WO2021035763A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2021035763A1
WO2021035763A1 PCT/CN2019/103902 CN2019103902W WO2021035763A1 WO 2021035763 A1 WO2021035763 A1 WO 2021035763A1 CN 2019103902 W CN2019103902 W CN 2019103902W WO 2021035763 A1 WO2021035763 A1 WO 2021035763A1
Authority
WO
WIPO (PCT)
Prior art keywords
service flow
user plane
link
access network
packet loss
Prior art date
Application number
PCT/CN2019/103902
Other languages
English (en)
French (fr)
Inventor
余芳
于峰
李岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980099648.XA priority Critical patent/CN114270953B/zh
Priority to EP19942868.1A priority patent/EP4021093A4/en
Priority to PCT/CN2019/103902 priority patent/WO2021035763A1/zh
Publication of WO2021035763A1 publication Critical patent/WO2021035763A1/zh
Priority to US17/681,420 priority patent/US11757746B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/026Capturing of monitoring data using flow identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/141Setup of application sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/61Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources taking into account QoS or priority requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method, device and system.
  • the survival time of an application refers to the time that the application continues to run when the application layer of the application server or terminal does not receive the expected message.
  • the survival time can be expressed as a duration, for example, 1ms. For periodic services, it can also be expressed as the maximum number of consecutive erroneously received or lost messages. If the life time of the application is exceeded, the application server or terminal will switch the state of the application to a down state, causing the application to be interrupted, thereby affecting the user experience.
  • the embodiments of the present application provide a communication method, device, and system, which are used to improve service reliability and improve user experience.
  • a communication method is provided.
  • a PDU session of a terminal is anchored to an anchor user plane gateway through an access network device, and the user plane path between the terminal and the anchor user plane gateway includes a first link and a second link.
  • Two links the first link refers to the user plane data link between the terminal and the access network device, and the second link refers to the user plane data link between the access network device and the anchor user plane gateway.
  • the method includes: the first device obtains the packet loss condition of the service flow on the first link and the second link, the first device is an access network device or an anchor user plane gateway; the first device is based on the service flow
  • the packet loss conditions on the first link and the second link determine the number of consecutive packet loss of the service flow on the user plane path; when the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold , The first device triggers the start of the high-reliability transmission mechanism for the service flow.
  • the first device obtains the packet loss conditions on the first link and the second link to determine the number of consecutive packet losses on the user plane path. If the number of consecutive packet losses reaches the first When a threshold is reached, a high-reliability transmission mechanism for service flows is activated, thereby improving the reliability of user plane data transmission, avoiding application shutdown, and improving user experience.
  • the first threshold is determined according to the survival time corresponding to the service flow.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link in the user plane path reaches The first threshold; the first device triggers the activation of the high-reliability transmission mechanism for the service flow, including: the first device triggers the activation of the high-reliability transmission mechanism for the service flow between the terminal and the access network device; or, the first device Trigger to start the high-reliability transmission mechanism between the terminal and the anchor user plane gateway for the service flow.
  • the first device when the first device is an access network device, the first device triggers the start of a high-reliability transmission mechanism for service flows between the terminal and the access network device, including: The device sends first startup information to the terminal.
  • the first startup information indicates that a high-reliability transmission mechanism for the service flow between the terminal and the access network device needs to be activated; and the first device triggers itself to initiate a communication between the terminal and the terminal for the service flow.
  • High-reliability transmission mechanism when the first device is an access network device, the first device triggers the start of a high-reliability transmission mechanism for service flows between the terminal and the access network device, including:
  • the device sends first startup information to the terminal.
  • the first startup information indicates that a high-reliability transmission mechanism for the service flow between the terminal and the access network device needs to be activated; and the first device triggers itself to initiate a communication between the terminal and the terminal for the service flow.
  • High-reliability transmission mechanism when the first device is an access network device, the first device triggers the start
  • the first device triggers the initiation of the high-reliability transmission mechanism for the service flow between the terminal and the access network device, including: the first device sends the second initiation information to the session management network element, and the second The activation information indicates that a high-reliability transmission mechanism for service flow between the terminal and the access network device needs to be activated.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the second link of the user plane path reaches The first threshold; the first device triggers the activation of the high-reliability transmission mechanism for the service flow, including: the first device triggers the activation of the high-reliability transmission mechanism for the service flow between the anchor user plane gateway and the access network device; or , The first device triggers the start of the high-reliability transmission mechanism between the terminal and the anchor user plane gateway for the service flow.
  • the first device when the first device is an access network device, the first device triggers the start of a high-reliability transmission mechanism between the anchor user plane gateway and the access network device for the service flow, Including: the first device sends third activation information to the anchor user plane gateway, the third activation information indicates that a high-reliability transmission mechanism for service flow between the anchor user plane gateway and the access network device needs to be activated; and, first The device triggers itself to initiate a high-reliability transmission mechanism for service flow between itself and the anchor user plane gateway.
  • the first device when the first device is an anchor user plane gateway, the first device triggers the activation of a high-reliability transmission mechanism for the service flow between the anchor user plane gateway and the access network device, Including: the first device sends fourth start information to the access network device, the fourth start information indicates that it is necessary to start the high-reliability transmission mechanism for the service flow between the anchor user plane gateway and the access network device; and, the first device Trigger itself to initiate a high-reliability transmission mechanism for service flow between itself and the access network device.
  • the first device triggers the start of the high-reliability transmission mechanism between the anchor user plane gateway and the access network device for the service flow, including: the first device sends a fifth transmission mechanism to the session management network element.
  • Starting information indicates that it is necessary to start a high-reliability transmission mechanism between the anchor user plane gateway and the access network device for the service flow.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link in the user plane path is less than the first A threshold, the number of consecutive lost packets on the second link is less than the first threshold, and the overall number of consecutive lost packets on the first link and the second link reaches the first threshold; the first device triggers the start of the targeted service
  • the high-reliability transmission mechanism of the flow includes: the first device triggers the start of the high-reliability transmission mechanism between the terminal and the anchor user plane gateway for the service flow.
  • triggering the first device to initiate a high-reliability transmission mechanism for the service flow between the terminal and the anchor user plane gateway includes: the first device sends sixth initiation information to the session management network element, The sixth start information indicates that it is necessary to start a high-reliability transmission mechanism between the terminal and the anchor user plane gateway for the service flow.
  • the first device is an access network device, and the first device determines that the service flow continuously loses packets on the user plane path according to the packet loss conditions of the service flow on the first link and the second link
  • the number includes: PDCP SN of packets lost on the first link by the first device according to the service flow and N3 GTP-U SN of packets lost on the second link by the service flow, and
  • the mapping relationship between the PDCP SN and N3 GTP-U SN of the message determines the number of consecutive packet loss on the user plane path of the service flow.
  • the first device when the first device is an access network device, for the uplink packet, the first device obtains the packet loss of the service flow on the first link, including: The terminal receives the packet in the service flow, and the first device determines the packet loss of the service flow on the first link according to the continuity of the PDCP SN of the correctly received packet; or, the first device receives the service flow from the terminal.
  • the first device sends an ACK to the terminal for each correctly received packet, the first device receives the first packet loss information from the terminal, and the first packet loss information is used to indicate that the first device did not receive it correctly
  • the PDCP SN of the packet the first device determines the packet loss condition of the service flow on the first link according to the first packet loss information.
  • the first device when the first device is an access network device, for an uplink packet, the first device obtains the packet loss of the service flow on the second link, including: the first device receives The anchor user plane gateway receives the second message loss information.
  • the second message loss information is used to indicate the N3 GTP-U SN of the message that the anchor user plane gateway did not correctly receive, and the first device loses it according to the second message
  • the information determines the packet loss of the service flow on the second link; or, the first device sends the packets in the service flow to the anchor user plane gateway, and the first device receives the anchor user plane gateway from the anchor user plane gateway. For each ACK sent by a correctly received packet, the first device determines the packet loss of the service flow on the second link according to the information about whether it has received the ACK for each packet sent.
  • the first device when the first device is an access network device, for a downlink packet, the first device obtains the packet loss condition of the service flow on the first link, including: The terminal receives the third message loss information.
  • the third message loss information is used to indicate the PDCP SN of the message that the terminal did not correctly receive.
  • the first device determines the service flow on the first link according to the third message loss information. Packet loss situation; or, the first device sends packets in the service flow to the terminal, and the first device receives from the terminal the ACK sent by the terminal for each correctly received packet, and the first device determines whether it has received each sent packet.
  • the ACK information of the message determines the packet loss situation of the service flow on the first link.
  • the first device when the first device is an access network device, for downlink packets, the first device obtains the packet loss of the service flow on the second link, including: the first device receives The anchor user plane gateway receives the packet in the service flow, and the first device determines the packet loss of the service flow on the second link according to the continuity of the N3 GTP-U SN of the correctly received packet; or, the first The device receives the packets in the service flow from the anchor user plane gateway, the first device sends an ACK to the anchor user plane gateway for each correctly received packet, and the first device receives the fourth packet from the anchor user plane gateway Loss information, the fourth packet loss information is used to indicate the N3 GTP-U SN of the packet that the first device did not correctly receive. The first device determines the loss of the service flow on the second link according to the fourth packet loss information. Package situation.
  • the first device when the first device is an anchor user plane gateway, for uplink packets, the first device obtains the packet loss condition of the service flow on the first link, including: the first device The fifth packet loss information is received from the access network device. The fifth packet loss information is used to indicate the packet that the service flow is lost on the first link; the first device determines that the service flow is in the first link according to the fifth packet loss information. Packet loss on the link.
  • the PDCP SN of each message correctly received by the access network device corresponds to the N3 GTP-U SN of the message sent by the access network device, and the continuous data sent by the access network device
  • the N3 GTP-U SN of the message is continuous
  • the fifth message loss information is used to indicate the N3 GTP of the previous correctly received message of the message that was incorrectly received by the access network device on the first link -U SN
  • the fifth packet loss information is also used to indicate the packet loss of the next packet or multiple consecutive packets indicated by the fifth packet loss information; or, each of the packets received correctly by the access network equipment
  • the difference between the PDCP SN of each packet and the N3 GTP-U SN of the packet sent by the access network device is the same.
  • the fifth packet loss information means that the access network device did not receive it correctly on the first link. N3 GTP-U SN of the received message.
  • the first device when the first device is an anchor user plane gateway, for uplink packets, the first device obtains the packet loss of the service flow on the second link, including: the first device Receiving packets in the service flow from the access network device, the first device determines the packet loss of the service flow on the second link according to the continuity of the N3 GTP-U SN of the correctly received packet; or, the first The device receives packets in the service flow from the access network device, the first device sends an ACK to the access network device for each correctly received packet, and the first device receives the sixth packet loss information from the access network device, The sixth packet loss information is used to indicate the N3 GTP-U SN of the packet that the first device did not correctly receive, and the first device determines the packet loss condition of the service flow on the second link according to the sixth packet loss information.
  • the first device when the first device is an anchor user plane gateway, for downlink packets, the first device obtains the packet loss condition of the service flow on the first link, including: the first device Receive the seventh packet loss information from the access network device, the seventh packet loss information is used to indicate the N3GTP-U SN of the packet that the service flow is lost on the first link; the first device determines according to the seventh packet loss information The packet loss of the service flow on the first link.
  • the first device when the first device is an anchor user plane gateway, for downlink packets, the first device obtains the packet loss of the service flow on the second link, including: the first device
  • the eighth packet loss information is received from the access network device.
  • the eighth packet loss information is used to indicate the N3 GTP-U SN of the packet that the access network device has not received correctly.
  • the first device loses the information according to the eighth packet Determine the packet loss of the service flow on the second link; or, the first device sends the packet in the service flow to the access network device, and the first device receives from the access network device the access network device for each correct reception For the ACK sent by the received packet, the first device determines the packet loss condition of the service flow on the second link according to the information about whether it receives the ACK for each packet sent.
  • the anchor user plane gateway and the access network device communicate through an intermediate user plane gateway
  • the second link includes the first sublink and the second sublink
  • the first sublink It is a user plane data link for communication between the access network device and the intermediate user plane gateway
  • the second sub-link is a user plane data link for communication between the intermediate user plane gateway and the anchor user plane gateway.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link of the user plane path is less than The first threshold, the number of consecutive packet loss on the first sub-link is less than the first threshold, and the number of consecutive packet loss on the second sub-link is also less than the first threshold, but on the first link and the first sub-link
  • the total number of consecutive packet loss on any two or three links of the link and the second sub-link reaches the first threshold;
  • the first device triggers the start of the high-reliability transmission mechanism for the service flow, including: the first device triggers Start the high-reliability transmission mechanism for service flow between the terminal and the anchor user plane gateway.
  • the first device triggers the activation of the high-reliability transmission mechanism for the service flow between the terminal and the anchor user plane gateway, including: the first device sends seventh activation information to the session management network element , The seventh activation information indicates that the high-reliability transmission mechanism for the service flow between the terminal and the anchor user plane gateway needs to be activated.
  • the first device when the first device is an access network device, for the uplink packet, the first device obtains the packet loss of the service flow on the first link, including: The terminal receives the packet in the service flow, and the first device determines the packet loss of the service flow on the first link according to the continuity of the PDCP SN of the correctly received packet; or, the first device receives the service flow from the terminal.
  • the first device sends an ACK to the terminal for each correctly received packet, the first device receives the ninth packet loss information from the terminal, and the ninth packet loss information is used to indicate that the first device did not receive it correctly
  • the PDCP SN of the packet the first device determines the packet loss condition of the service flow on the first link according to the ninth packet loss information.
  • the first device when the first device is an access network device, for an uplink packet, the first device obtains the packet loss of the service flow on the second link, including: the first device receives The intermediate user plane gateway receives the tenth message loss information.
  • the tenth message loss information is used to indicate the N3 GTP-U SN and anchor user plane of the message that the intermediate user plane gateway did not correctly receive on the first sub-link.
  • the first device determines the packet loss of the service flow on the second link according to the tenth packet loss information; or, the first The device sends the packets in the service flow to the intermediate user plane gateway.
  • the first device receives from the intermediate user plane gateway the ACK sent by the intermediate user plane gateway for each correctly received packet.
  • the ACK information of each packet determines the packet loss of the service flow on the first sub-link;
  • the first device receives the eleventh packet loss information from the intermediate user plane gateway, and the eleventh packet loss information is used to indicate the anchor Point the N3 GTP-U SN of the packet that the user plane gateway did not correctly receive on the second sub-link;
  • the first device according to the eleventh packet loss information and the packet loss of the service flow on the first sub-link Determine the packet loss of the service flow on the second link.
  • the first device when the first device is an access network device, for a downlink packet, the first device obtains the packet loss condition of the service flow on the first link, including: The terminal receives the twelfth message loss information.
  • the twelfth message loss information is used to indicate the PDCP SN of the message that the terminal did not correctly receive.
  • the first device determines that the service flow is in the first chain according to the twelfth message loss information. Packet loss on the road; or, the first device sends packets in the service flow to the terminal, and the first device receives from the terminal the ACK sent by the terminal for each correctly received packet, and the first device determines whether the packet is received or not.
  • the ACK information of each message determines the packet loss situation of the service flow on the first link.
  • the first device when the first device is an access network device, for downlink packets, the first device obtains the packet loss of the service flow on the second link, including: the first device receives The intermediate user plane gateway receives the packet in the service flow, and the first device determines the incorrectly received packet on the first sub-link by the first device according to the continuity of the N3 GTP-U SN of the correctly received packet N3 GTP-U SN, the first device receives the thirteenth message loss information from the intermediate user plane gateway. The thirteenth message loss information is used to indicate that the intermediate user plane gateway did not correctly receive the message on the second sub-link.
  • the first device determines the packet loss of the service flow on the second link according to the N3 GTP-U SN and the thirteenth packet loss information of the packet that the first device incorrectly received on the first sub-link ; Or, the first device receives the packets in the service flow from the intermediate user plane gateway, the first device sends an ACK to the intermediate user plane gateway for each correctly received packet, and the first device receives the tenth from the intermediate user plane gateway 3.
  • Message loss information and fourteenth message loss information is used to indicate that the intermediate user plane gateway did not correctly receive the message on the second sub-link.
  • the fourteenth message loss information It is used to indicate the N3 GTP-U SN of the packet that the first device did not correctly receive on the first sub-link.
  • the first device determines that the service flow is based on the thirteenth packet loss information and the fourteenth packet loss information. Packet loss on the second link.
  • the N9 GTP-U SN of each message correctly received by the intermediate user plane gateway corresponds to the N3 GTP-U SN of the message sent by the intermediate user plane gateway.
  • the N3 GTP-U SN of the consecutive messages sent is continuous, and the 13th message loss information is used to indicate that the intermediate user plane gateway correctly received the previous message that was incorrectly received on the second sub-link.
  • the N3 GTP-U SN of the message is also used to indicate that the next message or multiple consecutive messages of the message indicated by the thirteenth message loss information are lost; or, the intermediate user
  • the difference between the N9 GTP-U SN of each message correctly received by the plane gateway and the N3 GTP-U SN of the message sent by the intermediate user plane gateway is the same, and the 13th message loss information is the middle The N3 GTP-U SN of the message that the user plane gateway did not correctly receive on the second sub-link.
  • the first device when the first device is an anchor user plane gateway, for uplink packets, the first device obtains the packet loss condition of the service flow on the first link, including: the first device Receive the fifteenth message loss information from the intermediate user plane gateway, the fifteenth message loss information is used to indicate the message that the service flow is lost on the first link; the first device determines the service flow according to the fifteenth message loss information Packet loss on the first link.
  • the PDCP SN of each message correctly received by the access network device corresponds to the N3 GTP-U SN of the message sent by the access network device, and the continuous data sent by the access network device
  • the N3 GTP-U SN of the message is continuous
  • the fifteenth message loss information is used to indicate the N9 of the previous correctly received message of the message that was incorrectly received by the access network device on the first link GTP-U SN
  • the fifteenth message loss information is also used to indicate that the next message or multiple consecutive messages of the message indicated by the fifteenth message loss information are lost; or, the access network equipment receives correctly
  • the difference between the PDCP SN of each message received and the N3 GTP-U SN of the message sent by the access network device is the same, and the N3 GTP- SN of each message received correctly by the intermediate user plane gateway
  • the difference between the N9 GTP-U SN of the message sent by the U SN and the intermediate user plane gateway is the same.
  • the fifteenth message loss information is the message
  • the first device when the first device is an anchor user plane gateway, for uplink packets, the first device obtains the packet loss of the service flow on the second link, including: the first device The sixteenth packet loss information is received from the intermediate user plane gateway. The sixteenth packet loss information is used to indicate the packet loss of the service flow on the first sub-link. The first device receives the information in the service flow from the intermediate user plane gateway.
  • the first device determines the packet loss of the service flow on the second sub-link according to the continuity of the N9 GTP-U SN of the correctly received message, and the first device loses information and services according to the sixteenth message
  • the packet loss situation of the flow on the second sub-link determines the packet loss situation of the service flow on the second link; or, the first device receives the packets in the service flow from the intermediate user plane gateway, and the first device determines the packet loss of the service flow on the second link.
  • the correctly received message sends an ACK to the intermediate user plane gateway.
  • the first device receives the sixteenth message loss information and the seventeenth message loss information from the intermediate user plane gateway.
  • the sixteenth message loss information is used to indicate the service.
  • the seventeenth packet loss information is used to indicate the N9 GTP-U SN of the packet that the anchor user plane gateway did not correctly receive, and the first device according to the sixteenth packet.
  • the loss information and the seventeenth packet loss information determine the packet loss condition of the service flow on the second link.
  • the N3 GTP-U SN of each message correctly received by the intermediate user plane gateway corresponds to the N9 GTP-U SN of the message sent by the intermediate user plane gateway.
  • the N9 GTP-U SN of the consecutive messages sent is continuous, and the sixteenth message loss information is used to indicate that the intermediate user plane gateway correctly received the previous message that was incorrectly received on the first sub-link.
  • the N9 GTP-U SN of the message, the sixteenth message loss information is also used to indicate that the next message or successive messages of the message indicated by the sixteenth message loss information are lost; or, the intermediate user
  • the difference between the N3 GTP-U SN of each message correctly received by the plane gateway and the N9 GTP-U SN of the message sent by the intermediate user plane gateway is the same, and the sixteenth message loss information is the middle The N9 GTP-U SN of the message that the user plane gateway did not correctly receive on the first sub-link.
  • the first device when the first device is an anchor user plane gateway, for downlink packets, the first device obtains the packet loss condition of the service flow on the first link, including: the first device The eighteenth message loss information is received from the intermediate user plane gateway. The eighteenth message loss information is used to indicate the N9 GTP-U SN of the message that the service flow is lost on the first link; the first device according to the eighteenth message The packet loss information determines the packet loss of the service flow on the first link.
  • the first device when the first device is an anchor user plane gateway, for downlink packets, the first device obtains the packet loss of the service flow on the second link, including: the first device The nineteenth message loss information is received from the intermediate user plane gateway, and the nineteenth message loss information is used to indicate the N9 GTP-U SN of the message that the service flow is lost on the first sub-link and the second sub-link; A device determines the packet loss condition of the service flow on the second link according to the nineteenth packet loss information.
  • a communication device In a second aspect, a communication device is provided.
  • a PDU session of a terminal is anchored to an anchor user plane gateway through an access network device.
  • the user plane path between the terminal and the anchor user plane gateway includes a first link and a second link.
  • Two links the first link refers to the user plane data link between the terminal and the access network device, and the second link refers to the user plane data link between the access network device and the anchor user plane gateway
  • the device includes: a processing unit; a processing unit for obtaining packet loss conditions of a service flow on a first link and a second link; the device is an access network device or an anchor user plane gateway; a processing unit, It is also used to determine the number of consecutive packet loss of the service flow on the user plane path according to the packet loss of the service flow on the first link and the second link; the number of consecutive packet loss of the service flow on the user plane path
  • the processing unit is also used to trigger the start of the high-reliability transmission mechanism for the service flow.
  • the first threshold is determined according to the survival time corresponding to the service flow.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link in the user plane path reaches The first threshold; the processing unit is specifically used to trigger the start of a high-reliability transmission mechanism for the service flow between the terminal and the access network device; or the processing unit is specifically used to trigger the start of the service flow between the terminal and the anchor user High-reliability transmission mechanism between surface gateways.
  • the device when the device is an access network device, the device further includes a communication unit; the processing unit is specifically configured to send the first startup information to the terminal through the communication unit, and the first startup information indicates The high-reliability transmission mechanism for the service flow between the terminal and the access network device needs to be activated; the processing unit is specifically used to trigger the initiation of the high-reliability transmission mechanism for the service flow between the terminal and the terminal.
  • the device further includes a communication unit; a processing unit, specifically configured to send second initiation information to the session management network element through the communication unit, the second initiation information indicating that it is necessary to start one of the terminal and the access network device High-reliability transmission mechanism for business flow.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the second link of the user plane path reaches The first threshold; the processing unit is specifically used to trigger the start of the high-reliability transmission mechanism between the anchor user plane gateway and the access network device for the service flow; or the processing unit is specifically used to trigger the start of the service flow in the terminal High-reliability transmission mechanism between the Anchor User Plane Gateway.
  • the device when the device is an access network device, the device further includes a communication unit; a processing unit, specifically configured to send the third activation information to the anchor user plane gateway through the communication unit, and 3.
  • the start information indicates that it is necessary to start the high-reliability transmission mechanism for the service flow between the anchor user plane gateway and the access network device; the processing unit is specifically used to trigger the start of the high reliability for the service flow between the anchor user plane gateway Sexual transmission mechanism.
  • the device when the device is an anchor user plane gateway, the device further includes a communication unit; a processing unit, specifically configured to send the fourth activation information to the access network device through the communication unit, Fourth, the start information indicates that it is necessary to start the high-reliability transmission mechanism for the service flow between the anchor user plane gateway and the access network device; the processing unit is specifically used to trigger the start and the high reliability of the service flow between the access network device Transmission mechanism.
  • the device further includes a communication unit; a processing unit, specifically configured to send fifth initiation information to the session management network element through the communication unit, and the fifth initiation information indicates that it is necessary to start the service flow for the anchor user High-reliability transmission mechanism between the surface gateway and the access network equipment.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link in the user plane path is less than the first A threshold, the number of consecutive lost packets on the second link is less than the first threshold, and the overall number of consecutive lost packets on the first link and the second link reaches the first threshold; the processing unit is specifically used for triggering Start the high-reliability transmission mechanism between the terminal and the anchor user plane gateway for the service flow.
  • the device further includes a communication unit; a processing unit, specifically configured to send sixth initiation information to the session management network element through the communication unit, and the sixth initiation information indicates that it is necessary to start the service flow in the terminal and the anchor.
  • a communication unit a processing unit, specifically configured to send sixth initiation information to the session management network element through the communication unit, and the sixth initiation information indicates that it is necessary to start the service flow in the terminal and the anchor.
  • the device is an access network device, a processing unit, specifically configured to determine the PDCP SN of the packet lost on the first link according to the service flow and the packet lost on the second link according to the service flow.
  • the mapping relationship between the N3 GTP-U SN of the message, and the PDCP SN and N3 GTP-U SN of the message in the service flow determines the number of consecutive packet loss of the service flow on the user plane path.
  • the communication unit when the device is an access network device, for uplink packets, the communication unit is used to receive packets in the service flow from the terminal, and the processing unit is specifically used to correctly receive The continuity of the PDCP SN of the received message determines the packet loss of the service flow on the first link; or the communication unit is used to receive the message in the service flow from the terminal, and the communication unit is also used for each The correctly received message sends an ACK to the terminal.
  • the communication unit is also used to receive the first message loss information from the terminal.
  • the first message loss information is used to indicate the PDCP SN of the message that the device did not receive correctly.
  • the unit is specifically configured to determine the packet loss condition of the service flow on the first link according to the first packet loss information.
  • the communication unit when the device is an access network device, for uplink packets, the communication unit is used to receive the second packet loss information from the anchor user plane gateway, and the second packet is lost
  • the information is used to indicate the N3 GTP-U SN of the message that the anchor user plane gateway does not correctly receive, and the processing unit is specifically used to determine the packet loss of the service flow on the second link according to the second message loss information;
  • the communication unit is used to send packets in the service flow to the anchor user plane gateway, and the communication unit is also used to receive from the anchor user plane gateway the data sent by the anchor user plane gateway for each correctly received packet.
  • ACK a processing unit, is specifically used to determine the packet loss condition of the service flow on the second link according to whether the ACK information of each message sent is received.
  • the communication unit when the device is an access network device, for downlink packets, the communication unit is used to receive the third packet loss information from the terminal, and the third packet loss information is used to indicate The PDCP SN of the message received incorrectly by the terminal, the processing unit is specifically used to determine the packet loss of the service flow on the first link according to the third message loss information; or the communication unit is used to send the service to the terminal.
  • the communication unit is also used to receive the ACK sent by the terminal for each correctly received message from the terminal, and the processing unit is specifically used to determine whether the ACK of each message sent is received or not. The packet loss of the service flow on the first link.
  • the communication unit when the device is an access network device, for downlink packets, the communication unit is used to receive packets in the service flow from the anchor user plane gateway, and the processing unit is specifically used To determine the packet loss of the service flow on the second link according to the continuity of the N3 GTP-U SN of the correctly received message; or, the communication unit is used to receive the message in the service flow from the anchor user plane gateway
  • the communication unit is also used to send an ACK to the anchor user plane gateway for each correctly received packet, and the communication unit is also used to receive the fourth packet loss information from the anchor user plane gateway, and the fourth packet
  • the loss information is used to indicate the N3GTP-U SN of the packet that the device did not correctly receive, and the processing unit is specifically used to determine the packet loss of the service flow on the second link according to the fourth packet loss information.
  • the communication unit is used to receive the fifth packet loss information from the access network device, and the fifth packet is lost
  • the information is used to indicate the packet loss of the service flow on the first link; the processing unit is specifically used to determine the packet loss condition of the service flow on the first link according to the fifth packet loss information.
  • the PDCP SN of each message correctly received by the access network device corresponds to the N3 GTP-U SN of the message sent by the access network device, and the continuous data sent by the access network device
  • the N3 GTP-U SN of the message is continuous
  • the fifth message loss information is used to indicate the N3 GTP of the previous correctly received message of the message that was incorrectly received by the access network device on the first link -U SN
  • the fifth packet loss information is also used to indicate the packet loss of the next packet or multiple consecutive packets indicated by the fifth packet loss information; or, each of the packets received correctly by the access network equipment
  • the difference between the PDCP SN of each packet and the N3 GTP-U SN of the packet sent by the access network device is the same.
  • the fifth packet loss information means that the access network device did not receive it correctly on the first link. N3 GTP-U SN of the received message.
  • the communication unit when the device is an anchor user plane gateway, for uplink packets, the communication unit is used to receive packets in the service flow from the access network equipment, and the processing unit is specifically used To determine the packet loss of the service flow on the second link according to the continuity of the N3 GTP-U SN of the correctly received message; or, the communication unit is used to receive the message in the service flow from the access network device , The communication unit is also used to send an ACK to the access network device for each correctly received packet, and the communication unit is also used to receive the sixth packet loss information from the access network device, and the sixth packet loss information is used In the N3 GTP-U SN indicating the packet that the device has not received correctly, the processing unit is specifically configured to determine the packet loss condition of the service flow on the second link according to the sixth packet loss information.
  • the communication unit when the device is an anchor user plane gateway, for downlink messages, the communication unit is used to receive the seventh message loss information from the access network device, and the seventh message is lost
  • the information is used to indicate the N3 GTP-U SN of the packet that the service flow loses on the first link; the processing unit is specifically used to determine the packet loss condition of the service flow on the first link according to the seventh packet loss information.
  • the communication unit when the device is an anchor user plane gateway, for downlink messages, the communication unit is used to receive the eighth message loss information from the access network device, and the eighth message is lost
  • the information is used to indicate the N3 GTP-U SN of the packet that the access network device did not correctly receive, and the processing unit is specifically used to determine the packet loss of the service flow on the second link according to the eighth packet loss information; or ,
  • the communication unit is used to send packets in the service flow to the access network device, the communication unit is also used to receive from the access network device the ACK sent by the access network device for each correctly received packet, the processing unit , Which is specifically used to determine the packet loss situation of the service flow on the second link according to whether the ACK information of each message sent is received.
  • the anchor user plane gateway and the access network device communicate through an intermediate user plane gateway
  • the second link includes the first sublink and the second sublink
  • the first sublink It is a user plane data link for communication between the access network device and the intermediate user plane gateway
  • the second sub-link is a user plane data link for communication between the intermediate user plane gateway and the anchor user plane gateway.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link of the user plane path is less than The first threshold, the number of consecutive packet loss on the first sub-link is less than the first threshold, and the number of consecutive packet loss on the second sub-link is also less than the first threshold, but on the first link and the first sub-link
  • the number of overall continuous packet loss on any two or three links of the link and the second sub-link reaches the first threshold; the processing unit is specifically used to trigger the start of the targeted service between the terminal and the anchor user plane gateway Streaming high-reliability transmission mechanism.
  • the device further includes a communication unit; the processing unit is configured to send seventh activation information to the session management network element through the communication unit, and the seventh activation information indicates that it is necessary to activate one of the terminal and the anchor user plane gateway. High-reliability transmission mechanism for business flow.
  • the communication unit when the device is an access network device, for uplink packets, the communication unit is used to receive packets in the service flow from the terminal, and the processing unit is specifically used to correctly receive The continuity of the PDCP SN of the packet determines the packet loss of the service flow on the first link; or the communication unit is used to receive the packet in the service flow from the terminal, and the communication unit is also used for each correct The received message sends an ACK to the terminal.
  • the communication unit is also used to receive the ninth message loss information from the terminal.
  • the ninth message loss information is used to indicate the PDCP SN of the message that the device has not received correctly.
  • the processing unit It is specifically used to determine the packet loss condition of the service flow on the first link according to the ninth packet loss information.
  • the communication unit when the device is an access network device, for uplink packets, the communication unit is used to receive the tenth packet loss information from the intermediate user plane gateway, and the tenth packet loss information is used for uplink packets.
  • N3 GTP-U SN indicating the message that the intermediate user plane gateway did not correctly receive on the first sub-link and N3 GTP-U SN of the message that the anchor user plane gateway did not correctly receive on the second sub-link U SN
  • a processing unit specifically used to determine the packet loss of the service flow on the second link according to the tenth packet loss information; or, the communication unit, used to send packets in the service flow to the intermediate user plane gateway.
  • the communication unit is further configured to receive the ACK sent by the intermediate user plane gateway for each correctly received message from the intermediate user plane gateway, and the processing unit is specifically configured to determine whether the ACK for each message sent is received or not.
  • the packet loss situation of the service flow on the first sub-link is also used to receive the eleventh packet loss information from the intermediate user plane gateway, and the eleventh packet loss information is used to indicate that the anchor user plane gateway is in N3 GTP-U SN of the incorrectly received packet on the second sub-link; processing unit, specifically used to determine the service based on the eleventh packet loss information and the packet loss of the service flow on the first sub-link The packet loss of the flow on the second link.
  • the communication unit when the device is an access network device, for downlink messages, the communication unit is used to receive the twelfth message loss information from the terminal, and the twelfth message loss information is used to Indicate the PDCP SN of the packet that the terminal has not received correctly, the processing unit, specifically used to determine the packet loss of the service flow on the first link according to the twelfth packet loss information; or, the communication unit, used for the terminal to send The message in the service flow, the communication unit, is also used to receive from the terminal the ACK sent by the terminal for each correctly received message, and the processing unit is specifically used to determine whether the ACK of each message sent is received or not. Determine the packet loss of the service flow on the first link.
  • the communication unit when the device is an access network device, for downlink packets, the communication unit is used to receive packets in the service flow from the intermediate user plane gateway, and the processing unit is specifically used to The N3 GTP-U SN continuity determination device of the correctly received message on the first sub-link is not correctly received N3 GTP-U SN of the message, the communication unit, and is also used to receive from the intermediate user plane gateway
  • the thirteenth message loss information, the thirteenth message loss information is used to indicate that the intermediate user plane gateway does not correctly receive the message on the second sub-link, and the processing unit is specifically used to determine whether the device is in the first sub-link.
  • the N3 GTP-U SN and the thirteenth message loss information of the incorrectly received packets on the road determine the packet loss of the service flow on the second link; or, the communication unit, used to receive from the intermediate user plane gateway
  • the message and communication unit in the service flow are also used to send an ACK to the intermediate user plane gateway for each correctly received message, and the communication unit is also used to receive the thirteenth message loss information from the intermediate user plane gateway and The fourteenth message loss information, the thirteenth message loss information is used to indicate that the intermediate user plane gateway did not correctly receive the message on the second sub-link, and the fourteenth message loss information is used to indicate that the device is in the first sub-link.
  • the N3 GTP-U SN of the incorrectly received packet on a sub-link the processing unit is specifically used to determine that the service flow is on the second link according to the thirteenth packet loss information and the fourteenth packet loss information The packet loss situation.
  • the N9 GTP-U SN of each message correctly received by the intermediate user plane gateway corresponds to the N3 GTP-U SN of the message sent by the intermediate user plane gateway.
  • the N3 GTP-U SN of the consecutive messages sent is continuous, and the 13th message loss information is used to indicate that the intermediate user plane gateway correctly received the previous message that was incorrectly received on the second sub-link.
  • the N3 GTP-U SN of the message is also used to indicate that the next message or multiple consecutive messages of the message indicated by the thirteenth message loss information are lost; or, the intermediate user
  • the difference between the N9 GTP-U SN of each message correctly received by the plane gateway and the N3 GTP-U SN of the message sent by the intermediate user plane gateway is the same, and the 13th message loss information is the middle The N3 GTP-U SN of the message that the user plane gateway did not correctly receive on the second sub-link.
  • the communication unit when the device is an anchor user plane gateway, for uplink messages, the communication unit is used to receive the fifteenth message loss information from the intermediate user plane gateway, and the fifteenth message
  • the loss information is used to indicate the packet loss of the service flow on the first link; the processing unit is specifically used to determine the packet loss condition of the service flow on the first link according to the fifteenth packet loss information.
  • the PDCP SN of each message correctly received by the access network device corresponds to the N3 GTP-U SN of the message sent by the access network device, and the continuous data sent by the access network device
  • the N3 GTP-U SN of the message is continuous
  • the fifteenth message loss information is used to indicate the N9 of the previous correctly received message of the message that was incorrectly received by the access network device on the first link GTP-U SN
  • the fifteenth message loss information is also used to indicate that the next message or multiple consecutive messages of the message indicated by the fifteenth message loss information are lost; or, the access network equipment receives correctly
  • the difference between the PDCP SN of each message received and the N3 GTP-U SN of the message sent by the access network device is the same, and the N3 GTP- SN of each message received correctly by the intermediate user plane gateway
  • the difference between the N9 GTP-U SN of the message sent by the U SN and the intermediate user plane gateway is the same.
  • the fifteenth message loss information is the message
  • the communication unit when the device is an anchor user plane gateway, for uplink packets, the communication unit is used to receive the sixteenth message loss information from the intermediate user plane gateway, and the sixteenth message The loss information is used to indicate the lost packets of the service flow on the first sub-link.
  • the communication unit is also used to receive the packets in the service flow from the intermediate user plane gateway.
  • the processing unit is specifically used to respond to the correctly received packets.
  • the continuity of the N9 GTP-U SN determines the packet loss of the service flow on the second sub-link, and the processing unit is specifically used to determine the packet loss of the service flow on the second sub-link according to the sixteenth packet loss information and The packet condition determines the packet loss condition of the service flow on the second link; or, the communication unit is used to receive the packets in the service flow from the intermediate user plane gateway, and the communication unit is also used to target each correctly received packet.
  • the message sends an ACK to the intermediate user plane gateway.
  • the communication unit is also used to receive the sixteenth message loss information and the seventeenth message loss information from the intermediate user plane gateway.
  • the sixteenth message loss information is used to indicate that the service flow is The message that the first sub-link is lost
  • the seventeenth message loss information is used to indicate the N9 GTP-U SN of the message that the anchor user plane gateway did not correctly receive, the processing unit, which is specifically used according to the sixteenth message
  • the packet loss information and the seventeenth packet loss information determine the packet loss condition of the service flow on the second link.
  • the N3 GTP-U SN of each message correctly received by the intermediate user plane gateway corresponds to the N9 GTP-U SN of the message sent by the intermediate user plane gateway.
  • the N9 GTP-U SN of the consecutive messages sent is continuous, and the sixteenth message loss information is used to indicate that the intermediate user plane gateway correctly received the previous message that was incorrectly received on the first sub-link.
  • the N9 GTP-U SN of the message, the sixteenth message loss information is also used to indicate that the next message or successive messages of the message indicated by the sixteenth message loss information are lost; or, the intermediate user
  • the difference between the N3 GTP-U SN of each message correctly received by the plane gateway and the N9 GTP-U SN of the message sent by the intermediate user plane gateway is the same, and the sixteenth message loss information is the middle The N9 GTP-U SN of the message that the user plane gateway did not correctly receive on the first sub-link.
  • the communication unit is configured to receive the eighteenth message loss information from the intermediate user plane gateway, and the eighteenth message
  • the loss information is used to indicate the N9 GTP-U SN of the packet that the service flow lost on the first link; the processing unit is specifically used to determine the packet loss of the service flow on the first link according to the eighteenth packet loss information .
  • the communication unit when the device is an anchor user plane gateway, for downlink messages, the communication unit is used to receive the nineteenth message loss information from the intermediate user plane gateway, and the nineteenth message
  • the message loss information is used to indicate the N9 GTP-U SN of the message that the service flow is lost on the first sub-link and the second sub-link; the processing unit is specifically used to determine that the service flow is in the first sub-link according to the nineteenth message loss information 2. Packet loss on the link.
  • a communication device including a processor.
  • the processor is connected to the memory, the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, so as to implement any one of the methods provided in the first aspect.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory may be located in the communication device or outside the communication device.
  • the processor includes a logic circuit, and also includes at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • the communication device further includes a communication interface and a communication bus, and the processor, the memory, and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the communication device exists in the form of a chip product.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute any of the methods provided in the first aspect.
  • a computer program product containing instructions is provided. When the instructions are run on a computer, the computer executes any of the methods provided in the first aspect.
  • a communication system including: an access network device and a session management network element, the PDU session of the terminal is anchored to the anchor user plane gateway through the access network device, and the terminal and the anchor user plane gateway are The user plane path between the terminals includes a first link and a second link.
  • the first link refers to the user plane data link between the terminal and the access network device
  • the second link refers to the access network device and the anchor.
  • User plane data link for communication between point user plane gateways; session management network element, used to send life time information corresponding to the service flow to the first device, the first device being an access network device or an anchor user plane gateway;
  • the first device is used to receive time-to-live information from the session management network element, and to determine the first threshold according to the time-to-live information; the first device is also used to obtain the information about the service flow on the first link and the second link Packet loss situation; the first device is also used to determine the number of consecutive packet loss of the service flow on the user plane path according to the packet loss situation of the service flow on the first link and the second link; when the service flow is on the user plane When the number of consecutive lost packets on the path reaches the first threshold, the first device is also used to trigger the start of the high-reliability transmission mechanism for the service flow.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link in the user plane path reaches The first threshold; the first device, specifically used to trigger the start of the high-reliability transmission mechanism between the terminal and the access network device for the service flow; or the first device, specifically used to trigger the start of the service flow between the terminal and the anchor High-reliability transmission mechanism between point user plane gateways.
  • the first device when the first device is an access network device, the first device is specifically used to send the first startup information to the terminal and trigger the high reliability of the service flow between itself and the terminal.
  • Transmission mechanism the first start information indicates that a high-reliability transmission mechanism for service flow between the terminal and the access network device needs to be started; the terminal is used to receive the first start information from the first device and start it according to the first start information High-reliability transmission mechanism for service flow between and access network equipment.
  • the first device is specifically configured to send second initiation information to the session management network element, and the second initiation information indicates that high-reliability transmission of service flows between the terminal and the access network device needs to be initiated.
  • the session management network element is used to receive the second startup information from the first device, and according to the second startup information, control the startup of the high-reliability transmission mechanism for the service flow between the terminal and the access network device.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the second link of the user plane path reaches The first threshold; the first device, specifically used to trigger the start of the high-reliability transmission mechanism between the anchor user plane gateway and the access network device for the service flow; or the first device, specifically used to trigger the start of the service flow High-reliability transmission mechanism between the terminal and the anchor user plane gateway.
  • the first device is specifically configured to send third activation information to the anchor user plane gateway and trigger its own activation with the anchor user plane gateway
  • the high-reliability transmission mechanism for the service flow between the third start information indicates that it is necessary to start the high-reliability transmission mechanism for the service flow between the anchor user plane gateway and the access network device; the anchor user plane gateway is used for slave
  • the first device receives the third startup information, and starts a high-reliability transmission mechanism for the service flow between the access network device and the access network device according to the third startup information.
  • the first device when the first device is an anchor user plane gateway, the first device is specifically configured to send the fourth activation information to the access network device and trigger its own activation with the access network device.
  • the high-reliability transmission mechanism for the service flow between the fourth start information indicates that the high-reliability transmission mechanism for the service flow between the anchor user plane gateway and the access network device needs to be started; the access network device is used to start the transmission mechanism from the first
  • the device receives the fourth activation information, and activates the high-reliability transmission mechanism for the service flow between the device and the anchor user plane gateway according to the fourth activation information.
  • the first device is specifically configured to send fifth initiation information to the session management network element, and the fifth initiation information indicates that the service flow needs to be started between the anchor user plane gateway and the access network device.
  • High-reliability transmission mechanism session management network element, used to receive the fifth initiation information from the first device, and according to the fifth initiation information to control the initiation of the high-speed service flow between the anchor user plane gateway and the access network device Reliability transmission mechanism.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link in the user plane path is less than the first A threshold, the number of consecutive lost packets on the second link is less than the first threshold, and the overall number of consecutive lost packets on the first link and the second link reaches the first threshold; the first device is specifically used for Trigger to start the high-reliability transmission mechanism between the terminal and the anchor user plane gateway for the service flow.
  • the first device is specifically used to send sixth initiation information to the session management network element, and the sixth initiation information indicates that the high reliability between the terminal and the anchor user plane gateway for the service flow needs to be started.
  • Sexual transmission mechanism session management network element, used to receive the sixth initiation information from the first device, and according to the sixth initiation information to control and start the high-reliability transmission mechanism between the terminal and the anchor user plane gateway for the service flow.
  • the first device is an access network device, and the first device is used for PDCP SN of packets lost on the first link according to the service flow and the service flow is lost on the second link
  • the mapping relationship between the N3 GTP-U SN of the message and the PDCP SN and N3 GTP-U SN of the message in the service flow determine the number of consecutive packet loss of the service flow on the user plane path.
  • the terminal when the first device is an access network device, for uplink packets, the terminal is used to send packets in the service flow to the access network device; the access network device uses It receives the packet in the service flow from the terminal, and determines the packet loss condition of the service flow on the first link according to the continuity of the PDCP SN of the correctly received packet.
  • the terminal when the first device is an access network device, for uplink packets, the terminal is used to send packets in the service flow to the access network device; the access network device uses To receive the message in the service flow from the terminal, and send ACK to the terminal for each correctly received message; the terminal is also used to receive from the access network equipment the access network equipment for each correctly received message The ACK is sent to the terminal, and the first packet loss information is sent to the access network device according to whether the ACK information of each sent packet is received, and the first packet loss information is used to indicate that the access network device has not received correctly The PDCP SN of the received packet; the access network device is also used to receive the first packet loss information from the terminal, and determine the packet loss condition of the service flow on the first link according to the first packet loss information.
  • the anchor user plane gateway when the first device is an access network device, for uplink packets, the anchor user plane gateway is used to send the second packet loss information to the access network device, and the second The message loss information is used to indicate the N3 GTP-U SN of the message that the anchor user plane gateway has not correctly received; the access network device is used to receive the second message loss information from the anchor user plane gateway, and according to the first The second message loss information determines the packet loss situation of the service flow on the second link.
  • the access network device when the first device is an access network device, for uplink packets, the access network device is used to send packets in the service flow to the anchor user plane gateway;
  • the user plane gateway is used to receive the packets in the service flow from the access network device and send ACK to the access network device for each correctly received packet;
  • the access network device is also used for the user plane from the anchor point.
  • the gateway receives the ACK sent by the anchor user plane gateway for each correctly received message, and determines the packet loss condition of the service flow on the second link according to the information about whether it receives the ACK of each message sent.
  • the terminal when the first device is an access network device, for downlink messages, the terminal is used to send the third packet loss information to the access network device, and the third packet loss information Used to indicate the PDCP SN of the packet that the terminal has not received correctly; the access network device is used to receive the third packet loss information from the terminal, and determine the traffic flow on the first link according to the third packet loss information Packet loss situation.
  • the access network device when the first device is an access network device, for downlink packets, the access network device is used to send packets in the service flow to the terminal; and the terminal is used to receive packets from the network.
  • the network access device receives the message in the service flow and sends an ACK to the access network device for each correctly received message; the access network device is also used to receive from the terminal the terminal for each correctly received message
  • the ACK is sent, and the packet loss condition of the service flow on the first link is determined according to the information about whether the ACK of each message sent is received.
  • the anchor user plane gateway is used to send packets in the service flow to the access network device; access;
  • the network equipment is used to receive packets in the service flow from the anchor user plane gateway, and determine the packet loss of the service flow on the second link according to the continuity of the N3 GTP-U SN of the correctly received packets.
  • the anchor user plane gateway is used to send packets in the service flow to the access network device; the access network device is used to receive services from the anchor user plane gateway And send ACK to the anchor user plane gateway for each correctly received packet; the anchor user plane gateway is also used to receive the access network device from the access network device for each correctly received packet.
  • the ACK message sent to the anchor user plane gateway, and the fourth message loss information is sent to the access network device according to whether the ACK information of each sent message is received, and the fourth message loss information is used to indicate The N3 GTP-U SN of the message received incorrectly by the access network device; the access network device is also used to receive the fourth message loss information from the anchor user plane gateway, and determine the service based on the fourth message loss information The packet loss of the flow on the second link.
  • the access network device when the first device is an anchor user plane gateway, for uplink packets, the access network device is used to send the fifth packet loss information to the anchor user plane gateway.
  • Five message loss information is used to indicate the message that the service flow is lost on the first link; the anchor user plane gateway is used to receive the fifth message loss information from the access network device and determine it based on the fifth message loss information The packet loss of the service flow on the first link.
  • the PDCP SN of each message correctly received by the access network device corresponds to the N3 GTP-U SN of the message sent by the access network device, and the continuous data sent by the access network device
  • the N3 GTP-U SN of the message is continuous
  • the fifth message loss information is used to indicate the N3 GTP of the previous correctly received message of the message that was incorrectly received by the access network device on the first link -U SN
  • the fifth packet loss information is also used to indicate the packet loss of the next packet or multiple consecutive packets indicated by the fifth packet loss information; or, each of the packets received correctly by the access network equipment
  • the difference between the PDCP SN of each packet and the N3 GTP-U SN of the packet sent by the access network device is the same.
  • the fifth packet loss information means that the access network device did not receive it correctly on the first link. N3 GTP-U SN of the received message.
  • the access network device when the first device is an anchor user plane gateway, for uplink packets, the access network device is used to send packets in the service flow to the anchor user plane gateway;
  • Point user plane gateway used to receive packets in the service flow from the access network device, and determine the packet loss of the service flow on the second link according to the continuity of the N3 GTP-U SN of the correctly received packet .
  • the access network device when the first device is an anchor user plane gateway, for uplink packets, the access network device is used to send packets in the service flow to the anchor user plane gateway;
  • the point user plane gateway is used to receive the packets in the service flow from the access network device, and send ACK to the access network device for each correctly received packet;
  • the access network device is also used to from the anchor user
  • the plane gateway receives the ACK sent by the anchor user plane gateway for each correctly received message, and sends the sixth message loss information to the anchor user plane gateway according to whether the ACK of each sent message is received,
  • the sixth message loss information is used to indicate the N3 GTP-U SN of the message that the anchor user plane gateway has not received correctly;
  • the anchor user plane gateway is also used to receive the sixth message loss information from the access network device, And determine the packet loss condition of the service flow on the second link according to the sixth packet loss information.
  • the access network device when the first device is an anchor user plane gateway, for downlink packets, the access network device is used to send the seventh packet loss information to the anchor user plane gateway.
  • Seven message loss information is used to indicate the N3 GTP-U SN of the message lost on the first link of the service flow; the anchor user plane gateway is used to receive the seventh message loss information from the access network device, and according to the first link Seven message loss information determines the packet loss situation of the service flow on the first link.
  • the access network device when the first device is an anchor user plane gateway, for downlink packets, the access network device is used to send the eighth packet loss information to the anchor user plane gateway.
  • the eighth message loss information is used to indicate the N3 GTP-U SN of the message that the access network device has not received correctly; the anchor user plane gateway is used to receive the eighth message loss information from the access network device, and according to the first Eight packet loss information determines the packet loss situation of the service flow on the second link.
  • the anchor user plane gateway when the first device is an anchor user plane gateway, for downlink packets, the anchor user plane gateway is used to send packets in the service flow to the access network device;
  • the network access device is used to receive the packets in the service flow from the anchor user plane gateway, and send ACK to the anchor user plane gateway for each correctly received packet;
  • the anchor user plane gateway is also used to connect from the The network access device receives the ACK sent by the access network device for each correctly received message, and determines the packet loss condition of the service flow on the second link according to the information about whether it receives the ACK of each message sent.
  • the anchor user plane gateway and the access network device communicate through an intermediate user plane gateway
  • the second link includes the first sublink and the second sublink
  • the first sublink It is a user plane data link for communication between the access network device and the intermediate user plane gateway
  • the second sub-link is a user plane data link for communication between the intermediate user plane gateway and the anchor user plane gateway.
  • the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link of the user plane path is less than The first threshold, the number of consecutive packet loss on the first sub-link is less than the first threshold, and the number of consecutive packet loss on the second sub-link is also less than the first threshold, but on the first link and the first sub-link
  • the total number of continuous packet loss on any two or three links of the link and the second sub-link reaches the first threshold; the first device is used to trigger the start of the targeted service between the terminal and the anchor user plane gateway Streaming high-reliability transmission mechanism.
  • the first device is specifically used to send seventh start information to the session management network element, and the seventh start information indicates that the high reliability of the service flow between the terminal and the anchor user plane gateway needs to be started.
  • Transmission mechanism The session management network element is used to receive the seventh activation information from the first device, and control the activation of the high-reliability transmission mechanism for the service flow between the terminal and the anchor user plane gateway according to the seventh activation information.
  • the terminal when the first device is an access network device, for uplink packets, the terminal is used to send packets in the service flow to the access network device; the access network device uses It receives the packet in the service flow from the terminal, and determines the packet loss condition of the service flow on the first link according to the continuity of the PDCP SN of the correctly received packet.
  • the terminal when the first device is an access network device, for uplink packets, the terminal is used to send packets in the service flow to the access network device; the access network device uses To receive the message in the service flow from the terminal, and send ACK to the terminal for each correctly received message; the terminal is also used to receive from the access network equipment the access network equipment for each correctly received message The ACK is sent to the terminal, and the ninth packet loss information is sent to the access network device according to whether the ACK information of each sent packet is received.
  • the ninth packet loss information is used to indicate that the access network device has not received correctly
  • the PDCP SN of the received packet the access network device is also used to receive the ninth packet loss information from the terminal, and determine the packet loss situation of the service flow on the first link according to the ninth packet loss information.
  • the intermediate user plane gateway when the first device is an access network device, for uplink packets, the intermediate user plane gateway is used to send the tenth packet loss information to the access network device.
  • the message loss information is used to indicate that the N3 GTP-U SN of the message that the intermediate user plane gateway did not correctly receive on the first sublink and the message that the anchor user plane gateway did not correctly receive on the second sublink N3 GTP-U SN; access network equipment, used to receive the tenth packet loss information from the intermediate user plane gateway, and determine the packet loss of the service flow on the second link according to the tenth packet loss information.
  • the access network device when the first device is an access network device, for uplink packets, the access network device is used to send packets in the service flow to the intermediate user plane gateway; the intermediate user plane The gateway is used to receive the packets in the service flow from the access network device, and send ACK to the access network device for each correctly received packet; the access network device is also used to receive the intermediate user plane gateway from the intermediate user plane gateway.
  • the user plane gateway sends an ACK for each correctly received message, and determines the packet loss of the service flow on the first sub-link based on whether it receives the ACK information for each message sent; the intermediate user plane gateway , Is also used to send the eleventh message loss information to the access network device, and the eleventh message loss information is used to indicate the N3 GTP of the message that the anchor user plane gateway did not correctly receive on the second sub-link -U SN; access network equipment, also used to receive the eleventh packet loss information from the intermediate user plane gateway, and determine according to the eleventh packet loss information and the packet loss of the service flow on the first sub-link The packet loss of the service flow on the second link.
  • the terminal when the first device is an access network device, for downlink messages, the terminal is used to send the twelfth message loss information to the access network device, and the twelfth message
  • the loss information is used to indicate the PDCP SN of the packet that the terminal has not received correctly; the access network device is used to receive the twelfth packet loss information from the terminal, and determine that the service flow is in the first according to the twelfth packet loss information. Packet loss on the link.
  • the access network device when the first device is an access network device, for downlink packets, the access network device is used to send packets in the service flow to the terminal; and the terminal is used to receive packets from the network.
