WO2021036084A1 - 传感器组件和可穿戴设备 - Google Patents

传感器组件和可穿戴设备 Download PDF

Info

Publication number
WO2021036084A1
WO2021036084A1 PCT/CN2019/123545 CN2019123545W WO2021036084A1 WO 2021036084 A1 WO2021036084 A1 WO 2021036084A1 CN 2019123545 W CN2019123545 W CN 2019123545W WO 2021036084 A1 WO2021036084 A1 WO 2021036084A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
circuit board
double
sided circuit
light
Prior art date
Application number
PCT/CN2019/123545
Other languages
English (en)
French (fr)
Inventor
蔡孟錦
Original Assignee
潍坊歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊歌尔微电子有限公司 filed Critical 潍坊歌尔微电子有限公司
Publication of WO2021036084A1 publication Critical patent/WO2021036084A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/166Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted on a specially adapted printed circuit board

Definitions

  • the present invention relates to the technical field of wearable devices, in particular to a sensor component and a wearable device using the sensor component.
  • the main purpose of the present invention is to provide a sensor assembly, which aims to improve the functions of smart wearable devices.
  • the sensor assembly provided by the present invention includes:
  • a controller the controller is arranged on a surface of the double-sided circuit board;
  • a pulse sensor, an electrocardiogram sensor and an inertial sensor, the inertial sensor, the pulse sensor, and the electrocardiogram sensor are all electrically connected to the double-sided circuit board, and the electrocardiogram sensor is electrically connected to the double-sided circuit board
  • the sensor chip, at least one of the sensor chip, the pulse sensor and the inertial sensor, is arranged on the surface of the double-sided circuit board facing away from the controller.
  • the pulse sensor includes a light source and a light sensor, and the light sensor is used to receive the reflected light emitted by the light source from the sensor assembly, and the light source and the light sensor are both connected to the double-sided
  • the circuit board is electrically connected, the double-sided circuit board is also provided with a first retaining wall, the first retaining wall is located between the light source and the light sensor, and is used to prevent the light emitted from the light source from directly entering the light Sensor.
  • the number of the light sources is multiple, and the multiple light sources are arranged at intervals along the circumferential direction of the light sensor, and are all connected to the double-sided circuit board, and the light sensor is connected to each Between one of the light sources, there is a first retaining wall for preventing the light emitted from the light source from directly entering the light sensor.
  • the double-sided circuit board is further provided with a second retaining wall, and the second retaining wall is located on a side of the light source away from the light sensor;
  • the sensor assembly further includes a light-transmitting mirror, the light-transmitting mirror is arranged on a side of the light source and the light sensor away from the double-sided circuit board, the light-transmitting mirror and the double-sided circuit board An accommodating space for accommodating the pulse sensor is formed in between.
  • the electrocardiogram sensor further includes a top electrode and a bottom electrode. Both the top electrode and the bottom electrode are electrically connected to the sensor chip through the double-sided circuit board, and the top electrode and the bottom electrode are electrically connected to the sensor chip. Bottom electrodes are arranged on different sides of the double-sided circuit board, and the bottom electrodes are arranged in close contact with the side of the second retaining wall away from the light source, and abut against the transparent mirror.
  • the second retaining wall is arranged in a ring shape
  • the bottom electrode is arranged in a ring shape, and is sleeved on the surface of the second retaining wall away from the light source, and abuts against the transparent mirror, at least partially
  • the bottom electrode is arranged on the surface of the second retaining wall away from the double-sided circuit board.
  • the top electrode includes a first connecting section and a first extended section, one end of the first connecting section is connected to the double-sided circuit board, and the first extended section is provided in the first connecting section One end away from the double-sided circuit board.
  • the sensor assembly is provided with a protective layer
  • the protective layer is provided on a side of the controller away from the double-sided circuit board and covers the surface of the inertial sensor and the double-sided circuit board
  • the protective layer is further formed with an accommodating hole, the first connecting section is disposed in the accommodating hole, and the first extension section is attached to the surface of the protective layer away from the double-sided circuit board.
  • the width of the first retaining wall gradually decreases from the direction from the double-sided circuit board to the transparent mirror;
  • the width of the second retaining wall gradually decreases from the direction from the double-sided circuit board to the transparent mirror.
  • the surfaces of the first retaining wall and the second retaining wall facing the light source are provided with reflective films.
  • the inertial sensor and the controller are arranged on the same surface of the double-sided circuit board, and the sensor chip and the pulse sensor are both arranged on the double-sided circuit board away from the controller. surface.
  • the inertial sensor and the controller are stacked.
  • the inertial sensor, the sensor chip, and the pulse sensor are all arranged on the surface of the double-sided circuit board facing away from the controller, and the inertial sensor and the sensor chip are stacked in sequence Double-sided circuit board, the pulse sensor is arranged on the surface of the sensor chip away from the double-sided circuit board;
  • the sensor chip and the inertial sensor are sequentially stacked and arranged on a double-sided circuit board, and the pulse sensor is arranged on a surface of the inertial sensor away from the double-sided circuit board.
  • the double-sided circuit board includes a circuit board body, the circuit board body includes a first mounting surface and a second mounting surface that are opposed to each other, the first mounting surface is recessed to form a first sinking platform, and the second mounting surface The recessed surface forms a second sinking platform, the first sinking platform is used to install the controller and/or the inertial sensor and/or the sensor chip, and the second sinking platform is used to install the pulse sensor .
  • the present invention also provides a wearable device, which includes a sensor component, the sensor component includes: a double-sided circuit board; a controller, the controller is provided on a surface of the double-sided circuit board; a pulse sensor, An electrocardiogram sensor and an inertial sensor, the inertial sensor, the pulse sensor, and the electrocardiogram sensor are all electrically connected to the double-sided circuit board, and the electrocardiogram sensor has a sensor electrically connected to the double-sided circuit board
  • the chip, at least one of the sensor chip, the pulse sensor and the inertial sensor is arranged on the surface of the double-sided circuit board facing away from the controller.
  • the technical solution of the present invention is to provide a controller on one surface of the double-sided circuit board of the sensor assembly, and provide the pulse sensor and/or the sensor chip of the electrocardiogram sensor and/or the inertial sensor on the surface of the double-sided circuit board away from the controller , Because the electronic components used for processing signals and the electronic components used for collecting signals are arranged side by side through the double-sided circuit board, the occupied area of the sensor assembly is reduced.
  • inertial sensors Inertial measurement unit (IMU)
  • IMU is a device that measures the three-axis attitude angle (or angular rate) and acceleration of an object.
  • a three-axis gyroscope is installed in an IMU.
  • the electrocardiogram sensor is the PPG sensor, (Photoplethysmography, photoplethysmography) Method), which uses the principles of optical incidence, absorption, and reflection to calculate optical signals through calculations to obtain the user’s pulse, respiration, blood oxygen, blood pressure and other information. Therefore, setting a pulse sensor can obtain more human physiological information.
  • the electrocardiogram sensor is the ECG sensor or the EKG sensor, [Electrocardiography, the electrocardiography sensor is the electrocardiography unit], the electrocardiography unit measures the activity of the heart through the electrocardiography, and the electrocardiography is a kind of time through the chest cavity It is a way to record the electrophysiological activity of the heart for a unit. Since the heart rate changes very obviously when the human body is moving, the ECG sensor can obtain the change of the human heart rate, so that the sensor component can better measure the physiological information such as the user's exercise state. Improve the functionality of the sensor assembly. In this way, the technical solution of the present invention can improve the function of the smart wearable device.
  • Fig. 1 is a schematic structural diagram of an embodiment of a sensor assembly of the present invention
  • FIG. 2 is a schematic structural diagram of another embodiment of the sensor assembly of the present invention.
  • Fig. 3 is a schematic structural diagram of another embodiment of the sensor assembly of the present invention.
  • Label name Label name 100 Sensor components 40 ECG sensor 10 Double-sided circuit board 41 Sensor chip 11 Circuit board body 42 Top electrode 111 First sinking 421 First connecting segment 112 Second sinking platform 422 First extension 12 First retaining wall 43 Bottom electrode 13 Second retaining wall 50 Inertial sensor 20 Controller 60 Translucent mirror 30 Pulse sensor 70 Accommodating space 31 light source 80 The protective layer 32 Light sensor 90 Reflective film
  • the present invention provides a sensor assembly 100.
  • the technical solution of the present invention proposes a sensor assembly 100, the sensor assembly
  • the component 100 includes a double-sided circuit board 10;
  • the controller 20 is provided on a surface of the double-sided circuit board 10;
  • the pulse sensor 30, the electrocardiogram sensor 40 and the inertial sensor 50, the inertial sensor 50, the pulse sensor 30, and the electrocardiogram sensor 40 are all electrically connected to the double-sided circuit board 10, and the electrocardiogram sensor 40 is The sensor chip 41 electrically connected to the double-sided circuit board 10, at least one of the sensor chip 41, the pulse sensor 30, and the inertial sensor 50, is provided on the double-sided circuit board 10 away from the control The surface of the device 20.
  • the technical solution of the present invention is to provide the controller 20 on one surface of the double-sided circuit board 10 of the sensor assembly 100, and provide the pulse sensor 30 and/or the electrocardiogram sensor 40 on the surface of the double-sided circuit board 10 facing away from the controller 20.
  • the sensor chip 41 and/or the inertial sensor 50 have the electronic components used for processing signals and the electronic components used for collecting signals arranged side by side through the double-sided circuit board 10, thereby reducing the occupied area of the sensor assembly 100.
  • the inertial sensor 50 [inertial sensor 50 is an inertial measurement unit (IMU)].
  • the IMU is a device that measures the three-axis attitude angle (or angular rate) and acceleration of an object.
  • an IMU is equipped with three-axis
  • the gyroscope and the accelerometer in three directions are used to measure the angular velocity and acceleration of the object in three-dimensional space, so that the user’s motion state can be better obtained
  • the pulse sensor 30 and the electrocardiogram sensor 40 are the PPG sensors, (Photoplethysmography, photoelectric Volume pulse wave tracing method), which uses the principles of optical incidence, absorption, and reflection to calculate optical signals through calculations to obtain the user’s pulse, respiration, blood oxygen, blood pressure and other information. Therefore, setting the pulse sensor 30 can obtain more information Physiological information of the human body
