WO2021035668A1 - Universal integrated circuit card (uicc) logical channel utilization - Google Patents

Universal integrated circuit card (uicc) logical channel utilization Download PDF

Info

Publication number
WO2021035668A1
WO2021035668A1 PCT/CN2019/103587 CN2019103587W WO2021035668A1 WO 2021035668 A1 WO2021035668 A1 WO 2021035668A1 CN 2019103587 W CN2019103587 W CN 2019103587W WO 2021035668 A1 WO2021035668 A1 WO 2021035668A1
Authority
WO
WIPO (PCT)
Prior art keywords
logical channels
integrated circuit
circuit card
universal integrated
reported
Prior art date
Application number
PCT/CN2019/103587
Other languages
French (fr)
Inventor
Jingnan QU
Meng Liu
Jian Li
Yun Peng
Wei He
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/103587 priority Critical patent/WO2021035668A1/en
Publication of WO2021035668A1 publication Critical patent/WO2021035668A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/77Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information in smart cards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier

Definitions

  • the present disclosure generally relates to methods and systems for accessing network services on a wireless device. More specifically, the present disclosure relates to universal integrated circuit card (UICC) logical channel utilization.
  • UICC universal integrated circuit card
  • Some designs of mobile communications/wireless devices include a single universal integrated circuit card (UICC) , multiple universal integrated circuit cards, or multiple subscriber identity module (SIM) cards.
  • the cards store user identity information for multiple subscriptions that enable users to access multiple separate mobile telephony networks.
  • Some of the UICCs e.g., embedded UICCs (eUICCs)
  • eUICCs embedded UICCs
  • a UICC may be removable or implemented within memory of mobile communications devices.
  • the information stored in a UICC may enable mobile communications devices to communicate with a variety of different types of mobile telephony networks.
  • mobile telephony networks include third generation (3G) , fourth generation (4G) , long term evolution (LTE) , fifth generation (5G) , time division multiple access (TDMA) , code division multiple access (CDMA) , CDMA 2000, wideband CDMA (WCDMA) , global system for mobile communications (GSM) , single-carrier radio transmission technology (1xRTT) , and universal mobile telecommunications systems (UMTS) .
  • Each subscription enabled by a UICC or SIM may utilize a particular radio access technology (RAT) to communicate with its respective network.
  • RAT radio access technology
  • a method for initializing a universal integrated circuit card to obtain network services on a wireless device includes setting a number of available logical channels to a number of logical channels reported by the universal integrated circuit card. The method also includes determining whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card. The method includes sending open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels. The method further includes modifying the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
  • Another aspect of the present disclosure is directed to an apparatus including means for setting a number of available logical channels to a number of logical channels reported by the universal integrated circuit card.
  • the apparatus also includes means for determining whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card.
  • the apparatus further includes means for sending open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels.
  • the apparatus includes means for modifying the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
  • the apparatus includes a memory, a communication interface coupled to the universal integrated circuit card, and one or more processors coupled to the memory and the communication interface of the universal integrated circuit card.
  • the processor (s) is configured to set a number of available logical channels to a number of logical channels reported by the universal integrated circuit card.
  • the processor (s) is further configured to determine whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card.
  • the processor (s) is further configured to send open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels.
  • the processor (s) is also configured to modify the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
  • a non-transitory computer-readable medium records program code.
  • the program code is for initializing a universal integrated circuit card to obtain network services on a wireless device.
  • the program code is executed by a processor and includes program code to set a number of available logical channels to a number of logical channels reported by the universal integrated circuit card.
  • the program code also includes program code to determine whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card.
  • the program code further includes program code to send open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels.
  • the program code still further includes program code to modify the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
  • FIGURE 1 shows a wireless device communicating with a wireless communications system.
  • FIGURE 2 shows a block diagram of the wireless device in FIGURE 1, according to an aspect of the present disclosure.
  • FIGURE 3 is a process flow diagram of a method of initializing a universal integrated circuit card (UICC) to obtain network services on a wireless device, according to aspects of the present disclosure.
  • UICC universal integrated circuit card
  • FIGURE 4 is a process flow diagram of another method of initializing a universal integrated circuit card (UICC) to obtain network services on the wireless device, in accordance with aspects of the present disclosure.
  • UICC universal integrated circuit card
  • FIGURE 5 is a component block diagram of a of a wireless device suitable for implementing the method of initializing the universal integrated circuit card for obtaining network services on the wireless device.
  • FIGURE 6 is a block diagram showing an exemplary wireless communications system in which a configuration of the disclosure may be advantageously employed.
  • SIM subscriber identification module
  • USIM universal subscriber identity module
  • RUIM removable user identity module
  • SIMs may store network specific information used to authenticate and identify subscribers on the network, the most important of which are the integrated circuit card identifier (ICCID) , international mobile subscriber identity (IMSI) , authentication key (Ki) , and local area identity (LAI) .
  • the SIM may also store other carrier specific data, such as short message service center (SMSC) numbers, service provider names (SPNs) , service dialing numbers (SDNs) , and value added service (VAS) applications.
  • SMSC short message service center
  • SPNs service provider names
  • SDNs service dialing numbers
  • VAS value added service
  • a USIM and a RUIM may be modules in UMTS and CDMA networks, respectively, which provide equivalent functions to a SIM in a GSM network.
  • SIM, ” “USIM, ” and “RUIM” may be used interchangeably to refer to a general module that is not restricted to a particular standard or technology.
  • SIM may also be used as a shorthand reference to a communications network associated with a particular SIM, because the information stored in a SIM enables the wireless device to establish a communications link with a particular network.
  • the SIM and the communications network, as well as the services and subscriptions supported by that network, correlate to one another.
  • UICC universal integrated circuit card
  • SIM card SIM card
  • UICC universal integrated circuit card
  • Various UICCs may have storage capabilities ranging from two to three kilobytes to up to one gigabyte of information.
  • wireless communications devices may be configured to support cellular network communications using a variety of technologies and formats depending on the service provider of choice.
  • wireless communications devices may utilize a subscriber identification module (SIM) provided on a smart card such as a universal integrated circuit card (UICC) .
  • SIM subscriber identification module
  • UICC universal integrated circuit card
  • a conventional UICC is generally implemented as a removable chip that is insertable into a wireless communications device, a UICC may alternatively be embedded in the wireless communications device (e.g., soldered and thus not removable) or in another chipset (e.g., a modem chipset) of the device, providing an embedded UICC (eUICC) .
  • eUICC embedded UICC
  • the wireless device When the UICC is initialized (e.g., at power up, or after a UICC is inserted into the wireless device) , the wireless device reads the content of several files (e.g., system files) stored on the UICC. For example, during the initialization process various features stored on the SIM card (e.g., address book, text messages, network names, integrated circuit card identifier (ICCID) , etc. ) are read and made available to the wireless device. Similarly, when a wireless device receives a page directed to an inactive subscription (e.g., in the case of an emergency) , the wireless device may activate the subscription of the UICC. In this case, the activation process may be part of the initialization process for the UICC and may skip a card detection stage that includes reading of essential elementary files (EF) to avoid redundancy. The subscription may then authenticate with the network and receive the call.
  • files e.g., system files
  • various features stored on the SIM card e.g., address book, text messages, network
  • the card accepting device or mobile equipment When the universal integrated circuit cards (UICCs) is inserted into or detected (during power up) by a card reader or mobile handset, the card accepting device or mobile equipment (ME) first powers the card to a normal operating voltage and the card is brought to an idle state. For example, a reset (RST) command is sent over a contact line associated with the UICC. The RST command remains in a low state for a set period of time and then is set to a high state. This is a signal to the UICC to begin its initialization sequence.
  • RST reset
  • the initialization sequence ends with the SIM card sending an answer to reset (ATR) to the mobile equipment.
  • the ATR indicates a status of the UICC power-up sequence and conveys information including information to optimize the speed of the communication between a reader and the UICC.
  • the information includes a number of logical channels that can be supported by the UICC.
  • the logical channels may be mapped to physical channels, and categorized by the information carried.
  • traffic channels may carry speech or user data in a circuit switched or packet switched network
  • control channels may carry signaling or synchronization data in a circuit switched or packet switched network.
  • the mobile equipment accesses the UICC using the logical channels.
  • the number of logical channels determines a number of application that can access the UICC simultaneously.
  • Some UICC cards report an incorrect number of logical channels during the initialization sequence. For example, while the UICC can support four logical channels, the ATR may incorrectly indicate that the UICC supports less than four channels. Accordingly, the mobile equipment fails to open or operate a fourth logical channel, which results in a reduction of communications resources.
  • aspects of the present disclosure are directed to a process for initializing a universal integrated circuit card (UICC) to obtain network services on a wireless device.
