WO2021035825A1 - 一种线圈内嵌套法兰磁轭的垂直线性马达 - Google Patents

一种线圈内嵌套法兰磁轭的垂直线性马达 Download PDF

Info

Publication number
WO2021035825A1
WO2021035825A1 PCT/CN2019/105953 CN2019105953W WO2021035825A1 WO 2021035825 A1 WO2021035825 A1 WO 2021035825A1 CN 2019105953 W CN2019105953 W CN 2019105953W WO 2021035825 A1 WO2021035825 A1 WO 2021035825A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
flange
nested
linear motor
permanent magnet
Prior art date
Application number
PCT/CN2019/105953
Other languages
English (en)
French (fr)
Inventor
王磊
张良威
李华京
Original Assignee
领先科技(东台)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 领先科技(东台)有限公司 filed Critical 领先科技(东台)有限公司
Publication of WO2021035825A1 publication Critical patent/WO2021035825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Definitions

  • the present disclosure relates to the field of motor technology, in particular to a vertical linear motor with a flange yoke nested in a coil.
  • the traditional vibration generating device uses a rotor motor based on eccentric rotation, which realizes mechanical vibration through the rotation of an eccentric vibrator. As the eccentric vibrator rotates, the commutator and brush will produce mechanical friction and electric sparks, etc., which will affect The rotation speed of the eccentric vibrator affects the vibration effect of the device. Therefore, the vibration generating device mostly adopts a linear motor with better performance.
  • Linear motors also called linear motors, linear motors, push rod motors, etc.
  • linear motors also called linear motors, linear motors, push rod motors, etc.
  • the most commonly used linear motor types are flat plate, U-slot and tube type. It is a technology that converts electrical energy into linear motion mechanical energy. The repulsive force of the magnet makes the moving element levitate, and at the same time, the moving element is directly driven by the magnetic force. It does not need to be driven by a transmission mechanism such as a gear set like a rotary motor. Therefore, a linear motor can make the moving element driven by it perform High acceleration and deceleration reciprocating motion. With this feature, linear motors can be used in different manufacturing and processing technology fields, and used as a driving power source or as a technical content to provide positioning.
  • linear motors have high speed, low noise and high positioning accuracy. Therefore, linear motors have been used in many applications to replace mechanical motion methods such as traditional servo motors.
  • the present disclosure proposes a vertical linear motor with a flange yoke nested in the coil.
  • a vertical linear motor with a flange yoke nested in a coil comprising a casing.
  • a mover assembly and a stator assembly corresponding to the mover assembly are arranged in the housing.
  • the stator assembly includes a coil and is used for the coil and an external circuit
  • a flange yoke is nested in the coil
  • the mover assembly has a permanent magnet corresponding to the coil
  • one end of the flange yoke close to the permanent magnet is provided with a third flange that matches the coil.
  • the beneficial effect of the present disclosure is that the coil of the inner nested flange yoke is in the magnetic field generated by the permanent magnet of the mover assembly, and after the external circuit energizes the coil through the FPC board, the coil interacts with the permanent magnet, thereby making the mover assembly Relative to the stator assembly for vertical vibration, the coil is nested with a flange yoke, which can increase the permeability of the overall magnetic circuit, increase the magnetic induction intensity of the coil, and facilitate better interaction between the permanent magnet and the coil , Improve the magnetic circuit of the product, increase the energy utilization rate and vibration force of the product, effectively increase the BL value of the product, the vibration effect is good, and the flange yoke is easy to connect and assemble with the coil through the third flange, and the operation is convenient ,
  • the structure is simple, compact, stable, and takes up little space, which improves the stability, poor reliability and process yield of the product, facilitates the mass production of the product, and expands the application and development
  • the casing includes an upper casing and a lower casing, and the stator assembly is disposed on the lower casing.
  • a third tank for accommodating the FPC board is provided on the lower casing.
  • the bottom surface of the third groove body is provided with a positioning through hole.
  • the mover assembly is respectively elastically connected to the upper casing and the lower casing through springs.
  • the lower casing is formed with a first flange that cooperates with the spring and the upper casing.
  • the mover assembly includes a mass connected to the spring, and the permanent magnet is arranged at one end of the mass close to the coil.
  • one end of the mass close to the coil is provided with a first yoke matched with a permanent magnet and a first hole for arranging the first yoke.
  • the first yoke is provided with a slot for arranging the permanent magnet. Towards the fourth slot of the coil.
  • the notch of the fourth groove body is provided with a second flange side, and one end of the first hole body is provided with a fifth groove body that is matched with the second flange side.
  • the permanent magnet is provided with a pole piece at one end close to the coil.
  • FIG. 1 is an exploded view of a vertical linear motor with a flange yoke nested in a coil provided by an embodiment of the disclosure.
  • FIG. 2 is a perspective view of a vertical linear motor with a flange yoke nested in a coil provided by an embodiment of the disclosure.
  • FIG 3 is a cross-sectional view of a vertical linear motor with a flange yoke nested in a coil provided by an embodiment of the disclosure.
  • Fig. 4 is a perspective view of an upper casing provided by an embodiment of the disclosure.
  • Fig. 5 is a perspective view of a lower casing provided by an embodiment of the disclosure.
  • Fig. 6 is a perspective view of a flange yoke provided by an embodiment of the disclosure.
  • the reference numerals in the drawings illustrate that the casing 1, the upper casing 11, the insertion portion 111, the pressing surface 112, the seventh tank body 113, the lower casing 12, the first flange 121, the first tank body 122, the first Three slot body 123, positioning through hole 124, sixth slot body 125, first notch 126, support portion 127, mover assembly 2, permanent magnet 21, mass 22, first hole body 221, fifth slot body 222, First yoke 23, fourth slot body 231, second flange 232, pole piece 24, stator assembly 3, coil 31, flange yoke 32, third flange 321, FPC board 33, connecting part 331 , Spring 4, second trough 41.
  • connection should be understood in a broad sense.
  • they can be fixed or detachable.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in the present disclosure can be understood in specific situations.
  • FIG. 1 is an exploded view of a vertical linear motor with a flange yoke nested in a coil provided by an embodiment of the disclosure
  • FIG. 2 is a vertical linear motor with a flange yoke nested in a coil provided by an embodiment of the disclosure
