WO2021035657A1 - Optical apparatus, imaging apparatus and electronic device - Google Patents

Optical apparatus, imaging apparatus and electronic device Download PDF

Info

Publication number
WO2021035657A1
WO2021035657A1 PCT/CN2019/103515 CN2019103515W WO2021035657A1 WO 2021035657 A1 WO2021035657 A1 WO 2021035657A1 CN 2019103515 W CN2019103515 W CN 2019103515W WO 2021035657 A1 WO2021035657 A1 WO 2021035657A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens module
optical
optical axis
magnetic members
Prior art date
Application number
PCT/CN2019/103515
Other languages
French (fr)
Inventor
Atsushi Yoneyama
Sekiguchi NAOKI
Takuya Anzawa
Horidan ATSUSHI
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to PCT/CN2019/103515 priority Critical patent/WO2021035657A1/en
Priority to CN201980099352.8A priority patent/CN114258505B/en
Publication of WO2021035657A1 publication Critical patent/WO2021035657A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing

Definitions

  • the present disclosure relates to an optical apparatus, an imaging apparatus and an electronic device. Furthermore, the disclosure relates to a method to actuate a lens module for automatic focusing and/or optical image stabilization, and a method for capturing an image by using an apparatus having the optical apparatus and an imaging sensor, such as an imaging apparatus and an electronic device.
  • an electronic device e.g. a mobile phone, a smart phone, a wireless communication terminal, a tablet device, a personal computer, or the like
  • a high-performance camera capability which may perform automatic focusing and/or optical image stabilization.
  • Such a camera capability may be realized by using a high-quality optical apparatus and an imaging sensor such as CMOS (Complementary Metal-Oxide-Semiconductor) and CCD (Charge Coupled Device) .
  • CMOS Complementary Metal-Oxide-Semiconductor
  • CCD Charge Coupled Device
  • the high-quality optical apparatus has a lens system including multiple lenses for aberration correction and a controller to move the lens system for the automatic focusing and/or the optical image stabilization.
  • the multiple lenses are usually arranged along a common optical axis, and a length of the lens system along the optical axis is larger than that of an average-quality lens system. Therefore, such a conventional structure of the optical apparatus causes increasing in size and thickness of the electronic device.
  • US 2018/0024329 A1 and US 2018/0120674 A1 suggest to use a bending optical element such as a mirror or a prism for bending the optical axis of the lens system in order to improve freedom in arranging the optical apparatus and make it possible to implement optimal arrangement of the optical apparatus in the electronic device.
  • the controller of the optical apparatus is configured to move the entire lens system for the automatic focusing and the optical image stabilization.
  • the entire lens system including the multiple lenses is heavy, and the controller to move the entire lens system needs to have multiple large actuating members and/or a complicated actuating system. This also causes increasing in size and thickness of the electronic device.
  • Embodiments provide an optical apparatus, an imaging apparatus, an electronic device, a method for actuating a lens module for automatic focusing and/or optical image stabilization, and a method for capturing an image by using an apparatus having the optical apparatus and an imaging sensor, such as an imaging apparatus and an electronic device.
  • the electronic device may be a mobile phone, a smart phone, a wireless communication terminal, a tablet device, a personal computer, or the like.
  • the imaging apparatus may be a still camera, a video camera, a movie camera, or the like.
  • an optical apparatus comprising: a lens system including a plurality of lenses; and a controller configured to move only a part of the plurality of lenses for automatic focusing and/or optical image stabilization.
  • the controller moves only the part of the plurality of lenses lighter than the entire lens system, and does not need to have the multiple large actuating members and/or the complicated actuating system. This makes it possible to reduce the size of the optical apparatus as well as that of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
  • following aspects of the embodiments provide technical solution to reduce the thickness of the optical apparatus, the electronic device and the imaging apparatus.
  • a first aspect of an embodiment provides an optical apparatus.
  • the optical apparatus comprises: a lens module configured to have at least one first lens and magnetic members; a plurality of electromagnetic members configured to generate magnetism and to face the magnetic members; and a controller configured to control the magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on first surfaces of the lens module, and the first surfaces are surfaces which intersect with a first direction corresponding to an optical axis of the at least one first lens.