  • the method includes determining (e.g., by a baseband processor) whether a number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card.
  • the baseband processor receives an answer to reset (ATR) message from the universal integrated circuit card indicating the number of available logical channels supported by the universal integrated circuit card, in other words, the number of reported channels.
  • ATR answer to reset
  • the universal integrated circuit card may only report a fraction of those allocated number of logical channels are available.
  • the unavailability of some of the logical channels may be due to an error (e.g., an error in the reporting of the available logical channels) that may be unrelated to whether the logical channels are operational.
  • an error e.g., an error in the reporting of the available logical channels
  • a fully operational logical channel may be reported as unavailable, which reduces the communications resources of a mobile equipment.
  • the baseband processor sends a number of open logical channel commands associated with each of the allocated logical channels in an attempt to open or operate all of the allocated logical channels.
  • the open logical channel commands are sent to the universal integrated circuit card when the number of available logical channels is less than the allocated number of logical channels.
  • the number of open logical channel commands is equal to the allocated number of logical channels.
  • the open logical channel commands are sent to the universal integrated circuit card to determine the number of allocated channels that are open and operational.
  • the open logical channel commands are sent to all of the allocated logical channels to determine whether all allocated logical channels, and not just the fraction of the logical channels, are open and operational.
  • the number of the successful responses to the open logical channel commands is recorded.
  • a baseband processor modifies the number of available logical channels when the number of successful responses to the open logical channel commands is greater than the number of reported logical channels. For example, the baseband processor receives a response based on each open logical channel commands indicating whether each of the allocated logical channels are open or operational. Based on the indication, the baseband processor modifies the number of available logical channels. For example, the number of available logical channels is modified to equal the number of allocated logical channels when the number of the successful responses is greater than the number of reported logical channels. As a result, all of the allocated logical channels of the universal integrated circuit card are available for use by the mobile equipment, thereby increasing available communications resources of the mobile equipment.
  • FIGURE 1 shows a wireless device 110 that includes the described universal integrated circuit card initialized by the method described.
  • the wireless device 110 communicates with a wireless communications system 120.
  • the wireless device 110 includes a multi-band (e.g., dual-band) concurrent millimeter wave (mmW) transceiver.
  • the wireless communications system 120 may be a 5G system, a long term evolution (LTE) system, a code division multiple access (CDMA) system, a global system for mobile communications (GSM) system, a wireless local area network (WLAN) system, millimeter wave (mmW) technology, or some other wireless system.
  • LTE long term evolution
  • CDMA code division multiple access
  • GSM global system for mobile communications
  • WLAN wireless local area network
  • mmW millimeter wave
  • a CDMA system may implement wideband CDMA (WCDMA) , time division synchronous CDMA (TD-SCDMA) , CDMA2000, or some other version of CDMA.
  • WCDMA wideband CDMA
  • TD-SCDMA time division synchronous CDMA
  • CDMA2000 Code Division synchronous CDMA2000
  • mmW millimeter wave
  • FIGURE 1 shows the wireless communications system 120 including two base stations 130 and 132 and one system controller 140.
  • a wireless system may include any number of base stations and any number of network entities.
  • a wireless device 110 may be referred to as a mobile equipment (ME) , a user equipment (UE) , a mobile station, a terminal, an access terminal, a subscriber unit, a station, etc.
  • the wireless device 110 may also be a cellular phone, a smartphone, a tablet, a wireless modem, a personal digital assistant (PDA) , a handheld device, a laptop computer, a Smartbook, a netbook, a cordless phone, a wireless local loop (WLL) station, a Bluetooth device, etc.
  • the wireless device 110 may be capable of communicating with the wireless communications system 120.
  • the wireless device 110 may also be capable of receiving signals from broadcast stations (e.g., a broadcast station 134) , signals from satellites (e.g., a satellite 150) in one or more global navigation satellite systems (GNSS) , etc.
  • the wireless device 110 may support one or more radio technologies for wireless communications such as 5G, LTE, CDMA2000, WCDMA, TD-SCDMA, GSM, 802.11, etc.
  • the wireless device 110 may support carrier aggregation, which is operation on multiple carriers. Carrier aggregation may also be referred to as multi-carrier operation. According to an aspect of the present disclosure, the wireless device 110 may be able to operate in low-band from 698 to 960 megahertz (MHz) , mid-band from 1475 to 2170 MHz, and/or high-band from 2300 to 2690 MHz, ultra-high band from 3400 to 3800 MHz, and long-term evolution (LTE) in LTE unlicensed bands (LTE-U/LAA) from 5150 MHz to 5950 MHz.
  • LTE long-term evolution
  • Low-band, mid-band, high-band, ultra-high band, and LTE-U refer to five groups of bands (or band groups) , with each band group including a number of frequency bands (or simply, “bands” ) .
  • each band may cover up to 200 MHz and may include one or more carriers.
  • each carrier may cover up to 40 MHz in LTE.
  • LTE Release 11 supports 35 bands, which are referred to as LTE/UMTS bands and are listed in 3GPP TS 36.101.
  • the wireless device 110 may be configured with up to five carriers in one or two bands in LTE Release 11.
  • Some carrier aggregation implementations in the sub 6 GHz include multiple frequency bands in the millimeter wave frequency range, such as frequency bands located near 24 gigahertz (GHz) , 26 GHz, 28 GHz, 37 GHz, 39 GHz, 48 GHz, and 56 to 71 GHz.
  • these bands may include 24.25-24.45 GHz, 24.75-25.25 GHz, 27.5-28.35 GHz, and 37-40 GHz.
  • the carriers may be 50 MHz, 100 MHz, 200 MHz, or 400 MHz and the bands may be up to 2.4 GHz and may include one or more carriers.
  • FIGURE 2 shows a block diagram of the wireless device 110 in FIGURE 1, according to an aspect of the present disclosure.
  • the wireless device 110 may include a universal integrated circuit card (UICC) interface 202, which may receive an embedded UICC (eUICC) 204 that stores profiles associated with one or more subscriptions from network providers.
  • UICC universal integrated circuit card
  • eUICC embedded UICC
  • a UICC used in various examples may include user account information, an international mobile subscriber identity (IMSI) , a set of SIM application toolkit (SAT) commands, and storage space for phone book contacts.
  • the UICC may further store home identifiers (e.g., a system identification number (SID) /network identification number (NID) pair, a home preferred list of mobile networks (HPLMN) code, etc. ) to indicate the network operator providers for each subscription of the UICC.
  • SID system identification number
  • NID network identification number
  • HPLMN home preferred list of mobile networks
  • ICCID integrated circuit card identity
  • SIM serial number may be printed on the UICC for identification.
  • the UICC may be implemented within a portion of memory of the wireless device 110 (e.g., in a memory 214) , and thus need not be a separate or removable circuit, chip, or card.
  • the wireless device 110 may include at least one controller, such as a processor 206, which may be coupled to a coder/decoder (CODEC) 208.
  • the CODEC 208 may in turn be coupled to a speaker 210 and a microphone 212.
  • the processor 206 may also be coupled to the memory 214.
  • the memory 214 may be a non-transitory computer-readable storage medium that stores processor-executable instructions.
  • the memory 214 may store an operating system (OS) , as well as user application software and executable instructions.
  • OS operating system
  • the memory 214 may also store locally cached profiles for subscriptions supported by the eUICC 204.
  • the processor 206 and the memory 214 may each be coupled to at least one baseband processor or baseband modem processor 216.
  • the eUICC 204 in the wireless device 110 may utilize one or more baseband-RF resources.
  • a baseband-RF resource may include the baseband modem processor 216, which may perform baseband/modem functions for communications with and controlling of a radio access technology (RAT) .
  • the baseband-RF resource may include one or more amplifiers and radios, referred to generally as RF resources (e.g., RF resource 218) .
  • the baseband-RF resources may share the baseband modem processor 216 (e.g., a single device that performs baseband/modem functions for all RATs on the wireless device 110) .
  • each baseband-RF resource may include physically or logically separate baseband processors (e.g., BB1, BB2) .
  • the RF resource 218 may be a transceiver that performs transmit/receive functions for the eUICC 204 on the wireless device 110.
  • the RF resource 218 may include separate transmit and receive circuitry, or may include a transceiver that combines transmitter and receiver functions. In some examples, the RF resource 218 may include multiple receive circuits.
  • the RF resource 218 may be coupled to a wireless antenna (e.g., a wireless antenna 220) .
  • the RF resource 218 may also be coupled to the baseband modem processor 216.
  • the processor 206, the memory 214, the baseband modem processor (s) 216, and the RF resource 218 may be included in the wireless device 110 as a system-on-chip 250.
  • the eUICC 204 and its corresponding UICC interface 202 may be external to the system-on-chip 250.
  • various input and output devices may be coupled to components on the system-on-chip 250, such as interfaces or controllers.
  • Example user input components suitable for use in the wireless device 110 may include, but are not limited to, a keypad 224, a touchscreen display 226, and the microphone 212.
  • the keypad 224, the touchscreen display 226, the microphone 212, or a combination thereof may perform the function of receiving a request to initiate an outgoing call or for receiving a person identification number.
  • Interfaces may be provided between the various devices and modules to implement functions in the wireless device 110 to enable communications in the wireless device.
  • the eUICC 204, the baseband processor BB1, BB2, the RF resource 218, and the wireless antenna 220 may constitute two or more radio access technologies (RATs) .
  • the wireless device 110 may be a communications device that includes a UICC, baseband processor, and RF resource configured to support two different RATs, such as 5G or LTE and GSM. More RATs may be supported on the wireless device 110 by adding more RF resources, and antennae for connecting to additional mobile networks.
  • the wireless device 110 may include, among other things, additional UICC or SIM cards, UICC or SIM interfaces, multiple RF resources associated with the additional UICC or SIM cards, and additional antennae for supporting subscriptions communications with additional mobile networks.
