WO2021035658A1 - Methods and apparatuses for timing advance in rach - Google Patents

Methods and apparatuses for timing advance in rach Download PDF

Info

Publication number
WO2021035658A1
WO2021035658A1 PCT/CN2019/103535 CN2019103535W WO2021035658A1 WO 2021035658 A1 WO2021035658 A1 WO 2021035658A1 CN 2019103535 W CN2019103535 W CN 2019103535W WO 2021035658 A1 WO2021035658 A1 WO 2021035658A1
Authority
WO
WIPO (PCT)
Prior art keywords
rach
applying
apply
threshold
comparison
Prior art date
Application number
PCT/CN2019/103535
Other languages
French (fr)
Inventor
Peng Wu
Yuyi Li
Deepak Wadhwa
Krishna Chaitanya MUKKERA
Bao Vinh Nguyen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/103535 priority Critical patent/WO2021035658A1/en
Publication of WO2021035658A1 publication Critical patent/WO2021035658A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side

Definitions

  • the present disclosure relates generally to wireless communication systems, and more particularly, to methods and apparatus for timing advance in RACH.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • Some aspects of NR may be based on the Long Term Evolution (LTE) standard.
  • a base station (BS) and a UE may utilize a timing advance (TA) mechanism where TA is used to cause signals transmitted from multiple UEs to arrive synchronously at the BS. It would be desirable to improve the TA mechanism in wireless communications system.
  • TA timing advance
  • Certain aspects of the present disclosure provide a method for wireless communications by a user equipment (UE) .
  • the method generally includes the UE in connect mode sending to a base station (BS) a random access channel (RACH) preamble as part of contention based RACH procedure, receiving from the BS a RACH message 2 comprising a first timing advance (TA) , determining, a second TA received prior to the first TA is active, comparing the first TA and the second TA in response to the determination, and applying the first TA based on the comparison.
  • applying the first TA may comprise applying the first TA to transmit a RACH message 3.
  • applying the first TA based on the comparison may comprise applying the first TA when a difference between the first TA and the second TA is above a threshold. In an aspect, applying the first TA based on the comparison may further comprise applying the second TA when the difference between the first TA and the second TA is below the threshold.
  • the threshold may be based on channel condition. In an aspect, a timer of the second TA may be infinite.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example logical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 5 illustrates an example UE operation 500 applying TA value in RACH message 2 in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates a communications device 600 that may include various components configured to perform aspects of the present disclosure.
  • Timing advance is used to cause signals transmitted from multiple UEs to arrive synchronously at a base station (BS) .
  • a TA command may include a timer which may be used to control how long a UE is considered uplink time aligned.
  • the value of the timer may either be UE specific and managed through dedicated signaling between a UE and a BS, or cell specific and communicated via broadcast.
  • TA through dedicated signaling may be communicated through a TA command in a random access response (RAR) , i.e., random access channel (RACH) message 2, during a random access procedure involving access of a radio access network by a UE.
  • RAR random access response
  • RACH random access channel
  • a TA when a TA is received in RACH message 2 as part of contention based RACH procedure when UE is in connected mode and a previous TA timer is already running (i.e., timer has not expired, previous TA is active) the UE may ignore the received TA value and not restart the timer. This case may arise in situation where the UE is requesting for uplink resources but UE doesn’t have valid PUCCH resources for scheduling request (SR) , etc. In certain circumstances, the old TA may be out of sync and may lead to uplink transmission to fail. It may be beneficial to ensure that an old TA that is out of sync is not used by the UE.
  • SR scheduling request
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UMTS Universal Mobile Telecommunication System
  • NR is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • FIG. 1 illustrates an example wireless network 100, such as a new radio (NR) or 5G network, in which aspects of the present disclosure may be performed.
  • NR new radio
  • 5G 5th Generation
  • the wireless network 100 may include a number of BSs 110 and other network entities.
  • a BS may be a station that communicates with UEs.
  • Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a Node B and/or a Node B subsystem serving this coverage area, depending on the context in which the term is used.
  • the term “cell” and eNB, Node B, 5G NB, AP, NR BS, NR BS, or TRP may be interchangeable.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BS for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • the wireless network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • the wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100.
  • macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • the wireless network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may be coupled to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another, e.g., directly or indirectly via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or medical equipment, a biometric sensor/device, a healthcare device, a medical device, a wearable device such as a smart watch, smart clothing, smart glasses, virtual reality goggles, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal
  • MTC machine-type communication
  • eMTC enhanced or evolved MTC
  • MTC UEs may include UEs that are capable of MTC communications with MTC servers and/or other MTC devices through Public Land Mobile Networks (PLMN) , for example.
  • Some UEs may be considered Internet of Things devices.
  • the Internet of Things (IoT) is a network of physical objects or "things" embedded with, e.g., electronics, software, sensors, and network connectivity, which enable these objects to collect and exchange data.
  • the Internet of Things allows objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and computer-based systems, and resulting in improved efficiency, accuracy and economic benefit.
  • Narrowband IoT is a technology being standardized by the 3GPP standards body. This technology is a narrowband radio technology specially designed for the IoT, hence its name. Special focuses of this standard are on indoor coverage, low cost, long battery life and large number of devices.
  • MTC/eMTC and/or IoT UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth (e.g., system frequency band) into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a ‘resource block’ ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR may utilize OFDM with a cyclic prefix (CP) on the uplink and downlink and include support for half-duplex operation using time division duplex (TDD) .
  • CP cyclic prefix
  • TDD time division duplex
  • a single component carrier bandwidth of 100 MHz may be supported.
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 ms duration.
  • Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • MIMO transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • NR may support a different air interface, other than an OFDM-based.
  • NR networks may include entities such as central units (CU) and/or distributed units (DU) .
  • a scheduling entity e.g., a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) .
  • the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • a RAN may include a CU and DUs.
  • a NR BS e.g., eNB, 5G Node B, Node B, transmission reception point (TRP) , access point (AP)