  • the magnetic members and the electromagnetic members may move the lens module and implement at least the optical image stabilization. Furthermore, the magnetic members are not located on specific surfaces of the lens module that intersect with a specific direction perpendicular to the first direction, and the electromagnetic members are also not located at positions facing these specific surfaces. This structure makes it possible to reduce a thickness of the optical apparatus along the specific direction and to reduce a thickness of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
  • a second possible implementation form of the first aspect provides: the optical apparatus according to the first or second possible implementation form of the first aspect, where the controller controls the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  • the plurality of electromagnetic members may generate magnetism with first or second magnetic polarity by applying current thereto.
  • the controller may control the current applied to a specific electromagnetic member among the plurality of electromagnetic members to generate attractive or repulsive force between the specific electromagnetic member and a magnetic member facing the specific electromagnetic member.
  • the controller may move the lens module in a plane defined by the second and third directions to implement the optical image stabilization.
  • a third possible implementation form of the first aspect provides: the optical apparatus according to the first or second implementation form of the first aspect, where the lens module is further configured to have a moving unit for moving the at least one first lens along the first direction, wherein the at least one first lens moves inside the lens module.
  • the controller may move the lens module along the first direction to implement the automatic focusing.
  • a fourth possible implementation form of the first aspect provides: the optical apparatus according to any one of the first to third possible implementation forms of the first aspect, further comprising: a bending optical element configured to direct an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
  • an incident direction of the light entering into the optical apparatus may be set to be different from the optical axis of the at least one first lens. This makes it easy to match the specific direction perpendicular to the first direction with a thickness direction of the electronic device which is equipped with the optical apparatus, when the fore-front lens is located on the back of the slim-type electronic device.
  • a fifth possible implementation form of the first aspect provides: the optical apparatus according to the fourth possible implementation form of the first aspect, where the optical apparatus is embedded in an electronic device, wherein the first direction corresponding to the optical axis of the at least one first lens is perpendicular to the thickness direction of the electronic device.
  • the thickness of the electronic device may be reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
  • a sixth possible implementation form of the first aspect provides: the optical apparatus according to the fifth possible implementation form of the first aspect, where a first set of magnetic members located on an object-side surface among the first surfaces is used for movement of the lens module along a first axis in a plane perpendicular to the optical axis of the at least one first lens; and a second set of magnetic members located on an image-side surface among the first surfaces is used for movement of the lens module along a second axis in the plane perpendicular to the optical axis of the at least one first lens.
  • the first set of magnetic members and the second set of magnetic members are separately located on the sides different from each other, thereby simplifying the structure of the members in the optical apparatus.
  • the optical apparatus comprising: a lens module configured to have at least one first lens and magnetic members; a plurality of electromagnetic members configured to generate magnetism and to face the magnetic members; and a controller configured to control the magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on second surfaces of the lens module, and the second surfaces are surfaces which intersect with a specific direction perpendicular to a first direction corresponding to an optical axis of the at least one first lens.
  • the magnetic members and the electromagnetic members may move the lens module and implement at least one of the optical image stabilization and the automatic focusing. Furthermore, the magnetic members are not located on specific surfaces of the lens module that intersect with the specific direction perpendicular to the first direction, and the electromagnetic members are also not located at positions facing these specific surfaces. This structure makes it possible to reduce a thickness of the optical apparatus along the specific direction and to reduce a thickness of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
  • An eighth possible implementation form of the first aspect provides: the optical apparatus according to the seventh possible implementation form of the first aspect, where the controller controls the magnetism of the plurality of electromagnetic members to move the lens module along the first directions corresponding to the optical axis of the at least one first lens.
  • the controller may move the lens module along the first direction to implement the automatic focusing.
  • a ninth possible implementation form of the first aspect provides: the optical apparatus according to the seventh or eighth possible implementation form of the first aspect, where the controller controls the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  • the controller may move the lens module in the plane defined by the second and third directions to implement the optical image stabilization.
  • a tenth possible implementation form of the first aspect provides: the optical apparatus according to any one of the seventh to ninth possible implementation forms of the first aspect, further comprising: a bending optical element configured to direct an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
  • the incident direction of the light entering into the optical apparatus may be set to be different from the optical axis of the at least one first lens. This makes it easy to match the specific direction perpendicular to the first direction with the thickness direction of the electronic device which is equipped with the optical apparatus, when the fore-front lens is located on the back of the slim-type electronic device.