  • the network access device receives the packets in the service flow and sends an ACK to the access network device for each correctly received packet; the access network device is used to receive the terminal from the terminal and send it to the access network device for each correctly received packet ACK, and determine the packet loss of the service flow on the first link according to whether the ACK of each message sent is received.
  • the intermediate user plane gateway is used to send packets in the service flow to the access network device;
  • the access network The device is used to receive the packets in the service flow from the intermediate user plane gateway, and according to the continuity of the N3 GTP-U SN of the correctly received packets to determine that the access network device did not correctly receive the packets on the first sub-link
  • the intermediate user plane gateway is also used to send the thirteenth message loss information to the access network device, and the thirteenth message loss information is used to indicate that the intermediate user plane gateway is in the second sub Messages that are incorrectly received on the link;
  • the access network device is also used to receive the thirteenth message loss information from the intermediate user plane gateway, and according to the incorrect reception of the access network device on the first sub-link
  • the N3 GTP-U SN and the thirteenth message loss information of the message to determine the packet loss situation of the service flow on the second link.
  • the intermediate user plane gateway is used to send packets in the service flow to the access network device;
  • the access network The device is used to receive packets in the service flow from the intermediate user plane gateway, and send an ACK to the intermediate user plane gateway for each correctly received packet;
  • the intermediate user plane gateway is also used to receive access from the access network device
  • the network access device sends an ACK to the intermediate user plane gateway for each correctly received message, and sends the thirteenth message loss information and the 13th message loss information to the access network device according to whether it receives the ACK information of each sent message.
  • the fourteenth message loss information, the thirteenth message loss information is used to indicate that the intermediate user plane gateway did not correctly receive the message on the second sub-link, and the fourteenth message loss information is used to indicate the access network
  • the N3 GTP-U SN of the packet that the device did not correctly receive on the first sub-link; the access network device is also used to receive the thirteenth packet loss information and the fourteenth packet loss information from the intermediate user plane gateway Information, and determine the packet loss of the service flow on the second link according to the thirteenth message loss information and the fourteenth message loss information.
  • the N9 GTP-U SN of each message correctly received by the intermediate user plane gateway corresponds to the N3 GTP-U SN of the message sent by the intermediate user plane gateway.
  • the N3 GTP-U SN of the consecutive messages sent is continuous, and the 13th message loss information is used to indicate that the intermediate user plane gateway correctly received the previous message that was incorrectly received on the second sub-link.
  • the N3 GTP-U SN of the message is also used to indicate that the next message or multiple consecutive messages of the message indicated by the thirteenth message loss information are lost; or, the intermediate user
  • the difference between the N9 GTP-U SN of each message correctly received by the plane gateway and the N3 GTP-U SN of the message sent by the intermediate user plane gateway is the same, and the 13th message loss information is the middle The N3 GTP-U SN of the message that the user plane gateway did not correctly receive on the second sub-link.
  • the intermediate user plane gateway is used to send the fifteenth message loss information to the anchor user plane gateway,
  • the fifteenth message loss information is used to indicate the message that the service flow is lost on the first link;
  • the anchor user plane gateway is used to receive the fifteenth message loss information from the intermediate user plane gateway, and according to the fifteenth message
  • the packet loss information determines the packet loss of the service flow on the first link.
  • the PDCP SN of each message correctly received by the access network device corresponds to the N3 GTP-U SN of the message sent by the access network device, and the continuous data sent by the access network device
  • the N3 GTP-U SN of the message is continuous
  • the fifteenth message loss information is used to indicate the N9 of the previous correctly received message of the message that was incorrectly received by the access network device on the first link GTP-U SN
  • the fifteenth message loss information is also used to indicate that the next message or multiple consecutive messages of the message indicated by the fifteenth message loss information are lost; or, the access network equipment receives correctly
  • the difference between the PDCP SN of each message received and the N3 GTP-U SN of the message sent by the access network device is the same, and the N3 GTP- SN of each message received correctly by the intermediate user plane gateway
  • the difference between the N9 GTP-U SN of the message sent by the U SN and the intermediate user plane gateway is the same.
  • the fifteenth message loss information is the message
  • the intermediate user plane gateway is used to send the sixteenth message loss information to the anchor user plane gateway,
  • the sixteenth message loss information is used to indicate that the service flow is lost on the first sub-link;
  • the anchor user plane gateway is used to receive the sixteenth message loss information from the intermediate user plane gateway;
  • the intermediate user plane gateway It is also used to send packets in the service flow to the anchor user plane gateway;
  • the anchor user plane gateway is also used to receive the packets in the service flow from the intermediate user plane gateway, and according to the N9 GTP of the correctly received packet -U SN continuity determines the packet loss of the service flow on the second sub-link;
  • the anchor user plane gateway is also used to determine the loss of the service flow on the second sub-link according to the sixteenth message loss information
  • the packet condition determines the packet loss condition of the service flow on the second link.
  • the intermediate user plane gateway when the first device is an anchor user plane gateway, for uplink packets, the intermediate user plane gateway is used to send packets in the service flow to the anchor user plane gateway;
  • the point user plane gateway is used to receive the packets in the service flow from the intermediate user plane gateway, and send ACK to the intermediate user plane gateway for each correctly received packet;
  • the intermediate user plane gateway is also used for the anchor user
  • the plane gateway receives the ACK sent by the anchor user plane gateway for each correctly received message, and sends the sixteenth message loss information to the anchor user plane gateway according to whether it receives the ACK information for each sent message
  • the sixteenth message loss information is used to indicate that the service flow is lost in the first sub-link, and the seventeenth message loss information is used to indicate that the anchor user plane gateway has not received it correctly
  • the anchor user plane gateway is also used to receive the sixteenth message loss information and the seventeenth message loss information from the intermediate user plane gateway, and according to the sixteenth message loss The
  • the N3 GTP-U SN of each message correctly received by the intermediate user plane gateway corresponds to the N9 GTP-U SN of the message sent by the intermediate user plane gateway.
  • the N9 GTP-U SN of the consecutive messages sent is continuous, and the sixteenth message loss information is used to indicate that the intermediate user plane gateway correctly received the previous message that was incorrectly received on the first sub-link.
  • the N9 GTP-U SN of the message, the sixteenth message loss information is also used to indicate that the next message or successive messages of the message indicated by the sixteenth message loss information are lost; or, the intermediate user
  • the difference between the N3 GTP-U SN of each message correctly received by the plane gateway and the N9 GTP-U SN of the message sent by the intermediate user plane gateway is the same, and the sixteenth message loss information is the middle The N9 GTP-U SN of the message that the user plane gateway did not correctly receive on the first sub-link.
  • the intermediate user plane gateway is used to send the eighteenth message loss information to the anchor user plane gateway,
  • the eighteenth message loss information is used to indicate the N9 GTP-U SN of the message that the service flow is lost on the first link;
  • the anchor user plane gateway is used to receive the eighteenth message loss information from the intermediate user plane gateway, And determine the packet loss condition of the service flow on the first link according to the eighteenth packet loss information.
  • the intermediate user plane gateway is used to send the nineteenth message loss information to the anchor user plane gateway
  • the nineteenth message loss information is used to indicate the N9 GTP-U SN of the messages lost in the first and second sub-links of the service flow; the anchor user plane gateway is used to receive the first sub-link from the intermediate user plane gateway.
  • Nineteenth packet loss information, and the packet loss condition of the service flow on the second link is determined according to the nineteenth packet loss information.
  • Figures 1 to 3 are respectively schematic diagrams of a network architecture composition provided by embodiments of this application;
  • 4 and 5 are respectively schematic diagrams of packets transmitted on various links provided by embodiments of the application.
  • FIG. 6 is a schematic diagram of packet loss on a user plane path provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of the composition of a communication device provided by an embodiment of this application.
  • 14 and 15 are respectively schematic diagrams of the hardware structure of a communication device provided by an embodiment of the application.
  • A/B can mean A or B.
  • “And/or” in this article is only an association relationship describing the associated objects, which means that there can be three kinds of relationships.
  • a and/or B can mean: A alone exists, A and B exist at the same time, and B exists alone. These three situations.
  • “at least one” means one or more, and “plurality” means two or more.
  • the words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • the technical solutions provided by the embodiments of this application can be applied to various communication systems, for example, the fifth generation (5th-generation, 5G) system, the new radio (NR) system, and the multi-radio access technology dual connection (Multi- RAT Dual-Connectivity (MR-DC) system and future evolution system or multiple communication integration systems.
  • 5G system can be a non-standalone (NSA) 5G system or a standalone (SA) 5G system.
  • the 5G system may include the following network function (NF) entities: unified data management (UDM) entity, access and mobility management function (AMF) entity, session management function ( session management function (SMF) entity, policy control function (PCF) entity, application function (AF) entity, radio access network (RAN) or access network (access network, AN ) (Hereinafter, RAN and AN are collectively referred to as (R)AN) entity, user plane function (UPF) entity, terminal, data network (data network, DN), etc.
  • NF network function
  • UDM has functions such as managing the user's contract data and generating user authentication information.
  • AMF is mainly responsible for terminal registration management, terminal connection management, terminal reachability management, terminal access authorization and access authentication, terminal security functions, terminal mobility management, and network slice selection , SMF selection and other functions.
  • the AMF serves as the anchor point of the N1/N2 interface signaling connection and provides the N1/N2 interface session management (SM) message routing for the SMF, and maintains and manages the state information of the terminal.
  • SM N1/N2 interface session management
  • SMF is mainly responsible for all control plane functions of terminal session management, including UPF selection and control, Internet protocol (IP) address allocation and management, session quality of service (QoS) management, from PCF Obtain policy and charging control (PCC) policies, etc.
  • SMF is also used as the termination point of the SM part in the non-access stratum (NAS) message.
  • PCF has functions such as providing policy rules to the control plane functional entities.
  • AF can be an application server, which can belong to an operator or a third party.
  • UPF as the anchor point of the protocol data unit (protocol data unit, PDU) session (session) connection, is responsible for the terminal's data message filtering, data transmission/forwarding, rate control, generation of billing information, user plane QoS processing, and uplink Transmission authentication, transmission level verification, downlink data packet buffering, and downlink data notification triggering, etc.
  • PDU protocol data unit
  • UPF can also be used as a branch point for multi-homed PDU sessions.
  • RAN a network composed of multiple 5G-RAN nodes (hereinafter referred to as RAN nodes), realizes wireless physical layer functions, resource scheduling and wireless resource management, wireless access control, and mobility management functions.
  • the RAN node may also be called an access network device, and specifically may be a base station.
  • the base station may include various forms of base stations, such as: macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and so on. Specifically, it can be: access point (AP) in wireless local area network (Wireless Local Area Network, WLAN), Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple)
  • the base station (Base Transceiver Station, BTS) in Access, CDMA can also be the base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or the evolved base station in LTE (Evolved Node B, eNB or eNodeB), or relay station or access point, or vehicle-mounted equipment, wearable equipment, and the next generation Node B (gNB) in the future 5G system or the future evolved public land mobile Base stations in the PLMN (Public Land Mobile Network, PLMN) network.
  • PLMN Public Land Mobile
  • the terminal can be a device with wireless transceiver function.
  • the terminal may have different names, such as user equipment (UE), access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile equipment, wireless communication equipment, terminal agent Or terminal devices, etc.
  • UE user equipment
  • the terminal can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites, etc.).
  • Terminals include handheld devices, vehicle-mounted devices, wearable devices, or computing devices with wireless communication capabilities.
  • the terminal may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device used to implement the function of the terminal may be a terminal, or a device capable of supporting the terminal to implement the function, such as a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal as an example to describe the technical solutions provided by the embodiments of the present application.
  • DN a network that provides users with data transmission services, such as IP Multi-media service (IMS), the Internet, and so on.
  • DN can include application server (AS).
  • AS is a software framework that provides an environment for running applications to provide applications with services such as security, data, transaction support, load balancing, and large-scale distributed system management.
  • the terminal obtains the application message by communicating with the AS. It should be noted that the aforementioned AF is the control plane of the AS.
  • the network architecture of the 5G network may also include other functional entities.
  • a network exposure function (NEF) entity may also be included between the AF entity and the PCF entity, which may be used to exchange network internal and external information.
  • the entity may also be referred to as a network element or a device.
  • the (R)AN entity, AMF entity, SMF entity, UDM entity, UPF entity, and PCF entity in FIG. 1 are only a name, and the name does not constitute a restriction on the entity itself.
  • the network elements or devices corresponding to these entities may also have other names, which are not specifically limited in the embodiment of the present application.
  • the UDM entity may also be replaced by a user home server (home subscriber server, HSS) or user subscription database (USD) or database entity, etc., which will be uniformly explained here and will not be repeated here.
  • the UDM entity, PCF entity, AMF entity, and SMF entity in Figure 1 can also be collectively referred to as control plane function (CPF) entities. These entities belong to the 5G core network control plane (5G corenet control plane, 5GC CP). .
  • 5G corenet control plane 5G corenet control plane, 5GC CP.
  • AMF entity, SMF entity, UDM entity, UPF entity, and PCF entity are referred to by AMF, SMF, UDM, UPF, and PCF respectively.
  • the terminal exchanges data with the DN by establishing a PDU session to the DN.
  • the SMF will select a PDU session anchor (PSA) UPF (also simply referred to as an anchor UPF) for the terminal.
  • PSA PDU session anchor
  • the transmission path of the user plane message between the terminal and the DN includes: the user plane path between the terminal and the RAN node (denoted as the first link, corresponding to the terminal and Radio bearer between RAN nodes), user plane path between RAN node and PSAUPF (denoted as the second link, corresponding to N3 GTP-U tunnel between RAN node and PSA UPF), PSA UPF and AS in DN
  • the user plane path (denoted as the third link, corresponding to the N6 tunnel between the PSA and the UPF and the AS) between them is composed.
  • the scenario shown in Figure 2 can be referred to as a single UPF scenario for short.
  • the RAN node communicates with the PSA UPF through the N3 interface
  • the PSA UPF communicates with the AS in the DN through the N6 interface.
  • the user plane path between two network nodes may also be referred to as a user plane data link.
  • SMF When the RAN node that the terminal accesses is not within the service area of the PSA UPF, SMF will insert an intermediate UPF (intermediate UPF, I-UPF) between the RAN node and the PSA UPF, and the RAN node that the terminal accesses is in the I-UPF.
  • I-UPF intermediate UPF
  • the terminal In the service area of the UPF, the terminal can establish a PDU session that passes through the RAN node, I-UPF, and PSA UPF, and exchange data with the DN through the PDU session.
  • the user plane path between the terminal and the DN includes: the user plane path between the terminal and the RAN node (denoted as the first link, corresponding to the radio bearer between the terminal and the RAN node), and the RAN node
  • the second link further includes the user plane path between the RAN node and the I-UPF (denoted as the first sub-link, corresponding to the N3 GTP-U tunnel between the RAN node and the I-UPF) and the I-UPF and The user plane path between PSAUPF (denoted as the second sub-link, corresponding to the N9 GTP-U tunnel between I-UPF and PSA UPF).
  • the scenario shown in Figure 3 can be referred to as a multi-UPF scenario for short.
  • the RAN node communicates with the I-UPF through the N3 interface
  • the I-UPF communicates with the PSA UPF through the N9 interface.
  • the PSA UPF and the AS in the DN Communicate with each other through the N6 interface.
  • the life time of an application refers to the time that the application continues to run when the application server or the application layer of the terminal does not receive the expected message.
  • the time to live can be expressed as a length of time. For periodic services, it can also be expressed as the maximum number of messages that are allowed to be continuously received incorrectly or lost.
  • the message here may also be referred to as a user-plane message, and the user-plane message is hereinafter referred to as a message for short.
  • the message can also be called a data packet.
  • the service flow in the embodiment of the present application may be a QoS flow (Flow) established for a certain service.
  • Flow QoS flow
  • the business flow of the business will also correspond to a lifetime
  • the lifetime is the lifetime of the application corresponding to the business.
  • the high-reliability transmission mechanism of the user plane path refers to a mechanism that enables the message to be transmitted in the user plane path with high reliability.
  • the high-reliability transmission mechanism of the user plane path may be a dual-path redundant transmission mechanism.
  • Dual redundant transmission mechanisms include: a high-reliability transmission mechanism based on redundant sessions, a high-reliability transmission mechanism based on redundant service streams, and a high-reliability transmission mechanism based on redundant transmission layers.
  • the high-reliability transmission mechanism based on redundant sessions is specifically: the terminal uses dual connectivity (DC) technology to connect to two RAN nodes, and establish two different UPFs through different RAN nodes and different PSAs. PDU session. Based on these two PDU sessions, two independent redundant paths are provided for the terminal to transmit the same message.
  • DC dual connectivity
  • the high-reliability transmission mechanism based on redundant service flows is specifically: two independent N3 tunnels are established for a single PDU session.
  • redundant transmission is deployed between PSA UPF and RAN nodes or I-UPF and RAN nodes, or , Establish two independent N9 tunnels for a single PDU session.
  • redundant transmission is deployed between PSA UPF and I-UPF.
  • two independent redundant paths are provided for the terminal to transmit the same message.
  • the high-reliability transmission mechanism based on the redundant transmission layer is specifically: two independent transmission layer paths are established for a single N3 tunnel. At this time, the redundant transmission is deployed between the PSA UPF and the RAN node or the I-UPF and the RAN node. Or, two independent transmission layer paths are established for a single N9 tunnel. In this case, redundant transmission is deployed between PSA UPF and I-UPF. Based on different independent transmission layer paths, two independent redundant paths are provided for the terminal to transmit the same message.
  • the high-reliability transmission mechanism based on the redundant service flow and the high-reliability transmission mechanism based on the redundant transmission layer are used to ensure the high-reliability transmission of the message between the RAN node and the PSA UPF.
  • the data unit exchanged between the peer-to-peer protocol layers between different network nodes is the PDU.
  • the peer-to-peer protocol layer indirectly completes the exchange of PDUs through the lower protocol layer.
  • the data unit exchanged at the application (application, APP) layer between the DN and the terminal is an application packet
  • the peer-to-peer packet data convergence protocol between the terminal and the RAN node is the PDCP PDU.
  • the data unit exchanged at the packet data convergence protocol (PDCP) layer is the PDCP PDU.
  • the data unit exchanged at the general packet radio service tunneling protocol user plane (GTP-U) layer between the RAN node and the PSA UPF is the GTP-U PDU (abbreviated as N3 GTP) of the N3 interface. -U PDU).
  • GTP-U PDU general packet radio service tunneling protocol user plane
  • the data unit exchanged at the APP layer between the DN and the terminal is an application message
  • the data unit exchanged at the equivalent PDCP layer between the terminal and the RAN node is the PDCP PDU.
  • the data unit exchanged at the peer GTP-U layer between the RAN node and the I-UPF is N3 GTP-U PDU.
  • the data unit of the GTP-U layer exchange between I-UPF and PSA UPF is the GTP-U PDU of the N9 interface (referred to as N9 GTP-U PDU).
  • RLC refers to the radio link control (radio link control) layer
  • MAC refers to the medium access control (medium access control) layer
  • PHY refers to the physical layer.
  • Figures 4 and 5 only show part of the protocol layers related to this application in each network node. Each network node may also include other protocol layers. This application does not limit the specific protocol layers included.
  • the PDCP layer of the terminal may also include an SDAP layer.
  • each PDCP PDU carries a certain number during transmission, which can be called PDCP SN.
  • the numbers of N3 GTP-U PDU and N9 GTP-U PDU can be called N3GTP-U SN and N9 GTP-U SN, respectively.
  • Messages that are transmitted between different network nodes but encapsulate the same application message can be regarded as the same message, except that different message encapsulation methods are used when transmitting between different network nodes.
  • Carry SN of different protocol layers For example, in a single UPF scenario, the PDCP PDU and N3 GTP-U PDU that encapsulate the same application message can be considered as the same message.
  • the message can be identified by PDCP SN on the first link.
  • the second link can be identified by N3 GTP-U SN.
  • this application is used as an example to illustrate the method provided in the application.
  • the messages that are transmitted between different network nodes but encapsulate the same application message can also be considered as different messages, for example, the same application is encapsulated
  • the PDCP PDU and N3 GTP-U PDU of the message can be considered as different messages, but this does not affect the essence of this application, and only needs to be replaced and understood accordingly.
  • the RAN node After the RAN node receives the PDCP PDU and parses the information in the PDCP PDU, it re-encapsulates the N3 GTP-U PDU at the GTP-U layer and sends it out, the PDCP SN of the PDCP PDU and the N3 GTP of the N3 GTP-U PDU -U SN has a mapping relationship. Specifically, PDCP SN and N3 GTP-U SN are one-to-one mapping, and PDCP SN and N3 GTP-U SN having a mapping relationship correspond to the same message. Specifically, the following two mapping methods are possible.
  • the RAN node maps the PDCP SN of the correctly received PDCP PDU to the continuous N3 GTP-U SN. For example, if the terminal sends 4 PDCP PDUs to the RAN node, and the PDCP SNs of the 4 PDCP PDUs are PDCP 1, PDCP 2, PDCP 3, and PDCP 4, the RAN node correctly receives the PDCP SN as PDCP 1, PDCP 3 and PDCP If the PDCP PDU of 4, PDCP SN is the PDCP PDU of PDCP 2, the RAN node can map PDCP 1, PDCP 3, and PDCP 4 to N3 GTP-U 1, N3 GTP-U 2, and N3 GTP-U 3, respectively.
  • the range of the PDCP SN cycle and the range of the N3 GTP-U SN cycle may be different.
  • the range of the PDCP SN cycle may be 0-99, that is, every 100 PDCP SN They are all from 0 to 99
  • the range of the N3 GTP-U SN cycle may be 0-199, that is, every 200 N3 GTP-U SN is from 0 to 199.
  • the value of x is the same in a numbering cycle, and the value of x is in different numbering cycles Is different.
  • SN mapping method 1 is an existing mapping method
  • SN mapping method 2 is a new mapping method proposed in this application.
  • N3 GTP-U SN For the mapping between N3 GTP-U SN and N9 GTP-U SN, in a multi-UPF scenario, if the GTP-U SN is transparently transmitted between the RAN node and PSA UPF, that is, for uplink packets, I-UPF directly reuses N3 GTP-U SN is N9 GTP-U SN. For downlink messages, I-UPF directly reuses N9 GTP-U SN as N3 GTP-U SN, so N3 GTP-U SN and N9 GTP-U SN of the same message It is always the same.
  • the mapping of N3 GTP-U SN and N9 GTP-U SN and PDCP SN It is similar to the mapping of N3 GTP-U SN, and can be understood by referring to the mapping of PDCP SN and N3 GTP-U SN, and will not be repeated here.
  • mapping can also be described as “corresponding”.
  • N3 GTP-U SN mapped by a PDCP SN can also be described as “N3 GTP-U SN corresponding to a PDCP SN”.
  • the text takes "correspondence” as an example for description.
  • the receiver After the sender sends a message to the receiver and the receiver correctly receives the message, the receiver will send a feedback about the message to the sender. This feedback can be used by the sender to determine that the message was correctly received by the receiver , The feedback is the ACK in the embodiment of this application.
  • the identification bit in the GTP-U layer header can indicate the ACK information of the N3 GTP-U PDU, and the GTP-U can be used between the I-UPF and the PSA UPF.
  • the identification bit in the layer header indicates the ACK information of the N9 GTP-U PDU.
  • the status report sent by the receiving end between the RAN node and the terminal can carry the ACK information of the PDCP PDU.
  • the RAN node or PSA UPF cannot directly obtain the number of consecutive lost packets on the user plane path.
  • the terminal sends PDCP SN to the RAN node, they are PDCP 1, PDCP 2, PDCP 3 and PDCP 4 PDCP PDU, but PDCP SN is PDCP 2 PDCP PDU is lost during transmission, the RAN node will receive PDCP SN PDCP 1, PDCP 3 and PDCP 4 PDCP PDU, these 3 PDCP PDUs correspond to
  • the N3 GTP-USN of the three N3 GTP-U PDUs are N3 GTP-U1, N3 GTP-U2 and N3 GTP-U3 respectively, so for PSA UPF, PSA UPF receives
  • the embodiment of the present application provides a communication method, which can be applied to the foregoing single UPF scenario and multiple UPF scenario.
  • the access network device is referred to by the RAN node in the following
  • the intermediate user plane gateway is referred to by I-UPF
  • the anchor user plane gateway is referred to by PSA UPF
  • the session management network element is referred to by SMF.
  • Two application scenarios are described below.
  • the user plane path is the user plane path between the RAN node and PSA UPF
  • the user plane path is the user between the RAN node and the DN. Surface path.
  • the first application scenario the user plane path is the user plane path between the RAN node and the PSA UPF
  • the communication method provided by this application includes:
  • the first device obtains the packet loss condition of the service flow on the first link.
  • the first device may be a RAN node or PSA UPF in the user plane path.
  • the packet loss situation refers to the situation of lost packets, and the packet loss situation includes information such as whether packets are lost, which packets are lost (in the case of lost packets), and so on.
  • the delay required by the service to which the service flow belongs is less than or equal to a threshold
  • the threshold may be preset or predefined, or stipulated by agreement or pre-configured, which is not limited in this application.
  • the messages that are not correctly received by the receiving end are considered to be lost messages.
  • the messages that are not correctly received include: messages not received and/or messages received but not correct decoding.
  • some contexts will use the description of "incorrectly received messages”, and some contexts will use the description of "missing messages”, but it is understandable that the meaning of these two descriptions is identical.
  • the first device obtains the packet loss condition of the service flow on the second link.
  • step 701 and step 702 are in no particular order, and is specifically related to application scenarios.
  • step 701 may be performed first and then step 702, and for downlink packets, step 702 may be performed first, and then step 701 may be performed.
  • the first device determines the number of consecutive packet loss of the service flow on the user plane path according to the packet loss conditions of the service flow on the first link and the second link.
  • the first device when the first device is a RAN node, the first device can be based on the PDCP SN of the packets lost on the first link by the service flow and the packets lost on the second link by the service flow.
  • N3 GTP-U SN, and the mapping relationship between PDCP SN and N3 GTP-U SN of the packets in the service flow determine the number of consecutive packet loss on the user plane path of the service flow.
  • the first device can determine the continuous packet loss of the service flow on the user plane path according to the N9 GTP-U SN corresponding to the packets lost on the first link and the second link of the service flow Number.
  • the first device triggers to start a high-reliability transmission mechanism for the user plane path.
  • the first threshold is determined according to the survival time corresponding to the service flow.
  • the survival time is a duration (denoted as T1)
  • the first threshold can be less than or equal to The symbol for rounding down.
  • the survival time is the number of consecutive lost packets (denoted as S)
  • the first threshold may be less than or equal to S.
  • the first device may start the high-reliability transmission mechanism for the entire user plane path, or may start the high-reliability transmission mechanism for some links in the user plane path, which is not limited in this application.
  • the first device obtains the packet loss on the first link and the second link to determine the number of consecutive packet losses on the user plane path. If the number of consecutive packet losses reaches The first threshold starts the high-reliability transmission mechanism for the user plane path, thereby improving the reliability of data transmission, avoiding application shutdown, and improving user experience.
  • the high-reliability transmission mechanism for the user plane path may not be activated initially.
  • the user-specific transmission mechanism is activated.
  • the high-reliability transmission mechanism of the surface path improves the reliability of data transmission.
  • the high-reliability transmission mechanism for the user plane path can be turned off, thereby saving transmission resources.
  • the second threshold may be preset or predefined, or stipulated by agreement or pre-configured, which is not limited in this application.
  • scenario 1 single UPF scenario
  • scenario 2 multiple UPF scenario
  • step 704 In the single UPF scenario, the specific implementation of step 704 is described separately through the following first, second, and third cases.
  • the first situation the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link in the user plane path reaches the first threshold.
  • step 704 may specifically include: the first device triggers the activation of the high-reliability transmission mechanism for the first link in the user plane path, Specifically, it can be implemented in the following way (1) or way (2).
  • the first device is a RAN node
  • step 704 specifically includes:
  • the first device sends first startup information to the terminal, where the first startup information indicates that a high-reliability transmission mechanism for the first link needs to be started.
  • the first device triggers itself to start the high-reliability transmission mechanism of the first link.
  • the first startup information may be carried in a radio resource control (radio resource control, RRC) message.
  • the first start information may be indicated by one or more bits in the RRC message, for example, by a bit. When the bit is set to 1, the bit instructs the terminal to start the high-reliability transmission mechanism of the first link.
  • RRC radio resource control
  • RAN nodes and terminals can adjust the transmission parameters, for example, reduce the value of the modulation and coding scheme (modulation and coding scheme, MCS) to activate the high reliability of the first link.
  • MCS modulation and coding scheme
  • the flexible transmission mechanism improves the reliability of data packet transmission and avoids packet loss on the air interface.
  • the first device and the terminal may also use other methods to activate the high-reliability transmission mechanism of the first link, which is not limited in this application.
  • step 704 specifically includes:
  • the first device sends second activation information to the SMF, where the second activation information indicates that the high-reliability transmission mechanism for the first link needs to be activated.
  • the SMF receives the second activation information from the first device.
  • the SMF controls the startup of the high-reliability transmission mechanism of the first link according to the second startup information.
  • the second startup information can be transferred to the SMF through a message in the PDU session modification process.
  • the second initiation information may be carried in the PDU session modification request message sent by the RAN node to the SMF.
  • the second startup information includes instruction information for instructing to start the user-plane high-reliability transmission mechanism.
  • it also includes a reason value for starting the user-plane high-reliability transmission mechanism. The reason value is used to indicate that it is necessary to ensure the lifetime of the application. Start the user-plane high-reliability transmission mechanism of the first link.
  • the process for the RAN node to send other startup information (for example, the sixth startup information below) to the SMF is similar, and will not be described in detail below.
  • the second startup information can be delivered to the SMF through a message in the N4 session modification process.
  • the second initiation information may be carried in the N4 session modification request message sent by the PSA UPF to the SMF.
  • the second startup information includes the QoS Flow identifier, the instruction information for instructing to start the user-plane high-reliability transmission mechanism, and optionally, it also includes the reason value for starting the user-plane high-reliability transmission mechanism. The reason value is used to indicate that it is to ensure the application. The survival time thus needs to activate the user-plane high-reliability transmission mechanism of the first link.
  • the process of PSA UPF sending other startup information (for example, the sixth startup information below) to the SMF is similar, and will not be described in detail below.
  • step 704-2b includes:
  • the SMF sends startup information to the RAN node and the terminal respectively according to the second startup information, and the startup information indicates that the high-reliability transmission mechanism for the first link needs to be started.
  • the RAN node and the terminal respectively receive the startup information.
  • the RAN node and the terminal start the high-reliability transmission mechanism of the first link according to the startup information received by themselves.
  • the SMF only sends startup information to the terminal to enable the terminal to start the high-reliability transmission mechanism of the first link.
  • the RAN node is determining the first link of the service flow in the user plane path. When the number of consecutive packet loss on the road reaches the first threshold, it triggers itself to start the high-reliability transmission mechanism of the first link.
  • the SMF can send start-up information to the RAN node through the AMF.
  • the startup information can be delivered to the terminal through a message in the PDU session modification process.
  • the startup information may be carried in the N2 session message sent by the SMF to the RAN node through the AMF.
  • the start information includes the PDU session identifier, the QoS Flow identifier, and the indication information for starting the user-plane high-reliability transmission mechanism.
  • it also includes the reason value for starting the user-plane high-reliability transmission mechanism. The reason value is used to indicate To ensure the survival time of the application, it is necessary to start the user-plane high-reliability transmission mechanism of the first link.
  • the SMF can send startup information to the terminal through AMF and RAN nodes.
  • the startup information can be delivered to the terminal through a message in the PDU session modification process.
  • the startup information may be carried in the NAS message sent by the SMF to the terminal through the AMF and RAN nodes.
  • the start information includes the PDU session identifier, the QoS Flow identifier, and the indication information for starting the user-plane high-reliability transmission mechanism.
  • it also includes the reason value for starting the user-plane high-reliability transmission mechanism. The reason value is used to indicate To ensure the survival time of the application, it is necessary to start the user-plane high-reliability transmission mechanism of the first link.
  • the above-mentioned method (1) can start the high-reliability transmission mechanism of the first link faster.
  • step 704 may specifically include: the first device triggers the activation of the first link and the second link in the user plane path.
  • the high-reliability transmission mechanism can be implemented in the following way (3).
  • step 704 specifically includes:
  • the first device sends sixth activation information to the SMF, where the sixth activation information indicates that the high-reliability transmission mechanism for the first link and the second link needs to be activated.
  • the SMF receives the sixth startup information from the first device.
  • the SMF controls the startup of the high-reliability transmission mechanism of the first link and the second link according to the sixth startup information.
  • step 704-3b includes:
  • the SMF sends startup information to the terminal and the AF respectively according to the sixth startup information, and the startup information indicates that a high-reliability transmission mechanism for the user plane path needs to be started.
  • the terminal and the AF respectively receive start information from the SMF.
  • the SMF can send the startup information to the AF through the PCF or NEF, and correspondingly, the AF receives the startup information from the SMF through the PCF or NEF.
  • the terminal initiates the high-reliability transmission mechanism of the user plane path to communicate with the AS according to the received startup information.
  • the AF sends start-up information to the AS, which indicates that the high-reliability transmission mechanism for the user plane path needs to be started.
  • the AS receives the startup information from the AF.
  • the AS initiates the user-plane high-reliability transmission mechanism to communicate with the terminal according to the received startup information.
  • the high-reliability transmission mechanism of the user plane path initiated between the terminal and the AS may be a high-reliability transmission mechanism based on redundant sessions.
  • step 704-3b includes:
  • SMF sends startup information to the terminal, RAN node, and PSA UPF according to the sixth startup information, and the startup information indicates that a high-reliability transmission mechanism for the user plane path needs to be activated.
  • the terminal, the RAN node, and the PSA UPF respectively receive the startup information.
  • the terminal, the RAN node, and the PSA UPF respectively start the high-reliability transmission mechanism on the entire user plane path according to the received start information.
  • the terminal can start the high-reliability transmission mechanism of the first link
  • the RAN node can start the high-reliability transmission mechanism of the first link and the second link
  • the PSA UPF can start the high-reliability transmission of the second link. mechanism.
  • the startup information sent by the SMF to the PSA UPF can be transmitted through the message in the N4 session modification process.
  • the startup information may be carried in the N4 session modification request message sent by the SMF to the PSA UPF.
  • the startup information includes the QoS Flow identifier, the indication information for instructing to start the user-plane high-reliability transmission mechanism, and optionally, it also includes the reason value for starting the user-plane high-reliability transmission mechanism.
  • the reason value is used to indicate that it is to ensure the survival of the application. Therefore, time needs to start the high-reliability transmission mechanism of the second link (or the entire user plane path).
  • the RAN node and the terminal can start the high-reliability transmission mechanism of the first link by adjusting the transmission parameters.
  • the user plane high-reliability transmission mechanism between the RAN node and the PSA UPF may be a high-reliability transmission mechanism based on the redundant service flow for the N3 interface or a high-reliability transmission mechanism based on the redundant transmission layer for the N3 interface.
  • the second case the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the second link in the user plane path reaches the first threshold.
  • step 704 may specifically include: the first device triggers the activation of the high-reliability transmission mechanism for the second link in the user plane path. , Specifically can be achieved by the following way (4) or way (5) or way (6).
  • the first device is a RAN node, and step 704 specifically includes:
  • the first device sends third activation information to the PSA UPF, where the third activation information indicates that the high-reliability transmission mechanism for the second link needs to be activated.
  • the first device triggers itself to start the high-reliability transmission mechanism of the second link.
  • the first device is PSA UPF
  • step 704 specifically includes:
  • the first device sends fourth start information to the RAN node, where the fourth start information indicates that the high-reliability transmission mechanism for the second link needs to be started.
  • the first device triggers itself to start the high-reliability transmission mechanism of the second link.
  • the third start information can be carried in the protocol layer header of the N3 GTP-U PDU.
  • the third startup information includes the QoS Flow identifier, indicating information to start the user-plane high-reliability transmission mechanism.
  • it also includes the reason value for starting the user-plane high-reliability transmission mechanism. The reason value is used to indicate that the application is to survive. Therefore, time needs to activate the high-reliability transmission mechanism of the second link.
  • the user-plane high-reliability transmission mechanism between the RAN node and the PSA UPF can be a high-reliability transmission mechanism based on redundant service flows for the N3 interface or a redundant service flow based on the N3 interface.
  • the high reliability transmission mechanism of the remaining transport layer can be a high-reliability transmission mechanism based on redundant service flows for the N3 interface or a redundant service flow based on the N3 interface.
  • step 704 specifically includes:
  • the first device sends fifth activation information to the SMF, where the fifth activation information indicates that the high-reliability transmission mechanism for the second link needs to be activated.
  • the SMF receives the fifth activation information from the first device.
  • the SMF controls the startup of the high-reliability transmission mechanism of the second link according to the fifth startup information.
  • step 704-6b includes:
  • the SMF sends startup information to the RAN node and the PSA UPF respectively according to the fifth startup information, and the startup information indicates that the high-reliability transmission mechanism for the second link needs to be started.
  • the RAN node and the PSA UPF respectively receive the startup information.
  • the RAN node and the PSA UPF start the high-reliability transmission mechanism of the second link according to the startup information received by itself.
  • step 704-6b when the first device is a RAN node, the SMF only sends the activation information to the PSA UPF so that the PSA UPF activates the high-reliability transmission mechanism of the second link, and the RAN node is determining When the number of continuous packet loss on the second link in the user plane path of the service flow reaches the first threshold, it triggers itself to start the high-reliability transmission mechanism of the second link.
  • the SMF When the first device is a PSA UPF, the SMF only sends start information to the RAN node to enable the RAN node to start the high-reliability transmission mechanism of the second link, and the PSA UPF determines that the service flow is continuous on the second link in the user plane path When the number of lost packets reaches the first threshold, it triggers itself to start the high-reliability transmission mechanism of the second link.
  • the above method (4) and the method (5) can start the high-reliability transmission mechanism of the second link faster.
  • the high-reliability transmission mechanism on the entire user plane path can also be activated, and the specific implementation can be referred to the above, and will not be repeated.
  • the third case the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link in the user plane path is less than the first threshold, The number of consecutive lost packets on the second link is less than the first threshold and the overall number of consecutive lost packets on the first link and the second link reaches the first threshold.
  • the high-reliability transmission mechanism on the entire user plane path is activated.
  • the specific implementation can be referred to the above, and will not be repeated.
  • scenario 1 the first device is a RAN node
  • scenario 2 the first device is a PSA UPF
  • Case 1 The first device is a RAN node.
  • the following is an example to illustrate the determination of the packet loss situation of uplink packets in each link in case 1 through case 1.1, and an example of the determination of the packet loss situation of downlink packets in each link in case 1 through case 1.2 sexual description.
  • Case 1.1.1 can be realized by way 1 or way 2 below.
  • Method 1 includes the following steps 1.1.1-11) and steps 1.1.1-12).
  • the terminal sends the packets in the service flow (ie, PDCP PDU) to the RAN node.
  • the RAN node receives the message in the service flow from the terminal.
  • the RAN node determines the packet loss of the service flow on the first link according to the continuity of the PDCP SN of the correctly received message.
  • the PDCP SN of the PDCP PDU sent by the terminal is continuous, if the PDCP SN of the PDCP PDU correctly received by the RAN node is not continuous, the PDCP SN corresponding to the PDCP SN with discontinuous PDCP SN will be lost.
  • PDCP PDU For example, if the terminal sends 8 PDCP PDUs, the PDCP SNs of the 8 PDCP PDUs are PDCP 0, PDCP 1, PDCP 2,..., PDCP 7.
  • the PDCP SN of the PDU are PDCP 0, PDCP 1, PDCP 2, PDCP 3, PDCP 5, PDCP 7, and the RAN node can determine that the PDCP PDUs corresponding to PDCP 4 and PDCP 6 are missing.
  • Method 2 includes the following steps 1.1.1-21) to 1.1.1-24).
  • the terminal sends packets in the service flow (ie, PDCP PDU) to the RAN node.
  • the RAN node receives the message in the service flow from the terminal.
  • the RAN node sends an ACK to the terminal for each correctly received message.
  • the terminal receives from the RAN node the ACK sent by the RAN node to the terminal for each correctly received message.
  • Steps 1.1.1 to 22) for a message, if the RAN node correctly receives the message, the RAN node will feed back an ACK for the message to the terminal.
  • the methods for other receivers to feed back ACKs for packets involved in other methods below are similar to those of the RAN node, and will not be described in detail below.
  • the terminal sends the first message loss information to the RAN node according to whether the ACK information of each sent message is received, and the first message loss information is used to indicate the message that the RAN node has not received correctly PDCP SN.
  • the RAN node receives the first packet loss information from the terminal.
  • the terminal can set a timer for each message sent. For a message, the terminal starts the timer after sending the message. If the terminal is at the timing corresponding to the message If the ACK for the message is received before the device expires, the terminal can determine that the RAN node has correctly received the message; otherwise, the terminal can determine that the RAN node has not correctly received the message.
  • the method for other senders to determine whether the receiver receives the message according to whether the ACK information of each sent message is received is similar to that of the terminal, and will not be described in detail below.
  • the RAN node determines the packet loss condition of the service flow on the first link according to the first packet loss information.
  • the PDCP SNs of the 8 PDCP PDUs are PDCP 0, PDCP 1, PDCP 2,..., PDCP 7, and the RAN node receives a PDCP correctly every time PDU, the ACK for the PDCP PDU is fed back to the terminal.
  • the terminal can determine that the RAN node has not received the ACK correctly.
  • the PDCP PDU corresponding to PDCP 4 if the terminal does not receive an ACK for the PDCP PDU when the timer corresponding to the PDCP PDU corresponding to PDCP 6 expires, the terminal can determine that the RAN node has not received the PDCP PDU corresponding to PDCP 6 correctly.
  • the first packet loss information may indicate the PDCP SN of one or more packets that the RAN node did not correctly receive.
  • the PDCP and SN information of these multiple packets can be sent to the RAN node at one time or sent to the RAN node multiple times. For example, every time the terminal determines that a packet is lost, it will be sent in time. Report the PDCP SN information of the missing message to the RAN node.
  • the other message loss information mentioned below is similar, and will not be repeated in the following.
  • the terminal When the terminal determines that a packet is lost, it promptly reports the PDCP SN information of the lost packet to the RAN node. Compared with the method 1, the method 2 can make the RAN node obtain the information of the lost packet more quickly. information. For example, if the terminal sends 5 PDCP PDUs, if all 3 PDCP PDUs in the middle are lost, then according to Method 1, only when the RAN node receives the 5th PDCP PDU, can the RAN node know that the middle 3 PDCP PDUs are lost. It may affect the subsequent PDCP PDU retransmission. If the terminal reports the PDCP SN information of the lost packet to the RAN node every time it determines that a packet is lost, this problem can be avoided.
  • Case 1.1.2 can be realized by way 1 or way 2 below.
  • Method 1 includes the following steps 1.1.2-11) and steps 1.1.2-12).
  • the PSA UPF sends the second message loss information to the RAN node, and the second message loss information is used to indicate the N3 GTP-U of the message (ie N3 GTP-U PDU) that the PSA UPF did not correctly receive SN.
  • the RAN node Before step 1.1.2-11), the RAN node can send the N3 GTP-U PDU in the service flow to the PSA UPF, and the N3 GTP-U SN of the N3 GTP-U PDU sent by the RAN node is continuous. Therefore, the PSA UPF Determine the incorrectly received N3 GTP-U PDU according to the continuity of the N3 GTP-U SN of the correctly received N3 GTP-U PDU. Specifically, if the N3 GTP-U SN of the N3 GTP-U PDU correctly received by the PSA UPF is not continuous, the N3 GTP-U SN corresponding to the N3 GTP-U SN that is not continuous will be incorrect. N3 GTP-U PDU received.
  • the RAN node receives the second packet loss information from the PSA UPF, and determines the packet loss condition of the service flow on the second link according to the second packet loss information.
  • the RAN node can directly determine the missing N3 GTP-U PDU according to the N3 GTP-U SN indicated by the second message loss information.
  • the N3 GTP-U SNs of the 6 N3 GTP-U PDUs are respectively N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2, ..., N3 GTP-U 5, if the PSA UPF correctly receives 4 N3 GTP-U PDUs, the N3 GTP-U SNs of these 4 N3 GTP-U PDUs are N3 GTP-U 0, N3 GTP-U 1 , N3 GTP-U 2, N3 GTP-U 5, PSA UPF can determine that N3 GTP-U PDU corresponding to N3 GTP-U 3 and N3 GTP-U 4 is lost, and the second message loss information can include N3 GTP- U 3 and N3 GTP-U 4, the RAN node can determine that the N3 GTP-U PDU corresponding to N3 GTP-U 3 and N3 GTP-U 4 is lost according to the second message loss information
  • Method 2 includes the following steps 1.1.2-21) to 1.1.2-23).
  • the RAN node sends the packets in the service flow (ie, N3 GTP-U PDU) to the PSA UPF.
  • the PSA UPF receives the packets in the service flow from the RAN node.
  • PSA UPF sends an ACK to the RAN node for each correctly received message.
  • the RAN node receives from the PSA UPF the ACK sent by the PSA UPF for each correctly received message.
  • the RAN node determines the packet loss of the service flow on the second link according to the information about whether it receives the ACK of each message sent.
  • the N3 GTP-U SNs of the 6 N3 GTP-U PDUs are N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2,..., N3 GTP-U 5, PSA UPF every time a N3 GTP-U PDU is correctly received, it will feed back an ACK for the N3 GTP-U PDU to the RAN node, then if the RAN node is in N3 GTP-U If the timer corresponding to the N3 GTP-U PDU corresponding to U 3 does not receive an ACK for the N3 GTP-U PDU when the timer expires, the RAN node can determine that the PSA UPF has not correctly received the N3 GTP-U 3 corresponding to the N3 GTP-U.
  • the RAN node can determine that the PSA UPF is not correctly received N3 GTP-U 4 corresponding to N3 GTP-U PDU.
  • Case 1.2.1 can be achieved by way 1 or way 2 below.
  • Method 1 includes the following steps 1.2.1-11) and steps 1.2.1-12).
  • the terminal sends the third message loss information to the RAN node, and the third message loss information is used to indicate the PDCP SN of the message (ie, PDCP PDU) that the terminal has not received correctly.
  • the RAN node receives the third packet loss information from the terminal.
  • the RAN node can send the PDCP PDU in the service flow to the terminal.
  • the PDCP SN of the PDCP PDU sent by the RAN node is continuous. Therefore, the terminal is based on the PDCP SN of the PDCP PDU received correctly. Continuity determines the PDCP PDU that was not received correctly. Specifically, if the PDCP SN of the PDCP PDU correctly received by the terminal is not continuous, the PDCP PDU corresponding to the PDCP SN that causes the PDCP SN to be discontinuous is the PDCP PDU that is not received correctly.
  • the RAN node determines the packet loss condition of the service flow on the first link according to the third packet loss information.
  • the RAN node can directly determine the lost PDCP PDU according to the PDCP SN indicated by the third packet loss information.
  • the PDCP SNs of the 6 PDCP PDUs are PDCP 0, PDCP 1, PDCP 2,..., PDCP 5. If the terminal correctly receives 4 PDCP PDUs, these 4 The PDCP SN of each PDCP PDU are PDCP 0, PDCP 1, PDCP 2, and PDCP 5. The terminal can determine that the PDCP PDU corresponding to PDCP 3 and PDCP 4 is lost, and the third packet loss information can include PDCP 3 and PDCP 4. The RAN node can determine that the PDCP PDU corresponding to PDCP 3 and PDCP 4 is lost according to the third message loss information.
  • Method 2 includes the following steps 1.2.1-21) to steps 1.2.1-23).
  • the RAN node sends the packets in the service flow (ie, PDCP PDU) to the terminal.
  • the terminal receives the message in the service flow from the RAN node.
  • the terminal sends an ACK to the RAN node for each correctly received message.
  • the RAN node receives from the terminal the ACK sent by the terminal for each correctly received message.
  • the RAN node determines the packet loss of the service flow on the first link according to the information about whether it receives the ACK of each message sent.
  • the PDCP SNs of the 6 PDCP PDUs are PDCP 0, PDCP 1, PDCP 2, ..., PDCP 5, and the terminal receives one PDCP correctly every time PDU, the ACK for the PDCP PDU is fed back to the RAN node.
  • the RAN node can determine that the terminal is incorrect When the PDCP PDU corresponding to PDCP 3 is received, if the RAN node does not receive the ACK for the PDCP PDU when the timer corresponding to the PDCP PDU corresponding to PDCP 4 expires, the RAN node can determine that the terminal has not correctly received the PDCP 4 corresponding PDCP PDU.
  • Case 1.2.2 can be realized by way 1 or way 2 below.
  • Method 1 includes the following steps 1.2.2-11) to steps 1.2.2-12).
  • PSA UPF sends packets in the service flow (ie N3 GTP-U PDU) to the RAN node.
  • the RAN node receives the packets in the service flow from the PSA UPF.
  • the RAN node determines the packet loss of the service flow on the second link according to the continuity of the N3 GTP-U SN of the correctly received message.
  • N3 GTP-U SN of the N3 GTP-U PDU sent by the PSA UPF is continuous, therefore, if the N3 GTP-U SN of the N3 GTP-U PDU received correctly by the RAN node is not continuous, it will lead to The N3 GTP-U PDU corresponding to the N3 GTP-U SN where the N3 GTP-U SN is not continuous is the missing N3 GTP-U PDU.
  • the PSA UPF sends 8 N3 GTP-U PDUs
  • the N3 GTP-U SNs of the 8 N3 GTP-U PDUs are N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2,...
  • N3 GTP-U 7 If the RAN node correctly receives 6 N3 GTP-U PDUs, the N3 GTP-U SN of these 6 N3 GTP-U PDUs are N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2, N3 GTP-U 3, N3 GTP-U 5, N3 GTP-U7, then the RAN node can determine that N3 GTP-U PDUs corresponding to N3 GTP-U 4 and N3 GTP-U 6 are missing.
  • Method 2 includes the following steps 1.2.2-21) to 1.2.2-24).
  • PSA UPF sends packets in the service flow (ie N3 GTP-U PDU) to the RAN node.
  • the RAN node receives the packets in the service flow from the PSA UPF.
  • the RAN node sends an ACK to the PSA UPF for each correctly received message.
  • the PSA UPF receives from the RAN node the ACK sent by the RAN node to the PSA UPF for each correctly received message.
  • PSA UPF sends the fourth message loss information to the RAN node according to whether the ACK information of each sent message is received, and the fourth message loss information is used to indicate that the RAN node has not received the message correctly.
  • N3 GTP-U SN of the text corresponds to the RAN node.
  • the RAN node receives the fourth packet loss information from the PSA UPF.
  • the RAN node determines the packet loss condition of the service flow on the second link according to the fourth packet loss information.
  • the N3 GTP-U SNs of the 8 N3 GTP-U PDUs are respectively N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2,..., N3 GTP-U 7. Every time a RAN node correctly receives an N3 GTP-U PDU, it will feed back an ACK for the N3 GTP-U PDU to the PSA UPF.
  • the PSA UPF can determine that the RAN node has not correctly received the N3 GTP-U 4 corresponding to N3 GTP-U.
  • U PDU if the PSA UPF does not receive an ACK for the N3 GTP-U PDU when the timer corresponding to the N3 GTP-U PDU corresponding to N3 GTP-U 6 expires, the PSA UPF can determine that the RAN node has not received it correctly N3 GTP-U 6 corresponds to N3 GTP-U PDU.
  • PSA UPF determines that a message is lost, it will promptly report the N3 GTP-U SN information of the lost message to the RAN node.
  • the method 2 can make the RAN node obtain the loss more quickly.
  • the information of the message For example, PSA UPF sends 5 N3 GTP-U PDUs. If all three N3 GTP-U PDUs in the middle are lost, then according to Method 1, the RAN node can only know the middle when it receives the fifth N3 GTP-U PDU. Three N3 GTP-U PDUs are lost, so the delay is longer, which may affect the retransmission of subsequent N3 GTP-U PDUs. If PSA UPF determines that a packet is lost, it will promptly report the missing report to the RAN node. The N3 GTP-U SN information in the text can avoid this problem.
  • the RAN node can combine the PDCP SN of the PDCP PDU lost on the first link and the PDCP SN corresponding to the N3 GTP-U PDU lost on the second link to determine and determine The number of consecutive lost packets on the user plane path.
  • the RAN node may combine the N3 GTP-U SN corresponding to the PDCP SN of the PDCP PDU lost on the first link and the N3 GTP-U SN of the N3 GTP-U PDU lost on the second link to make a judgment. The number of consecutive lost packets on the user plane path.
  • the PDCP SNs of the 8 PDCP PDUs are PDCP 0, PDCP 1, PDCP 2,..., PDCP 7, and if the RAN node correctly receives 6 PDCP PDUs, these 6
  • the PDCP SNs of each PDCP PDU are PDCP 0, PDCP 1, PDCP 2, PDCP 3, PDCP 5, PDCP7
  • the 6 N3 GTP-U PDUs corresponding to the 6 PDCP PDUs are N3 GTP-U SN are N3 GTP- U 0, N3 GTP-U 1, N3 GTP-U 2,..., N3 GTP-U 5.
  • the RAN node can determine that the PDCP PDUs corresponding to PDCP 4 and PDCP 6 are missing. If the RAN node also determines that the N3 GTP-U PDUs corresponding to N3 GTP-U 3 and N3 GTP-U 4 on the N3 link are missing, the result is that the N3 GTP-U PDU is missing.
  • the PDCP SN corresponding to U 3 is PDCP 3
  • the PDCP SN corresponding to N3 GTP-U 4 is PDCP 5. That is to say, PDCP 3, PDCP 4, PDCP 5, PDCP 6 and PDCP PDUs are all lost, and the RAN node can determine The number of consecutive lost packets is 4.
  • the N3 GTP-U SN of the 8 N3 GTP-U PDUs are respectively N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2, ..., N3 GTP-U 7, if the RAN node correctly receives 6 N3 GTP-U PDUs, the N3 GTP-U SN of these 6 N3 GTP-U PDUs are N3 GTP-U 0, N3 GTP-U 1 , N3 GTP-U 2, N3 GTP-U 3, N3 GTP-U 5, N3 GTP-U7, the 6 PDCPs corresponding to the 6 N3 GTP-U PDUs PDCP SNs are PDCP 0, PDCP 1, PDCP 2. «, PDCP 5.
  • the RAN node can determine that the N3 GTP-U PDU corresponding to N3 GTP-U 4 and N3 GTP-U 6 is missing. If the RAN node also determines that the PDCP PDU corresponding to PDCP 3 and PDCP 4 on the air interface is missing, it is due to the GTP corresponding to PDCP 3 -U SN is N3 GTP-U 3, PDCP 4 corresponds to GTP-U SN is N3 GTP-U 45, that is, N3 GTP-U 3, N3 GTP-U 4, N3 GTP-U 5, N3 GTP- The N3 GTP-U PDUs corresponding to U 6 are all lost, and the RAN node can determine that the number of consecutive lost packets is 4.
  • the above method further includes: the SMF sends indication information to the terminal and the PSA UPF, and the indication information is used to instruct the corresponding network node to feedback the message loss information.
