WO2021036248A1 - 节能型三相有功电流全自动平衡电路结构及控制方法 - Google Patents

节能型三相有功电流全自动平衡电路结构及控制方法 Download PDF

Info

Publication number
WO2021036248A1
WO2021036248A1 PCT/CN2020/081418 CN2020081418W WO2021036248A1 WO 2021036248 A1 WO2021036248 A1 WO 2021036248A1 CN 2020081418 W CN2020081418 W CN 2020081418W WO 2021036248 A1 WO2021036248 A1 WO 2021036248A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
group
adjustable
active current
needs
Prior art date
Application number
PCT/CN2020/081418
Other languages
English (en)
French (fr)
Inventor
王振铎
Original Assignee
王振铎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王振铎 filed Critical 王振铎
Publication of WO2021036248A1 publication Critical patent/WO2021036248A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Definitions

  • the invention relates to the technical field of the electric power industry, in particular to an energy-saving three-phase active current fully automatic balancing circuit structure and a control method.
  • the three-phase unbalanced current of low-voltage power grid is a common phenomenon. Due to the randomness of user access and the different timing of the inputs, the three-phase load is unbalanced, and the current flowing through the three-phase line may be very different, resulting in a large current flowing through the neutral line, causing serious power supply voltage quality and loss . The unbalanced three-phase load will increase the loss of the power grid and seriously affect the quality of power supply. The unbalanced three-phase is the main problem that has always plagued power supply units.
  • Capacitor compensation is to throw more compensation capacitors for phases with larger currents, and less or even no compensation capacitors for phases with lower currents to achieve the purpose of balancing the three-phase currents, but this method does not get good compensation, and it will still There is zero-sequence current; the commutation device needs to install a load switch on the user or the line, which is costly, and there will be a power outage when switching, which has a serious impact on the user's power consumption; manual phase adjustment is difficult to obtain user load data and phase adjustment workload Large, the effect is not obvious.
  • the purpose of the present invention is to provide an energy-saving three-phase active current fully automatic balancing circuit structure and control method that can solve the serious imbalance of the three-phase active current of the power supply network.
  • Energy-saving three-phase active current fully automatic balancing circuit structure including three-phase voltage, neutral line, current transformer, inverting transformer, adjustable reactor, adjustable capacitor, and contactor;
  • the input terminals of the first group of phase selection control contactors of the inverting transformer are respectively connected to the three-phase voltage; the output terminals of the first group of phase selection control contactors of the inverting transformer are connected together with the primary coil of the first group of reverse transformers Tap connection; the lower tap of the primary coil of the first group of reverse transformer and the lower tap of the secondary coil are connected to the neutral line; the upper tap of the secondary coil of the first group of reverse transformer is connected to the first group of adjustable reactor or the first group
  • the inlet end of a group of adjustable capacitors; the outlet end of the first group of adjustable reactors or the first group of adjustable capacitors is connected to the outlet end of the first group of forward voltage phase selection control contactor; the first group of forward voltage
  • the inlet ends of the phase selection control contactor are respectively connected to the three-phase voltage;
  • the input terminals of the second group of reverse transformer phase selection control contactors are respectively connected to the three-phase voltage; the output terminals of the second group of reverse transformer phase selection control contactors are connected together with the primary coil of the second group of reverse transformers Tap connection; the lower tap of the primary coil of the second group of reverse transformer and the lower tap of the secondary coil are connected to the zero line together; the upper tap of the secondary coil of the second group of reverse transformer is connected to the second group of adjustable reactor or the first The inlet end of the two sets of adjustable capacitors; the outlet end of the second set of adjustable reactors or the second set of adjustable capacitors is connected to the outlet end of the second set of forward voltage phase selection control contactor; the second set of forward voltage The inlet ends of the phase selection control contactor are respectively connected to the three-phase voltage.
  • An energy-saving three-phase active current fully automatic balancing circuit structure control method is to analyze and calculate the load-side three-phase active current and calculate the average value of the three-phase active current according to the collected electrical parameters on the load side;
  • the reverse voltage is connected to one end of the adjustable reactor or adjustable capacitor, and the other end of the adjustable reactor or adjustable capacitor is connected to the phase voltage that needs to be connected. This process is controlled by the corresponding contactor To achieve the closing and opening;
  • the adjustment After the adjustment is completed, by collecting the electrical parameters of the input side, analyzing and calculating the input side three-phase active current and judging the balance of the three-phase active current. If the balance standard is exceeded, the feedback will be adjusted to achieve the balance standard and keep the current state and real-time monitor.
  • the present invention has the following beneficial effects:
  • the present invention realizes real-time, dynamic and precise adjustment of three-phase active current, improves the balance of dynamic current, reduces product power consumption, saves energy, and enables power distribution.
  • the three-phase load current of the transformer is balanced, the three-phase voltage is balanced, and the power factor is qualified, which meets the national requirements.
  • the energy-saving three-phase active current automatic balance circuit structure proposed by the present invention can dynamically adjust the size of three-phase active current in real time to achieve three-phase input active current balance; the present invention monitors the three-phase current of the power supply line in real time and can fully reflect Load conditions and transmission line conditions, timely and accurate adjustment of three-phase active current, greatly improving the accuracy and balance of dynamic current adjustment.
  • the invention is an energy-saving circuit structure, no electronic switch and high frequency synthesis, no harmonics are generated during operation, no high frequency pollution to the power grid, no additional loss and interference, etc., and the product itself consumes power Low, save energy, improve the scalability of the device, and have higher promotion and application value and social and economic benefits.
  • the invention enters the equilibrium state quickly, and the working state is stable. At the same time, the maintenance amount is small, the operation cost is reduced, the operation (use period) ends, and the residual value is higher.
  • the energy-saving three-phase active current fully automatic balancing circuit structure of the invention realizes the three-phase current balance of the high and low voltage power grid in a true sense by adjusting the balance of the three-phase input active current, and improves the power quality, reduces the line loss, and reduces the power distribution Transformer power loss improves the power supply efficiency of distribution transformers and prolongs the service life of power equipment such as distribution transformers.
  • Figure 1 is a schematic diagram of the main circuit reactor adjustment principle of the present invention
  • CT1 and CT2 are current transformers, which collect the three-phase current values of the input side and the load side respectively;
  • FSBY1 and FSBY2 are the first group of reverse transformers and the second group of reverse transformers, used to generate the reverse of the three-phase voltage Voltage;
  • KTDK1 and KTDK2 are the first group of adjustable reactors and the second group of adjustable reactors, of which Kx1 to Kxn are the first group of adjustable reactor reactance selection control contactors, and Ky1 to Kyn are the second group of adjustable reactors Reactor reactance selection control contactor;
  • KM1, KM2, KM3 are the first group of reverse transformer phase selection control contactors;
  • KM4, KM5, KM6 are the first group of forward voltage phase selection control contactors;
  • KM7, KM8, KM9 are The second group of reverse transformer phase selection control contactors;
  • KM10, KM11, KM12 are the second group of forward voltage phase selection control contactors;
  • Figure 2 is a schematic diagram of the main circuit capacitor adjustment principle of the present invention.
  • CT3 and CT4 are current transformers, which collect the three-phase current values of the input side and the load side respectively;
  • FSBY3 and FSBY4 are the first group of reverse transformers and the second group of reverse transformers, used to generate the reverse of the three-phase voltage Voltage;