  • the electrocardiogram sensor 40 is an ECG sensor or an EKG sensor, [Electrocardiography, electrocardiography unit].
  • the electrocardiography unit measures the activity of the heart through electrocardiography.
  • Electrocardiography is a type of The thoracic cavity records the electrophysiological activity of the heart in the unit of time. Since the heart rate changes very obviously when the human body is moving, the ECG sensor 40 can obtain the change of the human heart rate, so that the sensor assembly 100 can perform physiological information such as the user's exercise state. Better measurement improves the functionality of the sensor assembly 100. In this way, the technical solution of the present invention can improve the function of the smart wearable device.
  • the double-sided circuit board 10 can be a printed circuit board, and its material can be FR4 epoxy resin board; or the double-sided circuit board 10 can be a flexible circuit board, and the material of the flexible circuit board is polydimethylsilane, Any of polyimide, polyethylene, polyvinylidene fluoride, and natural rubber.
  • the double-sided circuit board 10 is a combination of a rigid circuit board and a flexible circuit board, and the number of circuit layers can be single layer, double layer or multiple layers.
  • the controller 20 may be an MCU (microcontroller 20, Micro Controller Unit), which is suitable for the processing, diagnosis and calculation of various data from different information sources, and can improve the response of the sensor assembly 100.
  • MCU microcontroller 20, Micro Controller Unit
  • the ECG sensor is in contact with the user’s skin to measure the ECG waveform.
  • the IMU can be used to measure the user’s movement information such as speed, orientation and acceleration.
  • the PPG sensor can be used to measure the optical signal.
  • the controller 20 will measure the ECG waveform and movement information. After the optical signal is processed, an accurate user's physiological state can be obtained, and the functionality of the sensing component is improved.
  • the sensor assembly 100 further includes a temperature sensor, which is electrically connected to the double-sided circuit board 10, and the temperature sensor further includes a temperature detection head.
  • the temperature detection head It is close to the user's skin to detect the user's body temperature. In this way, by detecting the user's body temperature, the user's body temperature is used to assist in determining the user's exercise state, which improves the accuracy of measuring the user's exercise state.
  • the sensor assembly 100 further includes a memory, which can be configured to store the generated sensor data (for example, IMU information, PPG information, temperature sensor information, or information such as ECG, Other physiological information such as EMG) or information representing acceleration and/or temperature and/or other physiological information derived from sensor data.
  • the memory can be configured to store computer program codes for controlling the controller 20.
  • the memory may be volatile memory and/or non-volatile memory.
  • the memory may include flash memory, static memory, solid-state memory, removable memory card, or any combination thereof. In some examples, the memory can be removed from the sensor assembly 100.
  • the memory may be a local module of the sensor assembly 100, while in other examples, the memory may be a remote module of the sensor assembly 100.
  • the memory may be the internal memory of a smartphone, for example via radio frequency communication protocols including WiFi, Zigbee, Bluetooth, medical telemetry, and near field communication (NFC), and/or optically using infrared or non-infrared LEDs, for example. Wired or wirelessly communicates with the sensor assembly 100.
  • the sensor assembly 100 further includes a wireless transmission device, which is electrically connected to the double-sided circuit board 10 and used for the communication connection between the sensor assembly 100 and the mobile terminal.
  • the sensor assembly 100 can optically communicate with a user device such as a smartphone (for example, wirelessly) via an application (for example, a program) running on a smartphone.
  • Setting the wireless transmission device can enable the sensor assembly 100 to transmit the measurement information of the user's motion state in real time, so that the user can understand the motion state information in real time.
  • the sensor assembly 100 further includes a power supply, which can be any type of rechargeable (or disposable) power supply for electronic devices, such as but not limited to one or more electrochemical batteries or Battery, one or more photovoltaic cells, or a combination of them. In the case of photovoltaic cells, these cells are capable of charging one or more electrochemical cells and/or levels.
  • the power supply may be a small battery or capacitor that stores enough power to enable the device to power up and execute a predetermined sequence of programs before the energy is exhausted, for example, based on NFC (Near Field Communication) or RFID ( Radio Frequency Identification, Radio Frequency Identification) sensing equipment.
  • NFC Near Field Communication
  • RFID Radio Frequency Identification, Radio Frequency Identification
  • the pulse sensor 30 includes a light source 31 and a light sensor 32, the light sensor 32 is used to receive the light source 31 emitted from the sensor assembly 100 Reflected light, the light source 31 and the light sensor 32 are electrically connected to the double-sided circuit board 10, and the double-sided circuit board 10 is further provided with a first retaining wall 12, and the first retaining wall 12 is located between the light source 31 and the light sensor 32 and is used to prevent the light emitted from the light source 31 from directly entering the light sensor 32.
  • the pulse sensor 30 is mainly detected by photoplethysmograph.
  • PhotoplethysmoGraphy (PPG) is a non-invasive detection method that detects changes in blood volume in living tissues by photoelectric means.
  • the light beam When a light beam of wavelength irradiates the skin surface of the fingertip, the light beam will be transmitted to the light sensor 32 through transmission or reflection. In this process, due to the absorption and attenuation of the fingertip skin muscle and blood, the light intensity detected by the light sensor 32 will be weakened, and the absorption of light by the skin, muscle tissue, etc. will remain constant throughout the blood circulation.
  • the blood volume in the skin shows a pulsatile change under the action of the heart. When the heart contracts, the peripheral blood volume is the largest, the light absorption is the largest, and the detected light intensity is the smallest; while the heart is in diastole, the opposite is true.
  • the maximum light intensity causes the light intensity received by the light receiver to change pulsatingly.
  • the volume pulse blood flow change can be obtained.
  • physiological information including heartbeat function, blood flow (blood oxygen, blood pressure) and so on can be obtained through the change of volume pulse blood flow. In this way, the measurement accuracy of the physiological state of the user by the sensor assembly 100 can be improved.
  • the first retaining wall 12 can be formed by injection molding or 3D printing, and the material of the first retaining wall 12 can be a plastic part or a rubber part, as long as it is easy to block light.
  • the light source 31 may be an LED light-emitting device, which emits energy through the combination of electrons and holes, and the light-emitting diode can efficiently convert electrical energy into light energy, thereby ensuring the intensity of light energy and improving the sensor assembly 100 measures accuracy of the user's physiological state.
  • the type of the light source 31 is not limited to the LED light source 31, and other types of light sources 31 may be used, such as incandescent lamps, fluorescent lamps, discharge lamps, and other light emitters.
  • the number of the light sources 31 is multiple, and the multiple light sources 31 are arranged at intervals along the circumferential direction of the light sensor 32, and are all connected to each other.
  • the double-sided circuit board 10 is connected, and between the light sensor 32 and each light source 31, a first retaining wall 12 is provided for preventing the light emitted from the light source 31 from directly entering the light sensor 32.
  • the light sources 31 can be arranged at intervals along the circumference of the light sensor 32 to make the light
  • the light sensor 32 is evenly distributed around the light sensor 32, and the light sensor 32 can receive more light energy, which improves the accuracy of the sensor assembly 100 to measure the physiological state of the user.
  • the double-sided circuit board 10 is further provided with a second retaining wall 13, the second retaining wall 13 is located at the light source 31 away from the light sensor
  • the side of the device 32; the second retaining wall 13 can prevent the external light from being reflected on the light sensor 32 after contacting the skin, ensuring the accuracy of the measurement; and it is convenient to guide the emitted light of the light source 31 to improve the light source 31
  • the utilization rate of light energy can be Similarly, the second retaining wall 13 can be formed by injection molding or 3D printing, and the material of the second retaining wall 13 can be plastic or rubber, as long as it is convenient to block light.
  • the sensor assembly 100 further includes a light-transmitting mirror 60, the light-transmitting mirror 60 is provided on a side of the light source 31 and the light sensor 32 away from the double-sided circuit board 10, the light-transmitting mirror 60
  • An accommodating space 70 for accommodating the pulse sensor 30 is formed between the double-sided circuit board 10 and the double-sided circuit board 10.
  • the transparent mirror 60 can protect the pulse sensor 30 on the one hand, and on the other hand, it is convenient for the light from the light source 31 to be emitted from the sensor assembly 100 to the skin.
  • the translucent mirror 60 is provided on the surface of the first retaining wall 12 away from the double-sided circuit board 10 (and/or on the surface of the second retaining wall 13 away from the double-sided circuit board 10), so as to be transparent
  • An accommodating space 70 for accommodating the pulse sensor 30 is formed between the light mirror 60 and the double-sided circuit board 10 to facilitate the installation of the pulse sensor 30.
  • the electrocardiogram sensor 40 further includes a top electrode 42 and a bottom electrode 43, and both the top electrode 42 and the bottom electrode 43 pass through the double-sided circuit board 10 is electrically connected to the sensor chip 41, the top electrode 42 and the bottom electrode 43 are arranged on different sides of the double-sided circuit board 10, and the bottom electrode 43 is arranged in close contact with the second barrier.
  • the wall 13 faces away from the light source 31 and abuts against the transparent mirror 60.
  • the electrocardiogram sensor 40 uses electrodes attached to the surface of the human skin to detect the electrical potential transmission of the heart, and obtains heart rate signals and pulse signals through the signal analysis and calculation of the electrocardiogram to improve the measurement accuracy of the user's exercise state.
  • the bottom electrode 43 is attached to the user's skin.
  • cardiac potential detection is required, press the top electrode 42 with a finger or other parts to form a closed loop circuit.
  • the ECG sensor 40 can pass
  • the sensor chip 41 detects the electric potential transmission of the human heart to ensure the accuracy of the measurement of the user's motion state.
  • the bottom electrode 43 can be supported to a certain extent to ensure that the structure of the bottom electrode 43 is stable, and the bottom electrode 43 is abutted against the transparent lens 60 is set to limit the installation of the transparent lens 60 to improve the assembly effect of the transparent lens 60, thereby ensuring the structural stability of the sensor assembly 100, and improving the measurement accuracy of the sensor assembly 100 to the user's physiological state.