  • the terminal can feed back the message loss information on the first link to the RAN node according to the indication information.
  • the PSA UPF feeds back the message loss information on the second link to the RAN node according to the indication information.
  • the indication information can be explicitly indicated, for example, the value of one or more bits is used to indicate whether to perform message loss information feedback.
  • the indication information can also be implicitly indicated, for example, through the life time indication corresponding to the service. In this case, when the QoS parameters corresponding to the Qos Flow received by the terminal (or PSA UPF) include the life time corresponding to the service, the terminal ( Or PSA UPF) to determine the feedback of message loss information.
  • Case 2 The first device is PSA UPF.
  • case 2.1 is used to illustrate the determination of the packet loss situation of uplink packets in each link in case 2
  • case 2.2 is used as an example to determine the packet loss situation of downlink packets in each link in case 2.
  • Case 2.1.1 can include the following steps 2.1.1-11) and steps 2.1.1-12).
  • the RAN node sends the fifth packet loss information to the PSA UPF, and the fifth packet loss information is used to indicate the packet that the service flow is lost on the first link (ie, PDCP PDU).
  • the PSA UPF receives the fifth packet loss information from the RAN node.
  • the method for the RAN node to acquire the lost packet of the first link can be referred to the above, which will not be repeated here.
  • PSA UPF determines the packet loss of the service flow on the first link according to the fifth packet loss information.
  • the information indicated by the fifth packet loss information is different, which will be described separately below.
  • the PDCP SN of each message correctly received by the RAN node corresponds to the N3 GTP-U SN of the message sent by the RAN node, and the N3 GTP-U of the continuous message sent by the RAN node SN is continuous.
  • the fifth packet loss information can be used to indicate that the RAN node correctly received the previous packet that was incorrectly received on the first link.
  • the N3 GTP-U SN of the message, and the fifth message loss information is also used to indicate the loss of the next message or the loss of the last multiple consecutive messages of the message indicated by the fifth message loss information.
  • the PSA UPF can determine that the last one or more consecutive packets of the packet indicated by the fifth packet loss information are lost.
  • the RAN node can report the N3 GTP-U SN of the last correctly received message to the PSA UPF every time a message is lost.
  • a N3 GTP-U SN is reported m (m is an integer greater than 0) times, then the PSA UPF can determine that m consecutive messages after the message are lost.
  • the PDCP SNs of the 8 PDCP PDUs are PDCP 0, PDCP 1, PDCP 2,..., PDCP 7, and if the RAN node correctly receives 6 PDCP PDUs, these 6
  • the PDCP SNs of each PDCP PDU are PDCP 0, PDCP 1, PDCP 2, PDCP 3, PDCP 5, PDCP7
  • the 6 N3 GTP-U PDUs corresponding to the 6 PDCP PDUs are N3 GTP-U SN are N3 GTP- U 0, N3 GTP-U 1, N3 GTP-U 2,..., N3 GTP-U 5.
  • the correspondence between the PDCP SN of the 6 PDCP PDUs and the N3 GTP-U SN of the 6 N3 GTP-U PDUs is shown in Table 2.
  • the PDCP PDU corresponding to PDCP 4 and PDCP 6 is missing, for the PDCP PDU corresponding to PDCP 4, the PDCP SN of the PDCP PDU received correctly on the RAN node is PDCP 3, and PDCP 3 corresponds to N3 GTP-U 3.
  • the PDCP PDU corresponding to PDCP 6 the PDCP SN of a correctly received PDCP PDU on the RAN node is PDCP 5, and PDCP 5 corresponds to N3 GTP-U 4.
  • the RAN node detects that the PDCP PDU corresponding to PDCP 4 is missing, Send N3 GTP-U 3 corresponding to PDCP 3 to PSA UPF, and PSA UPF determines N3 GTP-U 3 corresponding to N3 GTP-U 3 according to N3 GTP-U 3 and one N3 GTP-U PDU is missing; the RAN node detects that the N3 GTP-U PDU is missing.
  • the N3 GTP-U 4 corresponding to PDCP 5 is sent to the PSA UPF, and the PSA UPF determines the N3 GTP-U 4 corresponding to the N3 GTP-U 4 after the N3 GTP-U PDU to the PSA UPF.
  • U PDU is lost.
  • the difference between the PDCP SN of each message correctly received by the RAN node and the N3 GTP-U SN of the message sent by the RAN node is the same (for the same One numbering cycle).
  • the fifth message loss information is the N3 GTP-U SN of the message that the RAN node did not correctly receive on the first link.
  • the PSA UPF can determine the packet loss of the service flow on the first link according to the continuity of the N3 GTP-U SN of the received message.
  • the PDCP SNs of the 8 PDCP PDUs are PDCP 0, PDCP 1, PDCP 2,..., PDCP 7, and the 8 PDCP PDUs correspond to N3 GTP-U PDU N3 See Table 3 for GTP-U SN. If the RAN node correctly receives 6 PDCP PDUs, the PDCP SNs of these 6 PDCP PDUs are PDCP 0, PDCP 1, PDCP 2, PDCP 3, PDCP 5, and PDCP 7.
  • the 6 PDCP PDUs correspond to 6 N3 GTP-
  • the N3 GTP-U SN of the U PDU are N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2, N3 GTP-U 3, N3 GTP-U 5, N3 GTP-U 7.
  • the fifth message loss information can include N3 GTP-U4 and N3 GTP-U 6
  • PSA UPF can determine N3 GTP-U PDU loss corresponding to N3 GTP-U4 and N3 GTP-U 6 based on the fifth message loss information The corresponding N3 GTP-U PDU is lost.
  • Case 2.1.2 can be achieved by way 1 or way 2 below.
  • Method 1 includes the following steps 2.1.2-11) and 2.1.2-12).
  • Step 2.1.2-11 The RAN node sends the packets in the service flow (ie, N3 GTP-U PDU) to the PSA UPF.
  • the PSA UPF receives the packets in the service flow from the RAN node.
  • Step 2.1.2-12 The PSA UPF determines the packet loss of the service flow on the second link according to the continuity of the N3 GTP-U SN of the correctly received message.
  • N3 GTP-U SN of the N3 GTP-U PDU sent by the RAN node is continuous, therefore, if the N3 GTP-U SN of the N3 GTP-U PDU correctly received by the PSA UPF is not continuous, the result is
  • the N3 GTP-U PDU corresponding to the N3 GTP-U SN where the N3 GTP-U SN is not continuous is the missing N3 GTP-U PDU. For example, if the RAN node sends 8 N3 GTP-U PDUs, the N3 GTP-U SN of the 8 N3 GTP-U PDUs are N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2,...
  • N3 GTP-U 7 if the PSA UPF correctly receives 6 N3 GTP-U PDUs, the N3 GTP-U SN of these 6 N3 GTP-U PDUs are N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2, N3 GTP-U 3, N3 GTP-U 5, N3 GTP-U 7, PSA UPF can determine that N3 GTP-U PDUs corresponding to N3 GTP-U 4 and N3 GTP-U 6 are missing.
  • Method 2 includes the following steps 2.1.2-21) and 2.1.2-24).
  • the RAN node sends the packets in the service flow (ie, N3 GTP-U PDU) to the PSA UPF.
  • the PSA UPF receives the packets in the service flow from the RAN node.
  • PSA UPF sends an ACK to the RAN node for each correctly received message.
  • the RAN node receives from the PSA UPF the ACK sent by the PSA UPF for each correctly received message.
  • the RAN node sends the sixth packet loss information to the PSA UPF according to whether it has received the ACK information of each sent packet.
  • the sixth packet loss information is used to indicate that the PSA UPF incorrectly received the packet. N3 GTP-U SN of the text.
  • the PSA UPF receives the sixth packet loss information from the RAN node.
  • PSA UPF determines the packet loss of the service flow on the second link according to the sixth packet loss information.
  • the N3 GTP-U SNs of the 8 N3 GTP-U PDUs are respectively N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2,..., N3 GTP-U 7, PSA UPF every time a N3 GTP-U PDU is correctly received, it will feed back an ACK for the N3 GTP-U PDU to the RAN node, then if the RAN node is in the N3 GTP-U When the timer corresponding to the N3 GTP-U PDU corresponding to U 4 does not receive an ACK for the N3 GTP-U PDU, the RAN node can determine that the PSA UPF has not correctly received the N3 GTP-U 4 corresponding to the N3 GTP-U.
  • the RAN node can determine that the PSA UPF is not correctly received N3 GTP-U 6 corresponds to N3 GTP-U PDU.
  • the RAN node When the RAN node determines that a packet is lost, it promptly reports the N3 GTP-U SN information of the lost packet to the PSA UPF. Compared with the method 1, the method 2 can make the PSA UPF obtain the loss faster.
  • the information of the message For example, a RAN node sends 5 N3 GTP-U PDUs. If all three N3 GTP-U PDUs in the middle are lost, then according to method 1, PSA UPF can only know the middle when it receives the fifth N3 GTP-U PDU. Three N3 GTP-U PDUs are lost, so the delay is longer, which may affect the retransmission of subsequent N3 GTP-U PDUs. If the RAN node determines that a packet is lost, it will promptly report the lost report to the PSA UPF. The N3 GTP-U SN information in the text can avoid this problem.
  • Case 2.2.1 includes the following steps 2.2.1-11) to 2.2.1-12).
  • the RAN node sends the seventh packet loss information to the PSA UPF.
  • the seventh packet loss information is used to indicate the N3 GTP-U SN of the packet that the service flow is lost on the first link (ie PDCP PDU) .
  • the PSA UPF receives the seventh packet loss information from the RAN node.
  • the method for the RAN node to obtain the packets lost in the first link of the service flow can be referred to the above, and will not be repeated here.
  • the RAN node After the RAN node obtains the PDCP SN of the PDCP PDU whose service flow is lost on the first link, it can send the N3 GTP-U SN of the N3 GTP-U PDU corresponding to the PDCP SN (that is, the seventh packet loss information) to the PSA UPF.
  • PSA UPF determines the packet loss of the service flow on the first link according to the seventh packet loss information.
  • the N3 GTP-U SN of the 4 N3 GTP-U PDUs are N3 GTP-U 0, N3 GTP-U 1, N3 GTP- U 2, N3 GTP-U 3.
  • the PDCP SN of the 4 PDCP PDUs corresponding to the 4 N3 GTP-U PDUs are PDCP 0, PDCP 1, PDCP 2, and PDCP 3.
  • the RAN node After the RAN node sends these 4 PDCP PDUs to the terminal, if the terminal does not receive the PDCP PDU whose PDCP SN is PDCP 2, the RAN node sends N3 GTP-U 2 corresponding to PDCP 2 to PSA UPF, and PSA UPF is based on N3 GTP- U 2 determines that the N3 GTP-U PDU corresponding to N3 GTP-U 2 is lost.
  • Case 2.2.2 can be achieved by way 1 or way 2 below.
  • Method 1 includes the following steps 2.2.2-11) and 2.2.2-12)
  • the RAN node sends the eighth message loss information to the PSA UPF.
  • the eighth message loss information is used to indicate the N3 GTP-U of the message (ie N3 GTP-U PDU) that the RAN node did not correctly receive SN.
  • the PSA UPF receives the eighth packet loss information from the RAN node.
  • the PSA UPF sends the packets in the service flow to the RAN node, and the RAN node receives the packets sent by the PSA UPF, and determines according to the continuity of the N3 GTP-U SN of the received packets Messages received incorrectly.
  • PSA UPF determines the packet loss of the service flow on the second link according to the eighth packet loss information.
  • Step 2.2.2-12 the PSA UPF can directly determine that the N3 GTP-U PDU corresponding to the N3 GTP-U SN indicated by the eighth packet loss information is lost.
  • Method 2 includes the following steps 2.2.2-21) to 2.2.2-23).
  • PSA UPF sends packets in the service flow (ie N3 GTP-U PDU) to the RAN node.
  • the RAN node receives the packets in the service flow from the PSA UPF.
  • the RAN node sends an ACK to the PSA UPF for each correctly received message.
  • the PSA UPF receives from the RAN node the ACK sent by the RAN node for each correctly received message.
  • PSA UPF determines the packet loss of the service flow on the second link according to whether it receives the ACK information of each message sent.
  • the N3 GTP-U SNs of the 6 N3 GTP-U PDUs are N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2,..., N3 GTP-U 5.
  • the PSA UPF can determine that the RAN node has not correctly received the N3 GTP-U 3 corresponding to N3 GTP-U 3 U PDU, if the PSA UPF does not receive an ACK for the N3 GTP-U PDU when the timer corresponding to the N3 GTP-U PDU corresponding to N3 GTP-U 4 expires, the PSA UPF can determine that the RAN node has not received it correctly N3 GTP-U 4 corresponding to N3 GTP-U PDU.
  • PSA UPF can combine the N3 GTP-U SN corresponding to the PDCP SN of the PDCP PDU lost on the first link and the N3 GTP-U SN of the N3 GTP-U PDU lost on the second link.
  • Judge determine the number of consecutive packet loss on the user plane path.
  • the PSA UPF determines that N3 GTP-U 3 corresponding to N3 GTP-U PDU, one packet is missing, and N3 GTP-U 4 corresponds to N3 GTP-U PDU. If the message is lost, if the PSA UPF also determines that the N3 GTP-U PDU corresponding to the N3 GTP-U 4 on the second link is lost, the PSA UPF determines that 3 consecutive messages are lost.
  • the above method further includes: the SMF sends indication information to the terminal and the RAN node, and the indication information is used to instruct the corresponding network node to feedback the message loss information.
  • the terminal can feed back the message loss information on the first link to the RAN node according to the indication information.
  • the RAN node feeds back the packet loss information on the second link to the PSA UPF according to the indication information.
  • the indication information can be explicitly indicated, for example, the value of one or more bits is used to indicate whether to perform message loss information feedback.
  • the indication information can also be implicitly indicated, for example, the life time indication corresponding to the service. In this case, when the Qos parameter corresponding to the Qos Flow received by the terminal (or RAN node) includes the life time corresponding to the service, the terminal ( Or the RAN node) determines to perform the feedback of the message loss information.
  • the second link includes a first sub-link and a second sub-link.
  • step 704 In a multiple UPF scenario, the specific implementation of step 704 is described separately through the following first, second, third, and fourth cases.
  • the first situation the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first link in the user plane path reaches the first threshold.
  • the high-reliability transmission mechanism of the first link can be activated.
  • the specific process can be referred to above and will not be repeated here.
  • step 704 may specifically include: the first device triggers the activation of the first link and the first sub-chain in the user plane path.
  • the high-reliability transmission mechanism of the road and the second sub-link can be specifically implemented in the following manner (7).
  • step 704 specifically includes:
  • the first device sends seventh start information to the SMF.
  • the seventh start information indicates that high reliability for the first link, the first sub-link and the second sub-link (or the entire user plane path) needs to be started. Sexual transmission mechanism.
  • the SMF controls the high-reliability transmission mechanism of the first link, the first sub-link and the second sub-link to start according to the seventh start information.
  • step 704-7b is similar to the first possible implementation manner of step 704-3b, and the details can be referred to the above, and details are not described herein again.
  • step 704-7b includes:
  • SMF sends startup information to the terminal, RAN node, I-UPF and PSA UPF according to the seventh startup information, and the startup information indicates that a high-reliability transmission mechanism for the user plane path needs to be activated.
  • the terminal, the RAN node, the I-UPF and the PSA UPF respectively receive the startup information.
  • terminal, RAN node, I-UPF and PSA UPF respectively start the high-reliability transmission mechanism on the entire user plane path according to the received start information.
  • the terminal can start the high-reliability transmission mechanism of the first link
  • the RAN node can start the high-reliability transmission mechanism of the first link and the first sub-link
  • the I-UPF can start the first sub-link and the first sub-link.
  • the high-reliability transmission mechanism of the second sub-link, PSA UPF can start the high-reliability transmission mechanism of the second sub-link.
  • step 704-7b-1 the process of SMF sending startup information to I-UPF and the information included in the startup information are the same as the process of SMF sending startup information to PSA UPF and the information included in the startup information.
  • the process of SMF sending startup information to PSA UPF and the information included in the startup information please refer to the above. I won't repeat them here.
  • the RAN node and the terminal can start the high-reliability transmission mechanism of the first link by adjusting the transmission parameters.
  • the user plane high-reliability transmission mechanism between the RAN node and the I-UPF may be a high-reliability transmission mechanism based on the redundant service flow for the N3 interface or a high-reliability transmission mechanism based on the redundant transmission layer for the N3 interface.
  • the user plane high-reliability transmission mechanism between I-UPF and PSA-UPF can be a high-reliability transmission mechanism based on the redundant service flow of the N9 interface or a high-reliability transmission mechanism based on the redundant transmission layer of the N9 interface .
  • the second case the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the first sub-link in the user plane path reaches the first threshold .
  • step 704 may specifically include: the first device triggers the activation of the high-reliability transmission mechanism for the first sub-link in the user plane path.
  • the transmission mechanism can be specifically implemented in the following way (8) or way (9).
  • the first device is a RAN node
  • step 704 specifically includes:
  • the first device sends activation information to the I-UPF, where the activation information indicates that the high-reliability transmission mechanism for the first sub-link needs to be activated.
  • the I-UPF receives the startup information, and starts the high-reliability transmission mechanism of the first sub-link according to the startup information.
  • the first device triggers itself to start the high-reliability transmission mechanism of the first sub-link.
  • the startup information sent by the first device to the I-UPF may be carried in the protocol layer header of the N3 GTP-U PDU.
  • the startup information includes the QoS Flow identifier, and the instruction information for instructing to start the user-plane high-reliability transmission mechanism.
  • it also includes the reason value for starting the user-plane high-reliability transmission mechanism. The reason value is used to indicate that it is to ensure the lifetime of the application. Therefore, the high-reliability transmission mechanism of the first sub-link needs to be activated.
  • the user plane high-reliability transmission mechanism between the first device and the I-UPF can be a high-reliability transmission mechanism based on redundant service flows for the N3 interface or a redundant transmission layer based on the N3 interface.
  • the high-reliability transmission mechanism can be a high-reliability transmission mechanism based on redundant service flows for the N3 interface or a redundant transmission layer based on the N3 interface.
  • step 704 specifically includes:
  • the first device sends activation information to the SMF, where the activation information indicates that the high-reliability transmission mechanism for the first sub-link needs to be activated.
  • the SMF receives the startup information from the first device.
  • the SMF controls the startup of the high-reliability transmission mechanism of the first sub-link according to the startup information.
  • step 704-9b includes:
  • the SMF sends start-up information to the first device and the I-UPF respectively according to the start-up information, and the start-up information indicates that the high-reliability transmission mechanism for the first sub-link needs to be started.
  • the first device and the I-UPF respectively receive the startup information.
  • the first device and the I-UPF start the high-reliability transmission mechanism of the first sub-link according to the startup information received by themselves.
  • the SMF only sends the startup information to the I-UPF so that the I-UPF starts the high-reliability transmission mechanism of the first sub-link.
  • the device determines that the number of consecutive packet loss on the first sub-link of the user plane path reaches the first threshold, the device triggers itself to start the high-reliability transmission mechanism of the first sub-link.
  • the above-mentioned method (8) can start the high-reliability transmission mechanism of the first sub-link faster.
  • the high-reliability transmission mechanism on the entire user plane path can also be activated, and the specific implementation can be referred to the above, and will not be repeated.
  • the third case the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, specifically: the number of consecutive packet loss of the service flow on the second sub-link in the user plane path reaches the first threshold .
  • step 704 may specifically include: the first device triggers the activation of the high-reliability transmission mechanism for the second sub-link in the user plane path.
  • the transmission mechanism can be specifically implemented in the following way (10) or way (11).
  • the first device is PSA UPF
  • step 704 specifically includes:
  • the first device sends activation information to the I-UPF, where the activation information indicates that the high-reliability transmission mechanism for the second sub-link needs to be activated.
  • the I-UPF receives the startup information, and starts the high-reliability transmission mechanism of the second sub-link according to the startup information.
  • the first device triggers itself to start the high-reliability transmission mechanism of the second sub-link.
  • the startup information sent by the first device to the I-UPF may be carried in the protocol layer header of the N9 GTP-U PDU.
  • the startup information includes the QoS Flow identifier, and the instruction information for instructing to start the user-plane high-reliability transmission mechanism.
  • it also includes the reason value for starting the user-plane high-reliability transmission mechanism. The reason value is used to indicate that it is to ensure the lifetime of the application. Therefore, the high-reliability transmission mechanism of the second sub-link needs to be activated.
  • the user plane high-reliability transmission mechanism between the first device and the I-UPF can be a high-reliability transmission mechanism based on the redundant service flow for the N9 interface or a redundant transmission layer based on the N9 interface.
  • the high-reliability transmission mechanism can be a high-reliability transmission mechanism based on the redundant service flow for the N9 interface or a redundant transmission layer based on the N9 interface.
  • step 704 specifically includes:
  • the first device sends activation information to the SMF, where the activation information indicates that the high-reliability transmission mechanism for the second sub-link needs to be activated.
  • the SMF receives the startup information from the first device.
  • the SMF controls the startup of the high-reliability transmission mechanism of the second sub-link according to the startup information.
  • steps 704-11b includes:
  • the SMF sends start-up information to the first device and the I-UPF respectively according to the start-up information, and the start-up information indicates that the high-reliability transmission mechanism for the second sub-link needs to be started.
  • the first device and the I-UPF respectively receive the startup information.
  • the first device and the I-UPF start the high-reliability transmission mechanism of the second sub-link according to the startup information received by themselves.
  • the SMF only sends the activation information to the I-UPF so that the I-UPF activates the high-reliability transmission mechanism of the second sub-link, and the first When the device determines that the number of consecutive packet loss on the second sub-link in the user plane path reaches the first threshold, the device triggers itself to start the high-reliability transmission mechanism of the second sub-link.
  • the above-mentioned method (10) can start the high-reliability transmission mechanism of the second sub-link faster.
  • the high-reliability transmission mechanism on the entire user plane path can also be activated.
  • the high-reliability transmission mechanism on the entire user plane path is activated, and the specific implementation can be referred to the above, and will not be repeated.
  • Case 3 The first device is a RAN node.
  • case 3.1 is used to illustrate the determination of the packet loss of uplink packets in each link in case 3
  • case 3.2 is used as an example to determine the packet loss of downlink packets in each link in case 3.
  • case 3.1.1 is used to illustrate the determination of packet loss on the first link in case 3.1
  • case 3.1.2 is used to illustrate the determination of packet loss on the second link in case 3.1. .
  • Case 3.1.1 can be achieved by way 1 or way 2 below.
  • Method 1 includes the following steps 3.1.1-11) and 3.1.1-12).
  • the terminal sends the packets in the service flow (ie, PDCP PDU) to the RAN node.
  • the RAN node receives the message in the service flow from the terminal.
  • the RAN node determines the packet loss condition of the service flow on the first link according to the continuity of the PDCP SN of the correctly received message.
  • Mode 1 under Case 3.1.1 is similar to the implementation process of Mode 1 under Case 1.1.1. For details, please refer to the implementation process of Mode 1 under Case 1.1.1 for understanding, and will not be repeated here.
  • Method 2 includes the following steps 3.1.1-21) to 3.1.1-24).
  • the terminal sends packets in the service flow (ie, PDCP PDU) to the RAN node.
  • the RAN node receives the message in the service flow from the terminal.
  • the RAN node sends an ACK to the terminal for each correctly received message.
  • the terminal receives from the RAN node the ACK sent by the RAN node to the terminal for each correctly received message.
  • the terminal sends the ninth packet loss information to the RAN node according to whether the ACK information of each sent packet is received, and the ninth packet loss information is used to indicate the incorrectly received packet by the RAN node PDCP SN.
  • the RAN node receives the ninth packet loss information from the terminal.
  • the RAN node determines the packet loss condition of the service flow on the first link according to the ninth packet loss information.
  • Case 3.1.2 can be achieved by way 1 or way 2 below.
  • Method 1 includes the following steps 3.1.2-11) and 3.1.2-12).
  • the I-UPF sends the tenth message loss information to the RAN node.
  • the tenth message loss information is used to indicate the N3 GTP- of the message that the I-UPF did not correctly receive on the first sub-link.
  • the N3 GTP-U SN corresponding to the N9 GTP-U SN of the message received incorrectly by the U SN and PSA UPF on the second sub-link.
  • the RAN node receives the tenth message loss information from the I-UPF.
  • the I-UPF can obtain the incorrectly received packets on the first sub-link and the incorrectly received packets on the second sub-link by the PSA UPF.
  • the implementation process of I-UPF acquiring incorrectly received packets on the first sub-link is similar to the implementation process of PSA UPF acquiring incorrectly received packets on the second link in Scenario 1.
  • I-UPF The implementation process of obtaining the incorrectly received packet of PSA UPF on the second sub-link is similar to the implementation process of obtaining the incorrectly received packet of PSA UPF on the second link by the RAN node in Scenario 1. Refer to the corresponding parts above for understanding, and will not repeat them here.
  • the N9 GTP-U SN needs to be generated when the tenth message is lost.
  • GTP-U SN is converted to N3 GTP-U SN.
  • the RAN node determines the packet loss condition of the service flow on the second link according to the tenth packet loss information.
  • the RAN node can directly determine the packets lost in the service flow on the second link according to the tenth packet loss information.
  • Method 2 includes the following steps 3.1.2-21) to 3.1.2-25).
  • the RAN node sends the packets in the service flow to the I-UPF.
  • the I-UPF receives the packets in the service flow from the RAN node.
  • the I-UPF sends an ACK to the RAN node for each correctly received message.
  • the RAN node receives from the I-UPF the ACK sent by the I-UPF for each correctly received message.
  • the RAN node determines the packet loss of the service flow on the first sub-link according to whether it receives the ACK information of each message sent.
  • the I-UPF sends the eleventh message loss information to the RAN node, and the eleventh message loss information is used to indicate the N9 GTP of the message that the PSA UPF did not correctly receive on the second sub-link -U SN corresponds to N3 GTP-U SN.
  • the RAN node receives the eleventh packet loss information from the I-UPF.
  • the RAN node determines the packet loss condition of the service flow on the second link according to the eleventh packet loss information and the packet loss condition of the service flow on the first sub-link.
  • step 3.1.2-21 the implementation process of the RAN node in step 3.1.2-21) to step 3.1.2-23) determining the packet loss condition of the service flow on the first sub-link is the same as that of the RAN node in mode 2 under 1.1.2 above.
  • the implementation process of determining the packet loss condition of the service flow on the second link is similar, and the details can be understood with reference to the corresponding part above, and will not be repeated here.
  • the I-UPF can obtain the packet that the PSA UPF incorrectly received on the second sub-link.
  • the specific implementation process is the same as that of the RAN node in the scenario 1 obtaining the PSA UPF on the second link
  • the implementation process of the incorrectly received message is similar, and the details can be understood with reference to the corresponding part above, and will not be repeated here. It should be noted that after the I-UPF obtains the N9 GTP-U SN of the N9 GTP-U PDU that the PSA UPF did not correctly receive on the second sub-link, when generating the eleventh packet loss information, it needs to N9 GTP-U SN is converted to N3 GTP-U SN.
  • the RAN node can determine the packet loss of the service flow on the second sub-link according to the eleventh packet loss information, and then combine the packet loss of the service flow on the first sub-link. The packet loss situation, thereby determining the packet loss situation of the service flow on the second link.
  • the N3 GTP-U SNs of the 8 N3 GTP-U PDUs are N3 GTP-U 0, N3 GTP-U 1, N3 GTP-U 2,..., N3 GTP-U 7, each time an N3 GTP-U PDU is correctly received by the I-UPF, it will feed back an ACK for the N3 GTP-U PDU to the RAN node.
  • the RAN node can determine that the I-UPF has not correctly received the N3 N3 GTP-U PDU corresponding to GTP-U 4, if the RAN node does not receive an ACK for the N3 GTP-U PDU when the timer corresponding to N3 GTP-U PDU corresponding to N3 GTP-U 6 expires, the RAN The node can determine that the I-UPF has not received the N3 GTP-U PDU corresponding to N3 GTP-U 6 correctly.
  • the correspondence between the N3 GTP-U SN of the 6 N3 GTP-U PDUs received by the I-UPF and the N9 GTP-U SN of the 6 N9 GTP-U PDUs sent is shown in Table 4 If the I-UPF determines that the N9 GTP-U PDU corresponding to N9 GTP-U 4 on the second sub-link is missing, then N3 GTP-U 5 corresponding to N9 GTP-U 4 (that is, the eleventh message loss information) Sent to the RAN node.
  • the RAN node can determine that the packet lost on the second sub-link of the service flow is N3 GTP-U 5 corresponding to N3 GTP-U PDU, because the packet lost on the first sub-link is N3 GTP-U 4 and N3 GTP-U 6 corresponding to N3 GTP-U PDU, the RAN node can determine that the lost packets on the second link are N3 GTP-U 4, N3 GTP-U 5, and N3 GTP-U 6 Corresponding N3 GTP-U PDU.
  • Method 1 includes the following steps 3.2.1-11) and steps 3.2.1-12)
  • the terminal sends the twelfth message loss information to the RAN node, and the twelfth message loss information is used to indicate the PDCP SN of the message (ie, PDCP PDU) that the terminal has not received correctly.
  • the RAN node receives the twelfth message loss information from the terminal.
  • the RAN node determines the packet loss of the service flow on the first link according to the twelfth packet loss information.
  • Mode 1 under Case 3.2.1 is similar to the implementation process of Mode 1 under Case 1.2.1. For details, please refer to the implementation process of Mode 1 under Case 1.2.1 for understanding, and will not be repeated here.
  • Method 2 includes the following steps 3.2.1-21) to 3.2.1-23)
  • the RAN node sends the packets in the service flow (ie, PDCP PDU) to the terminal.
  • the terminal receives the message in the service flow from the RAN node.
  • the terminal sends an ACK to the RAN node for each correctly received message.
  • the RAN node receives from the terminal the ACK sent by the terminal for each correctly received message.
  • the RAN node determines the packet loss of the service flow on the first link according to the information about whether it receives the ACK of each message sent.
  • Mode 2 under Case 3.2.1 is similar to the implementation process of Mode 2 under Case 1.2.1. For details, please refer to the implementation process of Mode 2 under Case 1.2.1 for understanding, and will not be repeated here.
  • Method 1 includes the following steps 3.2.2-11) to 3.2.2-14).
  • the I-UPF sends the packets in the service flow to the RAN node.
  • the RAN node receives the packets in the service flow from the I-UPF.
  • the message sent by the I-UPF to the RAN node is received from the PSA UPF.
  • the RAN node determines the N3 GTP-U SN of the message that the RAN node did not correctly receive on the first sub-link according to the continuity of the N3 GTP-U SN of the correctly received message.
  • step 3.2.2-11) and step 3.2.2-12) determining the incorrectly received message on the first sub-link is the same as the RAN node determining the first sub-link in the method 1.
  • the implementation process of the packet loss on the second link is similar, and the details can be understood by referring to the above, and will not be repeated here.
  • the I-UPF sends the thirteenth message loss information to the RAN node, and the thirteenth message loss information is used to indicate the incorrectly received message by the I-UPF on the second sub-link.
  • the RAN node receives the thirteenth message loss information from the I-UPF.
  • the I-UPF can obtain the incorrectly received packet of the I-UPF on the second sub-link.
  • the method of obtaining is the same as that of the RAN node obtaining that the RAN node is incorrectly on the second link.
  • the method of the received message is similar, and the details can be understood with reference to the above, and will not be repeated here.
  • the RAN node determines the loss of the service flow on the second link according to the N3 GTP-U SN and the 13th message loss information of the message that the RAN node did not correctly receive on the first sublink. Package situation.
  • Method 2 includes the following steps 3.2.2-21) to 3.2.2-24).
  • I-UPF sends packets in the service flow to the RAN node.
  • the RAN node receives the packets in the service flow from the I-UPF.
  • the message sent by the I-UPF to the RAN node is received from the PSA UPF.
  • the RAN node sends an ACK to the I-UPF for each correctly received message.
  • the I-UPF receives from the RAN node the ACK sent by the RAN node to the I-UPF for each correctly received message.
  • I-UPF sends the thirteenth message loss information and the fourteenth message loss information to the RAN node according to whether the ACK information of each sent message is received, and the thirteenth message loss information N3 GTP used to indicate the incorrectly received packet of the I-UPF on the second sub-link, and the fourteenth packet loss information used to indicate the incorrectly received packet of the RAN node on the first sub-link -U SN.
  • the RAN node receives the thirteenth message loss information and the fourteenth message loss information from the I-UPF.
  • the I-UPF can determine the incorrectly received packet by the RAN node according to whether it receives the ACK information of each sent packet, and then determine the fourteenth packet loss information.
  • the I-UPF can obtain the incorrectly received packets of the I-UPF on the second sub-link, and then determine the thirteenth packet loss information.
  • the method of obtaining is the same as that of the RAN node in scenario 1 when the RAN node is
  • the method for incorrectly received packets on the link is similar, and the details can be understood with reference to the above, and will not be repeated here.
  • the RAN node determines the packet loss of the service flow on the second link according to the thirteenth message loss information and the fourteenth message loss information.
  • N9 GTP-U SN and N3 GTP-U SN under different SN mapping modes the information indicated by the thirteenth packet loss information is different, which are described separately below.
  • the N9 GTP-U SN of each message correctly received by the I-UPF corresponds to the N3 GTP-U SN of the message sent by the I-UPF, and the consecutive messages sent by the I-UPF
  • the N3 GTP-U SN of the text is continuous.
  • the thirteenth message loss information is used to indicate the N9 GTP-U corresponding to the SN N3 GTP-U of the last correctly received message of the message incorrectly received by the I-UPF on the second sub-link SN
  • the thirteenth packet loss information is also used to indicate the packet loss of the next packet or multiple consecutive packets indicated by the thirteenth packet loss information.
  • I-UPF determines that after the N9 GTP-U SN of the N9 GTP-U PDU that was incorrectly received on the second sublink, the N9 GTP-U SN of the N9 GTP-U PDU that was correctly received is generated When the 13 messages lose information, the N9 GTP-U SN needs to be converted to N3 GTP-U SN.
  • the thirteenth message loss information is the N3 GTP-U SN of the message that the I-UPF incorrectly received on the second sub-link.
  • the I-UPF determines that the N9 GTP-U SN of the N9 GTP-U PDU that is incorrectly received by the second sub-link, when generating the thirteenth message loss information, it needs to change the N9 GTP-U SN is converted to N3 GTP-U SN.
  • Mode 3 includes the following steps 3.2.2-31) and 3.2.2-32).
  • the I-UPF sends packets in the service flow to the RAN node.
  • the RAN node receives the packets in the service flow from the I-UPF.
  • the message sent by the I-UPF to the RAN node is received from the PSA UPF.
  • the RAN node determines the incorrectly received packet on the second link by the RAN node according to the continuity of the N3 GTP-U SN of the correctly received packet.
  • the SN mapping method adopted by N9 GTP-U SN and N3 GTP-U SN is SN mapping method 2.
  • the RAN node can directly follow the N3 GTP-U SN of the received N3 GTP-U PDU. It can determine the packet that the RAN node did not correctly receive on the second link.
  • the RAN node can compare the PDCP SN of the PDCP PDU lost on the first link, the N3 GTP-U PDU lost on the first sub-link, the PDCP SN corresponding to the GTP-U SN, and the second sub-link
  • the PDCP SN corresponding to the N9 GTP-U SN of the N9 GTP-U PDU lost on the road is combined to determine the number of consecutive packet loss on the user plane path.
  • the RAN node may combine the N3 GTP-U SN corresponding to the PDCP SN of the PDCP PDU lost on the first link, the N3 GTP-U SN of the N3 GTP-U PDU lost on the first sub-link, and the second sub-chain
  • the N3 GTP-U SN corresponding to the N9 GTP-U SN of the N9 GTP-U PDU lost on the road is combined to determine the number of consecutive lost packets on the user plane path.
  • the above method further includes: SMF sending indication information to the terminal, I-UPF, and PSA UPF, and the indication information is used to instruct the corresponding network node to feedback the message loss information.
  • the terminal can feed back the message loss information on the first link to the RAN node according to the indication information.
  • the I-UPF can feed back the message loss information on the first sublink to the RAN node according to the indication information, and also feed back the message loss information on the second sublink to the PSA UPF.
  • the PSA UPF feeds back the packet loss information on the second sub-link to the I-UPF according to the indication information.
  • the indication information can be explicitly indicated, for example, the value of one or more bits is used to indicate whether to perform message loss information feedback.
  • the indication information can also be implicitly indicated, for example, through the life time indication corresponding to the service. In this case, when the terminal (or I-UPF or PSA UPF) receives the Qos parameter corresponding to the Qos Flow, the life time corresponding to the service is included. , The terminal (or I-UPF or PSA UPF) determines to feedback the message loss information.
  • Case 4 The first device is PSA UPF.
  • case 4.1 is used to illustrate the determination of the packet loss situation of uplink packets in each link in case 4
  • case 4.2 is used as an example to determine the packet loss situation of downlink packets in each link in case 4.
  • Case 4.1.1 includes the following steps 4.1.1-11) and steps 4.1.1-12).
  • the I-UPF sends the fifteenth message loss information to the PSA UPF, and the fifteenth message loss information is used to indicate the message that the service flow is lost on the first link.
  • the PSA UPF receives the fifteenth message loss information from the I-UPF.
  • the RAN node Before step 4.1.1-11), the RAN node can determine the incorrectly received message, and send information indicating the message to the I-UPF, so that the I-UPF can determine that the service flow is lost on the first link Message.
  • PSA UPF determines the packet loss of the service flow on the first link according to the fifteenth packet loss information.
  • mapping method 1 The mapping between PDCP SN and N3 GTP-U SN uses SN mapping method 1, and the mapping between N3 GTP-U SN and N9 GTP-U SN uses SN mapping method 1 or SN mapping method 2:
  • the PDCP SN of each message correctly received by the RAN node corresponds to the N3 GTP-U SN of the message sent by the RAN node, and the N3 GTP-U SN of the continuous message sent by the RAN node is continuous of.
  • the fifteenth message loss information is used to indicate the N9 GTP-U SN corresponding to the PDCP SN of the last correctly received message of the message that was incorrectly received by the RAN node on the first link.
  • the message loss information is also used to indicate the packet loss of the next message or successive messages of the message indicated by the fifteenth message loss information.
  • the RAN node can determine the PDCP SN of the last correctly received PDCP PDU of the incorrectly received PDCP PDU, and convert the PDCP SN to N3 GTP-U SN to send For I-UPF, when the I-UPF generates the fifteenth message loss information, it further converts the N3 GTP-U SN to N9 GTP-U SN.
  • mapping method 2 The mapping between PDCP SN and N3 GTP-U SN and the mapping between N3 GTP-U SN and N9 GTP-U SN adopt SN mapping method 2:
  • the difference between the PDCP SN of each message correctly received by the RAN node and the N3 GTP-U SN of the message sent by the RAN node is the same (for the same numbering period)
  • I-UPF The difference between the N3 GTP-U SN of each correctly received message and the N9 GTP-U SN of the message sent by the I-UPF is the same (for the same numbering period).
  • the fifteenth message loss information is N9 GTP-U SN corresponding to the PDCP SN of the message that the RAN node did not correctly receive on the first link.
  • the RAN node can determine the PDCP SN of the incorrectly received PDCP PDU, convert the PDCP SN to N3 GTP-U SN and send it to the I-UPF.
  • Method 1 includes the following steps 4.1.2-11) to 4.1.2-14).
  • the I-UPF sends the sixteenth message loss information to the PSA UPF, and the sixteenth message loss information is used to indicate the messages lost in the first sub-link of the service flow.
  • the PSA UPF receives the sixteenth message loss information from the I-UPF.
  • the I-UPF can determine that the I-UPF does not correctly receive the packet on the first sub-link.
  • the method of determination is the same as that in scenario 1 where the UPF determines that the UPF is incorrect on the second link.
  • the method of the received message is similar. For details, please refer to the description of the relevant part above, which will not be repeated here.
  • the I-UPF sends the packets in the service flow to the PSA UPF.
  • the PSA UPF receives the packets in the service flow from the I-UPF.
  • the message sent by the I-UPF to the PSA UPF is received from the RAN node.
  • the SN of the N9 GTP-U PDU sent by the I-UPF to the PSA UPF is continuous.
  • the PSA UPF determines the packet loss of the service flow on the second sub-link according to the continuity of the N9 GTP-U SN of the correctly received message.
  • PSA UPF determines the packet loss condition of the service flow on the second link according to the sixteenth packet loss information and the packet loss condition of the service flow on the second sub-link.
  • Method 2 includes the following steps 4.1.2-21) to 4.1.2-24).
  • the I-UPF sends the packets in the service flow to the PSA UPF.
  • the PSA UPF receives the packets in the service flow from the I-UPF.
  • the message sent by the I-UPF to the PSA UPF is received from the RAN node.
  • the SN of the N9 GTP-U PDU sent by the I-UPF to the PSA UPF is continuous.
  • PSA UPF sends ACK to I-UPF for each correctly received message.
  • the I-UPF receives from the PSA UPF the ACK sent by the PSA UPF for each correctly received message.
  • I-UPF sends the 16th message loss information and the 17th message loss information to the PSA UPF according to whether the ACK information of each sent message is received, and the 16th message loss information It is used to indicate the packet lost in the first sub-link of the service flow.
  • the seventeenth packet loss information is used to indicate the N9 GTP-U SN of the packet that the PSA UPF incorrectly received.
  • the PSA UPF receives the sixteenth message loss information and the seventeenth message loss information from the I-UPF.
  • the I-UPF can determine the incorrectly received packet by the PSA and UPF according to whether the ACK information of each sent packet is received, and then determine the seventeenth packet loss information.
  • I-UPF can obtain the incorrectly received packets on the first sub-link by the I-UPF, and then determine the sixteenth packet loss information.
  • the method of obtaining is the same as that in scenario 1 where the UPF obtains the UPF on the second link.
  • the method for the incorrectly received message above is similar, and the details can be understood with reference to the above, and will not be repeated here.
  • PSA UPF determines the packet loss of the service flow on the second link according to the sixteenth message loss information and the seventeenth message loss information.
  • N3 GTP-U SN and N9 GTP-U SN have different SN mapping modes, and the information indicated by the sixteenth packet loss information is different, which will be described separately below.
  • the N3 GTP-U SN of each message correctly received by the I-UPF corresponds to the N9 GTP-U SN of the message sent by the I-UPF, and the consecutive messages sent by the I-UPF
  • the N9 GTP-U SN of the text is continuous.
  • the sixteenth message loss information is used to indicate the N3 GTP-U corresponding to the SN N9 GTP-U of the last correctly received message of the message incorrectly received by the I-UPF on the first sub-link SN
  • the sixteenth message loss information is also used to indicate the loss of the next message or the loss of multiple consecutive messages in the message indicated by the sixteenth message loss information.
  • the I-UPF can determine the incorrectly received N3 GTP-U PDU and the N3 GTP-U SN of the last correctly received N3 GTP-U PDU.
  • the sixteenth packet loss information is generated, it will The N3 GTP-U SN is converted to N9 GTP-U SN.
  • the difference between the N3 GTP-U SN of each message correctly received by the I-UPF and the N9 GTP-U SN of the message sent by the I-UPF is the same.
  • the sixteenth message loss information is the N9 GTP-U SN corresponding to the N3 GTP-U SN of the message that the I-UPF did not correctly receive on the first sub-link.
  • the I-UPF can determine the incorrectly received N3 GTP-U PDU and the N3 GTP-U SN of the last correctly received N3 GTP-U PDU.
  • the sixteenth packet loss information is generated, it will The N3 GTP-U SN is converted to N9 GTP-U SN.
  • Mode 3 can include the following steps 4.1.2-31) and 4.1.2-32).
  • the I-UPF sends the packets in the service flow to the PSA UPF.
  • the PSA UPF receives the packets in the service flow from the I-UPF.
  • the message sent by the I-UPF to the PSA UPF is received from the RAN node.
  • the PSA UPF determines the packet loss of the service flow on the second link according to the continuity of the N9 GTP-U SN of the correctly received message.
  • the SN mapping method adopted by N3 GTP-U SN and N9 GTP-U SN is SN mapping method 2.
  • the PSA UPF can be directly based on the N9 GTP-U SN of the received N9 GTP-U PDU. It can determine the packets lost by the service flow on the second link.
  • the PSA UPF can determine the number of consecutive packet loss on the user plane path according to the packet loss situation of the first link and the packet loss situation of the second link.
  • the SN mapping method adopted by PDCP SN and N3 GTP-U SN and the SN mapping method adopted by N3 GTP-U SN and N9 GTP-U SN are both SN mapping method 2
  • the PDCP of each missing PDCP PDU SN also corresponds to N3 GTP-U SN
  • the N3 GTP-U SN of each missing N3 GTP-U PDU also corresponds to N9 GTP-U SN. Therefore, the PSA UPF can be directly based on the correctly received N9 GTP-U
  • the continuity of the N9 GTP-U SN of the PDU determines the packets lost on the user plane path of the service flow.
  • Case 4.2.1 includes the following steps 4.2.1-11) and steps 4.2.1-12).
  • the I-UPF sends the eighteenth message loss information to the PSA UPF, and the eighteenth message loss information is used to indicate the PDCP of the packet lost on the first link for the service flow N9 GTP- SN corresponding to the U SN.
  • the PSA UPF receives the eighteenth message loss information from the I-UPF.
  • the RAN node can determine the PDCP SN of the PDCP PDU that the terminal has not received correctly, and send the N3 GTP-U SN corresponding to the PDCP SN to the I-UPF, and the I-UPF determines the received PDCP SN.
  • N3 GTP-U SN corresponding to N9 GTP-U SN that is, the eighteenth message loss information).
  • PSA UPF determines the packet loss of the service flow on the first link according to the eighteenth packet loss information.
  • PSA UPF can determine that N9 GTP-U PDU corresponding to N9 GTP-U SN in the eighteenth message loss information is lost.
  • Case 4.2.2 includes the following steps 4.2.2-11) and 4.2.2-12).
  • the I-UPF sends the nineteenth message loss information to the PSA UPF.
  • the nineteenth message loss information is used to indicate the packet loss of the service flow on the first and second sub-links. N9 GTP-U SN.
  • the PSA UPF receives the 19th message loss information from the I-UPF.
  • the I-UPF can obtain the N3 GTP-U SN of the N3 GTP-U PDU that the RAN node did not correctly receive on the first sub-link, and also obtain the I-UPF in the second sub-link.
  • N9 GTP-U SN of the N9 GTP-U PDU that was incorrectly received on the sub-link, and N3 GTP-U SN of the N3 GTP-U PDU that was incorrectly received by the RAN node on the first sub-link The N9 GTP-U SN of the N9 GTP-U PDU that the N9 GTP-U SN and I-UPF did not correctly receive on the second sub-link are sent to the PSA UPF.
  • PSA UPF determines the packet loss of the service flow on the second link according to the nineteenth message loss information.
  • PSA UPF can determine that N9 GTP-U PDU corresponding to N9 GTP-U SN in the nineteenth message loss information is missing.
  • PSA UPF determines the number of consecutive packet loss on the user plane path according to the packet loss situation of the first link and the packet loss situation of the second link.
  • PSA UPF can compare N9 GTP-U SN corresponding to PDCP SN of PDCP PDU lost on the first link, and N3 GTP-U PDU corresponding to N3 GTP-U SN on the first sub-link N9 GTP-U SN And the N9 GTP-U SN of the N9 GTP-U PDU lost on the second sub-link are combined to determine the number of consecutive lost packets on the user plane path.
  • the above method further includes: the SMF sends indication information to the terminal, the RAN node, and the I-UPF, and the indication information is used to instruct the corresponding network node to feedback the message loss information.
  • the terminal can feed back the message loss information on the first link to the RAN node according to the indication information.
  • the RAN node feeds back the packet loss information on the first sub-link to the I-UPF according to the indication information.
  • the I-UPF can feed back the message loss information on the first sublink to the RAN node according to the indication information, and also feed back the message loss information on the second sublink to the PSA UPF.
  • the indication information can be explicitly indicated, for example, the value of one or more bits is used to indicate whether to perform message loss information feedback.
  • the indication information can also be implicitly indicated, for example, the life time indication corresponding to the service. In this case, when the Qos parameter corresponding to the Qos Flow received by the terminal (or RAN node or I-UPF) includes the life time corresponding to the service , The terminal (or RAN node or I-UPF) determines to perform the feedback of the message loss information.
  • the second application scenario the user plane path is the user plane path between the RAN node and the DN
  • the communication method provided by this application includes:
  • the first device acquires the packet loss condition of the service flow on the first link.
  • the first device may be a RAN node or a PSA UPF.
  • step 801 can refer to the related description in the first application scenario, and will not be repeated.
  • the first device obtains the packet loss condition of the service flow on the second link.
  • step 802 can refer to the related description in the first application scenario, and details are not repeated here.
  • the first device obtains the packet loss condition of the service flow on the third link.
  • PSA UPF can determine the packets lost on the third link.
  • the method for PSA UPF to determine the packets lost on the third link includes: the period at which the PSA UPF obtains packets in the service flow. Periodically determine whether packet loss occurs. For example, if the period is T, but the packet is received at an interval of 2T, it means that packet loss occurred in the middle; or, PSA UPF maintains a timer for a service flow, and starts the timer when it receives a data packet from the service flow. If the new data packet of the service flow is not received when the timer expires, it indicates that packet loss has occurred.
  • the duration of the timer is related to the period T, and can also be preset or pre-defined or stipulated by agreement or pre-configured, which is not limited in this application.
  • the PSA UPF can obtain the period of the packet in the service flow from the SMF or the network data analysis function (NWDAF), and the SMF can obtain the period of the packet in the service flow from the PCF or AF.
  • NWDAF network data analysis function
  • the PSA UPF also needs to send packet loss information to the RAN node.
  • the packet loss information indicates that the previous PSA UPF of the lost packet on the third link is correct.
  • the N3 GTP-U SN of the received message, and the message indication information also indicates that one or more consecutive messages after the N3 GTP-U SN are lost, so that the RAN node can determine the lost message on the third link.
  • the PSA UPF can determine the lost packets in the third link, and the determination method is similar to the method used by the PSA UPF to determine the lost packets in the third link in the single UPF scenario, and will not be repeated here.
  • the PSA UPF also needs to send packet loss information to the I-UPF.
  • the packet loss information indicates the previous PSA UPF of the lost packet on the third link
  • the N9 GTP-U SN of the correctly received message The message indication information also indicates that one or more consecutive messages after the N9 GTP-U SN are lost.
  • the N3 GTP-U SN corresponding to the N9 GTP-U SN indicated by the message indication information is sent to the RAN node and indicates to the RAN node that one or more consecutive messages after the N3 GTP-U SN are lost, so that the RAN node can determine the first Packets lost on three links.
  • step 801, step 802, and step 803 is in no particular order, and is specifically related to application scenarios.
  • the execution sequence may be: step 801, step 802, and step 803, and for downlink packets, the execution sequence may be: step 803, step 802, and step 801 .
  • the first device determines the number of consecutive packet loss of the service flow on the user plane path according to the packet loss conditions of the service flow on the first link, the second link, and the third link.
  • the first device triggers to start a high-reliability transmission mechanism for the user plane path.
  • the entire user plane path can be activated. High-reliability transmission mechanism on the user plane.
  • the transmission mechanism can also activate the user-plane high-reliability transmission mechanism on the entire user-plane path.
  • the first device can determine the number of consecutive packet loss on the user plane path between the terminal and the AS, thereby more accurately determining the packet loss of the service flow, and continuously losing packets in the user plane path.
  • the number of packets reaches the first threshold, and the high-reliability transmission mechanism for the user plane path is activated, thereby improving the reliability of data transmission, avoiding application shutdown, and improving user experience.
  • Embodiment 1 exemplifies the flow of the method provided by this application in the above case 1.
  • the communication scenario is a single UPF scenario
  • the first device is a RAN node. See Figure 9, including:
  • the terminal When determining that the application needs to initiate a service, the terminal associates a PDU session for the service.
  • step 901 When step 901 is specifically implemented, if a PDU session meeting the Qos requirement of the service already exists in the terminal, the terminal associates the PDU session for the service. Otherwise, the terminal establishes a PDU session for the service by interacting with the core network, and associates the service with the session.
  • the terminal sends the first uplink packet of the service to the AS through the default (default) QoS Flow in the PDU session associated with the service.
  • the AS receives the first uplink message of the service from the terminal.
  • the default QoS Flow is a QoS Flow established for the PDU session by using the configured default PCC rule (rule) when the SMF establishes a PDU session, and each PDU session has a default QoS Flow.
  • the AS sends a trigger message to the AF according to the received first uplink message of the service, and the trigger message is used to trigger the AF to send the Qos parameter of the service to the PCF.
  • the AF receives the trigger message from the AS.
  • the AF sends the Qos parameter of the service to the PCF according to the trigger message.
  • the PCF receives the Qos parameter of the service from the AF.
  • the Qos parameter of the service includes the life time corresponding to the service.
  • the PCF sends a session management policy control update modification request (SMPolicyControlUpdateNotify request) to the SMF according to the Qos parameter of the service.
  • the SMF receives the session management policy control update modification request from the PCF.
  • the session management policy control update modification request includes the PCC rule for the service.
  • the PCC rules include the life time corresponding to the business.
  • step 905 when the PCF finds that the QoS parameter contains the life time corresponding to the service, it determines to establish a separate QoS Flow for the service, and at this time, sends a session management policy control update modification request to the SMF.
  • the SMF sends a session management policy control update modification response (SMPolicyControlUpdateNotify response) to the PCF.
  • SMF session management policy control update modification response
  • the session management policy control update modification response is used to indicate whether the session management policy control update modification request is successfully received.
  • the SMF initiates a PDU session modification process according to the PCC rules of the service, and establishes a QoS Flow for the service in the PDU session modification process.
  • the uplink and downlink packets of the service are transmitted using the QoS Flow.
  • the SMF when it establishes a QoS Flow for the service, it will send a QoS rule to the terminal.
  • the QoS rule includes the QoS parameter corresponding to the QoS Flow, and the QoS parameter includes the life time corresponding to the service; it also sends QoS to the RAN node.
  • a file (Profile) the QoS file includes the Qos parameter corresponding to the QoS Flow, and the Qos parameter includes the life time corresponding to the service.
  • the RAN node determines the packet loss conditions on the first link and the second link.
  • step 908 refers to the description in the above case 1, which will not be repeated here.
  • the above method further includes: the SMF sends indication information to the terminal and the PSA UPF, the indication information is used to instruct the corresponding network node to feedback the message loss information, the specific description can be found above, here No longer.
  • the RAN node determines the number of consecutive packet loss on the user plane path according to the packet loss conditions on the first link and the second link.
  • the RAN node initiates a user plane high-reliability transmission mechanism with the PSA UPF and the terminal.
  • the RAN node sends start information 1 to the SMF.
  • the start information 1 indicates that a high-reliability transmission mechanism for the user plane path needs to be started.
  • the SMF receives the startup information 1 from the RAN node.
  • the SMF sends start information 2 to the PSA UPF according to the start information 1, and the start information 2 is used to start the user plane high-reliability transmission mechanism of the corresponding network node.
  • PSA UPF receives start information 2.
  • the PSA UPF starts the high-reliability transmission mechanism of the user plane with the RAN node according to the startup information 2.