  • NR cells can be configured as access cell (ACells) or data only cells (DCells) .
  • the RAN e.g., a central unit or distributed unit
  • DCells may be cells used for carrier aggregation or dual connectivity, but not used for initial access, cell selection/reselection, or handover. In some cases DCells may not transmit synchronization signals-in some case cases DCells may transmit SS.
  • NR BSs may transmit downlink signals to UEs indicating the cell type. Based on the cell type indication, the UE may communicate with the NR BS. For example, the UE may determine NR BSs to consider for cell selection, access, handover, and/or measurement based on the indicated cell type.
  • FIG. 2 illustrates an example logical architecture of a distributed radio access network (RAN) 200, which may be implemented in the wireless communication system illustrated in FIG. 1.
  • a 5G access node 206 may include an access node controller (ANC) 202.
  • the ANC may be a central unit (CU) of the distributed RAN 200.
  • the backhaul interface to the next generation core network (NG-CN) 204 may terminate at the ANC.
  • the backhaul interface to neighboring next generation access nodes (NG-ANs) may terminate at the ANC.
  • the ANC may include one or more TRPs 208 (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term) .
  • TRPs 208 which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term.
  • TRP may be used interchangeably with “cell. ”
  • the TRPs 208 may be a DU.
  • the TRPs may be connected to one ANC (ANC 202) or more than one ANC (not illustrated) .
  • ANC ANC
  • RaaS radio as a service
  • a TRP may include one or more antenna ports.
  • the TRPs may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
  • the local architecture 200 may be used to illustrate fronthaul definition.
  • the architecture may be defined that support fronthauling solutions across different deployment types.
  • the architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
  • the architecture may share features and/or components with LTE.
  • the next generation AN (NG-AN) 210 may support dual connectivity with NR.
  • the NG-AN may share a common fronthaul for LTE and NR.
  • the architecture may enable cooperation between and among TRPs 208. For example, cooperation may be preset within a TRP and/or across TRPs via the ANC 202. According to aspects, no inter-TRP interface may be needed/present.
  • a dynamic configuration of split logical functions may be present within the architecture 200.
  • the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU or CU (e.g., TRP or ANC, respectively) .
  • a BS may include a central unit (CU) (e.g., ANC 202) and/or one or more distributed units (e.g., one or more TRPs 208) .
  • CU central unit
  • distributed units e.g., one or more TRPs 208 .
  • FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure.
  • a centralized core network unit (C-CU) 302 may host core network functions.
  • the C-CU may be centrally deployed.
  • C-CU functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
  • AWS advanced wireless services
  • a centralized RAN unit (C-RU) 304 may host one or more ANC functions.
  • the C-RU may host core network functions locally.
  • the C-RU may have distributed deployment.
  • the C-RU may be closer to the network edge.
  • a DU 306 may host one or more TRPs (edge node (EN) , an edge unit (EU) , a radio head (RH) , a smart radio head (SRH) , or the like) .
  • the DU may be located at edges of the network with radio frequency (RF) functionality.
  • RF radio frequency
  • FIG. 4 illustrates example components of the BS 110 and UE 120 illustrated in FIG. 1, which may be used to implement aspects of the present disclosure.
  • the BS may include a TRP.
  • One or more components of the BS 110 and UE 120 may be used to practice aspects of the present disclosure.
  • antennas 452, Tx/Rx 222, processors 466, 458, 464, and/or controller/processor 480 of the UE 120 and/or antennas 434, processors 460, 420, 438, and/or controller/processor 440 of the BS 110 may be used to perform the operations described herein and illustrated with reference to FIG. 5.
  • FIG. 4 shows a block diagram of a design of a BS 110 and a UE 120, which may be one of the BSs and one of the UEs in FIG. 1.
  • the base station 110 may be the macro BS 110c in FIG. 1, and the UE 120 may be the UE 120y.
  • the base station 110 may also be a base station of some other type.
  • the base station 110 may be equipped with antennas 434a through 434t, and the UE 120 may be equipped with antennas 452a through 452r.
  • a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440.
  • the control information may be for the Physical Broadcast Channel (PBCH) , Physical Control Format Indicator Channel (PCFICH) , Physical Hybrid ARQ Indicator Channel (PHICH) , Physical Downlink Control Channel (PDCCH) , etc.
  • the data may be for the Physical Downlink Shared Channel (PDSCH) , etc.
  • the processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 420 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal.
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t.
  • Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 432 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
  • the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) 454a through 454r, respectively.
  • Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 454 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
  • CoMP aspects can include providing the antennas, as well as some Tx/Rx functionalities, such that they reside in distributed units. For example, some Tx/Rx processing can be done in the central unit, while other processing can be done at the distributed units. For example, in accordance with one or more aspects as shown in the diagram, the BS mod/demod 432 may be in the distributed units.
  • a transmit processor 464 may receive and process data (e.g., for the Physical Uplink Shared Channel (PUSCH) ) from a data source 462 and control information (e.g., for the Physical Uplink Control Channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the modulators 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110.
  • the uplink signals from the UE 120 may be received by the antennas 434, processed by the demodulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
  • the controllers/processors 440 and 480 may direct the operation at the base station 110 and the UE 120, respectively.
  • the processor 440 and/or other processors and modules at the base station 110 may perform or direct, e.g., the processes for the techniques described herein.
  • the processor 480 and/or other processors and modules at the UE 120 may also perform or direct, e.g., execution of the functional blocks illustrated in FIG. 6, and/or other processes for the techniques described herein.
  • the memories 442 and 482 may store data and program codes for the BS 110 and the UE 120, respectively.
  • a scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
  • the BS 110 and the UE 120 may utilize a timing advance (TA) mechanism.
  • TA is used to cause signals transmitted from multiple UEs to arrive synchronously at a base station. Each UEs may experience different propagation delay attributable to characteristics of the respective propagation paths between the base station and UEs.
  • individualized timing advance information is provided to the UEs that cause the UEs to advance uplink transmissions. The net effect of the timing advance information and consequent advancing of uplink transmission is to cause transmissions from each UE to arrive at the same time at the BS.
  • Each UE applies a negative offset to its scheduled transmission time, causing the transmission to commence earlier than scheduled.
  • a TA command may include a timer which may be used to control how long a UE is considered uplink time aligned.
  • the value of the timer may either be UE specific and managed through dedicated signaling between a UE and a BS, or cell specific and communicated via broadcast.