  • the second retaining wall 13 is arranged in a ring shape
  • the bottom electrode 43 is arranged in a ring shape
  • At least a part of the bottom electrode 43 is disposed on the surface of the second retaining wall 13 away from the double-sided circuit board 10 and abuts the transparent mirror 60.
  • the ring-shaped second retaining wall 13 can prevent external light in multiple directions from interfering with the measurement of the human body, and improve the measurement accuracy of the physiological state of the user by the sensor assembly 100.
  • the annularly arranged bottom electrode 43 can be used to increase the area of the bottom electrode 43 for contact with the user, thereby improving the accuracy of the potential collection of the bottom electrode 43, and improving the collection accuracy of the sensor assembly 100.
  • the second retaining wall 13 and the bottom electrode 43 are both arranged in a ring shape, the ring has good structural strength, and the inner side of the bottom electrode 43 can be supported by the second retaining wall 13, which further improves the structural stability of the sensor assembly 100.
  • the cross-section of the bottom electrode 43 is approximately in an "L" shape, and the vertical section of the bottom electrode 43 is attached to the side of the second retaining wall 13 away from the light source 31, so as to ensure the stability of the bottom electrode 43, in order to facilitate the bottom electrode 43 abuts against the user’s skin, and the lateral section of the bottom electrode 43 is set on the surface of the second retaining wall 13 away from the double-sided circuit board 10, so that the lateral section is convenient to fit the user and improves the physiological state of the sensor assembly 100 to the user Measurement accuracy.
  • the top electrode 42 includes a first connecting section 421 and a first extended section 422.
  • One end of the first connecting section 421 is connected to the double-sided circuit board. 10 connection, the first extension section 422 is provided at an end of the first connection section 421 away from the double-sided circuit board 10.
  • the provision of the first connecting section 421 can improve the choice of the position of the top electrode 42, so that it is more convenient for the user to press the top electrode 42 during use.
  • the first extension section 422 is used to increase the area of the top electrode 42 for contact with the user, thereby improving the accuracy of the potential collection of the top electrode 42 and the collection accuracy of the sensor assembly 100.
  • the sensing component includes a first direction and a second direction that are perpendicular to each other.
  • the first connecting section 421 extends in the first direction
  • the first extension section 422 extends in the second direction.
  • the top electrode 42 is used for the contact area with the user, thereby improving the accuracy of the potential collection of the top electrode 42.
  • the sensor assembly 100 is provided with a protective layer 80
  • the protective layer 80 is provided on the side of the controller 20 away from the double-sided circuit board, and covers all
  • the protective layer 80 is also formed with an accommodating hole
  • the first connecting section 421 is disposed in the accommodating hole
  • the first extension section 422 is attached It fits on the surface of the protective layer 80 away from the double-sided circuit board 10.
  • the protective layer 80 can protect the electronic components on the side of the double-sided circuit board 10 where the controller 20 is provided, thereby increasing the service life of the sensor assembly 100.
  • the protective layer 80 can be formed by mold molding or three-dimensional printing, so that the protective layer 80 is attached to the surface of the double-sided circuit board 10 that needs to be protected, and the protective effect of the electronic components provided on the surface is improved. Furthermore, the protective layer 80 is provided with a receiving hole, which can protect the first connection section 421 on the one hand, and support the first connection section 421 on the other hand, which improves the installation stability of the top electrode 42.
  • the first extension section 422 extends away from the surface of the protective layer 80 away from the double-sided circuit board 10, so that the area of the top electrode 42 for contact with the user can be increased, and the extended first extension section 422 can be supported by the protective layer 80, The installation stability of the top electrode 42 is improved.
  • the width of the first retaining wall 12 gradually decreases from the direction of the double-sided circuit board 10 to the transparent mirror 60; at this time, the first retaining wall
  • the section of the first retaining wall 12 is roughly trapezoidal. It should be noted that the width of the first retaining wall 12 is the distance between the two end faces of the first retaining wall 12 in the direction from the light source 31 to the light sensor 32. Reducing it to a certain extent (need to consider the support of the translucent lens 60) can increase the area of the light outlet of the light source 31, thereby increasing the amount of light emitted, and then increasing the light energy, so that the light source 31 has sufficient light to participate in the physiological parameters of the human body. The detection improves the measurement accuracy of the user's physiological state by the sensor assembly 100.
  • the width of the second retaining wall 13 gradually decreases from the direction of the double-sided circuit board 10 to the transparent mirror 60.
  • the width of the second retaining wall 13 is the distance between the two end surfaces of the second retaining wall 13 in the direction from the light source 31 to the light sensor 32.
  • the cross-section of the second retaining wall 13 is roughly trapezoidal.
  • Such a configuration can increase the area of the light outlet of the light source 31, increase the amount of light, and improve the measurement accuracy of the sensor assembly 100 on the physiological state of the user.
  • the volume of the sensor assembly 100 can also be reduced to a certain extent, facilitating the miniaturization of the product.
  • the surfaces of the first retaining wall 12 and the second retaining wall 13 facing the light source 31 are provided with a reflective film 90.
  • the light emitted from the light source 31 can be reflected by the reflective film 90 to increase the amount of light emitted by the light source 31, thereby improving the accuracy of the sensor assembly 100 for measuring the physiological state of the user.
  • the cross-sections of the first retaining wall 12 and the second retaining wall 13 are both trapezoidal, the provision of the reflective film 90 can greatly improve the emission of light and avoid the light source 31 between the first retaining wall 12 and the second retaining wall 13 The light energy of the emitted light is lost after diffuse reflection, thereby improving the accuracy of the sensor assembly 100 to measure the physiological state of the user.
  • the inertial sensor 50 and the controller 20 are arranged on the same surface of the double-sided circuit board 10, and the sensor chip 41 and the pulse sensor 30 are both arranged on the The double-sided circuit board 10 faces away from the surface of the controller 20.
  • arranging the pulse sensor 30 on one side alone facilitates the transmission of light signals and the user's use.
  • the area of the light outlet of the light source 31 is ensured, thereby increasing the amount of light output, and improving the accuracy of the sensor assembly 100 for measuring the physiological state of the user.
  • the inertial sensor 50 and the controller 20 are stacked.
  • the controller 20 can be used as a lower layer, and the inertial sensor 50 can be stacked on it, which can save the area of the double-sided circuit board 10 and facilitate the miniaturization of the product.
  • the inertial sensor 50, the sensor chip 41, and the pulse sensor 30 are all disposed on the surface of the double-sided circuit board 10 facing away from the controller 20, and the inertial sensor 50 and the sensor chip 41 are sequentially stacked and arranged on the double-sided circuit board 10, and the pulse sensor 30 is arranged on the surface of the sensor chip 41 away from the double-sided circuit board 10;
  • the sensor chip 41 and the inertial sensor 50 are sequentially stacked and arranged on the double-sided circuit board 10, and the pulse sensor 30 is arranged on the surface of the inertial sensor 50 away from the double-sided circuit board 10.
  • the electronic components used for signal collection and the electronic components used for signal analysis are arranged side-by-side, which facilitates saving the area of the sensor assembly 100, and facilitates the integrated arrangement of circuits, and improves the production efficiency of the sensor assembly 100.
  • the sensor chip 41 (or the inertial sensor 50) can be set as the lower layer by using the technology of Stack die (or the inertial sensor 50), and the sensor chip 41 (or the inertial sensor 50) can be stacked on the inertial sensor 50 (or the sensor chip 41). stacking) PPG Photo Detector (photodetector, photo sensor 32) to further reduce the installation area of the double-sided circuit board 10.
  • the double-sided circuit board 10 includes a circuit board body 11, the circuit board body 11 includes a first mounting surface and a second mounting surface disposed oppositely, the first mounting surface The recess forms a first sinking platform 111, and the second mounting surface is recessed to form a second sinking platform 112.
  • the first sinking platform 111 is used to install the controller 20 and/or the inertial sensor 50 and/or the
  • the sensor chip 41 and the second sinking platform 112 are used to install the pulse sensor 30.
  • the electronic components (inertial sensor 50) on the double-sided circuit board 10 ,
  • the electrocardiogram sensor 40, the sensor chip 41 and the controller 20) can be installed in the first sinking table 111 and/or the second sinking table 112, so that even high-height electronic components are installed on the circuit board body
  • the height after 11 has also been reduced, thereby reducing the thickness of the double-sided circuit board 10. Therefore, the area of the sensor assembly 100 can be better reduced.
  • the first sinking platform 111 and the second sinking platform 112 are arranged in a staggered manner.
  • the staggered arrangement is the projection profile formed by the projection of the first sinking platform 111 along its sinking direction, and the projection profile formed by the second sinking platform 112 along the sinking direction is formed at the position on the circuit board body 11. Interval settings.
  • This arrangement can prevent the sensor assembly 100 from having low strength in a certain area and more electronic components installed in this position, thereby improving the structural strength and service life of the sensor assembly 100. Moreover, in this way, the distribution of electronic components can also be ensured to facilitate wiring.
  • the present invention also provides a wearable device, the wearable device includes a sensor assembly 100, the sensor assembly 100 includes a double-sided circuit board 10; a controller 20, the controller 20 is provided on one side of the double-sided circuit board 10 surface;
  • the pulse sensor 30, the electrocardiogram sensor 40 and the inertial sensor 50, the inertial sensor 50, the pulse sensor 30, and the electrocardiogram sensor 40 are all electrically connected to the double-sided circuit board 10, and the electrocardiogram sensor 40 is The sensor chip 41 electrically connected to the double-sided circuit board 10, at least one of the sensor chip 41, the pulse sensor 30, and the inertial sensor 50, is provided on the double-sided circuit board 10 away from the control The surface of the device 20. Since the wearable device adopts all the technical solutions of all the above-mentioned embodiments, it has at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种传感器组件(100)和可穿戴设备,该传感器组件(100)包括双面电路板(10);控制器(20),控制器(20)设于双面电路板(10)的一表面;脉搏传感器(30)、心电图传感器(40)和惯性传感器(50),惯性传感器(50)、脉搏传感器(30)和心电图传感器(40)均与双面电路板(10)电性连接,心电图传感器(40)具有与双面电路板(10)电性连接的传感芯片(41),传感芯片(41)、脉搏传感器(30)和惯性传感器(50)的至少一个设于双面电路板(10)背离控制器(20)的表面。该传感器组件(100)旨在提高智能穿戴设备的功能。

