WO2021036083A1 - Procédé et dispositif de développement de modèle de comportement de conducteur pour conduite automatique et support d'informations - Google Patents

Procédé et dispositif de développement de modèle de comportement de conducteur pour conduite automatique et support d'informations Download PDF

Info

Publication number
WO2021036083A1
WO2021036083A1 PCT/CN2019/123508 CN2019123508W WO2021036083A1 WO 2021036083 A1 WO2021036083 A1 WO 2021036083A1 CN 2019123508 W CN2019123508 W CN 2019123508W WO 2021036083 A1 WO2021036083 A1 WO 2021036083A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver behavior
change data
data
vehicle
behavior model
Prior art date
Application number
PCT/CN2019/123508
Other languages
English (en)
Chinese (zh)
Inventor
杜光辉
袁雁城
张尧文
Original Assignee
格物汽车科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格物汽车科技(苏州)有限公司 filed Critical 格物汽车科技(苏州)有限公司
Publication of WO2021036083A1 publication Critical patent/WO2021036083A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour

Definitions

  • the present invention relates to the technical field of automatic driving, in particular to a method, equipment and storage medium for developing a driver behavior model for automatic driving.
  • Autonomous vehicles also known as unmanned vehicles, are intelligent vehicles that realize unmanned driving through computer systems. They rely on artificial intelligence, visual computing, radar, monitoring devices, and global positioning systems to work together to enable the vehicle’s computer system to Automatically and safely maneuver motor vehicles without unmanned operation.
  • the embodiments of the present invention provide a driver behavior model development method, device and storage medium for automatic driving, so as to solve the problem that the driver behavior model developed in the existing automatic driving technology cannot effectively extract the end-to-end solution algorithm and solution problem.
  • the present invention provides a driver behavior model development method for autonomous driving, which includes the following steps:
  • the actual output data includes the target vehicle driver's decision data and Operational change data of the target vehicle;
  • step (3) where the correction of the basic model includes:
  • the excitation input includes operating change parameters of surrounding vehicles.
  • the incentive input further includes road traffic information parameters and environmental information parameters.
  • the environmental information parameters include one or any combination of illuminance, weather, temperature, humidity, wind direction, and wind speed;
  • the road traffic information parameters include traffic information parameters for main roads in urban areas, suburban areas One or any combination of road traffic information parameters, national road traffic information parameters, provincial road traffic information parameters, and high-speed traffic information parameters.
  • the incentive input further includes the driver's age parameter, gender parameter, physiological parameter, psychological parameter, and driving age parameter.
  • the target vehicle operation change data includes vehicle position change data, speed change data, acceleration change data, steering angle change data, yaw rate change data, lateral acceleration One or any combination of change data, accelerator opening change data, and brake pedal opening change data.
  • it further includes the operating change parameters of the surrounding vehicles including vehicle position change data, speed change data, acceleration change data, steering angle change data, yaw rate change data, lateral acceleration change data, One or any combination of accelerator opening change data and brake pedal opening change data.
  • the present invention also provides a driver behavior model development device, which includes a memory, a processor, and a program stored in the memory and capable of running on the processor.
  • a driver behavior model development device which includes a memory, a processor, and a program stored in the memory and capable of running on the processor.
  • the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores a driver behavior model development program, which is implemented when the driver behavior model development program is executed by a processor.
  • the above-mentioned driver behavior model development method for autonomous driving is described in detail below.
  • the driver behavior model development method, equipment, and storage medium for automatic driving disclosed in the embodiments of the present application are completely different from the prior art method based on AI technology analysis and training to obtain a driver behavior model from massive amounts of data.
  • First create a basic model in the simulation environment based on the transfer relationship between the excitation input and the theoretical output under the excitation input.
  • Second use the excitation input to intervene in the target vehicle in the field test scenario to obtain the true value of the target vehicle in the field test scenario.
  • Output and finally, use the real output in the field test scenario to modify the basic model to obtain a driver behavior model that is close to the real driver behavior to the greatest extent, and effectively extract end-to-end algorithms and solutions.
  • Fig. 1 is a flowchart of a method for developing a driver behavior model in a first embodiment of the present invention
  • Figure 2 is the model diagram under the first field test scenario
  • Figure 3 is a model diagram under the second field test scenario
  • Figure 4 is a model diagram under the third field test scenario
  • Fig. 5 is a structural block diagram of a driver behavior model development device in the second embodiment of the present invention.
  • This embodiment discloses a driver behavior model development method for automatic driving. As shown in FIG. 1, the development method includes the following steps:
  • the theoretical output here is the driving behavior predicted by the creator of the basic model to have 4 to 10 years of driving experience, and to have good driving behavior within the driving age, and the driving behavior of an experienced driver in the driving environment of the incentive input.
  • (A) Operating variation parameters of vehicles located around the target vehicle in the driving environment including the front and rear directions of the same lane, the parallel position of the left and right adjacent lanes, and the front and rear directions of the left and right adjacent lanes.
  • the operating change parameters of the surrounding vehicles here include vehicle position change data, speed change data, acceleration change data, steering angle change data, yaw rate change data, lateral acceleration change data, accelerator opening change data, brake pedal opening change One or any combination of data.
  • the road traffic information parameters here include one or any combination of main road traffic information parameters in urban areas, suburban road traffic information parameters, national road traffic information parameters, provincial road traffic information parameters, and high-speed traffic information parameters;
  • the environmental information parameters here include One or any combination of illuminance, weather, temperature, humidity, wind direction, wind speed.
  • the creator of the basic model creates the basic model in the simulation environment according to the transfer relationship between the excitation input and the theoretical output under the excitation input.