  • 3 is a cross-sectional view of a vertical linear motor with a flange yoke nested in a coil provided by an embodiment of the disclosure
  • FIG. 4 is a perspective view of an upper casing provided by an embodiment of the disclosure
  • FIG. 5 is an embodiment of the disclosure The example provides a perspective view of the lower casing
  • FIG. 6 is a perspective view of a flange yoke provided by an embodiment of the disclosure.
  • a vertical linear motor with a flange yoke nested in a coil includes a casing 1.
  • the casing 1 is provided with a mover assembly 2 and a stator assembly corresponding to the mover assembly 2 3.
  • the mover assembly 2 is usually located above the stator assembly 3.
  • the housing 1 includes an upper housing 11 and a lower housing 12.
  • the stator assembly 3 is arranged on the lower housing 12, and the upper housing 11 and the lower housing 12 are usually welded and connected Together.
  • the stator assembly 3 includes a coil 31.
  • a flange yoke 32 is embedded in the coil 31.
  • the coil 31 and the flange yoke 32 are usually fastened by glue.
  • the coil 31 is connected to an external circuit through an FPC board 33, and the coil 31 is connected to the FPC board. 33 is usually connected by gluing or welding.
  • the FPC board 33 and/or the coil 31 are usually glued and fixed on the lower casing 12.
  • the mover assembly 2 has a permanent magnet 21 corresponding to the coil 31.
  • the permanent magnet 21 is usually Located above the coil 31, one end of the flange yoke 32 close to the permanent magnet 21 is provided with a third flange 321 matched with the coil 31. After the coil 31 is energized, it interacts with the permanent magnet 21 to make the mover assembly 2 move vertically. Vibrate in a straight direction.
  • the coil 31 and the flange yoke 32 are usually hollow cylindrical, but can also be other suitable shapes.
  • the flange yoke 32 can also be solid, and the flange yoke 32 is easily connected to the coil 31 through the third flange 321
  • the assembly improves the structural stability of the coil 31 and the reliability of the connection between the coil 31 and related components, and the flange yoke 32 can better conduct the surrounding magnetic lines to the coil 31, thereby increasing the overall magnetic field.
  • the magnetic permeability of the circuit increases the magnetic induction intensity of the coil 31, and the magnetic field generated by the permanent magnet 21 can better act on the coil 31, thereby increasing the interaction force between the permanent magnet 21 and the coil 31, that is, the vibration force of the product.
  • FPC board 33 is a flexible printed circuit board (Flexible Printed Circuit), which is a printed circuit board made of polyimide or polyester film with high reliability and excellent flexibility.
  • Flexible Printed Circuit Flexible Printed Circuit
  • the yoke usually It can be made of soft iron, A3 steel, soft magnetic alloy, ferrite material, stainless steel or silicon steel with high magnetic permeability. It is evenly and symmetrically divided around the induction coil.
  • permanent magnet 21 refers to a magnet that can retain high remanence for a long time in an open circuit state, also called a hard magnet, For example, magnets, neodymium magnets, permanent magnets made of ferrite permanent magnet materials, etc., magnets are preferred. Magnets have the characteristics of high hardness, high coercivity, high temperature resistance, and strong corrosion resistance. It has better characteristics. After being saturated magnetized, it can still maintain strong and stable magnetism for a long time after the external magnetic field is removed.
  • the coil 31 of the inner flange yoke 32 is in the magnetic field generated by the permanent magnet 21 of the mover assembly 2.
  • the coil 31 is subjected to a certain ampere force.
  • the coil 31 interacts with the permanent magnet 21. Because the coil 31 is fixed, the permanent magnet 21 moves relative to the coil 31 under the corresponding reaction force, so that the coil 31 also cuts the magnetic line of induction, so that the moving subassembly 2 is relative to
  • the stator assembly 3 vibrates in the vertical direction, that is, the vibration of the product.
  • the present disclosure has convenient operation, simple, compact and stable structure, and small space occupation.
  • the flange yoke 32 is easily connected and assembled with the coil 31 through the third flange 321, which improves the structural stability of the coil 31 and the coil 31 and related parts.
  • the reliability of the connection, and the flange yoke 32 is embedded in the coil 31, which can increase the magnetic permeability of the overall magnetic circuit and increase the magnetic induction intensity of the coil 31, so that the permanent magnet 21 and the coil 31 can better communicate with each other. It improves the magnetic circuit of the product, improves the energy utilization rate and vibration force of the product, effectively increases the BL value of the product, and the vibration effect is good, thereby improving the product stability, poor reliability and process yield, and facilitating product development. Mass production has expanded the application and development of products.
  • the BL value is the product of the magnetic field strength and the effective cutting length of the coil.
  • the BL value reflects the ampere force of different motors at the same current. The larger the BL value, the greater the ampere force.
  • the current waveform of the coil 31 can be changed.
  • the frequency and amplitude of the vibration of the mover assembly 2 can generate different vibration sensations, rich in vibration sensations, and realize a variety of different tactile feedback, which is convenient to be applied to the power source of the tactile feedback of smart devices, and the application range of the product is increased.
  • the lower casing 12 is provided with a third tank 123 for accommodating the FPC board 33, and the FPC board 33 is usually glued and fixed on the bottom surface of the third tank 123. Further, during the product assembly process, the lower casing 12 needs to be positioned on a certain jig, and then other parts are assembled.
  • the bottom surface of the third tank 123 is also provided with a positioning through hole 124 on the FPC board 33 Usually, there is also an escape through hole corresponding to the flange yoke 32.
  • the coil 31 and the flange yoke 32 are usually hollow cylindrical.
  • the inner hole of the flange yoke 32 corresponds to the positioning through hole 124 for positioning Synchronous positioning or avoidance is formed.
  • the positioning through hole 124 facilitates the positioning of the lower casing 12 and the assembly of related parts. The operation is simple and convenient, the accuracy is higher, the stability is better, and the process yield of the product is improved.
  • the bottom surface of the third groove body 123 may also be provided with a plurality of sixth groove bodies 125 that are matched with the FPC board 33.
  • the plurality of sixth groove bodies 125 are interlaced with each other in a net shape, so that after the glue is applied, the FPC board 33 is convenient Glue on the lower casing 12 more firmly.
  • the FPC board 33 usually has a connecting portion 331 extending out of the casing 1 to facilitate connection with an external circuit.