  • TA through dedicated signaling may be communicated through a TA command in a random access response (RAR) , i.e., random access channel (RACH) message 2, during a random access procedure involving access of a radio access network by a UE.
  • RAR random access response
  • RACH random access channel
  • a TA value in TA may depend on cell size, propagation delay between the UE and the BS, etc.
  • the timer is normally restarted whenever a new TA is given by the BS. At the time of restart, the timer is restarted to a UE specific value if configured; otherwise it is restarted to a cell specific value.
  • the UE may apply the TA value received in RACH message 2 and restart the timer. This case may arise in situations like initial access from RRC_IDLE, during RRC Connection Re-establishment procedure, etc.
  • the UE may apply the TA value received in RACH message 2 and restart the timer.
  • a TA when a TA is received in RACH message 2 as part of contention based RACH procedure while the UE is in connected mode and a timer is already running (i.e., timer has not expired, prior TA is active) the UE may ignore the received TA value and not restart the timer. This case may arise in situation where the UE is requesting for uplink resources but UE doesn’ t have valid PUCCH resources for scheduling request (SR) , etc.
  • SR scheduling request
  • a UE may use an already running TA value, i.e., old TA value, when the TA is received in a RACH message 2 as part of contention based RACH procedure while the UE is in connected mode and a timer is already running (i.e., timer has not expired, TA is active) as the UE may ignore the receive TA value and not restart the timer.
  • a timer i.e., timer has not expired, TA is active
  • Using an already running TA value i.e., old TA value, may result in repeated RACH message 3 transmission failure due to the already running TA value being out of sync.
  • the already running TA value may be out of sync because it may not reflect the current situation, i.e., cell size, propagation delay between the UE and the BS, etc. For example, the UE may have moved since receiving the old TA, obstruction between the UE and the BS may have been introduced after receiving the old TA, etc.
  • FIG. 5 illustrates an example UE operation 500 applying TA value in RACH message 2 in accordance with aspects of the present disclosure.
  • operation 500 illustrated in FIG. 5 may be done by a UE 120.
  • a UE in connected mode may send to a base station (BS) a random access channel (RACH) preamble as part of a contention based RACH procedure.
  • the UE may receive from the BS a RACH message 2 which comprises a first timing advance (TA) .
  • the BS may send the RACH message in response to receiving the RACH preamble from the US.
  • the first TA may indicate a TA value.
  • the UE may determine a second TA received prior to the first TA is active.
  • TA received prior may be active when a timer associated with the TA received prior has not expired and/or is still running.
  • the second TA may have been received prior to the RACH procedure and the timer for the second TA has not expired, i.e., second TA is active.
  • the timer for the second TA may be infinite.
  • the UE may compare the first TA and the second TA in response to the determination. For example, the UE may compare the first TA and the second TA by comparing the TA value indicated in the first TA and the second TA.
  • the UE may apply the first TA based on the comparison, wherein the UE may apply the first TA by applying the TA value indicated in the first TA.
  • applying the first TA may comprise applying the first TA for sending a RACH message 3 and/or subsequent uplink transmissions to the BS.
  • applying the first TA based on the comparison may comprise applying the first TA when a difference between the first TA and the second TA is above a threshold.
  • applying the first TA based on the comparison may comprise applying the second TA when the difference between the first TA and the second TA is below a threshold.
  • the threshold may be based on channel condition.
  • the UE may determine the threshold based on the channel condition, position of the UE and the BS, information indicated by the BS, etc.
  • the BS may provide the threshold value to the UE in a downlink message.
  • applying the first TA may additionally comprise restarting a timer for the first TA.
  • FIG. 6 illustrates a communications device 600 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 5 and other aspects described herein and illustrated in the drawings.
  • the communications device 600 includes a processing system 602 coupled to a transceiver 608.
  • the transceiver 608 is configured to transmit and receive signals for the communications device 600 via an antenna 610, such as the various signals as described herein.
  • the processing system 602 may be configured to perform processing functions for the communications device 600, including processing signals received and/or to be transmitted by the communications device 600.
  • the processing system 602 includes a processor 604 coupled to a computer-readable medium/memory 612 via a bus 606.
  • the computer-readable medium/memory 612 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 604, cause the processor 604 to perform the operations illustrated in FIG. 5 or other operations for performing the various techniques discussed herein.
  • computer-readable medium/memory 612 stores code 614 for determining a second TA received prior to the first TA is active, code 616 for comparing the first TA and the second TA in response to the determination, and code 618 for applying the first TA based on the comparison.
  • the processor 604 has circuitry configured to implement the code stored in the computer-readable medium/memory 612.
  • the processor 604 includes circuitry (not illustrated) for determining a second TA received prior to the first TA is active, comparing the first TA and the second TA in response to the determination, and/or applying the first TA based on the comparison.
  • the methods disclosed herein comprise one or more steps or actions for achieving the described method.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • the term “or” is intended to mean an inclusive “or” rather than an exclusive “or. ” That is, unless specified otherwise, or clear from the context, the phrase, for example, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, for example the phrase “X employs A or B” is satisfied by any of the following instances: X employs A; X employs B; or X employs both A and B.
  • reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.
  • “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • means for transmitting and/or means for receiving may comprise one or more of a transmit processor 420, a TX MIMO processor 430, a receive processor 438, or antenna (s) 434 of the base station 110 and/or the transmit processor 464, a TX MIMO processor 466, a receive processor 458, or antenna (s) 452 of the user equipment 120.
  • means for obtaining, means for designating, means for aggregating, means for collecting, means for selecting, means for switching, and means for detecting may comprise one or more processors, such as the controller/processor 480, transmit processor 464, receive processor 458, and/or MIMO processor 466 of the user equipment 120.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, phase change memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media ⁇ may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Method and apparatus are provided for timing advance (TA) in RACH. In accordance with some implementation, a UE may override an already running TA value with a received TA value even when the received TA is received in a RACH message 2 as part of contention based RACH procedure while a timer associated with the already running TA value has not expired.