Description

传感器组件和可穿戴设备 技术领域
本发明涉及可穿戴设备技术领域,特别涉及一种传感器组件和应用该传感器组件的可穿戴设备。
背景技术
目前随着科学技术的发展,主打健康应用的产品渐渐广泛于社会出现。而集成电路技术和微芯片制造的技术进步,更使得譬如智能穿戴设备等层出不穷。但是相关技术中的智能穿戴设备功能较为单一。用户们却越来越倾向于功能更多的产品。因此急需一种能提高智能穿戴设备功能的装置。
上述仅用于辅助理解本申请的技术方案,并不代表承认为现有技术。
发明内容
本发明的主要目的是提供一种传感器组件,旨在提高智能穿戴设备的功能。
为实现上述目的,本发明提供的传感器组件,包括:
双面电路板;
控制器,所述控制器设于所述双面电路板的一表面;
脉搏传感器、心电图传感器和惯性传感器,所述惯性传感器、所述脉搏传感器和所述心电图传感器均与所述双面电路板电性连接,所述心电图传感器具有与所述双面电路板电性连接的传感芯片,所述传感芯片、所述脉搏传感器和所述惯性传感器的至少一个,设于所述双面电路板背离所述控制器的表面。
可选地,所述脉搏传感器包括光源和光感测器,所述光感测器用于接收所述光源出射于传感器组件的反射光,所述光源和所述光感测器均与所述双面电路板电性连接,所述双面电路板还设有第一挡墙,所述第一挡墙位于所 述光源与所述光感测器之间,并用于防止光源的出射光直接进入光感测器。
可选地,所述光源的数量为多个,多个所述光源沿所述光感测器的周向间隔设置,并均与所述双面电路板连接,所述光感测器与每一所述光源之间,均设有用于防止光源的出射光直接进入光感测器的第一挡墙。
可选地,所述双面电路板还设有第二挡墙,所述第二挡墙位于所述光源背离所述光感测器的一侧;
所述传感器组件还包括透光镜,所述透光镜设于所述光源和所述光感测器背离所述双面电路板的一侧,所述透光镜与所述双面电路板之间形成有容置所述脉搏传感器的容置空间。
可选地,所述心电图传感器还包括顶部电极和底部电极,所述顶部电极与所述底部电极均通过所述双面电路板与所述传感芯片电性连接,所述顶部电极和所述底部电极设于所述双面电路板的不同侧,所述底部电极贴合设置与所述第二挡墙背离所述光源的一侧,并抵接所述透光镜。
可选地,所述第二挡墙呈环形设置,所述底部电极呈环形设置,并套接于所述第二挡墙背离所述光源的表面,且抵接所述透光镜,至少部分所述底部电极设于所述第二挡墙背离所述双面电路板的表面。
可选地,所述顶部电极包括第一连接段和第一延展段,所述第一连接段的一端与所述双面电路板连接,所述第一延展段设于所述第一连接段背离所述双面电路板的一端。
可选地,所述传感器组件设有保护层,所述保护层设于所述控制器背离所述双面电路板的一侧,并覆盖所述惯性传感器和所述双面电路板的表面,所述保护层还形成有容置孔,所述第一连接段设于所述容置孔,所述第一延展段贴合于所述保护层背离所述双面电路板的表面。
可选地,所述第一挡墙的宽度自所述双面电路板至所述透光镜的方向逐渐减小;
且/或,所述第二挡墙的宽度自所述双面电路板至所述透光镜的方向逐渐减小。
可选地,所述第一挡墙和所述第二挡墙朝向所述光源的表面设置有反光膜。
可选地,所述惯性传感器与所述控制器设于所述双面电路板的同一表面,所述传感芯片与所述脉搏传感器均设于所述双面电路板背离所述控制器的表面。
可选地,所述惯性传感器与所述控制器堆叠设置。
可选地,所述惯性传感器、所述传感芯片与所述脉搏传感器均设于所述双面电路板背离所述控制器的表面,所述惯性传感器和所述传感芯片依次堆叠设置于双面电路板,所述脉搏传感器设于所述传感芯片背离所述双面电路板的表面;
或者,所述传感芯片和所述惯性传感器依次堆叠设置于双面电路板,所述脉搏传感器设于所述惯性传感器背离所述双面电路板的表面。
可选地,双面电路板包括电路板本体,所述电路板本体包括相对设置的第一安装面和第二安装面,所述第一安装面凹陷形成第一沉台,所述第二安装面凹陷形成第二沉台,所述第一沉台用于安装所述控制器和/或所述惯性传感器和/或所述传感芯片,所述第二沉台用于安装所述脉搏传感器。
本发明还提出一种可穿戴设备,该可穿戴设备包括传感器组件,该传感器组件包括:双面电路板;控制器,所述控制器设于所述双面电路板的一表面;脉搏传感器、心电图传感器和惯性传感器,所述惯性传感器、所述脉搏 传感器和所述心电图传感器均与所述双面电路板电性连接,所述心电图传感器具有与所述双面电路板电性连接的传感芯片,所述传感芯片、所述脉搏传感器和所述惯性传感器的至少一个,设于所述双面电路板背离所述控制器的表面。
本发明技术方案通过在传感器组件的双面电路板的一表面设置控制器,并且在双面电路板背离所述控制器的表面设置脉搏传感器和/或心电图传感器的传感芯片和/或惯性传感器,由于将通过双面电路板将用于处理信号的电子元器件与用于采集信号的电子元器件分面设置,减小了传感器组件的占用面积。并且,惯性传感器【惯性传感器即惯性测量单元(Inertial measurement unit,简称IMU)】,IMU是测量物体三轴姿态角(或角速率)以及加速度的裝置,一般的,一个IMU内裝有三轴的陀螺仪和三个方向的加速度计,來测量物体在三维空间中的角速度和加速度,从而可以较好地获取用户的运动状态,以及脉搏传感器心电图传感器即为PPG传感器,(Photoplethysmography,光电容积脉搏波描记法),其利用光学入射,吸收,反射的原理,通过运算将光学信号进行演算,从而得到用户的脉搏、呼吸、血氧、血压等信息,因此设置脉搏传感器可以获取较多的人体生理信息,以及,心电图传感器即ECG传感器或EKG传感器,【Electrocardiography,心电图传感器即心电描记单元】,心电描记单元是通过心電描記記来测量心脏的活动,心电描记术是一种经胸腔以时间为单位记录心脏的电生理活动的方式,由于人体运动时,心率变化非常明显,从而通过心电图传感器可以通过获取人体心率的变化,使得传感器组件对用户运动状态等生理信息能够进行较好的测量,提高了传感器组件的功能性。如此,本发明的技术方案可以提高智能穿戴设备的功能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明传感器组件一实施例的结构示意图;
图2为本发明传感器组件又一实施例的结构示意图;
图3为本发明传感器组件再一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 传感器组件 40 心电图传感器
10 双面电路板 41 传感芯片
11 电路板本体 42 顶部电极
111 第一沉台 421 第一连接段
112 第二沉台 422 第一延展段
12 第一挡墙 43 底部电极
13 第二挡墙 50 惯性传感器
20 控制器 60 透光镜
30 脉搏传感器 70 容置空间
31 光源 80 保护层
32 光感测器 90 反光膜
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种传感器组件100。
参照图1至图3,本发明技术方案提出一种传感器组件100,该传感器组
件100包括双面电路板10;
控制器20,所述控制器20设于所述双面电路板10的一表面;
脉搏传感器30、心电图传感器40和惯性传感器50,所述惯性传感器50、所述脉搏传感器30和所述心电图传感器40均与所述双面电路板10电性连接,所述心电图传感器40具有与所述双面电路板10电性连接的传感芯片41,所述传感芯片41、所述脉搏传感器30和所述惯性传感器50的至少一个,设于所述双面电路板10背离所述控制器20的表面。
本发明技术方案通过在传感器组件100的双面电路板10的一表面设置控制器20,并且在双面电路板10背离所述控制器20的表面设置脉搏传感器30和/或心电图传感器40的传感芯片41和/或惯性传感器50,由于将通过双面电路板10将用于处理信号的电子元器件与用于采集信号的电子元器件分面设置,减小了传感器组件100的占用面积。并且,惯性传感器50【惯性传感器50即惯性测量单元(Inertial measurement unit,简称IMU)】,IMU是测量物体三轴姿态角(或角速率)以及加速度的裝置,一般的,一个IMU内裝有三轴的陀螺仪和三个方向的加速度计,來测量物体在三维空间中的角速度和加速度,从而可以较好地获取用户的运动状态,以及脉搏传感器30心电图传感器40即为PPG传感器,(Photoplethysmography,光电容积脉搏波描记法),其利用光学入射,吸收,反射的原理,通过运算将光学信号进行演算,从而得到用户的脉搏、呼吸、血氧、血压等信息,因此设置脉搏传感器30可以获取较多的人体生理信息,以及,心电图传感器40即ECG传感器或EKG传感器, 【Electrocardiography,心电描记单元】,心电描记单元是通过心電描記記来测量心脏的活动,心电描记术是一种经胸腔以时间为单位记录心脏的电生理活动的方式,由于人体运动时,心率变化非常明显,从而通过心电图传感器40可以通过获取人体心率的变化,使得传感器组件100对用户运动状态等生理信息能够进行较好的测量,提高了传感器组件100的功能性。如此,本发明的技术方案可以提高智能穿戴设备的功能。