  • the lower casing 12 is provided with a first notch 126 for the connection portion 331 to pass through and a support for matching with the connecting portion 331.
  • the upper casing 11 is provided with a seventh slot body 113 for the support portion 127 and the connecting portion 331 to pass through, which facilitates the connection of the motor with the external circuit, and has a more compact and stable structure.
  • the FPC board 33 may also be provided with a slot body matching the lead of the coil 31, which not only has a more compact structure to reduce the occupied space of related parts, but also has a protective effect on the lead of the coil 31, which is safer and more reliable.
  • the mover assembly 2 is elastically connected to the upper housing 11 and the lower housing 12 through springs 4, that is, the spring 4 suspends the mover assembly 2 in the housing 1.
  • the spring 4 not only has the function of buffering and protection, but also can provide a certain restoring force for the vibration of the mover assembly 2.
  • the spring 4 can be a conical spring, a tower spring, a plane spring or other suitable elastic parts.
  • a plane spring usually refers to a spring leaf that undergoes vertical elastic deformation in a plane. For example, an elastic material is rolled on a plane. The elastic material is hollowed out or the elastic material is punched and cut, etc.
  • the flat spring structure is more compact, which can reduce the volume of the product.
  • the lower casing 12 is formed with a first flange 121 that cooperates with the spring 4 and the upper casing 11.
  • the upper casing 11 and/or the spring 4 is pressed and connected to the first flange 121, which makes the operation more convenient.
  • the structure is more stable and reliable.
  • the first flange 121 is provided with a plurality of first grooves 122.
  • the first grooves 122 are usually located at the outer edge of the first flange 121 and are evenly distributed along the circumferential direction of the first flange 121. According to specific conditions, The first groove body 122 may be one, two or more.
  • the spring 4 is provided with a second groove body 41 corresponding to the first groove body 122.
  • the second groove body 41 is usually located on the outer edge of the spring 4,
  • the casing 11 is provided with an inserting portion 111 corresponding to the first tank body 122 and the second tank body 41. When assembling, the inserting portion 111 is inserted into the first tank body 122 and the second tank body 41, so that you can get on the machine.
  • the connection of the casing 11, the spring 4 and the lower casing 12 is tighter, the structure is more compact, and the structure is more stable and reliable. Further, the thickness of the inserting portion 111 is less than the thickness of the upper casing 11, so that a pressing surface 112 is formed at the intersection of the inserting portion 111 and the upper casing 11. The pressing surface 112 can make the upper casing 11 better.
  • the ground is matched with the spring 4 or the first flange 121 for better stability.
  • the mover assembly 2 includes a mass 22 connected with the spring 4.
  • the mass 22 is also called a balance block, a vibrating block, a counterweight, etc. During the vibration process, the mass 22 can increase the vibration force of the mover assembly 2 through its own inertia.
  • the permanent magnet 21 is arranged at the end of the mass 22 close to the coil 31, and the permanent magnet 21 and the mass 22 can be connected by glue or welding.
  • One end of the mass 22 close to the coil 31 is provided with a first yoke 23 that matches with the permanent magnet 21 and a first hole 221 for arranging the first yoke 23.
  • the first yoke 23 is provided with a permanent magnet 21 and
  • the slot faces the fourth slot body 231 of the coil 31, the first yoke 23 is arranged in the first hole body 221 and the permanent magnet 21 is arranged in the fourth slot body 231, the connection is tighter and firmer, and the structure is more compact and stable.
  • the yoke usually refers to the soft magnetic material that does not produce the magnetic field (magnetic induction line), and only transmits the magnetic induction line in the magnetic circuit.
  • the yoke can usually be made of soft iron with high permeability, A3 steel, soft magnetic alloy, iron It is made of ferrite material, stainless steel or silicon steel. It is evenly and symmetrically divided around the induction coil. Its function is to restrict the leakage of the induction coil from spreading out, improve the efficiency of induction and join, thereby improving the utilization of magnetic induction. Efficiency, that is, the efficiency of energy utilization.
  • the notch of the fourth groove body 231 is also provided with a second flange side 232, and one end of the first hole body 221 is provided with a fifth groove body 222 that is matched with the second flange side 232, so that the connection is closer and the structure More compact, more stable and reliable.
  • the spring 4 can also be connected to the mass 22 and the second flange 232 respectively, so that the connection is tighter and firmer.
  • the pole piece 24 can usually be glued or welded to the permanent magnet 21.
  • the pole piece 24 is usually produced by itself that does not produce a magnetic field, but only transmits magnetic lines of induction in the magnetic circuit. Made of soft magnetic material, it can constrain the magnetic field generated by the permanent magnet 21 to a certain extent, make the magnetic line of induction better act on the coil 31, improve the efficiency of induction and join, thereby improving the utilization efficiency of the magnetic line of induction, that is, energy The utilization efficiency of, thereby improving the interaction force between the permanent magnet 21 and the coil 31, that is, the vibration force of the product.
  • the flange yoke 32 has a hollow cylindrical shape.
  • the diameter of the permanent magnet 21 is smaller than the inner diameter of the flange yoke 32 and its one end is located in the flange yoke 32.
  • the permanent magnet 21 can be along the axis of the flange yoke 32. It moves to make the mover assembly 2 vibrate, so that the structure is more compact, stable, safer and more reliable.
  • the diameter of the fourth slot body 231 is greater than the outer diameter of the coil 31, the diameter of the pole piece 24 is equal to or slightly smaller than the diameter of the permanent magnet 21, and the upper end of the coil 31 may be located in the fourth slot body 231 ,
  • the lower end of the pole piece 24 and the permanent magnet 21 can be located in the flange yoke 32, the flange yoke 32 is coaxial with the permanent magnet 21, the pole piece 24 and the permanent magnet 21 move along the axial direction of the flange yoke 32,
  • the mover assembly 2 is vibrated in the vertical direction, the utilization efficiency of the magnetic induction line is higher, the energy utilization efficiency is improved, the vibration effect is better, the structure is more compact and stable, and the volume of the product is further reduced.
  • the maximum vibration force of the product without the flange yoke 32 in the coil 31 is 29.955 /mN
  • the maximum vibration force of the present disclosure is 63.86/mN. It can be seen from this that the present disclosure greatly improves the vibration force of the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