  • KTDR1 and KTDR2 are the first group of adjustable capacitors and the second group of adjustable capacitors, among which Kz1 to Kzn are the first group of adjustable capacitor capacitance selection control contactors, and Kf1 to Kfn are the second group of adjustable capacitor capacitance selection Control contactor;
  • KM13, KM14, KM15 are the first group of reverse transformer phase selection control contactors;
  • KM16, KM17, KM18 are the first group of forward voltage phase selection control contactors;
  • KM19, KM20, KM21 are the second group of reverse Phase transformer phase selection control contactor;
  • KM22, KM23, KM24 are the second group of forward voltage phase selection control contactor
  • Figure 3 is a schematic diagram of the common regulation of the main circuit capacitor and reactor of the present invention.
  • CT5 and CT6 are current transformers, which collect the three-phase current values of the input side and the load side respectively;
  • FSBY5 and FSBY6 are the first group of reverse transformers and the second group of reverse transformers, used to generate the reverse of the three-phase voltage Voltage;
  • KTDK3 and KTDR3 are the first group of adjustable reactors and the second group of adjustable capacitors respectively, of which Kj1 to Kjn are the first group of adjustable reactor reactance selection control contactors, and Ks1 to Ksn are the second group of adjustable capacitors Capacitor selection control contactor;
  • KM25, KM26, KM27 are the first group of reverse transformer phase selection control contactors;
  • KM28, KM29, KM30 are the first group of forward voltage phase selection control contactors;
  • KM31, KM32, KM33 are the second group Group of phase-selection control contactors for inverting transformers;
  • KM34, KM34, KM36 are the
  • FIG. 1 shows an energy-saving three-phase active current fully automatic balancing circuit structure of the present invention, including three-phase voltage (UA, UB, UC), neutral line (UN) and current transformer (CT1) , CT2), inverting transformer (FSBY1, FSBY2), adjustable reactor (KTDK1, KTDK2), contactor (KM1 ⁇ KM12);
  • the inlet ends of KM1, KM2, and KM3 are connected to the three-phase voltages UA, UB, UC respectively; the outlet ends of KM1, KM2, and KM3 are connected together with the upper tap of the primary coil of the reverse transformer FSBY1; the primary coil of the reverse transformer FSBY1 The lower tap of the coil and the lower tap of the secondary coil are connected to the neutral line; the upper tap of the secondary coil of the reverse transformer FSBY1 is connected to the inlet end of the adjustable reactor KTDK1; the outlet end of the adjustable reactor KTDK1 is connected to KM4, KM5 ⁇ Connect the outlet end of KM6; the inlet end of KM4, KM5, KM6 are respectively connected to the three-phase voltage UA, UB, UC;
  • the inlet ends of KM7, KM8, and KM9 are respectively connected to the three-phase voltages UA, UB, UC; the outlet ends of KM7, KM8, and KM9 are connected together with the upper tap of the primary coil of the reverse transformer FSBY2; the primary coil of the reverse transformer FSBY2 The lower tap of the coil and the lower tap of the secondary coil are connected to the neutral line; the upper tap of the secondary coil of the reverse transformer FSBY2 is connected to the inlet end of the adjustable reactor KTDK2; the outlet end of the adjustable reactor KTDK2 is connected to KM10, KM11 , KM12's outlet end is connected; KM10, KM11, KM12's inlet end is respectively connected to the three-phase voltage UA, UB, UC.
  • the first method of adjusting active current is to use adjustable reactor to adjust:
  • the balancing device When the load on the load side is started, the balancing device is in an unregulated state. When the load is running smoothly and there is no fault in each link, the adjustment phase is entered manually or automatically by the system. As shown in Figure 1, the three-phase current on the load side collected by the current transformer CT1, and the three-phase voltage and three-phase active power collected by the meter are used to calculate the active components of the three-phase current on the load side, namely the three-phase active current IpA1. IpB1, IpC1. And calculate the average value of the three-phase active current Ipar1.
  • Phase A remains unchanged, Phase B needs to be increased, Phase C needs to be reduced
  • Phase A remains unchanged, Phase B needs to be reduced, Phase C needs to be increased
  • Phase A needs to increase, Phase B remains unchanged, Phase C needs to decrease
  • a phase needs to be reduced, B phase remains unchanged, and C phase needs to increase
  • Phase A needs to be reduced, Phase B needs to be increased, Phase C remains unchanged
  • Phase A needs to increase, Phase B needs to decrease, Phase C remains unchanged
  • Phase A needs to increase
  • Phase B needs to increase
  • Phase C needs to decrease
  • Phase A needs to increase
  • Phase B needs to decrease
  • Phase C needs to increase
  • a phase needs to be increased, B phase needs to be reduced, and C phase needs to be reduced
  • a phase needs to be reduced, B phase needs to increase, C phase needs to increase
  • a phase needs to be reduced, B phase needs to be reduced, and C phase needs to be increased
  • a phase needs to be reduced, B phase needs to be increased, and C phase needs to be reduced
  • the adjustable reactor adjustment method is divided into three modes, that is, the A-phase active current increases and the C-phase active current decreases, the B-phase active current increases, and the A-phase active current decreases, and the C-phase active current increases.
  • the B-phase active current decreases.
  • phase A needs to increase, phase B needs to increase, phase C needs to decrease
  • the phase with the largest adjustment value is selected as the benchmark, where the adjusted value of phase C is equal to the sum of the adjusted values of phase A and phase B. Therefore, based on the adjustment of phase C, select the mode in which the active current of phase A increases and the active current of phase C decreases among the above three modes.
  • the KM1 and KM6 contactors in Figure 1 are pulled in, and then the value of the reduced current of phase C is calculated.
  • the C-phase active current is adjusted.
  • phase C will remain unchanged, phase A needs to be reduced, phase B needs to be increased, the value of the increased and decreased active current is IptB1, and then use the three modes in which the B-phase active current increases and the A-phase active current decreases.
  • the three-phase current on the input side collected by the current transformer CT2 and the three-phase voltage and three-phase active power collected by the meter are used to calculate the three-phase active current on the input side to determine whether the balance standard is reached. Continue the above actions to make fine adjustments until the balance standard is reached. After reaching the balance standard, keep the current state and monitor the active current in real time, and adjust it in real time.
  • any three-phase active current unbalanced state can be solved, in which the phase-connected forward voltage phase selection control contactor that needs to reduce the active current is selected to select the corresponding phase.
  • the phase selection control contactor selects the corresponding phase line.
  • FIG 2 it shows an energy-saving three-phase active current fully automatic balancing circuit structure of the present invention, including three-phase voltage (UA, UB, UC), neutral line (UN) and current transformer (CT3) , CT4), inverter transformers (FSBY3, FSBY4), adjustable capacitors (KTDR1, KTDR2), contactors KM13 ⁇ KM24);
  • the inlet ends of KM13, KM14, and KM15 are respectively connected to the three-phase voltages UA, UB, UC; the outlet ends of KM13, KM14, and KM15 are connected together with the upper tap of the primary coil of the reverse transformer FSBY3; the primary coil of the reverse transformer FSBY3 The lower tap of the coil and the lower tap of the secondary coil are connected to the neutral line; the upper tap of the secondary coil of the reverse transformer FSBY3 is connected to the inlet end of the adjustable capacitor KTDR1; the outlet end of the adjustable capacitor KTDR1 is connected to KM16, KM17, KM18 The outlet end of KM16, KM17, KM18 are connected to the three-phase voltage UA, UB, UC respectively;
  • the inlet ends of KM19, KM20, and KM21 are respectively connected to the three-phase voltages UA, UB, UC; the outlet ends of KM19, KM20, and KM21 are connected together with the upper tap of the primary coil of the reverse transformer FSBY4; the primary coil of the reverse transformer FSBY4 The lower tap of the coil and the lower tap of the secondary coil are connected to the neutral line; the upper tap of the secondary coil of the reverse transformer FSBY4 is connected to the inlet end of the adjustable capacitor KTDR2; the outlet end of the adjustable capacitor KTDR2 is connected to KM22, KM23, KM24 Connect the outlet ends of KM22, KM23, and KM24 to the three-phase voltages UA, UB, and UC respectively.
  • the second method of adjusting the active current is to use an adjustable capacitor to adjust:
  • the balancing device When the load on the load side is started, the balancing device is in an unregulated state. When the load is running smoothly and there is no fault in each link, the adjustment phase is entered manually or automatically by the system. As shown in Figure 2, the load-side three-phase current collected by the current transformer CT3, and the three-phase voltage and three-phase active power collected by the meter are used to calculate the active component of the load-side three-phase current, namely the three-phase active current IpA2. IpB2, IpC2. And calculate the average value of the three-phase active current Ipar2.