  • the SMF sends the startup information 2 to the terminal according to the startup information 1.
  • the terminal receives the startup information 2.
  • the terminal initiates a high-reliability transmission mechanism of the user plane with the RAN node according to the startup information 2.
  • Embodiment 2 exemplifies the flow of the method provided by this application in the above case 2.
  • the communication scenario is a single UPF scenario
  • the first device is a PSA UPF. See Figure 10, including:
  • 1001-1007 Same as 901 to 907, respectively.
  • the PSA UPF determines the packet loss conditions on the first link and the second link.
  • step 1008 For the specific implementation of step 1008, refer to the description in the above case 2, which will not be repeated here.
  • the above method further includes: the SMF sends indication information to the terminal and the RAN node, the indication information is used to instruct the corresponding network node to feedback the message loss information, the specific description can be referred to the above, here No longer.
  • the PSA UPF determines the number of consecutive packet loss on the user plane path according to the packet loss conditions on the first link and the second link.
  • the PSA UPF starts a high-reliability transmission mechanism of the user plane with the RAN node.
  • the PSA UPF sends start-up information 1 to the SMF, and the start-up information 1 indicates that the high-reliability transmission mechanism for the user plane path needs to be started.
  • SMF receives start information 1 from PSA UPF.
  • the SMF sends the startup information 2 to the RAN node according to the startup information 1, and the startup information 2 is used to start the user plane high-reliability transmission mechanism of the corresponding network node.
  • the RAN node receives the startup information 2.
  • the RAN node initiates a high-reliability transmission mechanism of the user plane with the PSA UPF and the terminal according to the startup information 2.
  • the SMF sends the startup information 2 to the terminal according to the startup information 1.
  • the terminal receives the startup information 2.
  • the terminal starts a high-reliability transmission mechanism of the user plane with the RAN node according to the startup information 2.
  • Embodiment 3 exemplifies the flow of the method provided by this application in the above case 3.
  • the communication scenario is a multi-UPF scenario
  • the first device is a RAN node. See Figure 11, including:
  • the RAN node determines packet loss conditions on the first link, the first sub-link, and the second sub-link.
  • step 1108 refers to the description in the above case 3, which will not be repeated here.
  • the above method further includes: the SMF sends indication information to the terminal, I-UPF, and PSA UPF.
  • the indication information is used to instruct the corresponding network node to feedback packet loss information. For details, please refer to the above Text, I won’t repeat it here.
  • the RAN node determines the number of consecutive packet loss on the user plane path according to the packet loss conditions on the first link, the first sub-link, and the second sub-link.
  • the RAN node If the number of consecutive lost packets reaches the first threshold, the RAN node starts a high-reliability transmission mechanism of the user plane with the I-UPF and the terminal.
  • the RAN node sends start information 1 to the SMF.
  • the start information 1 indicates that a high-reliability transmission mechanism for the user plane path needs to be started.
  • the SMF receives the startup information 1 from the RAN node.
  • the SMF sends the startup information 2 to the I-UPF according to the startup information 1, and the startup information 2 is used to activate the user-plane high-reliability transmission mechanism of the corresponding network node.
  • I-UPF receives startup information 2.
  • the I-UPF starts the user plane high-reliability transmission mechanism between the RAN node and the PSA UPF according to the startup information 2.
  • the SMF sends the startup information 2 to the terminal according to the startup information 1.
  • the terminal receives the startup information 2.
  • the terminal initiates a high-reliability transmission mechanism of the user plane with the RAN node according to the startup information 2.
  • the SMF sends start information 2 to the PSA UPF according to the start information 1, and the start information 2 is used to start the user plane high-reliability transmission mechanism of the corresponding network node.
  • PSA UPF receives start information 2.
  • the PSA UPF starts the user-plane high-reliability transmission mechanism with the I-UPF according to the startup information 2.
  • Embodiment 4 exemplifies the flow of the method provided by this application in the above case 4.
  • the communication scenario is a multi-UPF scenario
  • the first device is a PSA UPF. See Figure 12, including:
  • PSA UPF determines packet loss conditions on the first link, the first sub-link, and the second sub-link.
  • step 1208 For the specific implementation of step 1208, refer to the description in the above case 4, which will not be repeated here.
  • the above method further includes: SMF sends indication information to the terminal, RAN node, and I-UPF.
  • the indication information is used to instruct the corresponding network node to feedback the message loss information. For details, please refer to the above Text, I won’t repeat it here.
  • the PSA UPF determines the number of consecutive packet loss on the user plane path according to the packet loss conditions on the first link, the first sublink, and the second sublink.
  • the PSA UPF starts a high-reliability transmission mechanism of the user plane with the RAN node.
  • the PSA UPF sends start information 1 to the SMF, and the start information 1 indicates that the high-reliability transmission mechanism for the user plane path needs to be started.
  • SMF receives start information 1 from PSA UPF.
  • the SMF sends the startup information 2 to the I-UPF according to the startup information 1, and the startup information 2 is used to activate the user-plane high-reliability transmission mechanism of the corresponding network node.
  • I-UPF receives startup information 2.
  • the I-UPF starts the user plane high-reliability transmission mechanism between the RAN node and the PSA UPF according to the startup information 2.
  • the SMF sends activation information 2 to the terminal according to the activation information 1.
  • the terminal receives the startup information 2.
  • the terminal starts a high-reliability transmission mechanism of the user plane with the RAN node according to the startup information 2.
  • the SMF sends start information 2 to the RAN node according to the start information 1, and the start information 2 is used to start the user plane high-reliability transmission mechanism of the corresponding network node.
  • the RAN node receives the startup information 2.
  • the RAN node initiates a high-reliability transmission mechanism of the user plane between the I-UPF and the terminal according to the startup information 2.
  • the user plane high-reliability transmission mechanism of the entire user plane path is activated as an example.
  • the user plane high-reliability transmission of some links in the user plane path can also be activated. Mechanism, this application does not restrict it.
  • the embodiment of the present application also provides a communication system, including: a RAN node and an SMF.
  • the PDU session of the terminal is anchored to the PSA UPF through the RAN node.
  • the user plane path between the terminal and the PSA UPF includes the first link and the second link. Two links, the first link refers to the user plane data link for communication between the terminal and the RAN node, and the second link refers to the user plane data link for communication between the RAN node and the PSA UPF;
  • SMF is used to send the life time information corresponding to the service flow to the first device, and the first device is a RAN node or PSA UPF;
  • the first device is used to receive time-to-live information from the SMF, and to determine the first threshold according to the time-to-live information;
  • the first device is also used to obtain the packet loss conditions of the service flow on the first link and the second link;
  • the first device is further configured to determine the number of consecutive packet loss of the service flow on the user plane path according to the packet loss conditions of the service flow on the first link and the second link;
  • the first device In the case that the number of consecutive packet loss of the service flow on the user plane path reaches the first threshold, the first device is also used to trigger the start of a high-reliability transmission mechanism for the user plane path.
  • the number of consecutive packet loss of the service flow on the user plane path reaches a first threshold, specifically: the service flow continuously loses packets on the first link in the user plane path The number of packets reaches the first threshold;
  • the first device is specifically used to trigger the start of the high-reliability transmission mechanism for the first link in the user plane path; or,
  • the first device is specifically used to trigger the start of the high-reliability transmission mechanism for the first link and the second link in the user plane path.
  • the first device is a RAN node
  • the first device is specifically configured to send first start information to the terminal and trigger itself to start the high-reliability transmission mechanism of the first link, and the first start information indicates that the high-reliability transmission mechanism for the first link needs to be started;
  • the terminal is configured to receive first start information from the first device, and start the high-reliability transmission mechanism of the first link according to the first start information.
  • the first device is specifically configured to send second activation information to the SMF, and the second activation information indicates that a high-reliability transmission mechanism for the first link needs to be activated;
  • the SMF is used to receive the second startup information from the first device, and control the startup of the high-reliability transmission mechanism of the first link according to the second startup information.
  • the number of consecutive packet loss of the service flow on the user plane path reaches a first threshold, specifically: the service flow continuously loses packets on the second link in the user plane path The number of packets reaches the first threshold;
  • the first device is specifically used to trigger the start of the high-reliability transmission mechanism for the second link in the user plane path; or,
  • the first device is specifically used to trigger the start of the high-reliability transmission mechanism for the first link and the second link in the user plane path.
  • the first device is a RAN node
  • the first device is specifically configured to send third start information to the PSA UPF and trigger itself to start the high-reliability transmission mechanism of the second link, and the third start information indicates that the high-reliability transmission mechanism for the second link needs to be started;
  • PSA UPF is used to receive the third startup information from the first device, and start the high-reliability transmission mechanism of the second link according to the third startup information.
  • the first device is PSA UPF
  • the first device is specifically configured to send fourth start information to the RAN node and trigger itself to start the high-reliability transmission mechanism of the second link, and the fourth start information indicates that the high-reliability transmission mechanism for the second link needs to be started;
  • the RAN node is configured to receive the fourth start information from the first device, and start the high-reliability transmission mechanism of the second link according to the fourth start information.
  • the first device is specifically configured to send fifth activation information to the SMF, where the fifth activation information indicates that a high-reliability transmission mechanism for the second link needs to be activated;
  • the SMF is used to receive the fifth startup information from the first device, and control the startup of the high-reliability transmission mechanism of the second link according to the fifth startup information.
  • the number of consecutive packet loss of the service flow on the user plane path reaches a first threshold, specifically: the service flow continuously loses packets on the first link in the user plane path The number of packets is less than the first threshold, the number of consecutive packet loss on the second link is less than the first threshold, and the overall continuous packet loss on the first link and the second link The number reaches the first threshold;
  • the first device is specifically used to trigger the start of the high-reliability transmission mechanism for the first link and the second link in the user plane path.
  • the first device is specifically configured to send sixth activation information to the SMF, where the sixth activation information indicates that a high-reliability transmission mechanism for the first link and the second link needs to be activated;
  • the SMF is used to receive the sixth start information from the first device, and control the start of the high-reliability transmission mechanism of the first link and the second link according to the sixth start information.
  • the first device is the access network device
  • the first device is configured to use the PDCP SN of the packet lost on the first link according to the service flow and the N3 GTP-U of the packet lost on the second link by the service flow.
  • the SN, and the mapping relationship between the PDCP SN and the N3 GTP-U SN of the packets in the service flow determine the number of consecutive packet loss of the service flow on the user plane path.
  • the first device is a RAN node
  • for uplink packets when the first device is a RAN node, for uplink packets,
  • the terminal is used to send packets in the service flow to the RAN node;
  • the RAN node is used to receive packets in the service flow from the terminal;
  • the RAN node is also used to determine the packet loss of the service flow on the first link according to the continuity of the PDCP SN of the correctly received message.
  • the first device is a RAN node
  • for uplink packets when the first device is a RAN node, for uplink packets,
  • the terminal is used to send packets in the service flow to the RAN node;
  • the RAN node is used to receive packets in the service flow from the terminal, and send a positive acknowledgement ACK to the terminal for each correctly received packet;
  • the terminal is also used to receive from the RAN node the ACK sent by the RAN node to the terminal for each correctly received message, and send the first message to the RAN node according to whether the ACK of each sent message is received.
  • Information, the first packet loss information is used to indicate the PDCP SN of the packet that the RAN node did not correctly receive;
  • the RAN node is also configured to receive the first packet loss information from the terminal, and determine the packet loss condition of the service flow on the first link according to the first packet loss information.
  • the first device is a RAN node
  • for uplink packets when the first device is a RAN node, for uplink packets,
  • PSA UPF is used to send the second packet loss information to the RAN node, and the second packet loss information is used to indicate the N3 GTP-U SN of the packet that the PSA UPF has not received correctly;
  • the RAN node is configured to receive the second packet loss information from the PSA UPF, and determine the packet loss condition of the service flow on the second link according to the second packet loss information.
  • the first device is a RAN node
  • for uplink packets when the first device is a RAN node, for uplink packets,
  • the RAN node is used to send packets in the service flow to the PSA UPF;
  • PSA UPF is used to receive packets in the service flow from the RAN node, and send ACK to the RAN node for each correctly received packet;
  • the RAN node is also used to receive the ACK sent by the PSA UPF for each correctly received message from the PSA UPF, and determine whether the service flow is on the second link according to the information about whether the ACK for each message sent is received Packet loss situation.
  • the first device is a RAN node
  • the first device is a RAN node
  • the terminal is used to send the third packet loss information to the RAN node, and the third packet loss information is used to indicate the PDCP SN of the packet that the terminal has not received correctly;
  • the RAN node is configured to receive the third packet loss information from the terminal, and determine the packet loss condition of the service flow on the first link according to the third packet loss information.
  • the first device is a RAN node
  • the first device is a RAN node
  • the RAN node is used to send packets in the service flow to the terminal;
  • the terminal is used to receive packets in the service flow from the RAN node, and send an ACK to the RAN node for each correctly received packet;
  • the RAN node is also used to receive the ACK sent by the terminal for each correctly received message from the terminal, and determine the packet loss of the service flow on the first link according to the information about whether the ACK of each message sent is received happening.
  • the first device is a RAN node
  • the first device is a RAN node
  • PSA UPF used to send packets in the service flow to the RAN node
  • the RAN node is used to receive packets in the service flow from the PSA UPF, and determine the packet loss of the service flow on the second link according to the continuity of the N3GTP-U SN of the correctly received packets.
  • PSA UPF used to send packets in the service flow to the RAN node
  • the RAN node is used to receive packets in the service flow from the PSA UPF, and send an ACK to the PSA UPF for each correctly received packet;
  • PSA UPF is also used to receive from the RAN node the ACK sent by the RAN node to the PSA UPF for each correctly received message, and send a fourth message to the RAN node according to whether the ACK of each sent message is received Message loss information, the fourth message loss information is used to indicate the N3 GTP-U SN of the message that the RAN node has not received correctly;
  • the RAN node is also used to receive the fourth packet loss information from the PSA UPF, and determine the packet loss condition of the service flow on the second link according to the fourth packet loss information.
  • the first device is PSA UPF
  • uplink packets for uplink packets
  • the RAN node is used to send the fifth packet loss information to the PSA UPF, and the fifth packet loss information is used to indicate the packets that the service flow is lost on the first link;
  • PSA UPF is used to receive the fifth packet loss information from the RAN node, and determine the packet loss condition of the service flow on the first link according to the fifth packet loss information.
  • the PDCP SN of each message correctly received by the RAN node corresponds to the N3 GTP-U SN of the message sent by the RAN node, and the N3 GTP-U SN of the continuous message sent by the RAN node is continuous Yes
  • the fifth message loss information is used to indicate the N3 GTP-U SN of the last correctly received message of the message incorrectly received by the RAN node on the first link
  • the fifth message loss information is also used Indicate that the last packet or multiple consecutive packets of the packet indicated by the fifth packet loss information are lost;
  • the difference between the PDCP SN of each message correctly received by the RAN node and the N3 GTP-U SN of the message sent by the RAN node is the same.
  • the fifth message loss information is that the RAN node is on the first link. N3 GTP-U SN of the incorrectly received message.
  • the first device is PSA UPF
  • uplink packets for uplink packets
  • the RAN node is used to send packets in the service flow to the PSA UPF;
  • PSA UPF is used to receive packets in the service flow from the RAN node, and determine the packet loss of the service flow on the second link according to the continuity of the N3 GTP-U SN of the correctly received packets.
  • the first device is PSA UPF
  • uplink packets for uplink packets
  • the RAN node is used to send packets in the service flow to the PSA UPF;
  • PSA UPF is used to receive packets in the service flow from the RAN node, and send ACK to the RAN node for each correctly received packet;
  • the RAN node is also used to receive the ACK sent by the PSA UPF for each correctly received message from the PSA UPF, and send the sixth message loss information to the PSA UPF according to whether the ACK of each sent message is received ,
  • the sixth message loss information is used to indicate the N3 GTP-U SN of the message that the PSA UPF did not correctly receive;
  • the PSA UPF is also used to receive the sixth packet loss information from the RAN node, and determine the packet loss condition of the service flow on the second link according to the sixth packet loss information.
  • the first device is PSA UPF
  • downlink packets For downlink packets,
  • the RAN node is used to send the seventh packet loss information to the PSA UPF, and the seventh packet loss information is used to indicate the N3 GTP-U SN of the packet that the service flow is lost on the first link;
  • PSA UPF is used to receive the seventh packet loss information from the RAN node, and determine the packet loss condition of the service flow on the first link according to the seventh packet loss information.
  • the first device is PSA UPF
  • downlink packets For downlink packets,
  • the RAN node is used to send the eighth packet loss information to the PSA UPF, and the eighth packet loss information is used to indicate the N3 GTP-U SN of the packet that the RAN node did not correctly receive;
  • PSA UPF is used to receive the eighth packet loss information from the RAN node, and determine the packet loss condition of the service flow on the second link according to the eighth packet loss information.
  • the first device is PSA UPF
  • downlink packets For downlink packets,
  • PSA UPF used to send packets in the service flow to the RAN node
  • the RAN node is used to receive packets in the service flow from the PSA UPF, and send an ACK to the PSA UPF for each correctly received packet;
  • PSA UPF is also used to receive from the RAN node the ACK sent by the RAN node for each correctly received message, and determine whether the service flow is on the second link according to the information about whether the ACK of each message sent is received Packet loss situation.
  • the PSA UPF and the RAN node communicate through I-UPF
  • the second link includes the first sub-link and the second sub-link
  • the first sub-link is the communication between the RAN node and the I-UPF
  • the user plane data link is the user plane data link for communication between the I-UPF and the PSA UPF.
  • the first device is used to trigger the start of the high-reliability transmission mechanism for the first link, the first sub-link and the second sub-link in the user plane path.
  • the first device is specifically configured to send seventh initiation information to the SMF, where the seventh initiation information indicates that a high-reliability transmission mechanism for the first link, the first sub-link, and the second sub-link needs to be started;
  • the SMF is used to receive the seventh start information from the first device, and control the start of the high-reliability transmission mechanism of the first link, the first sub-link and the second sub-link according to the seventh start information.
  • the first device is a RAN node
  • for uplink packets when the first device is a RAN node, for uplink packets,
  • the terminal is used to send packets in the service flow to the RAN node;
  • the RAN node is used to receive packets in the service flow from the terminal, and determine the packet loss of the service flow on the first link according to the continuity of the PDCP and SN of the correctly received packets.
  • the first device is a RAN node
  • for uplink packets when the first device is a RAN node, for uplink packets,
  • the terminal is used to send packets in the service flow to the RAN node;
  • the RAN node is used to receive packets in the service flow from the terminal, and send an ACK to the terminal for each correctly received packet;
  • the terminal is also used to receive from the RAN node the ACK sent by the RAN node to the terminal for each correctly received message, and send the ninth message loss to the RAN node according to the information about whether the ACK of each sent message is received Information, the ninth packet loss information is used to indicate the PDCP SN of the packet that the RAN node did not correctly receive;
  • the RAN node is also used to receive the ninth packet loss information from the terminal, and determine the packet loss condition of the service flow on the first link according to the ninth packet loss information.
  • the first device is a RAN node
  • for uplink packets when the first device is a RAN node, for uplink packets,
  • the I-UPF used to send the tenth message loss information to the RAN node, and the tenth message loss information is used to indicate the N3 GTP-U SN and the N3 GTP-U SN of the message that the I-UPF did not correctly receive on the first sub-link
  • the RAN node is configured to receive the tenth packet loss information from the I-UPF, and determine the packet loss condition of the service flow on the second link according to the tenth packet loss information.
  • the first device is a RAN node
  • for uplink packets when the first device is a RAN node, for uplink packets,
  • the RAN node is used to send packets in the service flow to the I-UPF;
  • I-UPF used to receive packets in the service flow from the RAN node, and send an ACK to the RAN node for each correctly received packet
  • the RAN node is also used to receive the ACK sent by the I-UPF for each correctly received message from the I-UPF, and determine whether the service flow is in the first sub-chain according to the information about whether the ACK for each message sent is received Packet loss on the road;
  • I-UPF is also used to send the eleventh packet loss information to the RAN node.
  • the eleventh packet loss information is used to indicate the N3 GTP-U of the packet that the PSA UPF did not correctly receive on the second sub-link SN;
  • the RAN node is also used to receive the eleventh packet loss information from the I-UPF, and determine that the service flow is on the second link based on the eleventh packet loss information and the packet loss of the service flow on the first sub-link Packet loss on the Internet.
  • the first device is a RAN node
  • the first device is a RAN node
  • the terminal is used to send the twelfth message loss information to the RAN node, and the twelfth message loss information is used to indicate the PDCP SN of the message that the terminal has not received correctly;
  • the RAN node is configured to receive the twelfth packet loss information from the terminal, and determine the packet loss condition of the service flow on the first link according to the twelfth packet loss information.
  • the first device is a RAN node
  • the first device is a RAN node
  • the RAN node is used to send packets in the service flow to the terminal;
  • the terminal is used to receive packets in the service flow from the RAN node, and send an ACK to the RAN node for each correctly received packet;
  • the RAN node is used to receive from the terminal the ACK sent by the terminal for each correctly received message, and determine the packet loss of the service flow on the first link according to the information about whether the ACK of each message sent is received .
  • the first device is a RAN node
  • the first device is a RAN node
  • I-UPF used to send packets in the service flow to the RAN node
  • the RAN node is used to receive packets in the service flow from the I-UPF, and determine the incorrectly received packets on the first sub-link by the RAN node based on the continuity of the N3 GTP-U SN of the correctly received packets N3 GTP-U SN of the text;
  • the I-UPF is also used to send the thirteenth packet loss information to the RAN node, and the thirteenth packet loss information is used to indicate the incorrectly received packet on the second sub-link by the I-UPF;
  • the RAN node is also used to receive the thirteenth message loss information from the I-UPF, and according to the N3 GTP-U SN and the thirteenth message loss of the message received incorrectly on the first sub-link by the RAN node The information determines the packet loss situation of the service flow on the second link.
  • the first device is a RAN node
  • the first device is a RAN node
  • I-UPF used to send packets in the service flow to the RAN node
  • the RAN node is used to receive packets in the service flow from the I-UPF, and send an ACK to the I-UPF for each correctly received packet;
  • the I-UPF is also used to receive from the RAN node the ACK sent by the RAN node to the I-UPF for each correctly received message, and send the first ACK to the RAN node according to whether the ACK of each sent message is received.
  • the thirteenth message loss information and the fourteenth message loss information, the thirteenth message loss information is used to indicate that the I-UPF incorrectly received the message on the second sub-link, and the fourteenth message loss information N3 GTP-U SN used to indicate the message that the RAN node did not correctly receive on the first sub-link;
  • the RAN node is also used to receive the thirteenth message loss information and the fourteenth message loss information from the I-UPF, and determine that the service flow is in the second according to the thirteenth message loss information and the fourteenth message loss information Packet loss on the link.
  • the N9 GTP-U SN of each message correctly received by the I-UPF corresponds to the N3 GTP-U SN of the message sent by the I-UPF, and the N3 of the consecutive messages sent by the I-UPF
  • the GTP-U SN is continuous, and the 13th message loss information is used to indicate the N3 GTP-U SN of the last correctly received message of the message that the I-UPF did not correctly receive on the second sub-link.
  • the thirteenth message loss information is also used to indicate the loss of the next message or successive messages of the message indicated by the thirteenth message loss information;
  • the difference between the N9 GTP-U SN of each message correctly received by the I-UPF and the N3 GTP-U SN of the message sent by the I-UPF is the same, and the thirteenth message loss information is I -The N3 GTP-U SN of the message that the UPF did not correctly receive on the second sub-link.
  • the first device is PSA UPF
  • uplink packets for uplink packets
  • I-UPF used to send the fifteenth packet loss information to the PSA UPF, and the fifteenth packet loss information is used to indicate the packet loss of the service flow on the first link;
  • PSA UPF is used to receive the fifteenth packet loss information from the I-UPF, and determine the packet loss of the service flow on the first link according to the fifteenth packet loss information.
  • the PDCP SN of each message correctly received by the RAN node corresponds to the N3 GTP-U SN of the message sent by the RAN node, and the N3 GTP-U SN of the continuous message sent by the RAN node is continuous Yes
  • the fifteenth message loss information is used to indicate the N9 GTP-U SN of the last correctly received message that the RAN node did not correctly receive on the first link, and the fifteenth message loss information is still It is used to indicate the packet loss of the last packet or multiple consecutive packets of the packet indicated by the fifteenth packet loss information;
  • the difference between the PDCP SN of each message correctly received by the RAN node and the N3 GTP-U SN of the message sent by the RAN node is the same, and the N3 GTP of each message correctly received by the I-UPF -The difference between N9 GTP-U SN of the message sent by U SN and I-UPF is the same, and the fifteenth message loss information is the message that the RAN node did not correctly receive on the first link N9 GTP-U SN.
  • the first device is PSA UPF
  • uplink packets for uplink packets
  • I-UPF used to send the sixteenth packet loss information to the PSA UPF, and the sixteenth packet loss information is used to indicate the packet loss of the service flow on the first sub-link;
  • PSA UPF used to receive the 16th message loss information from I-UPF
  • I-UPF is also used to send packets in the service flow to the PSA UPF;
  • PSA UPF is also used to receive packets in the service flow from the I-UPF, and determine the packet loss of the service flow on the second sub-link based on the continuity of the N9 GTP-U SN of the correctly received packet;
  • PSA UPF is also used to determine the packet loss condition of the service flow on the second link according to the sixteenth packet loss information and the packet loss condition of the service flow on the second sub-link.
  • the first device is PSA UPF
  • uplink packets for uplink packets
  • I-UPF used to send packets in the service flow to the PSA UPF
  • PSA UPF used to receive packets in the service flow from I-UPF, and send ACK to I-UPF for each correctly received packet
  • I-UPF is also used to receive from the PSA UPF the ACK sent by the PSA UPF for each correctly received message, and send the 16th message to the PSA UPF according to the information about whether the ACK of each sent message is received Loss information and seventeenth message loss information, the sixteenth message loss information is used to indicate the packets lost in the first sub-link of the service flow, and the seventeenth message loss information is used to indicate that the PSA UPF is not received correctly N9 GTP-U SN of the message;
  • PSA UPF is also used to receive the sixteenth message loss information and the seventeenth message loss information from the I-UPF, and determine that the service flow is in the second according to the sixteenth message loss information and the seventeenth message loss information. Packet loss on the link.
  • the N3 GTP-U SN of each message correctly received by the I-UPF corresponds to the N9 GTP-U SN of the message sent by the I-UPF, and the N9 of the consecutive messages sent by the I-UPF
  • the GTP-U SN is continuous, and the sixteenth message loss information is used to indicate the N9 GTP-U SN of the last correctly received message in the first sub-link incorrectly received by the I-UPF.
  • the sixteenth message loss information is also used to indicate the packet loss of the next message or multiple consecutive messages indicated by the sixteenth message loss information;
  • the difference between the N3 GTP-U SN of each message correctly received by the I-UPF and the N9 GTP-U SN of the message sent by the I-UPF is the same, and the sixteenth message loss information is I -N9 GTP-U SN of the message that UPF did not correctly receive on the first sub-link.
  • the first device is PSA UPF
  • downlink packets For downlink packets,
  • I-UPF used to send the eighteenth message loss information to the PSA UPF, and the eighteenth message loss information is used to indicate the N9 GTP-U SN of the message that the service flow is lost on the first link;
  • PSA UPF is used to receive the eighteenth packet loss information from the I-UPF, and determine the packet loss of the service flow on the first link according to the eighteenth packet loss information.
  • the first device is PSA UPF
  • downlink packets For downlink packets,
  • I-UPF used to send the nineteenth message loss information to the PSA UPF
  • the nineteenth message loss information is used to indicate the N9 GTP- of the packets lost in the first sub-link and the second sub-link of the service flow.
  • PSA UPF is used to receive the nineteenth packet loss information from the I-UPF, and determine the packet loss of the service flow on the second link according to the nineteenth packet loss information.
  • each network node In the communication system, the specific implementation of each network node can be referred to above, and will not be repeated here.
  • the number of consecutive packet losses may also be the cumulative number of packet losses within a period of time.
  • the conditions for starting the user-plane high-reliability transmission mechanism may be: During this time period, the cumulative number of lost packets on the user plane path of the service flow reaches the third threshold.
  • the time period and the third threshold may be preset or pre-defined or stipulated by agreement or pre-configured, which is not limited in this application.
  • the activation of the high-reliability transmission mechanism for the first link means that the transmission reliability on the first link is low (for example, the number of consecutive packet loss on the first link) When the first threshold is reached), in order to improve the reliability of transmission of packets in the service flow on the first link, a high-reliability transmission mechanism is activated between the terminal and the RAN node. Therefore, in the embodiment of the present application, "start the high-reliability transmission mechanism for the first link” can also be replaced with “start the high-reliability transmission mechanism between the terminal and the RAN node for the service flow.
  • the high-reliability transmission mechanism for the second link can also be replaced with “initiate the high-reliability transmission mechanism between the PSA-UPF and the RAN node for the service flow.
  • "Start the high-reliability transmission mechanism for the first link and the second link” or “start the high-reliability transmission mechanism for the first link, the first sub-link, and the second sub-link” can also be replaced with “Start the high-reliability transmission mechanism for the service flow between the terminal and PSA-UPF.
  • “Start the high-reliability transmission mechanism for the first sub-link” can also be replaced with “start the high-reliability transmission mechanism for the service flow between I-UPF and RAN High-reliability transmission mechanism between nodes.
  • “Start the high-reliability transmission mechanism for the second sub-link” can also be replaced with "start the high-reliability transmission mechanism between the I-UPF and PSA-UPF for the service flow.
  • activating the high-reliability transmission mechanism for the user plane path can also be replaced with “activating the high-reliability transmission mechanism for the service flow”.
  • each network element for example, RAN node, PSA UPF, I-UPF, and terminal, in order to realize the above-mentioned functions, includes at least one of a hardware structure and a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of this application can divide functional units of RAN nodes, PSA UPF, I-UPF, and terminals according to the foregoing method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated In a processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 shows a schematic diagram of a possible structure of the communication device (denoted as the communication device 130) involved in the foregoing embodiment, and the communication device 130 includes a processing unit 1301. Optionally, it further includes a communication unit 1302 and/or a storage unit 1303.
  • the schematic structural diagram shown in FIG. 13 can be used to illustrate the structure of the RAN node, PSA UPF, I-UPF, or terminal involved in the foregoing embodiment.
  • the processing unit 1301 is used to control and manage the actions of the RAN node.
  • the processing unit 1301 is used to execute the 701 to 704 (at this time, the first device is a RAN node), 801 to 805 in Fig. 8 (at this time, the first device is a RAN node), 902, 907-911 in Fig. 9 and 1002 in Fig. 10 1007, 1012, and 1013, 1102, 1107-1111 in FIG. 11, 1202, 1207, 1216, and 1217 in FIG. 12, and/or actions performed by RAN nodes in other processes described in the embodiments of the present application.
  • the processing unit 1301 may communicate with other network entities through the communication unit 1302, for example, communicate with the SMF in FIG. 11.
  • the storage unit 1303 is used to store the program code and data of the RAN node.
  • the processing unit 1301 is used to control and manage the actions of the PSA UPF.
  • the processing unit 1301 is used to execute the 701 to 704 (At this time, the first device is PSA UPF), 801 to 805 in Figure 8 (At this time, the first device is PSA UPF), 902, 907, 912, and 913 in Figure 9, and in Figure 10 1002, 1007-1011, 1102, 1107, 1116, and 1117 in FIG. 11, 1202, 1207-1211 in FIG. 12, and/or actions performed by PSA UPF in other processes described in the embodiments of this application.
  • the processing unit 1301 may communicate with other network entities through the communication unit 1302, for example, communicate with the SMF shown in FIG. 11.
  • the storage unit 1303 is used to store the program code and data of the PSA UPF.
  • the processing unit 1301 is used to control and manage the actions of the I-UPF, for example, the processing unit 1301 is used to execute FIG. 11 1102, 1107, 1112, and 1113 in Figure 12, 1202, 1207, 1212, and 1213 in Figure 12, and/or actions performed by the I-UPF in other processes described in the embodiments of this application.
  • the processing unit 1301 may communicate with other network entities through the communication unit 1302, for example, communicate with the SMF shown in FIG. 11.
  • the storage unit 1303 is used to store I-UPF program codes and data.
  • the processing unit 1301 is used to control and manage the actions of the terminal.
  • the processing unit 1301 is used to execute 901 and 901 in FIG. 902, 907, 914, and 915, 1001, 1002, 1007, 1014, and 1015 in Figure 10, 1101, 1102, 1107, 1114, and 1115 in Figure 11, 1201, 1202, 1207, 1214, and 1215 in Figure 12, And/or actions performed by the terminal in other processes described in the embodiments of this application.
  • the processing unit 1301 may communicate with other network entities through the communication unit 1302, for example, communicate with the SMF shown in FIG. 11.
  • the storage unit 1303 is used to store the program code and data of the terminal.
  • the communication device 130 may be a device or a chip in the device.
  • the processing unit 1301 may be a processor or a controller, and the communication unit 1302 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver, or the like.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit 1303 may be a memory.
  • the processing unit 1301 may be a processor or a controller
  • the communication unit 1302 may be an input/output interface, a pin, a circuit, or the like.
  • the storage unit 1303 may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in a device.
  • a storage unit for example, a register, a cache, etc.
  • a storage unit for example, a read-only memory, a random access memory, etc.
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the communication device 130 can be regarded as the communication unit 1302 of the communication device 130, and the processor with processing function can be regarded as the processing unit 1301 of the communication device 130.
  • the device for implementing the receiving function in the communication unit 1302 may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the device for implementing the sending function in the communication unit 1302 can be regarded as a sending unit, the sending unit is used to perform the sending steps in the embodiment of the present application, and the sending unit can be a transmitter, a transmitter, a sending circuit, and the like.
  • the integrated unit in FIG. 13 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage
  • the medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory (read-only memory, referred to as ROM), random access memory (random access memory, referred to as RAM), magnetic disks or optical disks, etc.
  • the medium of the program code include: U disk, mobile hard disk, read-only memory (read-only memory, referred to as ROM), random access memory (random access memory, referred to as RAM), magnetic disks or optical disks, etc.
  • the unit in FIG. 13 may also be referred to as a module, for example, the processing unit may be referred to as a processing module.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a communication device (denoted as the communication device 140). See FIG. 14 or FIG. 15.
  • the communication device 140 includes a processor 1401, and optionally, a communication device connected to the processor 1401. ⁇ Memory 1402.
  • the processor 1401 may be a general-purpose central processing unit (central processing unit, CPU for short), a microprocessor, an application-specific integrated circuit (ASIC for short), or one or more programs used to control the program of this application Implementation of integrated circuits.
  • the processor 1401 may also include multiple CPUs, and the processor 1401 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 1402 may be a ROM or other types of static storage devices that can store static information and instructions, RAM, or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • a magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer.
  • the embodiment of the present application does not impose any limitation on this.
  • the memory 1402 may exist independently, or may be integrated with the processor 1401. Wherein, the memory 1402 may contain computer program code.
  • the processor 1401 is configured to execute the computer program code stored in the memory 1402, so as to implement the method provided in the embodiment of the present application.
  • the communication device 140 further includes a transceiver 1403.
  • the processor 1401, the memory 1402, and the transceiver 1403 are connected by a bus.
  • the transceiver 1403 is used to communicate with other devices or a communication network.
  • the transceiver 1403 may include a transmitter and a receiver.
  • the device used for implementing the receiving function in the transceiver 1403 can be regarded as a receiver, and the receiver is used to perform the receiving steps in the embodiment of the present application.
  • the device used in the transceiver 1403 to implement the sending function can be regarded as a transmitter, and the transmitter is used to perform the sending steps in the embodiment of the present application.
  • the schematic structural diagram shown in FIG. 14 may be used to illustrate the structure of the RAN node, PSA UPF, I-UPF, or terminal involved in the foregoing embodiment.
  • the processor 1401 is used to control and manage the actions of the RAN node.
  • the processor 1401 is used to execute the 701 to 704 (at this time, the first device is a RAN node), 801 to 805 in Fig. 8 (at this time, the first device is a RAN node), 902, 907-911 in Fig. 9 and 1002 in Fig. 10 1007, 1012, and 1013, 1102, 1107-1111 in FIG. 11, 1202, 1207, 1216, and 1217 in FIG. 12, and/or actions performed by RAN nodes in other processes described in the embodiments of the present application.
  • the processor 1401 may communicate with other network entities through the transceiver 1403, for example, communicate with the SMF in FIG. 11.
  • the memory 1402 is used to store the program code and data of the RAN node.
  • the processor 1401 is used to control and manage the actions of the PSA UPF.
  • the processor 1401 is used to execute the steps in FIG. 7 701 to 704 (At this time, the first device is PSA UPF), 801 to 805 in Figure 8 (At this time, the first device is PSA UPF), 902, 907, 912, and 913 in Figure 9, and in Figure 10 1002, 1007-1011, 1102, 1107, 1116, and 1117 in FIG. 11, 1202, 1207-1211 in FIG. 12, and/or actions performed by PSA UPF in other processes described in the embodiments of this application.
  • the processor 1401 may communicate with other network entities through the transceiver 1403, for example, communicate with the SMF shown in FIG. 11.
  • the memory 1402 is used to store the program code and data of the PSA UPF.
  • the processor 1401 is used to control and manage the actions of the I-UPF, for example, the processor 1401 is used to execute FIG. 11 1102, 1107, 1112, and 1113 in Figure 12, 1202, 1207, 1212, and 1213 in Figure 12, and/or actions performed by the I-UPF in other processes described in the embodiments of this application.
  • the processor 1401 may communicate with other network entities through the transceiver 1403, for example, communicate with the SMF shown in FIG. 11.
  • the memory 1402 is used to store I-UPF program codes and data.
  • the processor 1401 is used to control and manage the actions of the terminal.
  • the processor 1401 is used to execute 901 and 901 in FIG. 902, 907, 914, and 915, 1001, 1002, 1007, 1014, and 1015 in Figure 10, 1101, 1102, 1107, 1114, and 1115 in Figure 11, 1201, 1202, 1207, 1214, and 1215 in Figure 12, And/or actions performed by the terminal in other processes described in the embodiments of this application.
  • the processor 1401 may communicate with other network entities through the transceiver 1403, for example, communicate with the SMF shown in FIG. 11.
  • the memory 1402 is used to store program codes and data of the terminal.
  • the processor 1401 includes a logic circuit and an input interface and/or an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • FIG. 15 The schematic structural diagram shown in FIG. 15 may be used to illustrate the structure of the RAN node, PSA UPF, I-UPF, or terminal involved in the foregoing embodiment.
  • the processor 1401 is used to control and manage the actions of the RAN node.
  • the processor 1401 is used to support the RAN node to execute the graph. 701 to 704 in 7 (at this time, the first device is a RAN node), 801 to 805 in Fig. 8 (at this time, the first device is a RAN node), 902, 907-911 in Fig. 9, and in Fig.
  • the processor 1401 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the SMF in FIG. 11.
  • the memory 1402 is used to store the program code and data of the RAN node.
  • the processor 1401 is used to control and manage the actions of the PSA UPF, for example, the processor 1401 is used to support the PSA UPF execution diagram 701 to 704 in Figure 7 (the first device is PSA UPF at this time), 801 to 805 in Figure 8 (the first device is PSA UPF at this time), and 902, 907, 912, and 913 in Figure 9 1002, 1007-1011 in 10, 1102, 1107, 1116, and 1117 in Figure 11, 1202, 1207-1211 in Figure 12, and/or PSA UPF execution in other processes described in the embodiments of this application action.
  • the processor 1401 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the SMF shown in FIG. 11.
  • the memory 1402 is used to store the program code and data of the PSA UPF.
  • the processor 1401 is used to control and manage the actions of the I-UPF.
  • the processor 1401 is used to support the I-UPF.
  • the UPF executes 1102, 1107, 1112, and 1113 in FIG. 11, 1202, 1207, 1212, and 1213 in FIG. 12, and/or actions performed by I-UPF in other processes described in the embodiments of the present application.
  • the processor 1401 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the SMF shown in FIG. 11.
  • the memory 1402 is used to store I-UPF program codes and data.
  • the processor 1401 is used to control and manage the actions of the terminal.
  • the processor 1401 is used to support the terminal to execute the terminal shown in FIG. 9 901, 902, 907, 914, and 915, 1001, 1002, 1007, 1014, and 1015 in Figure 10, 1101, 1102, 1107, 1114, and 1115 in Figure 11, 1201, 1202, 1207, 1214, and 1214 in Figure 12 1215, and/or actions performed by the terminal in other processes described in the embodiments of this application.
  • the processor 1401 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the SMF shown in FIG. 11.
  • the memory 1402 is used to store program codes and data of the terminal.