该双面电路板10可以为印制电路板,其材质可以为FR4环氧树脂板;或者该双面电路板10可以为柔性电路板,所述柔性电路板的材料为聚二甲基硅烷、聚酰亚胺、聚乙烯、聚偏氟乙烯、天然橡胶中的任一种。或者该双面电路板10为硬质电路板柔性电路板的结合,其电路层数可以为单层、双层或多层。
该控制器20可以为MCU(微控制器20,Micro Controller Unit),MCU适合不同信息源的多种数据的处理诊断和运算,可以提高传感器组件100的响应。可以理解的是,ECG传感器与用户的皮肤接触测量ECG波形,IMU可以用来测量用户的速度、取向和加速等运动信息,PPG传感器可以用来测量光信号,控制器20将ECG波形、运动信息和光信号处理后,即可得到准确的用户生理状态,提高了传感组件的功能性。
在本申请的一实施例中,该传感器组件100还包括温度传感器,该温度传感器与双面电路板10电性连接,温度传感器还包括温度检测头,该温度检测头在传感器组件100使用时,靠近用户的皮肤,从而对用户的体温进行检测。如此,通过对用户的体温进行检测,通过用户的体温对用户的运动状态进行辅助判断,提高了对用户运动状态的测量准确度。
在本申请的一实施例中,该传感器组件100还包括存储器,该存储器能够被配置成用于保存所产生的传感器数据(例如,IMU的信息、PPG的信息、温度传感器的信息或者诸如ECG、EMG之类的其它生理信息)或者表示加速和/或温度的信息和/或从传感器数据中推导出的其它生理信息。另外,根据一些实施例,存储器能够被配置成用于存储用于控制控制器20的计算机程序代码。在一些实施方式中,存储器可以是易失性存储器和/或非易失性存储器。例如,存储器可以包括闪存存储器、静态存储器、固态存储器、可移除存储卡或者它们的任意组合。在某些示例中,存储器能够从传感器组件100中移除。在一些实施方式中,对于传感器组件100来说,存储器可以是传感器组件100的本 地模块,而在其它示例中,存储器可以传感器组件100的远程模块。例如,存储器可以是智能手机的内部存储器,该智能手机例如经由例如包括WiFi、Zigbee、蓝牙、医疗遥测和近场通信(NFC)等的射频通信协议和/或例如利用红外或非红外LED光学地与传感器组件100有线或无线通信。
在本申请的一实施例中,该传感器组件100还包括无线传输装置,该无线传输装置与双面电路板10电性连接,并用于传感器组件100与移动终端通讯连接。从而传感器组件100能够经由在智能手机上运行的应用(例如,程序)光学地与诸如智能手机等用户设备(例如,无线地)通信。设置无线传输装置可以使传感器组件100将用户的运动状态的测量信息进行实时传输,便于用户实时了解其运动状态信息。
在本申请的一实施例中,传感器组件100还包括电源,该电源可以是任意类型的用于电子设备的可再充(或一次性)电源,例如但不限于一个或多个电化学电池或电瓶、一个或多个光伏电池或者它们的组合。在光伏电池的情况下,这些电池能够对一个或多个电化学电池和/或电平充电。根据一些实施例,电源可以是存储足够的电能以使设备在能量耗尽之前上电并且执行预定程序序列的小型的电池或电容器,例如基于NFC(近场通信,Near Field Communication)简或RFID(射频识别,Radio Frequency Identification)的感测设备。
参照图1至图3,在本申请的一实施例中,所述脉搏传感器30包括光源31和光感测器32,所述光感测器32用于接收所述光源31出射于传感器组件100的反射光,所述光源31和所述光感测器32均与所述双面电路板10电性连接,所述双面电路板10还设有第一挡墙12,所述第一挡墙12位于所述光源31与所述光感测器32之间,并用于防止光源31的出射光直接进入光感测器32。脉搏传感器30主要通过光电容积脉搏波描记法进行检测,光电容积脉搏波描记法(PhotoPlethysmoGraphy PPG)是借光电手段在活体组织中检测血液容积变化的一种无创检测方法,通过设置光源31,将一定波长的光束照射到指端皮肤表面时,光束将通过透射或反射方式传送到光感测器32。在此过程中由于受到指端皮肤肌肉和血液的吸收衰减作用,光感测器32检测到的光强度将减弱,其中皮肤、肌肉组织等对光的吸收在整个血液循环中是保持恒定不变的,而皮肤内的血液容积在心脏作用下呈搏动性变化,当心脏收缩时外周血容量最 多,光吸收量也最大,检测到的光强度最小;而在心脏舒张时正好相反,检测到的光强度最大使光接收器接收到的光强度随之呈脉动性变化,将此光强度变化信号转换成电信号,便可获得容积脉搏血流的变化。从而通过容积脉搏血流的变化获得中包含有心搏功能、血液流动(血氧、血压)等生理信息。如此,可以提高传感器组件100对用户的生理状态的测量准确度。
以及通过设置位于光源31和光感测器32之间的第一挡墙12,对光源31出射的光线进行引导,使得光线更好的照射于用户的皮肤;并且,防止从光源31出射的光线直接进入光感测器32内,影响光感测器32的检测结果,进一步提高传感器组件100对用户的生理状态的测量准确度。在本实施例中,该第一挡墙12可以通过注塑成型或者是通过3D打印形成,该第一挡墙12的材质可以为塑料件或橡胶件,只要便于挡光即可。
以及,在一实施例中该光源31可以为LED发光器,其过电子与空穴复合释放能量发光,发光二极管可高效地将电能转化为光能,从而保证了光能的强度,提高传感器组件100对用户的生理状态的测量准确度。另外,光源31类型不限于LED光源31,可采用其他类型光源31,例如白炽灯、荧光灯、放电灯以及其他发光器。
参照图1至图3,在本申请的一实施例中,所述光源31的数量为多个,多个所述光源31沿所述光感测器32的周向间隔设置,并均与所述双面电路板10连接,所述光感测器32与每一所述光源31之间,均设有用于防止光源31的出射光直接进入光感测器32的第一挡墙12。通过设置多个光源31,从而可以大大提高传感器组件100出射光的光能,从而使更多的光参与人体生理信息的检测,将光源31沿光感测器32的周向间隔设置可以使光线在光感测器32周围分布均匀,且光感测器32能接收到更多的光能,提高了传感器组件100对用户的生理状态的测量准确度。同样的,设置多个光源31时需要在光感测器32和每个光源31之间设置第一挡墙12,从而避免检测噪音,在此不做赘述。
参照图1至图3,在本申请的一实施例中,所述双面电路板10还设有第二挡墙13,所述第二挡墙13位于所述光源31背离所述光感测器32的一侧;置第二挡墙13可以防止外部光线也与皮肤接触后反射于光感测器32,保证测量的准确度;并且便于对光源31的出射光线进行导引,提高光源31的光能 使用率。同样的,该第二挡墙13可以通过注塑成型或者是通过3D打印形成,该第二挡墙13的材质可以为塑料件或橡胶件,只要便于挡光即可。
所述传感器组件100还包括透光镜60,所述透光镜60设于所述光源31和所述光感测器32背离所述双面电路板10的一侧,所述透光镜60与所述双面电路板10之间形成有容置所述脉搏传感器30的容置空间70。设置透光镜60一方面可以对脉搏传感器30进行保护,另一方面便于光源31的光线从传感器组件100出射于皮肤。在一实施例中,透光镜60设于第一挡墙12背离双面电路板10的表面(和/或,设于第二挡墙13背离双面电路板10的表面),以使透光镜60和双面电路板10之间形成用于容置脉搏传感器30的容置空间70,便于脉搏传感器30的安装。
参照图1至图3,在本申请的一实施例中,所述心电图传感器40还包括顶部电极42和底部电极43,所述顶部电极42与所述底部电极43均通过所述双面电路板10与所述传感芯片41电性连接,所述顶部电极42和所述底部电极43设于所述双面电路板10的不同侧,所述底部电极43贴合设置与所述第二挡墙13背离所述光源31的一侧,并抵接所述透光镜60。心电图传感器40利用在人体皮肤表面贴上的电极,侦查心脏的电位传动,借由心电图的信号分析与验算,得到心率信号和脉搏信号提高对用户运动状态的测量准确度。在一种使用状态下,将底部电极43与用户的皮肤贴合,在需要进行心脏电位检测时,用手指或其他部分按压与顶部电极42,从而形成闭环电路,此时心电图传感器40即可通过传感芯片41检测人体心脏的电位传动,保证对用户运动状态的测量准确度。以及,将底部电极43贴合第二挡墙13背离光源31的一侧设置,可以对底部电极43进行一定的支撑,保证底部电极43的结构稳定,并且将底部电极43抵接于透光镜60设置,从而对透光镜60的安装进行一定的限位,提高透光镜60的装配效果,从而保证传感器组件100的结构稳定,提高传感器组件100对用户的生理状态的测量准确度。