  • Phase A remains unchanged, Phase B needs to be increased, Phase C needs to be reduced
  • Phase A remains unchanged, Phase B needs to be reduced, Phase C needs to be increased
  • Phase A needs to increase, Phase B remains unchanged, Phase C needs to decrease
  • a phase needs to be reduced, B phase remains unchanged, and C phase needs to increase
  • Phase A needs to be reduced, Phase B needs to be increased, Phase C remains unchanged
  • Phase A needs to increase, Phase B needs to decrease, Phase C remains unchanged
  • Phase A needs to increase
  • Phase B needs to increase
  • Phase C needs to decrease
  • Phase A needs to increase
  • Phase B needs to decrease
  • Phase C needs to increase
  • a phase needs to be increased, B phase needs to be reduced, and C phase needs to be reduced
  • a phase needs to be reduced, B phase needs to increase, C phase needs to increase
  • a phase needs to be reduced, B phase needs to be reduced, and C phase needs to be increased
  • a phase needs to be reduced, B phase needs to be increased, and C phase needs to be reduced
  • adjustable capacitor adjustment it can be divided into three modes, namely, A-phase active current decreases and C-phase active current increases, B-phase active current decreases, A-phase active current increases, and C-phase active current decreases and B-phase active current increases.
  • After calculating the active current that needs to be adjusted for the three-phase active current determine the absolute value of IptA2, IptB2, IptC2 and the direction (increase or decrease) of the three-phase adjustment.
  • phase A needs to increase, phase B needs to increase, phase C needs to decrease
  • the phase with the largest adjustment value is selected as the benchmark, where the adjusted value of phase C is equal to the sum of the adjusted values of phase A and phase B. Therefore, based on the adjustment of phase C, select the mode in which the active current of phase C decreases and the active current of phase B increases among the above three modes, and the KM15 and KM17 contactors in Figure 2 are pulled in, and then calculated according to the value of the reduced current of phase C
  • the C-phase active current is adjusted. After adjustment, it will change into phase C unchanged, phase A needs to increase, and phase B needs to decrease.
  • the increased and decreased active current value is IptA2, and then the three modes are used to reduce the B-phase active current and the A-phase active current increases.
  • the three-phase current on the input side collected by the current transformer CT4, and the three-phase voltage and three-phase active power collected by the meter are used to calculate the three-phase active current on the input side to determine whether the balance standard is reached. Continue the above actions to make fine adjustments until the balance standard is reached. After reaching the balance standard, keep the current state and monitor the active current in real time for real-time adjustment.
  • any three-phase active current unbalanced state can be solved, in which the phase selection control contactor of the phase connection forward voltage that needs to increase the active current selects the corresponding phase line , Need to reduce the active current of the phase-connected inverting transformer phase selection control contactor to select the corresponding phase line.
  • FIG 3 it shows an energy-saving three-phase active current fully automatic balancing circuit structure of the present invention, including three-phase voltage (UA, UB, UC), neutral line (UN) and current transformer (CT5) , CT6), inverting transformer (FSBY5, FSBY6), adjustable reactor (KTDK3), adjustable capacitor (KTDR3), contactor KM25 ⁇ KM36);
  • the inlet ends of KM25, KM26, and KM27 are respectively connected to the three-phase voltages UA, UB, UC; the outlet ends of KM25, KM26, and KM27 are connected together with the upper tap of the primary coil of the reverse transformer FSBY5; the primary coil of the reverse transformer FSBY5 The lower tap of the coil and the lower tap of the secondary coil are connected to the neutral line; the upper tap of the secondary coil of the reverse transformer FSBY5 is connected to the inlet end of the adjustable reactor KTDK3; the outlet end of the adjustable reactor KTDK3 is connected to KM28, KM29 , The outlet end of KM30 is connected; the inlet end of KM28, KM29, KM30 is connected to the three-phase voltage UA, UB, UC respectively;
  • the inlet ends of KM31, KM32, and KM33 are respectively connected to the three-phase voltages UA, UB, UC; the outlet ends of KM31, KM32, and KM33 are connected together with the upper tap of the primary coil of the reverse transformer FSBY6; the primary coil of the reverse transformer FSBY6 The lower tap of the coil and the lower tap of the secondary coil are connected to the neutral line; the upper tap of the secondary coil of the reverse transformer FSBY6 is connected to the inlet end of the adjustable capacitor KTDR3; the outlet end of the adjustable capacitor KTDR3 is connected to KM34, KM35, KM36 Connect the outlet ends of KM34, KM35, and KM36 to the three-phase voltages UA, UB, and UC respectively.
  • the third method of adjusting active current is to use adjustable capacitors and adjustable reactors to adjust:
  • the balancing device When the load on the load side is started, the balancing device is in an unregulated state. When the load is running smoothly and there is no fault in each link, the adjustment phase is entered manually or automatically by the system. As shown in Figure 3, the load-side three-phase current collected by the CT5 of the current transformer, the three-phase voltage and three-phase active power and other electrical parameters collected by the meter are used to calculate the active component of the load-side three-phase current, namely the three-phase active current IpA3, IpB3, IpC3. And calculate the average value of the three-phase active current Ipar3.
  • Phase A remains unchanged, Phase B needs to be increased, Phase C needs to be reduced
  • Phase A remains unchanged, Phase B needs to be reduced, Phase C needs to be increased
  • Phase A needs to increase, Phase B remains unchanged, Phase C needs to decrease
  • a phase needs to be reduced, B phase remains unchanged, and C phase needs to increase
  • Phase A needs to be reduced, Phase B needs to be increased, Phase C remains unchanged
  • Phase A needs to increase, Phase B needs to decrease, Phase C remains unchanged
  • Phase A needs to increase
  • Phase B needs to increase
  • Phase C needs to decrease
  • Phase A needs to increase
  • Phase B needs to decrease
  • Phase C needs to increase
  • a phase needs to be increased, B phase needs to be reduced, and C phase needs to be reduced
  • a phase needs to be reduced, B phase needs to increase, C phase needs to increase
  • a phase needs to be reduced, B phase needs to be reduced, and C phase needs to be increased
  • a phase needs to be reduced, B phase needs to be increased, and C phase needs to be reduced
  • adjustable capacitors and adjustable reactors to adjust the way, divided into six modes, you can adjust the capacitor three A-phase active current reduce C-phase active current increase, B-phase active current reduce A-phase active current increase, C-phase active current
  • the current decreases and the B-phase active current increases; the three types of A-phase active currents of adjustable reactors increase.
  • the C-phase active current decreases, the B-phase active current increases, and the A-phase active current decreases, and the C-phase active current increases.
  • the B-phase active current decreases. After calculating the active current that needs to be adjusted for the three-phase active current, determine the absolute value of IptA3, IptB3, IptC3 and the direction (increase or decrease) of the three-phase adjustment.
  • phase A needs to increase, phase B needs to increase, phase C needs to decrease
  • the phase with the largest adjustment value is selected as the benchmark, where the adjusted value of phase C is equal to the sum of the adjusted values of phase A and phase B. Therefore, based on the adjustment of phase C, select the mode in which the active current of phase C of the adjustable reactor decreases and the active current of phase A increases among the above six modes.
  • the KM25 and KM30 contactors in Figure 3 are pulled in, and then the current is increased according to the phase A.
  • using the three modes in the adjustable capacitor mode and the three modes in the adjustable reactor mode can solve any three-phase active current imbalance state, in which the active current needs to be increased in the adjustable capacitor mode Select the corresponding phase line for the phase-connected forward voltage phase selection control contactor, and select the corresponding phase line for the phase-connected inverting transformer phase selection control contactor that needs to reduce the active current; among them, the adjustable reactor mode needs to reduce the active current
  • the phase-connected forward voltage phase selection control contactor selects the corresponding phase line, and the phase-connected reverse transformer phase selection control contactor that needs to increase the active current selects the corresponding phase line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了节能型三相有功电流全自动平衡电路结构及控制方法,它涉及电力行业技术领域。该电路结构包括三相电压、零线、电流互感器、反相变压器、可调电抗器、可调电容器、接触器。本发明通过控制电路结构中各接触器的闭合与断开,实现了实时、动态、精准地调整三相有功电流,提高动态电流的平衡性,并降低了产品功耗,节约能源,使配电变压器的三相负荷电流实现平衡、三相电压平衡、功率因数合格,符合国家要求。