  • the actual output data includes the target vehicle driver's decision data and the target Vehicle operation change data.
  • the target vehicle operation change data includes vehicle position change data, speed change data, acceleration change data, steering angle change data, yaw rate change data, lateral acceleration change data, accelerator opening change data, brake pedal opening change data One of them or any combination.
  • test scenarios design field test scenarios based on experience and typical scenes of Chinese roads collected throughout the year, including key elements such as road types, vehicle types, weather conditions, vehicle distribution conditions, and vehicle behaviors.
  • a test outline is prepared according to the needs of the driver's behavior model development.
  • the outline content includes the definition of collected data, the change mode of vehicle operation in a single scene, and the change mode of vehicle operation in combined scenes.
  • the person in charge of the test instructs the test vehicle (or "surrounding vehicle") to change its operation mode according to the requirements of the test program, as an incentive to collect the response mode of the driver of the tested vehicle (or "target vehicle”), including the driver The decision-making data and the operational change data of the tested vehicle.
  • the correction process here includes judging whether the actual output data of the target vehicle in the field test scenario is different from the theoretical output, if so, using the real output data to update the theoretical output data, and using the updated theoretical output data to modify the basic model.
  • the vehicle is controlled to accelerate or decelerate by sensing the speed of the preceding vehicle, the distance between the accelerometer, and other related information to ensure that the vehicle and the preceding vehicle maintain a safe and comfortable distance dx.
  • the own vehicle needs to obtain at least the following data: 1The speed of the preceding vehicle in the last time period; 2The acceleration of the preceding vehicle in the last time period; 3The distance between the own vehicle and the preceding vehicle in the last time period; 4The current vehicle in front Estimated parking distance at vehicle speed; 5Estimated parking distance at current speed of the vehicle. And output at least the following data: 1The distance between the vehicle and the preceding vehicle in the current time period; 2The acceleration of the vehicle in the current time period; 3The speed of the vehicle in the current time period.
  • the SC1 scene of the field test includes the correction of the difference between the acceleration and deceleration strategy, and the limitation of the experience value (or "threshold experience value") difference correction while maintaining the distance between the vehicle and the preceding vehicle.
  • the vehicle adopts the deceleration strategy, and the acceleration strategy is used when creating the basic model.
  • the deceleration strategy is used to update the acceleration strategy, and one of the incentive input in this scenario and the updated acceleration strategy is used.
  • the field test SC2 scenario includes the correction of the deceleration strategy difference and the deceleration experience value difference correction adopted by the vehicle after the emergency braking of the vehicle in front.
  • the deceleration of the vehicle is a1
  • the deceleration of the vehicle under the excitation input is a2 (a2 is not equal to a1)
  • the deceleration is updated with deceleration a2 in this scenario a1
  • the intention of changing lanes is predicted by sensing the trajectory of abnormal vehicles in adjacent lanes, and by actively shortening the distance between the vehicle and the preceding vehicle to avoid the full rights of hidden dangers caused by the arbitrary lane change of the adjacent vehicle , The vehicle and the preceding vehicle will eventually maintain a safe and compact distance dx.
  • the vehicle needs to obtain at least the following data: 1The speed change and acceleration change range of the N time period before the lane change vehicle; 2The distance to the vehicle ahead and the change range of the N time period before the lane change vehicle and the change range; 3Last time Cycle distance between the vehicle in front and the vehicle in front; 4Estimation of the parking distance of the vehicle in front at the current speed; 5The usable area of adjacent lanes
  • the field test SC3 scenario includes the correction of the empirical value difference of the distance between the vehicle and the preceding vehicle at different speeds of the vehicle in front, and the revision of the difference of the change rule function.
  • the field test SC3 scenario includes the correction of the lateral control strategy difference, the correction of the experience value of the yaw rate, the correction of the change rate, etc. after the vehicle in front of the vehicle has braked at different levels.
  • the vehicle In the field test SC5 scenario, the vehicle is controlled longitudinally and laterally by sensing the speed, acceleration, and distance of the preceding vehicle, the vehicle being overtaken, and the neighboring vehicle to ensure that the vehicle and the neighboring vehicle stay in place.
  • a safe and comfortable distance (-dx and dRR, etc.), even if the vehicle in front of the vehicle in front of the vehicle does a certain degree of emergency braking without any warning, the vehicle can safely change lanes to the expected adjacent lane.
  • the own vehicle needs to obtain at least the following data: 1The speed of the vehicle to be overtaken in the last time period; 2The acceleration of the vehicle to be overtaken in the last time period; 3The vehicle and the vehicle to be overtaken in the last time period The distance between the vehicle; 4The speed of the vehicle to be overtaken in the last time period; 5The acceleration of the vehicle to be overtaken in the last time period; 6The distance between the own vehicle and the vehicle to be overtaken in the last time period; 7The current vehicle in front Estimated parking distance at vehicle speed; 8 Estimated parking distance at current speed of the vehicle.
  • the field test SC3 scenario includes the correction of the difference between the horizontal and vertical control strategies adopted by the vehicle when the vehicle in front and the overtaken vehicle are in different relative positions and at different relative speeds, and the correction of the difference in related experience values.
  • This embodiment also discloses a driver behavior model development device.
  • the device includes a memory, a processor, and a program stored in the above-mentioned memory and running on the above-mentioned processor, and the program is processed by the above-mentioned processor.
  • the driver's behavior model development method for autonomous driving as shown in Figure 1 is implemented when the driver is executed.
  • This embodiment also discloses a computer-readable storage medium, the computer-readable storage medium stores a driver behavior model development program, and when the driver behavior model development program is executed by a processor, the program shown in FIG. 1 is implemented.
  • Driver behavior model development method for autonomous driving is also disclosed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