一种线圈(31)内嵌套法兰磁轭(32)的垂直线性马达,包括机壳(1),机壳(1)内设置有动子组件(2)及与动子组件(2)相对应配合的定子组件(3),定子组件(3)包括线圈(31)及用于线圈(31)与外部电路连接的FPC板(33),线圈(31)内嵌套有法兰磁轭(32),动子组件(2)具有与线圈(31)相对应配合的永磁体(21),法兰磁轭(32)靠近永磁体(21)的一端设置有与线圈(31)相配合的第三法兰边(321)。该马达的线圈(31)内嵌套有法兰磁轭(32),能够增大整体磁路的磁导率,提高线圈(31)所受的磁感应强度,改善了产品的磁路,提高了产品的能量利用率和振动力,有效增大产品的BL值,振动效果好,而且法兰磁轭(32)通过第三法兰边(321)便于与线圈(31)连接装配,结构简单、紧凑、稳定,占用空间小,提高了产品的稳定性、可靠性和制程良率。

Description

一种线圈内嵌套法兰磁轭的垂直线性马达 技术领域
本公开涉及马达技术领域,尤其涉及一种线圈内嵌套法兰磁轭的垂直线性马达。
背景技术
随着电子产品的快速发展,尤其在手机、平板电脑等移动终端设备,这些电子设备基本都有使用振动发生装置,用于防止来自电子装置的噪音干扰他人。传统的振动发生装置采用基于偏心旋转的转子马达,它是通过偏心振子的旋转而实现机械振动,由于偏心振子在旋转过程中,换向器和电刷会产生机械摩擦以及电火花等,会影响偏心振子的转速,进而影响装置振动效果,因此,振动发生装置多采用性能更好的线性马达。
线性马达,也称线性电机、直线马达、推杆马达等,最常用的线性马达类型是平板式、U型槽式和管式,其是一种将电能转换为直线运动机械能的技术,其通过磁铁的相斥力使移动元件悬浮,同时通过磁力直接驱动该移动元件,而无需如回转式马达般尚需经由如齿轮组等传动机构进行传动,因此,线性马达可以令其所驱动的移动元件进行高加、减速的往复运动,通过该特性,线性马达可以被应用于不同的制造加工技术领域中,而被作为驱动的动力源或作为提供定位的技术内容。此外,随着半导体、电子、光电、医疗设备及自动化控制等工业的快速发展及激烈竞争,各领域对于马达线性运动性能的要求也日渐升高,期望马达具有高速度、低噪音及高定位精度等,故在许多应用场合下都已使用线性马达来取代传统伺服马达等机械式的运动方式。
但是,现有的一些线性马达,由于其设计上存在一定的缺陷,因而导致振动力较小、占用空间较大、稳定性和可靠性差等问题,从而降低了马达的振动效果等,影响线性马达的应用和发展。
发明内容
本公开针对上述现有线性马达存在的问题,提出一种线圈内嵌套法兰磁轭的垂直线性马达。
为了解决上述技术问题中的至少一个,本公开提出如下技术方案:
一种线圈内嵌套法兰磁轭的垂直线性马达,包括机壳,机壳内设置有动子组件及与动子组件相对应配合的定子组件,定子组件包括线圈及用于线圈与外部电路连接的FPC板,线圈内嵌套有法兰磁轭,动子组件具有与线圈相对应配合的永磁体,法兰磁轭靠近永磁体的一端设置有与线圈相配合的第三法兰边。
本公开的有益效果是:内嵌套法兰磁轭的线圈处于动子组件的永磁体产生的磁场中,外部电路通过FPC板使线圈通电后,线圈与永磁体相互作用,从而使动子组件相对于定子组件进行垂直方向的振动,线圈内嵌套有法兰磁轭,能够增大整体磁路的磁导率,提高线圈所受的磁感应强度,便于永磁体与线圈更好地进行相互作用,改善了产品的磁路,提高了产品的能量利用率和振动力,有效增大产品的BL值,振动效果好,而且法兰磁轭通过第三法兰边便于与线圈连接装配,操作方便,结构简单、紧凑、稳定,占用空间小,提高了产品的稳定性、可靠性差和制程良率,便于产品进行量产,扩大了产品的应用和发展。
在一些实施方式中,机壳包括上机壳和下机壳,定子组件设置在下机壳上。
在一些实施方式中,下机壳上设置有用于安置FPC板的第三槽体。
在一些实施方式中,第三槽体的底面设置有定位通孔。
在一些实施方式中,动子组件通过弹簧分别与上机壳和下机壳弹性连接。
在一些实施方式中,下机壳上形成有与弹簧和上机壳相配合的第一法兰边。
在一些实施方式中,动子组件包括与弹簧连接的质量块,永磁体设置在质量块靠近线圈的一端。
在一些实施方式中,质量块靠近线圈的一端设置有与永磁体相配 合的第一磁轭及安置第一磁轭的第一孔体,第一磁轭上设置有用于安置永磁体且槽口朝向线圈的第四槽体。
在一些实施方式中,第四槽体的槽口处设置有第二法兰边,第一孔体的一端设置有与第二法兰边相配合的第五槽体。
在一些实施方式中,永磁体靠近线圈的一端设置有极片。
另外,在本公开技术方案中,凡未作特别说明的,均可通过采用本领域中的常规手段来实现本技术方案。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种线圈内嵌套法兰磁轭的垂直线性马达的分解图。
图2为本公开实施例提供的一种线圈内嵌套法兰磁轭的垂直线性马达的立体图。
图3为本公开实施例提供的一种线圈内嵌套法兰磁轭的垂直线性马达的剖视图。
图4为本公开实施例提供的上机壳的立体图。
图5为本公开实施例提供的下机壳的立体图。
图6为本公开实施例提供的法兰磁轭的立体图。
