 2014-04-23 芜湖常瑞汽车部件有限公司 Robot welding system
CN105033520B (en) * 2015-08-05 2017-01-04 柳州职业技术学院 Multi-welding robot cooperative control system for improving particle swarm algorithm
CN106064380A (en) * 2016-08-12 2016-11-02 刘玲 A kind of welding robot control system
CN205928661U (en) * 2016-08-12 2017-02-08 河南工业职业技术学院 Welding robot control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767911A (en) * 1987-02-26 1988-08-30 Rockwell International Corporation Optical weld contour monitor for penetration control
JP2000334690A (en) * 1999-05-25 2000-12-05 Fanuc Ltd Robot control device provided with work abnormality monitoring function
CN1715010A (en) * 2004-06-29 2006-01-04 发那科株式会社 Programming device for returning robot to waiting position
CN102451950A (en) * 2010-10-27 2012-05-16 西安扩力机电科技有限公司 Automatic control system for spot welder
CN205983161U (en) * 2016-08-30 2017-02-22 青岛思锐自动化工程有限公司 Production line management system is always pieced together to car
CN110524155A (en) * 2019-08-27 2019-12-03 南京涵曦月自动化科技有限公司 A kind of remote real-time monitoring system for welding robot system

Also Published As

Publication number Publication date
CN111872609A (en) 2020-11-03
CN110524155B (en) 2020-05-12
CN110524155A (en) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021036335A1 (en) Remote real-time monitoring system for welding robot system
CN102944426A (en) Measurement and control system and method for test bed of X-type aero-engine
CN106707888A (en) Programmable control module, system provided with same and control method
CN111736064A (en) Multi-type signal online test method and system for PCB
CN107065668A (en) Industrial gateway remote data monitoring system and method based on intelligent sensor device
CN208270992U (en) intelligent network sensor device
CN114301947A (en) Industrial internet practical training assessment system
CN105571690A (en) Digital weighing sensor and sensor network
CN213277033U (en) Multiprocessor industrial Internet of things gateway for educational training
WO1990002366A1 (en) System for diagnosing cnc
CN203430525U (en) Shield distribution type PLC control system based on controller
CN106774178A (en) A kind of automation control system and method, plant equipment
CN203930476U (en) A kind of engine room orders transmission peculiar to vessel and actuating unit
CN106527342A (en) Multi-PLC function control card running based on PC and use method thereof
TW202011737A (en) Device information digitizing system and method
CN106546936B (en) Virtual detection system and detection method for detecting energy efficiency monitoring equipment
WO2021159582A1 (en) Multi-shaft drive and control system
CN210380935U (en) Communication address self-setting system of digital weighing sensor
Li et al. Design and implementation of field bus device management system based on hart protocol
CN1313944C (en) Intelligent transmitter device with embedded DeviceNet field bus interface
CN203689732U (en) Automotive electronic networked fault simulation assessment apparatus
JP2021039570A (en) Program development device, project creation method and program for achieving program development device
CN206440998U (en) A kind of automatic control device, plant equipment
CN101109968A (en) Programmable controller for temperature and humidity
CN205210586U (en) System for read HART instrument parameter through USB interface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856343

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20856343

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 08.08.22.