  • An eleventh possible implementation form of the first aspect provides: the optical apparatus according to the tenth possible implementation form of the first aspect, where the optical apparatus is embedded in an electronic device, wherein the specific direction is perpendicular to a thickness direction of the electronic device.
  • the thickness of the electronic device may be reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
  • a twelfth possible implementation form of the first aspect provides: the optical apparatus according to the eleventh possible implementation form of the first aspect, where a third set of magnetic members located on one surface of the second surfaces and a fourth set of magnetic members located on another surface of the second surfaces are used for movement of the lens module along second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  • the third set of magnetic members and the fourth set of magnetic members are separately located on the surfaces different from each other, thereby simplifying the structure of the members in the optical apparatus.
  • a thirteenth possible implementation form of the first aspect provides: the optical apparatus according to the twelfth possible implementation form of the first aspect, where the third and fourth sets of magnetic members are also used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
  • the automatic focusing may be implemented by using the third and fourth sets of magnetic members and their corresponding electromagnetic members.
  • a fourteenth possible implementation form of the first aspect provides: the optical apparatus according to any one of the first to twelfth possible implementation forms of the first aspect, where the lens module comprises: a lens unit configured to have the at least one first lens and another electromagnetic member; a housing configured to enclose the lens unit and have the magnetic members, wherein a fifth set of magnetic members is located on an inside surface of the housing to face said another electromagnetic member; and wherein the fifth set of magnetic members and said another electromagnetic member are used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
  • the automatic focusing may be implemented by using said another electromagnetic member and the fifth set of magnetic members.
  • the magnetic members on the second surfaces and the plurality of electromagnetic members may be used only for the optical image stabilization, thereby simplifying the structure of the members in the optical apparatus.
  • a fifteenth possible implementation form of the first aspect provides: the optical apparatus according to the fifth or eleventh possible implementation form of the first aspect, where each lens arranged along the optical axis of the at least one first lens has an elliptical aperture shape, wherein a minor axis of the elliptical aperture shape matches with the thickness direction of the electronic device.
  • the thickness of the electronic device may be effectively reduced.
  • a sixteenth possible implementation form of the first aspect provides: the optical apparatus according to the fifth or eleventh possible implementation form of the first aspect, where each lens arranged along the optical axis of the at least one first lens has a circular aperture shape with partially missing portions, wherein the missing portions face each other along a direction matching with the thickness direction of the electronic device.
  • the thickness of the electronic device may be effectively reduced.
  • a second aspect of an embodiment provides an imaging apparatus.
  • the imaging apparatus comprises: the optical apparatus according to any one of the first to sixteenth possible implementation forms of the first aspect, and an imaging sensor.
  • the thickness of the imaging apparatus may be effectively reduced and the slim-type imaging apparatus having the high-performance imaging capability may be realized.
  • a third aspect of an embodiment provides an electronic device with an imaging function.
  • the electronic device comprises: the optical apparatus according to any one of the first to sixteenth possible implementation forms of the first aspect, and an imaging sensor.
  • the thickness of the electronic device may be effectively reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
  • a fourth aspect of an embodiment provides a method for actuating a lens module which includes at least one first lens and magnetic members facing a plurality of electromagnetic members.
  • the method comprises: controlling, by a controller, magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on first surfaces of the lens module, and the first surfaces are surfaces which intersect with a first direction corresponding to an optical axis of the at least one first lens.
  • the magnetic members and the electromagnetic members may move the lens module and implement at least the optical image stabilization, where the magnetic members are not located on specific surfaces of the lens module that intersect with a specific direction perpendicular to the first direction, and the electromagnetic members are also not located at positions facing these specific surfaces. This makes it possible to reduce a thickness of the optical apparatus along the specific direction and to reduce a thickness of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
  • a second possible implementation form of the fourth aspect provides: the method according to the first or second possible implementation form of the fourth aspect, where the controlling comprises controlling, by the controller, the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  • the lens module may be moved, by the controller, in a plane defined by the second and third directions for the optical image stabilization.