Description

节能型三相有功电流全自动平衡电路结构及控制方法 技术领域
本发明涉及电力行业技术领域,具体涉及一种节能型三相有功电流全自动平衡电路结构及控制方法。
背景技术
低压电网三相不平衡电流是一种普遍存在的现象。由于用户接入随机性和投入不同时性造成三相负荷不平衡,三相线路流过的电流有可能差别很大,造成零线流过的电流也很大,引起严重的供电电压质量及损耗。三相负荷不平衡将增加电网损耗,严重影响供电质量,三相不平衡是一直困扰供电单位的主要问题。
为了解决三相不平衡电流,现阶段对用户侧传统方案大多采用单相电容器分相补偿、通过换相装置、人工调相的办法。电容补偿是对电流较大的相多投补偿电容,对电流小的相少投甚至不投补偿电容,以达到平衡三相电流的目的,但是这种方法得不到良好的补偿,并且依然会有零序电流;换相装置需要在用户或线路上安装负荷切换开关,成本高,切换时会出现断电现象,对用户用电影响严重;人工调相难以获取用户负荷数据,调相工作量大,效果不明显。三种方式均不可取。目前一些治理三相不平衡设备再调节过程中会产生大量谐波,会增加配电变压器电能损耗及线路损耗等额外的能量损耗,同时对输电网络造成污染,提高了电力设备及负荷设备的损坏率,大大的降低了用电系统的安全性。
发明内容
针对现有技术上存在的不足,本发明的目的在于提供一种可以解决供电网络三相有功电流严重不平衡的节能型三相有功电流全自动平衡电路结构及控制方法。
为了实现上述目的,本发明是通过如下的技术方案来实现:
节能型三相有功电流全自动平衡电路结构,包括三相电压、零线、电流互感器、反相变压器、可调电抗器、可调电容器、接触器;
第一组反相变压器选相控制接触器的进线端分别与三相电压连接;第一组反相变压器选相控制接触器的出线端接在一起与第一组反向变压器的一次线圈上抽头连接;第一组反向变压器的一次线圈下抽头和二次线圈的下抽头连接共同接到零线上;第一组反向变压器二次线圈上抽头接第一组可调电抗器或第一组可调电容器的进线端;第一组可调电抗器或第一组可调电容器的出线端与第一组正向电压选相控制接触器的出线端连接;第一组正向电压选相控制接触器的进线端分别与三相电压连接;
第二组反相变压器选相控制接触器的进线端分别与三相电压连接;第二组反相变压器选相控制接触器的出线端接在一起与第二组反向变压器的一次线圈上抽头连接;第二组反向变压器的一次线圈下抽头和二次线圈的下抽头连接共同接到零线上;第二组反向变压器二次线圈上抽头接第二组可调电抗器或第二组可调电容器的进线端;第二组可调电抗器或第二组可调电容器的出线端与第二组正向电压选相控制接触器的出线端连接;第二组正向电压选相控制接触器的进线端分别与三相电压连接。
节能型三相有功电流全自动平衡电路结构的控制方法,所述控制方法是根据采集的负荷侧的电参数,分析计算得出负荷侧三相有功电流并计算出三相有功电流的平均值;
将三相有功电流与得出的有功电流平均值进行比较,判断出每一相有功电流需要增加或减少的有功电流值,根据得出的数据判断两路反向自耦变压器分别接入的相电压,并将反向电压接入可调电抗器或可调电容器的一端,以及可调电抗器或可调电容器的另一端分别接入需要接入的相电压,这一过程通过控制对应接触器的闭合与断开来实现;
再根据得出的数据判断两路可调电抗器或可调电容器需要调整的值,并通过控制对应接触器的闭合与断开来实现;
调整完毕后,通过采集输入侧的电参数,分析计算得出输入侧三相有功电流并判断三相有功电流的平衡度,超出平衡度标准反馈进行调正,达到平衡度标准保持当前状态并实时监测。
相较于现有技术,本发明的有益效果在于:
本发明通过控制电路结构中各接触器的闭合与断开,实现了实时、动态、 精准地调整三相有功电流,提高动态电流的平衡性,并降低了产品功耗,节约能源,使配电变压器的三相负荷电流实现平衡、三相电压平衡、功率因数合格,符合国家要求。
本发明所提出的节能型三相有功电流全自动平衡电路结构可实时动态调节三相有功电流大小,达到三相输入有功电流平衡;本发明实时对供电线路的三相电流进行监测,能够全面反映负荷情况及输电线路情况,及时精准的调整三相有功电流,大大提高了动态电流调整的准确性与平衡度。
本发明是节能型电路结构,无电子开关与高频量合成,运行过程中不产生谐波,不会对电网造成高频污染,也不会产生附加损耗和干扰等情况,并且产品自身功耗低,节约能源,提高了装置的扩展性,有较高的推广应用价值和社会经济效益。
本发明由于调整条件少,进入平衡状态较快,工作状态稳定,同时,维护量小,减少了运行成本,运行(使用期)结束,残值较高。
本发明节能型三相有功电流全自动平衡电路结构通过调节三相输入有功电流的平衡度,真正意义上实现了高低压电网三相电流平衡,并提高电能质量,降低线路损耗,降低配电变压器电能损耗,提高配电变压器的供电效率,延长配电变压器等电力设备使用寿命。
附图说明
下面结合附图和具体实施方式来详细说明本发明:
图1为本发明的主电路电抗器调节原理图;
其中:CT1和CT2为电流互感器,分别采集输入侧与负荷侧三相电流值;FSBY1和FSBY2分别为第一组反向变压器和第二组反向变压器,用来产生三相电压的反向电压;KTDK1和KTDK2分别为第一组可调电抗器和第二组可调电抗器,其中Kx1到Kxn为第一组可调电抗器电抗选择控制接触器,Ky1到Kyn为第二组可调电抗器电抗选择控制接触器;KM1、KM2、KM3为第一组反相变压器选相控制接触器;KM4、KM5、KM6为第一组正向电压选相控制接触器;KM7、KM8、KM9为第二组反相变压器选相控制接触器;KM10、KM11、KM12为第二组正向电压选相控制接触器;UA、UB、UC代表三相电 压,UN代表零线。
图2为本发明的主电路电容器调节原理图;
其中:CT3和CT4为电流互感器,分别采集输入侧与负荷侧三相电流值;FSBY3和FSBY4分别为第一组反向变压器和第二组反向变压器,用来产生三相电压的反向电压;KTDR1和KTDR2分别为第一组可调电容器和第二组可调电容器,其中Kz1到Kzn为第一组可调电容器电容选择控制接触器,Kf1到Kfn为第二组可调电容器电容选择控制接触器;KM13、KM14、KM15为第一组反相变压器选相控制接触器;KM16、KM17、KM18为第一组正向电压选相控制接触器;KM19、KM20、KM21为第二组反相变压器选相控制接触器;KM22、KM23、KM24为第二组正向电压选相控制接触器;UA、UB、UC代表三相电压,UN代表零线。
图3为本发明的主电路电容器和电抗器共同调节原理图;
其中:CT5和CT6为电流互感器,分别采集输入侧与负荷侧三相电流值;FSBY5和FSBY6分别为第一组反向变压器和第二组反向变压器,用来产生三相电压的反向电压;KTDK3和KTDR3分别为第一组可调电抗器和第二组可调电容器,其中Kj1到Kjn为第一组可调电抗器电抗选择控制接触器,Ks1到Ksn为第二组可调电容器电容选择控制接触器;KM25、KM26、KM27为第一组反相变压器选相控制接触器;KM28、KM29、KM30为第一组正向电压选相控制接触器;KM31、KM32、KM33为第二组反相变压器选相控制接触器;KM34、KM34、KM36为第二组正向电压选相控制接触器;UA、UB、UC代表三相电压,UN代表零线。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
