WO2021036231A1 - 一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法 - Google Patents

一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法 Download PDF

Info

Publication number
WO2021036231A1
WO2021036231A1 PCT/CN2020/079959 CN2020079959W WO2021036231A1 WO 2021036231 A1 WO2021036231 A1 WO 2021036231A1 CN 2020079959 W CN2020079959 W CN 2020079959W WO 2021036231 A1 WO2021036231 A1 WO 2021036231A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
software
platoon
service status
real
Prior art date
Application number
PCT/CN2020/079959
Other languages
English (en)
French (fr)
Inventor
陆永军
魏祥龙
左利钦
陆彦
王志力
莫思平
刘怀湘
李寿千
朱明成
黄廷杰
薛博升
Original Assignee
水利部交通运输部国家能源局南京水利科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水利部交通运输部国家能源局南京水利科学研究院 filed Critical 水利部交通运输部国家能源局南京水利科学研究院
Publication of WO2021036231A1 publication Critical patent/WO2021036231A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the invention belongs to the technical field of health monitoring and state evaluation of waterway regulation buildings, and in particular relates to a distributed optical fiber-based real-time monitoring and evaluation system and method of the software platoon service state.
  • Soft platoon is a flexible protection measure that is widely used in the protection of beaches and bank slopes in waterway regulation projects.
  • the slopes of the beaches and bank slopes protected by the platoon body are eroded by water.
  • the scouring of the slope foot is likely to cause the deformation and damage of the row body.
  • the technical problem to be solved by the present invention is to address the above-mentioned shortcomings of the prior art, and provide a distributed optical fiber-based real-time monitoring and monitoring of the service status of the software platoon that can remotely, real-time, and dynamically monitor and evaluate the deformation and displacement of the software platoon. Evaluation system and method.
  • a distributed optical fiber-based real-time monitoring and evaluation system for the service status of software platoons including several groups of distributed optical fiber sensors, optical fiber demodulators, switch control modules, terminal computers, wireless transmission modules and solar power supply modules;
  • the distributed optical fiber sensor is fixed on the software row, and is used for real-time collection and transmission of physical signals reflecting the deformation of the software row and the ambient temperature to the optical fiber demodulator;
  • the optical fiber demodulator is connected to the distributed optical fiber sensor through a switch control module, and is used to receive and process the physical signal collected by the distributed optical fiber sensor, and convert the physical signal into an electrical signal;
  • the switch control module is used to control the switch of the optical fiber path
  • the terminal computer is used to send the switch control signal of the optical fiber channel to the switch control module, receive and process the electrical signal sent by the optical fiber demodulator, obtain the deformation information of the software row, and evaluate the software row based on the deformation information of the software row Service status, thereby giving maintenance recommendations;
  • the wireless transmission module is used for wireless transmission of signals between the terminal computer and the switch control module and the optical fiber demodulator;
  • the solar power supply module is used to supply power to the distributed optical fiber sensor, the optical fiber demodulator, the wireless transmission module and the switch control module.
  • the above-mentioned distributed optical fiber sensor includes two parallel optical fibers, which are a strain sensing optical fiber and a temperature compensation optical fiber;
  • the strain sensing optical fiber is used to generate and transmit the soft row deformation signal
  • the temperature compensation optical fiber is used to generate and transmit an ambient temperature signal.
  • strain sensing optical fiber and temperature compensation optical fiber are bound and fixed by the cable tie reserved on the soft row surface, and are arranged on the soft row arrangement synchronously with the soft row ballast block during the construction process.
  • the two parallel optical fiber lines of the above-mentioned distributed optical fiber sensor are independent of each other.
  • the above-mentioned distributed optical fiber sensors are arranged in four groups on the soft row arrangement, one of which is arranged in a U-shape along the edge of the row body, and the other three groups are arranged in parallel in the soft row along the length of the row at equal intervals.
  • the above-mentioned optical fiber demodulator is an optical fiber demodulator capable of measuring fiber deformation based on the Brillouin optical time domain reflection technology.
  • the above-mentioned solar power supply module realizes power supply through an external solar power supply pile.