  • the embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as a server or a data center that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种通信方法、装置及系统,该方法中,终端的PDU会话通过接入网设备锚定在锚点用户面网关上,终端和锚点用户面网关之间的用户面路径包括第一链路和第二链路,第一链路是指终端和接入网设备之间通信的用户面数据链路,第二链路是指接入网设备和锚点用户面网关之间通信的用户面数据链路,接入网设备或者锚定用户面网关获取业务流在第一链路和第二链路上的丢包情况,并根据业务流在第一链路和第二链路上的丢包情况确定业务流在用户面路径上连续丢包的个数,当业务流在用户面路径上连续丢包的个数达到第一阈值时,触发启动针对业务流的高可靠性传输机制,从而提高数据传输的可靠性,避免应用关断,提高用户体验。

Description

通信方法、装置及系统 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
应用的生存时间(survival time)是指应用服务器或终端的应用层没有收到预期的消息的情况下应用继续运行的时间。生存时间可以表示为一个时长,例如,1ms。对于周期性业务,还可以表示为允许连续错误接收或丢失的消息的最大数量。如果超过了应用的生存时间,应用服务器或终端会将应用的状态转换为关断(down)状态,造成应用中断,从而影响用户体验。
发明内容
本申请实施例提供了一种通信方法、装置及系统,用于提升业务可靠性,提高用户体验。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供了一种通信方法,终端的PDU会话通过接入网设备锚定在锚点用户面网关上,终端和锚点用户面网关之间的用户面路径包括第一链路和第二链路,第一链路是指终端和接入网设备之间通信的用户面数据链路,第二链路是指接入网设备和锚点用户面网关之间通信的用户面数据链路,该方法包括:第一设备获取业务流在第一链路和第二链路上的丢包情况,第一设备为接入网设备或者锚点用户面网关;第一设备根据业务流在第一链路和第二链路上的丢包情况确定业务流在用户面路径上连续丢包的个数;在业务流在用户面路径上连续丢包的个数达到第一阈值的情况下,第一设备触发启动针对业务流的高可靠性传输机制。第一方面提供的方法,第一设备通过获取第一链路和第二链路上的丢包情况,从而确定用户面路径上的连续丢包的个数,若连续丢包的个数达到第一阈值,则启动针对业务流的高可靠性传输机制,从而提高用户面数据传输的可靠性,避免应用关断,提高用户体验。
在一种可能的实现方式中,第一阈值根据业务流对应的生存时间确定。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包的个数达到第一阈值;第一设备触发启动针对业务流的高可靠性传输机制,包括:第一设备触发启动针对业务流在终端和接入网设备之间的高可靠性传输机制;或者,第一设备触发启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,第一设备触发启动针对业务流在终端和接入网设备之间的高可靠性传输机制,包括:第一设备向终端发送第一启动信息,第一启动信息指示需要启动终端和接入网设备之间针对业务流的高可靠性传输机制;以及,第一设备触发自身启动与终端之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,第一设备触发启动终端和接入网设备之间针对业务流 的高可靠性传输机制,包括:第一设备向会话管理网元发送第二启动信息,第二启动信息指示需要启动终端和接入网设备之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第二链路上连续丢包的个数达到第一阈值;第一设备触发启动针对业务流的高可靠性传输机制,包括:第一设备触发启动针对业务流在锚点用户面网关和接入网设备之间的高可靠性传输机制;或者,第一设备触发启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,第一设备触发启动针对业务流在锚点用户面网关和接入网设备之间的高可靠性传输机制,包括:第一设备向锚点用户面网关发送第三启动信息,第三启动信息指示需要启动锚点用户面网关和接入网设备之间针对业务流的高可靠性传输机制;以及,第一设备触发自身启动与锚点用户面网关之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,第一设备触发启动锚点用户面网关和接入网设备之间针对业务流的高可靠性传输机制,包括:第一设备向接入网设备发送第四启动信息,第四启动信息指示需要启动锚点用户面网关和接入网设备之间针对业务流的高可靠性传输机制;以及,第一设备触发自身启动与接入网设备之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,第一设备触发启动针对业务流在锚点用户面网关和接入网设备之间的高可靠性传输机制,包括:第一设备向会话管理网元发送第五启动信息,第五启动信息指示需要启动针对业务流在锚点用户面网关和接入网设备之间的高可靠性传输机制。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包个数小于第一阈值、在第二链路上连续丢包个数小于第一阈值以及在第一链路和第二链路上整体的连续丢包的个数达到第一阈值;第一设备触发启动针对业务流的高可靠性传输机制,包括:第一设备触发启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,第一设备触发启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制,包括:第一设备向会话管理网元发送第六启动信息,第六启动信息指示需要启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,第一设备为接入网设备,第一设备根据业务流在第一链路和第二链路上的丢包情况确定业务流在用户面路径上连续丢包的个数,包括:第一设备根据业务流在第一链路上丢失的报文的PDCP SN和业务流在第二链路上丢失的报文的N3 GTP-U SN,以及业务流中的报文的PDCP SN和N3 GTP-U SN之间的映射关系确定业务流在用户面路径上连续丢包的个数。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,第一设备获取业务流在第一链路上的丢包情况,包括:第一设备从终端接收业务流中的报文,第一设备根据正确接收到的报文的PDCP SN的连续性确定业务流在第一链路上的丢包情况;或者,第一设备从终端接收业务流中的报文,第一设备针对每个正确 接收到的报文向终端发送ACK,第一设备从终端接收第一报文丢失信息,第一报文丢失信息用于指示第一设备未正确接收到的报文的PDCP SN,第一设备根据第一报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,第一设备获取业务流在第二链路上的丢包情况,包括:第一设备从锚点用户面网关接收第二报文丢失信息,第二报文丢失信息用于指示锚点用户面网关未正确接收到的报文的N3 GTP-U SN,第一设备根据第二报文丢失信息确定业务流在第二链路上的丢包情况;或者,第一设备向锚点用户面网关发送业务流中的报文,第一设备从锚点用户面网关接收锚点用户面网关针对每个正确接收到的报文发送的ACK,第一设备根据是否接收到发送的每个报文的ACK的信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,第一设备获取业务流在第一链路上的丢包情况,包括:第一设备从终端接收第三报文丢失信息,第三报文丢失信息用于指示终端未正确接收到的报文的PDCP SN,第一设备根据第三报文丢失信息确定业务流在第一链路上的丢包情况;或者,第一设备向终端发送业务流中的报文,第一设备从终端接收终端针对每个正确接收到的报文发送的ACK,第一设备根据是否接收到发送的每个报文的ACK的信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,第一设备获取业务流在第二链路上的丢包情况,包括:第一设备从锚点用户面网关接收业务流中的报文,第一设备根据正确接收到的报文的N3 GTP-U SN的连续性确定业务流在第二链路上的丢包情况;或者,第一设备从锚点用户面网关接收业务流中的报文,第一设备针对每个正确接收到的报文向锚点用户面网关发送ACK,第一设备从锚点用户面网关接收第四报文丢失信息,第四报文丢失信息用于指示第一设备未正确接收到的报文的N3 GTP-U SN,第一设备根据第四报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对上行报文,第一设备获取业务流在第一链路上的丢包情况,包括:第一设备从接入网设备接收第五报文丢失信息,第五报文丢失信息用于指示业务流在第一链路丢失的报文;第一设备根据第五报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN对应,接入网设备所发送的连续的报文的N3 GTP-U SN是连续的,第五报文丢失信息用于指示接入网设备在第一链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,第五报文丢失信息还用于指示第五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN之间的差值是相同的,第五报文丢失信息为接入网设备在第一链路未正确接收到的报文的N3 GTP-U SN。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对上行报文,第一设备获取业务流在第二链路上的丢包情况,包括:第一设备从接入网设备接 收业务流中的报文,第一设备根据正确接收到的报文的N3 GTP-U SN的连续性确定业务流在第二链路上的丢包情况;或者,第一设备从接入网设备接收业务流中的报文,第一设备针对每个正确接收到的报文向接入网设备发送ACK,第一设备从接入网设备接收第六报文丢失信息,第六报文丢失信息用于指示第一设备未正确接收到的报文的N3 GTP-U SN,第一设备根据第六报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对下行报文,第一设备获取业务流在第一链路上的丢包情况,包括:第一设备从接入网设备接收第七报文丢失信息,第七报文丢失信息用于指示业务流在第一链路丢失的报文的N3GTP-U SN;第一设备根据第七报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对下行报文,第一设备获取业务流在第二链路上的丢包情况,包括:第一设备从接入网设备接收第八报文丢失信息,第八报文丢失信息用于指示接入网设备未正确接收到的报文的N3 GTP-U SN,第一设备根据第八报文丢失信息确定业务流在第二链路上的丢包情况;或者,第一设备向接入网设备发送业务流中的报文,第一设备从接入网设备接收接入网设备针对每个正确接收到的报文发送的ACK,第一设备根据是否接收到发送的每个报文的ACK的信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,锚点用户面网关和接入网设备之间通过中间用户面网关通信,第二链路包括第一子链路和第二子链路,第一子链路为接入网设备和中间用户面网关之间通信的用户面数据链路,第二子链路为中间用户面网关和锚点用户面网关之间通信的用户面数据链路。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包的个数小于第一阈值、在第一子链路连续丢包的个数小于第一阈值以及在第二子链路上连续丢包的个数也小于第一阈值,但是在第一链路、第一子链路和第二子链路任意两条或三条链路上的整体连续丢包的个数达到第一阈值;第一设备触发启动针对业务流的高可靠性传输机制,包括:第一设备触发启动在终端和锚点用户面网关之间的针对业务流的高可靠性传输机制。
在一种可能的实现方式中,第一设备触发启动在终端和锚点用户面网关之间的针对业务流的高可靠性传输机制,包括:第一设备向会话管理网元发送第七启动信息,第七启动信息指示需要启动终端和锚点用户面网关之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,第一设备获取业务流在第一链路上的丢包情况,包括:第一设备从终端接收业务流中的报文,第一设备根据正确接收到的报文的PDCP SN的连续性确定业务流在第一链路上的丢包情况;或者,第一设备从终端接收业务流中的报文,第一设备针对每个正确接收到的报文向终端发送ACK,第一设备从终端接收第九报文丢失信息,第九报文丢失信息用于指示第一设备未正确接收到的报文的PDCP SN,第一设备根据第九报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,第一设备获取业务流在第二链路上的丢包情况,包括:第一设备从中间用户面网关接 收第十报文丢失信息,第十报文丢失信息用于指示中间用户面网关在第一子链路上未正确接收到的报文的N3 GTP-U SN和锚点用户面网关在第二子链路上未正确接收到的报文的N3 GTP-U SN,第一设备根据第十报文丢失信息确定业务流在第二链路上的丢包情况;或者,第一设备向中间用户面网关发送业务流中的报文,第一设备从中间用户面网关接收中间用户面网关针对每个正确接收到的报文发送的ACK,第一设备根据是否接收到发送的每个报文的ACK的信息确定业务流在第一子链路上的丢包情况;第一设备从中间用户面网关接收第十一报文丢失信息,第十一报文丢失信息用于指示锚点用户面网关在第二子链路上未正确接收到的报文的N3 GTP-U SN;第一设备根据第十一报文丢失信息和业务流在第一子链路上的丢包情况确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,第一设备获取业务流在第一链路上的丢包情况,包括:第一设备从终端接收第十二报文丢失信息,第十二报文丢失信息用于指示终端未正确接收到的报文的PDCP SN,第一设备根据第十二报文丢失信息确定业务流在第一链路上的丢包情况;或者,第一设备向终端发送业务流中的报文,第一设备从终端接收终端针对每个正确接收到的报文发送的ACK,第一设备根据是否接收到发送的每个报文的ACK的信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,第一设备获取业务流在第二链路上的丢包情况,包括:第一设备从中间用户面网关接收业务流中的报文,第一设备根据正确接收到的报文的N3 GTP-U SN的连续性确定第一设备在第一子链路上未正确接收到的报文的N3 GTP-U SN,第一设备从中间用户面网关接收第十三报文丢失信息,第十三报文丢失信息用于指示中间用户面网关在第二子链路上未正确接收到的报文,第一设备根据第一设备在第一子链路上未正确接收到的报文的N3 GTP-U SN和第十三报文丢失信息确定业务流在第二链路上的丢包情况;或者,第一设备从中间用户面网关接收业务流中的报文,第一设备针对每个正确接收到的报文向中间用户面网关发送ACK,第一设备从中间用户面网关接收第十三报文丢失信息和第十四报文丢失信息,第十三报文丢失信息用于指示中间用户面网关在第二子链路上未正确接收到的报文,第十四报文丢失信息用于指示第一设备在第一子链路上未正确接收到的报文的N3 GTP-U SN,第一设备根据第十三报文丢失信息和第十四报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,中间用户面网关正确接收到的每个报文的N9 GTP-U SN和中间用户面网关发送的该报文的N3 GTP-U SN对应,中间用户面网关所发送的连续的报文的N3 GTP-U SN是连续的,第十三报文丢失信息用于指示中间用户面网关在第二子链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,第十三报文丢失信息还用于指示第十三报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,中间用户面网关正确接收到的每个报文的N9 GTP-U SN和中间用户面网关发送的该报文的N3 GTP-U SN之间的差值是相同的,第十三报文丢失信息为中间用户面网关在第二子链路未正确接收到的报文的N3 GTP-U SN。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对上行报 文,第一设备获取业务流在第一链路上的丢包情况,包括:第一设备从中间用户面网关接收第十五报文丢失信息,第十五报文丢失信息用于指示业务流在第一链路丢失的报文;第一设备根据第十五报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN对应,接入网设备所发送的连续的报文的N3 GTP-U SN是连续的,第十五报文丢失信息用于指示接入网设备在第一链路未正确接收到的报文的上一个正确接收到的报文的N9 GTP-U SN,第十五报文丢失信息还用于指示第十五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN之间的差值是相同的,中间用户面网关正确接收到的每个报文的N3 GTP-U SN和中间用户面网关发送的该报文的N9 GTP-U SN之间的差值是相同的,第十五报文丢失信息为接入网设备在第一链路未正确接收到的报文的N9 GTP-U SN。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对上行报文,第一设备获取业务流在第二链路上的丢包情况,包括:第一设备从中间用户面网关接收第十六报文丢失信息,第十六报文丢失信息用于指示业务流在第一子链路丢失的报文,第一设备从中间用户面网关接收业务流中的报文,第一设备根据正确接收到的报文的N9 GTP-U SN的连续性确定业务流在第二子链路上的丢包情况,第一设备根据第十六报文丢失信息和业务流在第二子链路上的丢包情况确定业务流在第二链路上的丢包情况;或者,第一设备从中间用户面网关接收业务流中的报文,第一设备针对每个正确接收到的报文向中间用户面网关发送ACK,第一设备从中间用户面网关接收第十六报文丢失信息和第十七报文丢失信息,第十六报文丢失信息用于指示业务流在第一子链路丢失的报文,第十七报文丢失信息用于指示锚点用户面网关未正确接收到的报文的N9 GTP-U SN,第一设备根据第十六报文丢失信息和第十七报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,中间用户面网关正确接收到的每个报文的N3 GTP-U SN和中间用户面网关发送的该报文的N9 GTP-U SN对应,中间用户面网关所发送的连续的报文的N9 GTP-U SN是连续的,第十六报文丢失信息用于指示中间用户面网关在第一子链路未正确接收到的报文的上一个正确接收到的报文的N9 GTP-U SN,第十六报文丢失信息还用于指示第十六报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,中间用户面网关正确接收到的每个报文的N3 GTP-U SN和中间用户面网关发送的该报文的N9 GTP-U SN之间的差值是相同的,第十六报文丢失信息为中间用户面网关在第一子链路未正确接收到的报文的N9 GTP-U SN。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对下行报文,第一设备获取业务流在第一链路上的丢包情况,包括:第一设备从中间用户面网关接收第十八报文丢失信息,第十八报文丢失信息用于指示业务流在第一链路丢失的报文的N9 GTP-U SN;第一设备根据第十八报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对下行报文,第一设备获取业务流在第二链路上的丢包情况,包括:第一设备从中间用户面网 关接收第十九报文丢失信息,第十九报文丢失信息用于指示业务流在第一子链路和第二子链路丢失的报文的N9 GTP-U SN;第一设备根据第十九报文丢失信息确定业务流在第二链路上的丢包情况。
第二方面,提供了一种通信装置,终端的PDU会话通过接入网设备锚定在锚点用户面网关上,终端和锚点用户面网关之间的用户面路径包括第一链路和第二链路,第一链路是指终端和接入网设备之间通信的用户面数据链路,第二链路是指接入网设备和锚点用户面网关之间通信的用户面数据链路,该装置包括:处理单元;处理单元,用于获取业务流在第一链路和第二链路上的丢包情况,该装置为接入网设备或者锚点用户面网关;处理单元,还用于根据业务流在第一链路和第二链路上的丢包情况确定业务流在用户面路径上连续丢包的个数;在业务流在用户面路径上连续丢包的个数达到第一阈值的情况下,处理单元,还用于触发启动针对业务流的高可靠性传输机制。
在一种可能的实现方式中,第一阈值根据业务流对应的生存时间确定。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包的个数达到第一阈值;处理单元,具体用于触发启动针对业务流在终端和接入网设备之间的高可靠性传输机制;或者,处理单元,具体用于触发启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,在该装置为接入网设备的情况下,该装置还包括通信单元;处理单元,具体用于通过通信单元向终端发送第一启动信息,第一启动信息指示需要启动终端和接入网设备之间针对业务流的高可靠性传输机制;处理单元,具体用于触发启动与终端之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,该装置还包括通信单元;处理单元,具体用于通过通信单元向会话管理网元发送第二启动信息,第二启动信息指示需要启动终端和接入网设备之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第二链路上连续丢包的个数达到第一阈值;处理单元,具体用于触发启动针对业务流在锚点用户面网关和接入网设备之间的高可靠性传输机制;或者,处理单元,具体用于触发启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,在该装置为接入网设备的情况下,该装置还包括通信单元;处理单元,具体用于通过通信单元向锚点用户面网关发送第三启动信息,第三启动信息指示需要启动锚点用户面网关和接入网设备之间针对业务流的高可靠性传输机制;处理单元,具体用于触发启动与锚点用户面网关之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,在该装置为锚点用户面网关的情况下,该装置还包括通信单元;处理单元,具体用于通过通信单元向接入网设备发送第四启动信息,第四启动信息指示需要启动锚点用户面网关和接入网设备之间针对业务流的高可靠性传输机制;处理单元,具体用于触发启动与接入网设备之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,该装置还包括通信单元;处理单元,具体用于通过通信单元向会话管理网元发送第五启动信息,第五启动信息指示需要启动针对业务流在锚点用户面网关和接入网设备之间的高可靠性传输机制。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包个数小于第一阈值、在第二链路上连续丢包个数小于第一阈值以及在第一链路和第二链路上整体的连续丢包的个数达到第一阈值;处理单元,具体用于触发启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,该装置还包括通信单元;处理单元,具体用于通过通信单元向会话管理网元发送第六启动信息,第六启动信息指示需要启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,该装置为接入网设备,处理单元,具体用于根据业务流在第一链路上丢失的报文的PDCP SN和业务流在第二链路上丢失的报文的N3 GTP-U SN,以及业务流中的报文的PDCP SN和N3 GTP-U SN之间的映射关系确定业务流在用户面路径上连续丢包的个数。
在一种可能的实现方式中,在该装置为接入网设备的情况下,针对上行报文,通信单元,用于从终端接收业务流中的报文,处理单元,具体用于根据正确接收到的报文的PDCP SN的连续性确定业务流在第一链路上的丢包情况;或者,通信单元,用于从终端接收业务流中的报文,通信单元,还用于针对每个正确接收到的报文向终端发送ACK,通信单元,还用于从终端接收第一报文丢失信息,第一报文丢失信息用于指示该装置未正确接收到的报文的PDCP SN,处理单元,具体用于根据第一报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在该装置为接入网设备的情况下,针对上行报文,通信单元,用于从锚点用户面网关接收第二报文丢失信息,第二报文丢失信息用于指示锚点用户面网关未正确接收到的报文的N3 GTP-U SN,处理单元,具体用于根据第二报文丢失信息确定业务流在第二链路上的丢包情况;或者,通信单元,用于向锚点用户面网关发送业务流中的报文,通信单元,还用于从锚点用户面网关接收锚点用户面网关针对每个正确接收到的报文发送的ACK,处理单元,具体用于根据是否接收到发送的每个报文的ACK的信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在该装置为接入网设备的情况下,针对下行报文,通信单元,用于从终端接收第三报文丢失信息,第三报文丢失信息用于指示终端未正确接收到的报文的PDCP SN,处理单元,具体用于根据第三报文丢失信息确定业务流在第一链路上的丢包情况;或者,通信单元,用于向终端发送业务流中的报文,通信单元,还用于从终端接收终端针对每个正确接收到的报文发送的ACK,处理单元,具体用于根据是否接收到发送的每个报文的ACK的信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在该装置为接入网设备的情况下,针对下行报文,通信单元,用于从锚点用户面网关接收业务流中的报文,处理单元,具体用于根据正确接收到的报文的N3 GTP-U SN的连续性确定业务流在第二链路上的丢包情况;或者, 通信单元,用于从锚点用户面网关接收业务流中的报文,通信单元,还用于针对每个正确接收到的报文向锚点用户面网关发送ACK,通信单元,还用于从锚点用户面网关接收第四报文丢失信息,第四报文丢失信息用于指示该装置未正确接收到的报文的N3GTP-U SN,处理单元,具体用于根据第四报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在该装置为锚点用户面网关的情况下,针对上行报文,通信单元,用于从接入网设备接收第五报文丢失信息,第五报文丢失信息用于指示业务流在第一链路丢失的报文;处理单元,具体用于根据第五报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN对应,接入网设备所发送的连续的报文的N3 GTP-U SN是连续的,第五报文丢失信息用于指示接入网设备在第一链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,第五报文丢失信息还用于指示第五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN之间的差值是相同的,第五报文丢失信息为接入网设备在第一链路未正确接收到的报文的N3 GTP-U SN。
在一种可能的实现方式中,在该装置为锚点用户面网关的情况下,针对上行报文,通信单元,用于从接入网设备接收业务流中的报文,处理单元,具体用于根据正确接收到的报文的N3 GTP-U SN的连续性确定业务流在第二链路上的丢包情况;或者,通信单元,用于从接入网设备接收业务流中的报文,通信单元,还用于针对每个正确接收到的报文向接入网设备发送ACK,通信单元,还用于从接入网设备接收第六报文丢失信息,第六报文丢失信息用于指示该装置未正确接收到的报文的N3 GTP-U SN,处理单元,具体用于根据第六报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在该装置为锚点用户面网关的情况下,针对下行报文,通信单元,用于从接入网设备接收第七报文丢失信息,第七报文丢失信息用于指示业务流在第一链路丢失的报文的N3 GTP-U SN;处理单元,具体用于根据第七报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在该装置为锚点用户面网关的情况下,针对下行报文,通信单元,用于从接入网设备接收第八报文丢失信息,第八报文丢失信息用于指示接入网设备未正确接收到的报文的N3 GTP-U SN,处理单元,具体用于根据第八报文丢失信息确定业务流在第二链路上的丢包情况;或者,通信单元,用于向接入网设备发送业务流中的报文,通信单元,还用于从接入网设备接收接入网设备针对每个正确接收到的报文发送的ACK,处理单元,具体用于根据是否接收到发送的每个报文的ACK的信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,锚点用户面网关和接入网设备之间通过中间用户面网关通信,第二链路包括第一子链路和第二子链路,第一子链路为接入网设备和中间用户面网关之间通信的用户面数据链路,第二子链路为中间用户面网关和锚点用户面网关之间通信的用户面数据链路。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包的个数小于第一阈值、在第一子链路连续丢包的个数小于第一阈值以及在第二子链路上连续丢包的个数也小于第一阈值,但是在第一链路、第一子链路和第二子链路任意两条或三条链路上的整体连续丢包的个数达到第一阈值;处理单元,具体用于触发启动在终端和锚点用户面网关之间的针对业务流的高可靠性传输机制。
在一种可能的实现方式中,该装置还包括通信单元;处理单元,用于通过通信单元向会话管理网元发送第七启动信息,第七启动信息指示需要启动终端和锚点用户面网关之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,在装置为接入网设备的情况下,针对上行报文,通信单元,用于从终端接收业务流中的报文,处理单元,具体用于根据正确接收到的报文的PDCP SN的连续性确定业务流在第一链路上的丢包情况;或者,通信单元,用于从终端接收业务流中的报文,通信单元,还用于针对每个正确接收到的报文向终端发送ACK,通信单元,还用于从终端接收第九报文丢失信息,第九报文丢失信息用于指示装置未正确接收到的报文的PDCP SN,处理单元,具体用于根据第九报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在装置为接入网设备的情况下,针对上行报文,通信单元,用于从中间用户面网关接收第十报文丢失信息,第十报文丢失信息用于指示中间用户面网关在第一子链路上未正确接收到的报文的N3 GTP-U SN和锚点用户面网关在第二子链路上未正确接收到的报文的N3 GTP-U SN,处理单元,具体用于根据第十报文丢失信息确定业务流在第二链路上的丢包情况;或者,通信单元,用于向中间用户面网关发送业务流中的报文,通信单元,还用于从中间用户面网关接收中间用户面网关针对每个正确接收到的报文发送的ACK,处理单元,具体用于根据是否接收到发送的每个报文的ACK的信息确定业务流在第一子链路上的丢包情况;通信单元,还用于从中间用户面网关接收第十一报文丢失信息,第十一报文丢失信息用于指示锚点用户面网关在第二子链路上未正确接收到的报文的N3 GTP-U SN;处理单元,具体用于根据第十一报文丢失信息和业务流在第一子链路上的丢包情况确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在装置为接入网设备的情况下,针对下行报文,通信单元,用于从终端接收第十二报文丢失信息,第十二报文丢失信息用于指示终端未正确接收到的报文的PDCP SN,处理单元,具体用于根据第十二报文丢失信息确定业务流在第一链路上的丢包情况;或者,通信单元,用于终端发送业务流中的报文,通信单元,还用于从终端接收终端针对每个正确接收到的报文发送的ACK,处理单元,具体用于根据是否接收到发送的每个报文的ACK的信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在装置为接入网设备的情况下,针对下行报文,通信单元,用于从中间用户面网关接收业务流中的报文,处理单元,具体用于根据正确接收到的报文的N3 GTP-U SN的连续性确定装置在第一子链路上未正确接收到的报文的N3 GTP-U SN,通信单元,还用于从中间用户面网关接收第十三报文丢失信息,第十三 报文丢失信息用于指示中间用户面网关在第二子链路上未正确接收到的报文,处理单元,具体用于根据装置在第一子链路上未正确接收到的报文的N3 GTP-U SN和第十三报文丢失信息确定业务流在第二链路上的丢包情况;或者,通信单元,用于从中间用户面网关接收业务流中的报文,通信单元,还用于针对每个正确接收到的报文向中间用户面网关发送ACK,通信单元,还用于从中间用户面网关接收第十三报文丢失信息和第十四报文丢失信息,第十三报文丢失信息用于指示中间用户面网关在第二子链路上未正确接收到的报文,第十四报文丢失信息用于指示装置在第一子链路上未正确接收到的报文的N3 GTP-U SN,处理单元,具体用于根据第十三报文丢失信息和第十四报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,中间用户面网关正确接收到的每个报文的N9 GTP-U SN和中间用户面网关发送的该报文的N3 GTP-U SN对应,中间用户面网关所发送的连续的报文的N3 GTP-U SN是连续的,第十三报文丢失信息用于指示中间用户面网关在第二子链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,第十三报文丢失信息还用于指示第十三报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,中间用户面网关正确接收到的每个报文的N9 GTP-U SN和中间用户面网关发送的该报文的N3 GTP-U SN之间的差值是相同的,第十三报文丢失信息为中间用户面网关在第二子链路未正确接收到的报文的N3 GTP-U SN。
在一种可能的实现方式中,在装置为锚点用户面网关的情况下,针对上行报文,通信单元,用于从中间用户面网关接收第十五报文丢失信息,第十五报文丢失信息用于指示业务流在第一链路丢失的报文;处理单元,具体用于根据第十五报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN对应,接入网设备所发送的连续的报文的N3 GTP-U SN是连续的,第十五报文丢失信息用于指示接入网设备在第一链路未正确接收到的报文的上一个正确接收到的报文的N9 GTP-U SN,第十五报文丢失信息还用于指示第十五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN之间的差值是相同的,中间用户面网关正确接收到的每个报文的N3 GTP-U SN和中间用户面网关发送的该报文的N9 GTP-U SN之间的差值是相同的,第十五报文丢失信息为接入网设备在第一链路未正确接收到的报文的N9 GTP-U SN。
在一种可能的实现方式中,在装置为锚点用户面网关的情况下,针对上行报文,通信单元,用于从中间用户面网关接收第十六报文丢失信息,第十六报文丢失信息用于指示业务流在第一子链路丢失的报文,通信单元,还用于从中间用户面网关接收业务流中的报文,处理单元,具体用于根据正确接收到的报文的N9 GTP-U SN的连续性确定业务流在第二子链路上的丢包情况,处理单元,具体用于根据第十六报文丢失信息和业务流在第二子链路上的丢包情况确定业务流在第二链路上的丢包情况;或者,通信单元,用于从中间用户面网关接收业务流中的报文,通信单元,还用于针对每个正确接收到的报文向中间用户面网关发送ACK,通信单元,还用于从中间用户面网关接收第十六报文丢失信息和第十七报文丢失信息,第十六报文丢失信息用于指示业务 流在第一子链路丢失的报文,第十七报文丢失信息用于指示锚点用户面网关未正确接收到的报文的N9 GTP-U SN,处理单元,具体用于根据第十六报文丢失信息和第十七报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,中间用户面网关正确接收到的每个报文的N3 GTP-U SN和中间用户面网关发送的该报文的N9 GTP-U SN对应,中间用户面网关所发送的连续的报文的N9 GTP-U SN是连续的,第十六报文丢失信息用于指示中间用户面网关在第一子链路未正确接收到的报文的上一个正确接收到的报文的N9 GTP-U SN,第十六报文丢失信息还用于指示第十六报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,中间用户面网关正确接收到的每个报文的N3 GTP-U SN和中间用户面网关发送的该报文的N9 GTP-U SN之间的差值是相同的,第十六报文丢失信息为中间用户面网关在第一子链路未正确接收到的报文的N9 GTP-U SN。
在一种可能的实现方式中,在装置为锚点用户面网关的情况下,针对下行报文,通信单元,用于从中间用户面网关接收第十八报文丢失信息,第十八报文丢失信息用于指示业务流在第一链路丢失的报文的N9 GTP-U SN;处理单元,具体用于根据第十八报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在该装置为锚点用户面网关的情况下,针对下行报文,通信单元,用于从中间用户面网关接收第十九报文丢失信息,第十九报文丢失信息用于指示业务流在第一子链路和第二子链路丢失的报文的N9 GTP-U SN;处理单元,具体用于根据第十九报文丢失信息确定业务流在第二链路上的丢包情况。
第三方面,提供了一种通信装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第一方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于通信装置内,也可以位于通信装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置以芯片的产品形态存在。
第四方面,提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,使得计算机执行第一方面提供的任意一种方法。
第五方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第一方面提供的任意一种方法。
第六方面、提供了一种通信系统,包括:接入网设备和会话管理网元,终端的PDU会话通过接入网设备锚定在锚点用户面网关上,终端和锚点用户面网关之间的用户面路径包括第一链路和第二链路,第一链路是指终端和接入网设备之间通信的用户面数 据链路,第二链路是指接入网设备和锚点用户面网关之间通信的用户面数据链路;会话管理网元,用于向第一设备发送业务流对应的生存时间的信息,第一设备为接入网设备或者锚点用户面网关;第一设备,用于从会话管理网元接收生存时间的信息,并根据生存时间的信息确定第一阈值;第一设备,还用于获取业务流在第一链路和第二链路上的丢包情况;第一设备,还用于根据业务流在第一链路和第二链路上的丢包情况确定业务流在用户面路径上连续丢包的个数;在业务流在用户面路径上连续丢包的个数达到第一阈值的情况下,第一设备,还用于触发启动针对业务流的高可靠性传输机制。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包的个数达到第一阈值;第一设备,具体用于触发启动针对业务流在终端和接入网设备之间的高可靠性传输机制;或者,第一设备,具体用于触发启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,第一设备,具体用于向终端发送第一启动信息并触发自身启动与终端之间针对业务流的高可靠性传输机制,第一启动信息指示需要启动终端和接入网设备之间针对业务流的高可靠性传输机制;终端,用于从第一设备接收第一启动信息,并根据第一启动信息启动与接入网设备之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,第一设备,具体用于向会话管理网元发送第二启动信息,第二启动信息指示需要启动终端和接入网设备之间针对业务流的高可靠性传输机制;会话管理网元,用于从第一设备接收第二启动信息,并根据第二启动信息控制启动终端和接入网设备之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第二链路上连续丢包的个数达到第一阈值;第一设备,具体用于触发启动针对业务流在锚点用户面网关和接入网设备之间的高可靠性传输机制;或者,第一设备,具体用于触发启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,第一设备,具体用于向锚点用户面网关发送第三启动信息并触发自身启动与锚点用户面网关之间针对业务流的高可靠性传输机制,第三启动信息指示需要启动锚点用户面网关和接入网设备之间针对业务流的高可靠性传输机制;锚点用户面网关,用于从第一设备接收第三启动信息,并根据第三启动信息启动与接入网设备之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,第一设备,具体用于向接入网设备发送第四启动信息并触发自身启动与接入网设备之间针对业务流的高可靠性传输机制,第四启动信息指示需要启动锚点用户面网关和接入网设备之间针对业务流的高可靠性传输机制;接入网设备,用于从第一设备接收第四启动信息,并根据第四启动信息启动与锚点用户面网关之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,第一设备,具体用于向会话管理网元发送第五启动信 息,第五启动信息指示需要启动针对业务流在锚点用户面网关和接入网设备之间的高可靠性传输机制;会话管理网元,用于从第一设备接收第五启动信息,并根据第五启动信息控制启动针对业务流在锚点用户面网关和接入网设备之间的高可靠性传输机制。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包个数小于第一阈值、在第二链路上连续丢包个数小于第一阈值以及在第一链路和第二链路上整体的连续丢包的个数达到第一阈值;第一设备,具体用于触发启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,第一设备,具体用于向会话管理网元发送第六启动信息,第六启动信息指示需要启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制;会话管理网元,用于从第一设备接收第六启动信息,并根据第六启动信息控制启动针对业务流在终端和锚点用户面网关之间的高可靠性传输机制。
在一种可能的实现方式中,第一设备为接入网设备,第一设备,用于根据业务流在第一链路上丢失的报文的PDCP SN和业务流在第二链路上丢失的报文的N3 GTP-U SN,以及业务流中的报文的PDCP SN和N3 GTP-U SN之间的映射关系确定业务流在用户面路径上连续丢包的个数。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,终端,用于向接入网设备发送业务流中的报文;接入网设备,用于从终端接收业务流中的报文,并根据正确接收到的报文的PDCP SN的连续性确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,终端,用于向接入网设备发送业务流中的报文;接入网设备,用于从终端接收业务流中的报文,并针对每个正确接收到的报文向终端发送ACK;终端,还用于从接入网设备接收接入网设备针对每个正确接收到的报文向终端发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向接入网设备发送第一报文丢失信息,第一报文丢失信息用于指示接入网设备未正确接收到的报文的PDCP SN;接入网设备,还用于从终端接收第一报文丢失信息,并根据第一报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,锚点用户面网关,用于向接入网设备发送第二报文丢失信息,第二报文丢失信息用于指示锚点用户面网关未正确接收到的报文的N3 GTP-U SN;接入网设备,用于从锚点用户面网关接收第二报文丢失信息,并根据第二报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,接入网设备,用于向锚点用户面网关发送业务流中的报文;锚点用户面网关,用于从接入网设备接收业务流中的报文,并针对每个正确接收到的报文向接入网设备发送ACK;接入网设备,还用于从锚点用户面网关接收锚点用户面网关针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,终端,用于向接入网设备发送第三报文丢失信息,第三报文丢失信息用于指示终端未正确接收到的报文的PDCP SN;接入网设备,用于从终端接收第三报文丢失信息,并根据第三报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,接入网设备,用于向终端发送业务流中的报文;终端,用于从接入网设备接收业务流中的报文,并针对每个正确接收到的报文向接入网设备发送ACK;接入网设备,还用于从终端接收终端针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,锚点用户面网关,用于向接入网设备发送业务流中的报文;接入网设备,用于从锚点用户面网关接收业务流中的报文,并根据正确接收到的报文的N3 GTP-U SN的连续性确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,针对下行报文,锚点用户面网关,用于向接入网设备发送业务流中的报文;接入网设备,用于从锚点用户面网关接收业务流中的报文,并针对每个正确接收到的报文向锚点用户面网关发送ACK;锚点用户面网关,还用于从接入网设备接收接入网设备针对每个正确接收到的报文向锚点用户面网关发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向接入网设备发送第四报文丢失信息,第四报文丢失信息用于指示接入网设备未正确接收到的报文的N3 GTP-U SN;接入网设备,还用于从锚点用户面网关接收第四报文丢失信息,并根据第四报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对上行报文,接入网设备,用于向锚点用户面网关发送第五报文丢失信息,第五报文丢失信息用于指示业务流在第一链路丢失的报文;锚点用户面网关,用于从接入网设备接收第五报文丢失信息,并根据第五报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN对应,接入网设备所发送的连续的报文的N3 GTP-U SN是连续的,第五报文丢失信息用于指示接入网设备在第一链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,第五报文丢失信息还用于指示第五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN之间的差值是相同的,第五报文丢失信息为接入网设备在第一链路未正确接收到的报文的N3 GTP-U SN。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对上行报文,接入网设备,用于向锚点用户面网关发送业务流中的报文;锚点用户面网关,用于从接入网设备接收业务流中的报文,并根据正确接收到的报文的N3 GTP-U SN的连续性确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对上行报文,接入网设备,用于向锚点用户面网关发送业务流中的报文;锚点用户面网关,用 于从接入网设备接收业务流中的报文,并针对每个正确接收到的报文向接入网设备发送ACK;接入网设备,还用于从锚点用户面网关接收锚点用户面网关针对每个正确接收到的报文发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向锚点用户面网关发送第六报文丢失信息,第六报文丢失信息用于指示锚点用户面网关未正确接收到的报文的N3 GTP-U SN;锚点用户面网关,还用于从接入网设备接收第六报文丢失信息,并根据第六报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对下行报文,接入网设备,用于向锚点用户面网关发送第七报文丢失信息,第七报文丢失信息用于指示业务流在第一链路丢失的报文的N3 GTP-U SN;锚点用户面网关,用于从接入网设备接收第七报文丢失信息,并根据第七报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对下行报文,接入网设备,用于向锚点用户面网关发送第八报文丢失信息,第八报文丢失信息用于指示接入网设备未正确接收到的报文的N3 GTP-U SN;锚点用户面网关,用于从接入网设备接收第八报文丢失信息,并根据第八报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对下行报文,锚点用户面网关,用于向接入网设备发送业务流中的报文;接入网设备,用于从锚点用户面网关接收业务流中的报文,并针对每个正确接收到的报文向锚点用户面网关发送ACK;锚点用户面网关,还用于从接入网设备接收接入网设备针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,锚点用户面网关和接入网设备之间通过中间用户面网关通信,第二链路包括第一子链路和第二子链路,第一子链路为接入网设备和中间用户面网关之间通信的用户面数据链路,第二子链路为中间用户面网关和锚点用户面网关之间通信的用户面数据链路。
在一种可能的实现方式中,业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包的个数小于第一阈值、在第一子链路连续丢包的个数小于第一阈值以及在第二子链路上连续丢包的个数也小于第一阈值,但是在第一链路、第一子链路和第二子链路任意两条或三条链路上的整体连续丢包的个数达到第一阈值;第一设备,用于触发启动在终端和锚点用户面网关之间的针对业务流的高可靠性传输机制。
在一种可能的实现方式中,第一设备,具体用于向会话管理网元发送第七启动信息,第七启动信息指示需要启动终端和锚点用户面网关之间针对业务流的高可靠性传输机制;会话管理网元,用于从第一设备接收第七启动信息,并根据第七启动信息控制启动终端和锚点用户面网关之间针对业务流的高可靠性传输机制。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,终端,用于向接入网设备发送业务流中的报文;接入网设备,用于从终端接收业务流中的报文,并根据正确接收到的报文的PDCP SN的连续性确定业务流在第一链路上的 丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,终端,用于向接入网设备发送业务流中的报文;接入网设备,用于从终端接收业务流中的报文,并针对每个正确接收到的报文向终端发送ACK;终端,还用于从接入网设备接收接入网设备针对每个正确接收到的报文向终端发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向接入网设备发送第九报文丢失信息,第九报文丢失信息用于指示接入网设备未正确接收到的报文的PDCP SN;接入网设备,还用于从终端接收第九报文丢失信息,并根据第九报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,中间用户面网关,用于向接入网设备发送第十报文丢失信息,第十报文丢失信息用于指示中间用户面网关在第一子链路上未正确接收到的报文的N3 GTP-U SN和锚点用户面网关在第二子链路上未正确接收到的报文的N3 GTP-U SN;接入网设备,用于从中间用户面网关接收第十报文丢失信息,并根据第十报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对上行报文,接入网设备,用于向中间用户面网关发送业务流中的报文;中间用户面网关,用于从接入网设备接收业务流中的报文,并针对每个正确接收到的报文向接入网设备发送ACK;接入网设备,还用于从中间用户面网关接收中间用户面网关针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定业务流在第一子链路上的丢包情况;中间用户面网关,还用于向接入网设备发送第十一报文丢失信息,第十一报文丢失信息用于指示锚点用户面网关在第二子链路上未正确接收到的报文的N3 GTP-U SN;接入网设备,还用于从中间用户面网关接收第十一报文丢失信息,并根据第十一报文丢失信息和业务流在第一子链路上的丢包情况确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,终端,用于向接入网设备发送第十二报文丢失信息,第十二报文丢失信息用于指示终端未正确接收到的报文的PDCP SN;接入网设备,用于从终端接收第十二报文丢失信息,并根据第十二报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,接入网设备,用于向终端发送业务流中的报文;终端,用于从接入网设备接收业务流中的报文,并针对每个正确接收到的报文向接入网设备发送ACK;接入网设备,用于从终端接收终端针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,中间用户面网关,用于向接入网设备发送业务流中的报文;接入网设备,用于从中间用户面网关接收业务流中的报文,并根据正确接收到的报文的N3 GTP-U SN的连续性确定接入网设备在第一子链路上未正确接收到的报文的N3 GTP-U SN;中间用户面网关,还用于向接入网设备发送第十三报文丢失信息,第十三报文丢失信息用于指示中 间用户面网关在第二子链路上未正确接收到的报文;接入网设备,还用于从中间用户面网关接收第十三报文丢失信息,并根据接入网设备在第一子链路上未正确接收到的报文的N3 GTP-U SN和第十三报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为接入网设备的情况下,针对下行报文,中间用户面网关,用于向接入网设备发送业务流中的报文;接入网设备,用于从中间用户面网关接收业务流中的报文,并针对每个正确接收到的报文向中间用户面网关发送ACK;中间用户面网关,还用于从接入网设备接收接入网设备针对每个正确接收到的报文向中间用户面网关发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向接入网设备发送第十三报文丢失信息和第十四报文丢失信息,第十三报文丢失信息用于指示中间用户面网关在第二子链路上未正确接收到的报文,第十四报文丢失信息用于指示接入网设备在第一子链路上未正确接收到的报文的N3 GTP-U SN;接入网设备,还用于从中间用户面网关接收第十三报文丢失信息和第十四报文丢失信息,并根据第十三报文丢失信息和第十四报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,中间用户面网关正确接收到的每个报文的N9 GTP-U SN和中间用户面网关发送的该报文的N3 GTP-U SN对应,中间用户面网关所发送的连续的报文的N3 GTP-U SN是连续的,第十三报文丢失信息用于指示中间用户面网关在第二子链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,第十三报文丢失信息还用于指示第十三报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,中间用户面网关正确接收到的每个报文的N9 GTP-U SN和中间用户面网关发送的该报文的N3 GTP-U SN之间的差值是相同的,第十三报文丢失信息为中间用户面网关在第二子链路未正确接收到的报文的N3 GTP-U SN。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对上行报文,中间用户面网关,用于向锚点用户面网关发送第十五报文丢失信息,第十五报文丢失信息用于指示业务流在第一链路丢失的报文;锚点用户面网关,用于从中间用户面网关接收第十五报文丢失信息,并根据第十五报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN对应,接入网设备所发送的连续的报文的N3 GTP-U SN是连续的,第十五报文丢失信息用于指示接入网设备在第一链路未正确接收到的报文的上一个正确接收到的报文的N9 GTP-U SN,第十五报文丢失信息还用于指示第十五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,接入网设备正确接收到的每个报文的PDCP SN和接入网设备发送的该报文的N3 GTP-U SN之间的差值是相同的,中间用户面网关正确接收到的每个报文的N3 GTP-U SN和中间用户面网关发送的该报文的N9 GTP-U SN之间的差值是相同的,第十五报文丢失信息为接入网设备在第一链路未正确接收到的报文的N9 GTP-U SN。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对上行报文,中间用户面网关,用于向锚点用户面网关发送第十六报文丢失信息,第十六报文丢失信息用于指示业务流在第一子链路丢失的报文;锚点用户面网关,用于从中间用户面网关接收第十六报文丢失信息;中间用户面网关,还用于向锚点用户面网关发送 业务流中的报文;锚点用户面网关,还用于从中间用户面网关接收业务流中的报文,并根据正确接收到的报文的N9 GTP-U SN的连续性确定业务流在第二子链路上的丢包情况;锚点用户面网关,还用于根据第十六报文丢失信息和业务流在第二子链路上的丢包情况确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对上行报文,中间用户面网关,用于向锚点用户面网关发送业务流中的报文;锚点用户面网关,用于从中间用户面网关接收业务流中的报文,并针对每个正确接收到的报文向中间用户面网关发送ACK;中间用户面网关,还用于从锚点用户面网关接收锚点用户面网关针对每个正确接收到的报文发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向锚点用户面网关发送第十六报文丢失信息和第十七报文丢失信息,第十六报文丢失信息用于指示业务流在第一子链路丢失的报文,第十七报文丢失信息用于指示锚点用户面网关未正确接收到的报文的N9 GTP-U SN;锚点用户面网关,还用于从中间用户面网关接收第十六报文丢失信息和第十七报文丢失信息,并根据第十六报文丢失信息和第十七报文丢失信息确定业务流在第二链路上的丢包情况。
在一种可能的实现方式中,中间用户面网关正确接收到的每个报文的N3 GTP-U SN和中间用户面网关发送的该报文的N9 GTP-U SN对应,中间用户面网关所发送的连续的报文的N9 GTP-U SN是连续的,第十六报文丢失信息用于指示中间用户面网关在第一子链路未正确接收到的报文的上一个正确接收到的报文的N9 GTP-U SN,第十六报文丢失信息还用于指示第十六报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;或者,中间用户面网关正确接收到的每个报文的N3 GTP-U SN和中间用户面网关发送的该报文的N9 GTP-U SN之间的差值是相同的,第十六报文丢失信息为中间用户面网关在第一子链路未正确接收到的报文的N9 GTP-U SN。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对下行报文,中间用户面网关,用于向锚点用户面网关发送第十八报文丢失信息,第十八报文丢失信息用于指示业务流在第一链路丢失的报文的N9 GTP-U SN;锚点用户面网关,用于从中间用户面网关接收第十八报文丢失信息,并根据第十八报文丢失信息确定业务流在第一链路上的丢包情况。
在一种可能的实现方式中,在第一设备为锚点用户面网关的情况下,针对下行报文,中间用户面网关,用于向锚点用户面网关发送第十九报文丢失信息,第十九报文丢失信息用于指示业务流在第一子链路和第二子链路丢失的报文的N9 GTP-U SN;锚点用户面网关,用于从中间用户面网关接收第十九报文丢失信息,并根据第十九报文丢失信息确定业务流在第二链路上的丢包情况。
第二方面至第六方面中的任一种实现方式所带来的技术效果可参见第一方面中对应实现方式所带来的技术效果,此处不再赘述。
附图说明
图1至图3分别为本申请实施例提供的一种网络架构组成示意图;
图4和图5分别为本申请实施例提供的各个链路传输的报文的示意图;
图6为本申请实施例提供的一种用户面路径上的丢包示意图;
图7至图12分别为本申请实施例提供的一种通信方法的流程图;
图13为本申请实施例提供的一种通信装置的组成示意图;
图14和图15分别为本申请实施例提供的一种通信装置的硬件结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,第五代(5th-generation,5G)系统、新无线(new radio,NR)系统、多无线接入技术双连接(Multi-RAT Dual-Connectivity,MR-DC)系统以及未来演进系统或者多种通信融合系统。其中,5G系统可以为非独立组网(non-standalone,NSA)的5G系统或独立组网(standalone,SA)的5G系统。
如图1所示,为本申请实施例提供的技术方案所适用的5G系统的网络架构。5G系统可以包括下述网络功能(network function,NF)实体:统一数据管理(unified data management,UDM)实体、接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体、策略控制功能(policy control function,PCF)实体、应用功能(application function,AF)实体、无线接入网络(radio access network,RAN)或者接入网络(access network,AN)(下文中将RAN和AN统称为(R)AN)实体、用户面功能(user plane function,UPF)实体、终端、数据网络(data network,DN)等。其中,各个NF实体之间通信所采用的接口可参见图1,例如,(R)AN和AMF之间通过N2接口通信,(R)AN和UPF之间通过N3接口通信。
UDM,具备管理用户的签约数据,生成用户的认证信息等功能。
AMF,主要负责终端的注册管理、终端的连接管理、终端的可达性管理、终端的接入授权和接入鉴权、终端的安全功能,终端的移动性管理,网络切片(network slice)选择,SMF选择等功能。AMF作为N1/N2接口信令连接的锚点并为SMF提供N1/N2接口会话管理(session management,SM)消息的路由,维护和管理终端的状态信息。
SMF,主要负责终端会话管理的所有控制面功能,包括UPF的选择与控制,网络互连协议(internet protocol,IP)地址分配及管理,会话的服务质量(quality of service,QoS)管理,从PCF获取策略与计费控制(policy and charging control,PCC)策略等。SMF还作为非接入层(non-access stratum,NAS)消息中SM部分的终结点。
PCF,具备向控制面功能实体提供策略规则等功能。
AF,可以是应用服务器,其可以属于运营商,也可以属于第三方。
UPF,作为协议数据单元(protocol data unit,PDU)会话(session)连接的锚定点,负责对终端的数据报文过滤、数据传输/转发、速率控制、生成计费信息、用户面QoS处理、上行传输认证、传输等级验证、下行数据包缓存及下行数据通知触发等。UPF还可以作为多宿主(multi-homed)PDU会话的分支点。
(R)AN,由多个5G-RAN节点(下文中简称为RAN节点)组成的网络,实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理功能。
RAN节点也可以称为接入网设备,具体可以为基站。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。具体可以为:无线局域网(Wireless Local Area Network,WLAN)中的接入点(access point,AP),全球移动通信系统(Global System for Mobile Communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolved Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G系统中的下一代节点B(The Next Generation Node B,gNB)或者未来演进的公用陆地移动网(Public Land Mobile Network,PLMN)网络中的基站等。
终端,可以是一种具有无线收发功能的设备。所述终端可以有不同的名称,例如用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。终端可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,终端可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的技术方案。
DN,为用户提供数据传输服务的网络,例如,IP多媒体业务(IP Multi-media service,IMS)、互联网等。DN中可以包括应用服务器(application server,AS),AS是一种软件框架,提供一个应用程序运行的环境,用于为应用程序提供安全、数据、事务支持、负载平衡大型分布式系统管理等服务。终端通过与AS通信获取应用报文。需要说明的是,上述AF为AS的控制面。
可以理解的是,除图1所示功能实体之外,5G网络的网络架构还可以包括其他功能实体。例如,在AF实体和PCF实体之间还可以包括网络开放功能(network exposure function,NEF)实体,可以用于交互网络内部和外部信息等。在本申请实施例中,实 体也可以称为网元或设备等。