实施例1:
如图1所示,其示出了本发明的一种节能型三相有功电流全自动平衡电路结构,包括三相电压(UA、UB、UC)、零线(UN)和电流互感器(CT1、CT2),反相变压器(FSBY1、FSBY2)、可调电抗器(KTDK1、KTDK2)、接触器(KM1~KM12);
KM1、KM2、KM3的进线端分别与三相电压UA、UB、UC连接;KM1、KM2、KM3的出线端接在一起与反向变压器FSBY1的一次线圈上抽头连接;反向变压器FSBY1的一次线圈下抽头和二次线圈的下抽头连接共同接到零线上;反向变压器FSBY1二次线圈上抽头接可调电抗器KTDK1的进线端;可调电抗器KTDK1的出线端与KM4、KM5、KM6的出线端连接;KM4、KM5、KM6的进线端分别与三相电压UA、UB、UC连接;
KM7、KM8、KM9的进线端分别与三相电压UA、UB、UC连接;KM7、KM8、KM9的出线端接在一起与反向变压器FSBY2的一次线圈上抽头连接;反向变压器FSBY2的一次线圈下抽头和二次线圈的下抽头连接共同接到零线上;反向变压器FSBY2二次线圈上抽头接可调电抗器KTDK2的进线端;可调电抗器KTDK2的出线端与KM10、KM11、KM12的出线端连接;KM10、KM11、KM12的进线端分别与三相电压UA、UB、UC连接。
调整有功电流方法一,利用可调电抗器调整:
当负荷侧负载启动后,此时平衡装置处于不调节状态,当负荷平稳运行并检测各环节没有故障后由人工或者系统自动进入调整阶段。如图1,通过电流互感器CT1采集的负荷侧三相电流,通过仪表采集的三相电压和三相有功功率等电参数,计算出负荷侧三相电流的有功分量即三相有功电流IpA1、IpB1、IpC1。并计算得出三相有功电流的平均值Ipar1。用三相有功电流IpA1、IpB1、IpC1减去三相有功电流的平均值Ipar1,分别得出三相有功电流需要调整的有功电流值IptA1、IptB1、IptC1(IptA1、IptB1、IptC1为差值的绝对值),其中小于平均值Ipar1的相代表需要增加的量值,大于平均值Ipar1的相代表需要减少的量值(增加的量之和等于减少的量之和)。判断得出12种可能调整的情况:
1.A相不变、B相需增加、C相需减少
2.A相不变、B相需减少、C相需增加
3.A相需增加、B相不变、C相需减少
4.A相需减少、B相不变、C相需增加
5.A相需减少、B相需增加、C相不变
6.A相需增加、B相需减少、C相不变
7.A相需增加、B相需增加、C相需减少
8.A相需增加、B相需减少、C相需增加
9.A相需增加、B相需减少、C相需减少
10.A相需减少、B相需增加、C相需增加
11.A相需减少、B相需减少、C相需增加
12.A相需减少、B相需增加、C相需减少
利用可调电抗器调整的方式,分为三种模式,即A相有功电流增加C相有功电流减少、B相有功电流增加A相有功电流减少、C相有功电流增加B相有功电流减少。当计算好三相有功电流需要调整的有功电流后,判断IptA1、IptB1、IptC1绝对值的大小以及三相分别调整的方向(增加或者减少)。
举例一种情况(A相需增加、B相需增加、C相需减少)进行调整,选取需要调整值最大的相为基准,其中C相调整的值等于A相、B相调整值之和,所以以C相调整为基准,上述三种模式中选择A相有功电流增加C相有功电流减少的模式,将图1中KM1、KM6接触器吸合,再根据C相减少电流的值,计算出可调电抗器KTDK1需要输出的电流值I1(I1=IptC1/cos30°),并调整对应的接触器(Kx1到Kxn)吸合与断开,接触器动作完成后C相有功电流调整完毕。调整后会变成C相不变、A相需减少、B相需增加,增加和减少的有功电流值为IptB1,再利用三种模式中B相有功电流增加A相有功电流减少的模式,将图1中KM8、KM10接触器吸合,再根据B相减少电流的值,计算出可调电抗器KTDK2需要输出的电流值I2(I2=IptB1/cos30°),并调整对应的接触器(Ky1到Kyn)吸合与断开,接触器动作完成后A相与B相有功电流也调整完毕。调整完成后,通过电流互感器CT2采集的输入侧三相电流,通过仪表采集的三相电压和三相有功功率等电参数,计算出输入侧三相有功电流,判断是否达到平衡标准,没达到继续以上动作进行微调直至达到平衡标准,达到后保持当前状态并实时监测有功电流,实时调整。
根据以上举例,利用上述可调电抗器方式中的三种模式,可以解决任意一种三相有功电流不平衡状态,其中需要减少有功电流的相接正向电压选相控制接触器选择对应的相线、需要增加有功电流的相接反相变压器选相控制接触器选择对应的相线。
实施例2:
如图2所示,其示出了本发明的一种节能型三相有功电流全自动平衡电路结构,包括三相电压(UA、UB、UC)、零线(UN)和电流互感器(CT3、CT4),反相变压器(FSBY3、FSBY4)、可调电容器(KTDR1、KTDR2)、接触器KM13~KM24);
KM13、KM14、KM15的进线端分别与三相电压UA、UB、UC连接;KM13、KM14、KM15的出线端接在一起与反向变压器FSBY3的一次线圈上抽头连接;反向变压器FSBY3的一次线圈下抽头和二次线圈的下抽头连接共同接到零线上;反向变压器FSBY3二次线圈上抽头接可调电容器KTDR1的进线端;可调电容器KTDR1的出线端与KM16、KM17、KM18的出线端连接;KM16、KM17、KM18的进线端分别与三相电压UA、UB、UC连接;
KM19、KM20、KM21的进线端分别与三相电压UA、UB、UC连接;KM19、KM20、KM21的出线端接在一起与反向变压器FSBY4的一次线圈上抽头连接;反向变压器FSBY4的一次线圈下抽头和二次线圈的下抽头连接共同接到零线上;反向变压器FSBY4二次线圈上抽头接可调电容器KTDR2的进线端;可调电容器KTDR2的出线端与KM22、KM23、KM24的出线端连接;KM22、KM23、KM24的进线端分别与三相电压UA、UB、UC连接。
调整有功电流方法二,利用可调电容器调整:
当负荷侧负载启动后,此时平衡装置处于不调节状态,当负荷平稳运行并检测各环节没有故障后由人工或者系统自动进入调整阶段。如图2,通过电流互感器CT3采集的负荷侧三相电流,通过仪表采集的三相电压和三相有功功率等电参数,计算出负荷侧三相电流的有功分量即三相有功电流IpA2、IpB2、IpC2。并计算得出三相有功电流的平均值Ipar2。用三相有功电流IpA2、IpB2、IpC2减去三相有功电流的平均值Ipar2,分别得出三相有功电流需要调整的有功电流值IptA2、IptB2、IptC2(IptA2、IptB2、IptC2为差值的绝对值),其中小于平均值Ipar2的相代表需要增加的量值,大于平均值Ipar2的相代表需要减少的量值(增加的量之和等于减少的量之和)。判断得出12种可能调整的情况:
1.A相不变、B相需增加、C相需减少
2.A相不变、B相需减少、C相需增加
3.A相需增加、B相不变、C相需减少
4.A相需减少、B相不变、C相需增加
5.A相需减少、B相需增加、C相不变
6.A相需增加、B相需减少、C相不变
7.A相需增加、B相需增加、C相需减少
8.A相需增加、B相需减少、C相需增加