  • a real-time monitoring and evaluation method for the service status of the software platoon based on a distributed optical fiber-based real-time monitoring and evaluation system for the service status of the software platoon includes the following steps:
  • the distributed optical fiber sensor collects and transmits the physical signal reflecting the deformation of the software row and the ambient temperature to the optical fiber demodulator in real time;
  • the optical fiber demodulator receives and processes the physical signal collected by the distributed optical fiber sensor, converts the physical signal into an electrical signal, and sends it;
  • the wireless transmission module transmits the electrical signal sent by the optical fiber demodulator to the terminal computer;
  • the terminal computer receives and processes the electrical signal sent by the optical fiber demodulator to obtain the deformation information of the software row;
  • S5 The terminal computer evaluates the service status of the software platoon based on the deformation information of the software platoon, and then gives maintenance suggestions.
  • step S5 the terminal computer evaluates the service status of the software platoon based on the deformation information of the software platoon, thereby giving maintenance suggestions, specifically:
  • the ratio of the single-width water damage rate and the water damage area of the row body is calculated
  • the service status of the soft row body is determined, and maintenance recommendations are given.
  • the method for monitoring the service status of the soft platoon proposed in the present invention can remotely, real-time and dynamically monitor the deformation and displacement of the soft platoon;
  • the service status of the soft platoon can be given in real time, ensuring the safety and stability of the soft platoon and the remediation effect;
  • the present invention can fill in the technical shortcomings of the current real-time monitoring and evaluation of the service status of the software platoon, facilitate management personnel to grasp the operating status of the software platoon in real time, promote the construction of intelligent inland waterways, and provide intelligence for the service status of inland waterway improvement buildings Provide reference for the development of perception and multi-source information fusion.
  • Figure 1 is a schematic structural diagram of a real-time monitoring and evaluation system for the service status of a software platoon based on distributed optical fibers of the present invention
  • Fig. 2 is a schematic diagram of the measurement of the drainage water damage index in the embodiment of the present invention.
  • the reference signs are: terminal computer 1, wireless transmission module 2, optical fiber demodulator 3, switch control module 4, solar power supply module 5, and distributed optical fiber sensor 6.
  • a distributed optical fiber-based real-time monitoring and evaluation system for the service status of a software platoon of the present invention includes several groups of distributed optical fiber sensors 6, optical fiber demodulators 3, switch control modules 4, terminal computers 1, Wireless transmission module 2 and solar power supply module 5;
  • the distributed optical fiber sensor 6 is fixed on the software row, and is used for real-time collection and transmission to the optical fiber demodulator 3 to reflect the physical signal of the software row deformation and the ambient temperature;
  • the distributed optical fiber sensor 6 includes two parallel optical fibers, which are a strain sensing optical fiber and a temperature compensation optical fiber;
  • the strain sensing optical fiber is used to generate and transmit the soft row deformation signal
  • the temperature compensation optical fiber is used to generate and transmit an ambient temperature signal.
  • the signals generated by the two optical fibers are transmitted to the optical fiber demodulator 3 for processing, and a digital signal reflecting the deformation information of the soft row can be obtained, and the data is transmitted to the terminal through the wireless transmission module 2
  • the computer 1 performs processing.
  • strain sensing optical fiber and the temperature compensation optical fiber are bound and fixed by the cable tie reserved on the soft row surface, and are arranged on the soft row arrangement synchronously with the soft row ballast block during the construction process.
  • the two parallel optical fiber lines of the distributed optical fiber sensor 6 are independent of each other.
  • the distributed optical fiber sensor 6 is arranged in four groups on the soft row arrangement, one of which is arranged in a U-shape along the edge of the row body, and the other three groups are arranged in parallel along the length of the row in the soft row, and each group is arranged along the row.
  • the width in the width direction is 10.0m.
  • the optical fiber demodulator 3 is connected to the distributed optical fiber sensor 6 through the switch control module 4, and is used to receive and process the physical signal collected by the distributed optical fiber sensor 6, and convert the physical signal into an electrical signal;
  • the fiber demodulator 3 needs to select a fiber demodulator capable of measuring fiber deformation based on the Brillouin optical time domain reflectometry technology, such as NZS-FGB-A02.