  • a third possible implementation form of the fourth aspect provides: the method according to the first or second possible implementation form of the fourth aspect, where the controlling comprises moving, by a moving unit of the lens module, the at least one first lens along the first direction, wherein the at least one first lens moves inside the lens module.
  • the lens module may be moved, by the controller, along the first direction for the automatic focusing.
  • a fourth possible implementation form of the fourth aspect provides: the method according to any one of the first to third possible implementation form of the fourth aspect, where directing, by a bending optical element, an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
  • an incident direction of the light entering into the optical apparatus may be set to be different from the optical axis of the at least one first lens. This makes it easy to match the specific direction perpendicular to the first direction with a thickness direction of the electronic device which is equipped with the optical apparatus, when the fore-front lens is located on the back of the slim-type electronic device.
  • a fifth possible implementation form of the fourth aspect provides: the method according to the fourth possible implementation form of the fourth aspect, where an optical apparatus including the lens module, the plurality of electromagnetic members and the controller is embedded in an electronic device, wherein the first direction corresponding to the optical axis of the at least one first lens is perpendicular to a thickness direction of the electronic device.
  • the thickness of the electronic device may be reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
  • a sixth possible implementation form of the fourth aspect provides: the method according to the fifth possible implementation form of the fourth aspect, where a first set of magnetic members located on an object-side surface among the first surfaces is used for movement of the lens module along a first axis in a plane perpendicular to the optical axis of the at least one first lens; and a second set of magnetic members located on an image-side surface among the first surfaces is used for movement of the lens module along a second axis in the plane perpendicular to the optical axis of the at least one first lens.
  • the first set of magnetic members and the second set of magnetic members are separately located on the sides different from each other, thereby simplifying the structure of the members in the optical apparatus.
  • a seventh possible implementation form of the fourth aspect provides: the method comprising: controlling, by a controller, magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on second surfaces of the lens module, and the second surfaces are surfaces which intersect with a specific direction perpendicular to a first direction corresponding to an optical axis of the at least one first lens.
  • the magnetic members and the electromagnetic members may move the lens module and implement at least one of the optical image stabilization and the automatic focusing. Furthermore, the magnetic members are not located on specific surfaces of the lens module that intersect with the specific direction perpendicular to the first direction, and the electromagnetic members are also not located at positions facing these specific surfaces. This structure makes it possible to reduce a thickness of the optical apparatus along the specific direction and to reduce a thickness of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
  • An eighth possible implementation form of the fourth aspect provides: the method according to the seventh possible implementation form of the fourth aspect, where the controlling comprises controlling, by the controller, the magnetism of the plurality of electromagnetic members to move the lens module along the first directions corresponding to the optical axis of the at least one first lens for automatic focusing.
  • the controller may move the lens module along the first direction to implement the automatic focusing.
  • a ninth possible implementation form of the fourth aspect provides: the method according to the seventh or eighth possible implementation forms of the fourth aspect, where the controlling comprises controlling, by the controller, the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens for optical image stabilization.
  • the controller may move the lens module in the plane defined by the second and third directions to implement the optical image stabilization.
  • a tenth possible implementation form of the fourth aspect provides: the method according to any one of the seventh to ninth possible implementation forms of the fourth aspect, where directing, by a bending optical element, an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
  • the incident direction of the light entering into the optical apparatus may be set to be different from the optical axis of the at least one first lens. This makes it easy to match the specific direction perpendicular to the first direction with the thickness direction of the electronic device which is equipped with the optical apparatus, when the fore-front lens is located on the back of the slim-type electronic device.
  • An eleventh possible implementation form of the fourth aspect provides: the method according to the tenth possible implementation form of the fourth aspect, where an optical apparatus including the lens module, the plurality of electromagnetic members and the controller is embedded in an electronic device, wherein the specific direction is perpendicular to a thickness direction of the electronic device.
  • the thickness of the electronic device may be reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
  • a twelfth possible implementation form of the fourth aspect provides: the method according to the eleventh possible implementation form of the fourth aspect, where a third set of magnetic members located on one surface of the second surfaces and a fourth set of magnetic members located on another surface of the second surfaces are used for movement of the lens module along second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  • the third set of magnetic members and the fourth set of magnetic members are separately located on the surfaces different from each other, thereby simplifying the structure of the members in the optical apparatus.