  • the eUICC 204 may support multiple mobile network operator profiles, or subscription profiles. For example, a user may download multiple profiles onto the eUICC 204. Each profile may store static SIM information that is used to support a subscription with one or more mobile telephony networks. Thus, the eUICC 204 may play the role of multiple SIMs, because each SIM supports one profile.
  • the wireless device 110 may be configured to locally cache one or more subscription profiles associated with or stored in the UICC.
  • the profiles may be cached in the memory 214, part of which may be designated memory for the modem.
  • FIGURE 3 is a process flow diagram of a method 300 of initializing a universal integrated circuit card to obtain network services on a wireless device, according to aspects of the present disclosure.
  • the universal integrated circuit card is powered up, and the initialization of the universal integrated circuit card in the wireless device starts.
  • a baseband processor e.g., the baseband modem processor 2166 powers up a universal integrated circuit card interface (e.g., the universal integrated circuit card interface 202) .
  • the baseband processor receives answer to reset (ATR) information from the universal integrated circuit card interface.
  • ATR answer to reset
  • the baseband processor parses the answer to reset information and obtains and records a number of available logical channels.
  • the baseband processor determines whether the number of reported logical channels is less than a total number of logical channels allocated to the universal integrated circuit card interface. When the number of reported logical channels is less than a number of logical channels allocated to the universal integrated circuit card, the process continues to block 312.
  • the baseband processor sends a number of open logical channel commands associated with each of the allocated logical channels in an attempt to open or operate all of the allocated logical channels.
  • the number of open logical channel commands is equal to the allocated number of logical channels.
  • the open logical channel commands e.g., four
  • the universal integrated circuit card determines the number of allocated channels that are open and operational.
  • the open logical channel commands are sent to all of the allocated logical channels (e.g., four) to determine whether all allocated logical channels and not just the reported fraction of the logical channels are open and operational.
  • the number of successful responses to the open logical channel commands is recorded.
  • the baseband processor modifies the number of available logical channels when the number of successful responses to the open logical channel commands is greater than the number of reported logical channels. For example, the baseband processor receives responses based on the open logical channel commands indicating whether each of the allocated logical channels is open or operational. Based on the indication, the baseband processor modifies the number of available logical channels. For example, the number of available logical channels is modified to equal the number of allocated logical channels when the number of the successful responses is greater than the number of reported logical channels. As a result, all of the allocated logical channels of the universal integrated circuit card are made available for use by the mobile equipment, thereby increasing communications resources of the mobile equipment.
  • the baseband processor determines that an application in an access protocol (AP) layer is attempting or wants to access the universal integrated circuit card. For example, at block 324, the baseband processor receives from the application, a request for information on the logical channels of the universal integrated circuit card that are open. At block 326, the baseband processor determines whether a number of available logical channels is greater than zero. When the number of available logical channels is less than or equal to zero, the process continues to block 328 where an error is returned to the application and the process ends at block 334 because the application cannot access the universal integrated circuit card interface. Otherwise, when the number of available logical channels is greater than zero, the process continues to block 330.
  • AP access protocol
  • the baseband processor sends an open logical channel command to the universal integrated circuit card interface to open an available logical channel and reduces the number of open or available logical channels by one.
  • the process then continues to block 332 where the universal integrated circuit card distributes a logical channel to the application to access the universal integrated circuit card interface.
  • the process ends.
  • FIGURE 4 depicts a simplified flowchart of a method 400 for initializing a universal integrated circuit card to obtain network services on a wireless device.
  • a baseband processor of a wireless device sets a number of available logical channels to a number of logical channels reported by a universal integrated circuit card (UICC) .
  • the baseband processor determines whether a number of available logical channels reported by the universal integrated circuit card is less than a total number of logical channels allocated to the universal integrated circuit card.
  • the baseband processor sends a number of open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels.
  • the baseband processor modifies the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
  • an apparatus for initializing a universal integrated circuit card to obtain network services on a wireless device may include means for setting a number of available logical channels to a number of logical channels reported by the universal integrated circuit card, means for determining whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card, means for sending a plurality of open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels, and/or means for modifying the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
  • the setting means, determining means, sending means, and/or modifying means may be the baseband processor 216, the general processor 206, and/or the memory 214.
  • the aforementioned means may be any module or apparatus configured to perform the functions recited by the aforementioned means.
  • FIGURE 5 is a component block diagram of a of a wireless device 500 suitable for implementing the method of initializing the universal integrated circuit card for obtaining network services on the wireless device. Aspects of the present disclosure may be implemented in any of a variety of wireless devices, an example of which (e.g., wireless device 500) is illustrated in FIGURE 5.
  • the wireless device 500 may be similar to the wireless device 110 and may implement the method 300 and the method 400.
  • the wireless device 500 may include a processor 502 coupled to a touchscreen controller 504 and an internal memory 506.
  • the processor 502 may be one or more multi-core integrated circuits designated for general or specific processing tasks.
  • the internal memory 506 may be volatile or non-volatile memory, and may also be secure and/or encrypted memory, or unsecure and/or unencrypted memory, or any combination thereof.
  • the touchscreen controller 504 and the processor 502 may also be coupled to a touchscreen panel 512, such as a resistive-sensing touchscreen, capacitive- sensing touchscreen, infrared sensing touchscreen, etc. Additionally, the display of the wireless device 500 need not have touch screen capability.
  • the wireless device 500 may have one or more cellular network transceivers 508 coupled to the processor 502 and to one or more antennas 510 and configured for sending and receiving cellular communications.
  • the one or more transceivers 508 and the one or more antennas 510 may be used with the above-mentioned circuitry to implement the various example methods described.
  • the wireless device 500 may include one or more UICC or SIM cards 516 coupled to the one or more transceivers 508 and/or the processor 502 and may be configured as described above.
  • the wireless device 500 may also include speakers 514 for providing audio outputs.
  • the wireless device 500 may also include a housing 520, constructed of a plastic, metal, or a combination of materials, for containing all or some of the components discussed herein.
  • the wireless device 500 may include a power source 522 coupled to the processor 502, such as a disposable or rechargeable battery.
  • the rechargeable battery may also be coupled to the peripheral device connection port to receive a charging current from a source external to the wireless device 500.
  • the wireless device 500 may also include a physical button 524 for receiving user inputs.
  • the wireless device 500 may also include a power button 526 for turning the wireless device 500 on and off.
  • FIGURE 6 is a block diagram showing an exemplary wireless communications system in which a configuration of the disclosure may be advantageously employed.
  • FIGURE 6 shows three remote units 620, 630, and 650 and two base stations 640.
  • Remote units 620, 630, and 650 include IC devices 625A, 625B, and 625C that include the disclosed universal integrated circuit card and the corresponding mobile equipment. It will be recognized that other devices may also include the disclosed universal integrated circuit card, such as the base stations, switching devices, and network equipment.
  • FIGURE 6 shows forward link signals 680 from the base station 640 to the remote units 620, 630, and 650 and reverse link signals 690 from the remote units 620, 630, and 650 to base station 640.
  • remote unit 620 is shown as a mobile telephone
  • remote unit 630 is shown as a portable computer
  • remote unit 650 is shown as a fixed location remote unit in a wireless local loop system.
  • a remote unit may be a mobile phone, a hand-held personal communications systems (PCS) unit, a portable data unit such as a personal digital assistant (PDA) , a GPS enabled device, a navigation device, a set top box, a music player, a video player, an entertainment unit, a fixed location data unit such as a meter reading equipment, or other communications device that stores or retrieves data or computer instructions, or combinations thereof.
  • FIGURE 6 illustrates remote units according to the aspects of the disclosure, the disclosure is not limited to these exemplary illustrated units. Aspects of the disclosure may be suitably employed in many devices, which include the universal integrated circuit card.
  • the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • a machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein.
  • software codes may be stored in a memory and executed by a processor unit.
  • Memory may be implemented within the processor unit or external to the processor unit.
  • the term “memory” refers to types of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to a particular type of memory or number of memories, or type of media upon which memory is stored.
  • the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program.
  • Computer-readable media includes physical computer storage media. A storage medium may be an available medium that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • instructions and/or data may be provided as signals on transmission media included in a communications apparatus.
  • a communications apparatus may include a standard cell circuit having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