  • the switch control module 4 is used to control the switch of the optical fiber path
  • the terminal computer 1 is used to send the switch control signal of the optical fiber path to the switch control module 4, receive and process the electrical signal sent by the optical fiber demodulator 3, obtain the deformation information of the software row, and evaluate the software row based on the deformation information of the software row.
  • the wireless transmission module 2 is used for wireless transmission of signals between the terminal computer 1 and the switch control module 4 and the optical fiber demodulator 3;
  • the solar power supply module 5 is used to supply power to the distributed optical fiber sensor 6, the optical fiber demodulator 3, the wireless transmission module 2, and the switch control module 4.
  • the solar power supply module 5 realizes power supply through an external solar power supply pile.
  • the wireless transmission module 2, the optical fiber demodulator 3, and the switch control module 4 can be placed indoors at a high bank slope, and the solar power supply module 5 can be placed outdoors to provide all-weather power supply for instruments and equipment.
  • the present invention is a distributed optical fiber-based real-time monitoring and evaluation method of the service status of the software platoon, including the following steps:
  • the distributed optical fiber sensor 6 collects and transmits the physical signal reflecting the deformation of the software row and the ambient temperature to the optical fiber demodulator 3 in real time;
  • the optical fiber demodulator 3 receives and processes the physical signal collected by the distributed optical fiber sensor 6, converts the physical signal into an electrical signal and sends it;
  • the wireless transmission module 2 transmits the electrical signal sent by the optical fiber demodulator 3 to the terminal computer 1;
  • the terminal computer 1 receives and processes the electrical signal sent by the optical fiber demodulator 3 to obtain the deformation information of the software row;
  • the terminal computer 1 evaluates the service status of the software platoon based on the deformation information of the software platoon, and then gives maintenance suggestions, specifically:
  • the ratio of the single-width water damage rate and the water damage area of the row body is calculated
  • the service status of the soft row body is determined, and maintenance recommendations are given.