  • a thirteenth possible implementation form of the fourth aspect provides: the method according to the twelfth possible implementation form of the fourth aspect, where the third and fourth sets of magnetic members are also used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
  • the automatic focusing may be implemented by using the third and fourth sets of magnetic members and their corresponding electromagnetic members.
  • a fourteenth possible implementation form of the fourth aspect provides: the method according to any one of the seventh to twelfth possible implementation forms of the fourth aspect, where the lens module comprises: a lens unit configured to have the at least one first lens and another electromagnetic member; a housing configured to enclose the lens unit and have the magnetic members, wherein a fifth set of magnetic members is located on an inside surface of the housing to face said another electromagnetic member; and wherein the fifth set of magnetic members and said another electromagnetic member are used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
  • the automatic focusing may be implemented by using said another electromagnetic member and the fifth set of magnetic members.
  • the magnetic members on the second surfaces and the plurality of electromagnetic members may be used only for the optical image stabilization, thereby simplifying the structure of the members in the optical apparatus.
  • a fifteenth possible implementation form of the fourth aspect provides: the method according to the fifth or eleventh possible implementation form of the fourth aspect, where each lens arranged along the optical axis of the at least one first lens has an elliptical aperture shape, wherein a minor axis of the elliptical aperture shape matches with the thickness direction of the electronic device.
  • the thickness of the electronic device may be effectively reduced.
  • a sixteenth possible implementation form of the fourth aspect provides: the method according to the fifth or eleventh possible implementation form of the fourth aspect, where each lens arranged along the optical axis of the at least one first lens has a circular aperture shape with partially missing portions, wherein the missing portions face each other along a direction matching with the thickness direction of the electronic device.
  • the thickness of the electronic device may be effectively reduced.
  • a fifth aspect of an embodiment provides: a method applied to an optical apparatus with a lens system including a plurality of lenses, the method comprising: moving only a part of the plurality of lenses for automatic focusing and/or optical image stabilization.
  • the fifth aspect only the part of the plurality of lenses lighter than the entire lens system moves, and the multiple large actuating members and/or the complicated actuating system does not required for the moving. This makes it possible to reduce the size of the optical apparatus as well as that of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
  • a sixth aspect of an embodiment provides: a method for capturing an image by an imaging apparatus having the optical apparatus according to any one of the first to sixteenth possible implementation forms of the first aspect and an imaging sensor, where the method comprises: capturing, by the imaging sensor, the image based on a light which enters into the imaging sensor through the optical apparatus.
  • the thickness of the imaging apparatus may be effectively reduced and the slim-type imaging apparatus having the high-performance imaging capability may be realized.
  • a seventh aspect of an embodiment provides: a method for capturing an image by an electronic device having the optical apparatus according to any one of the first to sixteenth possible implementation forms of the first aspect and an imaging sensor, where the method comprises: capturing, by the imaging sensor, the image based on a light which enters into the imaging sensor through the optical apparatus.
  • the thickness of the electronic device may be effectively reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
  • Fig. 1 is a perspective view of an imaging module according to an embodiment of the present disclosure
  • Fig. 2 is a disassembled perspective view of the imaging module according to the embodiment of the present disclosure
  • Fig. 3 is a perspective view of a lens module according to the embodiment of the present disclosure
  • Fig. 4 is a top view of the lens module according to the embodiment of the present disclosure.
  • Fig. 5 is a bottom view of the lens module according to the embodiment of the present disclosure.
  • Fig. 6 is a first side view (+X direction) of the lens module according to the embodiment of the present disclosure
  • Fig. 7 is a second side view (-X direction) of the lens module according to the embodiment of the present disclosure.
  • Fig. 8 is a third side view (-Y direction) of the lens module according to the embodiment of the present disclosure.
  • Fig. 9 is a fourth side view (+Y direction) of the lens module according to the embodiment of the present disclosure.
  • Fig. 10 is a perspective view of a lens module according to a first variation of the embodiment of the present disclosure
  • Fig. 11 is a top view of the lens module according to the first variation of the embodiment of the present disclosure.