附图中标号说明,机壳1,上机壳11,插合部111,抵压面112,第七槽体113,下机壳12,第一法兰边121,第一槽体122,第三槽体123,定位通孔124,第六槽体125,第一缺口126,支撑部127,动子组件2,永磁体21,质量块22,第一孔体221,第五槽体222,第一磁轭23,第四槽体231,第二法兰边232,极片24,定子组件3,线圈31,法兰磁轭32,第三法兰边321,FPC板33,连接部331,弹簧4,第二槽体41。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例是本公开一部分实施例,而不是全部的实施例,仅用以解释本公开,并不用于限定本公开。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”、“两端”、“两侧”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“上级”、“下级”、“主要”、“次级”等仅用于描述目的,可以简单地用于更清楚地区分不同的组件,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
图1为本公开实施例提供的一种线圈内嵌套法兰磁轭的垂直线性马达的分解图,图2为本公开实施例提供的一种线圈内嵌套法兰磁轭的垂直线性马达的立体图,图3为本公开实施例提供的一种线圈内嵌套法兰磁轭的垂直线性马达的剖视图,图4为本公开实施例提供的上机壳的立体图,图5为本公开实施例提供的下机壳的立体图,图6为本公开实施例提供的法兰磁轭的立体图。
实施例:
如图1~6所示,一种线圈内嵌套法兰磁轭的垂直线性马达,包括机壳1,机壳1内设置有动子组件2及与动子组件2相对应配合的定 子组件3,动子组件2通常位于定子组件3的上方,机壳1包括上机壳11和下机壳12,定子组件3设置在下机壳12上,上机壳11和下机壳12通常焊接连接在一起。定子组件3包括线圈31,线圈31内嵌套有法兰磁轭32,线圈31与法兰磁轭32通常采用胶粘紧固,线圈31通过FPC板33与外部电路连接,线圈31与FPC板33通常采用胶粘或焊接的方式进行连接,FPC板33和/或线圈31通常胶粘固定在下机壳12上,动子组件2具有与线圈31相对应配合的永磁体21,永磁体21通常位于线圈31的上方,法兰磁轭32靠近永磁体21的一端设置有与线圈31相配合的第三法兰边321,线圈31通电后与永磁体21相互作用能够使动子组件2沿竖直方向进行振动。线圈31和法兰磁轭32通常为空心柱形,也可以是其它合适的形状,法兰磁轭32也可以是实心的,法兰磁轭32通过第三法兰边321便于与线圈31连接装配,提高了线圈31的结构稳定性及线圈31与相关零部件连接的可靠性,而且法兰磁轭32能够将周围的磁感线更好地传导到线圈31上,从而能够增大整体磁路的磁导率,提高线圈31所受的磁感应强度,永磁体21产生的磁场能够更好地作用于线圈31,从而提高永磁体21与线圈31相互作用力,即产品的振动力。
FPC板33即柔性电路板(Flexible Printed Circuit),它是以聚酰亚胺或聚酯薄膜为基材制成的一种具有高度的可靠性和绝佳的可挠性的印刷电路板,具有配线密度高、重量轻、厚度薄、弯折性好的特点;磁轭通常指本身不生产磁场(磁感线)、在磁路中只起磁感线传输的软磁材料,磁轭通常可以采用导磁率较高的软铁、A3钢、软磁合金、铁氧体材料、不锈钢或硅钢等来制造,它均匀对称地分面在感应圈的四周,它的作用是约束感应圈漏磁向外扩散,提高感应加入的效率,从而提高了磁感线的利用效率,即能量的利用效率;永磁体21是指在开路状态下能长期保留较高剩磁的磁体,也称硬磁体,比如磁钢、钕磁铁、由铁氧体永磁材料制成的永磁铁等,优选磁钢,磁钢具有高硬度、矫顽力值高、耐高温、抗腐蚀性能强等特点,其永磁特性较好,被饱和磁化后,在撤掉外磁场后仍能长时间内保持较强和稳定的磁性。
在使用时,内嵌套法兰磁轭32的线圈31处于动子组件2的永磁 体21产生的磁场中,外部电路通过FPC板33使线圈31通电后,线圈31受到一定的安培力作用,线圈31与永磁体21相互作用,由于线圈31固定不动,所以永磁体21在相应的反作用力下相对于线圈31进行运动,这样线圈31也切割磁感线,从而使动子组件2相对于定子组件3进行垂直方向的振动,即产品的振动。本公开操作方便,结构简单、紧凑、稳定,占用空间小,法兰磁轭32通过第三法兰边321便于与线圈31连接装配,提高了线圈31的结构稳定性及线圈31与相关零部件连接的可靠性,而且线圈31内嵌套有法兰磁轭32,能够增大整体磁路的磁导率,提高线圈31所受的磁感应强度,便于永磁体21与线圈31更好地进行相互作用,改善了产品的磁路,提高了产品的能量利用率和振动力,有效增大产品的BL值,振动效果好,从而提高了产品的稳定性、可靠性差和制程良率,便于产品进行量产,扩大了产品的应用和发展。此外,BL值即磁场强度与线圈有效切割长度的乘积,BL值反映的是不同的马达在相同电流下安培力的大小,BL值越大安培力越大,通过调节线圈31的电流波形能够改变动子组件2振动的频率和幅度,从而能够产生不同的振感,振感丰富,实现多种不同的触觉反馈,便于应用于智能设备触觉反馈的动力源,提高了产品的应用范围。
为了更方便、稳定地安置FPC板33,下机壳12上设置有用于安置FPC板33的第三槽体123,FPC板33通常胶粘固定在第三槽体123的底面上。进一步地,产品在组装过程中,需要将下机壳12先定位在一定的治具,然后再进行其他零件的组装,第三槽体123的底面还设置有定位通孔124,FPC板33上通常还设置有与法兰磁轭32相对应配合的避让通孔,线圈31和法兰磁轭32通常为空心柱形,法兰磁轭32的内孔与定位通孔124相对应以在定位时同步定位或形成避让,通过定位通孔124便于下机壳12的定位及与相关零部件的组装,操作简单方便,精度更高,稳定性更好,提高了产品的制程良率。