Description

METHODS AND APPARATUSES FOR TIMING ADVANCE IN RACH TECHNICAL FIELD
The present disclosure relates generally to wireless communication systems, and more particularly, to methods and apparatus for timing advance in RACH.
INTRODUCTION
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. Some aspects of NR may be based on the Long Term Evolution (LTE) standard.
In some wireless communications systems, a base station (BS) and a UE may utilize a timing advance (TA) mechanism where TA is used to cause signals transmitted from multiple UEs to arrive synchronously at the BS. It would be desirable to improve the TA mechanism in wireless communications system.
SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some  features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
Certain aspects of the present disclosure provide a method for wireless communications by a user equipment (UE) . The method generally includes the UE in connect mode sending to a base station (BS) a random access channel (RACH) preamble as part of contention based RACH procedure, receiving from the BS a RACH message 2 comprising a first timing advance (TA) , determining, a second TA received prior to the first TA is active, comparing the first TA and the second TA in response to the determination, and applying the first TA based on the comparison. In an aspect, applying the first TA may comprise applying the first TA to transmit a RACH message 3. In an aspect, applying the first TA based on the comparison may comprise applying the first TA when a difference between the first TA and the second TA is above a threshold. In an aspect, applying the first TA based on the comparison may further comprise applying the second TA when the difference between the first TA and the second TA is below the threshold. In an aspect, the threshold may be based on channel condition. In an aspect, a timer of the second TA may be infinite.
Aspects generally include methods, apparatus, systems, computer readable mediums, and processing systems, as substantially described herein with reference to and as illustrated by the accompanying drawings.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended  drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram illustrating an example logical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 5 illustrates an example UE operation 500 applying TA value in RACH message 2 in accordance with aspects of the present disclosure.
FIG. 6 illustrates a communications device 600 that may include various components configured to perform aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Timing advance (TA) is used to cause signals transmitted from multiple UEs to arrive synchronously at a base station (BS) . A TA command may include a timer which may be used to control how long a UE is considered uplink time aligned. The value of the timer may either be UE specific and managed through dedicated signaling between a UE and a BS, or cell specific and communicated via broadcast. TA through dedicated signaling may be communicated through a TA command in a random access response (RAR) , i.e., random access channel (RACH) message 2, during a random access procedure involving access of a radio access network by a UE. In both dedicated signaling and cell specific cases, the timer is normally restarted whenever a new TA is given by the BS.
However, when a TA is received in RACH message 2 as part of contention based RACH procedure when UE is in connected mode and a previous TA timer is already running (i.e., timer has not expired, previous TA is active) the UE may ignore the received TA value and not restart the timer. This case may arise in situation where the UE is requesting for uplink resources but UE doesn’t have valid PUCCH resources for scheduling request (SR) , etc. In certain circumstances, the old TA may be out of sync and may lead to uplink transmission to fail. It may be beneficial to ensure that an old TA that is out of sync is not used by the UE.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication networks such as LTE, CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile  Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . NR is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
EXAMPLE WIRELESS COMMUNICATIONS SYSTEM
FIG. 1 illustrates an example wireless network 100, such as a new radio (NR) or 5G network, in which aspects of the present disclosure may be performed.
As illustrated in FIG. 1, the wireless network 100 may include a number of BSs 110 and other network entities. A BS may be a station that communicates with UEs. Each BS 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a Node B and/or a Node B subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and eNB, Node B, 5G NB, AP, NR BS, NR BS, or TRP may be interchangeable. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station. In some examples, the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, or the like using any suitable transport network.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access  technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a frequency channel, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BS for the femto cells 102y and 102z, respectively. A BS may support one or multiple (e.g., three) cells.
The wireless network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r. A relay station may also be referred to as a relay BS, a relay, etc.
The wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100. For example, macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
The wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
network controller 130 may be coupled to a set of BSs and provide coordination and control for these BSs. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another, e.g., directly or indirectly via wireless or wireline backhaul.
The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or medical equipment, a biometric sensor/device, a healthcare device, a medical device, a wearable device such as a smart watch, smart clothing, smart glasses, virtual reality goggles, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a gaming device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a positioning device (e.g., GPS, Beidou, GLONASS, Galileo, terrestrial-based) , or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or enhanced or evolved MTC (eMTC) devices. MTC may refer to communication involving at least one remote device on at least one end of the communication and may include forms of data communication which involve one or more entities that do not necessarily need human interaction. MTC UEs may include UEs that are capable of MTC communications with MTC servers and/or other MTC devices through Public Land Mobile Networks (PLMN) , for example. Some UEs may be considered Internet of Things devices. The Internet of Things (IoT) is a network of physical objects or "things" embedded with, e.g., electronics, software,  sensors, and network connectivity, which enable these objects to collect and exchange data. The Internet of Things allows objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and computer-based systems, and resulting in improved efficiency, accuracy and economic benefit. When IoT is augmented with sensors and actuators, the technology becomes an instance of the more general class of cyber-physical systems, which also encompasses technologies such as smart grids, smart homes, intelligent transportation and smart cities. Each “thing” is generally uniquely identifiable through its embedded computing system but is able to interoperate within the existing Internet infrastructure. Narrowband IoT (NB-IoT) is a technology being standardized by the 3GPP standards body. This technology is a narrowband radio technology specially designed for the IoT, hence its name. Special focuses of this standard are on indoor coverage, low cost, long battery life and large number of devices. MTC/eMTC and/or IoT UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink. A dashed line with double arrows indicates interfering transmissions between a UE and a BS.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth (e.g., system frequency band) into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a ‘resource block’ ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.  The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR. NR may utilize OFDM with a cyclic prefix (CP) on the uplink and downlink and include support for half-duplex operation using time division duplex (TDD) . A single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 ms duration. Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms. Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based. NR networks may include entities such as central units (CU) and/or distributed units (DU) .