Abstract

A method initializes a universal integrated circuit card to obtain network services on a wireless device. The method includes setting a number of available logical channels to a number of logical channels reported by the universal integrated circuit card. The method also includes determining whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card. The method includes sending open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels. The method further includes modifying the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.

Description

UNIVERSAL INTEGRATED CIRCUIT CARD (UICC) LOGICAL CHANNEL UTILIZATION TECHNICAL FIELD
The present disclosure generally relates to methods and systems for accessing network services on a wireless device. More specifically, the present disclosure relates to universal integrated circuit card (UICC) logical channel utilization.
BACKGROUND
Some designs of mobile communications/wireless devices (e.g., smart phones, tablet computers, and laptop computers) include a single universal integrated circuit card (UICC) , multiple universal integrated circuit cards, or multiple subscriber identity module (SIM) cards. The cards store user identity information for multiple subscriptions that enable users to access multiple separate mobile telephony networks. Some of the UICCs (e.g., embedded UICCs (eUICCs) ) are capable of supporting remote provisioning of network subscription information. A UICC may be removable or implemented within memory of mobile communications devices.
The information stored in a UICC may enable mobile communications devices to communicate with a variety of different types of mobile telephony networks. Examples of mobile telephony networks include third generation (3G) , fourth generation (4G) , long term evolution (LTE) , fifth generation (5G) , time division multiple access (TDMA) , code division multiple access (CDMA) , CDMA 2000, wideband CDMA (WCDMA) , global system for mobile communications (GSM) , single-carrier radio transmission technology (1xRTT) , and universal mobile telecommunications systems (UMTS) . Each subscription enabled by a UICC or SIM may utilize a particular radio access technology (RAT) to communicate with its respective network.
SUMMARY
A method for initializing a universal integrated circuit card to obtain network services on a wireless device includes setting a number of available logical channels to a number of logical channels reported by the universal integrated circuit card. The  method also includes determining whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card. The method includes sending open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels. The method further includes modifying the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
Another aspect of the present disclosure is directed to an apparatus including means for setting a number of available logical channels to a number of logical channels reported by the universal integrated circuit card. The apparatus also includes means for determining whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card. The apparatus further includes means for sending open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels. Furthermore, the apparatus includes means for modifying the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
Another aspect of the present disclosure is directed to an apparatus for initializing a universal integrated circuit card to obtain network services on a wireless device. The apparatus includes a memory, a communication interface coupled to the universal integrated circuit card, and one or more processors coupled to the memory and the communication interface of the universal integrated circuit card. The processor (s) is configured to set a number of available logical channels to a number of logical channels reported by the universal integrated circuit card. The processor (s) is further configured to determine whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card. The processor (s) is further configured to send open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels. The processor (s) is also configured to modify the number of available logical channels when  a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
In another aspect of the present disclosure, a non-transitory computer-readable medium records program code. The program code is for initializing a universal integrated circuit card to obtain network services on a wireless device. The program code is executed by a processor and includes program code to set a number of available logical channels to a number of logical channels reported by the universal integrated circuit card. The program code also includes program code to determine whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card. The program code further includes program code to send open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels. The program code still further includes program code to modify the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
This has outlined, rather broadly, the features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the present disclosure will be described below. It should be appreciated by those skilled in the art that this present disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the present disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the present disclosure, both as to its organization and method of operation, together with further objects and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings.
FIGURE 1 shows a wireless device communicating with a wireless communications system.
FIGURE 2 shows a block diagram of the wireless device in FIGURE 1, according to an aspect of the present disclosure.
FIGURE 3 is a process flow diagram of a method of initializing a universal integrated circuit card (UICC) to obtain network services on a wireless device, according to aspects of the present disclosure.
FIGURE 4 is a process flow diagram of another method of initializing a universal integrated circuit card (UICC) to obtain network services on the wireless device, in accordance with aspects of the present disclosure.
FIGURE 5 is a component block diagram of a of a wireless device suitable for implementing the method of initializing the universal integrated circuit card for obtaining network services on the wireless device.
FIGURE 6 is a block diagram showing an exemplary wireless communications system in which a configuration of the disclosure may be advantageously employed.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram  form in order to avoid obscuring such concepts. As described herein, the use of the term “and/or” is intended to represent an “inclusive OR” , and the use of the term “or” is intended to represent an “exclusive OR” .
The terms “subscriber identification module, ” “SIM, ” “universal subscriber identity module, ” “USIM, ” “removable user identity module, ” and “RUIM” are used herein to mean a memory that may be an integrated circuit or embedded into a removable card, which stores an international mobile subscriber identity (IMSI) , related key, and/or other information used to identify and/or authenticate a wireless device on a network. In some networks (e.g., GSM networks) , SIMs may store network specific information used to authenticate and identify subscribers on the network, the most important of which are the integrated circuit card identifier (ICCID) , international mobile subscriber identity (IMSI) , authentication key (Ki) , and local area identity (LAI) . The SIM may also store other carrier specific data, such as short message service center (SMSC) numbers, service provider names (SPNs) , service dialing numbers (SDNs) , and value added service (VAS) applications. In various aspects, a USIM and a RUIM may be modules in UMTS and CDMA networks, respectively, which provide equivalent functions to a SIM in a GSM network. However, the terms “SIM, ” “USIM, ” and “RUIM” may be used interchangeably to refer to a general module that is not restricted to a particular standard or technology.
The term “SIM” may also be used as a shorthand reference to a communications network associated with a particular SIM, because the information stored in a SIM enables the wireless device to establish a communications link with a particular network. Thus, the SIM and the communications network, as well as the services and subscriptions supported by that network, correlate to one another.
The terms “universal integrated circuit card, ” “smart card, ” “SIM card, ” and “UICC” are used interchangeably to refer to a memory chip or integrated circuit used to provide a SIM, a USIM, and/or a RUIM, to a wireless device in order to store the described provisioning and/or other data. Various UICCs may have storage capabilities ranging from two to three kilobytes to up to one gigabyte of information.
Current wireless communications devices may be configured to support cellular network communications using a variety of technologies and formats depending  on the service provider of choice. In order to store the necessary provisioning data that allows the mobile device to communicate with a wireless communications network, wireless communications devices may utilize a subscriber identification module (SIM) provided on a smart card such as a universal integrated circuit card (UICC) . While a conventional UICC is generally implemented as a removable chip that is insertable into a wireless communications device, a UICC may alternatively be embedded in the wireless communications device (e.g., soldered and thus not removable) or in another chipset (e.g., a modem chipset) of the device, providing an embedded UICC (eUICC) .
When the UICC is initialized (e.g., at power up, or after a UICC is inserted into the wireless device) , the wireless device reads the content of several files (e.g., system files) stored on the UICC. For example, during the initialization process various features stored on the SIM card (e.g., address book, text messages, network names, integrated circuit card identifier (ICCID) , etc. ) are read and made available to the wireless device. Similarly, when a wireless device receives a page directed to an inactive subscription (e.g., in the case of an emergency) , the wireless device may activate the subscription of the UICC. In this case, the activation process may be part of the initialization process for the UICC and may skip a card detection stage that includes reading of essential elementary files (EF) to avoid redundancy. The subscription may then authenticate with the network and receive the call.
When the universal integrated circuit cards (UICCs) is inserted into or detected (during power up) by a card reader or mobile handset, the card accepting device or mobile equipment (ME) first powers the card to a normal operating voltage and the card is brought to an idle state. For example, a reset (RST) command is sent over a contact line associated with the UICC. The RST command remains in a low state for a set period of time and then is set to a high state. This is a signal to the UICC to begin its initialization sequence.
The initialization sequence ends with the SIM card sending an answer to reset (ATR) to the mobile equipment. The ATR indicates a status of the UICC power-up sequence and conveys information including information to optimize the speed of the communication between a reader and the UICC. For example, the information includes a number of logical channels that can be supported by the UICC. The logical channels may be mapped to physical channels, and categorized by the information carried. For  example, traffic channels (TCH) may carry speech or user data in a circuit switched or packet switched network, and control channels may carry signaling or synchronization data in a circuit switched or packet switched network. The mobile equipment accesses the UICC using the logical channels. The number of logical channels determines a number of application that can access the UICC simultaneously.
Some UICC cards report an incorrect number of logical channels during the initialization sequence. For example, while the UICC can support four logical channels, the ATR may incorrectly indicate that the UICC supports less than four channels. Accordingly, the mobile equipment fails to open or operate a fourth logical channel, which results in a reduction of communications resources.