9.A相需增加、B相需减少、C相需减少
10.A相需减少、B相需增加、C相需增加
11.A相需减少、B相需减少、C相需增加
12.A相需减少、B相需增加、C相需减少
利用可调电容器调整的方式,分为三种模式,即A相有功电流减少C相有功电流增加、B相有功电流减少A相有功电流增加、C相有功电流减少B相有功电流增加。当计算好三相有功电流需要调整的有功电流后,判断IptA2、IptB2、IptC2绝对值的大小以及三相分别调整的方向(增加或者减少)。
举例一种情况(A相需增加、B相需增加、C相需减少)进行调整,选取需要调整值最大的相为基准,其中C相调整的值等于A相、B相调整值之和,所以以C相调整为基准,上述三种模式中选择C相有功电流减少B相有功电流增加的模式,将图2中KM15、KM17接触器吸合,再根据C相减少电流的值,计算出可调电容器KTDR1需要输出的电流值I3(I3=IptC2/cos30°),并调整对应的接触器(Kz1到Kzn)吸合与断开,接触器动作完成后C相有功电流调整完毕。调整后会变成C相不变、A相需增加、B相需减少,增加和减少的有功电流值为IptA2,再利用三种模式中B相有功电流减少A相有功电流增加的模式,将图2中KM20、KM22接触器吸合,再根据A相减少电流的值,计算出可调电容器KTDR2需要输出的电流值I4(I4=IptA2/cos30°),并调整对应的接触器(Kf1到Kfn)吸合与断开,接触器动作完成后A相与B相有功电流也调整完毕。调整完成后,通过电流互感器CT4采集的输入侧三相电流,通过仪表采集的三相电压和三相有功功率等电参数,计算出输入侧三相有功电流,判断是否达到平衡标准,没达到继续以上动作进行微调直至达到平衡标准, 达到后保持当前状态并实时监测有功电流,实时调整。
根据以上举例,利用上述可调电容器方式中的三种模式,可以解决任意一种三相有功电流不平衡状态,其中需要增加有功电流的相接正向电压选相控制接触器选择对应的相线、需要减少有功电流的相接反相变压器选相控制接触器选择对应的相线。
实施例3:
如图3所示,其示出了本发明的一种节能型三相有功电流全自动平衡电路结构,包括三相电压(UA、UB、UC)、零线(UN)和电流互感器(CT5、CT6),反相变压器(FSBY5、FSBY6)、可调电抗器(KTDK3)、可调电容器(KTDR3)、接触器KM25~KM36);
KM25、KM26、KM27的进线端分别与三相电压UA、UB、UC连接;KM25、KM26、KM27的出线端接在一起与反向变压器FSBY5的一次线圈上抽头连接;反向变压器FSBY5的一次线圈下抽头和二次线圈的下抽头连接共同接到零线上;反向变压器FSBY5二次线圈上抽头接可调电抗器KTDK3的进线端;可调电抗器KTDK3的出线端与KM28、KM29、KM30的出线端连接;KM28、KM29、KM30的进线端分别与三相电压UA、UB、UC连接;
KM31、KM32、KM33的进线端分别与三相电压UA、UB、UC连接;KM31、KM32、KM33的出线端接在一起与反向变压器FSBY6的一次线圈上抽头连接;反向变压器FSBY6的一次线圈下抽头和二次线圈的下抽头连接共同接到零线上;反向变压器FSBY6二次线圈上抽头接可调电容器KTDR3的进线端;可调电容器KTDR3的出线端与KM34、KM35、KM36的出线端连接;KM34、KM35、KM36的进线端分别与三相电压UA、UB、UC连接。
调整有功电流方法三,利用可调电容器和可调电抗器调整:
当负荷侧负载启动后,此时平衡装置处于不调节状态,当负荷平稳运行并检测各环节没有故障后由人工或者系统自动进入调整阶段。如图3,通过电流互感器CT5采集的负荷侧三相电流,通过仪表采集的三相电压和三相有功功率等电参数,计算出负荷侧三相电流的有功分量即三相有功电流IpA3、IpB3、IpC3。并计算得出三相有功电流的平均值Ipar3。用三相有功电流IpA3、IpB3、IpC3减去三相有功电流的平均值Ipar3,分别得出三相有功电流需要调整的有 功电流值IptA3、IptB3、IptC3(IptA3、IptB3、IptC3为差值的绝对值),其中小于平均值Ipar3的相代表需要增加的量值,大于平均值Ipar3的相代表需要减少的量值(增加的量之和等于减少的量之和)。判断得出12种可能调整的情况:
1.A相不变、B相需增加、C相需减少
2.A相不变、B相需减少、C相需增加
3.A相需增加、B相不变、C相需减少
4.A相需减少、B相不变、C相需增加
5.A相需减少、B相需增加、C相不变
6.A相需增加、B相需减少、C相不变
7.A相需增加、B相需增加、C相需减少
8.A相需增加、B相需减少、C相需增加
9.A相需增加、B相需减少、C相需减少
10.A相需减少、B相需增加、C相需增加
11.A相需减少、B相需减少、C相需增加
12.A相需减少、B相需增加、C相需减少
利用可调电容器和可调电抗器调整的方式,分为六种模式,即可调电容器三种A相有功电流减少C相有功电流增加、B相有功电流减少A相有功电流增加、C相有功电流减少B相有功电流增加;可调电抗器三种A相有功电流增加C相有功电流减少、B相有功电流增加A相有功电流减少、C相有功电流增加B相有功电流减少。当计算好三相有功电流需要调整的有功电流后,判断IptA3、IptB3、IptC3绝对值的大小以及三相分别调整的方向(增加或者减少)。
举例一种情况(A相需增加、B相需增加、C相需减少)进行调整,选取需要调整值最大的相为基准,其中C相调整的值等于A相、B相调整值之和,所以以C相调整为基准,上述六种模式中选择可调电抗器C相有功电流减少A相有功电流增加的模式,将图3中KM25、KM30接触器吸合,再根据A相增加电流的值,计算出可调电容器KTDK3需要输出的电流值I5(I5=IptA3/cos30°),并调整对应的接触器(Kj1到Kjn)吸合与断开,接触器动作完成后A相有功电流调整完毕。调整后会变成C相需减少、A相不变、 B相需增加,增加和减少的有功电流值为IptB3,再利用六种模式中可调电容器C相有功电流减少B相有功电流增加的模式,将图3中KM32、KM36接触器吸合,再根据B相增加电流的值,计算出可调电容器KTDR3需要输出的电流值I6(I6=IptB3/cos30°),并调整对应的接触器(Ks1到Ksn)吸合与断开,接触器动作完成后C相与B相有功电流也调整完毕。调整完成后,通过电流互感器CT6采集的输入侧三相电流,通过仪表采集的三相电压和三相有功功率等电参数,计算出输入侧三相有功电流,判断是否达到平衡标准,没达到继续以上动作进行微调直至达到平衡标准,达到后保持当前状态并实时监测有功电流,实时调整。
根据以上举例,利用上述可调电容器方式中的三种模式和可调电抗器方式中的三种模式,可以解决任意一种三相有功电流不平衡状态,其中可调电容器方式中需要增加有功电流的相接正向电压选相控制接触器选择对应的相线、需要减少有功电流的相接反相变压器选相控制接触器选择对应的相线;其中可调电抗器方式中需要减少有功电流的相接正向电压选相控制接触器选择对应的相线、需要增加有功电流的相接反相变压器选相控制接触器选择对应的相线。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