  • Fig. 12 is a bottom view of the lens module according to the first variation of the embodiment of the present disclosure.
  • Fig. 13 is a first side view (+X direction) of the lens module according to the first variation of the embodiment of the present disclosure
  • Fig. 14 is a second side view (-X direction) of the lens module according to the first variation of the embodiment of the present disclosure
  • Fig. 15 is a third side view (-Y direction) of the lens module according to the first variation of the embodiment of the present disclosure
  • Fig. 16 is a fourth side view (+Y direction) of the lens module according to the first variation of the embodiment of the present disclosure
  • Fig. 17 is a perspective view of a lens module according to a second variation of the embodiment of the present disclosure.
  • Fig. 18 is a top view of the lens module according to the second variation of the embodiment of the present disclosure.
  • Fig. 19 is a bottom view of the lens module according to the second variation of the embodiment of the present disclosure.
  • Fig. 20 is a first side view (+X direction) of the lens module according to the second variation of the embodiment of the present disclosure
  • Fig. 21 is a second side view (-X direction) of the lens module according to the second variation of the embodiment of the present disclosure
  • Fig. 22 is a third side view (-Y direction) of the lens module according to the second variation of the embodiment of the present disclosure
  • Fig. 23 is a fourth side view (+Y direction) of the lens module according to the second variation of the embodiment of the present disclosure.
  • Fig. 24 is a block diagram of an imaging apparatus according to the embodiment of the present disclosure.
  • Fig. 25 is a block diagram of an electronic device according to the embodiment of the present disclosure.
  • Fig. 1 shows the external appearance of an imaging module 100 according to an embodiment.
  • Fig. 1 is a perspective view of an imaging module according to an embodiment of the present disclosure.
  • the imaging module 100 has an optical apparatus and an imaging sensor mounted therein.
  • the imaging module 100 may be implemented on an apparatus having an imaging function. This apparatus may be compact and flat.
  • the apparatus may be an imaging apparatus or an electronic device.
  • the imaging apparatus may be a still camera, a video camera, a movie camera or the like.
  • the electronic device may be a mobile phone, a smart phone, a wireless communication terminal, a tablet device, a personal computer or the like.
  • the apparatus may have an outer shape with a thickness D, a width W and a height H, where W is smaller than H and D is considerably smaller than W.
  • the thickness D Y of the imaging module 100 may be smaller than the thickness D of the apparatus.
  • the imaging module 100 may be constituted by five modules M1, M2, M3, M4 and M5.
  • the module M1 has a lens 111 as a fore-front lens, where incident light from a subject enters the lens 111.
  • first optical axis the optical axis of the lens 111
  • the widthwise direction of the imaging module 100 will be referred to as "X direction, " a direction corresponding to the first optical axis will be referred to as "Y direction, " and the height direction of the imaging module 100 will be referred to as "Z direction.
  • Fig. 2 is a disassembled perspective view of the imaging module according to the embodiment of the present disclosure.
  • the module M1 may include the lens 111 and a prism 112.
  • the prism 112 may be replaced by a mirror.
  • Each of the prism 112 and the mirror is an example of a bending optical element according to the present disclosure.
  • the module M2 may include lenses 121, 122 and 123.
  • the module M3 may include a moving lens module 130 which provides the functions of optical image stabilization and/or automatic focusing.
  • the module M4 may include a lens 141.
  • the module M5 may include an imaging sensor 151.
  • the module M5 may also include a filter such as an infrared cut filter which is disposed in front of the imaging sensor 151.
  • the lenses 111, 121, 122, 123 and 141, and the lens of the moving lens module 130 form a lens system in the imaging module 100.
  • a module group including at least the modules M1 and M3 among the four modules M1, M2, M3 and M4 is an example of the optical apparatus according to the present disclosure.
  • an optical axis common to the lenses 121, 122, 123 and 141, and the lens of the moving lens module 130 will be referred to as "second optical axis" for simplicity of the description.
  • the second optical axis corresponds to the Z direction.
  • the lens of the moving lens module 130 may move within an X-Y plane for optical image stabilization as described below. When the lens of the moving lens module 130 moves, the optical axis of this lens may be deviated from the second optical axis.