Aspects of the present disclosure are directed to a process for initializing a universal integrated circuit card (UICC) to obtain network services on a wireless device. The method includes determining (e.g., by a baseband processor) whether a number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card. In one aspect, the baseband processor receives an answer to reset (ATR) message from the universal integrated circuit card indicating the number of available logical channels supported by the universal integrated circuit card, in other words, the number of reported channels.
For example, while the universal integrated circuit card is allocated a specified number of logical channels, the universal integrated circuit card may only report a fraction of those allocated number of logical channels are available. The unavailability of some of the logical channels may be due to an error (e.g., an error in the reporting of the available logical channels) that may be unrelated to whether the logical channels are operational. Thus, a fully operational logical channel may be reported as unavailable, which reduces the communications resources of a mobile equipment.
The baseband processor sends a number of open logical channel commands associated with each of the allocated logical channels in an attempt to open or operate all of the allocated logical channels. The open logical channel commands are sent to the universal integrated circuit card when the number of available logical channels is less than the allocated number of logical channels. In one aspect, the number of open logical  channel commands is equal to the allocated number of logical channels. For example, the open logical channel commands are sent to the universal integrated circuit card to determine the number of allocated channels that are open and operational. Thus, the open logical channel commands are sent to all of the allocated logical channels to determine whether all allocated logical channels, and not just the fraction of the logical channels, are open and operational. The number of the successful responses to the open logical channel commands is recorded.
It is then determined whether the number of the successful responses to the open logical channel commands is greater than the number of reported logical channels. A baseband processor modifies the number of available logical channels when the number of successful responses to the open logical channel commands is greater than the number of reported logical channels. For example, the baseband processor receives a response based on each open logical channel commands indicating whether each of the allocated logical channels are open or operational. Based on the indication, the baseband processor modifies the number of available logical channels. For example, the number of available logical channels is modified to equal the number of allocated logical channels when the number of the successful responses is greater than the number of reported logical channels. As a result, all of the allocated logical channels of the universal integrated circuit card are available for use by the mobile equipment, thereby increasing available communications resources of the mobile equipment.
FIGURE 1 shows a wireless device 110 that includes the described universal integrated circuit card initialized by the method described. The wireless device 110 communicates with a wireless communications system 120. The wireless device 110 includes a multi-band (e.g., dual-band) concurrent millimeter wave (mmW) transceiver. The wireless communications system 120 may be a 5G system, a long term evolution (LTE) system, a code division multiple access (CDMA) system, a global system for mobile communications (GSM) system, a wireless local area network (WLAN) system, millimeter wave (mmW) technology, or some other wireless system. A CDMA system may implement wideband CDMA (WCDMA) , time division synchronous CDMA (TD-SCDMA) , CDMA2000, or some other version of CDMA. In a millimeter wave (mmW) system, multiple antennas are used for beamforming (e.g., in the range of 30 GHz, 60 GHz, etc. ) . For simplicity, FIGURE 1 shows the wireless communications system 120  including two  base stations  130 and 132 and one system controller 140. In general, a wireless system may include any number of base stations and any number of network entities.
wireless device 110 may be referred to as a mobile equipment (ME) , a user equipment (UE) , a mobile station, a terminal, an access terminal, a subscriber unit, a station, etc. The wireless device 110 may also be a cellular phone, a smartphone, a tablet, a wireless modem, a personal digital assistant (PDA) , a handheld device, a laptop computer, a Smartbook, a netbook, a cordless phone, a wireless local loop (WLL) station, a Bluetooth device, etc. The wireless device 110 may be capable of communicating with the wireless communications system 120. The wireless device 110 may also be capable of receiving signals from broadcast stations (e.g., a broadcast station 134) , signals from satellites (e.g., a satellite 150) in one or more global navigation satellite systems (GNSS) , etc. The wireless device 110 may support one or more radio technologies for wireless communications such as 5G, LTE, CDMA2000, WCDMA, TD-SCDMA, GSM, 802.11, etc.
The wireless device 110 may support carrier aggregation, which is operation on multiple carriers. Carrier aggregation may also be referred to as multi-carrier operation. According to an aspect of the present disclosure, the wireless device 110 may be able to operate in low-band from 698 to 960 megahertz (MHz) , mid-band from 1475 to 2170 MHz, and/or high-band from 2300 to 2690 MHz, ultra-high band from 3400 to 3800 MHz, and long-term evolution (LTE) in LTE unlicensed bands (LTE-U/LAA) from 5150 MHz to 5950 MHz. Low-band, mid-band, high-band, ultra-high band, and LTE-U refer to five groups of bands (or band groups) , with each band group including a number of frequency bands (or simply, “bands” ) . For example, in some systems each band may cover up to 200 MHz and may include one or more carriers. For example, each carrier may cover up to 40 MHz in LTE. Of course, the range for each of the bands is merely exemplary and not limiting, and other frequency ranges may be used. LTE Release 11 supports 35 bands, which are referred to as LTE/UMTS bands and are listed in 3GPP TS 36.101. The wireless device 110 may be configured with up to five carriers in one or two bands in LTE Release 11.
Some carrier aggregation implementations in the sub 6 GHz include multiple frequency bands in the millimeter wave frequency range, such as frequency bands  located near 24 gigahertz (GHz) , 26 GHz, 28 GHz, 37 GHz, 39 GHz, 48 GHz, and 56 to 71 GHz.. For example, these bands may include 24.25-24.45 GHz, 24.75-25.25 GHz, 27.5-28.35 GHz, and 37-40 GHz. In these systems, the carriers may be 50 MHz, 100 MHz, 200 MHz, or 400 MHz and the bands may be up to 2.4 GHz and may include one or more carriers.
FIGURE 2 shows a block diagram of the wireless device 110 in FIGURE 1, according to an aspect of the present disclosure. The wireless device 110 may include a universal integrated circuit card (UICC) interface 202, which may receive an embedded UICC (eUICC) 204 that stores profiles associated with one or more subscriptions from network providers.
A UICC used in various examples may include user account information, an international mobile subscriber identity (IMSI) , a set of SIM application toolkit (SAT) commands, and storage space for phone book contacts. The UICC may further store home identifiers (e.g., a system identification number (SID) /network identification number (NID) pair, a home preferred list of mobile networks (HPLMN) code, etc. ) to indicate the network operator providers for each subscription of the UICC. An integrated circuit card identity (ICCID) SIM serial number may be printed on the UICC for identification. In some aspects, the UICC may be implemented within a portion of memory of the wireless device 110 (e.g., in a memory 214) , and thus need not be a separate or removable circuit, chip, or card.
The wireless device 110 may include at least one controller, such as a processor 206, which may be coupled to a coder/decoder (CODEC) 208. The CODEC 208 may in turn be coupled to a speaker 210 and a microphone 212. The processor 206 may also be coupled to the memory 214. The memory 214 may be a non-transitory computer-readable storage medium that stores processor-executable instructions. The memory 214 may store an operating system (OS) , as well as user application software and executable instructions. The memory 214 may also store locally cached profiles for subscriptions supported by the eUICC 204.
The processor 206 and the memory 214 may each be coupled to at least one baseband processor or baseband modem processor 216. The eUICC 204 in the wireless device 110 may utilize one or more baseband-RF resources. A baseband-RF resource  may include the baseband modem processor 216, which may perform baseband/modem functions for communications with and controlling of a radio access technology (RAT) . The baseband-RF resource may include one or more amplifiers and radios, referred to generally as RF resources (e.g., RF resource 218) . In some examples, the baseband-RF resources may share the baseband modem processor 216 (e.g., a single device that performs baseband/modem functions for all RATs on the wireless device 110) . In other examples, each baseband-RF resource may include physically or logically separate baseband processors (e.g., BB1, BB2) .
The RF resource 218 may be a transceiver that performs transmit/receive functions for the eUICC 204 on the wireless device 110. The RF resource 218 may include separate transmit and receive circuitry, or may include a transceiver that combines transmitter and receiver functions. In some examples, the RF resource 218 may include multiple receive circuits. The RF resource 218 may be coupled to a wireless antenna (e.g., a wireless antenna 220) . The RF resource 218 may also be coupled to the baseband modem processor 216.
In some examples, the processor 206, the memory 214, the baseband modem processor (s) 216, and the RF resource 218 may be included in the wireless device 110 as a system-on-chip 250. In some examples, the eUICC 204 and its corresponding UICC interface 202 may be external to the system-on-chip 250. Further, various input and output devices may be coupled to components on the system-on-chip 250, such as interfaces or controllers. Example user input components suitable for use in the wireless device 110 may include, but are not limited to, a keypad 224, a touchscreen display 226, and the microphone 212.
In some examples, the keypad 224, the touchscreen display 226, the microphone 212, or a combination thereof, may perform the function of receiving a request to initiate an outgoing call or for receiving a person identification number. Interfaces may be provided between the various devices and modules to implement functions in the wireless device 110 to enable communications in the wireless device.
Functioning together, the eUICC 204, the baseband processor BB1, BB2, the RF resource 218, and the wireless antenna 220 may constitute two or more radio access technologies (RATs) . For example, the wireless device 110 may be a communications  device that includes a UICC, baseband processor, and RF resource configured to support two different RATs, such as 5G or LTE and GSM. More RATs may be supported on the wireless device 110 by adding more RF resources, and antennae for connecting to additional mobile networks.
In some examples (not shown) , the wireless device 110 may include, among other things, additional UICC or SIM cards, UICC or SIM interfaces, multiple RF resources associated with the additional UICC or SIM cards, and additional antennae for supporting subscriptions communications with additional mobile networks.
The eUICC 204 may support multiple mobile network operator profiles, or subscription profiles. For example, a user may download multiple profiles onto the eUICC 204. Each profile may store static SIM information that is used to support a subscription with one or more mobile telephony networks. Thus, the eUICC 204 may play the role of multiple SIMs, because each SIM supports one profile.
In various examples, the wireless device 110 may be configured to locally cache one or more subscription profiles associated with or stored in the UICC. The profiles may be cached in the memory 214, part of which may be designated memory for the modem.
FIGURE 3 is a process flow diagram of a method 300 of initializing a universal integrated circuit card to obtain network services on a wireless device, according to aspects of the present disclosure. At block 302, the universal integrated circuit card is powered up, and the initialization of the universal integrated circuit card in the wireless device starts. For example, a baseband processor (e.g., the baseband modem processor 216) powers up a universal integrated circuit card interface (e.g., the universal integrated circuit card interface 202) . At block 304, the baseband processor receives answer to reset (ATR) information from the universal integrated circuit card interface.