需要说明的是,图1中的(R)AN实体、AMF实体、SMF实体、UDM实体、UPF实体和PCF实体等仅是一个名字,名字对实体本身不构成限定。在5G网络以及未来其它的网络中,这些实体所对应的网元或设备也可以是其他的名字,本申请实施例对此不作具体限定。例如,UDM实体还有可能被替换为用户归属服务器(home subscriber server,HSS)或者用户签约数据库(user subscription database,USD)或者数据库实体,等等,在此进行统一说明,以下不再赘述。
此外,图1中的UDM实体、PCF实体、AMF实体和SMF实体也可以统称为控制面功能(control plane function,CPF)实体,这些实体属于5G核心网控制面(5G corenet control plane,5GC CP)。为方便描述,在下文中将AMF实体、SMF实体、UDM实体、UPF实体、PCF实体分别通过AMF、SMF、UDM、UPF、PCF指代。
在上述5G系统中,终端通过建立到DN的PDU会话,与DN之间进行数据交互。在建立PDU会话的过程中,SMF会为终端选择一个PDU会话锚点(PDU session anchor,PSA)UPF(也可以简单称为锚点UPF)。
当终端接入的RAN节点在该PSA UPF的服务区域内时,终端可以建立经过RAN节点和PSA UPF的PDU会话,并通过该PDU会话与DN之间进行数据交互。此时,参见图2,终端和DN之间的用户面报文的传输路径(以下简称用户面路径)包括:终端和RAN节点之间的用户面路径(记为第一链路,对应终端和RAN节点之间的无线承载),RAN节点和PSAUPF之间的用户面路径(记为第二链路,对应RAN节点和PSA UPF之间的N3 GTP-U隧道),PSA UPF和DN中的AS之间的用户面路径(记为第三链路,对应PSA UPF和AS之间的N6隧道)组成。图2所示的场景可以简称为单UPF场景,该场景中,RAN节点与PSA UPF之间通过N3接口通信,PSA UPF和DN中的AS之间通过N6接口通信。其中,两个网络节点之间的用户面路径也可以称为用户面数据链路。
当终端接入的RAN节点不在该PSA UPF的服务区域内时,SMF会在RAN节点和PSA UPF之间插入一个中间UPF(intermediate UPF,I-UPF),终端接入的RAN节点在该I-UPF的服务区域内,终端可以建立经过RAN节点、I-UPF和PSA UPF的PDU会话,并通过该PDU会话与DN之间进行数据交互。此时,参见图3,终端和DN之间的用户面路径包括:终端和RAN节点之间的用户面路径(记为第一链路,对应终端和RAN节点之间的无线承载),RAN节点和PSAUPF之间的用户面路径(记为第二链路)以及PSA UPF和DN中的AS之间的用户面路径(记为第三链路,对应PSA UPF和AS之间的N6隧道)组成。其中,第二链路进一步包括RAN节点和I-UPF之间的用户面路径(记为第一子链路,对应RAN节点和I-UPF之间的N3 GTP-U隧道)以及I-UPF和PSAUPF之间的用户面路径(记为第二子链路,对应I-UPF和PSA UPF之间的N9 GTP-U隧道)。图3所示的场景可以简称为多UPF场景,该场景中,RAN节点与I-UPF之间通过N3接口通信,I-UPF和PSA UPF之间通过N9接口通信,PSA UPF和DN中的AS之间通过N6接口通信。
本申请实施例提供的方法可以应用于上述单UPF场景和多UPF场景中。为了使得本申请实施例更加的清楚,以下对本申请实施例提供的方法中涉及到的部分概念作简单介绍。
1、生存时间
应用的生存时间是指应用服务器或终端的应用层没有收到预期的消息的情况下应用继续运行的时间。生存时间可以表示为一个时长,对于周期性业务,还可以表示为允许连续错误接收或丢失的消息的最大数量。
此处的消息也可以称为用户面报文,用户面报文在下文中简称为报文。另外,报文也可以称为数据包。
2、业务流
本申请实施例中的业务流可以是为某个业务建立的Qos流(Flow)。
其中,由于业务与应用对应,因此,该业务的业务流也会对应一个生存时间,该生存时间即该业务对应的应用的生存时间。
3、用户面路径的高可靠性传输机制
其中,用户面路径的高可靠性传输机制是指使得报文在用户面路径中高可靠的进行传输的机制。例如,用户面路径的高可靠性传输机制可以为双路冗余传输机制。
双路冗余传输机制包括:基于冗余会话的高可靠性传输机制、基于冗余业务流的高可靠性传输机制和基于冗余传输层的高可靠性传输机制。
其中,基于冗余会话的高可靠性传输机制具体为:终端采用双连接(dualconnectivity,DC)技术连接到两个RAN节点上,并分别通过不同的RAN节点与不同的PSA UPF建立两个不同的PDU会话。基于这两个PDU会话,为终端提供两条独立的冗余路径用于传输相同的报文。
基于冗余业务流的高可靠性传输机制具体为:为单个PDU会话建立两个独立的N3隧道,此时,冗余传输部署在PSA UPF与RAN节点或者I-UPF与RAN节点之间,或者,为单个PDU会话建立两个独立的N9隧道,此时,冗余传输部署在PSA UPF与I-UPF之间。基于不同的独立的隧道,为终端提供两条独立的冗余路径用于传输相同的报文。
基于冗余传输层的高可靠性传输机制具体为:为单个N3隧道建立两个独立的传输层路径,此时,冗余传输部署在PSA UPF与RAN节点或者I-UPF与RAN节点之间,或者,为单个N9隧道建立两个独立的传输层路径,此时,冗余传输部署在PSA UPF与I-UPF之间。基于不同的独立的传输层路径,为终端提供两条独立的冗余路径用于传输相同的报文。
其中,基于冗余业务流的高可靠性传输机制和基于冗余传输层的高可靠性传输机制用于保证RAN节点和PSA UPF之间的报文的高可靠传输。
4、PDU
在通信网络中,不同网络节点之间的对等协议层间交换的数据单元为PDU。对等协议层间通过下层协议层间接完成PDU的交换。
示例性的,参见图4,在单UPF场景中,DN和终端之间的应用(application,APP)层交换的数据单元为应用报文,终端和RAN节点之间对等的分组数据汇聚协议(packet data convergence protocol,PDCP)层交换的数据单元为PDCP PDU。RAN节点和PSA UPF之间对等的通用分组无线服务隧道协议用户面(general packet radio service tunneling protocol user plane,GTP-U)层交换的数据单元为N3接口的GTP-U PDU(简称为N3 GTP-U PDU)。
示例性的,参见图5,在多UPF场景中,DN和终端之间的APP层交换的数据单元为应 用报文,终端和RAN节点之间对等的PDCP层交换的数据单元为PDCP PDU。RAN节点和I-UPF之间对等的GTP-U层交换的数据单元为N3 GTP-U PDU。I-UPF和PSA UPF之间对等的GTP-U层交换的数据单元为N9接口的GTP-U PDU(简称为N9 GTP-U PDU)。
在图4和图5中,RLC是指无线链路控制(radio link control)层、MAC是指媒介接入控制(medium access control)层、PHY是指物理(physical)层。图4和图5中仅仅示出了每个网络节点中的与本申请相关的部分协议层,每个网络节点中还可以包括其他的协议层,本申请对包含的具体的协议层不作限定,例如,终端的PDCP层之上还可以包括SDAP层。
为了防止重复和乱序,每个PDCP PDU在进行传输时,都是携带一定的编号的,该编号可以称为PDCP SN。类似的,N3 GTP-U PDU、N9 GTP-U PDU的编号可以分别称为N3GTP-U SN、N9 GTP-U SN。
在不同网络节点之间传输的、但是封装了相同的应用报文的报文可以认为是同一个报文,只不过是在不同的网络节点之间传输时采用了不同的报文封装方式,会携带不同协议层的SN。例如,在单UPF场景中,封装了相同的应用报文的PDCP PDU和N3 GTP-U PDU可以认为是同一个报文,该报文在第一链路上可以通过PDCP SN来标识,在第二链路上可以通过N3 GTP-U SN来标识。本申请下文中均以该种情况为例对本申请提供的方法做示例性说明。但是可以理解的是,不同网络节点之间传输的、但是封装了相同的应用报文的报文,由于协议层头是不同的,也可以认为是不同的报文,例如,封装了相同的应用报文的PDCP PDU和N3 GTP-U PDU可以认为是不同的报文,但是这并不影响本申请的实质,只需做相应的替换理解即可。
5、PDCP SN与N3 GTP-U SN的映射、N3 GTP-U SN和N9 GTP-U SN映射
由于不同的协议层对PDU进行编号时所采用的规则可能是不同的,因此,为了保证不同的协议层之间准确的识别报文,不同协议层的PDU之间的SN需要作映射。
RAN节点接收PDCP PDU,并解析得到PDCP PDU中的信息后,在GTP-U层重新进行封装得到N3 GTP-U PDU后发送出去,该PDCP PDU的PDCP SN和该N3 GTP-U PDU的N3 GTP-U SN之间是具有映射关系的。具体的,PDCP SN与N3 GTP-U SN之间是一一映射的,具有映射关系的PDCP SN和N3 GTP-U SN对应同一个报文,具体可以有以下两种映射方式。
SN映射方式1:RAN节点将正确接收到的PDCP PDU的PDCP SN映射到连续的N3 GTP-U SN上。例如,若终端向RAN节点发送了4个PDCP PDU,4个PDCP PDU的PDCP SN分别为PDCP 1,PDCP 2,PDCP 3和PDCP 4,RAN节点正确接收到了PDCP SN为PDCP 1,PDCP 3和PDCP 4的PDCP PDU,PDCP SN为PDCP 2的PDCP PDU丢失,则RAN节点可以将PDCP 1,PDCP 3和PDCP 4分别映射到N3 GTP-U 1,N3 GTP-U 2和N3 GTP-U 3。
SN映射方式2:RAN节点将正确接收到的PDCP PDU的PDCP SN映射到与该PDCP SN相差x(x为整数)的N3 GTP-U SN上。例如,若x=4,若终端向RAN节点发送了4个PDCP PDU,4个PDCP PDU的PDCP SN分别为PDCP 1,PDCP 2,PDCP 3和PDCP 4,RAN节点正确接收到了PDCP SN为PDCP 1,PDCP 3和PDCP 4的PDCP PDU,PDCP SN为PDCP 2的PDCP PDU丢失,则RAN节点可以将PDCP 1,PDCP 3和PDCP 4分别映射到N3 GTP-U 5,N3 GTP-U 7和N3 GTP-U 8上。
在SN映射方式2中,需要说明的是,PDCP SN循环的范围和N3 GTP-U SN循环的范围 可能是不同的,例如,PDCP SN循环的范围可能为0-99,即每100个PDCP SN都是从0到99的,N3 GTP-U SN循环的范围可能为0-199,即每200个N3 GTP-U SN都是从0到199的。
该情况下,若将对应的循环的范围较小的SN的循环的范围认为是一个编号周期,那么,在一个编号周期内,x的值是相同的,在不同的编号周期内,x的值是不同的。例如,参见表1,若PDCP SN循环的范围为0-99,N3 GTP-U SN循环的范围为0-199,则PDCP SN对应的0-99为一个编号周期,在第一个编号周期内,x=0,在第二个编号周期内,x=100,在第三个编号周期内,x=0,在第四个编号周期内,x=100,……,则每个PDCP PDU的PDCP SN以及每个N3 GTP-U PDU的N3 GTP-U SN可参见表1。
表1
Figure PCTCN2019103902-appb-000001
上述SN映射方式1和SN映射方式2中,SN映射方式1为现有的映射方式,SN映射方式2为本申请新提出的映射方式。
针对N3 GTP-U SN和N9 GTP-U SN的映射,在多UPF场景下,若RAN节点和PSA UPF之间是透传GTP-U SN的,即对于上行报文,I-UPF直接重用N3 GTP-U SN作为N9 GTP-U SN,对于下行报文,I-UPF直接重用N9 GTP-U SN作为N3 GTP-U SN,则同一个报文的N3 GTP-U SN和N9 GTP-U SN始终相同,此时,可以认为N3 GTP-U SN和N9 GTP-U SN的映射采用的为SN映射方式2,只不过x=0,且N3 GTP-U SN循环的范围和N9 GTP-U SN循环的范围相同。若RAN 节点和PSA UPF之间不是透传GTP-U SN的,即对于N3隧道和N9隧道分别采用独立的GTP-U SN时,N3 GTP-U SN和N9 GTP-U SN的映射与PDCP SN与N3 GTP-U SN的映射是类似的,可参照PDCP SN与N3 GTP-U SN的映射进行理解,不再赘述。
在本申请实施例中,“映射”也可以描述为“对应”,例如,“一个PDCP SN映射的N3 GTP-U SN”也可以描述为“一个PDCP SN对应的N3 GTP-U SN”,下文中以“对应”为例进行描述。
6、肯定应答(acknowledgement,ACK)
发送端向接收端发送报文、且接收端正确接收到该报文之后,接收端会针对该报文向发送端发送一个反馈,该反馈可以用于发送端确定该报文被接收端正确接收,该反馈即本申请实施例中的ACK。
其中,RAN节点和I-UPF或者RAN节点与PSA UPF之间可以通过GTP-U层头中的标识位指示N3 GTP-U PDU的ACK信息,I-UPF和PSA UPF之间可以通过GTP-U层头中的标识位指示N9 GTP-U PDU的ACK信息。RAN节点和终端之间可以通过接收端发送的状态报告携带PDCP PDU的ACK信息。
除了背景技术中提到的应用中断导致用户体验差的问题之外。在用户面路径中,RAN节点或PSA UPF无法直接获取用户面路径上的连续丢包的个数。示例性的,参见图6,根据现有的PDCP SN与N3 GTP-U SN的映射方式(即上述映射方式1),若终端向RAN节点发送PDCP SN分别为PDCP 1,PDCP 2,PDCP 3和PDCP 4的PDCP PDU,但PDCP SN为PDCP 2的PDCP PDU在传输过程中丢失,则RAN节点会接收到PDCP SN分别为PDCP 1,PDCP 3和PDCP 4的PDCP PDU,这3个PDCP PDU对应的3个N3 GTP-U PDU的N3 GTP-USN分别为N3 GTP-U1,N3 GTP-U2和N3 GTP-U3,那么对于PSA UPF而言,PSA UPF接收到的就是3个SN连续的N3 GTP-U PDU,PSA UPF无法获知报文在第一链路上的丢包情况,也就无法确定用户面路径上的连续丢包的个数。
为了解决这两个问题,本申请实施例提供了一种通信方法,可以应用于上述单UPF场景和多UPF场景中。为了方便描述,接入网设备在下文中通过RAN节点指代,中间用户面网关通过I-UPF指代,锚点用户面网关通过PSA UPF指代,会话管理网元通过SMF指代。以下具体通过两种应用场景进行描述,第一种应用场景中用户面路径为RAN节点和PSA UPF之间的用户面路径,第二种应用场景中用户面路径为RAN节点和DN之间的用户面路径。
第一种应用场景:用户面路径为RAN节点和PSA UPF之间的用户面路径
参见图7,在第一种应用场景下,本申请提供的通信方法包括:
701、第一设备获取业务流在第一链路上的丢包情况。
其中,第一设备可以为用户面路径中的RAN节点或PSA UPF。
其中,丢包情况即丢失报文的情况,丢包情况包括是否丢失报文,丢失了哪些报文(丢失报文的情况下)等信息。
可选的,业务流所属的业务要求的时延小于等于一个阈值,该阈值可以为预设的或预定义的或协议规定的或预先配置的,本申请不作限制。
需要说明的是,本申请实施例中接收端未正确接收到的报文均认为是丢失的报文,未正确接收到报文包括:未接收到报文和/或接收到报文但未正确解码。本申请下文中有些语境中会采用“未正确接收到的报文”的描述,有些语境中会采用“丢失的报文”的描述,但是可以理解的是,这两种描述的含义是相同的。
702、第一设备获取业务流在第二链路上的丢包情况。
其中,步骤701和步骤702的执行顺序不分先后,具体与应用场景有关。例如,在第一设备为RAN节点的情况下,针对上行报文,可以先执行步骤701再执行步骤702,针对下行报文,可以先执行步骤702,再执行步骤701。
703、第一设备根据业务流在第一链路和第二链路上的丢包情况确定业务流在用户面路径上连续丢包的个数。
步骤703在具体实现时,当第一设备为RAN节点时,第一设备可以根据业务流在第一链路上丢失的报文的PDCP SN和业务流在第二链路上丢失的报文的N3 GTP-U SN,以及业务流中的报文的PDCP SN和N3 GTP-U SN之间的映射关系确定业务流在用户面路径上连续丢包的个数。
当第一设备为PSA UPF时,第一设备可以根据业务流在第一链路和第二链路上丢失的报文对应的N9 GTP-U SN确定业务流在用户面路径上连续丢包的个数。
704、在业务流在用户面路径上连续丢包的个数达到第一阈值的情况下,第一设备触发启动针对用户面路径的高可靠性传输机制。
可选的,第一阈值根据业务流对应的生存时间确定。当生存时间为一个时长(记为T1)时,若业务的周期为T2,则第一阈值可以小于等于
Figure PCTCN2019103902-appb-000002
为下取整符号。当生存时间为连续丢包的个数(记为S)时,第一阈值可以小于等于S。该可选的方法,可以在应用关断之前采用用户面路径的高可靠性传输机制在用户面路径上进行数据传输,从而提高数据传输的可靠性,避免应用关断,提高用户体验。
步骤704在具体实现时,第一设备可以启动针对整个用户面路径的高可靠性传输机制,也可以启动针对用户面路径中的部分链路的高可靠性传输机制,本申请不作限制。
图7所示的通信方法,第一设备通过获取第一链路和第二链路上的丢包情况,从而确定用户面路径上的连续丢包的个数,若连续丢包的个数达到第一阈值,则启动针对用户面路径的高可靠性传输机制,从而提高数据传输的可靠性,避免应用关断,提高用户体验。
本申请实施例中,对于存在生存时间的低时延业务,最初可以不启动针对用户面路径的高可靠性传输机制,在用户面路径连续丢包的个数达到第一阈值时,启动针对用户面路径的高可靠性传输机制,从而提高数据传输的可靠性。可选的,在启动针对用户面路径的高可靠性传输机制之后,若第一设备判断在一定的时间段内用户面路径连续丢包的个数小于等于第二阈值(第二阈值小于第一阈值)时,可以关闭针对用户面路径的高可靠性传输机制,从而节约传输资源。其中,第二阈值可以为预设的或预定义的或协议规定的或预先配置的,本申请不作限制。
以下通过场景1(单UPF场景)和场景2(多UPF场景)对图7所示的通信方法作详细阐述。
场景1:单UPF场景
在单UPF场景下,通过以下第一种情况、第二种情况和第三种情况对步骤704的具体实现分别进行描述。
第一种情况:业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业 务流在用户面路径中的第一链路上连续丢包的个数达到第一阈值。
第一种情况下,可以启动第一链路的高可靠性传输机制,此时,步骤704具体可以包括:第一设备触发启动针对用户面路径中的第一链路的高可靠性传输机制,具体可以通过以下方式(1)或方式(2)实现。
方式(1):
方式(1)下,第一设备为RAN节点,步骤704具体包括:
704-1a、第一设备向终端发送第一启动信息,第一启动信息指示需要启动针对第一链路的高可靠性传输机制。
704-1b、第一设备触发自身启动第一链路的高可靠性传输机制。
步骤704-1a在具体实现时,第一启动信息可以携带在无线资源控制(radio resource control,RRC)消息中。第一启动信息可以通过RRC消息中的一个或多个比特指示,例如,通过一个比特指示,当该比特置1时,该比特指示终端启动第一链路的高可靠性传输机制。RAN节点向终端发送其他启动信息的过程是类似的,下文中不再赘述。
其中,针对第一链路(即空口),RAN节点和终端可以通过调整传输参数,例如,降低调制和编码方案(modulation and coding scheme,MCS)的值等方式来启动第一链路的高可靠性传输机制,提高数据包传输的可靠性,避免空口丢包。第一设备和终端也可以采用其他的方法启动第一链路的高可靠性传输机制,本申请不作限制。
方式(2):
方式(2)下,步骤704具体包括:
704-2a、第一设备向SMF发送第二启动信息,第二启动信息指示需要启动针对第一链路的高可靠性传输机制。相应的,SMF从第一设备接收第二启动信息。
704-2b、SMF根据第二启动信息控制第一链路的高可靠性传输机制启动。
当第一设备为RAN节点时,第二启动信息可以通过PDU会话修改过程中的消息传递给SMF。示例性的,第二启动信息可以携带在RAN节点向SMF发送的PDU会话修改请求消息中。第二启动信息中包括指示启动用户面高可靠传输机制的指示信息,可选的,还包括启动用户面高可靠传输机制的原因值,该原因值用于指示是为了保证应用的生存时间从而需要启动第一链路的用户面高可靠性传输机制。RAN节点向SMF发送其他启动信息(例如,下文中的第六启动信息)的过程是类似的,下文中不再赘述。
当第一设备为PSA UPF时,第二启动信息可以通过N4会话修改过程中的消息传递给SMF。示例性的,第二启动信息可以携带在PSA UPF向SMF发送的N4会话修改请求消息中。第二启动信息中包括QoS Flow标识,指示启动用户面高可靠传输机制的指示信息,可选的,还包括启动用户面高可靠传输机制的原因值,该原因值用于指示是为了保证应用的生存时间从而需要启动第一链路的用户面高可靠性传输机制。PSA UPF向SMF发送其他启动信息(例如,下文中的第六启动信息)的过程是类似的,下文中不再赘述。
步骤704-2b的一种可能的实现方式包括:
704-2b-1、SMF根据第二启动信息向RAN节点和终端分别发送启动信息,启动信息指示需要启动针对第一链路的高可靠性传输机制。相应的,RAN节点和终端分别接 收启动信息。
704-2b-2、RAN节点和终端根据自身接收到的启动信息启动第一链路的高可靠性传输机制。
步骤704-2b的另一种可能的实现方式中,SMF仅向终端发送启动信息使得终端启动第一链路的高可靠性传输机制,RAN节点在确定业务流在用户面路径中的第一链路上连续丢包的个数达到第一阈值时,触发自身启动第一链路的高可靠性传输机制。
SMF可以通过AMF向RAN节点发送启动信息。该启动信息可以通过PDU会话修改过程中的消息传递给终端。示例性的,该启动信息可以携带在SMF通过AMF向RAN节点发送的N2会话消息中。该启动信息中包括PDU会话标识,QoS Flow标识,指示启动用户面高可靠传输机制的指示信息,可选的,还包括启动用户面高可靠传输机制的原因值,该原因值用于指示是为了保证应用的生存时间从而需要启动第一链路的用户面高可靠性传输机制。
SMF可以通过AMF和RAN节点向终端发送启动信息。该启动信息可以通过PDU会话修改过程中的消息传递给终端。示例性的,该启动信息可以携带在SMF通过AMF和RAN节点向终端发送的NAS消息中。该启动信息中包括PDU会话标识,QoS Flow标识,指示启动用户面高可靠传输机制的指示信息,可选的,还包括启动用户面高可靠传输机制的原因值,该原因值用于指示是为了保证应用的生存时间从而需要启动第一链路的用户面高可靠性传输机制。
上述方式(1)相比方式(2)而言,可以更快的启动第一链路的高可靠性传输机制。
第一种情况下,也可以启动整个用户面路径上的高可靠性传输机制,此时,步骤704具体可以包括:第一设备触发启动针对用户面路径中的第一链路和第二链路的高可靠性传输机制,具体可以通过以下方式(3)实现。
方式(3):
方式(3)下,步骤704具体包括:
704-3a、第一设备向SMF发送第六启动信息,第六启动信息指示需要启动针对第一链路和第二链路的高可靠性传输机制。相应的,SMF从第一设备接收第六启动信息。
704-3b、SMF根据第六启动信息控制第一链路和第二链路的高可靠性传输机制启动。
步骤704-3b的第一种可能的实现方式包括:
704-3b-11、SMF根据第六启动信息向终端和AF分别发送启动信息,启动信息指示需要启动针对用户面路径的高可靠性传输机制。相应的,终端和AF分别从SMF接收启动信息。
SMF可以通过PCF或NEF向AF发送该启动信息,相应的,AF通过PCF或NEF从SMF接收该启动信息。
704-3b-12、终端根据接收到的启动信息启动用户面路径的高可靠性传输机制与AS通信。
704-3b-13、AF向AS发送启动信息,该启动信息指示需要启动针对用户面路径的高可靠性传输机制。相应的,AS从AF接收该启动信息。
704-3b-14、AS根据接收到的启动信息启动用户面高可靠性传输机制与终端通信。
该种可能的实现方式中,终端和AS之间启动的用户面路径的高可靠性传输机制可以为基于冗余会话的高可靠性传输机制。
步骤704-3b的第二种可能的实现方式包括:
704-3b-21、SMF根据第六启动信息向终端、RAN节点和PSA UPF分别发送启动信息,启动信息指示需要启动针对用户面路径的高可靠性传输机制。相应的,终端、RAN节点和PSA UPF分别接收启动信息。
704-3b-22、终端、RAN节点和PSA UPF分别根据接收到的启动信息启动整个用户面路径上的高可靠性传输机制。具体的,终端可以启动第一链路的高可靠性传输机制,RAN节点可以启动第一链路和第二链路的高可靠性传输机制,PSA UPF可以启动第二链路的高可靠性传输机制。
步骤704-3b-21中,SMF向PSA UPF发送的启动信息可以通过N4会话修改过程中的消息传递。示例性的,该启动信息可以携带在SMF向PSA UPF发送的N4会话修改请求消息中。该启动信息中包括QoS Flow标识,指示启动用户面高可靠传输机制的指示信息,可选的,还包括启动用户面高可靠传输机制的原因值,该原因值用于指示是为了保证应用的生存时间从而需要启动第二链路(或者说整个用户面路径)的高可靠性传输机制。
在方式(3)中,针对第一链路,RAN节点和终端可以通过调整传输参数的方式来启动第一链路的高可靠性传输机制。RAN节点和PSA UPF之间的用户面高可靠性传输机制可以为基于针对N3接口的冗余业务流的高可靠性传输机制或基于针对N3接口的冗余传输层的高可靠性传输机制。
第二种情况:业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第二链路上连续丢包的个数达到第一阈值。
第二种情况下,可以启动第二链路上的高可靠性传输机制,此时,步骤704具体可以包括:第一设备触发启动针对用户面路径中的第二链路的高可靠性传输机制,具体可以通过以下方式(4)或方式(5)或方式(6)实现。
方式(4):
方式(4)下,第一设备为RAN节点,步骤704具体包括:
704-4a、第一设备向PSA UPF发送第三启动信息,第三启动信息指示需要启动针对第二链路的高可靠性传输机制。
704-4b、第一设备触发自身启动第二链路的高可靠性传输机制。
方式(5)
方式(5)下,第一设备为PSA UPF,步骤704具体包括:
704-5a、第一设备向RAN节点发送第四启动信息,第四启动信息指示需要启动针对第二链路的高可靠性传输机制。
704-5b、第一设备触发自身启动第二链路的高可靠性传输机制。
方式(4)和方式(5)中,第三启动信息可以携带在N3 GTP-U PDU的协议层头中。第三启动信息包括QoS Flow标识,指示启动用户面高可靠传输机制的指示信息,可选的,还包括启动用户面高可靠传输机制的原因值,该原因值用于指示是为了保证应用 的生存时间从而需要启动第二链路的高可靠性传输机制。
方式(4)和方式(5)中,RAN节点和PSA UPF之间的用户面高可靠性传输机制可以为基于针对N3接口的冗余业务流的高可靠性传输机制或基于针对N3接口的冗余传输层的高可靠性传输机制。
方式(6):
在方式(6)下,步骤704具体包括:
704-6a、第一设备向SMF发送第五启动信息,第五启动信息指示需要启动针对第二链路的高可靠性传输机制。相应的,SMF从第一设备接收第五启动信息。
704-6b、SMF根据第五启动信息控制第二链路的高可靠性传输机制启动。
步骤704-6b的一种可能的实现方式包括:
704-6b-1、SMF根据第五启动信息向RAN节点和PSA UPF分别发送启动信息,启动信息指示需要启动针对第二链路的高可靠性传输机制。相应的,RAN节点和PSA UPF分别接收启动信息。
704-6b-2、RAN节点和PSA UPF根据自身接收到的启动信息启动第二链路的高可靠性传输机制。
步骤704-6b的另一种可能的实现方式中,在第一设备为RAN节点时,SMF仅向PSA UPF发送启动信息使得PSA UPF启动第二链路的高可靠性传输机制,RAN节点在确定业务流在用户面路径中的第二链路上连续丢包的个数达到第一阈值时,触发自身启动第二链路的高可靠性传输机制。在第一设备为PSA UPF时,SMF仅向RAN节点发送启动信息使得RAN节点启动第二链路的高可靠性传输机制,PSA UPF在确定业务流在用户面路径中的第二链路上连续丢包的个数达到第一阈值时,触发自身启动第二链路的高可靠性传输机制。
上述方式(4)和方式(5)相比方式(6)而言,可以更快的启动第二链路的高可靠性传输机制。
在第二种情况下,也可以启动整个用户面路径上的高可靠性传输机制,具体实现可参见上文,不再赘述。
第三种情况:业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包个数小于第一阈值、在第二链路上连续丢包个数小于第一阈值以及在第一链路和第二链路上整体的连续丢包的个数达到第一阈值。
在第三种情况下,启动整个用户面路径上的高可靠性传输机制,具体实现可参见上文,不再赘述。
以下通过情况1(第一设备为RAN节点)和情况2(第一设备为PSA UPF)对场景1下的确定各个链路上的丢包情况的过程作详细阐述。
情况1:第一设备为RAN节点。
以下通过情况1.1对情况1下上行报文在各个链路中的丢包情况的确定作示例性说明,通过情况1.2对情况1下下行报文在各个链路中的丢包情况的确定作示例性说明。
情况1.1:上行报文
以下通过情况1.1.1对情况1.1下第一链路上的丢包情况的确定作示例性说明,通过情况1.1.2对情况1.1下第二链路上的丢包情况的确定作示例性说明。
情况1.1.1:第一链路上的丢包情况
情况1.1.1可以通过以下方式1或方式2实现。
方式1:
方式1包括以下步骤1.1.1-11)和步骤1.1.1-12)。
1.1.1-11)终端向RAN节点发送业务流中的报文(即PDCP PDU)。相应的,RAN节点从终端接收业务流中的报文。
1.1.1-12)RAN节点根据正确接收到的报文的PDCP SN的连续性确定业务流在第一链路上的丢包情况。
方式1中,由于终端发送的PDCP PDU的PDCP SN是连续的,因此,若RAN节点正确接收到的PDCP PDU的PDCP SN不是连续的,则导致PDCP SN不连续的PDCP SN对应的PDCP PDU即丢失的PDCP PDU。例如,若终端发送了8个PDCP PDU,8个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、……、PDCP 7,若RAN节点正确接收到6个PDCP PDU,这6个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、PDCP 3、PDCP 5、PDCP7,则RAN节点可以确定PDCP 4和PDCP 6对应的PDCP PDU丢失。
方式2:
方式2包括以下步骤1.1.1-21)至步骤1.1.1-24)。
1.1.1-21)终端向RAN节点发送业务流中的报文(即PDCP PDU)。相应的,RAN节点从终端接收业务流中的报文。
1.1.1-22)RAN节点针对每个正确接收到的报文向终端发送ACK。相应的,终端从RAN节点接收RAN节点针对每个正确接收到的报文向终端发送的ACK。
步骤1.1.1-22)在具体实现时,针对一个报文,若RAN节点正确接收到该报文,则RAN节点向终端反馈针对该报文的ACK。下文中其他方式中涉及到的其他接收端针对报文反馈ACK的方法,与RAN节点是类似的,下文中不再赘述。
1.1.1-23)终端根据是否接收到每个发送的报文的ACK的信息向RAN节点发送第一报文丢失信息,第一报文丢失信息用于指示RAN节点未正确接收到的报文的PDCP SN。相应的,RAN节点从终端接收第一报文丢失信息。
步骤1.1.1-23)在具体实现时,终端可以针对发送的每个报文设置一个定时器,针对一个报文,终端发送该报文后启动定时器,若终端在该报文对应的定时器到期之前接收到针对该报文的ACK,则终端可以确定RAN节点正确接收到了该报文,否则,终端可以确定RAN节点未正确接收到该报文。下文中其他方式中涉及到的其他发送端根据是否接收到每个发送的报文的ACK的信息确定接收端是否接收到报文的方法,与终端是类似的,下文中不再赘述。
1.1.1-24)RAN节点根据第一报文丢失信息确定业务流在第一链路上的丢包情况。
在方式2下,示例性的,若终端发送了8个PDCP PDU,8个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、……、PDCP 7,RAN节点每正确接收到一个PDCP PDU,则向终端反馈针对该PDCP PDU的ACK,那么若终端在PDCP 4对应的PDCP PDU对应的定时器到期时未接收到针对该PDCP PDU的ACK,则终端可以确定RAN节点未正确接收到PDCP 4 对应的PDCP PDU,若终端在PDCP 6对应的PDCP PDU对应的定时器到期时未接收到针对该PDCP PDU的ACK,则终端可以确定RAN节点未正确接收到PDCP 6对应的PDCP PDU。
需要说明的是,本申请实施例中,第一报文丢失信息可以指示RAN节点未正确接收到的一个或多个报文的PDCP SN。当为多个时,这多个报文的PDCP SN的信息可以是一次性发送给RAN节点的,也可以是多次发送给RAN节点的,例如,终端每确定一个报文丢失时,就及时的向RAN节点汇报丢失的报文的PDCP SN的信息。下文中提到的其他报文丢失信息是类似的,下文中不再赘述。
当终端每确定一个报文丢失时,就及时的向RAN节点汇报丢失的报文的PDCP SN的信息时,方式2相比方式1而言,可使得RAN节点更快的获取丢失的报文的信息。例如,终端发送5个PDCP PDU,若中间3个PDCP PDU都丢失,那么按照方式1,RAN节点只有在接收到第5个PDCP PDU时,才可以获知中间3个PDCP PDU丢失了,这样时延较大,从而可能影响后续PDCP PDU的重传,若终端每确定一个报文丢失时,就及时的向RAN节点汇报丢失的报文的PDCP SN的信息,则可以避免该问题。
情况1.1.2:第二链路上的丢包情况
情况1.1.2可以通过以下方式1或方式2实现。
方式1:
方式1包括以下步骤1.1.2-11)和步骤1.1.2-12)。
1.1.2-11)PSA UPF向RAN节点发送第二报文丢失信息,第二报文丢失信息用于指示PSA UPF未正确接收到的报文(即N3 GTP-U PDU)的N3 GTP-U SN。
在步骤1.1.2-11)之前,RAN节点可以向PSA UPF发送业务流中的N3 GTP-U PDU,RAN节点发送的N3 GTP-U PDU的N3 GTP-U SN是连续的,因此,PSA UPF根据正确接收到的N3 GTP-U PDU的N3 GTP-U SN的连续性确定未正确接收到的N3 GTP-U PDU。具体的,若PSA UPF正确接收到的N3 GTP-U PDU的N3 GTP-U SN不是连续的,则导致N3 GTP-U SN不连续的N3 GTP-U SN对应的N3 GTP-U PDU即未正确接收到的N3 GTP-U PDU。
1.1.2-12)RAN节点从PSA UPF接收第二报文丢失信息,并根据第二报文丢失信息确定业务流在第二链路上的丢包情况。
步骤1.1.2-12)在具体实现时,RAN节点可以直接根据第二报文丢失信息指示的N3 GTP-U SN确定丢失的N3 GTP-U PDU。
示例性的,若RAN节点发送了6个N3 GTP-U PDU,6个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 5,若PSA UPF正确接收到4个N3 GTP-U PDU,这4个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、N3 GTP-U 5,则PSA UPF可以确定N3 GTP-U 3和N3 GTP-U 4对应的N3 GTP-U PDU丢失,第二报文丢失信息中可以包括N3 GTP-U 3和N3 GTP-U 4,RAN节点根据第二报文丢失信息可以确定N3 GTP-U 3和N3 GTP-U 4对应的N3 GTP-U PDU丢失。
方式2:
方式2包括以下步骤1.1.2-21)至步骤1.1.2-23)。
1.1.2-21)RAN节点向PSA UPF发送业务流中的报文(即N3 GTP-U PDU)。相应的,PSA UPF从RAN节点接收业务流中的报文。
1.1.2-22)PSA UPF针对每个正确接收到的报文向RAN节点发送ACK。相应的,RAN节 点从PSA UPF接收PSA UPF针对每个正确接收到的报文发送的ACK。
1.1.2-23)RAN节点根据是否接收到发送的每个报文的ACK的信息确定业务流在第二链路上的丢包情况。
在方式2下,示例性的,若RAN节点发送了6个N3 GTP-U PDU,6个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 5,PSA UPF每正确接收到一个N3 GTP-U PDU,则向RAN节点反馈针对该N3 GTP-U PDU的ACK,那么若RAN节点在N3 GTP-U 3对应的N3 GTP-U PDU对应的定时器到期时未接收到针对该N3 GTP-U PDU的ACK,则RAN节点可以确定PSA UPF未正确接收到N3 GTP-U 3对应的N3 GTP-U PDU,若RAN节点在N3 GTP-U 4对应的N3 GTP-U PDU对应的定时器到期时未接收到针对该N3 GTP-U PDU的ACK,则RAN节点可以确定PSA UPF未正确接收到N3 GTP-U 4对应的N3 GTP-U PDU。
情况1.2:下行报文
以下通过情况1.2.1对情况1.2下第一链路上的丢包情况的确定作示例性说明,通过情况1.2.2对情况1.2下第二链路上的丢包情况的确定作示例性说明。
情况1.2.1:第一链路上的丢包情况
情况1.2.1可以通过以下方式1或方式2实现。
方式1:
方式1包括以下步骤1.2.1-11)和步骤1.2.1-12)。
1.2.1-11)终端向RAN节点发送第三报文丢失信息,第三报文丢失信息用于指示终端未正确接收到的报文(即PDCP PDU)的PDCP SN。相应的,RAN节点从终端接收第三报文丢失信息。
在步骤1.2.1-11)之前,RAN节点可以向终端发送业务流中的PDCP PDU,RAN节点发送的PDCP PDU的PDCP SN是连续的,因此,终端根据正确接收到的PDCP PDU的PDCP SN的连续性确定未正确接收到的PDCP PDU。具体的,若终端正确接收到的PDCP PDU的PDCP SN不是连续的,则导致PDCP SN不连续的PDCP SN对应的PDCP PDU即未正确接收到的PDCP PDU。
1.2.1-12)RAN节点根据第三报文丢失信息确定业务流在第一链路上的丢包情况。
步骤1.2.1-12)在具体实现时,RAN节点可以直接根据第三报文丢失信息指示的PDCP SN确定丢失的PDCP PDU。
示例性的,若RAN节点发送了6个PDCP PDU,6个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、……、PDCP 5,若终端正确接收到4个PDCP PDU,这4个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、PDCP 5,则终端可以确定PDCP 3和PDCP 4对应的PDCP PDU丢失,第三报文丢失信息中可以包括PDCP 3和PDCP 4,RAN节点根据第三报文丢失信息可以确定PDCP 3和PDCP 4对应的PDCP PDU丢失。
方式2:
方式2包括以下步骤1.2.1-21)至步骤1.2.1-23)。
1.2.1-21)RAN节点向终端发送业务流中的报文(即PDCP PDU)。相应的,终端从RAN节点接收业务流中的报文。
1.2.1-22)终端针对每个正确接收到的报文向RAN节点发送ACK。相应的,RAN节点 从终端接收终端针对每个正确接收到的报文发送的ACK。
1.2.1-23)RAN节点根据是否接收到发送的每个报文的ACK的信息确定业务流在第一链路上的丢包情况。
在方式2下,示例性的,若RAN节点发送了6个PDCP PDU,6个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、……、PDCP 5,终端每正确接收到一个PDCP PDU,则向RAN节点反馈针对该PDCP PDU的ACK,那么若RAN节点在PDCP 3对应的PDCP PDU对应的定时器到期时未接收到针对该PDCP PDU的ACK,则RAN节点可以确定终端未正确接收到PDCP 3对应的PDCP PDU,若RAN节点在PDCP 4对应的PDCP PDU对应的定时器到期时未接收到针对该PDCP PDU的ACK,则RAN节点可以确定终端未正确接收到PDCP 4对应的PDCP PDU。
情况1.2.2:第二链路上的丢包情况
情况1.2.2可以通过以下方式1或方式2实现。
方式1:
方式1包括以下步骤1.2.2-11)至步骤1.2.2-12)。
1.2.2-11)PSA UPF向RAN节点发送业务流中的报文(即N3 GTP-U PDU)。相应的,RAN节点从PSA UPF接收业务流中的报文。
1.2.2-12)RAN节点根据正确接收到的报文的N3 GTP-U SN的连续性确定业务流在第二链路上的丢包情况。
方式1中,由于PSA UPF发送的N3 GTP-U PDU的N3 GTP-U SN是连续的,因此,若RAN节点正确接收到的N3 GTP-U PDU的N3 GTP-U SN不是连续的,则导致N3 GTP-U SN不连续的N3 GTP-U SN对应的N3 GTP-U PDU即丢失的N3 GTP-U PDU。例如,若PSA UPF发送了8个N3 GTP-U PDU,8个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 7,若RAN节点正确接收到6个N3 GTP-U PDU,这6个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、N3 GTP-U 3、N3 GTP-U 5、N3 GTP-U7,则RAN节点可以确定N3 GTP-U 4和N3 GTP-U 6对应的N3 GTP-U PDU丢失。
方式2:
方式2包括以下步骤1.2.2-21)至1.2.2-24)。
1.2.2-21)PSA UPF向RAN节点发送业务流中的报文(即N3 GTP-U PDU)。相应的,RAN节点从PSA UPF接收业务流中的报文。
1.2.2-22)RAN节点针对每个正确接收到的报文向PSA UPF发送ACK。相应的,PSA UPF从RAN节点接收RAN节点针对每个正确接收到的报文向PSA UPF发送的ACK。
1.2.2-23)PSA UPF根据是否接收到每个发送的报文的ACK的信息向RAN节点发送第四报文丢失信息,第四报文丢失信息用于指示RAN节点未正确接收到的报文的N3 GTP-U SN。相应的,RAN节点从PSA UPF接收第四报文丢失信息。
1.2.2-24)RAN节点根据第四报文丢失信息确定业务流在第二链路上的丢包情况。
在方式2下,示例性的,若PSA UPF发送了8个N3 GTP-U PDU,8个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 7,RAN节点每正确接收到一个N3 GTP-U PDU,则向PSA UPF反馈针对该N3 GTP-U PDU的ACK, 那么若PSA UPF在N3 GTP-U 4对应的N3 GTP-U PDU对应的定时器到期时未接收到针对该N3 GTP-U PDU的ACK,则PSA UPF可以确定RAN节点未正确接收到N3 GTP-U 4对应的N3 GTP-U PDU,若PSA UPF在N3 GTP-U 6对应的N3 GTP-U PDU对应的定时器到期时未接收到针对该N3 GTP-U PDU的ACK,则PSA UPF可以确定RAN节点未正确接收到N3 GTP-U 6对应的N3 GTP-U PDU。
当PSA UPF每确定一个报文丢失时,就及时的向RAN节点汇报丢失的报文的N3 GTP-U SN的信息时,方式2相比方式1而言,可使得RAN节点更快的获取丢失的报文的信息。例如,PSA UPF发送5个N3 GTP-U PDU,若中间3个N3 GTP-U PDU都丢失,那么按照方式1,RAN节点只有在接收到第5个N3 GTP-U PDU时,才可以获知中间3个N3 GTP-U PDU丢失了,这样时延较大,从而可能影响后续N3 GTP-U PDU的重传,若PSA UPF每确定一个报文丢失时,就及时的向RAN节点汇报丢失的报文的N3 GTP-U SN的信息,则可以避免该问题。
在情况1下,RAN节点可以将第一链路上丢失的PDCP PDU的PDCP SN以及第二链路上丢失的N3 GTP-U PDU的N3 GTP-U SN对应的PDCP SN结合起来进行判断,确定用户面路径上连续丢包的个数。或者,RAN节点可以将第一链路上丢失的PDCP PDU的PDCP SN对应的N3 GTP-U SN以及第二链路上丢失的N3 GTP-U PDU的N3 GTP-U SN结合起来进行判断,确定用户面路径上连续丢包的个数。
示例性的,若终端发送了8个PDCP PDU,8个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、……、PDCP 7,若RAN节点正确接收到6个PDCP PDU,这6个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、PDCP 3、PDCP 5、PDCP7,这6个PDCP PDU对应的6个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 5。则RAN节点可以确定PDCP 4和PDCP 6对应的PDCP PDU丢失,若RAN节点还确定N3链路上N3 GTP-U 3和N3 GTP-U 4对应的N3 GTP-U PDU丢失,则由于N3 GTP-U 3对应的PDCP SN为PDCP 3,N3 GTP-U 4对应的PDCP SN为PDCP 5,也就是说,PDCP 3、PDCP 4、PDCP 5、PDCP 6对应的PDCP PDU均丢失,则RAN节点可以确定连续丢包的个数为4。
示例性的,若PSA UPF发送了8个N3 GTP-U PDU,8个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 7,若RAN节点正确接收到6个N3 GTP-U PDU,这6个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、N3 GTP-U 3、N3 GTP-U 5、N3 GTP-U7,这6个N3 GTP-U PDU对应的6个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、……、PDCP 5。则RAN节点可以确定N3 GTP-U 4和N3 GTP-U 6对应的N3 GTP-U PDU丢失,若RAN节点还确定空口上PDCP 3和PDCP 4对应的PDCP PDU丢失,则由于PDCP 3对应的GTP-U SN为N3 GTP-U 3,PDCP 4对应的GTP-U SN为N3 GTP-U 45,也就是说,N3 GTP-U 3、N3 GTP-U 4、N3 GTP-U 5、N3 GTP-U 6对应的N3 GTP-U PDU均丢失,则RAN节点可以确定连续丢包的个数为4。
在情况1下,可选的,上述方法还包括:SMF向终端和PSA UPF发送指示信息,该指示信息用于指示相应网络节点进行报文丢失信息的反馈。终端接收到该指示信息后,可以根据该指示信息向RAN节点反馈第一链路上的报文丢失信息。PSA UPF接收到该指示信息之后,根据该指示信息向RAN节点反馈第二链路上的报文丢失信息。
该指示信息可以显式指示,例如,通过一个或多个比特的值指示是否进行报文丢失信息的反馈。该指示信息也可以隐式指示,例如,通过业务对应的生存时间指示,该情况下,当终端(或PSA UPF)接收到的Qos Flow对应的QoS参数中包括业务对应的生存时间,则终端(或PSA UPF)确定进行报文丢失信息的反馈。
情况2:第一设备为PSA UPF。
以下通过情况2.1对情况2下上行报文在各个链路中的丢包情况的确定作示例性说明,通过情况2.2对情况2下下行报文在各个链路中的丢包情况的确定作示例性说明。
情况2.1:上行报文
以下通过情况2.1.1对情况2.1下第一链路上的丢包情况的确定作示例性说明,通过情况2.1.2对情况2.1下第二链路上的丢包情况的确定作示例性说明。
情况2.1.1:第一链路上的丢包情况
情况2.1.1可以包括以下步骤2.1.1-11)和步骤2.1.1-12)。
2.1.1-11)RAN节点向PSA UPF发送第五报文丢失信息,第五报文丢失信息用于指示业务流在第一链路丢失的报文(即PDCP PDU)。相应的,PSA UPF从RAN节点接收第五报文丢失信息。
其中,RAN节点获取第一链路丢失的报文的方法可参见上文,此处不再赘述。
2.1.1-12)PSA UPF根据第五报文丢失信息确定业务流在第一链路上的丢包情况。
其中,PDCP SN和N3 GTP-U SN在不同的SN映射方式下,第五报文丢失信息所指示的信息有所不同,以下分别进行描述。
SN映射方式1:
在SN映射方式1下,RAN节点正确接收到的每个报文的PDCP SN和RAN节点发送的该报文的N3 GTP-U SN对应,RAN节点所发送的连续的报文的N3 GTP-U SN是连续的。该情况下,由于丢失的报文是没有N3 GTP-U SN的,因此,第五报文丢失信息可以用于指示RAN节点在第一链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,第五报文丢失信息还用于指示第五报文丢失信息指示的报文的后一个报文丢包或后多个连续报文丢包。
此时,步骤2.1.1-12)在具体实现时,PSA UPF可以确定第五报文丢失信息指示的报文的后一个或多个连续报文丢失。在具体实现时,RAN节点可以每丢失一个报文则向PSA UPF汇报该报文的上一个正确接收到的报文的N3 GTP-U SN,该情况下,一个N3 GTP-U SN被汇报m(m为大于0的整数)次,则PSA UPF可以确定该报文后的连续m个报文丢失。
示例性的,若终端发送了8个PDCP PDU,8个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、……、PDCP 7,若RAN节点正确接收到6个PDCP PDU,这6个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、PDCP 3、PDCP 5、PDCP7,这6个PDCP PDU对应的6个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 5。则6个PDCP PDU的PDCP SN与6个N3 GTP-U PDU的N3 GTP-U SN之间的对应关系参见表2。此时,由于PDCP 4和PDCP 6对应的PDCP PDU丢失,针对PDCP 4对应的PDCP PDU,RAN节点上一个正确接收到的PDCP PDU的PDCP SN为PDCP 3,PDCP 3与N3 GTP-U 3对应,针对PDCP 6对应的PDCP PDU,RAN节点上一个正确接收到的PDCP PDU的PDCP SN为PDCP 5,PDCP 5与N3 GTP-U 4对应,则RAN节点在检测到PDCP 4对应的PDCP  PDU丢失后,向PSA UPF发送PDCP 3对应的N3 GTP-U 3,PSA UPF根据N3 GTP-U 3确定N3 GTP-U 3对应的N3 GTP-U PDU后的一个N3 GTP-U PDU丢失;RAN节点在检测到PDCP 6对应的PDCP PDU丢失后,向PSA UPF发送PDCP 5对应的N3 GTP-U 4,PSA UPF根据N3 GTP-U 4确定N3 GTP-U 4对应的N3 GTP-U PDU后的一个N3 GTP-U PDU丢失。
表2
PDCP SN N3 GTP-U SN
0 0
1 1
2 2
3 3
4 -
5 4
6 -
7 5
SN映射方式2:
在SN映射方式2下,RAN节点正确接收到的每个报文的PDCP SN和RAN节点发送的该报文的N3 GTP-U SN之间的差值(即上述x)是相同的(针对同一个编号周期)。该情况下,由于丢失的报文本质上也是有N3 GTP-U SN的,因此,第五报文丢失信息为RAN节点在第一链路未正确接收到的报文的N3 GTP-U SN。
此时,步骤2.1.1-12)在具体实现时,PSA UPF可以根据接收到的报文的N3 GTP-U SN的连续性确定业务流在第一链路上的丢包情况。
示例性的,若终端发送了8个PDCP PDU,8个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、……、PDCP 7,8个PDCP PDU对应的N3 GTP-U PDU的N3 GTP-U SN可参见表3。若RAN节点正确接收到6个PDCP PDU,这6个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、PDCP 3、PDCP 5、PDCP7,这6个PDCP PDU对应的6个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、N3 GTP-U 3、N3 GTP-U 5、N3 GTP-U 7。则第五报文丢失信息可以包括N3 GTP-U4和N3 GTP-U 6,PSA UPF根据第五报文丢失信息即可确定N3 GTP-U4对应的N3 GTP-U PDU丢失以及N3 GTP-U 6对应的N3 GTP-U PDU丢失。
表3
PDCP SN N3 GTP-U SN
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
情况2.1.2:第二链路上的丢包情况
情况2.1.2可以通过以下方式1或方式2实现。
方式1:
方式1包括以下步骤2.1.2-11)和步骤2.1.2-12)。
步骤2.1.2-11)RAN节点向PSA UPF发送业务流中的报文(即N3 GTP-U PDU)。相应的,PSA UPF从RAN节点接收业务流中的报文。
步骤2.1.2-12)PSA UPF根据正确接收到的报文的N3 GTP-U SN的连续性确定业务流在第二链路上的丢包情况。
方式1中,由于RAN节点发送的N3 GTP-U PDU的N3 GTP-U SN是连续的,因此,若PSA UPF正确接收到的N3 GTP-U PDU的N3 GTP-U SN不是连续的,则导致N3 GTP-U SN不连续的N3 GTP-U SN对应的N3 GTP-U PDU即丢失的N3 GTP-U PDU。例如,若RAN节点发送了8个N3 GTP-U PDU,8个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 7,若PSA UPF正确接收到6个N3 GTP-U PDU,这6个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、N3 GTP-U 3、N3 GTP-U 5、N3 GTP-U 7,则PSA UPF可以确定N3 GTP-U 4和N3 GTP-U 6对应的N3 GTP-U PDU丢失。
方式2:
方式2包括以下步骤2.1.2-21)和步骤2.1.2-24)。
2.1.2-21)RAN节点向PSA UPF发送业务流中的报文(即N3 GTP-U PDU)。相应的,PSA UPF从RAN节点接收业务流中的报文。
2.1.2-22)PSA UPF针对每个正确接收到的报文向RAN节点发送ACK。相应的,RAN节点从PSA UPF接收PSA UPF针对每个正确接收到的报文发送的ACK。
2.1.2-23)RAN节点根据是否接收到每个发送的报文的ACK的信息向PSA UPF发送第六报文丢失信息,第六报文丢失信息用于指示PSA UPF未正确接收到的报文的N3 GTP-U SN。相应的,PSA UPF从RAN节点接收第六报文丢失信息。
2.1.2-24)PSA UPF根据第六报文丢失信息确定业务流在第二链路上的丢包情况。
在方式2下,示例性的,若RAN节点发送了8个N3 GTP-U PDU,8个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 7,PSA UPF每正确接收到一个N3 GTP-U PDU,则向RAN节点反馈针对该N3 GTP-U PDU的ACK,那么若RAN节点在N3 GTP-U 4对应的N3 GTP-U PDU对应的定时器到期时未接收到针对该N3 GTP-U PDU的ACK,则RAN节点可以确定PSA UPF未正确接收到N3 GTP-U 4对应的N3 GTP-U PDU,若RAN节点在N3 GTP-U 6对应的N3 GTP-U PDU对应的定时器到期时未接收到针对该N3 GTP-U PDU的ACK,则RAN节点可以确定PSA UPF未正确接收到N3 GTP-U 6对应的N3 GTP-U PDU。
当RAN节点每确定一个报文丢失时,就及时的向PSA UPF汇报丢失的报文的N3 GTP-U SN的信息时,方式2相比方式1而言,可使得PSA UPF更快的获取丢失的报文的信息。例如,RAN节点发送5个N3 GTP-U PDU,若中间3个N3 GTP-U PDU都丢失,那么按照方式1,PSA UPF只有在接收到第5个N3 GTP-U PDU时,才可以获知中间3 个N3 GTP-U PDU丢失了,这样时延较大,从而可能影响后续N3 GTP-U PDU的重传,若RAN节点每确定一个报文丢失时,就及时的向PSA UPF汇报丢失的报文的N3 GTP-U SN的信息,则可以避免该问题。
情况2.2:下行报文
以下通过情况2.2.1对情况2.2下第一链路上的丢包情况的确定作示例性说明,通过情况2.2.2对情况2.2下第二链路上的丢包情况的确定作示例性说明。
情况2.2.1:第一链路上的丢包情况
情况2.2.1包括以下步骤2.2.1-11)至步骤2.2.1-12)。
2.2.1-11)RAN节点向PSA UPF发送第七报文丢失信息,第七报文丢失信息用于指示业务流在第一链路丢失的报文(即PDCP PDU)的N3 GTP-U SN。相应的,PSA UPF从RAN节点接收第七报文丢失信息。
其中,RAN节点获取业务流在第一链路丢失的报文的方法可参见上文,在此不再赘述。当RAN节点获取业务流在第一链路丢失的PDCP PDU的PDCP SN之后,可以将该PDCP SN对应的N3 GTP-U PDU的N3 GTP-U SN(即第七报文丢失信息)发送给PSA UPF。
2.2.1-12)PSA UPF根据第七报文丢失信息确定业务流在所述第一链路上的丢包情况。
示例性的,若PSA UPF向RAN节点发送了4个N3 GTP-U PDU,4个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、N3 GTP-U 3。4个N3 GTP-U PDU对应的4个PDCP PDU的PDCP SN分别为PDCP 0、PDCP 1、PDCP 2、PDCP 3。RAN节点向终端发送这4个PDCP PDU后,若终端未接收到PDCP SN为PDCP 2的PDCP PDU,则RAN节点将PDCP 2对应的N3 GTP-U 2发送给PSA UPF,PSA UPF根据N3 GTP-U 2确定N3 GTP-U 2对应的N3 GTP-U PDU丢失。
情况2.2.2:第二链路上的丢包情况
情况2.2.2可以通过以下方式1或方式2实现。
方式1:
方式1包括以下步骤2.2.2-11)和2.2.2-12)
2.2.2-11)RAN节点向PSA UPF发送第八报文丢失信息,第八报文丢失信息用于指示RAN节点未正确接收到的报文(即N3 GTP-U PDU)的N3 GTP-U SN。相应的,PSA UPF从RAN节点接收第八报文丢失信息。
在步骤2.2.2-11)之前,PSA UPF向RAN节点发送业务流中的报文,RAN节点接收PSA UPF发送的报文,并根据接收到的报文的N3 GTP-U SN的连续性确定未正确接收到的报文。
2.2.2-12)PSA UPF根据第八报文丢失信息确定业务流在第二链路上的丢包情况。
步骤2.2.2-12)在具体实现时,PSA UPF可以直接确定第八报文丢失信息指示的N3 GTP-U SN对应的N3 GTP-U PDU丢失。
方式2:
方式2包括以下步骤2.2.2-21)至2.2.2-23)。
2.2.2-21)PSA UPF向RAN节点发送业务流中的报文(即N3 GTP-U PDU)。相应的,RAN节点从PSA UPF接收业务流中的报文。
2.2.2-22)RAN节点针对每个正确接收到的报文向PSA UPF发送ACK。相应的,PSA UPF从RAN节点接收RAN节点针对每个正确接收到的报文发送的ACK。
2.2.2-23)PSA UPF根据是否接收到发送的每个报文的ACK的信息确定业务流在第二链路上的丢包情况。
在方式2下,示例性的,若PSA UPF发送了6个N3 GTP-U PDU,6个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 5,RAN节点每正确接收到一个N3 GTP-U PDU,则向PSA UPF反馈针对该N3 GTP-U PDU的ACK,那么若PSA UPF在N3 GTP-U 3对应的N3 GTP-U PDU对应的定时器到期时未接收到针对该N3 GTP-U PDU的ACK,则PSA UPF可以确定RAN节点未正确接收到N3 GTP-U 3对应的N3 GTP-U PDU,若PSA UPF在N3 GTP-U 4对应的N3 GTP-U PDU对应的定时器到期时未接收到针对该N3 GTP-U PDU的ACK,则PSA UPF可以确定RAN节点未正确接收到N3 GTP-U 4对应的N3 GTP-U PDU。
在情况2下,PSA UPF可以将第一链路上丢失的PDCP PDU的PDCP SN对应的N3 GTP-U SN以及第二链路上丢失的N3 GTP-U PDU的N3 GTP-U SN结合起来进行判断,确定用户面路径上连续丢包的个数。
示例性的,基于表2所示的示例,若PSA UPF确定N3 GTP-U 3对应的N3 GTP-U PDU后的一个报文丢失以及N3 GTP-U 4对应的N3 GTP-U PDU后的一个报文丢失,若PSA UPF还确定第二链路上N3 GTP-U 4对应的N3 GTP-U PDU丢失,则PSA UPF确定3个连续的报文丢失。
在情况2下,可选的,上述方法还包括:SMF向终端和RAN节点发送指示信息,该指示信息用于指示相应网络节点进行报文丢失信息的反馈。终端接收到该指示信息后,可以根据该指示信息向RAN节点反馈第一链路上的报文丢失信息。RAN节点接收到该指示信息之后,根据该指示信息向PSA UPF反馈第二链路上的报文丢失信息。
该指示信息可以显式指示,例如,通过一个或多个比特的值指示是否进行报文丢失信息的反馈。该指示信息也可以隐式指示,例如,通过业务对应的生存时间指示,该情况下,当终端(或RAN节点)接收到的Qos Flow对应的Qos参数中包括业务对应的生存时间,则终端(或RAN节点)确定进行报文丢失信息的反馈。
场景2:多UPF场景
在多UPF场景中,第二链路包括第一子链路和第二子链路。
在多UPF场景下,通过以下第一种情况、第二种情况、第三种情况和第四种情况对步骤704的具体实现分别进行描述。
第一种情况:业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包的个数达到第一阈值。
第一种情况下,可以启动第一链路的高可靠性传输机制。具体过程可参见上文,不再赘述。
第一种情况下,也可以启动整个用户面路径上的高可靠性传输机制,此时,步骤704具体可以包括:第一设备触发启动针对用户面路径中的第一链路、第一子链路和第二子链路的高可靠性传输机制,具体可以通过以下方式(7)实现。
方式(7):
方式(7)下,步骤704具体包括:
704-7a、第一设备向SMF发送第七启动信息,第七启动信息指示需要启动针对第一链路、第一子链路和第二子链路(或者说整个用户面路径)的高可靠性传输机制。
704-7b、SMF根据第七启动信息控制第一链路、第一子链路和第二子链路的高可靠性传输机制启动。
步骤704-7b的第一种可能的实现方式与步骤704-3b的第一种可能的实现方式类似,具体可参见上文,在此不再赘述。
步骤704-7b的第二种可能的实现方式包括:
704-7b-1、SMF根据第七启动信息向终端、RAN节点、I-UPF和PSA UPF分别发送启动信息,启动信息指示需要启动针对用户面路径的高可靠性传输机制。相应的,终端、RAN节点、I-UPF和PSA UPF分别接收该启动信息。
704-7b-2、终端、RAN节点、I-UPF和PSA UPF分别根据接收到的启动信息启动整个用户面路径上的高可靠性传输机制。具体的,终端可以启动第一链路的高可靠性传输机制,RAN节点可以启动第一链路和第一子链路的高可靠性传输机制,I-UPF可以启动第一子链路和第二子链路的高可靠性传输机制,PSA UPF可以启动第二子链路的高可靠性传输机制。
步骤704-7b-1中,SMF向I-UPF发送启动信息的过程以及启动信息中包括的信息与SMF向PSA UPF发送启动信息的过程以及启动信息中包括的信息相同,具体可参见上文,在此不再赘述。
在方式(7)中,针对第一链路,RAN节点和终端可以通过调整传输参数的方式来启动第一链路的高可靠性传输机制。RAN节点和I-UPF之间的用户面高可靠性传输机制可以为基于针对N3接口的冗余业务流的高可靠性传输机制或基于针对N3接口的冗余传输层的高可靠性传输机制。I-UPF和PSA-UPF之间的用户面高可靠性传输机制可以为基于针对N9接口的冗余业务流的高可靠性传输机制或基于针对N9接口的冗余传输层的高可靠性传输机制。
第二种情况:业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一子链路上连续丢包的个数达到第一阈值。
第二种情况下,可以启动第一子链路上的高可靠性传输机制,此时,步骤704具体可以包括:第一设备触发启动针对用户面路径中的第一子链路的高可靠性传输机制,具体可以通过以下方式(8)或方式(9)实现。
方式(8):
方式(8)下,第一设备为RAN节点,步骤704具体包括:
704-8a、第一设备向I-UPF发送启动信息,该启动信息指示需要启动针对第一子链路的高可靠性传输机制。相应的,I-UPF接收该启动信息,并根据该启动信息启动第一子链路的高可靠性传输机制。
704-8b、第一设备触发自身启动第一子链路的高可靠性传输机制。
其中,第一设备向I-UPF发送的启动信息可以携带在N3 GTP-U PDU的协议层头中。该启动信息包括QoS Flow标识,指示启动用户面高可靠传输机制的指示信息,可选的,还包括启动用户面高可靠传输机制的原因值,该原因值用于指示是为了保证应用的生 存时间从而需要启动第一子链路的高可靠性传输机制。
方式(8)中,第一设备和I-UPF之间的用户面高可靠性传输机制可以为基于针对N3接口的冗余业务流的高可靠性传输机制或基于针对N3接口的冗余传输层的高可靠性传输机制。