  1. 节能型三相有功电流全自动平衡电路结构,包括三相电压、零线和电流互感器,其特征在于:该电路结构还包括反相变压器、可调电抗器、可调电容器、接触器;
    第一组反相变压器选相控制接触器的进线端分别与三相电压连接;第一组反相变压器选相控制接触器的出线端接在一起与第一组反向变压器的一次线圈上抽头连接;第一组反向变压器的一次线圈下抽头和二次线圈的下抽头连接共同接到零线上;第一组反向变压器二次线圈上抽头接第一组可调电抗器或第一组可调电容器的进线端;第一组可调电抗器或第一组可调电容器的出线端与第一组正向电压选相控制接触器的出线端连接;第一组正向电压选相控制接触器的进线端分别与三相电压连接;
    第二组反相变压器选相控制接触器的进线端分别与三相电压连接;第二组反相变压器选相控制接触器的出线端接在一起与第二组反向变压器的一次线圈上抽头连接;第二组反向变压器的一次线圈下抽头和二次线圈的下抽头连接共同接到零线上;第二组反向变压器二次线圈上抽头接第二组可调电抗器或第二组可调电容器的进线端;第二组可调电抗器或第二组可调电容器的出线端与第二组正向电压选相控制接触器的出线端连接;第二组正向电压选相控制接触器的进线端分别与三相电压连接。
  2. 一种如权利要求1所述的节能型三相有功电流全自动平衡电路结构的控制方法,其特征在于:所述控制方法是根据采集的负荷侧的电参数,分析计算得出负荷侧三相有功电流并计算出三相有功电流的平均值;
    将三相有功电流与得出的有功电流平均值进行比较,判断出每一相有功电流需要增加或减少的有功电流值,根据得出的数据判断两路反向自耦变压器分别接入的相电压,并将反向电压接入可调电抗器或可调电容器的一端,以及可调电抗器或可调电容器的另一端分别接入需要接入的相电压,这一过程通过控制对应接触器的闭合与断开来实现;
    再根据得出的数据判断两路可调电抗器或可调电容器需要调整的值,并通过控制对应接触器的闭合与断开来实现;
    调整完毕后,通过采集输入侧的电参数,分析计算得出输入侧三相有功电 流并判断三相有功电流的平衡度,超出平衡度标准反馈进行调正,达到平衡度标准保持当前状态并实时监测。
PCT/CN2020/081418 2019-08-28 2020-03-26 节能型三相有功电流全自动平衡电路结构及控制方法 WO2021036248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910804457.0A CN110474351A (zh) 2019-08-28 2019-08-28 节能型三相有功电流全自动平衡电路结构及控制方法
CN201910804457.0 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021036248A1 true WO2021036248A1 (zh) 2021-03-04