At block 306, the baseband processor parses the answer to reset information and obtains and records a number of available logical channels. At block 308, the baseband processor determines whether the number of reported logical channels is less than a total number of logical channels allocated to the universal integrated circuit card interface. When the number of reported logical channels is less than a number of  logical channels allocated to the universal integrated circuit card, the process continues to block 312. At block 312, the baseband processor sends a number of open logical channel commands associated with each of the allocated logical channels in an attempt to open or operate all of the allocated logical channels.
In one aspect, the number of open logical channel commands is equal to the allocated number of logical channels. For example, the open logical channel commands (e.g., four) are sent to the universal integrated circuit card to determine the number of allocated channels that are open and operational. Thus, the open logical channel commands are sent to all of the allocated logical channels (e.g., four) to determine whether all allocated logical channels and not just the reported fraction of the logical channels are open and operational.
Otherwise, when the number of reported logical channels is equal to the number of logical channels allocated to the universal integrated circuit card, the process continues to block 310 where the initialization process proceeds in a conventional manner.
At block 314, the number of successful responses to the open logical channel commands is recorded. At block 316, it is then determined whether the number of the successful responses to the open logical channel commands is equal to the number of allocated logical channels. At block 320, the baseband processor modifies the number of available logical channels when the number of successful responses to the open logical channel commands is greater than the number of reported logical channels. For example, the baseband processor receives responses based on the open logical channel commands indicating whether each of the allocated logical channels is open or operational. Based on the indication, the baseband processor modifies the number of available logical channels. For example, the number of available logical channels is modified to equal the number of allocated logical channels when the number of the successful responses is greater than the number of reported logical channels. As a result, all of the allocated logical channels of the universal integrated circuit card are made available for use by the mobile equipment, thereby increasing communications resources of the mobile equipment.
However, when the number of successful responses to the open logical channel commands is equal to the number of reported logical channels, the process continues to block 318. At block 318, no action according to aspects of the present disclosure is performed and the process continues in a manner consistent with a conventional initialization implementation.
At block 322, the baseband processor determines that an application in an access protocol (AP) layer is attempting or wants to access the universal integrated circuit card. For example, at block 324, the baseband processor receives from the application, a request for information on the logical channels of the universal integrated circuit card that are open. At block 326, the baseband processor determines whether a number of available logical channels is greater than zero. When the number of available logical channels is less than or equal to zero, the process continues to block 328 where an error is returned to the application and the process ends at block 334 because the application cannot access the universal integrated circuit card interface. Otherwise, when the number of available logical channels is greater than zero, the process continues to block 330.
At block 330, the baseband processor sends an open logical channel command to the universal integrated circuit card interface to open an available logical channel and reduces the number of open or available logical channels by one. The process then continues to block 332 where the universal integrated circuit card distributes a logical channel to the application to access the universal integrated circuit card interface. At block 334, the process ends.
FIGURE 4 depicts a simplified flowchart of a method 400 for initializing a universal integrated circuit card to obtain network services on a wireless device. At block 402, a baseband processor of a wireless device sets a number of available logical channels to a number of logical channels reported by a universal integrated circuit card (UICC) . At block 404, the baseband processor determines whether a number of available logical channels reported by the universal integrated circuit card is less than a total number of logical channels allocated to the universal integrated circuit card. At block 406, the baseband processor sends a number of open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels. At block 408, the baseband processor  modifies the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
According to a further aspect of the present disclosure, an apparatus for initializing a universal integrated circuit card to obtain network services on a wireless device is described. The apparatus may include means for setting a number of available logical channels to a number of logical channels reported by the universal integrated circuit card, means for determining whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card, means for sending a plurality of open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels, and/or means for modifying the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels. The setting means, determining means, sending means, and/or modifying means may be the baseband processor 216, the general processor 206, and/or the memory 214. In another aspect, the aforementioned means may be any module or apparatus configured to perform the functions recited by the aforementioned means.
FIGURE 5 is a component block diagram of a of a wireless device 500 suitable for implementing the method of initializing the universal integrated circuit card for obtaining network services on the wireless device. Aspects of the present disclosure may be implemented in any of a variety of wireless devices, an example of which (e.g., wireless device 500) is illustrated in FIGURE 5. The wireless device 500 may be similar to the wireless device 110 and may implement the method 300 and the method 400.
The wireless device 500 may include a processor 502 coupled to a touchscreen controller 504 and an internal memory 506. The processor 502 may be one or more multi-core integrated circuits designated for general or specific processing tasks. The internal memory 506 may be volatile or non-volatile memory, and may also be secure and/or encrypted memory, or unsecure and/or unencrypted memory, or any combination thereof. The touchscreen controller 504 and the processor 502 may also be coupled to a touchscreen panel 512, such as a resistive-sensing touchscreen, capacitive- sensing touchscreen, infrared sensing touchscreen, etc. Additionally, the display of the wireless device 500 need not have touch screen capability.
The wireless device 500 may have one or more cellular network transceivers 508 coupled to the processor 502 and to one or more antennas 510 and configured for sending and receiving cellular communications. The one or more transceivers 508 and the one or more antennas 510 may be used with the above-mentioned circuitry to implement the various example methods described. The wireless device 500 may include one or more UICC or SIM cards 516 coupled to the one or more transceivers 508 and/or the processor 502 and may be configured as described above.
The wireless device 500 may also include speakers 514 for providing audio outputs. The wireless device 500 may also include a housing 520, constructed of a plastic, metal, or a combination of materials, for containing all or some of the components discussed herein. The wireless device 500 may include a power source 522 coupled to the processor 502, such as a disposable or rechargeable battery. The rechargeable battery may also be coupled to the peripheral device connection port to receive a charging current from a source external to the wireless device 500. The wireless device 500 may also include a physical button 524 for receiving user inputs. The wireless device 500 may also include a power button 526 for turning the wireless device 500 on and off.
FIGURE 6 is a block diagram showing an exemplary wireless communications system in which a configuration of the disclosure may be advantageously employed. For purposes of illustration, FIGURE 6 shows three  remote units  620, 630, and 650 and two base stations 640. It will be recognized that wireless communications systems may have many more remote units and base stations.  Remote units  620, 630, and 650 include  IC devices  625A, 625B, and 625C that include the disclosed universal integrated circuit card and the corresponding mobile equipment. It will be recognized that other devices may also include the disclosed universal integrated circuit card, such as the base stations, switching devices, and network equipment. FIGURE 6 shows forward link signals 680 from the base station 640 to the  remote units  620, 630, and 650 and reverse link signals 690 from the  remote units  620, 630, and 650 to base station 640.
In FIGURE 6, remote unit 620 is shown as a mobile telephone, remote unit 630 is shown as a portable computer, and remote unit 650 is shown as a fixed location remote unit in a wireless local loop system. For example, a remote unit may be a mobile phone, a hand-held personal communications systems (PCS) unit, a portable data unit such as a personal digital assistant (PDA) , a GPS enabled device, a navigation device, a set top box, a music player, a video player, an entertainment unit, a fixed location data unit such as a meter reading equipment, or other communications device that stores or retrieves data or computer instructions, or combinations thereof. Although FIGURE 6 illustrates remote units according to the aspects of the disclosure, the disclosure is not limited to these exemplary illustrated units. Aspects of the disclosure may be suitably employed in many devices, which include the universal integrated circuit card.
For a firmware and/or software implementation, the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. A machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in a memory and executed by a processor unit. Memory may be implemented within the processor unit or external to the processor unit. As used herein, the term “memory” refers to types of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to a particular type of memory or number of memories, or type of media upon which memory is stored.
If implemented in firmware and/or software, the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program. Computer-readable media includes physical computer storage media. A storage medium may be an available medium that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray  disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
In addition to storage on computer-readable medium, instructions and/or data may be provided as signals on transmission media included in a communications apparatus. For example, a communications apparatus may include a standard cell circuit having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the technology of the disclosure as defined by the appended claims. For example, relational terms, such as “above” and “below” are used with respect to a substrate or electronic device. Of course, if the substrate or electronic device is inverted, above becomes below, and vice versa. Additionally, if oriented sideways, above and below may refer to sides of a substrate or electronic device. Moreover, the scope of the present application is not intended to be limited to the particular configurations of the process, machine, manufacture, and composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or  later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding configurations described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims (20)