方式(9):
在方式(9)下,步骤704具体包括:
704-9a、第一设备向SMF发送启动信息,该启动信息指示需要启动针对第一子链路的高可靠性传输机制。相应的,SMF从第一设备接收该启动信息。
704-9b、SMF根据该启动信息控制第一子链路的高可靠性传输机制启动。
步骤704-9b的一种可能的实现方式包括:
704-9b-1、SMF根据该启动信息向第一设备和I-UPF分别发送启动信息,启动信息指示需要启动针对第一子链路的高可靠性传输机制。相应的,第一设备和I-UPF分别接收启动信息。
704-9b-2、第一设备和I-UPF根据自身接收到的启动信息启动第一子链路的高可靠性传输机制。
若第一设备为RAN节点,步骤704-9b的另一种可能的实现方式中,SMF仅向I-UPF发送启动信息使得I-UPF启动第一子链路的高可靠性传输机制,第一设备在确定业务流在用户面路径中的第一子链路上连续丢包的个数达到第一阈值时,触发自身启动第一子链路的高可靠性传输机制。
上述方式(8)相比方式(9)而言,可以更快的启动第一子链路的高可靠性传输机制。
在第二种情况下,也可以启动整个用户面路径上的高可靠性传输机制,具体实现可参见上文,不再赘述。
第三种情况:业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第二子链路上连续丢包的个数达到第一阈值。
第三种情况下,可以启动第二子链路上的高可靠性传输机制,此时,步骤704具体可以包括:第一设备触发启动针对用户面路径中的第二子链路的高可靠性传输机制,具体可以通过以下方式(10)或方式(11)实现。
方式(10):
方式(10)下,第一设备为PSA UPF,步骤704具体包括:
704-10a、第一设备向I-UPF发送启动信息,该启动信息指示需要启动针对第二子链路的高可靠性传输机制。相应的,I-UPF接收该启动信息,并根据该启动信息启动第二子链路的高可靠性传输机制。
704-10b、第一设备触发自身启动第二子链路的高可靠性传输机制。
其中,第一设备向I-UPF发送的启动信息可以携带在N9 GTP-U PDU的协议层头中。该启动信息包括QoS Flow标识,指示启动用户面高可靠传输机制的指示信息,可选的,还包括启动用户面高可靠传输机制的原因值,该原因值用于指示是为了保证应用的生存时间从而需要启动第二子链路的高可靠性传输机制。
方式(10)中,第一设备和I-UPF之间的用户面高可靠性传输机制可以为基于针 对N9接口的冗余业务流的高可靠性传输机制或基于针对N9接口的冗余传输层的高可靠性传输机制。
方式(11):
在方式(11)下,步骤704具体包括:
704-11a、第一设备向SMF发送启动信息,该启动信息指示需要启动针对第二子链路的高可靠性传输机制。相应的,SMF从第一设备接收该启动信息。
704-11b、SMF根据该启动信息控制第二子链路的高可靠性传输机制启动。
步骤704-11b的一种可能的实现方式包括:
704-11b-1、SMF根据该启动信息向第一设备和I-UPF分别发送启动信息,启动信息指示需要启动针对第二子链路的高可靠性传输机制。相应的,第一设备和I-UPF分别接收启动信息。
704-11b-2、第一设备和I-UPF根据自身接收到的启动信息启动第二子链路的高可靠性传输机制。
若第一设备为PSA UPF,步骤704-11b的另一种可能的实现方式中,SMF仅向I-UPF发送启动信息使得I-UPF启动第二子链路的高可靠性传输机制,第一设备在确定业务流在用户面路径中的第二子链路上连续丢包的个数达到第一阈值时,触发自身启动第二子链路的高可靠性传输机制。
上述方式(10)相比方式(11)而言,可以更快的启动第二子链路的高可靠性传输机制。
在第三种情况下,也可以启动整个用户面路径上的高可靠性传输机制,具体实现可参见上文,不再赘述。
第四种情况:业务流在用户面路径上连续丢包的个数达到第一阈值,具体为:业务流在用户面路径中的第一链路上连续丢包的个数小于第一阈值、在第一子链路连续丢包的个数小于第一阈值以及在第二子链路上连续丢包的个数也小于第一阈值,但是在第一链路、第一子链路和第二子链路任意两条或三条链路上的整体连续丢包的个数达到第一阈值。
在第四种情况下,启动整个用户面路径上的高可靠性传输机制,具体实现可参见上文,不再赘述。
以下通过情况3(第一设备为RAN节点)和情况4(第一设备为PSA UPF)对场景2下的确定各个链路上的丢包情况的过程作详细阐述。
情况3:第一设备为RAN节点。
以下通过情况3.1对情况3下上行报文在各个链路中的丢包情况的确定作示例性说明,通过情况3.2对情况3下下行报文在各个链路中的丢包情况的确定作示例性说明。
情况3.1:上行报文
以下通过情况3.1.1对情况3.1下第一链路上的丢包情况的确定作示例性说明,通过情况3.1.2对情况3.1下第二链路上的丢包情况的确定作示例性说明。
情况3.1.1:第一链路上的丢包情况
情况3.1.1可以通过以下方式1或方式2实现。
方式1:
方式1包括以下步骤3.1.1-11)和步骤3.1.1-12)。
3.1.1-11)终端向RAN节点发送业务流中的报文(即PDCP PDU)。相应的,RAN节点从终端接收业务流中的报文。
3.1.1-12)RAN节点根据正确接收到的报文的PDCP SN的连续性确定业务流在第一链路上的丢包情况。
情况3.1.1下方式1的实现过程与情况1.1.1下方式1的实现过程类似,具体可参照情况1.1.1下方式1的实现过程进行理解,此处不再赘述。
方式2:
方式2包括以下步骤3.1.1-21)至步骤3.1.1-24)。
3.1.1-21)终端向RAN节点发送业务流中的报文(即PDCP PDU)。相应的,RAN节点从终端接收业务流中的报文。
3.1.1-22)RAN节点针对每个正确接收到的报文向终端发送ACK。相应的,终端从RAN节点接收RAN节点针对每个正确接收到的报文向终端发送的ACK。
3.1.1-23)终端根据是否接收到每个发送的报文的ACK的信息向RAN节点发送第九报文丢失信息,第九报文丢失信息用于指示RAN节点未正确接收到的报文的PDCP SN。相应的,RAN节点从终端接收第九报文丢失信息。
3.1.1-24)RAN节点根据第九报文丢失信息确定业务流在第一链路上的丢包情况。
情况3.1.1下方式2的实现过程与情况1.1.1下方式2的实现过程类似,具体可参照情况1.1.1下方式2的实现过程进行理解,此处不再赘述。
情况3.1.2:第二链路上的丢包情况
情况3.1.2可以通过以下方式1或方式2实现。
方式1:
方式1包括以下步骤3.1.2-11)和步骤3.1.2-12)。
3.1.2-11)I-UPF向RAN节点发送第十报文丢失信息,第十报文丢失信息用于指示I-UPF在第一子链路上未正确接收到的报文的N3 GTP-U SN和PSA UPF在第二子链路上未正确接收到的报文的N9 GTP-U SN对应的N3 GTP-U SN。相应的,RAN节点从I-UPF接收第十报文丢失信息。
步骤3.1.2-11)在具体实现时,I-UPF可以获取第一子链路上未正确接收到的报文和PSA UPF在第二子链路上未正确接收到的报文。其中,I-UPF获取第一子链路上未正确接收到的报文的实现过程与场景1中PSA UPF获取第二链路上的未正确接收到的报文的实现过程类似,I-UPF获取PSA UPF在第二子链路上未正确接收到的报文的实现过程与场景1中RAN节点获取PSA UPF在第二链路上的未正确接收到的报文的实现过程类似,具体可参照上文中的相应部分进行理解,此处不再赘述。
需要说明的是,I-UPF获取PSA UPF在第二子链路上未正确接收到的N9 GTP-U PDU的N9 GTP-U SN之后,在生成第十报文丢失信息时,需要将该N9 GTP-U SN转换为N3 GTP-U SN。
3.1.2-12)RAN节点根据第十报文丢失信息确定业务流在第二链路上的丢包情况。
步骤3.1.2-12)在具体实现时,RAN节点可以直接根据第十报文丢失信息确定业 务流在第二链路上丢失的报文。
方式2:
方式2包括以下步骤3.1.2-21)至步骤3.1.2-25)。
3.1.2-21)RAN节点向I-UPF发送业务流中的报文。相应的,I-UPF从RAN节点接收业务流中的报文。
3.1.2-22)I-UPF针对每个正确接收到的报文向RAN节点发送ACK。相应的,RAN节点从I-UPF接收I-UPF针对每个正确接收到的报文发送的ACK。
3.1.2-23)RAN节点根据是否接收到发送的每个报文的ACK的信息确定业务流在第一子链路上的丢包情况。
3.1.2-24)I-UPF向RAN节点发送第十一报文丢失信息,第十一报文丢失信息用于指示PSA UPF在第二子链路上未正确接收到的报文的N9 GTP-U SN对应的N3 GTP-U SN。相应的,RAN节点从I-UPF接收第十一报文丢失信息。
3.1.2-25)RAN节点根据第十一报文丢失信息和业务流在第一子链路上的丢包情况确定业务流在第二链路上的丢包情况。
其中,步骤3.1.2-21)至步骤3.1.2-23)中RAN节点确定业务流在第一子链路上的丢包情况的实现过程与上述情况1.1.2下的方式2中RAN节点确定业务流在第二链路上的丢包情况的实现过程是类似的,具体可参照上文中的相应部分进行理解,此处不再赘述。
在步骤3.1.2-24)之前,I-UPF可以获取PSA UPF在第二子链路上未正确接收到的报文,具体实现过程与场景1中RAN节点获取PSA UPF在第二链路上的未正确接收到的报文的实现过程类似,具体可参照上文中的相应部分进行理解,此处不再赘述。需要说明的是,I-UPF获取PSA UPF在第二子链路上未正确接收到的N9 GTP-U PDU的N9 GTP-U SN之后,在生成第十一报文丢失信息时,需要将该N9 GTP-U SN转换为N3 GTP-U SN。
步骤3.1.2-25)在具体实现时,RAN节点根据第十一报文丢失信息可以确定业务流在第二子链路上的丢包情况,再结合业务流在第一子链路上的丢包情况,从而确定业务流在第二链路上的丢包情况。
在方式2下,示例性的,针对第一子链路,若RAN节点发送了8个N3 GTP-U PDU,8个N3 GTP-U PDU的N3 GTP-U SN分别为N3 GTP-U 0、N3 GTP-U 1、N3 GTP-U 2、……、N3 GTP-U 7,I-UPF每正确接收到一个N3 GTP-U PDU,则向RAN节点反馈针对该N3 GTP-U PDU的ACK,那么若RAN节点在N3 GTP-U 4对应的N3 GTP-U PDU对应的定时器到期时未接收到针对该N3 GTP-U PDU的ACK,则RAN节点可以确定I-UPF未正确接收到N3 GTP-U 4对应的N3 GTP-U PDU,若RAN节点在N3 GTP-U 6对应的N3 GTP-U PDU对应的定时器到期时未接收到针对该N3 GTP-U PDU的ACK,则RAN节点可以确定I-UPF未正确接收到N3 GTP-U 6对应的N3 GTP-U PDU。针对第二子链路,I-UPF接收到的6个N3 GTP-U PDU的N3 GTP-U SN与发送的6个N9 GTP-U PDU的N9 GTP-U SN之间的对应关系参见表4,若I-UPF确定第二子链路上N9 GTP-U 4对应的N9 GTP-U PDU丢失,则将N9 GTP-U 4对应的N3 GTP-U 5(即第十一报文丢失信息)发送给RAN节点。RAN节点根据N3 GTP-U 5可以确定业务流在第二子链路上丢失的报文为N3 GTP-U 5 对应的N3 GTP-U PDU,由于第一子链路上丢失的报文为N3 GTP-U 4和N3 GTP-U 6对应的N3 GTP-U PDU,则RAN节点可以确定第二链路上丢失的报文为N3 GTP-U 4、N3 GTP-U 5和N3 GTP-U 6对应的N3 GTP-U PDU。
表4
N3 GTP-U SN N9 GTP-U SN
0 0
1 1
2 2
3 3
5 4
7 5
情况3.2:下行报文
以下通过情况3.2.1对情况3.2下第一链路上的丢包情况的确定作示例性说明,通过情况3.2.2对情况3.2下第二链路上的丢包情况的确定作示例性说明。
情况3.2.1:第一链路上的丢包情况
情况3.2.1可以通过以下方式1或方式2中的任意一种方式实现。
方式1:
方式1包括以下步骤3.2.1-11)和步骤3.2.1-12)
3.2.1-11)终端向RAN节点发送第十二报文丢失信息,第十二报文丢失信息用于指示终端未正确接收到的报文(即PDCP PDU)的PDCP SN。相应的,RAN节点从终端接收第十二报文丢失信息。
3.2.1-12)RAN节点根据第十二报文丢失信息确定业务流在第一链路上的丢包情况。
情况3.2.1下方式1的实现过程与情况1.2.1下方式1的实现过程类似,具体可参照情况1.2.1下方式1的实现过程进行理解,此处不再赘述。
方式2:
方式2包括以下步骤3.2.1-21)至步骤3.2.1-23)
3.2.1-21)RAN节点向终端发送业务流中的报文(即PDCP PDU)。相应的,终端从RAN节点接收业务流中的报文。
3.2.1-22)终端针对每个正确接收到的报文向RAN节点发送ACK。相应的,RAN节点从终端接收终端针对每个正确接收到的报文发送的ACK。
3.2.1-23)RAN节点根据是否接收到发送的每个报文的ACK的信息确定业务流在第一链路上的丢包情况。
情况3.2.1下方式2的实现过程与情况1.2.1下方式2的实现过程类似,具体可参照情况1.2.1下方式2的实现过程进行理解,此处不再赘述。
情况3.2.2:第二链路上的丢包情况
情况3.2.2可以通过以下方式1或方式2或方式3实现。
方式1包括以下步骤3.2.2-11)至3.2.2-14)。
3.2.2-11)I-UPF向RAN节点发送业务流中的报文。相应的,RAN节点从I-UPF接收业务流中的报文。
其中,I-UPF向RAN节点发送的报文是从PSA UPF接收到的。
3.2.2-12)RAN节点根据正确接收到的报文的N3 GTP-U SN的连续性确定RAN节点在第一子链路上未正确接收到的报文的N3 GTP-U SN。
步骤3.2.2-11)和步骤3.2.2-12)中RAN节点确定第一子链路上未正确接收到的报文的实现过程与上述情况1.2.2的方式1中的RAN节点确定第二链路上的丢包情况的实现过程类似,具体可参见上文进行理解,此处不再赘述。
3.2.2-13)I-UPF向RAN节点发送第十三报文丢失信息,第十三报文丢失信息用于指示I-UPF在第二子链路上未正确接收到的报文。相应的,RAN节点从I-UPF接收第十三报文丢失信息。
在步骤3.2.2-13)之前,I-UPF可以获取I-UPF在第二子链路上未正确接收到的报文,获取的方法与RAN节点获取RAN节点在第二链路上未正确接收到的报文的方法类似,具体可参照上文进行理解,在此不再赘述。
3.2.2-14)RAN节点根据RAN节点在第一子链路上未正确接收到的报文的N3 GTP-U SN和第十三报文丢失信息确定业务流在第二链路上的丢包情况。
方式2:
方式2包括以下步骤3.2.2-21)至3.2.2-24)。
3.2.2-21)I-UPF向RAN节点发送业务流中的报文。相应的,RAN节点从I-UPF接收业务流中的报文。
其中,I-UPF向RAN节点发送的报文是从PSA UPF接收到的。
3.2.2-22)RAN节点针对每个正确接收到的报文向I-UPF发送ACK。相应的,I-UPF从RAN节点接收RAN节点针对每个正确接收到的报文向I-UPF发送的ACK。
3.2.2-23)I-UPF根据是否接收到每个发送的报文的ACK的信息向RAN节点发送第十三报文丢失信息和第十四报文丢失信息,第十三报文丢失信息用于指示I-UPF在第二子链路上未正确接收到的报文,第十四报文丢失信息用于指示RAN节点在第一子链路上未正确接收到的报文的N3 GTP-U SN。相应的,RAN节点从I-UPF接收第十三报文丢失信息和第十四报文丢失信息。
其中,步骤3.2.2-23)之前,I-UPF可以根据是否接收到每个发送的报文的ACK的信息确定RAN节点未正确接收到的报文,进而确定第十四报文丢失信息。另外,I-UPF可以获取I-UPF在第二子链路上未正确接收到的报文,进而确定第十三报文丢失信息,获取的方法与场景1中RAN节点获取RAN节点在第二链路上未正确接收到的报文的方法类似,具体可参照上文进行理解,在此不再赘述。
3.2.2-24)RAN节点根据第十三报文丢失信息和第十四报文丢失信息确定业务流在第二链路上的丢包情况。
其中,N9 GTP-U SN和N3 GTP-U SN在不同的SN映射方式下,第十三报文丢失信息所指示的信息有所不同,以下分别进行描述。
SN映射方式1:
在SN映射方式1下,I-UPF正确接收到的每个报文的N9 GTP-U SN和I-UPF发送的该报文的N3 GTP-U SN对应,I-UPF所发送的连续的报文的N3 GTP-U SN是连续的。此时,第十三报文丢失信息用于指示I-UPF在第二子链路未正确接收到的报文的上一个正确接收到的报文的N9 GTP-U SN对应的N3 GTP-U SN,第十三报文丢失信息还用于指示第十三报文丢失信息指示的报文的后一个报文或后多个连续报文丢包。
在SN映射方式1下,I-UPF确定在第二子链路未正确接收到的N9 GTP-U PDU的上一个正确接收到的N9 GTP-U PDU的N9 GTP-U SN之后,在生成第十三报文丢失信息时,需要将该N9 GTP-U SN转换为N3 GTP-U SN。
SN映射方式2:
在SN映射方式2下,I-UPF正确接收到的每个报文的N9 GTP-U SN和I-UPF发送的该报文的N3 GTP-U SN之间的差值是相同的(针对同一个编号周期),第十三报文丢失信息为I-UPF在第二子链路未正确接收到的报文的N3 GTP-U SN。
在SN映射方式2下,I-UPF确定在第二子链路未正确接收到的N9 GTP-U PDU的N9 GTP-U SN之后,在生成第十三报文丢失信息时,需要将该N9 GTP-U SN转换为N3 GTP-U SN。
由于SN映射方式不同所导致的第十三报文丢失信息所指示的信息有所不同的具体分析可参见上文中情况2.1.1中的关于SN映射方式的相关描述,原理是类似的,在此不再赘述。
方式3:
方式3包括以下步骤3.2.2-31)和3.2.2-32)。
3.2.2-31)I-UPF向RAN节点发送业务流中的报文。相应的,RAN节点从I-UPF接收业务流中的报文。
其中,I-UPF向RAN节点发送的报文是从PSA UPF接收到的。
3.2.2-32)RAN节点根据正确接收到的报文的N3 GTP-U SN的连续性确定RAN节点在第二链路上未正确接收到的报文。
在方式3中,N9 GTP-U SN和N3 GTP-U SN采用的SN映射方式为SN映射方式2。此时,由于丢失的N9 GTP-U PDU的N9 GTP-U SN也是对应有N3 GTP-U SN的,因此,RAN节点可以直接根据接收到的N3 GTP-U PDU的N3 GTP-U SN的连续性确定RAN节点在第二链路上未正确接收到的报文。
在情况3下,RAN节点可以将第一链路上丢失的PDCP PDU的PDCP SN、第一子链路上丢失的N3 GTP-U PDU的N3 GTP-U SN对应的PDCP SN以及第二子链路上丢失的N9 GTP-U PDU的N9 GTP-U SN对应的PDCP SN结合起来进行判断,确定用户面路径上连续丢包的个数。或者,RAN节点可以将第一链路上丢失的PDCP PDU的PDCP SN对应的N3 GTP-U SN、第一子链路上丢失的N3 GTP-U PDU的N3 GTP-U SN以及第二子链路上丢失的N9 GTP-U PDU的N9 GTP-U SN对应的N3 GTP-U SN结合起来进行判断,确定用户面路径上连续丢包的个数。
在情况3下,可选的,上述方法还包括:SMF向终端、I-UPF和PSA UPF发送指示信息,该指示信息用于指示相应网络节点进行报文丢失信息的反馈。终端接收到该指示信息后,可以根据该指示信息向RAN节点反馈第一链路上的报文丢失信息。I-UPF接收 到该指示信息后,可以根据该指示信息向RAN节点反馈第一子链路上的报文丢失信息,还向PSA UPF反馈第二子链路上的报文丢失信息。PSA UPF接收到该指示信息之后,根据该指示信息向I-UPF反馈第二子链路上的报文丢失信息。
该指示信息可以显式指示,例如,通过一个或多个比特的值指示是否进行报文丢失信息的反馈。该指示信息也可以隐式指示,例如,通过业务对应的生存时间指示,该情况下,当终端(或I-UPF或PSA UPF)接收到的Qos Flow对应的Qos参数中包括业务对应的生存时间,则终端(或I-UPF或PSA UPF)确定进行报文丢失信息的反馈。
情况4:第一设备为PSA UPF。
以下通过情况4.1对情况4下上行报文在各个链路中的丢包情况的确定作示例性说明,通过情况4.2对情况4下下行报文在各个链路中的丢包情况的确定作示例性说明。
情况4.1:上行报文
以下通过情况4.1.1对情况4.1下第一链路上的丢包情况的确定作示例性说明,通过情况4.1.2对情况4.1下第二链路上的丢包情况的确定作示例性说明。
情况4.1.1:第一链路上的丢包情况
情况4.1.1包括以下步骤4.1.1-11)和步骤4.1.1-12)。
4.1.1-11)I-UPF向PSA UPF发送第十五报文丢失信息,第十五报文丢失信息用于指示业务流在第一链路丢失的报文。相应的,PSA UPF从I-UPF接收第十五报文丢失信息。
在步骤4.1.1-11)之前,RAN节点可以确定未正确接收到的报文,将用于指示该报文的信息发送给I-UPF,以便I-UPF确定业务流在第一链路丢失的报文。
4.1.1-12)PSA UPF根据第十五报文丢失信息确定业务流在第一链路上的丢包情况。
其中,PDCP SN和N3 GTP-U SN以及N3 GTP-U SN和N9 GTP-U SN在不同的SN映射方式下,第十五报文丢失信息所指示的信息有所不同,以下分别进行描述。
PDCP SN和N3 GTP-U SN之间的映射采用SN映射方式1,N3 GTP-U SN和N9 GTP-U SN之间的映射采用SN映射方式1或SN映射方式2:
该情况下,RAN节点正确接收到的每个报文的PDCP SN和RAN节点发送的该报文的N3 GTP-U SN对应,RAN节点所发送的连续的报文的N3 GTP-U SN是连续的。此时,第十五报文丢失信息用于指示RAN节点在第一链路未正确接收到的报文的上一个正确接收到的报文的PDCP SN对应的N9 GTP-U SN,第十五报文丢失信息还用于指示第十五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包。
该情况下,在步骤4.1.1-11)之前,RAN节点可以确定未正确接收到的PDCP PDU的上一个正确接收到的PDCP PDU的PDCP SN,将该PDCP SN转换为N3 GTP-U SN发送给I-UPF,I-UPF在生成第十五报文丢失信息时,进一步将该N3 GTP-U SN转换为N9 GTP-U SN。
PDCP SN和N3 GTP-U SN之间的映射以及N3 GTP-U SN和N9 GTP-U SN之间的映射均采用SN映射方式2:
该情况下,RAN节点正确接收到的每个报文的PDCP SN和RAN节点发送的该报文的N3 GTP-U SN之间的差值是相同的(针对同一个编号周期),I-UPF正确接收到的每个报文的N3 GTP-U SN和I-UPF发送的该报文的N9 GTP-U SN之间的差值是相同的(针对同一个 编号周期)。此时,第十五报文丢失信息为RAN节点在第一链路未正确接收到的报文的PDCP SN对应的N9 GTP-U SN。
该情况下,在步骤4.1.1-11)之前,RAN节点可以确定未正确接收到的PDCP PDU的PDCP SN,将该PDCP SN转换为N3 GTP-U SN发送给I-UPF,I-UPF在生成第十五报文丢失信息时,将该N3 GTP-U SN转换为N9 GTP-U SN。
由于SN映射方式不同所导致的第十五报文丢失信息所指示的信息有所不同的具体分析可参见上文中情况2.1.1中的关于SN映射方式的相关描述,原理是类似的,此处不再赘述。
情况4.1.2:第二链路上的丢包情况
情况4.1.2可以通过以下方式1或方式2或方式3实现。
方式1:
方式1包括以下步骤4.1.2-11)至步骤4.1.2-14)。
4.1.2-11)I-UPF向PSA UPF发送第十六报文丢失信息,第十六报文丢失信息用于指示业务流在第一子链路丢失的报文。相应的,PSA UPF从I-UPF接收第十六报文丢失信息。
在步骤4.1.2-11)之前,I-UPF可以确定I-UPF在第一子链路未正确接收到的报文,确定的方法与场景1中UPF确定UPF在第二链路上未正确接收到的报文的方法类似,具体可参见上文中的相关部分的描述,在此不再赘述。
4.1.2-12)I-UPF向PSA UPF发送业务流中的报文。相应的,PSA UPF从I-UPF接收业务流中的报文。
其中,I-UPF向PSA UPF发送的报文是从RAN节点接收到的。I-UPF向PSA UPF发送的N9 GTP-U PDU的SN是连续的。
4.1.2-13)PSA UPF根据正确接收到的报文的N9 GTP-U SN的连续性确定业务流在第二子链路上的丢包情况。
4.1.2-14)PSA UPF根据第十六报文丢失信息和业务流在第二子链路上的丢包情况确定业务流在第二链路上的丢包情况。
方式2:
方式2包括以下步骤4.1.2-21)至步骤4.1.2-24)。
4.1.2-21)I-UPF向PSA UPF发送业务流中的报文。相应的,PSA UPF从I-UPF接收业务流中的报文。
其中,I-UPF向PSA UPF发送的报文是从RAN节点接收到的。I-UPF向PSA UPF发送的N9 GTP-U PDU的SN是连续的。
4.1.2-22)PSA UPF针对每个正确接收到的报文向I-UPF发送ACK。相应的,I-UPF从PSA UPF接收PSA UPF针对每个正确接收到的报文发送的ACK。
4.1.2-23)I-UPF根据是否接收到每个发送的报文的ACK的信息向PSA UPF发送第十六报文丢失信息和第十七报文丢失信息,第十六报文丢失信息用于指示业务流在第一子链路丢失的报文,第十七报文丢失信息用于指示PSA UPF未正确接收到的报文的N9 GTP-U SN。相应的,PSA UPF从I-UPF接收第十六报文丢失信息和第十七报文丢失信息。
其中,步骤4.1.2-23)之前,I-UPF可以根据是否接收到每个发送的报文的ACK的信息确定PSA UPF未正确接收到的报文,进而确定第十七报文丢失信息。另外,I-UPF可以获取I-UPF在第一子链路上未正确接收到的报文,进而确定第十六报文丢失信息,获取的方法与场景1中UPF获取UPF在第二链路上未正确接收到的报文的方法类似,具体可参照上文进行理解,在此不再赘述。
4.1.2-24)PSA UPF根据第十六报文丢失信息和第十七报文丢失信息确定业务流在第二链路上的丢包情况。
其中,N3 GTP-U SN和N9 GTP-U SN在不同的SN映射方式下,第十六报文丢失信息所指示的信息有所不同,以下分别进行描述。
SN映射方式1:
在SN映射方式1下,I-UPF正确接收到的每个报文的N3 GTP-U SN和I-UPF发送的该报文的N9 GTP-U SN对应,I-UPF所发送的连续的报文的N9 GTP-U SN是连续的。此时,第十六报文丢失信息用于指示I-UPF在第一子链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN对应的N9 GTP-U SN,第十六报文丢失信息还用于指示第十六报文丢失信息指示的报文的后一个报文丢包或后多个连续报文丢包。
该情况下,I-UPF可以确定未正确接收到的N3 GTP-U PDU的上一个正确接收到的N3 GTP-U PDU的N3 GTP-U SN,在生成第十六报文丢失信息时,将该N3 GTP-U SN转换为N9 GTP-U SN。
SN映射方式2:
在SN映射方式2下,I-UPF正确接收到的每个报文的N3 GTP-U SN和I-UPF发送的该报文的N9 GTP-U SN之间的差值是相同的。此时,第十六报文丢失信息为I-UPF在第一子链路未正确接收到的报文的N3 GTP-U SN对应的N9 GTP-U SN。
该情况下,I-UPF可以确定未正确接收到的N3 GTP-U PDU的上一个正确接收到的N3 GTP-U PDU的N3 GTP-U SN,在生成第十六报文丢失信息时,将该N3 GTP-U SN转换为N9 GTP-U SN。
由于SN映射方式不同所导致的第十六报文丢失信息所指示的信息有所不同的具体分析可参见上文中情况2.1.1中的关于SN映射方式的相关描述,原理是类似的,此处不再赘述。
方式3:
方式3可以包括以下步骤4.1.2-31)和步骤4.1.2-32)。
4.1.2-31)I-UPF向PSA UPF发送业务流中的报文。相应的,PSA UPF从I-UPF接收业务流中的报文。
其中,I-UPF向PSA UPF发送的报文是从RAN节点接收到的。
4.1.2-32)PSA UPF根据正确接收到的报文的N9 GTP-U SN的连续性确定业务流在第二链路上的丢包情况。
在方式3中,N3 GTP-U SN和N9 GTP-U SN采用的SN映射方式为SN映射方式2。此时,由于丢失的N3 GTP-U PDU的N3 GTP-U SN也是对应有N9 GTP-U SN的,因此,PSA UPF可以直接根据接收到的N9 GTP-U PDU的N9 GTP-U SN的连续性确定业务流在第二链路上丢失的报文。
上述情况4.1中,PSA UPF可以根据第一链路的丢包情况和第二链路的丢包情况确定用户面路径上的连续丢包的个数。在PDCP SN和N3 GTP-U SN采用的SN映射方式以及N3 GTP-U SN和N9 GTP-U SN采用的SN映射方式均为SN映射方式2的情况下,由于每个丢失的PDCP PDU的PDCP SN也是对应有N3 GTP-U SN,每个丢失的N3 GTP-U PDU的N3 GTP-U SN也是对应有N9 GTP-U SN的,因此,PSA UPF可以直接根据正确接收到的N9 GTP-U PDU的N9 GTP-U SN的连续性确定业务流在用户面路径上丢失的报文。
情况4.2:下行报文
以下通过情况4.2.1对情况4.2下第一链路上的丢包情况的确定作示例性说明,通过情况4.2.2对情况4.2下第二链路上的丢包情况的确定作示例性说明。
情况4.2.1:第一链路上的丢包情况
情况4.2.1包括以下步骤4.2.1-11)和步骤4.2.1-12)。
4.2.1-11)I-UPF向PSA UPF发送第十八报文丢失信息,第十八报文丢失信息用于指示业务流在第一链路丢失的报文的PDCP SN对应的N9 GTP-U SN。相应的,PSA UPF从I-UPF接收第十八报文丢失信息。
在步骤4.2.1-11)之前,RAN节点可以确定终端未正确接收到的PDCP PDU的PDCP SN,将该PDCP SN对应的N3 GTP-U SN发送给I-UPF,I-UPF确定接收到的N3 GTP-U SN对应的N9 GTP-U SN(即第十八报文丢失信息)。
4.2.1-12)PSA UPF根据第十八报文丢失信息确定业务流在第一链路上的丢包情况。
步骤4.2.1-12)在具体实现时,PSA UPF可以确定第十八报文丢失信息中的N9 GTP-U SN对应的N9 GTP-U PDU丢失。
情况4.2.2:第二链路上的丢包情况
情况4.2.2包括以下步骤4.2.2-11)和步骤4.2.2-12)。
4.2.2-11)I-UPF向PSA UPF发送第十九报文丢失信息,第十九报文丢失信息用于指示业务流在第一子链路和第二子链路丢失的报文的N9 GTP-U SN。相应的,PSA UPF从I-UPF接收第十九报文丢失信息。
步骤4.2.2-11)具体实现时,I-UPF可以获取RAN节点在第一子链路上未正确接收到的N3 GTP-U PDU的N3 GTP-U SN,还获取I-UPF在第二子链路上未正确接收到的N9 GTP-U PDU的N9 GTP-U SN,并将RAN节点在第一子链路上未正确接收到的N3 GTP-U PDU的N3 GTP-U SN对应的N9 GTP-U SN以及I-UPF在第二子链路上未正确接收到的N9 GTP-U PDU的N9 GTP-U SN发送给PSA UPF。
4.2.2-12)PSA UPF根据第十九报文丢失信息确定业务流在第二链路上的丢包情况。
步骤4.2.2-12)在具体实现时,PSA UPF可以确定第十九报文丢失信息中的N9 GTP-U SN对应的N9 GTP-U PDU丢失。
在情况4下,若PSA UPF根据第一链路的丢包情况和第二链路的丢包情况确定用户面路径上的连续丢包的个数。PSA UPF可以将第一链路上丢失的PDCP PDU的PDCP SN对应的N9 GTP-U SN、第一子链路上丢失的N3 GTP-U PDU的N3 GTP-U SN对应的N9 GTP-U SN以及第二子链路上丢失的N9 GTP-U PDU的N9 GTP-U SN结合起来进行判断,确定用户面路径上连续丢包的个数。
在情况4下,可选的,上述方法还包括:SMF向终端、RAN节点和I-UPF发送指示信息,该指示信息用于指示相应网络节点进行报文丢失信息的反馈。终端接收到该指示信息后,可以根据该指示信息向RAN节点反馈第一链路上的报文丢失信息。RAN节点接收到该指示信息之后,根据该指示信息向I-UPF反馈第一子链路上的报文丢失信息。I-UPF接收到该指示信息后,可以根据该指示信息向RAN节点反馈第一子链路上的报文丢失信息,还向PSA UPF反馈第二子链路上的报文丢失信息。
该指示信息可以显式指示,例如,通过一个或多个比特的值指示是否进行报文丢失信息的反馈。该指示信息也可以隐式指示,例如,通过业务对应的生存时间指示,该情况下,当终端(或RAN节点或I-UPF)接收到的Qos Flow对应的Qos参数中包括业务对应的生存时间,则终端(或RAN节点或I-UPF)确定进行报文丢失信息的反馈。
第二种应用场景:用户面路径为RAN节点和DN之间的用户面路径
参见图8,在第二应用场景下,本申请提供的通信方法包括:
801、第一设备获取业务流在第一链路上的丢包情况。
在单UPF场景下和多UPF场景下,第一设备均可以为RAN节点或PSA UPF。
在单UPF场景下和多UPF场景下,步骤801的具体实现可以参见第一种应用场景中的相关描述,不再赘述。
802、第一设备获取业务流在第二链路上的丢包情况。
在单UPF场景下和多UPF场景下,步骤802的具体实现可以参见第一种应用场景中的相关描述,不再赘述。
803、第一设备获取业务流在第三链路上的丢包情况。
在单UPF场景下,PSA UPF可以确定第三链路中丢失的报文,PSA UPF确定第三链路中丢失的报文的方法包括:PSA UPF获取业务流中的报文的周期,根据该周期判断是否发生丢包。例如,若周期是T,但是间隔2T才收到报文,说明中间发生了丢包;或者,PSA UPF针对一个业务流维护一个定时器,当收到该业务流的数据包,就启动该定时器,在定时器到期时未接收到该业务流新的数据包,说明发生了丢包。定时器的时长与周期T相关,也可以为预设的或预定义的或协议规定的或预先配置的,本申请不作限制。其中,PSA UPF可以从SMF或网络数据分析功能(network data analytics function,NWDAF)中获取业务流中的报文的周期,SMF可以从PCF或AF中获取业务流中的报文的周期。
在单UPF场景下,若第一设备为RAN节点,则PSA UPF还需要向RAN节点发送报文丢失信息,该报文丢失信息指示第三链路上的丢失的报文的前一个PSA UPF正确接收到的报文的N3 GTP-U SN,该报文指示信息还指示该N3 GTP-U SN后的一个或多个连续报文丢失,以便RAN节点确定第三链路上丢失的报文。
在多UPF场景下,PSA UPF可以确定第三链路中丢失的报文,确定方法与单UPF场景中PSA UPF确定第三链路中丢失的报文的方法类似,此处不再赘述。
在多UPF场景下,若第一设备为RAN节点,则PSA UPF还需要向I-UPF发送报文丢失信息,该报文丢失信息指示第三链路上的丢失的报文的前一个PSA UPF正确接收到的报文的N9 GTP-U SN,该报文指示信息还指示该N9 GTP-U SN后的一个或多个连续报文丢失,I-UPF接收该报文指示信息之后,将该报文指示信息指示的N9 GTP-U SN对应的N3  GTP-U SN发送给RAN节点,并向RAN节点指示该N3 GTP-U SN后的一个或多个连续报文丢失,以便RAN节点确定第三链路上丢失的报文。
其中,步骤801、步骤802和步骤803的执行顺序不分先后,具体与应用场景有关。例如,在第一设备为RAN节点的情况下,针对上行报文,执行顺序可以为:步骤801、步骤802和步骤803,针对下行报文,执行顺序可以为:步骤803、步骤802和步骤801。
804、第一设备根据业务流在第一链路、第二链路和第三链路上的丢包情况,确定业务流在用户面路径上连续丢包的个数。
805、在业务流在用户面路径上连续丢包的个数达到第一阈值的情况下,第一设备触发启动针对用户面路径的高可靠性传输机制。
与第一种应用场景类似的,当用户面路径中的全部链路上所丢失的报文使得用户面路径上的连续丢包的个数达到第一阈值时,可以启动整个用户面路径上的用户面高可靠性传输机制。当用户面路径中的一个或多个链路中连续丢包的个数使得用户面路径上的连续丢包的个数达到第一阈值时,可以仅启动相应链路上的用户面高可靠性传输机制,也可以启动整个用户面路径上的用户面高可靠性传输机制。
关于图8所示的实施例中各个步骤的具体实现与第一种应用场景中是类似的,可参照第一种应用场景中的描述进行理解,此处不再赘述。
图8所示的通信方法,第一设备可以确定终端到AS之间的用户面路径上连续丢包的个数,从而更加准确的确定业务流的丢包情况,并且在用户面路径中连续丢包的个数达到第一阈值,启动针对用户面路径的高可靠性传输机制,从而提高数据传输的可靠性,避免应用关断,提高用户体验。
为了使得本申请实施例更加的清楚,以下通过实施例1至实施例4对上述方法的实现流程作示例性说明。
实施例1
实施例1对上述情况1下本申请提供的方法的流程作示例性说明,此时,通信场景为单UPF场景,第一设备为RAN节点。参见图9,包括:
901、终端在确定应用需要发起业务时,为该业务关联一个PDU会话。
步骤901在具体实现时,若终端中已经存在满足该业务的Qos需求的PDU会话,则终端为该业务关联该PDU会话。否则,终端通过与核心网交互为该业务建立一个PDU会话,并将该业务关联到该会话。
902、终端通过业务关联的PDU会话中的默认(default)QoS Flow向AS发送该业务的第一个上行报文。相应的,AS从终端接收该业务的第一个上行报文。
其中,default QoS Flow是SMF在建立一个PDU会话时,使用配置的default PCC规则(rule)为该PDU会话建立的一个QoS Flow,每个PDU会话中有一个default QoS Flow。
903、AS根据接收到的业务的第一个上行报文后向AF发送触发消息,触发消息用于触发AF向PCF发送该业务的Qos参数。相应的,AF从AS接收该触发消息。
904、AF根据该触发消息向PCF发送该业务的Qos参数。相应的,PCF从AF接收该业务的Qos参数。
其中,该业务的Qos参数中包括业务对应的生存时间。
905、PCF根据该业务的Qos参数向SMF发送会话管理策略控制更新修改请求(SMPolicyControlUpdateNotify request)。相应的,SMF从PCF接收会话管理策略控制更新修改请求。
其中,会话管理策略控制更新修改请求中包括针对该业务的PCC规则。PCC规则中包括该业务对应的生存时间。
步骤905在具体实现时,当PCF发现Qos参数中包含业务对应的生存时间时,确定为该业务建立一个单独的QoS Flow,此时,向SMF发送会话管理策略控制更新修改请求。
906、SMF向PCF发送会话管理策略控制更新修改响应(SMPolicyControlUpdateNotify response)。
其中,会话管理策略控制更新修改响应用于指示是否成功接收会话管理策略控制更新修改请求。
907、SMF根据该业务的PCC规则发起PDU会话修改流程,并在PDU会话修改流程中为该业务建立Qos Flow。
后续过程中,该业务的上下行报文利用该QoS Flow传输。
另外,SMF为该业务建立Qos Flow的时候,会向终端发送QoS规则,QoS规则中包括该QoS Flow对应的Qos参数,该Qos参数中包括该业务对应的生存时间;还会向RAN节点发送QoS文件(Profile),QoS文件中包括该QoS Flow对应的Qos参数,该Qos参数中包括该业务对应的生存时间。
908、RAN节点确定第一链路和第二链路上的丢包情况。
步骤908的具体实现可参见上述情况1中的描述,此处不再赘述。
在步骤908之前,可选的,上述方法还包括:SMF向终端和PSA UPF发送指示信息,该指示信息用于指示相应网络节点进行报文丢失信息的反馈,具体描述可参见上文,此处不再赘述。
909、RAN节点根据第一链路和第二链路上的丢包情况确定用户面路径上的连续丢包的个数。
9010、若连续丢包的个数达到第一阈值,RAN节点启动与PSA UPF和终端之间的用户面高可靠性传输机制。
9011、RAN节点向SMF发送启动信息1,启动信息1指示需要启动针对用户面路径的高可靠性传输机制。相应的,SMF从RAN节点接收启动信息1。
9012、SMF根据启动信息1向PSA UPF发送启动信息2,启动信息2用于启动相应网络节点的用户面高可靠性传输机制。相应的,PSA UPF接收启动信息2。
9013、PSA UPF根据启动信息2启动与RAN节点之间的用户面高可靠性传输机制。
9014、SMF根据启动信息1向终端发送启动信息2。相应的,终端接收启动信息2。
9015、终端根据启动信息2启动与RAN节点之间的用户面高可靠性传输机制。
实施例2
实施例2对上述情况2下本申请提供的方法的流程作示例性说明,此时,通信场景为单UPF场景,第一设备为PSA UPF。参见图10,包括:
1001-1007:分别与901至907相同。
1008、PSA UPF确定第一链路和第二链路上的丢包情况。
步骤1008的具体实现可参见上述情况2中的描述,此处不再赘述。
在步骤1008之前,可选的,上述方法还包括:SMF向终端和RAN节点发送指示信息,该指示信息用于指示相应网络节点进行报文丢失信息的反馈,具体描述可参见上文,此处不再赘述。
1009、PSA UPF根据第一链路和第二链路上的丢包情况确定用户面路径上的连续丢包的个数。
1010、若连续丢包的个数达到第一阈值,PSA UPF启动与RAN节点之间的用户面高可靠性传输机制。
1011、PSA UPF向SMF发送启动信息1,启动信息1指示需要启动针对用户面路径的高可靠性传输机制。相应的,SMF从PSA UPF接收启动信息1。
1012、SMF根据启动信息1向RAN节点发送启动信息2,启动信息2用于启动相应网络节点的用户面高可靠性传输机制。相应的,RAN节点接收启动信息2。
1013、RAN节点根据启动信息2启动与PSA UPF和终端之间的用户面高可靠性传输机制。
1014、SMF根据启动信息1向终端发送启动信息2。相应的,终端接收启动信息2。
1015、终端根据启动信息2启动与RAN节点之间的用户面高可靠性传输机制。
实施例3
实施例3对上述情况3下本申请提供的方法的流程作示例性说明,此时,通信场景为多UPF场景,第一设备为RAN节点。参见图11,包括:
1101-1107:分别与901至907相同。
1108、RAN节点确定第一链路、第一子链路和第二子链路上的丢包情况。
步骤1108的具体实现可参见上述情况3中的描述,此处不再赘述。
在步骤1108之前,可选的,上述方法还包括:SMF向终端、I-UPF和PSA UPF发送指示信息,该指示信息用于指示相应网络节点进行报文丢失信息的反馈,具体描述可参见上文,此处不再赘述。
1109、RAN节点根据第一链路、第一子链路和第二子链路上的丢包情况确定用户面路径上的连续丢包的个数。
1110、若连续丢包的个数达到第一阈值,RAN节点启动与I-UPF和终端之间的用户面高可靠性传输机制。
1111、RAN节点向SMF发送启动信息1,启动信息1指示需要启动针对用户面路径的高可靠性传输机制。相应的,SMF从RAN节点接收启动信息1。
1112、SMF根据启动信息1向I-UPF发送启动信息2,启动信息2用于启动相应网络节点的用户面高可靠性传输机制。相应的,I-UPF接收启动信息2。
1113、I-UPF根据启动信息2启动与RAN节点和PSA UPF之间的用户面高可靠性传输机制。
1114、SMF根据启动信息1向终端发送启动信息2。相应的,终端接收启动信息2。
1115、终端根据启动信息2启动与RAN节点之间的用户面高可靠性传输机制。
1116、SMF根据启动信息1向PSA UPF发送启动信息2,启动信息2用于启动相应网络节点的用户面高可靠性传输机制。相应的,PSA UPF接收启动信息2。
1117、PSA UPF根据启动信息2启动与I-UPF之间的用户面高可靠性传输机制。
实施例4
实施例4对上述情况4下本申请提供的方法的流程作示例性说明,此时,通信场景为多UPF场景,第一设备为PSA UPF。参见图12,包括:
1201-1207:分别与901至907相同。
1208、PSA UPF确定第一链路、第一子链路和第二子链路上的丢包情况。
步骤1208的具体实现可参见上述情况4中的描述,此处不再赘述。
在步骤1208之前,可选的,上述方法还包括:SMF向终端、RAN节点和I-UPF发送指示信息,该指示信息用于指示相应网络节点进行报文丢失信息的反馈,具体描述可参见上文,此处不再赘述。
1209、PSA UPF根据第一链路、第一子链路和第二子链路上的丢包情况确定用户面路径上的连续丢包的个数。
1210、若连续丢包的个数达到第一阈值,PSA UPF启动与RAN节点之间的用户面高可靠性传输机制。
1211、PSA UPF向SMF发送启动信息1,启动信息1指示需要启动针对用户面路径的高可靠性传输机制。相应的,SMF从PSA UPF接收启动信息1。
1212、SMF根据启动信息1向I-UPF发送启动信息2,启动信息2用于启动相应网络节点的用户面高可靠性传输机制。相应的,I-UPF接收启动信息2。
1213、I-UPF根据启动信息2启动与RAN节点和PSA UPF之间的用户面高可靠性传输机制。
1214、SMF根据启动信息1向终端发送启动信息2。相应的,终端接收启动信息2。
1215、终端根据启动信息2启动与RAN节点之间的用户面高可靠性传输机制。
1216、SMF根据启动信息1向RAN节点发送启动信息2,启动信息2用于启动相应网络节点的用户面高可靠性传输机制。相应的,RAN节点接收启动信息2。
1217、RAN节点根据启动信息2启动与I-UPF和终端之间的用户面高可靠性传输机制。
实施例1至实施例4中均以启动整个用户面路径的用户面高可靠性传输机制为例的,在实际实现时,也可以启动用户面路径中的部分链路的用户面高可靠性传输机制,本申请对此不作限制。
本申请实施例还提供了一种通信系统,包括:RAN节点和SMF,终端的PDU会话通过RAN节点锚定在PSA UPF上,终端和PSA UPF之间的用户面路径包括第一链路和第二链路,第一链路是指终端和RAN节点之间通信的用户面数据链路,第二链路是指RAN节点和PSA UPF之间通信的用户面数据链路;
SMF,用于向第一设备发送业务流对应的生存时间的信息,第一设备为RAN节点或者PSA UPF;
第一设备,用于从SMF接收生存时间的信息,并根据生存时间的信息确定第一阈值;
第一设备,还用于获取业务流在第一链路和第二链路上的丢包情况;
第一设备,还用于根据业务流在第一链路和第二链路上的丢包情况确定业务流在用户面路径上连续丢包的个数;
在业务流在用户面路径上连续丢包的个数达到第一阈值的情况下,第一设备,还用于触发启动针对用户面路径的高可靠性传输机制。
可选的,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第一链路上连续丢包的个数达到所述第一阈值;
第一设备,具体用于触发启动针对用户面路径中的第一链路的高可靠性传输机制;或者,
第一设备,具体用于触发启动针对用户面路径中的第一链路和第二链路的高可靠性传输机制。
可选的,在第一设备为RAN节点的情况下,
第一设备,具体用于向终端发送第一启动信息并触发自身启动第一链路的高可靠性传输机制,第一启动信息指示需要启动针对第一链路的高可靠性传输机制;
终端,用于从第一设备接收第一启动信息,并根据第一启动信息启动第一链路的高可靠性传输机制。
可选的,第一设备,具体用于向SMF发送第二启动信息,第二启动信息指示需要启动针对第一链路的高可靠性传输机制;
SMF,用于从第一设备接收第二启动信息,并根据第二启动信息控制第一链路的高可靠性传输机制启动。
可选的,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第二链路上连续丢包的个数达到所述第一阈值;
第一设备,具体用于触发启动针对用户面路径中的第二链路的高可靠性传输机制;或者,
第一设备,具体用于触发启动针对用户面路径中的第一链路和第二链路的高可靠性传输机制。
可选的,在第一设备为RAN节点的情况下,
第一设备,具体用于向PSA UPF发送第三启动信息并触发自身启动第二链路的高可靠性传输机制,第三启动信息指示需要启动针对第二链路的高可靠性传输机制;
PSA UPF,用于从第一设备接收第三启动信息,并根据第三启动信息启动第二链路的高可靠性传输机制。
可选的,在第一设备为PSA UPF的情况下,
第一设备,具体用于向RAN节点发送第四启动信息并触发自身启动第二链路的高可靠性传输机制,第四启动信息指示需要启动针对第二链路的高可靠性传输机制;
RAN节点,用于从第一设备接收第四启动信息,并根据第四启动信息启动第二链路的高可靠性传输机制。
可选的,第一设备,具体用于向SMF发送第五启动信息,第五启动信息指示需要启动针对第二链路的高可靠性传输机制;
SMF,用于从第一设备接收第五启动信息,并根据第五启动信息控制第二链路的高可靠性传输机制启动。
可选的,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第一链路上连续丢包个数小于所述第一阈值、 在所述第二链路上连续丢包个数小于所述第一阈值以及在所述第一链路和所述第二链路上整体的连续丢包的个数达到所述第一阈值;
第一设备,具体用于触发启动针对用户面路径中的第一链路和第二链路的高可靠性传输机制。
可选的,第一设备,具体用于向SMF发送第六启动信息,第六启动信息指示需要启动针对第一链路和第二链路的高可靠性传输机制;
SMF,用于从第一设备接收第六启动信息,并根据第六启动信息控制第一链路和第二链路的高可靠性传输机制启动。
可选的,所述第一设备为所述接入网设备,
所述第一设备,用于根据所述业务流在所述第一链路上丢失的报文的PDCP SN和所述业务流在所述第二链路上丢失的报文的N3 GTP-U SN,以及所述业务流中的报文的PDCP SN和N3 GTP-U SN之间的映射关系确定所述业务流在所述用户面路径上连续丢包的个数。
可选的,在第一设备为RAN节点的情况下,针对上行报文,
终端,用于向RAN节点发送业务流中的报文;
RAN节点,用于从终端接收业务流中的报文;
RAN节点,还用于根据正确接收到的报文的PDCP SN的连续性确定业务流在第一链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对上行报文,
终端,用于向RAN节点发送业务流中的报文;
RAN节点,用于从终端接收业务流中的报文,并针对每个正确接收到的报文向终端发送肯定确认ACK;
终端,还用于从RAN节点接收RAN节点针对每个正确接收到的报文向终端发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向RAN节点发送第一报文丢失信息,第一报文丢失信息用于指示RAN节点未正确接收到的报文的PDCP SN;
RAN节点,还用于从终端接收第一报文丢失信息,并根据第一报文丢失信息确定业务流在第一链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对上行报文,
PSA UPF,用于向RAN节点发送第二报文丢失信息,第二报文丢失信息用于指示PSA UPF未正确接收到的报文的N3 GTP-U SN;
RAN节点,用于从PSA UPF接收第二报文丢失信息,并根据第二报文丢失信息确定业务流在第二链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对上行报文,
RAN节点,用于向PSA UPF发送业务流中的报文;
PSA UPF,用于从RAN节点接收业务流中的报文,并针对每个正确接收到的报文向RAN节点发送ACK;
RAN节点,还用于从PSA UPF接收PSA UPF针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定业务流在第二链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对下行报文,
终端,用于向RAN节点发送第三报文丢失信息,第三报文丢失信息用于指示终端未正确接收到的报文的PDCP SN;
RAN节点,用于从终端接收第三报文丢失信息,并根据第三报文丢失信息确定业务流在第一链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对下行报文,
RAN节点,用于向终端发送业务流中的报文;
终端,用于从RAN节点接收业务流中的报文,并针对每个正确接收到的报文向RAN节点发送ACK;
RAN节点,还用于从终端接收终端针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定业务流在第一链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对下行报文,
PSA UPF,用于向RAN节点发送业务流中的报文;
RAN节点,用于从PSA UPF接收业务流中的报文,并根据正确接收到的报文的N3GTP-U SN的连续性确定业务流在第二链路上的丢包情况。
可选的,针对下行报文,
PSA UPF,用于向RAN节点发送业务流中的报文;
RAN节点,用于从PSA UPF接收业务流中的报文,并针对每个正确接收到的报文向PSA UPF发送ACK;
PSA UPF,还用于从RAN节点接收RAN节点针对每个正确接收到的报文向PSA UPF发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向RAN节点发送第四报文丢失信息,第四报文丢失信息用于指示RAN节点未正确接收到的报文的N3 GTP-U SN;
RAN节点,还用于从PSA UPF接收第四报文丢失信息,并根据第四报文丢失信息确定业务流在第二链路上的丢包情况。
可选的,在第一设备为PSA UPF的情况下,针对上行报文,
RAN节点,用于向PSA UPF发送第五报文丢失信息,第五报文丢失信息用于指示业务流在第一链路丢失的报文;
PSA UPF,用于从RAN节点接收第五报文丢失信息,并根据第五报文丢失信息确定业务流在第一链路上的丢包情况。
可选的,RAN节点正确接收到的每个报文的PDCP SN和RAN节点发送的该报文的N3 GTP-U SN对应,RAN节点所发送的连续的报文的N3 GTP-U SN是连续的,第五报文丢失信息用于指示RAN节点在第一链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,第五报文丢失信息还用于指示第五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;
或者,
RAN节点正确接收到的每个报文的PDCP SN和RAN节点发送的该报文的N3 GTP-U SN之间的差值是相同的,第五报文丢失信息为RAN节点在第一链路未正确接收到的报文的N3 GTP-U SN。
可选的,在第一设备为PSA UPF的情况下,针对上行报文,
RAN节点,用于向PSA UPF发送业务流中的报文;
PSA UPF,用于从RAN节点接收业务流中的报文,并根据正确接收到的报文的N3 GTP-U SN的连续性确定业务流在第二链路上的丢包情况。
可选的,在第一设备为PSA UPF的情况下,针对上行报文,
RAN节点,用于向PSA UPF发送业务流中的报文;
PSA UPF,用于从RAN节点接收业务流中的报文,并针对每个正确接收到的报文向RAN节点发送ACK;
RAN节点,还用于从PSA UPF接收PSA UPF针对每个正确接收到的报文发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向PSA UPF发送第六报文丢失信息,第六报文丢失信息用于指示PSA UPF未正确接收到的报文的N3 GTP-U SN;
PSA UPF,还用于从RAN节点接收第六报文丢失信息,并根据第六报文丢失信息确定业务流在第二链路上的丢包情况。
可选的,在第一设备为PSA UPF的情况下,针对下行报文,
RAN节点,用于向PSA UPF发送第七报文丢失信息,第七报文丢失信息用于指示业务流在第一链路丢失的报文的N3 GTP-U SN;
PSA UPF,用于从RAN节点接收第七报文丢失信息,并根据第七报文丢失信息确定业务流在第一链路上的丢包情况。
可选的,在第一设备为PSA UPF的情况下,针对下行报文,
RAN节点,用于向PSA UPF发送第八报文丢失信息,第八报文丢失信息用于指示RAN节点未正确接收到的报文的N3 GTP-U SN;
PSA UPF,用于从RAN节点接收第八报文丢失信息,并根据第八报文丢失信息确定业务流在第二链路上的丢包情况。
可选的,在第一设备为PSA UPF的情况下,针对下行报文,
PSA UPF,用于向RAN节点发送业务流中的报文;
RAN节点,用于从PSA UPF接收业务流中的报文,并针对每个正确接收到的报文向PSA UPF发送ACK;
PSA UPF,还用于从RAN节点接收RAN节点针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定业务流在第二链路上的丢包情况。
可选的,PSA UPF和RAN节点之间通过I-UPF通信,第二链路包括第一子链路和第二子链路,第一子链路为RAN节点和I-UPF之间通信的用户面数据链路,第二子链路为I-UPF和PSA UPF之间通信的用户面数据链路。
可选的,在业务流在用户面路径中的第一链路、第一子链路和第二子链路上连续丢包的个数达到第一阈值的情况下,
第一设备,用于触发启动针对用户面路径中的第一链路、第一子链路和第二子链路的高可靠性传输机制。
可选的,第一设备,具体用于向SMF发送第七启动信息,第七启动信息指示需要启动针对第一链路、第一子链路和第二子链路的高可靠性传输机制;
SMF,用于从第一设备接收第七启动信息,并根据第七启动信息控制第一链路、第一子链路和第二子链路的高可靠性传输机制启动。
可选的,在第一设备为RAN节点的情况下,针对上行报文,
终端,用于向RAN节点发送业务流中的报文;
RAN节点,用于从终端接收业务流中的报文,并根据正确接收到的报文的PDCP SN的连续性确定业务流在第一链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对上行报文,
终端,用于向RAN节点发送业务流中的报文;
RAN节点,用于从终端接收业务流中的报文,并针对每个正确接收到的报文向终端发送ACK;
终端,还用于从RAN节点接收RAN节点针对每个正确接收到的报文向终端发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向RAN节点发送第九报文丢失信息,第九报文丢失信息用于指示RAN节点未正确接收到的报文的PDCP SN;
RAN节点,还用于从终端接收第九报文丢失信息,并根据第九报文丢失信息确定业务流在第一链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对上行报文,
I-UPF,用于向RAN节点发送第十报文丢失信息,第十报文丢失信息用于指示I-UPF在第一子链路上未正确接收到的报文的N3 GTP-U SN和PSA UPF在第二子链路上未正确接收到的报文的N3 GTP-U SN;
RAN节点,用于从I-UPF接收第十报文丢失信息,并根据第十报文丢失信息确定业务流在第二链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对上行报文,
RAN节点,用于向I-UPF发送业务流中的报文;
I-UPF,用于从RAN节点接收业务流中的报文,并针对每个正确接收到的报文向RAN节点发送ACK;
RAN节点,还用于从I-UPF接收I-UPF针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定业务流在第一子链路上的丢包情况;
I-UPF,还用于向RAN节点发送第十一报文丢失信息,第十一报文丢失信息用于指示PSA UPF在第二子链路上未正确接收到的报文的N3 GTP-U SN;
RAN节点,还用于从I-UPF接收第十一报文丢失信息,并根据第十一报文丢失信息和业务流在第一子链路上的丢包情况确定业务流在第二链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对下行报文,
终端,用于向RAN节点发送第十二报文丢失信息,第十二报文丢失信息用于指示终端未正确接收到的报文的PDCP SN;
RAN节点,用于从终端接收第十二报文丢失信息,并根据第十二报文丢失信息确定业务流在第一链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对下行报文,
RAN节点,用于向终端发送业务流中的报文;
终端,用于从RAN节点接收业务流中的报文,并针对每个正确接收到的报文向RAN节点发送ACK;
RAN节点,用于从终端接收终端针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定业务流在第一链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对下行报文,
I-UPF,用于向RAN节点发送业务流中的报文;
RAN节点,用于从I-UPF接收业务流中的报文,并根据正确接收到的报文的N3 GTP-U SN的连续性确定RAN节点在第一子链路上未正确接收到的报文的N3 GTP-U SN;
I-UPF,还用于向RAN节点发送第十三报文丢失信息,第十三报文丢失信息用于指示I-UPF在第二子链路上未正确接收到的报文;
RAN节点,还用于从I-UPF接收第十三报文丢失信息,并根据RAN节点在第一子链路上未正确接收到的报文的N3 GTP-U SN和第十三报文丢失信息确定业务流在第二链路上的丢包情况。
可选的,在第一设备为RAN节点的情况下,针对下行报文,
I-UPF,用于向RAN节点发送业务流中的报文;
RAN节点,用于从I-UPF接收业务流中的报文,并针对每个正确接收到的报文向I-UPF发送ACK;
I-UPF,还用于从RAN节点接收RAN节点针对每个正确接收到的报文向I-UPF发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向RAN节点发送第十三报文丢失信息和第十四报文丢失信息,第十三报文丢失信息用于指示I-UPF在第二子链路上未正确接收到的报文,第十四报文丢失信息用于指示RAN节点在第一子链路上未正确接收到的报文的N3 GTP-U SN;
RAN节点,还用于从I-UPF接收第十三报文丢失信息和第十四报文丢失信息,并根据第十三报文丢失信息和第十四报文丢失信息确定业务流在第二链路上的丢包情况。
可选的,I-UPF正确接收到的每个报文的N9 GTP-U SN和I-UPF发送的该报文的N3 GTP-U SN对应,I-UPF所发送的连续的报文的N3 GTP-U SN是连续的,第十三报文丢失信息用于指示I-UPF在第二子链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,第十三报文丢失信息还用于指示第十三报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;
或者,
I-UPF正确接收到的每个报文的N9 GTP-U SN和I-UPF发送的该报文的N3 GTP-U SN之间的差值是相同的,第十三报文丢失信息为I-UPF在第二子链路未正确接收到的报文的N3 GTP-U SN。
可选的,在第一设备为PSA UPF的情况下,针对上行报文,
I-UPF,用于向PSA UPF发送第十五报文丢失信息,第十五报文丢失信息用于指示业务流在第一链路丢失的报文;
PSA UPF,用于从I-UPF接收第十五报文丢失信息,并根据第十五报文丢失信息确定业务流在第一链路上的丢包情况。
可选的,RAN节点正确接收到的每个报文的PDCP SN和RAN节点发送的该报文的N3 GTP-U SN对应,RAN节点所发送的连续的报文的N3 GTP-U SN是连续的,第十五报文丢失信息用于指示RAN节点在第一链路未正确接收到的报文的上一个正确接收到的报文的N9 GTP-U SN,第十五报文丢失信息还用于指示第十五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;
或者,
RAN节点正确接收到的每个报文的PDCP SN和RAN节点发送的该报文的N3 GTP-U SN之间的差值是相同的,I-UPF正确接收到的每个报文的N3 GTP-U SN和I-UPF发送的该报文的N9 GTP-U SN之间的差值是相同的,第十五报文丢失信息为RAN节点在第一链路未正确接收到的报文的N9 GTP-U SN。
可选的,在第一设备为PSA UPF的情况下,针对上行报文,
I-UPF,用于向PSA UPF发送第十六报文丢失信息,第十六报文丢失信息用于指示业务流在第一子链路丢失的报文;
PSA UPF,用于从I-UPF接收第十六报文丢失信息;
I-UPF,还用于向PSA UPF发送业务流中的报文;
PSA UPF,还用于从I-UPF接收业务流中的报文,并根据正确接收到的报文的N9 GTP-U SN的连续性确定业务流在第二子链路上的丢包情况;
PSA UPF,还用于根据第十六报文丢失信息和业务流在第二子链路上的丢包情况确定业务流在第二链路上的丢包情况。
可选的,在第一设备为PSA UPF的情况下,针对上行报文,
I-UPF,用于向PSA UPF发送业务流中的报文;
PSA UPF,用于从I-UPF接收业务流中的报文,并针对每个正确接收到的报文向I-UPF发送ACK;
I-UPF,还用于从PSA UPF接收PSA UPF针对每个正确接收到的报文发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向PSA UPF发送第十六报文丢失信息和第十七报文丢失信息,第十六报文丢失信息用于指示业务流在第一子链路丢失的报文,第十七报文丢失信息用于指示PSA UPF未正确接收到的报文的N9 GTP-U SN;
PSA UPF,还用于从I-UPF接收第十六报文丢失信息和第十七报文丢失信息,并根据第十六报文丢失信息和第十七报文丢失信息确定业务流在第二链路上的丢包情况。
可选的,I-UPF正确接收到的每个报文的N3 GTP-U SN和I-UPF发送的该报文的N9 GTP-U SN对应,I-UPF所发送的连续的报文的N9 GTP-U SN是连续的,第十六报文丢失信息用于指示I-UPF在第一子链路未正确接收到的报文的上一个正确接收到的报文的N9 GTP-U SN,第十六报文丢失信息还用于指示第十六报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;
或者,