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within its service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication. A UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh  network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
Thus, in a wireless communication network with a scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, and a mesh configuration, a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
As noted above, a RAN may include a CU and DUs. A NR BS (e.g., eNB, 5G Node B, Node B, transmission reception point (TRP) , access point (AP) ) may correspond to one or multiple BSs. NR cells can be configured as access cell (ACells) or data only cells (DCells) . For example, the RAN (e.g., a central unit or distributed unit) can configure the cells. DCells may be cells used for carrier aggregation or dual connectivity, but not used for initial access, cell selection/reselection, or handover. In some cases DCells may not transmit synchronization signals-in some case cases DCells may transmit SS. NR BSs may transmit downlink signals to UEs indicating the cell type. Based on the cell type indication, the UE may communicate with the NR BS. For example, the UE may determine NR BSs to consider for cell selection, access, handover, and/or measurement based on the indicated cell type.
FIG. 2 illustrates an example logical architecture of a distributed radio access network (RAN) 200, which may be implemented in the wireless communication system illustrated in FIG. 1. A 5G access node 206 may include an access node controller (ANC) 202. The ANC may be a central unit (CU) of the distributed RAN 200. The backhaul interface to the next generation core network (NG-CN) 204 may terminate at the ANC. The backhaul interface to neighboring next generation access nodes (NG-ANs) may terminate at the ANC. The ANC may include one or more TRPs 208 (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term) . As described above, a TRP may be used interchangeably with “cell. ”
The TRPs 208 may be a DU. The TRPs may be connected to one ANC (ANC 202) or more than one ANC (not illustrated) . For example, for RAN sharing, radio as a service (RaaS) , and service specific AND deployments, the TRP may be connected to more than one ANC. A TRP may include one or more antenna ports. The TRPs may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
The local architecture 200 may be used to illustrate fronthaul definition. The architecture may be defined that support fronthauling solutions across different deployment types. For example, the architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
The architecture may share features and/or components with LTE. According to aspects, the next generation AN (NG-AN) 210 may support dual connectivity with NR. The NG-AN may share a common fronthaul for LTE and NR.
The architecture may enable cooperation between and among TRPs 208. For example, cooperation may be preset within a TRP and/or across TRPs via the ANC 202. According to aspects, no inter-TRP interface may be needed/present.
According to aspects, a dynamic configuration of split logical functions may be present within the architecture 200. As will be described in more detail with reference to FIG. 5, the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU or CU (e.g., TRP or ANC, respectively) . According to certain aspects, a BS may include a central unit (CU) (e.g., ANC 202) and/or one or more distributed units (e.g., one or more TRPs 208) .
FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure. A centralized core network unit (C-CU) 302 may host core network functions. The C-CU may be centrally deployed. C-CU functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
A centralized RAN unit (C-RU) 304 may host one or more ANC functions. Optionally, the C-RU may host core network functions locally. The C-RU may have distributed deployment. The C-RU may be closer to the network edge.
DU 306 may host one or more TRPs (edge node (EN) , an edge unit (EU) , a radio head (RH) , a smart radio head (SRH) , or the like) . The DU may be located at edges of the network with radio frequency (RF) functionality.
FIG. 4 illustrates example components of the BS 110 and UE 120 illustrated in FIG. 1, which may be used to implement aspects of the present disclosure. As described above, the BS may include a TRP. One or more components of the BS 110 and UE 120 may be used to practice aspects of the present disclosure. For example, antennas 452, Tx/Rx 222,  processors  466, 458, 464, and/or controller/processor 480 of the UE 120  and/or antennas 434,  processors  460, 420, 438, and/or controller/processor 440 of the BS 110 may be used to perform the operations described herein and illustrated with reference to FIG. 5.
FIG. 4 shows a block diagram of a design of a BS 110 and a UE 120, which may be one of the BSs and one of the UEs in FIG. 1. For a restricted association scenario, the base station 110 may be the macro BS 110c in FIG. 1, and the UE 120 may be the UE 120y. The base station 110 may also be a base station of some other type. The base station 110 may be equipped with antennas 434a through 434t, and the UE 120 may be equipped with antennas 452a through 452r.
At the base station 110, a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440. The control information may be for the Physical Broadcast Channel (PBCH) , Physical Control Format Indicator Channel (PCFICH) , Physical Hybrid ARQ Indicator Channel (PHICH) , Physical Downlink Control Channel (PDCCH) , etc. The data may be for the Physical Downlink Shared Channel (PDSCH) , etc. The processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 420 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal. A transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 432 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
At the UE 120, the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) 454a through 454r, respectively. Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 454 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 456 may obtain received  symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480. According to one or more cases, CoMP aspects can include providing the antennas, as well as some Tx/Rx functionalities, such that they reside in distributed units. For example, some Tx/Rx processing can be done in the central unit, while other processing can be done at the distributed units. For example, in accordance with one or more aspects as shown in the diagram, the BS mod/demod 432 may be in the distributed units.
On the uplink, at the UE 120, a transmit processor 464 may receive and process data (e.g., for the Physical Uplink Shared Channel (PUSCH) ) from a data source 462 and control information (e.g., for the Physical Uplink Control Channel (PUCCH) from the controller/processor 480. The transmit processor 464 may also generate reference symbols for a reference signal. The symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the modulators 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110. At the BS 110, the uplink signals from the UE 120 may be received by the antennas 434, processed by the demodulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120. The receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