La présente invention concerne un procédé et un dispositif de développement de modèle de comportement de conducteur pour une conduite automatique et un support d'informations. Le procédé comporte les étapes suivantes consistant : (1) à établir un modèle de base dans un environnement de simulation selon une relation transitive entre une entrée d'excitation et une sortie théorique ; (2) à utiliser la même entrée d'excitation que celle destinée à établir le modèle de base pour intervenir dans un véhicule cible dans un scénario de test de terrain de manière à acquérir des données de sortie réelles du véhicule cible sous l'entrée d'excitation dans le scénario de test de terrain, les données de sortie réelles comprenant des données de décision de conducteur de véhicule cible et des données de changement de fonctionnement de véhicule cible; et (3) à utiliser des données de sortie réelles acquises du véhicule cible dans le scénario de test de terrain pour corriger le modèle de base. La présente invention est différente d'un procédé d'apprentissage d'une grande quantité de données pour acquérir un modèle de comportement de conducteur sur la base d'une analyse technologique AI dans l'état de la technique. Un modèle de comportement de conducteur s'approchant du comportement de conducteur réel dans la plus grande mesure est acquis et un algorithme de bout en bout et une solution de bout en bout sont efficacement extraits.
PCT/CN2019/123508 2019-08-26 2019-12-06 Procédé et dispositif de développement de modèle de comportement de conducteur pour conduite automatique et support d'informations WO2021036083A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910791480.0A CN110497914B (zh) 2019-08-26 2019-08-26 自动驾驶的驾驶员行为模型开发方法、设备和存储介质
CN201910791480.0 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021036083A1 true WO2021036083A1 (fr) 2021-03-04

Family

ID=68589647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123508 WO2021036083A1 (fr) 2019-08-26 2019-12-06 Procédé et dispositif de développement de modèle de comportement de conducteur pour conduite automatique et support d'informations

Country Status (2)