I-UPF正确接收到的每个报文的N3 GTP-U SN和I-UPF发送的该报文的N9 GTP-U SN之间的差值是相同的,第十六报文丢失信息为I-UPF在第一子链路未正确接收到的报文的N9 GTP-U SN。
可选的,在第一设备为PSA UPF的情况下,针对下行报文,
I-UPF,用于向PSA UPF发送第十八报文丢失信息,第十八报文丢失信息用于指示业务流在第一链路丢失的报文的N9 GTP-U SN;
PSA UPF,用于从I-UPF接收第十八报文丢失信息,并根据第十八报文丢失信息确定业务流在第一链路上的丢包情况。
可选的,在第一设备为PSA UPF的情况下,针对下行报文,
I-UPF,用于向PSA UPF发送第十九报文丢失信息,第十九报文丢失信息用于指示业务流在第一子链路和第二子链路丢失的报文的N9 GTP-U SN;
PSA UPF,用于从I-UPF接收第十九报文丢失信息,并根据第十九报文丢失信息确定业务流在第二链路上的丢包情况。
该通信系统中,各个网络节点的具体实现可参见上文,在此不再赘述。
另外,上述实施例提供的方法以及通信系统中,连续丢包的个数也可以为在一个时间段内累计丢包的个数,此时,启动用户面高可靠性传输机制的条件可以为:在该时间段内,业务流在用户面路径上累积丢包的个数达到第三阈值。该时间段和第三阈值可以是预设的或预定义的或协议规定的或预先配置的,本申请不作限制。
需要说明的是,本申请上述实施例中,针对第一链路启动高可靠性传输机制是指在第一链路的传输可靠性较低(例如,第一链路上连续丢包的个数达到第一阈值)时,为了提高业务流中的报文在第一链路上传输的可靠性,而在终端和RAN节点之间启动高可靠性传输机制。因此,本申请实施例中,“启动针对第一链路的高可靠性传输机制”也可以替换为“启动针对业务流在终端和RAN节点之间的高可靠性传输机制。类似的,“启动针对第二链路的高可靠性传输机制”也可以替换为“启动针对业务流在PSA-UPF和RAN节点之间的高可靠性传输机制。“启动针对第一链路和第二链路的高可靠性传输机制”或“启动针对第一链路、第一子链路和第二子链路的高可靠性传输机制”也可以替换为“启动针对业务流在终端和PSA-UPF之间的高可靠性传输机制。“启动针对第一子链路的高可靠性传输机制”也可以替换为“启动针对业务流在I-UPF和RAN节点之间的高可靠性传输机制。“启动针对第二子链路的高可靠性传输机制”也可以替换为“启动针对业务流在I-UPF和PSA-UPF之间的高可靠性传输机制。
另外,由于用户面路径用于传输业务流中的报文,因此,“启动针对用户面路径的高可靠性传输机制”也可以替换为“启动针对业务流的高可靠性传输机制”。
上述主要从方法的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如,RAN节点、PSA UPF、I-UPF和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对RAN节点、PSA UPF、I-UPF和终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
示例性的,图13示出了上述实施例中所涉及的通信装置(记为通信装置130)的一种可能的结构示意图,该通信装置130包括处理单元1301。可选的,还包括通信单元1302和/或存储单元1303。图13所示的结构示意图可以用于示意上述实施例中所 涉及的RAN节点、PSA UPF、I-UPF或终端的结构。
当图13所示的结构示意图用于示意上述实施例中所涉及的RAN节点的结构时,处理单元1301用于对RAN节点的动作进行控制管理,例如,处理单元1301用于执行图7中的701至704(此时,第一设备为RAN节点),图8中的801至805(此时,第一设备为RAN节点),图9中的902、907-911,图10中的1002、1007、1012和1013,图11中的1102、1107-1111,图12中的1202、1207、1216和1217,和/或本申请实施例中所描述的其他过程中的RAN节点执行的动作。处理单元1301可以通过通信单元1302与其他网络实体通信,例如,与图11中的SMF通信。存储单元1303用于存储RAN节点的程序代码和数据。
当图13所示的结构示意图用于示意上述实施例中所涉及的PSA UPF的结构时,处理单元1301用于对PSA UPF的动作进行控制管理,例如,处理单元1301用于执行图7中的701至704(此时,第一设备为PSA UPF),图8中的801至805(此时,第一设备为PSA UPF),图9中的902、907、912和913,图10中的1002、1007-1011,图11中的1102、1107、1116和1117,图12中的1202、1207-1211,和/或本申请实施例中所描述的其他过程中的PSA UPF执行的动作。处理单元1301可以通过通信单元1302与其他网络实体通信,例如,与图11中示出的SMF通信。存储单元1303用于存储PSA UPF的程序代码和数据。
当图13所示的结构示意图用于示意上述实施例中所涉及的I-UPF的结构时,处理单元1301用于对I-UPF的动作进行控制管理,例如,处理单元1301用于执行图11中的1102、1107、1112和1113,图12中的1202、1207、1212和1213,和/或本申请实施例中所描述的其他过程中的I-UPF执行的动作。处理单元1301可以通过通信单元1302与其他网络实体通信,例如,与图11中示出的SMF通信。存储单元1303用于存储I-UPF的程序代码和数据。
当图13所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理单元1301用于对终端的动作进行控制管理,例如,处理单元1301用于执行图9中的901、902、907、914和915,图10中的1001、1002、1007、1014和1015,图11中的1101、1102、1107、1114和1115,图12中的1201、1202、1207、1214和1215,和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理单元1301可以通过通信单元1302与其他网络实体通信,例如,与图11中示出的SMF通信。存储单元1303用于存储终端的程序代码和数据。
其中,通信装置130可以是一个设备也可以是设备内的芯片。当通信装置130为一个设备时,处理单元1301可以是处理器或控制器,通信单元1302可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元1303可以是存储器。当通信装置130为设备内的芯片时,处理单元1301可以是处理器或控制器,通信单元1302可以是输入/输出接口、管脚或电路等。存储单元1303可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
其中,通信单元也可以称为收发单元。通信装置130中的具有收发功能的天线和控制电路可以视为通信装置130的通信单元1302,具有处理功能的处理器可以视为通 信装置130的处理单元1301。可选的,通信单元1302中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元1302中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
图13中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,简称ROM)、随机存取存储器(random access memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
图13中的单元也可以称为模块,例如,处理单元可以称为处理模块。
本申请实施例还提供了一种通信装置(记为通信装置140)的硬件结构示意图,参见图14或图15,该通信装置140包括处理器1401,可选的,还包括与处理器1401连接的存储器1402。
处理器1401可以是一个通用中央处理器(central processing unit,简称CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,简称ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器1401也可以包括多个CPU,并且处理器1401可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器1402可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,简称EEPROM)、只读光盘(compact disc read-only memory,简称CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器1402可以是独立存在,也可以和处理器1401集成在一起。其中,存储器1402中可以包含计算机程序代码。处理器1401用于执行存储器1402中存储的计算机程序代码,从而实现本申请实施例提供的方法。
在第一种可能的实现方式中,参见图14,通信装置140还包括收发器1403。处理器1401、存储器1402和收发器1403通过总线相连接。收发器1403用于与其他设备或通信网络通信。可选的,收发器1403可以包括发射机和接收机。收发器1403中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器1403中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请 实施例中的发送的步骤。
基于第一种可能的实现方式,图14所示的结构示意图可以用于示意上述实施例中所涉及的RAN节点、PSA UPF、I-UPF或终端的结构。
当图14所示的结构示意图用于示意上述实施例中所涉及的RAN节点的结构时,处理器1401用于对RAN节点的动作进行控制管理,例如,处理器1401用于执行图7中的701至704(此时,第一设备为RAN节点),图8中的801至805(此时,第一设备为RAN节点),图9中的902、907-911,图10中的1002、1007、1012和1013,图11中的1102、1107-1111,图12中的1202、1207、1216和1217,和/或本申请实施例中所描述的其他过程中的RAN节点执行的动作。处理器1401可以通过收发器1403与其他网络实体通信,例如,与图11中的SMF通信。存储器1402用于存储RAN节点的程序代码和数据。
当图14所示的结构示意图用于示意上述实施例中所涉及的PSA UPF的结构时,处理器1401用于对PSA UPF的动作进行控制管理,例如,处理器1401用于执行图7中的701至704(此时,第一设备为PSA UPF),图8中的801至805(此时,第一设备为PSA UPF),图9中的902、907、912和913,图10中的1002、1007-1011,图11中的1102、1107、1116和1117,图12中的1202、1207-1211,和/或本申请实施例中所描述的其他过程中的PSA UPF执行的动作。处理器1401可以通过收发器1403与其他网络实体通信,例如,与图11中示出的SMF通信。存储器1402用于存储PSA UPF的程序代码和数据。
当图14所示的结构示意图用于示意上述实施例中所涉及的I-UPF的结构时,处理器1401用于对I-UPF的动作进行控制管理,例如,处理器1401用于执行图11中的1102、1107、1112和1113,图12中的1202、1207、1212和1213,和/或本申请实施例中所描述的其他过程中的I-UPF执行的动作。处理器1401可以通过收发器1403与其他网络实体通信,例如,与图11中示出的SMF通信。存储器1402用于存储I-UPF的程序代码和数据。
当图14所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器1401用于对终端的动作进行控制管理,例如,处理器1401用于执行图9中的901、902、907、914和915,图10中的1001、1002、1007、1014和1015,图11中的1101、1102、1107、1114和1115,图12中的1201、1202、1207、1214和1215,和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理器1401可以通过收发器1403与其他网络实体通信,例如,与图11中示出的SMF通信。存储器1402用于存储终端的程序代码和数据。
在第二种可能的实现方式中,处理器1401包括逻辑电路以及输入接口和/或输出接口。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图15,图15所示的结构示意图可以用于示意上述实施例中所涉及的RAN节点、PSA UPF、I-UPF或终端的结构。
当图15所示的结构示意图用于示意上述实施例中所涉及的RAN节点的结构时,处理器1401用于对RAN节点的动作进行控制管理,例如,处理器1401用于支持RAN节 点执行图7中的701至704(此时,第一设备为RAN节点),图8中的801至805(此时,第一设备为RAN节点),图9中的902、907-911,图10中的1002、1007、1012和1013,图11中的1102、1107-1111,图12中的1202、1207、1216和1217,和/或本申请实施例中所描述的其他过程中的RAN节点执行的动作。处理器1401可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图11中的SMF通信。存储器1402用于存储RAN节点的程序代码和数据。
当图15所示的结构示意图用于示意上述实施例中所涉及的PSA UPF的结构时,处理器1401用于对PSA UPF的动作进行控制管理,例如,处理器1401用于支持PSA UPF执行图7中的701至704(此时,第一设备为PSA UPF),图8中的801至805(此时,第一设备为PSA UPF),图9中的902、907、912和913,图10中的1002、1007-1011,图11中的1102、1107、1116和1117,图12中的1202、1207-1211,和/或本申请实施例中所描述的其他过程中的PSA UPF执行的动作。处理器1401可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图11中示出的SMF通信。存储器1402用于存储PSA UPF的程序代码和数据。
当图15所示的结构示意图用于示意上述实施例中所涉及的I-UPF的结构时,处理器1401用于对I-UPF的动作进行控制管理,例如,处理器1401用于支持I-UPF执行图11中的1102、1107、1112和1113,图12中的1202、1207、1212和1213,和/或本申请实施例中所描述的其他过程中的I-UPF执行的动作。处理器1401可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图11中示出的SMF通信。存储器1402用于存储I-UPF的程序代码和数据。
当图15所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器1401用于对终端的动作进行控制管理,例如,处理器1401用于支持终端执行图9中的901、902、907、914和915,图10中的1001、1002、1007、1014和1015,图11中的1101、1102、1107、1114和1115,图12中的1201、1202、1207、1214和1215,和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理器1401可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图11中示出的SMF通信。存储器1402用于存储终端的程序代码和数据。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如 红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (71)

  1. 一种通信方法,其特征在于,终端的协议数据单元PDU会话通过接入网设备锚定在锚点用户面网关上,所述终端和所述锚点用户面网关之间的用户面路径包括第一链路和第二链路,所述第一链路是指所述终端和所述接入网设备之间通信的用户面数据链路,所述第二链路是指所述接入网设备和所述锚点用户面网关之间通信的用户面数据链路,所述方法包括:
    第一设备获取业务流在所述第一链路和所述第二链路上的丢包情况,所述第一设备为所述接入网设备或者所述锚点用户面网关;
    所述第一设备根据所述业务流在所述第一链路和所述第二链路上的丢包情况确定所述业务流在所述用户面路径上连续丢包的个数;
    在所述业务流在所述用户面路径上连续丢包的个数达到第一阈值的情况下,所述第一设备触发启动针对所述业务流的高可靠性传输机制。
  2. 根据权利要求1所述的方法,其特征在于,所述第一阈值根据所述业务流对应的生存时间确定。
  3. 根据权利要求1或2所述的方法,其特征在于,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第一链路上连续丢包的个数达到所述第一阈值;所述第一设备触发启动针对所述业务流的高可靠性传输机制,包括:
    所述第一设备触发启动针对所述业务流在所述终端和所述接入网设备之间的高可靠性传输机制;或者,
    所述第一设备触发启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  4. 根据权利要求3所述的方法,其特征在于,在所述第一设备为所述接入网设备的情况下,所述第一设备触发启动针对所述业务流在所述终端和所述接入网设备之间的高可靠性传输机制,包括:
    所述第一设备向所述终端发送第一启动信息,所述第一启动信息指示需要启动所述终端和所述接入网设备之间针对所述业务流的高可靠性传输机制;以及,
    所述第一设备触发自身启动与所述终端之间针对所述业务流的高可靠性传输机制。
  5. 根据权利要求3所述的方法,其特征在于,所述第一设备触发启动所述终端和所述接入网设备之间针对所述业务流的高可靠性传输机制,包括:
    所述第一设备向会话管理网元发送第二启动信息,所述第二启动信息指示需要启动所述终端和所述接入网设备之间针对所述业务流的高可靠性传输机制。
  6. 根据权利要求1或2所述的方法,其特征在于,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第二链路上连续丢包的个数达到所述第一阈值;所述第一设备触发启动针对所述业务流的高可靠性传输机制,包括:
    所述第一设备触发启动针对所述业务流在所述锚点用户面网关和所述接入网设备之间的高可靠性传输机制;或者,
    所述第一设备触发启动针对所述业务流在所述终端和所述锚点用户面网关之间的 高可靠性传输机制。
  7. 根据权利要求6所述的方法,其特征在于,在所述第一设备为所述接入网设备的情况下,所述第一设备触发启动针对所述业务流在所述锚点用户面网关和所述接入网设备之间的高可靠性传输机制,包括:
    所述第一设备向所述锚点用户面网关发送第三启动信息,所述第三启动信息指示需要启动所述锚点用户面网关和所述接入网设备之间针对所述业务流的高可靠性传输机制;以及,
    所述第一设备触发自身启动与所述锚点用户面网关之间针对所述业务流的高可靠性传输机制。
  8. 根据权利要求6所述的方法,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,所述第一设备触发启动所述锚点用户面网关和所述接入网设备之间针对所述业务流的高可靠性传输机制,包括:
    所述第一设备向所述接入网设备发送第四启动信息,所述第四启动信息指示需要启动所述锚点用户面网关和所述接入网设备之间针对所述业务流的高可靠性传输机制;以及,
    所述第一设备触发自身启动与所述接入网设备之间针对所述业务流的高可靠性传输机制。
  9. 根据权利要求6所述的方法,其特征在于,所述第一设备触发启动针对所述业务流在所述锚点用户面网关和所述接入网设备之间的高可靠性传输机制,包括:
    所述第一设备向会话管理网元发送第五启动信息,所述第五启动信息指示需要启动针对所述业务流在所述锚点用户面网关和所述接入网设备之间的高可靠性传输机制。
  10. 根据权利要求1或2所述的方法,其特征在于,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第一链路上连续丢包个数小于所述第一阈值、在所述第二链路上连续丢包个数小于所述第一阈值以及在所述第一链路和所述第二链路上整体的连续丢包的个数达到所述第一阈值;所述第一设备触发启动针对所述业务流的高可靠性传输机制,包括:
    所述第一设备触发启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  11. 根据权利要求3、6或10所述的方法,其特征在于,所述第一设备触发启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制,包括:
    所述第一设备向会话管理网元发送第六启动信息,所述第六启动信息指示需要启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  12. 根据权利要求1-7和9-11中任一项所述的方法,其特征在于,所述第一设备为所述接入网设备,所述第一设备根据所述业务流在所述第一链路和所述第二链路上的丢包情况确定所述业务流在所述用户面路径上连续丢包的个数,包括:
    所述第一设备根据所述业务流在所述第一链路上丢失的报文的分组数据汇聚协议序列号PDCP SN和所述业务流在所述第二链路上丢失的报文的N3接口通用分组无线服务隧道协议用户面序列号N3 GTP-U SN,以及所述业务流中的报文的PDCP SN和N3 GTP-U SN之间的映射关系确定所述业务流在所述用户面路径上连续丢包的个数。
  13. 根据权利要求1-7和9-12中任一项所述的方法,其特征在于,在所述第一设备为所述接入网设备的情况下,针对上行报文,所述第一设备获取业务流在所述第一链路上的丢包情况,包括:
    所述第一设备从所述终端接收所述业务流中的报文,所述第一设备根据正确接收到的报文的PDCP SN的连续性确定所述业务流在所述第一链路上的丢包情况;
    或者,
    所述第一设备从所述终端接收所述业务流中的报文,所述第一设备针对每个正确接收到的报文向所述终端发送肯定确认ACK,所述第一设备从所述终端接收第一报文丢失信息,所述第一报文丢失信息用于指示所述第一设备未正确接收到的报文的PDCP SN,所述第一设备根据所述第一报文丢失信息确定所述业务流在所述第一链路上的丢包情况。
  14. 根据权利要求1-7和9-12中任一项所述的方法,其特征在于,在所述第一设备为所述接入网设备的情况下,针对上行报文,所述第一设备获取所述业务流在所述第二链路上的丢包情况,包括:
    所述第一设备从所述锚点用户面网关接收第二报文丢失信息,所述第二报文丢失信息用于指示所述锚点用户面网关未正确接收到的报文的N3 GTP-U SN,所述第一设备根据所述第二报文丢失信息确定所述业务流在所述第二链路上的丢包情况;
    或者,
    所述第一设备向所述锚点用户面网关发送所述业务流中的报文,所述第一设备从所述锚点用户面网关接收所述锚点用户面网关针对每个正确接收到的报文发送的ACK,所述第一设备根据是否接收到发送的每个报文的ACK的信息确定所述业务流在所述第二链路上的丢包情况。
  15. 根据权利要求1-7和9-12中任一项所述的方法,其特征在于,在所述第一设备为所述接入网设备的情况下,针对下行报文,所述第一设备获取业务流在所述第一链路上的丢包情况,包括:
    所述第一设备从所述终端接收第三报文丢失信息,所述第三报文丢失信息用于指示所述终端未正确接收到的报文的PDCP SN,所述第一设备根据所述第三报文丢失信息确定所述业务流在所述第一链路上的丢包情况;
    或者,
    所述第一设备向所述终端发送所述业务流中的报文,所述第一设备从所述终端接收所述终端针对每个正确接收到的报文发送的ACK,所述第一设备根据是否接收到发送的每个报文的ACK的信息确定所述业务流在所述第一链路上的丢包情况。
  16. 根据权利要求1-7和9-12中任一项所述的方法,其特征在于,在所述第一设备为所述接入网设备的情况下,针对下行报文,所述第一设备获取所述业务流在所述第二链路上的丢包情况,包括:
    所述第一设备从所述锚点用户面网关接收所述业务流中的报文,所述第一设备根据正确接收到的报文的N3 GTP-U SN的连续性确定所述业务流在所述第二链路上的丢包情况;
    或者,
    所述第一设备从所述锚点用户面网关接收所述业务流中的报文,所述第一设备针对每个正确接收到的报文向所述锚点用户面网关发送ACK,所述第一设备从所述锚点用户面网关接收第四报文丢失信息,所述第四报文丢失信息用于指示所述第一设备未正确接收到的报文的N3 GTP-U SN,所述第一设备根据所述第四报文丢失信息确定所述业务流在所述第二链路上的丢包情况。
  17. 根据权利要求1-3、5-6和8-11中任一项所述的方法,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,针对上行报文,所述第一设备获取业务流在所述第一链路上的丢包情况,包括:
    所述第一设备从所述接入网设备接收第五报文丢失信息,所述第五报文丢失信息用于指示所述业务流在所述第一链路丢失的报文;
    所述第一设备根据所述第五报文丢失信息确定所述业务流在所述第一链路上的丢包情况。
  18. 根据权利要求17所述的方法,其特征在于,
    所述接入网设备正确接收到的每个报文的PDCP SN和所述接入网设备发送的该报文的N3 GTP-U SN对应,所述接入网设备所发送的连续的报文的N3 GTP-U SN是连续的,所述第五报文丢失信息用于指示所述接入网设备在所述第一链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,所述第五报文丢失信息还用于指示所述第五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;
    或者,
    所述接入网设备正确接收到的每个报文的PDCP SN和所述接入网设备发送的该报文的N3 GTP-U SN之间的差值是相同的,所述第五报文丢失信息为所述接入网设备在所述第一链路未正确接收到的报文的N3 GTP-U SN。
  19. 根据权利要求1-3、5-6和8-11中任一项所述的方法,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,针对上行报文,所述第一设备获取所述业务流在所述第二链路上的丢包情况,包括:
    所述第一设备从所述接入网设备接收所述业务流中的报文,所述第一设备根据正确接收到的报文的N3 GTP-U SN的连续性确定所述业务流在所述第二链路上的丢包情况;
    或者,
    所述第一设备从所述接入网设备接收所述业务流中的报文,所述第一设备针对每个正确接收到的报文向所述接入网设备发送ACK,所述第一设备从所述接入网设备接收第六报文丢失信息,所述第六报文丢失信息用于指示所述第一设备未正确接收到的报文的N3 GTP-U SN,所述第一设备根据所述第六报文丢失信息确定所述业务流在所述第二链路上的丢包情况。
  20. 根据权利要求1-3、5-6和8-11中任一项所述的方法,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,针对下行报文,所述第一设备获取业务流在所述第一链路上的丢包情况,包括:
    所述第一设备从所述接入网设备接收第七报文丢失信息,所述第七报文丢失信息用于指示所述业务流在所述第一链路丢失的报文的N3 GTP-U SN;
    所述第一设备根据所述第七报文丢失信息确定所述业务流在所述第一链路上的丢 包情况。
  21. 根据权利要求1-3、5-6和8-11中任一项所述的方法,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,针对下行报文,所述第一设备获取所述业务流在所述第二链路上的丢包情况,包括:
    所述第一设备从所述接入网设备接收第八报文丢失信息,所述第八报文丢失信息用于指示所述接入网设备未正确接收到的报文的N3 GTP-U SN,所述第一设备根据所述第八报文丢失信息确定所述业务流在所述第二链路上的丢包情况;
    或者,
    所述第一设备向所述接入网设备发送所述业务流中的报文,所述第一设备从所述接入网设备接收所述接入网设备针对每个正确接收到的报文发送的ACK,所述第一设备根据是否接收到发送的每个报文的ACK的信息确定所述业务流在所述第二链路上的丢包情况。
  22. 一种通信装置,其特征在于,终端的协议数据单元PDU会话通过接入网设备锚定在锚点用户面网关上,所述终端和所述锚点用户面网关之间的用户面路径包括第一链路和第二链路,所述第一链路是指所述终端和所述接入网设备之间通信的用户面数据链路,所述第二链路是指所述接入网设备和所述锚点用户面网关之间通信的用户面数据链路,所述装置包括:处理单元;
    所述处理单元,用于获取业务流在所述第一链路和所述第二链路上的丢包情况,所述装置为所述接入网设备或者所述锚点用户面网关;
    所述处理单元,还用于根据所述业务流在所述第一链路和所述第二链路上的丢包情况确定所述业务流在所述用户面路径上连续丢包的个数;
    在所述业务流在所述用户面路径上连续丢包的个数达到第一阈值的情况下,所述处理单元,还用于触发启动针对所述业务流的高可靠性传输机制。
  23. 根据权利要求22所述的装置,其特征在于,所述第一阈值根据所述业务流对应的生存时间确定。
  24. 根据权利要求22或23所述的装置,其特征在于,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第一链路上连续丢包的个数达到所述第一阈值;
    所述处理单元,具体用于触发启动针对所述业务流在所述终端和所述接入网设备之间的高可靠性传输机制;或者,
    所述处理单元,具体用于触发启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  25. 根据权利要求24所述的装置,其特征在于,在所述装置为所述接入网设备的情况下,所述装置还包括通信单元;
    所述处理单元,具体用于通过所述通信单元向所述终端发送第一启动信息,所述第一启动信息指示需要启动所述终端和所述接入网设备之间针对所述业务流的高可靠性传输机制;
    所述处理单元,具体用于触发启动与所述终端之间针对所述业务流的高可靠性传输机制。
  26. 根据权利要求24所述的装置,其特征在于,所述装置还包括通信单元;
    所述处理单元,具体用于通过所述通信单元向会话管理网元发送第二启动信息,所述第二启动信息指示需要启动所述终端和所述接入网设备之间针对所述业务流的高可靠性传输机制。
  27. 根据权利要求22或23所述的装置,其特征在于,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第二链路上连续丢包的个数达到所述第一阈值;
    所述处理单元,具体用于触发启动针对所述业务流在所述锚点用户面网关和所述接入网设备之间的高可靠性传输机制;或者,
    所述处理单元,具体用于触发启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  28. 根据权利要求27所述的装置,其特征在于,在所述装置为所述接入网设备的情况下,所述装置还包括通信单元;
    所述处理单元,具体用于通过所述通信单元向所述锚点用户面网关发送第三启动信息,所述第三启动信息指示需要启动所述锚点用户面网关和所述接入网设备之间针对所述业务流的高可靠性传输机制;
    所述处理单元,具体用于触发启动与所述锚点用户面网关之间针对所述业务流的高可靠性传输机制。
  29. 根据权利要求27所述的装置,其特征在于,在所述装置为所述锚点用户面网关的情况下,所述装置还包括通信单元;
    所述处理单元,具体用于通过所述通信单元向所述接入网设备发送第四启动信息,所述第四启动信息指示需要启动所述锚点用户面网关和所述接入网设备之间针对所述业务流的高可靠性传输机制;
    所述处理单元,具体用于触发启动与所述接入网设备之间针对所述业务流的高可靠性传输机制。
  30. 根据权利要求27所述的装置,其特征在于,所述装置还包括通信单元;
    所述处理单元,具体用于通过所述通信单元向会话管理网元发送第五启动信息,所述第五启动信息指示需要启动针对所述业务流在所述锚点用户面网关和所述接入网设备之间的高可靠性传输机制。
  31. 根据权利要求22或23所述的装置,其特征在于,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第一链路上连续丢包个数小于所述第一阈值、在所述第二链路上连续丢包个数小于所述第一阈值以及在所述第一链路和所述第二链路上整体的连续丢包的个数达到所述第一阈值;
    所述处理单元,具体用于触发启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  32. 根据权利要求24、27或31所述的装置,其特征在于,所述装置还包括通信单元;
    所述处理单元,具体用于通过所述通信单元向会话管理网元发送第六启动信息,所 述第六启动信息指示需要启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  33. 根据权利要求22-28和30-32中任一项所述的装置,其特征在于,所述装置为所述接入网设备,
    所述处理单元,具体用于根据所述业务流在所述第一链路上丢失的报文的分组数据汇聚协议序列号PDCP SN和所述业务流在所述第二链路上丢失的报文的N3接口通用分组无线服务隧道协议用户面序列号N3 GTP-U SN,以及所述业务流中的报文的PDCP SN和N3 GTP-U SN之间的映射关系确定所述业务流在所述用户面路径上连续丢包的个数。
  34. 根据权利要求22-28和30-33中任一项所述的装置,其特征在于,在所述装置为所述接入网设备的情况下,针对上行报文,
    所述通信单元,用于从所述终端接收所述业务流中的报文,所述处理单元,具体用于根据正确接收到的报文的PDCP SN的连续性确定所述业务流在所述第一链路上的丢包情况;
    或者,
    所述通信单元,用于从所述终端接收所述业务流中的报文,所述通信单元,还用于针对每个正确接收到的报文向所述终端发送肯定确认ACK,所述通信单元,还用于从所述终端接收第一报文丢失信息,所述第一报文丢失信息用于指示所述装置未正确接收到的报文的PDCP SN,所述处理单元,具体用于根据所述第一报文丢失信息确定所述业务流在所述第一链路上的丢包情况。
  35. 根据权利要求22-28和30-33中任一项所述的装置,其特征在于,在所述装置为所述接入网设备的情况下,针对上行报文,
    所述通信单元,用于从所述锚点用户面网关接收第二报文丢失信息,所述第二报文丢失信息用于指示所述锚点用户面网关未正确接收到的报文的N3 GTP-U SN,所述处理单元,具体用于根据所述第二报文丢失信息确定所述业务流在所述第二链路上的丢包情况;
    或者,
    所述通信单元,用于向所述锚点用户面网关发送所述业务流中的报文,所述通信单元,还用于从所述锚点用户面网关接收所述锚点用户面网关针对每个正确接收到的报文发送的ACK,所述处理单元,具体用于根据是否接收到发送的每个报文的ACK的信息确定所述业务流在所述第二链路上的丢包情况。
  36. 根据权利要求22-28和30-33中任一项所述的装置,其特征在于,在所述装置为所述接入网设备的情况下,针对下行报文,
    所述通信单元,用于从所述终端接收第三报文丢失信息,所述第三报文丢失信息用于指示所述终端未正确接收到的报文的PDCP SN,所述处理单元,具体用于根据所述第三报文丢失信息确定所述业务流在所述第一链路上的丢包情况;
    或者,
    所述通信单元,用于向所述终端发送所述业务流中的报文,所述通信单元,还用于从所述终端接收所述终端针对每个正确接收到的报文发送的ACK,所述处理单元,具体用于根据是否接收到发送的每个报文的ACK的信息确定所述业务流在所述第一链路上 的丢包情况。
  37. 根据权利要求22-28和30-33中任一项所述的装置,其特征在于,在所述装置为所述接入网设备的情况下,针对下行报文,
    所述通信单元,用于从所述锚点用户面网关接收所述业务流中的报文,所述处理单元,具体用于根据正确接收到的报文的N3 GTP-U SN的连续性确定所述业务流在所述第二链路上的丢包情况;
    或者,
    所述通信单元,用于从所述锚点用户面网关接收所述业务流中的报文,所述通信单元,还用于针对每个正确接收到的报文向所述锚点用户面网关发送ACK,所述通信单元,还用于从所述锚点用户面网关接收第四报文丢失信息,所述第四报文丢失信息用于指示所述装置未正确接收到的报文的N3 GTP-U SN,所述处理单元,具体用于根据所述第四报文丢失信息确定所述业务流在所述第二链路上的丢包情况。
  38. 根据权利要求22-24、26-27和29-32中任一项所述的装置,其特征在于,在所述装置为所述锚点用户面网关的情况下,针对上行报文,
    所述通信单元,用于从所述接入网设备接收第五报文丢失信息,所述第五报文丢失信息用于指示所述业务流在所述第一链路丢失的报文;
    所述处理单元,具体用于根据所述第五报文丢失信息确定所述业务流在所述第一链路上的丢包情况。
  39. 根据权利要求38所述的装置,其特征在于,
    所述接入网设备正确接收到的每个报文的PDCP SN和所述接入网设备发送的该报文的N3 GTP-U SN对应,所述接入网设备所发送的连续的报文的N3 GTP-U SN是连续的,所述第五报文丢失信息用于指示所述接入网设备在所述第一链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,所述第五报文丢失信息还用于指示所述第五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;
    或者,
    所述接入网设备正确接收到的每个报文的PDCP SN和所述接入网设备发送的该报文的N3 GTP-U SN之间的差值是相同的,所述第五报文丢失信息为所述接入网设备在所述第一链路未正确接收到的报文的N3 GTP-U SN。
  40. 根据权利要求22-24、26-27和29-32中任一项所述的装置,其特征在于,在所述装置为所述锚点用户面网关的情况下,针对上行报文,
    所述通信单元,用于从所述接入网设备接收所述业务流中的报文,所述处理单元,具体用于根据正确接收到的报文的N3 GTP-U SN的连续性确定所述业务流在所述第二链路上的丢包情况;
    或者,
    所述通信单元,用于从所述接入网设备接收所述业务流中的报文,所述通信单元,还用于针对每个正确接收到的报文向所述接入网设备发送ACK,所述通信单元,还用于从所述接入网设备接收第六报文丢失信息,所述第六报文丢失信息用于指示所述装置未正确接收到的报文的N3 GTP-U SN,所述处理单元,具体用于根据所述第六报文丢失信息确定所述业务流在所述第二链路上的丢包情况。
  41. 根据权利要求22-24、26-27和29-32中任一项所述的装置,其特征在于,在所述装置为所述锚点用户面网关的情况下,针对下行报文,
    所述通信单元,用于从所述接入网设备接收第七报文丢失信息,所述第七报文丢失信息用于指示所述业务流在所述第一链路丢失的报文的N3 GTP-U SN;
    所述处理单元,具体用于根据所述第七报文丢失信息确定所述业务流在所述第一链路上的丢包情况。
  42. 根据权利要求22-24、26-27和29-32中任一项所述的装置,其特征在于,在所述装置为所述锚点用户面网关的情况下,针对下行报文,
    所述通信单元,用于从所述接入网设备接收第八报文丢失信息,所述第八报文丢失信息用于指示所述接入网设备未正确接收到的报文的N3 GTP-U SN,所述处理单元,具体用于根据所述第八报文丢失信息确定所述业务流在所述第二链路上的丢包情况;
    或者,
    所述通信单元,用于向所述接入网设备发送所述业务流中的报文,所述通信单元,还用于从所述接入网设备接收所述接入网设备针对每个正确接收到的报文发送的ACK,所述处理单元,具体用于根据是否接收到发送的每个报文的ACK的信息确定所述业务流在所述第二链路上的丢包情况。
  43. 一种通信装置,其特征在于,包括:处理器;
    所述处理器与存储器连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置实现如权利要求1-21任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-21任一项所述的方法。
  45. 一种计算机程序产品,其特征在于,包括指令,当该指令在计算机上运行时,使得计算机执行如权利要求1-21任一项所述的方法。
  46. 一种通信系统,其特征在于,包括:接入网设备和会话管理网元,终端的协议数据单元PDU会话通过接入网设备锚定在锚点用户面网关上,所述终端和所述锚点用户面网关之间的用户面路径包括第一链路和第二链路,所述第一链路是指所述终端和所述接入网设备之间通信的用户面数据链路,所述第二链路是指所述接入网设备和所述锚点用户面网关之间通信的用户面数据链路;
    所述会话管理网元,用于向第一设备发送业务流对应的生存时间的信息,所述第一设备为所述接入网设备或者所述锚点用户面网关;
    所述第一设备,用于从所述会话管理网元接收所述生存时间的信息,并根据所述生存时间的信息确定第一阈值;
    所述第一设备,还用于获取所述业务流在所述第一链路和所述第二链路上的丢包情况;
    所述第一设备,还用于根据所述业务流在所述第一链路和所述第二链路上的丢包情况确定所述业务流在所述用户面路径上连续丢包的个数;
    在所述业务流在所述用户面路径上连续丢包的个数达到所述第一阈值的情况下,所述第一设备,还用于触发启动针对所述业务流的高可靠性传输机制。
  47. 根据权利要求46所述的通信系统,其特征在于,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第一链路上连续丢包的个数达到所述第一阈值;
    所述第一设备,具体用于触发启动针对所述业务流在所述终端和所述接入网设备之间的高可靠性传输机制;或者,
    所述第一设备,具体用于触发启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  48. 根据权利要求47所述的通信系统,其特征在于,在所述第一设备为所述接入网设备的情况下,
    所述第一设备,具体用于向所述终端发送第一启动信息并触发自身启动与所述终端之间针对所述业务流的高可靠性传输机制,所述第一启动信息指示需要启动所述终端和所述接入网设备之间针对所述业务流的高可靠性传输机制;
    所述终端,用于从所述第一设备接收所述第一启动信息,并根据所述第一启动信息启动与所述接入网设备之间针对所述业务流的高可靠性传输机制。
  49. 根据权利要求47所述的通信系统,其特征在于,
    所述第一设备,具体用于向会话管理网元发送第二启动信息,所述第二启动信息指示需要启动所述终端和所述接入网设备之间针对所述业务流的高可靠性传输机制;
    所述会话管理网元,用于从所述第一设备接收所述第二启动信息,并根据所述第二启动信息控制启动所述终端和所述接入网设备之间针对所述业务流的高可靠性传输机制。
  50. 根据权利要求46所述的通信系统,其特征在于,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第二链路上连续丢包的个数达到所述第一阈值;
    所述第一设备,具体用于触发启动针对所述业务流在所述锚点用户面网关和所述接入网设备之间的高可靠性传输机制;或者,
    所述第一设备,具体用于触发启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  51. 根据权利要求50所述的通信系统,其特征在于,在所述第一设备为所述接入网设备的情况下,
    所述第一设备,具体用于向所述锚点用户面网关发送第三启动信息并触发自身启动与所述锚点用户面网关之间针对所述业务流的高可靠性传输机制,所述第三启动信息指示需要启动所述锚点用户面网关和所述接入网设备之间针对所述业务流的高可靠性传输机制;
    所述锚点用户面网关,用于从所述第一设备接收所述第三启动信息,并根据所述第三启动信息启动与所述接入网设备之间针对所述业务流的高可靠性传输机制。
  52. 根据权利要求50所述的通信系统,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,
    所述第一设备,具体用于向所述接入网设备发送第四启动信息并触发自身启动与所述接入网设备之间针对所述业务流的高可靠性传输机制,所述第四启动信息指示需要启 动所述锚点用户面网关和所述接入网设备之间针对所述业务流的高可靠性传输机制;
    所述接入网设备,用于从所述第一设备接收所述第四启动信息,并根据所述第四启动信息启动与所述锚点用户面网关之间针对所述业务流的高可靠性传输机制。
  53. 根据权利要求50所述的通信系统,其特征在于,
    所述第一设备,具体用于向会话管理网元发送第五启动信息,所述第五启动信息指示需要启动针对所述业务流在所述锚点用户面网关和所述接入网设备之间的高可靠性传输机制;
    所述会话管理网元,用于从所述第一设备接收所述第五启动信息,并根据所述第五启动信息控制启动针对所述业务流在所述锚点用户面网关和所述接入网设备之间的高可靠性传输机制。
  54. 根据权利要求46所述的通信系统,其特征在于,所述业务流在所述用户面路径上连续丢包的个数达到第一阈值,具体为:所述业务流在所述用户面路径中的所述第一链路上连续丢包个数小于所述第一阈值、在所述第二链路上连续丢包个数小于所述第一阈值以及在所述第一链路和所述第二链路上整体的连续丢包的个数达到所述第一阈值;
    所述第一设备,具体用于触发启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  55. 根据权利要求47、50或54所述的通信系统,其特征在于,
    所述第一设备,具体用于向会话管理网元发送第六启动信息,所述第六启动信息指示需要启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制;
    所述会话管理网元,用于从所述第一设备接收所述第六启动信息,并根据所述第六启动信息控制启动针对所述业务流在所述终端和所述锚点用户面网关之间的高可靠性传输机制。
  56. 根据权利要求46-51和53-55中任一项所述的通信系统,其特征在于,所述第一设备为所述接入网设备,
    所述第一设备,用于根据所述业务流在所述第一链路上丢失的报文的分组数据汇聚协议序列号PDCP SN和所述业务流在所述第二链路上丢失的报文的N3接口通用分组无线服务隧道协议用户面序列号N3 GTP-U SN,以及所述业务流中的报文的PDCP SN和N3 GTP-U SN之间的映射关系确定所述业务流在所述用户面路径上连续丢包的个数。
  57. 根据权利要求46-51和53-56中任一项所述的通信系统,其特征在于,在所述第一设备为所述接入网设备的情况下,针对上行报文,
    所述终端,用于向所述接入网设备发送所述业务流中的报文;
    所述接入网设备,用于从所述终端接收所述业务流中的报文,并根据正确接收到的报文的PDCP SN的连续性确定所述业务流在所述第一链路上的丢包情况。
  58. 根据权利要求46-51和53-56中任一项所述的通信系统,其特征在于,在所述第一设备为所述接入网设备的情况下,针对上行报文,
    所述终端,用于向所述接入网设备发送所述业务流中的报文;
    所述接入网设备,用于从所述终端接收所述业务流中的报文,并针对每个正确接收 到的报文向所述终端发送肯定确认ACK;
    所述终端,还用于从所述接入网设备接收所述接入网设备针对每个正确接收到的报文向所述终端发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向所述接入网设备发送第一报文丢失信息,所述第一报文丢失信息用于指示所述接入网设备未正确接收到的报文的PDCP SN;
    所述接入网设备,还用于从所述终端接收所述第一报文丢失信息,并根据所述第一报文丢失信息确定所述业务流在所述第一链路上的丢包情况。
  59. 根据权利要求46-51和53-56中任一项所述的通信系统,其特征在于,在所述第一设备为所述接入网设备的情况下,针对上行报文,
    所述锚点用户面网关,用于向所述接入网设备发送第二报文丢失信息,所述第二报文丢失信息用于指示所述锚点用户面网关未正确接收到的报文的N3 GTP-U SN;
    所述接入网设备,用于从所述锚点用户面网关接收所述第二报文丢失信息,并根据所述第二报文丢失信息确定所述业务流在所述第二链路上的丢包情况。
  60. 根据权利要求46-51和53-56中任一项所述的通信系统,其特征在于,在所述第一设备为所述接入网设备的情况下,针对上行报文,
    所述接入网设备,用于向所述锚点用户面网关发送所述业务流中的报文;
    所述锚点用户面网关,用于从所述接入网设备接收所述业务流中的报文,并针对每个正确接收到的报文向所述接入网设备发送ACK;
    所述接入网设备,还用于从所述锚点用户面网关接收所述锚点用户面网关针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定所述业务流在所述第二链路上的丢包情况。
  61. 根据权利要求46-51和53-56中任一项所述的通信系统,其特征在于,在所述第一设备为所述接入网设备的情况下,针对下行报文,
    所述终端,用于向所述接入网设备发送第三报文丢失信息,所述第三报文丢失信息用于指示所述终端未正确接收到的报文的PDCP SN;
    所述接入网设备,用于从所述终端接收所述第三报文丢失信息,并根据所述第三报文丢失信息确定所述业务流在所述第一链路上的丢包情况。
  62. 根据权利要求46-51和53-56中任一项所述的通信系统,其特征在于,在所述第一设备为所述接入网设备的情况下,针对下行报文,
    所述接入网设备,用于向所述终端发送所述业务流中的报文;
    所述终端,用于从所述接入网设备接收所述业务流中的报文,并针对每个正确接收到的报文向所述接入网设备发送ACK;
    所述接入网设备,还用于从所述终端接收所述终端针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定所述业务流在所述第一链路上的丢包情况。
  63. 根据权利要求46-51和53-56中任一项所述的通信系统,其特征在于,在所述第一设备为所述接入网设备的情况下,针对下行报文,
    所述锚点用户面网关,用于向所述接入网设备发送所述业务流中的报文;
    所述接入网设备,用于从所述锚点用户面网关接收所述业务流中的报文,并根据正 确接收到的报文的N3 GTP-U SN的连续性确定所述业务流在所述第二链路上的丢包情况。
  64. 根据权利要求46-51和53-56中任一项所述的通信系统,其特征在于,针对下行报文,
    所述锚点用户面网关,用于向所述接入网设备发送所述业务流中的报文;
    所述接入网设备,用于从所述锚点用户面网关接收所述业务流中的报文,并针对每个正确接收到的报文向所述锚点用户面网关发送ACK;
    所述锚点用户面网关,还用于从所述接入网设备接收所述接入网设备针对每个正确接收到的报文向所述锚点用户面网关发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向所述接入网设备发送第四报文丢失信息,所述第四报文丢失信息用于指示所述接入网设备未正确接收到的报文的N3 GTP-U SN;
    所述接入网设备,还用于从所述锚点用户面网关接收所述第四报文丢失信息,并根据所述第四报文丢失信息确定所述业务流在所述第二链路上的丢包情况。
  65. 根据权利要求46-47、49-50和52-55中的任一项所述的通信系统,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,针对上行报文,
    所述接入网设备,用于向所述锚点用户面网关发送第五报文丢失信息,所述第五报文丢失信息用于指示所述业务流在所述第一链路丢失的报文;
    所述锚点用户面网关,用于从所述接入网设备接收所述第五报文丢失信息,并根据所述第五报文丢失信息确定所述业务流在所述第一链路上的丢包情况。
  66. 根据权利要求65所述的通信系统,其特征在于,
    所述接入网设备正确接收到的每个报文的PDCP SN和所述接入网设备发送的该报文的N3 GTP-U SN对应,所述接入网设备所发送的连续的报文的N3 GTP-U SN是连续的,所述第五报文丢失信息用于指示所述接入网设备在所述第一链路未正确接收到的报文的上一个正确接收到的报文的N3 GTP-U SN,所述第五报文丢失信息还用于指示所述第五报文丢失信息指示的报文的后一个报文或后多个连续报文丢包;
    或者,
    所述接入网设备正确接收到的每个报文的PDCP SN和所述接入网设备发送的该报文的N3 GTP-U SN之间的差值是相同的,所述第五报文丢失信息为所述接入网设备在所述第一链路未正确接收到的报文的N3 GTP-U SN。
  67. 根据权利要求46-47、49-50和52-55中的任一项所述的通信系统,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,针对上行报文,
    所述接入网设备,用于向所述锚点用户面网关发送所述业务流中的报文;
    所述锚点用户面网关,用于从所述接入网设备接收所述业务流中的报文,并根据正确接收到的报文的N3 GTP-U SN的连续性确定所述业务流在所述第二链路上的丢包情况。
  68. 根据权利要求46-47、49-50和52-55中的任一项所述的通信系统,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,针对上行报文,
    所述接入网设备,用于向所述锚点用户面网关发送所述业务流中的报文;
    所述锚点用户面网关,用于从所述接入网设备接收所述业务流中的报文,并针对每个正确接收到的报文向所述接入网设备发送ACK;
    所述接入网设备,还用于从所述锚点用户面网关接收所述锚点用户面网关针对每个 正确接收到的报文发送的ACK,并根据是否接收到每个发送的报文的ACK的信息向所述锚点用户面网关发送第六报文丢失信息,所述第六报文丢失信息用于指示所述锚点用户面网关未正确接收到的报文的N3 GTP-U SN;
    所述锚点用户面网关,还用于从所述接入网设备接收所述第六报文丢失信息,并根据所述第六报文丢失信息确定所述业务流在所述第二链路上的丢包情况。
  69. 根据权利要求46-47、49-50和52-55中的任一项所述的通信系统,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,针对下行报文,
    所述接入网设备,用于向所述锚点用户面网关发送第七报文丢失信息,所述第七报文丢失信息用于指示所述业务流在所述第一链路丢失的报文的N3 GTP-U SN;
    所述锚点用户面网关,用于从所述接入网设备接收第七报文丢失信息,并根据所述第七报文丢失信息确定所述业务流在所述第一链路上的丢包情况。
  70. 根据权利要求46-47、49-50和52-55中的任一项所述的通信系统,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,针对下行报文,
    所述接入网设备,用于向所述锚点用户面网关发送第八报文丢失信息,所述第八报文丢失信息用于指示所述接入网设备未正确接收到的报文的N3 GTP-U SN;
    所述锚点用户面网关,用于从所述接入网设备接收所述第八报文丢失信息,并根据所述第八报文丢失信息确定所述业务流在所述第二链路上的丢包情况。
  71. 根据权利要求46-47、49-50和52-55中的任一项所述的通信系统,其特征在于,在所述第一设备为所述锚点用户面网关的情况下,针对下行报文,
    所述锚点用户面网关,用于向所述接入网设备发送所述业务流中的报文;
    所述接入网设备,用于从所述锚点用户面网关接收所述业务流中的报文,并针对每个正确接收到的报文向所述锚点用户面网关发送ACK;
    所述锚点用户面网关,还用于从所述接入网设备接收所述接入网设备针对每个正确接收到的报文发送的ACK,并根据是否接收到发送的每个报文的ACK的信息确定所述业务流在所述第二链路上的丢包情况。
PCT/CN2019/103902 2019-08-31 2019-08-31 通信方法、装置及系统 WO2021035763A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980099648.XA CN114270953B (zh) 2019-08-31 2019-08-31 通信方法、装置及系统
EP19942868.1A EP4021093A4 (en) 2019-08-31 2019-08-31 COMMUNICATION METHOD, APPARATUS AND SYSTEM
PCT/CN2019/103902 WO2021035763A1 (zh) 2019-08-31 2019-08-31 通信方法、装置及系统
US17/681,420 US11757746B2 (en) 2019-08-31 2022-02-25 Communication method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103902 WO2021035763A1 (zh) 2019-08-31 2019-08-31 通信方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/681,420 Continuation US11757746B2 (en) 2019-08-31 2022-02-25 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2021035763A1 true WO2021035763A1 (zh) 2021-03-04

Family

ID=74685357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103902 WO2021035763A1 (zh) 2019-08-31 2019-08-31 通信方法、装置及系统

Country Status (4)

Country Link
US (1) US11757746B2 (zh)
EP (1) EP4021093A4 (zh)
CN (1) CN114270953B (zh)
WO (1) WO2021035763A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117998450A (zh) * 2022-10-28 2024-05-07 维沃移动通信有限公司 信息传输的方法及通信设备
CN116133159B (zh) * 2022-12-12 2023-11-21 湖南星网云信息科技有限公司 Gtp数据包的处理方法、装置、计算机设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179618A (zh) * 2013-03-19 2013-06-26 福建三元达通讯股份有限公司 一种基于LTE Femto系统中提高回程网络的QoS的方法
CN104125607A (zh) * 2013-04-23 2014-10-29 中兴通讯股份有限公司 用户面拥塞处理方法、装置及服务网关
CN106900017A (zh) * 2015-12-21 2017-06-27 中兴通讯股份有限公司 数据反传方法及装置
US20190215730A1 (en) * 2018-01-11 2019-07-11 Weihua QIAO Monitoring and Reporting Service Performance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9385848B2 (en) * 2011-05-20 2016-07-05 Microsoft Technology Licensing, Llc Short-range nodes with adaptive preambles for coexistence
GB2525948B (en) * 2014-11-04 2017-01-04 Imagination Tech Ltd Packet loss and bandwidth coordination
US10200264B2 (en) * 2016-05-31 2019-02-05 128 Technology, Inc. Link status monitoring based on packet loss detection
CN112073216A (zh) * 2018-02-05 2020-12-11 华为技术有限公司 获取链路质量的方法和装置
US20220182185A1 (en) * 2019-02-13 2022-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Systems and Methods to Reduce Consecutive Packet Loss for Delay Critical Traffic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179618A (zh) * 2013-03-19 2013-06-26 福建三元达通讯股份有限公司 一种基于LTE Femto系统中提高回程网络的QoS的方法
CN104125607A (zh) * 2013-04-23 2014-10-29 中兴通讯股份有限公司 用户面拥塞处理方法、装置及服务网关
CN106900017A (zh) * 2015-12-21 2017-06-27 中兴通讯股份有限公司 数据反传方法及装置
US20190215730A1 (en) * 2018-01-11 2019-07-11 Weihua QIAO Monitoring and Reporting Service Performance

Also Published As

Publication number Publication date
CN114270953A (zh) 2022-04-01
CN114270953B (zh) 2024-05-17
US20220182304A1 (en) 2022-06-09
EP4021093A1 (en) 2022-06-29
EP4021093A4 (en) 2022-08-24
US11757746B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
US11968565B2 (en) User plane information reporting method and apparatus
US20130294283A1 (en) Facilitating device-to-device communication
EP3737183B1 (en) Communication methods, apparatuses and computer-readable storage medium
TW201622459A (zh) 決定裝置對裝置間傳輸型樣方法及裝置
WO2021238676A1 (zh) 数据传输方法及装置
US20220322135A1 (en) Method for managing qos, relay terminal, pcf network element, smf network element, and remote terminal
CN106416418B (zh) 网络通信方法和装置
US11757746B2 (en) Communication method, apparatus, and system
US20230103418A1 (en) Communication method, apparatus, and system
AU2018329060A1 (en) Session establishment method and apparatus
US20220386165A1 (en) Method of wireless communication system for extended reality applications with enhanced quality of service
CN113973322A (zh) 一种通信方法及装置
WO2018141278A1 (zh) 无线通信方法、用户设备、接入网设备和网络系统
WO2018014704A1 (zh) 一种基于harq的传输方法和装置
WO2022068424A1 (zh) 通信方法及装置
CN116250281A (zh) 用于路径切换的方法和装置
US11064503B2 (en) Method and apparatus for transmitting control information
WO2018171676A1 (zh) 数据传输的方法和装置
WO2022120516A1 (zh) 通信方法、设备和系统
WO2021179325A1 (zh) 一种数据处理的方法及装置
WO2022204999A1 (zh) 存活时间的处理方法和终端设备
WO2024055871A1 (zh) 一种通信系统中传输数据的方法和通信装置
WO2019096393A1 (en) A client device, an access network device, a method and a computer program for establishing a data radio bearer
US20240121201A1 (en) Communication method and apparatus
US20240031280A1 (en) Data transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019942868

Country of ref document: EP

Effective date: 20220324