第三槽体123的底面上还可以设置与FPC板33相配合的多个第六槽体125,通常多个第六槽体125相互交错呈网状,这样在涂胶后,便于FPC板33更加牢靠地胶粘在下机壳12上。
FPC板33通常具有伸出到机壳1外以便于与外部电路连接的连 接部331,下机壳12上设置有用于连接部331穿过的第一缺口126及与连接部331相配合的支撑部127,上机壳11上设置有用于支撑部127和连接部331穿过的第七槽体113,这样便于该马达与外部电路连接,而且结构更加紧凑、稳定。FPC板33上还可以设置有与线圈31的引线相配合的槽体,这样不仅结构更加紧凑以减小相关零部件的占用空间,而且对线圈31的引线具有保护作用,更加安全、可靠。
动子组件2通过弹簧4分别与上机壳11和下机壳12弹性连接,即弹簧4将动子组件2悬置在机壳1内,通常上机壳11的下端、弹簧4的外侧边缘及下机壳12的下端依次抵压并连接,动子组件2振动过程中,弹簧4不仅具有缓冲保护的作用,而且能够为动子组件2的振动提供一定的恢复力。弹簧4可以采用锥形弹簧、塔形弹簧、平面弹簧或其他合适的弹性件,平面弹簧通常是指在平面内发生垂直弹性形变的弹簧片,比如弹性材料在平面上涡卷而成、在平面弹性材料上镂空而成或弹性材料冲裁剪切而成等,平面弹簧结构更加紧凑,能够减小产品的体积。
下机壳12上形成有与弹簧4和上机壳11相配合的第一法兰边121,上机壳11和/或弹簧4抵压并连接在第一法兰边121,操作更加方便,结构更加稳定、牢靠。
第一法兰边121设置有若干第一槽体122,第一槽体122通常位于第一法兰边121的外侧边缘且沿第一法兰边121的圆周方向均布,根据具体的情况,第一槽体122可以是一个、两个或者多个,弹簧4上设置有与第一槽体122相对应配合的第二槽体41,第二槽体41通常位于弹簧4的外侧边缘,上机壳11上设置有与第一槽体122与第二槽体41相对应和的插合部111,组装时,插合部111插入第一槽体122和第二槽体41,这样上机壳11、弹簧4及下机壳12的连接更加紧密,结构更加紧凑,更加稳定、可靠。进一步地,插合部111的厚度小于上机壳11的厚度,从而在插合部111与上机壳11的交汇处形成抵压面112,通过抵压面112能够使上机壳11更好地与弹簧4或第一法兰边121相配合,稳定性更好。
动子组件2包括与弹簧4连接的质量块22,质量块22也称平衡 块、振动块、配重块等,在振动过程中,质量块22通过自身惯性能够提高动子组件2的振动力和振动效果,从而使动子组件2更加稳定、可靠地进行振动,永磁体21设置在质量块22靠近线圈31的一端,永磁体21和质量块22可以采用粘胶或焊接的方式进行连接。
质量块22靠近线圈31的一端设置有与永磁体21相配合的第一磁轭23及安置第一磁轭23的第一孔体221,第一磁轭23上设置有用于安置永磁体21且槽口朝向线圈31的第四槽体231,第一磁轭23安置在第一孔体221中且永磁体21安置在第四槽体231中,连接更加紧密、牢靠,结构更加紧凑、稳定。磁轭通常指本身不生产磁场(磁感线)、在磁路中只起磁感线传输的软磁材料,磁轭通常可以采用导磁率较高的软铁、A3钢、软磁合金、铁氧体材料、不锈钢或硅钢等来制造,它均匀对称地分面在感应圈的四周,它的作用是约束感应圈漏磁向外扩散,提高感应加入的效率,从而提高了磁感线的利用效率,即能量的利用效率。
第四槽体231的槽口处还设置有第二法兰边232,第一孔体221的一端设置有与第二法兰边232相配合的第五槽体222,这样连接更加紧密,结构更加紧凑,更加稳定、可靠。此外,弹簧4也可以分别与质量块22和第二法兰边232连接,这样连接更加紧密、牢靠。
永磁体21靠近线圈31的一端设置有极片24,极片24通常可以胶粘或焊接在永磁体21上,极片24通常由本身不生产磁场、在磁路中只起磁感线传输的软磁材料制成,它能够一定程度地约束永磁体21产生的磁场,使磁感线更好地作用于线圈31,提高了感应加入的效率,从而提高了磁感线的利用效率,即能量的利用效率,进而提高永磁体21与线圈31的相互作用力,即产品的振动力。
法兰磁轭32为空心柱形,永磁体21的直径小于法兰磁轭32的内径且其一端位于法兰磁轭32内,在使用时,永磁体21能够沿法兰磁轭32的轴向运动以使动子组件2进行振动,这样结构更加紧凑、稳定,更加安全、可靠。进一步地,第四槽体231的直径大于线圈31的外径,极片24的直径与永磁体21的直径相等或略小于永磁体21的直径,线圈31的上端可以位于第四槽体231中,极片24和永磁体21的下端可以位于法兰磁轭32内,法兰磁轭32与永磁体21同 轴心,极片24和永磁体21沿法兰磁轭32的轴向运动,从而使动子组件2沿竖直方向进行振动,磁感线的利用效率更高,提高了能量的利用效率,振动效果更好,结构更加紧凑、稳定,进一步减小了产品的体积。
相同条件下,排出相关的外界干扰因素,对不同产品的振动力(即线圈31与永磁体21的相对作用力)进行对比:线圈31内没有法兰磁轭32的产品的振动力最大为29.955/mN,本公开的振动力最大为63.86/mN。由此可知,本公开大幅度地提高了产品的振动力。
以上所述的仅是本公开的一些实施方式,仅用以说明本公开的技术方案,而非对其限制,应当理解的是,对本领域的普通技术人员来说,在不脱离本公开创造构思的前提下,还可以根据上述说明加以改进或替换,而所有这些改进和替换都应属于本公开所附权利要求的保护范围。在这种情况下,所有细节都可以用等效元素代替,材料、形状和尺寸也可以是任意的。