Family

ID=68513924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081418 WO2021036248A1 (zh) 2019-08-28 2020-03-26 节能型三相有功电流全自动平衡电路结构及控制方法

Country Status (2)

Country Link
CN (1) CN110474351A (zh)
WO (1) WO2021036248A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474351A (zh) * 2019-08-28 2019-11-19 王振铎 节能型三相有功电流全自动平衡电路结构及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1400513A (en) * 1971-10-25 1975-07-16 Acec Inductive circuit systems
SU1515254A1 (ru) * 1987-02-27 1989-10-15 Московское Отделение Научно-Исследовательского Института Постоянного Тока Устройство дл компенсации реактивной мощности
WO2007033599A1 (fr) * 2005-09-26 2007-03-29 Ruitian Su Dispositif d'abonne intelligent et economiseur d'energie de compensation automatique de la puissance reactive
CN102130462A (zh) * 2011-03-18 2011-07-20 杭州得诚电力科技有限公司 用电负荷不平衡智能补偿装置
CN110474351A (zh) * 2019-08-28 2019-11-19 王振铎 节能型三相有功电流全自动平衡电路结构及控制方法
CN210111616U (zh) * 2019-08-28 2020-02-21 王振铎 节能型三相有功电流全自动平衡电路结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1400513A (en) * 1971-10-25 1975-07-16 Acec Inductive circuit systems
SU1515254A1 (ru) * 1987-02-27 1989-10-15 Московское Отделение Научно-Исследовательского Института Постоянного Тока Устройство дл компенсации реактивной мощности
WO2007033599A1 (fr) * 2005-09-26 2007-03-29 Ruitian Su Dispositif d'abonne intelligent et economiseur d'energie de compensation automatique de la puissance reactive
CN102130462A (zh) * 2011-03-18 2011-07-20 杭州得诚电力科技有限公司 用电负荷不平衡智能补偿装置
CN110474351A (zh) * 2019-08-28 2019-11-19 王振铎 节能型三相有功电流全自动平衡电路结构及控制方法
CN210111616U (zh) * 2019-08-28 2020-02-21 王振铎 节能型三相有功电流全自动平衡电路结构

Also Published As

Publication number Publication date
CN110474351A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
CN101807799B (zh) 超级电容储能型电能质量补偿器
CN106972505A (zh) 统一电能质量治理的混合型电力电子变压器及其控制方法
CN109560560A (zh) 一种自决策型三项自平衡负荷过零投切方法
CN106026142B (zh) 三相负荷不平衡补偿方法和系统
CN106487015A (zh) 一种配电网多级协调控制系统及其节能优化方法
WO2021036248A1 (zh) 节能型三相有功电流全自动平衡电路结构及控制方法
CN210111616U (zh) 节能型三相有功电流全自动平衡电路结构
CN108414821B (zh) 基于零序电压的配电变压器低压侧电压三相不平衡评估方法
CN205104912U (zh) 一种新型集中式三相无损耗平衡负荷装置
CN110739701A (zh) 一种低压配电网线路低电压治理系统及治理方法
CN205646829U (zh) 一种交流电压补偿系统
CN209675941U (zh) 串联型电压调节装置
CN207765309U (zh) 一种10kV油浸式智能调压调负荷变压器
Xiao et al. Research of power quality management technology according to distribution network involving electric arc furnace
TWI610508B (zh) 配電變壓器接線三相平衡相位調整方法
CN207475202U (zh) 一种变压器式可控电抗器新型磁集成装置
CN202444265U (zh) 一种中频感应电炉用无源滤波补偿系统
CN2574275Y (zh) 多功能高效节电器
Zhou et al. Coordinated recovery method of multiple DC commutation failure based on stability constraint of sending end system
CN109004672A (zh) 一种提高农网小水电并网点电压质量的方法
CN108767868A (zh) 低压线路有载调压补偿装置
Wang et al. Analysis on Losses of Distribution Network and Countermeasures to Reduce Losses
CN211908375U (zh) 一种混合式静止高压无功动态补偿装置
Li et al. Analysis on losses of distribution network and countermeasures to reduce losses
CN111224413B (zh) 一种三相电不平衡的应急调节系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859372

Country of ref document: EP

Kind code of ref document: A1