参照图1,在本申请的一实施例中,所述第二挡墙13呈环形设置,所述底部电极43呈环形设置,并套接于所述第二挡墙13背离所述光源31的表面,且抵接所述透光镜60,至少部分所述底部电极43设于所述第二挡墙13背离所述双面电路板10的表面。环形设置的第二挡墙13可以防止多个方向的外部光干扰人体的测量,提高传感器组件100对用户的生理状态的测量准确度。环形设 置的底部电极43可以用于提高底部电极43用于与用户的接触的面积,进而提高底部电极43的电位采集准确度,提高传感器组件100的采集准确度。并且由于第二挡墙13和底部电极43均为环形设置,环形具有较好的结构强度,且底部电极43的内侧均能得到第二挡墙13支撑,进一步提高了传感器组件100的结构稳定。
该底部电极43的截面大致呈“L”形设置,该底部电极43的竖直段与第二挡墙13背离光源31的一侧贴合设置,从而保证底部电极43的稳定,为了便于底部电极43与用户皮肤的抵接,将底部电极43的横向段设于第二挡墙13背离双面电路板10的表面,使得该横向段便于与用户贴合,提高传感器组件100对用户的生理状态的测量准确度。
参照图2、图3,在本申请的一实施例中,所述顶部电极42包括第一连接段421和第一延展段422,所述第一连接段421的一端与所述双面电路板10连接,所述第一延展段422设于所述第一连接段421背离所述双面电路板10的一端。设置第一连接段421可以提高顶部电极42设置位置的选择,从而更便于用户在使用时,按压顶部电极42。该第一延展段422用于提高顶部电极42用于与用户的接触的面积,进而提高顶部电极42的电位采集准确度,提高传感器组件100的采集准确度。在一实施例中,传感组件包括相互垂直的第一方向和第二方向,第一连接段421朝第一方向延伸,第一延展段422朝第二方向延伸,如此设置可以更好地提高顶部电极42用于与用户的接触的面积,进而提高顶部电极42的电位采集准确度。
参照图2,在本申请的一实施例中,所述传感器组件100设有保护层80,所述保护层80设于所述控制器20背离所述双面电路板的一侧,并覆盖所述惯性传感器50和所述双面电路板10的表面,所述保护层80还形成有容置孔,所述第一连接段421设于所述容置孔,所述第一延展段422贴合于所述保护层80背离所述双面电路板10的表面。设置保护层80可以对双面电路板10设置控制器20一侧的电子元器件进行保护,从而提高传感器组件100的使用寿命。该保护层80的可以通过模具成型或者三维打印形成,从而使得保护层80贴合于双面电路板10需要保护的表面,提高对设于该表面的电子元器件的保护效果。以及,在保护层80设置容置孔,一方面可以对第一连接段421进行保护,另一方面可以对第一连接段421进行支撑,提高了顶部电极42的安装稳定性。第一 延展段422于保护层80背离双面电路板10的表面延展,从而可以提高顶部电极42用于与用户接触的面积,并且通过保护层80可以对延展的第一延展段422进行支撑,提高了顶部电极42的安装稳定性。
参照图2,在本申请的一实施例中,所述第一挡墙12的宽度自所述双面电路板10至所述透光镜60的方向逐渐减小;此时该第一挡墙12的截面大致呈梯形设置,需要说明的是,第一挡墙12的宽度为光源31至光感测器32的方向上,第一挡墙12的两个端面之间的距离,将该距离在一定程度减小(需要考虑对透光镜60的支撑)可以提高光源31出光口的面积,从而提高出射光的出光量,进而提高光能,使得光源31具有充足的光线参与人体生理参数的检测,提高传感器组件100对用户的生理状态的测量准确度。
在本申请的一实施例中,所述第二挡墙13的宽度自所述双面电路板10至所述透光镜60的方向逐渐减小。同样的,第二挡墙13的宽度为光源31至光感测器32的方向上,第二挡墙13的两个端面之间的距离。此时第二挡墙13的截面大致呈梯形设置,如此设置,一方面可以增加光源31出光口的面积,提高出光量,提高传感器组件100对用户的生理状态的测量准确度,另一方面,还可以在一定程度减小传感器组件100的体积,便于产品的小型化。
在本申请的一实施例中,所述第一挡墙12和所述第二挡墙13朝向所述光源31的表面设置有反光膜90。如此设置,可以通过反光膜90对光源31的出射光进行反射,提高光源31的出光量,进而提高传感器组件100对用户的生理状态的测量准确度。并且在第一挡墙12和第二挡墙13的截面均呈梯形设置时,设置反光膜90可以大大提高对光线的出射,避免光源31在第一挡墙12和第二挡墙13之间经过漫反射后损失出射光的光能,进而提高传感器组件100对用户的生理状态的测量准确度。
在本申请的一实施例中,所述惯性传感器50与所述控制器20设于所述双面电路板10的同一表面,所述传感芯片41与所述脉搏传感器30均设于所述双面电路板10背离所述控制器20的表面。本实施例中,考虑到脉搏传感器30需要进行光信号的接收和发出,将脉搏传感器30单独设在一侧利于光信号的传输和用户使用。并且保证了光源31的出光口的面积,进而提高出光量,提高传感器组件100对用户的生理状态的测量准确度。
在本申请的一实施例中,所述惯性传感器50与所述控制器20堆叠设置。 利用Stack die(晶片堆叠;芯片叠层)的技术,可以将控制器20作为下层,上面堆叠惯性传感器50,这样可以节省双面电路板10的面积,利于产品的小型化。
在本申请的一实施例中,所述惯性传感器50、所述传感芯片41与所述脉搏传感器30均设于所述双面电路板10背离所述控制器20的表面,所述惯性传感器50和所述传感芯片41依次堆叠设置于双面电路板10,所述脉搏传感器30设于所述传感芯片41背离所述双面电路板10的表面;
或者,所述传感芯片41和所述惯性传感器50依次堆叠设置于双面电路板10,所述脉搏传感器30设于所述惯性传感器50背离所述双面电路板10的表面。
如此设置,将用于采集信号的电子元器件和用于分析信号的电子元器件分面设置,便于节省传感器组件100的面积,并且,便于对电路进行集成设置,提高传感器组件100的生产效率。以及,还可以通过利用Stack die(晶片堆叠,芯片叠层)的技术,将传感芯片41(或惯性传感器50)设置为下层,并在惯性传感器50(或传感芯片41)上面叠上(stacking)PPG的Photo Detector(光电探测器,光感测器32),进一步减小双面电路板10的设置面积。
参照图3,在本申请的一实施例中,双面电路板10包括电路板本体11,所述电路板本体11包括相对设置的第一安装面和第二安装面,所述第一安装面凹陷形成第一沉台111,所述第二安装面凹陷形成第二沉台112,所述第一沉台111用于安装所述控制器20和/或所述惯性传感器50和/或所述传感芯片41,所述第二沉台112用于安装所述脉搏传感器30。通过在双面电路板10的电路板本体11的第一安装面形成第一沉台111,在第二安装面形成第二沉台112,使得双面电路板10上电子元器件(惯性传感器50、心电图传感器40、传感芯片41和控制器20)的安装可以设置在第一沉台111和/或第二沉台112内,如此,即使是高度较高的电子元器件安装在电路板本体11后的高度也得到了减小,从而减小了双面电路板10的厚度。因此,可以较好地降低传感器组件100的面积。
在本申请的一实施例中,所述第一沉台111和所述第二沉台112相互交错设置。需要说明的是,交错设置即为第一沉台111沿其下沉方向投影形成的投影轮廓,与第二沉台112沿其下沉方向形成的投影轮廓,在电路板本体11上的位置形成间隔设置。如此设置,可以避免传感器组件100在某个区域的强度较低, 以及该位置安装的电子元器件较多,提高传感器组件100的结构强度和使用寿命。并且,如此,还可以保证电子元器件的分布均匀,方便布线。
本发明还提出一种可穿戴设备,该可穿戴设备包括传感器组件100,该传感器组件100包括双面电路板10;控制器20,所述控制器20设于所述双面电路板10的一表面;
脉搏传感器30、心电图传感器40和惯性传感器50,所述惯性传感器50、所述脉搏传感器30和所述心电图传感器40均与所述双面电路板10电性连接,所述心电图传感器40具有与所述双面电路板10电性连接的传感芯片41,所述传感芯片41、所述脉搏传感器30和所述惯性传感器50的至少一个,设于所述双面电路板10背离所述控制器20的表面。由于本可穿戴设备采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (15)