  • the single-width water damage rate is an index used to characterize the degree of water damage of a single section, and is the main indicator for judging whether maintenance is required.
  • the calculation formula is:
  • d cs is the single-width water damage rate
  • l d is the erosion and settlement length of the section.
  • the calculation method is to perform differential analysis on the strain monitoring data of the same monitoring fiber in different periods. The area where the strain difference has a significant change is that For the area where erosion and subsidence occur, the length of this section is determined to be the length of the cross-section erosion; L is the total length of the monitored cross-section.
  • the measured difference can be expressed as a graph.
  • the obvious inflection point of the strain difference along the change curve of the optical cable is the starting and ending point of the erosion settlement of the section.
  • the water-damaged area ratio is an index used to characterize the overall water-damaged extent of the discharged body.
  • the calculation formula is
  • d a is the ratio of water damage area
  • a d is the area of the row body where erosion and settlement occurred, which is the area of the settlement area formed by the line connecting the start and end points of the settlement of the fiber section along the row body section
  • A is the total monitored area.
  • the evaluation index is calculated, and the development trend of the evaluation index is evaluated and early warning, maintenance suggestions are put forward, and the platoon in the intermediate state is repaired in time to ensure the safety of the soft platoon Service status.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法,在软体排服役期间,分布式光纤传感器(6)实时采集并向光纤解调仪(3)输送反映软体排形变和环境温度的物理信号;光纤解调仪(3)接收并处理采集到的物理信号,将物理信号转换为电信号并进行发送;无线传输模块(2)将电信号传输至终端计算机(1);终端计算机(1)接收并处理电信号,得到软体排的变形信息;终端计算机(1)基于软体排的变形信息,评价软体排的服役状态,从而给出维护建议。该系统可填补目前软体排服役状态实时监测与评价的技术短板,方便管理人员实时掌握软体排运行状态,对于内河智能航道建设具有促进作用,并可为内河航道整治建筑物服役状态智能感知及多源信息融合的发展提供参考。

Description

一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法 技术领域
本发明属于航道整治建筑物健康监测及状态评价技术领域,具体涉及一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法。
背景技术
软体排是航道整治工程中边滩、岸坡的防护应用较为广泛的一种柔性防护措施,在实际工程应用中,排体守护下的边滩、岸坡的坡脚由于受到水流的侵蚀,发生坡脚的淘刷,容易造成排体的变形、破坏。
基于上述原因,若能及早发现软体排的变形和初期破坏,便可采取有效措施进行修复,保障软体排的服役状态,大幅度延长其服役寿命。
目前长江航道高边滩排体护滩带服役状态实时监测与稳定性评价存在的短板,如排体变形监测技术不成熟及稳定性评价方法不完善等问题。
发明内容
本发明所要解决的技术问题是针对上述现有技术的不足,提供一种可以远程、实时、动态地监测及评价软体排的变形、变位情况的基于分布式光纤的软体排服役状态实时监测及评价系统和方法。