Country Link
CN (1) CN110497914B (fr)
WO (1) WO2021036083A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113706911A (zh) * 2021-08-25 2021-11-26 上海尔纯数据科技有限公司 一种基于数字化交通场景的自动驾驶方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110497914B (zh) * 2019-08-26 2020-10-30 格物汽车科技(苏州)有限公司 自动驾驶的驾驶员行为模型开发方法、设备和存储介质
CN111505965B (zh) * 2020-06-17 2020-09-29 深圳裹动智驾科技有限公司 自动驾驶车辆仿真测试的方法、装置、计算机设备及存储介质
CN112180921B (zh) * 2020-09-22 2021-07-30 安徽江淮汽车集团股份有限公司 自动驾驶算法训练系统及方法
CN113353087B (zh) * 2021-07-23 2022-08-30 上海汽车集团股份有限公司 一种驾驶辅助方法、装置及系统
CN113859250B (zh) * 2021-10-14 2023-10-10 泰安北航科技园信息科技有限公司 一种基于驾驶行为异常识别的智能网联汽车信息安全威胁检测系统
CN114132333B (zh) * 2021-12-14 2024-08-16 阿维塔科技(重庆)有限公司 一种智能驾驶系统优化方法、装置及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895435A (en) * 1996-03-01 1999-04-20 Toyota Jidosha Kabushiki Kaisha Vehicle drive mode estimating device, and vehicle control apparatus, transmission shift control apparatus and vehicle drive force control apparatus including drive mode estimating device
CN106314438A (zh) * 2016-08-15 2017-01-11 西北工业大学 一种司机驾驶轨迹中异常轨迹的检测方法和系统
CN107153916A (zh) * 2017-04-30 2017-09-12 安徽中科美络信息技术有限公司 一种基于fcm聚类和bp神经网络的驾驶行为评价方法
CN107235044A (zh) * 2017-05-31 2017-10-10 北京航空航天大学 一种基于多传感数据实现对道路交通场景和司机驾驶行为的还原方法
EP3272611A1 (fr) * 2015-04-21 2018-01-24 Panasonic Intellectual Property Management Co., Ltd. Système de traitement d'informations, procédé de traitement d'informations, et programme
CN108819948A (zh) * 2018-06-25 2018-11-16 大连大学 基于逆向强化学习的驾驶员行为建模方法
US20190049980A1 (en) * 2017-08-08 2019-02-14 TuSimple Neural network based vehicle dynamics model
CN110497914A (zh) * 2019-08-26 2019-11-26 格物汽车科技(苏州)有限公司 自动驾驶的驾驶员行为模型开发方法、设备和存储介质

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057648A1 (fr) * 2012-10-12 2014-04-17 日産自動車株式会社 Appareil d'assistance au déplacement de véhicule
US9361409B2 (en) * 2013-01-10 2016-06-07 International Business Machines Corporation Automatic driver modeling for integration of human-controlled vehicles into an autonomous vehicle network
KR101592728B1 (ko) * 2014-07-08 2016-02-15 현대자동차주식회사 차량의 주행 시뮬레이션 장치 및 그 방법
US20160314224A1 (en) * 2015-04-24 2016-10-27 Northrop Grumman Systems Corporation Autonomous vehicle simulation system
CN107139929B (zh) * 2017-05-15 2019-04-02 北理慧动(常熟)车辆科技有限公司 一种重型自动变速车辆广义阻力系数的估计及修正方法
CN109032103B (zh) * 2017-06-09 2020-12-18 百度在线网络技术(北京)有限公司 无人驾驶车辆的测试方法、装置、设备及存储介质
CN109515444B (zh) * 2017-09-18 2021-02-26 百度在线网络技术(北京)有限公司 用于输出无人驾驶汽车的行驶性能指标的方法和装置
KR102015076B1 (ko) * 2017-11-13 2019-08-27 주식회사 소네트 일상 주행 데이터를 이용한 자율 주행 알고리즘 개발 장치 및 그 방법
CN108216233B (zh) * 2017-12-28 2019-10-15 北京经纬恒润科技有限公司 一种自适应巡航系统控制参数的标定方法及装置
CN110015306B (zh) * 2018-01-10 2020-12-04 华为技术有限公司 驾驶轨迹获取方法及装置
KR20190097486A (ko) * 2018-02-12 2019-08-21 슈어소프트테크주식회사 운전 성향 추정이 가능한 자동차, 운전 성향 추정 방법 및 시스템
CN108803607B (zh) * 2018-06-08 2021-06-01 北京领骏科技有限公司 一种用于自动驾驶的多功能仿真系统
CN109213126B (zh) * 2018-09-17 2020-05-19 安徽江淮汽车集团股份有限公司 自动驾驶汽车测试系统和方法
CN109726447A (zh) * 2018-12-10 2019-05-07 北京百度网讯科技有限公司 自动驾驶车辆周围行人疏散方法、装置及存储介质
CN109884916B (zh) * 2019-02-26 2022-03-04 魔门塔(苏州)科技有限公司 一种自动驾驶仿真评估方法及装置
CN109993849A (zh) * 2019-03-22 2019-07-09 山东省科学院自动化研究所 一种自动驾驶测试场景再现模拟方法、装置及系统
CN110155073B (zh) * 2019-05-24 2020-06-09 合肥工业大学 基于驾驶人偏好的驾驶行为模式识别方法与系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895435A (en) * 1996-03-01 1999-04-20 Toyota Jidosha Kabushiki Kaisha Vehicle drive mode estimating device, and vehicle control apparatus, transmission shift control apparatus and vehicle drive force control apparatus including drive mode estimating device
EP3272611A1 (fr) * 2015-04-21 2018-01-24 Panasonic Intellectual Property Management Co., Ltd. Système de traitement d'informations, procédé de traitement d'informations, et programme
CN106314438A (zh) * 2016-08-15 2017-01-11 西北工业大学 一种司机驾驶轨迹中异常轨迹的检测方法和系统
CN107153916A (zh) * 2017-04-30 2017-09-12 安徽中科美络信息技术有限公司 一种基于fcm聚类和bp神经网络的驾驶行为评价方法
CN107235044A (zh) * 2017-05-31 2017-10-10 北京航空航天大学 一种基于多传感数据实现对道路交通场景和司机驾驶行为的还原方法
US20190049980A1 (en) * 2017-08-08 2019-02-14 TuSimple Neural network based vehicle dynamics model
CN108819948A (zh) * 2018-06-25 2018-11-16 大连大学 基于逆向强化学习的驾驶员行为建模方法
CN110497914A (zh) * 2019-08-26 2019-11-26 格物汽车科技(苏州)有限公司 自动驾驶的驾驶员行为模型开发方法、设备和存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113706911A (zh) * 2021-08-25 2021-11-26 上海尔纯数据科技有限公司 一种基于数字化交通场景的自动驾驶方法