  1. 一种传感器组件,其特征在于,包括:
    双面电路板;
    控制器,所述控制器设于所述双面电路板的一表面;
    脉搏传感器、心电图传感器和惯性传感器,所述惯性传感器、所述脉搏传感器和所述心电图传感器均与所述双面电路板电性连接,所述心电图传感器具有与所述双面电路板电性连接的传感芯片,所述传感芯片、所述脉搏传感器和所述惯性传感器的至少一个,设于所述双面电路板背离所述控制器的表面。
  2. 如权利要求1所述的传感器组件,其特征在于,所述脉搏传感器包括光源和光感测器,所述光感测器用于接收所述光源出射于传感器组件的反射光,所述光源和所述光感测器均与所述双面电路板电性连接,所述双面电路板还设有第一挡墙,所述第一挡墙位于所述光源与所述光感测器之间,并用于防止光源的出射光直接进入光感测器。
  3. 如权利要求2所述的传感器组件,其特征在于,所述光源的数量为多个,多个所述光源沿所述光感测器的周向间隔设置,并均与所述双面电路板连接,所述光感测器与每一所述光源之间,均设有用于防止光源的出射光直接进入光感测器的第一挡墙。
  4. 如权利要求2所述的传感器组件,其特征在于,所述双面电路板还设有第二挡墙,所述第二挡墙位于所述光源背离所述光感测器的一侧;
    所述传感器组件还包括透光镜,所述透光镜设于所述光源和所述光感测器背离所述双面电路板的一侧,所述透光镜与所述双面电路板之间形成有容置所述脉搏传感器的容置空间。
  5. 如权利要求4所述的传感器组件,其特征在于,所述心电图传感器还包括顶部电极和底部电极,所述顶部电极与所述底部电极均通过所述双面电 路板与所述传感芯片电性连接,所述顶部电极和所述底部电极设于所述双面电路板的不同侧,所述底部电极贴合设置与所述第二挡墙背离所述光源的一侧,并抵接所述透光镜。
  6. 如权利要求5所述的传感器组件,其特征在于,所述第二挡墙呈环形设置,所述底部电极呈环形设置,并套接于所述第二挡墙背离所述光源的表面,且抵接所述透光镜,至少部分所述底部电极设于所述第二挡墙背离所述双面电路板的表面。
  7. 如权利要求5所述的传感器组件,其特征在于,所述顶部电极包括第一连接段和第一延展段,所述第一连接段的一端与所述双面电路板连接,所述第一延展段设于所述第一连接段背离所述双面电路板的一端。
  8. 如权利要求7所述的传感器组件,其特征在于,所述传感器组件设有保护层,所述保护层设于所述控制器背离所述双面电路板的一侧,并覆盖所述惯性传感器和所述双面电路板的表面,所述保护层还形成有容置孔,所述第一连接段设于所述容置孔,所述第一延展段贴合于所述保护层背离所述双面电路板的表面。
  9. 如权利要求4至8中任一项所述的传感器组件,其特征在于,所述第一挡墙的宽度自所述双面电路板至所述透光镜的方向逐渐减小;
    且/或,所述第二挡墙的宽度自所述双面电路板至所述透光镜的方向逐渐减小。
  10. 如权利要求9所述的传感器组件,其特征在于,所述第一挡墙和所述第二挡墙朝向所述光源的表面设置有反光膜。
  11. 如权利要求1至8中任一项所述的传感器组件,其特征在于,所述惯性传感器与所述控制器设于所述双面电路板的同一表面,所述传感芯片与所述脉搏传感器均设于所述双面电路板背离所述控制器的表面。
  12. 如权利要求1至8中任一项所述的传感器组件,其特征在于,所述惯性传感器与所述控制器堆叠设置。
  13. 如权利要求1所述的传感器组件,其特征在于,所述惯性传感器、所述传感芯片与所述脉搏传感器均设于所述双面电路板背离所述控制器的表面,所述惯性传感器和所述传感芯片依次堆叠设置于双面电路板,所述脉搏传感器设于所述传感芯片背离所述双面电路板的表面;
    或者,所述传感芯片和所述惯性传感器依次堆叠设置于双面电路板,所述脉搏传感器设于所述惯性传感器背离所述双面电路板的表面。
  14. 如权利要求1所述的传感器组件,其特征在于,双面电路板包括电路板本体,所述电路板本体包括相对设置的第一安装面和第二安装面,所述第一安装面凹陷形成第一沉台,所述第二安装面凹陷形成第二沉台,所述第一沉台用于安装所述控制器和/或所述惯性传感器和/或所述传感芯片,所述第二沉台用于安装所述脉搏传感器。
  15. 一种可穿戴设备,其特征在于,所述可穿戴设备包括如权利要求1至14中任一项所述的传感器组件。
PCT/CN2019/123545 2019-08-30 2019-12-06 传感器组件和可穿戴设备 WO2021036084A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910812229.8A CN110507289A (zh) 2019-08-30 2019-08-30 传感器组件和可穿戴设备
CN201910812229.8 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021036084A1 true WO2021036084A1 (zh) 2021-03-04