The controllers/ processors  440 and 480 may direct the operation at the base station 110 and the UE 120, respectively. The processor 440 and/or other processors and modules at the base station 110 may perform or direct, e.g., the processes for the techniques described herein. The processor 480 and/or other processors and modules at the UE 120 may also perform or direct, e.g., execution of the functional blocks illustrated in FIG. 6, and/or other processes for the techniques described herein. The  memories  442 and 482 may store data and program codes for the BS 110 and the UE 120, respectively. A scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
The BS 110 and the UE 120 may utilize a timing advance (TA) mechanism. TA is used to cause signals transmitted from multiple UEs to arrive synchronously at a base station. Each UEs may experience different propagation delay attributable to characteristics of the respective propagation paths between the base station and UEs. In various radio access technologies, individualized timing advance information is provided to the UEs that cause the UEs to advance uplink transmissions. The net effect of the timing advance information and consequent advancing of uplink transmission is to cause transmissions from each UE to arrive at the same time at the BS. Each UE applies a negative offset to its scheduled transmission time, causing the transmission to commence earlier than scheduled.
A TA command may include a timer which may be used to control how long a UE is considered uplink time aligned. The value of the timer may either be UE specific and managed through dedicated signaling between a UE and a BS, or cell specific and communicated via broadcast. TA through dedicated signaling may be communicated through a TA command in a random access response (RAR) , i.e., random access channel (RACH) message 2, during a random access procedure involving access of a radio access network by a UE. A TA value in TA may depend on cell size, propagation delay between the UE and the BS, etc. In both dedicated signaling and cell specific cases, the timer is normally restarted whenever a new TA is given by the BS. At the time of restart, the timer is restarted to a UE specific value if configured; otherwise it is restarted to a cell specific value.
For example, when a TA is received in RACH message 2 but a timer is not already running, the UE may apply the TA value received in RACH message 2 and restart the timer. This case may arise in situations like initial access from RRC_IDLE, during RRC Connection Re-establishment procedure, etc. For example, when TA is received in RACH message 2 as part of non-contention based RACH procedure (e.g., PDCCH Order) , the UE may apply the TA value received in RACH message 2 and restart the timer.
However, when a TA is received in RACH message 2 as part of contention based RACH procedure while the UE is in connected mode and a timer is already running (i.e., timer has not expired, prior TA is active) the UE may ignore the received TA value and not restart the timer. This case may arise in situation where the UE is  requesting for uplink resources but UE doesn’ t have valid PUCCH resources for scheduling request (SR) , etc.
EXAMPLE METHOD FOR TIMING ADVANCE IN RACH
A UE may use an already running TA value, i.e., old TA value, when the TA is received in a RACH message 2 as part of contention based RACH procedure while the UE is in connected mode and a timer is already running (i.e., timer has not expired, TA is active) as the UE may ignore the receive TA value and not restart the timer. Using an already running TA value, i.e., old TA value, may result in repeated RACH message 3 transmission failure due to the already running TA value being out of sync. The already running TA value may be out of sync because it may not reflect the current situation, i.e., cell size, propagation delay between the UE and the BS, etc. For example, the UE may have moved since receiving the old TA, obstruction between the UE and the BS may have been introduced after receiving the old TA, etc.
In certain aspects, it may be beneficial override the already running TA value with the received TA value even when the TA is received in a RACH message 2 as part of contention based RACH procedure while the UE is in connected mode and a timer is already running, i.e., timer has not expired, TA is active.
FIG. 5 illustrates an example UE operation 500 applying TA value in RACH message 2 in accordance with aspects of the present disclosure. In certain aspects, operation 500 illustrated in FIG. 5 may be done by a UE 120. According to the operation 500 in FIG. 5, in step 505, a UE in connected mode may send to a base station (BS) a random access channel (RACH) preamble as part of a contention based RACH procedure. According to the operation 500 in FIG. 5, in step 510, the UE may receive from the BS a RACH message 2 which comprises a first timing advance (TA) . In an aspect, the BS may send the RACH message in response to receiving the RACH preamble from the US. In an aspect, the first TA may indicate a TA value. According to the operation 500 in FIG. 5, in step 515, the UE may determine a second TA received prior to the first TA is active. For example, TA received prior may be active when a timer associated with the TA received prior has not expired and/or is still running. In an aspect, the second TA may have been received prior to the RACH procedure and the timer for the second TA has not expired, i.e., second TA is active. In an aspect, the  timer for the second TA may be infinite. According to the operation 500 in FIG. 5, in step 520, the UE may compare the first TA and the second TA in response to the determination. For example, the UE may compare the first TA and the second TA by comparing the TA value indicated in the first TA and the second TA.
According to the operation 500 in FIG. 5, in step 525, the UE may apply the first TA based on the comparison, wherein the UE may apply the first TA by applying the TA value indicated in the first TA. In an aspect, applying the first TA may comprise applying the first TA for sending a RACH message 3 and/or subsequent uplink transmissions to the BS. In an aspect, applying the first TA based on the comparison may comprise applying the first TA when a difference between the first TA and the second TA is above a threshold. Further, applying the first TA based on the comparison may comprise applying the second TA when the difference between the first TA and the second TA is below a threshold. In an aspect, the threshold may be based on channel condition. In an aspect, the UE may determine the threshold based on the channel condition, position of the UE and the BS, information indicated by the BS, etc. In an aspect, the BS may provide the threshold value to the UE in a downlink message. In an aspect, applying the first TA may additionally comprise restarting a timer for the first TA.
FIG. 6 illustrates a communications device 600 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 5 and other aspects described herein and illustrated in the drawings. The communications device 600 includes a processing system 602 coupled to a transceiver 608. The transceiver 608 is configured to transmit and receive signals for the communications device 600 via an antenna 610, such as the various signals as described herein. The processing system 602 may be configured to perform processing functions for the communications device 600, including processing signals received and/or to be transmitted by the communications device 600.
The processing system 602 includes a processor 604 coupled to a computer-readable medium/memory 612 via a bus 606. In certain aspects, the computer-readable medium/memory 612 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 604, cause the processor 604 to perform the operations illustrated in FIG. 5 or other operations for performing the various  techniques discussed herein. In certain aspects, computer-readable medium/memory 612 stores code 614 for determining a second TA received prior to the first TA is active, code 616 for comparing the first TA and the second TA in response to the determination, and code 618 for applying the first TA based on the comparison.