  • the incident light that has entered the lens 111 passes through the lens 111 to enter the prism 112.
  • the prism 112 bends the optical path of the light output from the lens 111 to direct the light toward the lens 121.
  • the imaging module 100 may adopt folded optics.
  • the light that has entered the lens 121 passes through the lenses 121, 122 and 123 to enter the lens of the moving lens module 130.
  • the light output from the lens of the moving lens module 130 passes through the lens 141 to enter the imaging sensor 151.
  • the imaging sensor 151 outputs an image signal based on the intensities of light input to the individual pixels.
  • the imaging module 100 shown in Fig. 2 has six lenses, the imaging module 100 may have a different number of lenses. Since various monochromatic aberrations and chromatic aberrations need to be corrected in order to implement a high-performance lens system, it is preferable to mount an adequate number of lenses. Mounting a large number of lenses inevitably increases the height (Z-directional length) of the imaging module 100. If the direction of the height H of the apparatus having the imaging module 100 mounted therein is matched with the Z direction, the increase in the number of lenses mounted does not interfere with making the apparatus compact and flat.
  • Figs. 3-9 schematically show a specific structure of the moving lens module 130 according to an embodiment of the present disclosure.
  • Fig. 3 is a perspective view of a lens module according to the embodiment of the present disclosure
  • Fig. 4 is a top view of the lens module according to the embodiment of the present disclosure
  • Fig. 5 is a bottom view of the lens module according to the embodiment of the present disclosure
  • Fig. 6 is a first side view (+X direction) of the lens module according to the embodiment of the present disclosure
  • Fig. 7 is a second side view (-X direction) of the lens module according to the embodiment of the present disclosure
  • Fig. 8 is a third side view (-Y direction) of the lens module according to the embodiment of the present disclosure
  • Fig. 9 is a fourth side view (+Y direction) of the lens module according to the embodiment of the present disclosure. It is to be noted that a part of the structure is omitted in Figs. 3-9 for simplicity of the description.
  • Fig. 3 schematically shows the shape of the moving lens module 130 when the moving lens module 130 is viewed obliquely.
  • Fig. 4 schematically shows the shape of the moving lens module 130 when the moving lens module 130 is viewed from the top.
  • Fig. 5 schematically shows the shape of the moving lens module 130 when the moving lens module 130 is viewed from the bottom.
  • Fig. 6 schematically shows the shape of the moving lens module 130 when one side surface of the moving lens module 130 is viewed in a +X direction.
  • Fig. 7 schematically shows the shape of the moving lens module 130 when one side surface of the moving lens module 130 is viewed in a -X direction.
  • Fig. 8 schematically shows the shape of the moving lens module 130 when one side surface of the moving lens module 130 is viewed in a +Y direction.
  • Fig. 9 schematically shows the shape of the moving lens module 130 when one side surface of the moving lens module 130 is viewed in a -Y direction.
  • the moving lens module 130 includes coils 131a, 131b, 131c and 131d.
  • the positions of the coils 131a, 131b, 131c and 131d may be fixed; for example, the coils may be held by a fixing member fixed to the inner wall surface of the module M3.
  • the moving lens module 130 further includes a housing 132 and a lens unit 133.
  • the housing 132 has an internal space for enclosing the lens unit 133.
  • the lens unit 133 is disposed inside the housing 132.
  • the lens unit 133 is connected to the housing 132 via a spring and/or an indirect member such as viscous fluid, and may be movable at least in a +Z direction and a -Z direction within the internal space of the housing 132.
  • Magnets 132a, 132b, 132c, 132d, 132e, 132f, 132g, 132h, 132i and 132j are mounted on the housing 132.
  • the lens unit 133 has a lens 133a and a coil 133b.
  • the lens unit 133 may have a plurality of lenses.
  • the coils 131a, 131b, 131c, 131d and 133b are examples of electromagnetic members according to the present disclosure.
  • the magnets 132a, 132b, 132c, 132d, 132e, 132f, 132g, 132h, 132i and 132j are examples of magnetic members according to the present disclosure.
  • a set of the housing 132 and the lens unit 133 is an example of a lens module according to the present disclosure.
  • the magnets 132a and 132b are disposed side by side in the X direction on the top surface of the housing 132 intersecting with the Z direction.