为实现上述技术目的,本发明采取的技术方案为:
一种基于分布式光纤的软体排服役状态实时监测及评价系统,包括若干组分布式光纤传感器、光纤解调仪、开关控制模块、终端计算机、无线传输模块和太阳能供电模块;
所述分布式光纤传感器固定于软体排上,用于实时采集并向光纤解调仪输送反映软体排形变和环境温度的物理信号;
所述光纤解调仪通过开关控制模块与分布式光纤传感器连接,用于接收并处理所述分布式光纤传感器采集到的物理信号,将物理信号转换为电信号;
所述开关控制模块,用于控制光纤通路的开关;
所述终端计算机,用于向开关控制模块发送光纤通路的开关控制信号,接收并处理光纤解调仪发送的电信号,得到软体排的变形信息,并基于软体排的变形信息,评价软体排的服役状态,从而给出维护建议;
所述无线传输模块,用于终端计算机与开关控制模块和光纤解调仪之间信号的无线传输;
所述太阳能供电模块,用于为分布式光纤传感器、光纤解调仪、无线传输模块和开关控 制模块供电。
为优化上述技术方案,采取的具体措施还包括:
上述的所述分布式光纤传感器包括两股并行光纤,分别为应变传感光纤和温度补偿光纤;
所述应变传感光纤,用于生成并传递软体排形变信号;
所述温度补偿光纤,用于生成并传递环境温度信号。
上述的所述应变传感光纤和温度补偿光纤依靠软体排排面上预留的扎带进行绑扎固定,在施工过程中与软体排压载块体同步布设在软体排排布上。
上述的所述分布式光纤传感器的两股并行光纤线路各自独立。
上述的所述分布式光纤传感器分四组布设于软体排排布上,其中一组沿排体边缘呈U型布设,另外三组在软体排内部沿排长方向等间距平行布设。
上述的光纤解调仪为能够基于布里渊光时域反射技术的光纤形变测量的光纤解调仪。
上述的所述太阳能供电模块的通过外设太阳能供电桩实现供电。
一种基于分布式光纤的软体排服役状态实时监测及评价系统的软体排服役状态实时监测及评价方法,包括以下步骤:
S1:在软体排服役期间,分布式光纤传感器实时采集并向光纤解调仪输送反映软体排形变和环境温度的物理信号;
S2:光纤解调仪接收并处理所述分布式光纤传感器采集到的物理信号,将物理信号转换为电信号并进行发送;
S3:无线传输模块将光纤解调仪发送的电信号传输至终端计算机;
S4:终端计算机接收并处理光纤解调仪发送的电信号,得到软体排的变形信息;
S5:终端计算机基于软体排的变形信息,评价软体排的服役状态,从而给出维护建议。
上述的步骤S5,所述终端计算机基于软体排的变形信息,评价软体排的服役状态,从而给出维护建议,具体为:
基于软体排的变形信息计算排体断面单宽水毁率与排体水毁面积比;
基于排体断面单宽水毁率与排体水毁面积比的分布范围,确定软体排的服役状态,从而给出维护建议。
本发明具有以下有益效果:
1.本发明提出的软体排服役状态监测方法可以远程、实时、动态地监测到软体排的变形、变位情况;
2.基于排体变形的监测数据,结合本发明提出的软体排服役状态评价方法,可实时给出软体排服役状态,保障软体排的安全稳定与整治效果;
3.本发明可填补目前软体排服役状态实时监测与评价的技术短板,方便管理人员实时掌握软体排运行状态,对于内河智能航道建设具有促进作用,并可为内河航道整治建筑物服役状态智能感知及多源信息融合的发展提供参考。
附图说明
图1是本发明一种基于分布式光纤的软体排服役状态实时监测及评价系统的结构示意图;
图2是本发明实施例中排体水毁指标测量示意图。
其中的附图标记为:终端计算机1、无线传输模块2、光纤解调仪3、开关控制模块4、太阳能供电模块5和分布式光纤传感器6。
具体实施方式
以下结合附图,以安徽省安庆市望江县城关镇东北2.5公里长江下游东流水道玉带洲右缘软体排护岸工程为例,对本发明作进一步详细描述。
如图1所示,本发明的一种基于分布式光纤的软体排服役状态实时监测及评价系统,包括若干组分布式光纤传感器6、光纤解调仪3、开关控制模块4、终端计算机1、无线传输模块2和太阳能供电模块5;
所述分布式光纤传感器6固定于软体排上,用于实时采集并向光纤解调仪3输送反映软体排形变和环境温度的物理信号;
实施例中,所述分布式光纤传感器6包括两股并行光纤,分别为应变传感光纤和温度补偿光纤;
所述应变传感光纤,用于生成并传递软体排形变信号;
所述温度补偿光纤,用于生成并传递环境温度信号。
基于布里渊散射原理,两股光纤所生成的信号被传递至所述光纤解调仪3中进行处理,可得到反映软体排变形信息的数字信号,并通过无线传输模块2将数据传送至终端计算机1进行处理。
所述应变传感光纤和温度补偿光纤依靠软体排排面上预留的扎带进行绑扎固定,在施工过程中与软体排压载块体同步布设在软体排排布上。
所述分布式光纤传感器6的两股并行光纤线路各自独立。
所述分布式光纤传感器6分四组布设于软体排排布上,其中一组沿排体边缘呈U型布设,另外三组在软体排内部沿排长方向等间距平行布设,每组沿排宽方向间距为10.0m。
所述光纤解调仪3通过开关控制模块4与分布式光纤传感器6连接,用于接收并处理所述分布式光纤传感器6采集到的物理信号,将物理信号转换为电信号;
实施例中,所述光纤解调仪3需选择能够基于布里渊光时域反射技术的光纤形变测量的光纤解调仪,如NZS-FGB-A02。
所述开关控制模块4,用于控制光纤通路的开关;
所述终端计算机1,用于向开关控制模块4发送光纤通路的开关控制信号,接收并处理光纤解调仪3发送的电信号,得到软体排的变形信息,并基于软体排的变形信息,评价软体排的服役状态,从而给出维护建议;
所述无线传输模块2,用于终端计算机1与开关控制模块4和光纤解调仪3之间信号的无线传输;
所述太阳能供电模块5,用于为分布式光纤传感器6、光纤解调仪3、无线传输模块2和开关控制模块4供电。
实施例中,所述太阳能供电模块5的通过外设太阳能供电桩实现供电。
实施例中,无线传输模块2、光纤解调仪3、开关控制模块4可放置在岸坡高处的室内,太阳能供电模块5可布设于室外,为仪器设备进行全天候的供电。