In certain aspects, the processor 604 has circuitry configured to implement the code stored in the computer-readable medium/memory 612. The processor 604 includes circuitry (not illustrated) for determining a second TA received prior to the first TA is active, comparing the first TA and the second TA in response to the determination, and/or applying the first TA based on the comparison.
The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
Moreover, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or. ” That is, unless specified otherwise, or clear from the context, the phrase, for example, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, for example the phrase “X employs A or B” is satisfied by any of the following instances: X employs A; X employs B; or X employs both A and B. As used herein, reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” For example, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from the context to be directed to a singular form. Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) . As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can  contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
For example, means for transmitting and/or means for receiving may comprise one or more of a transmit processor 420, a TX MIMO processor 430, a receive processor 438, or antenna (s) 434 of the base station 110 and/or the transmit processor 464, a TX MIMO processor 466, a receive processor 458, or antenna (s) 452 of the user equipment 120. Additionally, means for obtaining, means for designating, means for aggregating, means for collecting, means for selecting, means for switching, and means  for detecting may comprise one or more processors, such as the controller/processor 480, transmit processor 464, receive processor 458, and/or MIMO processor 466 of the user equipment 120.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, phase change memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media`may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the  software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2019103535-appb-000001
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (24)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    sending, to a base station (BS) , a random access channel (RACH) preamble as part of a contention based RACH procedure, wherein the UE is in connected mode;
    receiving, from the BS, a RACH message 2, wherein the RACH message 2 comprises a first timing advance (TA) ;
    determining, by the UE, a second TA received prior to the first TA is active;
    comparing, by the UE, the first TA and the second TA in response to the determination;
    applying, by the UE, the first TA based on the comparison.
  2. The method of claim 1, wherein applying the first TA comprises applying the first TA for sending a RACH message 3.
  3. The method of claim 1, wherein applying the first TA based on the comparison comprises applying the first TA when a difference between the first TA and the second TA is above a threshold.
  4. The method of claim 3, wherein applying the first TA based on the comparison further comprises applying the second TA when the difference between the first TA and the second TA is below the threshold.
  5. The method of claim 3, wherein the threshold is based on channel condition.
  6. The method of claim 3, wherein a timer of the second TA is infinite.
  7. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    send, to a base station (BS) , a random access channel (RACH) preamble as part of a contention based RACH procedure, wherein the UE is in connected mode;
    receive, from the BS, a RACH message 2, wherein the RACH message 2 comprises a first timing advance (TA) ;
    determine, by the UE, a second TA received prior to the first TA is active;
    compare, by the UE, the first TA and the second TA in response to the determination;
    apply, by the UE, the first TA based on the comparison.
  8. The UE of claim 7, wherein apply the first TA comprises apply the first TA for sending a RACH message 3.
  9. The UE of claim 7, wherein apply the first TA based on the comparison comprises apply the first TA when a difference between the first TA and the second TA is above a threshold.
  10. The UE of claim 9, wherein apply the first TA based on the comparison further comprises apply the second TA when the difference between the first TA and the second TA is below the threshold.
  11. The UE of claim 9, wherein the threshold is based on channel condition.
  12. The UE of claim 9, wherein a timer of the second TA is infinite.
  13. An apparatus for wireless communication performed by a user equipment (UE) , comprising:
    means for sending, to a base station (BS) , a random access channel (RACH) preamble as part of a contention based RACH procedure, wherein the UE is in connected mode;
    means for receiving, from the BS, a RACH message 2, wherein the RACH message 2 comprises a first timing advance (TA) ;
    means for determining, by the UE, a second TA received prior to the first TA is active;
    means for comparing, by the UE, the first TA and the second TA in response to the determination;
    means for applying, by the UE, the first TA based on the comparison.
  14. The apparatus of claim 13, wherein means for applying the first TA comprises means for applying the first TA for sending a RACH message 3.
  15. The apparatus of claim 13, wherein means for applying the first TA based on the comparison comprises means for applying the first TA when a difference between the first TA and the second TA is above a threshold.
  16. The apparatus of claim 15, wherein means for applying the first TA based on the comparison further comprises means for applying the second TA when the difference between the first TA and the second TA is below the threshold.
  17. The apparatus of claim 15, wherein the threshold is based on channel condition.
  18. The apparatus of claim 15, wherein a timer of the second TA is infinite.
  19. A non-transitory computer readable medium storing code for wireless communication, the code comprising instructions executable by a processor to:
    send, to a base station (BS) , a random access channel (RACH) preamble as part of a contention based RACH procedure, wherein the UE is in connected mode;
    receive, from the BS, a RACH message 2, wherein the RACH message 2 comprises a first timing advance (TA) ;
    determine, by the UE, a second TA received prior to the first TA is active;
    compare, by the UE, the first TA and the second TA in response to the determination;
    apply, by the UE, the first TA based on the comparison.
  20. The non-transitory computer-readable medium of claim 19, wherein apply the first TA comprises apply the first TA for sending a RACH message 3.
  21. The non-transitory computer-readable medium of claim 19, wherein apply the first TA based on the comparison comprises apply the first TA when a difference between the first TA and the second TA is above a threshold.
  22. The non-transitory computer-readable medium of claim 21, wherein apply the first TA based on the comparison further comprises apply the second TA when the difference between the first TA and the second TA is below the threshold.
  23. The non-transitory computer-readable medium of claim 21, wherein the threshold is based on channel condition.
  24. The non-transitory computer-readable medium of claim 21, wherein a timer of the second TA is infinite.
PCT/CN2019/103535 2019-08-30 2019-08-30 Methods and apparatuses for timing advance in rach WO2021035658A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103535 WO2021035658A1 (en) 2019-08-30 2019-08-30 Methods and apparatuses for timing advance in rach