  1. A method for initializing a universal integrated circuit card to obtain network services on a wireless device, comprising:
    setting a number of available logical channels to a number of logical channels reported by the universal integrated circuit card;
    determining whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card;
    sending a plurality of open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels; and
    modifying the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
  2. The method of claim 1, in which modifying the number of available logical channels comprises modifying the number of available logical channels to equal the number of allocated logical channels.
  3. The method of claim 1, in which the plurality of open logical channel commands is equal to the number of allocated logical channels.
  4. The method of claim 1, further comprising receiving an answer to reset (ATR) message from the universal integrated circuit card indicating the number of logical channels reported by the universal integrated circuit card.
  5. The method of claim 1, further comprising accessing all the allocated logical channels based on the modifying.
  6. An apparatus for initializing a universal integrated circuit card to obtain network services on a wireless device, comprising:
    means for setting a number of available logical channels to a number of logical channels reported by the universal integrated circuit card;
    means for determining whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card;
    means for sending a plurality of open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels; and
    means for modifying the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
  7. The apparatus of claim 6, in which the modifying means further comprises means for modifying the number of available logical channels to equal the number of allocated logical channels.
  8. The apparatus of claim 6, in which the plurality of open logical channel commands is equal to the number of allocated logical channels.
  9. The apparatus of claim 6, further comprising means for receiving an answer to reset (ATR) message from the universal integrated circuit card indicating the number of logical channels reported by the universal integrated circuit card.
  10. The apparatus of claim 6, further comprising means for accessing all the allocated logical channels based on the modifying.
  11. An apparatus for initializing a universal integrated circuit card to obtain network services on a wireless device, comprising:
    a memory;
    a communication interface coupled to the universal integrated circuit card; and
    at least one processor coupled to the memory and the communication interface of the universal integrated circuit card, the at least one processor configured:
    to set a number of available logical channels to a number of logical channels reported by the universal integrated circuit card;
    to determine whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card;
    to send a plurality of open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels; and
    to modify the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
  12. The apparatus of claim 11, in which the at least one processor is further configured to modify the number of available logical channels to equal the number of allocated logical channels.
  13. The apparatus of claim 11, in which the plurality of open logical channel commands is equal to the number of allocated logical channels.
  14. The apparatus of claim 11, in which the at least one processor is further configured to receive an answer to reset (ATR) message from the universal integrated circuit card indicating the number of logical channels reported by the universal integrated circuit card.
  15. The apparatus of claim 11, in which the at least one processor is further configured to access all the allocated logical channels based on the modifying.
  16. A non-transitory computer-readable medium having program code recorded thereon for initializing a universal integrated circuit card to obtain network services on a wireless device, the program code executed by a processor and comprising:
    program code to set a number of available logical channels to a number of logical channels reported by the universal integrated circuit card;
    program code to determine whether the number of logical channels reported by the universal integrated circuit card is less than a number of logical channels allocated to the universal integrated circuit card;
    program code to send a plurality of open logical channel commands to the universal integrated circuit card when the number of reported logical channels is less than the number of allocated logical channels; and
    program code to modify the number of available logical channels when a number of successful responses to the open logical channel commands is greater than the number of reported logical channels.
  17. The non-transitory computer-readable medium of claim 16, in which the program code further comprises program code to modify the number of available logical channels to equal the number of allocated logical channels.
  18. The non-transitory computer-readable medium of claim 16, in which the plurality of open logical channel commands is equal to the number of allocated logical channels.
  19. The non-transitory computer-readable medium of claim 16, in which the program code further comprises program code to receive an answer to reset (ATR) message from the universal integrated circuit card indicating the number of logical channels reported by the universal integrated circuit card.
  20. The non-transitory computer-readable medium of claim 16, in which the program code further comprises program code to access all the allocated logical channels based on the modifying.
PCT/CN2019/103587 2019-08-30 2019-08-30 Universal integrated circuit card (uicc) logical channel utilization WO2021035668A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103587 WO2021035668A1 (en) 2019-08-30 2019-08-30 Universal integrated circuit card (uicc) logical channel utilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103587 WO2021035668A1 (en) 2019-08-30 2019-08-30 Universal integrated circuit card (uicc) logical channel utilization