本发明的一种基于分布式光纤的软体排服役状态实时监测及评价方法,包括以下步骤:
S1:在软体排服役期间,分布式光纤传感器6实时采集并向光纤解调仪3输送反映软体排形变和环境温度的物理信号;
S2:光纤解调仪3接收并处理所述分布式光纤传感器6采集到的物理信号,将物理信号转换为电信号并进行发送;
S3:无线传输模块2将光纤解调仪3发送的电信号传输至终端计算机1;
S4:终端计算机1接收并处理光纤解调仪3发送的电信号,得到软体排的变形信息;
S5:终端计算机1基于软体排的变形信息,评价软体排的服役状态,从而给出维护建议,具体为:
基于软体排的变形信息计算排体断面单宽水毁率与排体水毁面积比;
基于排体断面单宽水毁率与排体水毁面积比的分布范围,确定软体排的服役状态,从而给出维护建议。
其中,单宽水毁率是用来表征单个断面水毁程度的指标,是判别是否需要维护的主要指 标,其计算公式为:
Figure PCTCN2020079959-appb-000001
式中,d cs为单宽水毁率;l d为断面冲刷沉降长度,其计算方式为通过对相同监测光纤在不同时期的应变监测数据进行做差分析,应变差值具有显著变化的区域即为发生冲刷、沉降的区域,确定该段长度即为断面冲刷长度;L为监测断面总长。
对于沉降冲刷发生显著变化的区域可将测量差值以图形进行表述,应变差值沿光缆变化曲线上明显的拐点即为断面发生冲刷沉降的起止点。
水毁面积比是用来表征排体整体水毁程度的指标,其计算公式为:
Figure PCTCN2020079959-appb-000002
式中,d a为水毁面积比,A d为发生冲刷沉降的排体面积,是沿排体断面监测光纤断面沉降起止点的连线形成沉降区域的面积;A为全部监测的总面积。
具体的测量如2图所示;
基于单宽水毁率指标的分布范围,提出“安全-中介-失效”的三种服役状态,三种状态及对应的单宽水毁率如下表所示。
表1服役状态与评价指标对应
Figure PCTCN2020079959-appb-000003
结合上述评价体系,基于原型排体的监测数据,计算其评价指数,并对其评价指数的发展趋势进行评估与预警,提出维护建议,及时维修处于中介状态的排体,保障软体排的处于安全服役状态。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (9)

  1. 一种基于分布式光纤的软体排服役状态实时监测及评价系统,其特征在于:
    包括若干组分布式光纤传感器(6)、光纤解调仪(3)、开关控制模块(4)、终端计算机(1)、无线传输模块(2)和太阳能供电模块(5);
    所述分布式光纤传感器(6)固定于软体排上,用于实时采集并向光纤解调仪(3)输送反映软体排形变和环境温度的物理信号;
    所述光纤解调仪(3)通过开关控制模块(4)与分布式光纤传感器(6)连接,用于接收并处理所述分布式光纤传感器(6)采集到的物理信号,将物理信号转换为电信号;
    所述开关控制模块(4),用于控制光纤通路的开关;
    所述终端计算机(1),用于向开关控制模块(4)发送光纤通路的开关控制信号,接收并处理光纤解调仪(3)发送的电信号,得到软体排的变形信息,并基于软体排的变形信息,评价软体排的服役状态,从而给出维护建议;
    所述无线传输模块(2),用于终端计算机(1)与开关控制模块(4)和光纤解调仪(3)之间信号的无线传输;
    所述太阳能供电模块(5),用于为分布式光纤传感器(6)、光纤解调仪(3)、无线传输模块(2)和开关控制模块(4)供电。
  2. 根据权利要求1所述的一种基于分布式光纤的软体排服役状态实时监测及评价系统,其特征在于:
    所述分布式光纤传感器(6)包括两股并行光纤,分别为应变传感光纤和温度补偿光纤;
    所述应变传感光纤,用于生成并传递软体排形变信号;
    所述温度补偿光纤,用于生成并传递环境温度信号。
  3. 根据权利要求2所述的一种基于分布式光纤的软体排服役状态实时监测及评价系统,其特征在于:
    所述应变传感光纤和温度补偿光纤依靠软体排排面上预留的扎带进行绑扎固定,在施工过程中与软体排压载块体同步布设在软体排排布上。
  4. 根据权利要求2所述的一种基于分布式光纤的软体排服役状态实时监测及评价系统,其特征在于:
    所述分布式光纤传感器(6)的两股并行光纤线路各自独立。
  5. 根据权利要求1-4任一所述的一种基于分布式光纤的软体排服役状态实时监测及评价系统,其特征在于:
    所述分布式光纤传感器(6)分四组布设于软体排排布上,其中一组沿排体边缘呈U型布 设,另外三组在软体排内部沿排长方向等间距平行布设。
  6. 根据权利要求1所述的一种基于分布式光纤的软体排服役状态实时监测及评价系统,其特征在于:
    所述光纤解调仪(3)为能够基于布里渊光时域反射技术的光纤形变测量的光纤解调仪。
  7. 根据权利要求1所述的一种基于分布式光纤的软体排服役状态实时监测及评价系统,其特征在于:
    所述太阳能供电模块(5)的通过外设太阳能供电桩实现供电。
  8. 根据权利要求1所述的一种基于分布式光纤的软体排服役状态实时监测及评价系统的软体排服役状态实时监测及评价方法,其特征在于:包括以下步骤:
    S1:在软体排服役期间,分布式光纤传感器(6)实时采集并向光纤解调仪(3)输送反映软体排形变和环境温度的物理信号;
    S2:光纤解调仪(3)接收并处理所述分布式光纤传感器(6)采集到的物理信号,将物理信号转换为电信号并进行发送;
    S3:无线传输模块(2)将光纤解调仪(3)发送的电信号传输至终端计算机(1);
    S4:终端计算机(1)接收并处理光纤解调仪(3)发送的电信号,得到软体排的变形信息;
    S5:终端计算机(1)基于软体排的变形信息,评价软体排的服役状态,从而给出维护建议。