Claims (10)

  1. 一种线圈内嵌套法兰磁轭的垂直线性马达,其特征在于,包括机壳(1),所述机壳(1)内设置有动子组件(2)及与所述动子组件(2)相对应配合的定子组件(3),所述定子组件(3)包括线圈(31)及用于所述线圈(31)与外部电路连接的FPC板(33),所述线圈(31)内嵌套有法兰磁轭(32),所述动子组件(2)具有与所述线圈(31)相对应配合的永磁体(21),所述法兰磁轭(32)靠近所述永磁体(21)的一端设置有与所述线圈(31)相配合的第三法兰边(321)。
  2. 根据权利要求1所述的一种线圈内嵌套法兰磁轭的垂直线性马达,其特征在于,所述机壳(1)包括上机壳(11)和下机壳(12),所述定子组件(3)设置在所述下机壳(12)上。
  3. 根据权利要求2所述的一种线圈内嵌套法兰磁轭的垂直线性马达,其特征在于,所述下机壳(12)上设置有用于安置所述FPC板(33)的第三槽体(123)。
  4. 根据权利要求3所述的一种线圈内嵌套法兰磁轭的垂直线性马达,其特征在于,所述第三槽体(123)的底面设置有定位通孔(124)。
  5. 根据权利要求2所述的一种线圈内嵌套法兰磁轭的垂直线性马达,其特征在于,所述动子组件(2)通过弹簧(4)分别与所述上机壳(11)和所述下机壳(12)弹性连接。
  6. 根据权利要求5所述的一种线圈内嵌套法兰磁轭的垂直线性马达,其特征在于,所述下机壳(12)上形成有与所述弹簧(4)和所述上机壳(11)相配合的第一法兰边(121)。
  7. 根据权利要求5所述的一种线圈内嵌套法兰磁轭的垂直线性马达,其特征在于,所述动子组件(2)包括与所述弹簧(4)连接的质量块(22),所述永磁体(21)设置在所述质量块(22)靠近所述线圈(31)的一端。
  8. 根据权利要求7所述的一种线圈内嵌套法兰磁轭的垂直线性马达,其特征在于,所述质量块(22)靠近所述线圈(31)的一端设置有与所述永磁体(21)相配合的第一磁轭(23)及安置所述第一磁轭(23)的第一孔体(221),所述第一磁轭(23)上设置有用于安置 所述永磁体(21)且槽口朝向所述线圈(31)的第四槽体(231)。
  9. 根据权利要求8所述的一种线圈内嵌套法兰磁轭的垂直线性马达,其特征在于,所述第四槽体(231)的槽口处设置有第二法兰边(232),所述第一孔体(221)的一端设置有与所述第二法兰边(232)相配合的第五槽体(222)。
  10. 根据权利要求1至9中任一权利要求所述的一种线圈内嵌套法兰磁轭的垂直线性马达,其特征在于,所述永磁体(21)靠近所述线圈(31)的一端设置有极片(24)。
PCT/CN2019/105953 2019-08-28 2019-09-16 一种线圈内嵌套法兰磁轭的垂直线性马达 WO2021035825A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910799966.9A CN110429789A (zh) 2019-08-28 2019-08-28 一种线圈内嵌套法兰磁轭的垂直线性马达
CN201910799966.9 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021035825A1 true WO2021035825A1 (zh) 2021-03-04