Publications (1)

Publication Number Publication Date
WO2021035668A1 true WO2021035668A1 (en) 2021-03-04

Family

ID=74684449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103587 WO2021035668A1 (en) 2019-08-30 2019-08-30 Universal integrated circuit card (uicc) logical channel utilization

Country Status (1)

Country Link
WO (1) WO2021035668A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341464A1 (en) * 2006-07-19 2011-07-06 Research In Motion Limited Method, system and smart card reader for management of access to a smart card
WO2013038236A1 (en) * 2011-09-16 2013-03-21 Nokia Corporation Method and apparatus for accessing virtual smart cards
EP2953034A1 (en) * 2014-06-03 2015-12-09 Kabushiki Kaisha Toshiba Portable electronic device
US20170164184A1 (en) * 2015-06-11 2017-06-08 Giesecke & Devrient Mobile Security America, Inc. Managing multiple active subscriber identity module profiles
CN107305659A (en) * 2016-04-25 2017-10-31 中国移动通信有限公司研究院 Contactless communication implementation method, baseband chip and terminal
WO2019119544A1 (en) * 2017-12-18 2019-06-27 华为技术有限公司 Method and device for accessing data of embedded sim card

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341464A1 (en) * 2006-07-19 2011-07-06 Research In Motion Limited Method, system and smart card reader for management of access to a smart card
WO2013038236A1 (en) * 2011-09-16 2013-03-21 Nokia Corporation Method and apparatus for accessing virtual smart cards
EP2953034A1 (en) * 2014-06-03 2015-12-09 Kabushiki Kaisha Toshiba Portable electronic device
US20170164184A1 (en) * 2015-06-11 2017-06-08 Giesecke & Devrient Mobile Security America, Inc. Managing multiple active subscriber identity module profiles
CN107305659A (en) * 2016-04-25 2017-10-31 中国移动通信有限公司研究院 Contactless communication implementation method, baseband chip and terminal
WO2019119544A1 (en) * 2017-12-18 2019-06-27 华为技术有限公司 Method and device for accessing data of embedded sim card

Similar Documents

Publication Publication Date Title
JP6285508B2 (en) Simultaneous implementation of LTE data and DSDA audio
US9497705B2 (en) System and methods for using wireless network correlations to acquire service on a multi-SIM device
US9913212B2 (en) Carrier network access for multi-SIM devices
US20160353516A1 (en) Idle Mode Operations in Multi-Subscriber Identity Module (SIM) Mobile Communication Devices
US20160212603A1 (en) Methods for efficient wireless communications and communications apparatus utilizing the same
US9402274B1 (en) Idle mode operations in multi-subscriber identity module (SIM) mobile communication devices during data communications
US20170064598A1 (en) Managing Cell Selection In A Dual-Receive Multi-Subscription Multi-Standby Communication Device
US20160212782A1 (en) Methods for efficient wireless communications and communications apparatus utilizing the same
US10098165B2 (en) Call setup in wireless communication devices
US9386626B1 (en) Idle mode operations in multi-subscriber identity module (SIM) mobile communication devices during a voice call
US20160212791A1 (en) Methods for efficient wireless communications and communications apparatus utilizing the same
WO2021056381A1 (en) Universal integrated circuit card (uicc) initialization for network service access
WO2020132786A1 (en) Universal integrated circuit card (uicc) initialization for network service access
WO2021035668A1 (en) Universal integrated circuit card (uicc) logical channel utilization
WO2017166278A1 (en) Checking public land mobile network (plmn) availability in mobile devices
WO2021151218A1 (en) Universal integrated circuit card (uicc) activation
WO2021142819A1 (en) Universal integrated circuit card (uicc) phone book access
US20230107560A1 (en) Universal integrated circuit card (uicc) service
WO2021163947A1 (en) Universal integrated circuit card (uicc) authentication
WO2021226768A1 (en) Universal integrated circuit card (uicc) profile management
WO2021179120A1 (en) Apparatus and method to support an increased universal integrated circuit card (uicc) voltage class
WO2021092718A1 (en) Universal integrated circuit card (uicc) hardware failure recovery
WO2021114009A1 (en) Universal integrated circuit card (uicc) activation
WO2021092824A1 (en) Universal integrated circuit card (uicc) activation
AU2021101069A4 (en) Intelligent-SIM: multiple company mobile number installed in single SIM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943416

Country of ref document: EP

Kind code of ref document: A1