  9. 根据权利要求8所述的一种基于分布式光纤的软体排服役状态实时监测及评价系统的软体排服役状态实时监测及评价方法,其特征在于:
    步骤S5所述终端计算机(1)基于软体排的变形信息,评价软体排的服役状态,从而给出维护建议,具体为:
    基于软体排的变形信息计算排体断面单宽水毁率与排体水毁面积比;
    基于排体断面单宽水毁率与排体水毁面积比的分布范围,确定软体排的服役状态,从而给出维护建议。
PCT/CN2020/079959 2019-08-28 2020-03-18 一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法 WO2021036231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910799355.4A CN110440707A (zh) 2019-08-28 2019-08-28 一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法
CN201910799355.4 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021036231A1 true WO2021036231A1 (zh) 2021-03-04

Family

ID=68437916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079959 WO2021036231A1 (zh) 2019-08-28 2020-03-18 一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法

Country Status (2)

Country Link
CN (1) CN110440707A (zh)
WO (1) WO2021036231A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2031569A (en) * 2021-04-16 2022-10-24 Tianjin Research Inst Water Transp Engineering Mot Processing method for optical fibre monitoring data in a wide range of scour pit at the end of the soft raft for bank-revetment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440707A (zh) * 2019-08-28 2019-11-12 水利部交通运输部国家能源局南京水利科学研究院 一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法
CN111322960A (zh) * 2020-04-09 2020-06-23 水利部交通运输部国家能源局南京水利科学研究院 一种航道整治软体排枯水平台变形实时监测系统及方法
CN113094632B (zh) * 2021-04-16 2022-04-01 交通运输部天津水运工程科学研究所 护岸软体排排体端部局部变形沉降光纤监测数据处理方法
CN115434280B (zh) * 2022-09-01 2024-03-29 湖北省交通规划设计院股份有限公司 一种促淤缓流的生态护底结构及其安装使用方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901418A (zh) * 2006-07-21 2007-01-24 南京大学 土质边坡分布式光纤应变监测方法和系统
JP4236771B2 (ja) * 1999-08-16 2009-03-11 株式会社フジクラ 光監視装置
US20090303460A1 (en) * 2006-05-17 2009-12-10 Bundesanstalt Fur Materialforschung Und-Prufung (Bam) Reinforcement Element With Sensor Fiber, Monitoring System, And Monitoring Method
CN202066486U (zh) * 2011-04-29 2011-12-07 山西省电力公司电力科学研究院 一种输电铁塔在线应变检测装置
CN102345794A (zh) * 2010-07-28 2012-02-08 中国石油天然气股份有限公司 一种采空塌陷区油气管道监测系统及其构建方法
CN103292719A (zh) * 2012-03-20 2013-09-11 水利部交通运输部国家能源局南京水利科学研究院 利用分布式光纤测量土工布受力结构变形和受力的方法
CN107843203A (zh) * 2017-10-13 2018-03-27 同济大学 基于分布式光纤传感器的基坑工程立体化监测网络的实现方法
CN108007370A (zh) * 2017-10-24 2018-05-08 重庆建工第三建设有限责任公司 一种光纤光栅应变传感器安装监测系统
CN208223412U (zh) * 2018-05-31 2018-12-11 交通运输部天津水运工程科学研究所 软体排变形变位监测系统
CN110440707A (zh) * 2019-08-28 2019-11-12 水利部交通运输部国家能源局南京水利科学研究院 一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202720369U (zh) * 2012-07-11 2013-02-06 中国船舶重工集团公司第七一五研究所 一种沿物体表面敷设的分布式应变和温度监测光缆