Also Published As

Publication number Publication date
CN110497914A (zh) 2019-11-26
CN110497914B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2021036083A1 (fr) Procédé et dispositif de développement de modèle de comportement de conducteur pour conduite automatique et support d'informations
CN111506058B (zh) 通过信息融合来计划自动驾驶的短期路径的方法及装置
CN112133089B (zh) 一种基于周围环境与行为意图的车辆轨迹预测方法、系统及装置
CN111653113B (zh) 车辆的局部路径确定方法、装置、终端和存储介质
CN111127931B (zh) 一种智能网联汽车的车路云协同方法、装置及系统
Nouveliere Experimental vehicle longitudinal control using a second order sliding mode technique
DE102020127043A1 (de) Sicherheitssystem für ein fahrzeug
CN112997060A (zh) 用于修改自主车辆的控制单元的方法和系统
CN109501799A (zh) 一种车联网条件下的动态路径规划方法
CN114077541A (zh) 验证用于自动驾驶车辆的自动控制软件的方法和系统
US11645360B2 (en) Neural network image processing
CN113511215B (zh) 一种混合自动驾驶决策方法、设备及计算机存储介质
US11782451B1 (en) Training machine learning model for controlling autonomous vehicle
CN113085873A (zh) 驾驶策略的获取方法、装置、计算机设备和存储介质
US11657635B2 (en) Measuring confidence in deep neural networks
US11429843B2 (en) Vehicle operation labeling
CN113071515B (zh) 可移动载体控制方法、装置、可移动载体及存储介质
CN117842032A (zh) 一种基于路面条件的扭矩控制方法及装置
CN115136081A (zh) 用于训练用于机动车的控制器的至少一个算法的方法、用于优化区域中的交通流的方法、计算机程序产品以及机动车
CN116901963A (zh) 自动驾驶车辆的制动控制方法、装置、车辆和介质
CN111830949B (zh) 自动驾驶车辆控制方法、装置、计算机设备和存储介质
US10977783B1 (en) Quantifying photorealism in simulated data with GANs
Fan et al. Virtual Platform Development for New Control Logic Concept Test and Validation
Gonzalez et al. Longitudinal collision avoidance based on model predictive controllers and fuzzy inference systems
Meng et al. A Novel Test Platform for Automated Vehicles Considering the Interactive Behavior of Multi-Intelligence Vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943774

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19943774

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19943774

Country of ref document: EP

Kind code of ref document: A1