Family

ID=68629241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123545 WO2021036084A1 (zh) 2019-08-30 2019-12-06 传感器组件和可穿戴设备

Country Status (2)

Country Link
CN (1) CN110507289A (zh)
WO (1) WO2021036084A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110507289A (zh) * 2019-08-30 2019-11-29 青岛歌尔微电子研究院有限公司 传感器组件和可穿戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205540460U (zh) * 2016-04-18 2016-08-31 唐小川 语音设备与传感器集成化的穿戴设备
CN106333657A (zh) * 2016-10-09 2017-01-18 京东方科技集团股份有限公司 一种光电传感器及其控制方法、脉搏检测仪
CN107041739A (zh) * 2016-02-05 2017-08-15 光宝光电(常州)有限公司 穿戴式血压量测装置及其光学感测单元
US20180358119A1 (en) * 2016-06-03 2018-12-13 FOURTH FRONTIER TECHNOLOGIES, Pvt. Ltd. Method and system for continuous monitoring of health parameters during exercise
CN109688914A (zh) * 2016-07-12 2019-04-26 Mc10股份有限公司 用于测量血压的单个可穿戴设备系统
CN110072437A (zh) * 2016-12-13 2019-07-30 阿莫生命科学有限公司 贴片型传感器模块
CN110507289A (zh) * 2019-08-30 2019-11-29 青岛歌尔微电子研究院有限公司 传感器组件和可穿戴设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136552A (ja) * 1991-11-15 1993-06-01 Nec Niigata Ltd プリント基板
CN202104923U (zh) * 2011-05-31 2012-01-11 中国科学院沈阳计算技术研究所有限公司 便携式远程血氧血压监护仪
US10413251B2 (en) * 2012-10-07 2019-09-17 Rhythm Diagnostic Systems, Inc. Wearable cardiac monitor
CN104622445B (zh) * 2015-01-30 2017-02-01 中国科学院电子学研究所 一种无线智能的多生理参数健康监护腕式设备
WO2016176218A1 (en) * 2015-04-27 2016-11-03 Apple Inc. Dynamically reconfigurable apertures for optimization of ppg signal and ambient light mitigation
KR20160149015A (ko) * 2015-06-17 2016-12-27 삼성전자주식회사 생체 정보 측정 장치, 체온 측정 장치 및 이를 구비한 전자 장치
CN105371878B (zh) * 2015-12-04 2017-08-25 歌尔股份有限公司 一种环境传感器及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107041739A (zh) * 2016-02-05 2017-08-15 光宝光电(常州)有限公司 穿戴式血压量测装置及其光学感测单元
CN205540460U (zh) * 2016-04-18 2016-08-31 唐小川 语音设备与传感器集成化的穿戴设备
US20180358119A1 (en) * 2016-06-03 2018-12-13 FOURTH FRONTIER TECHNOLOGIES, Pvt. Ltd. Method and system for continuous monitoring of health parameters during exercise
CN109688914A (zh) * 2016-07-12 2019-04-26 Mc10股份有限公司 用于测量血压的单个可穿戴设备系统
CN106333657A (zh) * 2016-10-09 2017-01-18 京东方科技集团股份有限公司 一种光电传感器及其控制方法、脉搏检测仪
CN110072437A (zh) * 2016-12-13 2019-07-30 阿莫生命科学有限公司 贴片型传感器模块
CN110507289A (zh) * 2019-08-30 2019-11-29 青岛歌尔微电子研究院有限公司 传感器组件和可穿戴设备

Also Published As

Publication number Publication date
CN110507289A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
US11350880B2 (en) Health-monitor patch
JP6681990B2 (ja) 健康モニタパッチ
US10165954B2 (en) Integrated sensor modules
US9872619B2 (en) Physiological sensor pod with reset circuit
US9861280B2 (en) Physiological sensor pod and charging unit
Haahr et al. An electronic patch for wearable health monitoring by reflectance pulse oximetry
US9237869B1 (en) Lapel adapter for physiological sensor pod
US20130030259A1 (en) Monitoring system
AU2017316361B2 (en) Systems and methods for determining presence of an analyte using an implantable medical device
EP3342328B1 (en) Human body sleep monitoring device and monitoring method
CN110141197A (zh) 带有显示屏的电子设备
WO2021036084A1 (zh) 传感器组件和可穿戴设备
CN210990225U (zh) 传感器组件和可穿戴设备
JP3209577U (ja) 生理検出装置
CN210961929U (zh) 传感器组件和可穿戴设备
CN207837561U (zh) 健康参数检测设备
Shabnam et al. IoT based health monitoring using smart devices for medical emergency services
WO2019179175A1 (zh) 一种可扩展多生理参数监测指环
KR20210129915A (ko) 생체정보 측정모듈
CN214073277U (zh) 一种高精度生命体征检测设备
CN211609744U (zh) 传感器组件和可穿戴设备
CN115998276A (zh) 一种脉搏波传导速度采集装置及方法
CN215272724U (zh) 具备血压检测功能的智能穿戴设备
CN218943330U (zh) 一种智能穿戴设备
CN210784322U (zh) 一种穿戴式设备及其生理参数监测模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943575

Country of ref document: EP

Kind code of ref document: A1