Family

ID=68416237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105953 WO2021035825A1 (zh) 2019-08-28 2019-09-16 一种线圈内嵌套法兰磁轭的垂直线性马达

Country Status (2)

Country Link
CN (1) CN110429789A (zh)
WO (1) WO2021035825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210265902A1 (en) * 2019-08-28 2021-08-26 Leading Technology (Dongtai) Co., Ltd Linear motor with flange magnetic yoke nested in coil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069014A1 (ko) * 2013-11-07 2015-05-14 자화전자(주) 선형 진동 발생장치
CN206908452U (zh) * 2017-05-15 2018-01-19 歌尔股份有限公司 线性振动马达
CN107623425A (zh) * 2016-07-15 2018-01-23 Mplus株式会社 线性振动产生装置
CN207053355U (zh) * 2017-07-06 2018-02-27 歌尔科技有限公司 线性振动马达
CN207382167U (zh) * 2017-01-31 2018-05-18 天津富禄通信技术有限公司 具备防脉动功能的线性上下振动马达
CN209267414U (zh) * 2018-11-26 2019-08-16 领先科技(东台)有限公司 一种具有法兰边结构的线性马达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069014A1 (ko) * 2013-11-07 2015-05-14 자화전자(주) 선형 진동 발생장치
CN107623425A (zh) * 2016-07-15 2018-01-23 Mplus株式会社 线性振动产生装置
CN207382167U (zh) * 2017-01-31 2018-05-18 天津富禄通信技术有限公司 具备防脉动功能的线性上下振动马达
CN206908452U (zh) * 2017-05-15 2018-01-19 歌尔股份有限公司 线性振动马达
CN207053355U (zh) * 2017-07-06 2018-02-27 歌尔科技有限公司 线性振动马达
CN209267414U (zh) * 2018-11-26 2019-08-16 领先科技(东台)有限公司 一种具有法兰边结构的线性马达

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210265902A1 (en) * 2019-08-28 2021-08-26 Leading Technology (Dongtai) Co., Ltd Linear motor with flange magnetic yoke nested in coil

Also Published As

Publication number Publication date
CN110429789A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2021035828A1 (zh) 一种线圈内嵌套铁芯的线性马达
US8299658B2 (en) Horizontal linear vibrator
WO2020232987A1 (zh) 一种具有s型弹簧片的线性振动马达
US11245320B2 (en) Linear vibration motor
US11309782B2 (en) Linear vibration motor
WO2017088359A1 (zh) 线性振动马达
US20110068641A1 (en) Horizontal linear vibrator
WO2019029048A1 (zh) 线性振动马达
WO2021035826A1 (zh) 一种线圈内嵌套法兰磁轭的线性马达
US20200044537A1 (en) Vibration motor
JP2018160999A (ja) リニア振動モータ
WO2021035825A1 (zh) 一种线圈内嵌套法兰磁轭的垂直线性马达
CN209844809U (zh) 一种平面弹簧线性马达
WO2021035830A1 (zh) 一种线圈外嵌套外壳的线性马达
US10003245B2 (en) Linear vibrating motor
CN210669836U (zh) 一种线圈内嵌套铁芯的线性振动马达
WO2021237786A1 (zh) 线性振动电机
WO2021035827A1 (zh) 一种线圈内嵌套铁芯的垂直线性马达
WO2021035829A1 (zh) 一种线圈内嵌套铁芯的线性振动马达
CN109842262A (zh) 一种具有柱形线圈和u型永磁体的线性振动马达
CN215580858U (zh) 一种线性振动马达
CN211063514U (zh) 一种线圈内嵌套铁芯的垂直线性马达
CN211908616U (zh) 一种具有四永磁体结构和阻尼线圈的线性振动马达
CN210669838U (zh) 一种线圈内嵌套铁芯的线性马达
CN210669839U (zh) 一种线圈外嵌套外壳的线性马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943433

Country of ref document: EP

Kind code of ref document: A1