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103535 WO2021035658A1 (en) 2019-08-30 2019-08-30 Methods and apparatuses for timing advance in rach

Publications (1)

Publication Number Publication Date
WO2021035658A1 true WO2021035658A1 (en) 2021-03-04

Family

ID=74684430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103535 WO2021035658A1 (en) 2019-08-30 2019-08-30 Methods and apparatuses for timing advance in rach

Country Status (1)

Country Link
WO (1) WO2021035658A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2445281A1 (en) * 2008-06-02 2012-04-25 Fujitsu Limited Method for timing adjustment, mobile station, base station and mobile communication system
WO2015175291A1 (en) * 2014-05-13 2015-11-19 Qualcomm Incorporated Timing advance techniques for large cells
CN109429354A (en) * 2017-08-31 2019-03-05 华为技术有限公司 A kind of accidental access method and terminal
CN109863793A (en) * 2016-10-14 2019-06-07 瑞典爱立信有限公司 For enhancing method, communication equipment and the network node of the communication in cordless communication network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2445281A1 (en) * 2008-06-02 2012-04-25 Fujitsu Limited Method for timing adjustment, mobile station, base station and mobile communication system
WO2015175291A1 (en) * 2014-05-13 2015-11-19 Qualcomm Incorporated Timing advance techniques for large cells
CN109863793A (en) * 2016-10-14 2019-06-07 瑞典爱立信有限公司 For enhancing method, communication equipment and the network node of the communication in cordless communication network
CN109429354A (en) * 2017-08-31 2019-03-05 华为技术有限公司 A kind of accidental access method and terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "TA timer behaviour", 3GPP DRAFT; R2-162928--DISCUSSION--TA_TIMER_V5, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Dubrovnik, Croatia; 20160411 - 20160415, 2 April 2016 (2016-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051082654 *

Similar Documents

Publication Publication Date Title
JP7247111B2 (en) Reference Signal (RS) Configuration for Mobility and Transmission from Serving and Neighbor Cells
JP7311430B2 (en) Radio link monitoring with subband and interference measurements
WO2020147771A1 (en) Early measurement reporting
US10834760B2 (en) Mobility enhancement with channel state information reference signals (CSI-RS)
EP3619959B1 (en) Unified access control
EP3619986B1 (en) Use of multiple paging radio network temporary identifiers (p-rnti) to reduce paging collisions
EP3610693A1 (en) Scheduling request multiplexing based on reliability and latency objectives
US11540121B2 (en) Priority fallback of SUCI calculation
US11265815B2 (en) Methods and apparatuses for power saving by detecting empty symbols
CN111279746B (en) Active beam selection during handover procedure
CN111108717A (en) Improving service recovery in case of unknown cell radio network temporary identifier (C-RNTI) on ENB side
WO2021035658A1 (en) Methods and apparatuses for timing advance in rach
WO2021226942A1 (en) Restoration of packet switched data when default bearer is removed
WO2021030931A1 (en) Methods and apparatuses for sr and csi report
EP4023003A1 (en) Methods for monitoring downlink control information coreset of a source and target cell during a handover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943645

Country of ref document: EP

Kind code of ref document: A1