CN204479034U (zh) * 2015-01-23 2015-07-15 浙江大学城市学院 一种基于光纤传感的沉管隧道变形监测系统
CN108680733A (zh) * 2018-08-15 2018-10-19 中交第二公路勘察设计研究院有限公司 一种沥青路面服役性能的智能感知系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236771B2 (ja) * 1999-08-16 2009-03-11 株式会社フジクラ 光監視装置
US20090303460A1 (en) * 2006-05-17 2009-12-10 Bundesanstalt Fur Materialforschung Und-Prufung (Bam) Reinforcement Element With Sensor Fiber, Monitoring System, And Monitoring Method
CN1901418A (zh) * 2006-07-21 2007-01-24 南京大学 土质边坡分布式光纤应变监测方法和系统
CN102345794A (zh) * 2010-07-28 2012-02-08 中国石油天然气股份有限公司 一种采空塌陷区油气管道监测系统及其构建方法
CN202066486U (zh) * 2011-04-29 2011-12-07 山西省电力公司电力科学研究院 一种输电铁塔在线应变检测装置
CN103292719A (zh) * 2012-03-20 2013-09-11 水利部交通运输部国家能源局南京水利科学研究院 利用分布式光纤测量土工布受力结构变形和受力的方法
CN107843203A (zh) * 2017-10-13 2018-03-27 同济大学 基于分布式光纤传感器的基坑工程立体化监测网络的实现方法
CN108007370A (zh) * 2017-10-24 2018-05-08 重庆建工第三建设有限责任公司 一种光纤光栅应变传感器安装监测系统
CN208223412U (zh) * 2018-05-31 2018-12-11 交通运输部天津水运工程科学研究所 软体排变形变位监测系统
CN110440707A (zh) * 2019-08-28 2019-11-12 水利部交通运输部国家能源局南京水利科学研究院 一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2031569A (en) * 2021-04-16 2022-10-24 Tianjin Research Inst Water Transp Engineering Mot Processing method for optical fibre monitoring data in a wide range of scour pit at the end of the soft raft for bank-revetment

Also Published As

Publication number Publication date
CN110440707A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2021036231A1 (zh) 一种基于分布式光纤的软体排服役状态实时监测及评价系统和方法
CN101614602B (zh) 输电线路监测方法及装置
CN103971171B (zh) 一种输电设备状态评估方法
CN111120877B (zh) 一种基于分布式光纤测温的排水管网泄漏监测设备
CN104121889B (zh) 一种基于botdr分布式光纤传感的杆塔倾斜监测系统及方法
CN102735459A (zh) 温度变化索力监测的问题索支座广义位移递进式识别方法
CN106932337A (zh) 多光纤光栅钢筋腐蚀传感器系统的数据处理方法
CN104374423A (zh) 一种集群高压开关柜在线监测装置及其监测方法
CN102706605A (zh) 温度变化应变监测的问题索支座广义位移递进式识别方法
CN209055138U (zh) 电力隧道结构体健康监测系统
CN103528517B (zh) 光纤式受电弓碳滑板磨耗在线分区实时检测系统
CN104121945A (zh) 一种光纤复合架空地线的分布式弧垂在线监测系统及方法
CN202511922U (zh) 一种Oppc光缆应力和载流量测量计算系统
CN106646670B (zh) 一种输电线路分布式微气象监测方法
CN104330350A (zh) 基于光纤传感器的钢筋混凝土锈蚀程度定量监测系统
CN111982231A (zh) 一种低功耗水位一体化智能监测系统
CN204313997U (zh) 一种分布式光纤传感杆塔健康监测装置
CN103217105A (zh) 一种用于测量位移的传感器及其方法
CN108803422A (zh) 一种用于水位高度监测的控制系统
CN202048955U (zh) 一种水位观测装置
CN114235017A (zh) 一种输电线路光电融合长距离监测装置及方法
CN109799047B (zh) 基于光纤的面板堆石坝混凝土面板缝间渗流监测系统
CN2802473Y (zh) 罐体温度监测预警装置
CN103674113B (zh) 一种监测方法
CN205102950U (zh) 一种基于分布式光纤感温技术的电力装置故障诊断系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858027

Country of ref document: EP

Kind code of ref document: A1