  • the coil 131a is disposed so as to face the magnets 132a and 132b, and may be disposed so as to extend across the boundary between the magnets 132a and 132b in a non-energization state.
  • the lengthwise direction of the coil 131a may match with the Y direction.
  • the magnet 132a has a first polarity (for example, N-pole) .
  • the magnet 132b has a second polarity (for example, S-pole) different from the first polarity.
  • the coil 131a While a current flows through the coil 131a, the coil 131a generates magnetism. When the direction of the current is changed, the polarity of the magnetism generated by the coil 131a is inverted. The mutual interaction (attractive force and repulsive force) between the coil 131a generating magnetism and the magnets 132a and 132b produces force that moves the moving lens module 130 in the +X direction or -X direction.
  • the magnets 132c and 132d are disposed side by side in the X direction on the top surface of the housing 132 intersecting with the Z direction.
  • the positional relationship among the coil 131b and the magnets 132c and 132d corresponds to the positional relationship among the coil 131a and the magnets 132a and 132b.
  • the magnet 132c has the first polarity.
  • the magnet 132d has the second polarity.
  • the direction of the current flowing through the coil 131a may be controlled to be the same as the direction of the current flowing through the coil 131b.
  • the configuration may be modified in such a way that the magnet 132c has the second polarity, the magnet 132d has the first polarity, and the directions of the currents flowing through the coils 131a and 131b may be controlled to differ from each other.
  • the magnets 132e and 132f are disposed side by side in the Y direction on the bottom surface of the housing 132 intersecting with the Z direction.
  • the coil 131c is disposed so as to face the magnets 132e and 132f, and may be disposed so as to extend across the boundary between the magnets 132e and 132f in a non-energization state.
  • the lengthwise direction of the coil 131c may match with the X direction.
  • the magnet 132e has a third polarity (for example, N-pole) .
  • the magnet 132f has a fourth polarity (for example, S-pole) different from the third polarity.
  • the mutual interaction (attractive force and repulsive force) between the coil 131c generating magnetism and the magnets 132e and 132f produces force that moves the moving lens module 130 in the +Y direction or -Y direction.
  • the magnets 132g and 132h are disposed side by side in the Y direction on the bottom surface of the housing 132 intersecting with the Z direction.
  • the positional relationship among the coil 131d and the magnets 132g and 132h corresponds to the positional relationship among the coil 131c and the magnets 132e and 132f.
  • the magnet 132g has the third polarity.
  • the magnet 132h has the fourth polarity.
  • the direction of the current flowing through the coil 131c may be controlled to be the same as the direction of the current flowing through the coil 131d.
  • the configuration may be modified in such a way that the magnet 132g has the fourth polarity, the magnet 132h has the third polarity, and the directions of the currents flowing through the coils 131c and 131d may be controlled to differ from each other.
  • the magnets 132i and 132j are disposed side by side in the Z direction on the internal surface of the housing 132 intersecting with the X direction.
  • the coil 133b is disposed on that surface of the surfaces of the lens unit 133 which intersects with the X direction.
  • the coil 133b is disposed so as to face the magnets 132i and 132j, and may be disposed so as to extend across the boundary between the magnets 132i and 132j in a non-energization state.
  • the lengthwise direction of the coil 133b may match with the Y direction.
  • the magnet 132i has a fifth polarity (for example, N-pole) .
  • the magnet 132j has a sixth polarity (for example, S-pole) different from the fifth polarity.
  • the mutual interaction (attractive force and repulsive force) between the coil 133b generating magnetism and the magnets 132i and 132j produces force that moves the lens unit 133 in a direction corresponding to the optical axis of the lens 133a.
  • the position of the lens 133a can be shifted in an arbitrary direction on a plane perpendicular to the second optical axis by controlling the magnetism generated by using the coils 131a, 131b, 131c and 131d.
  • This mechanism to adequately control the optical axis of the lens 133a may provide the function of optical image stabilization.
  • the position of the lens 133a can be shifted along the second optical axis by controlling the magnetism generated by using the coil 133b.
  • This mechanism may provide the function of automatic focusing. Any coil and any magnet does not exist on specific surfaces among the surfaces of the moving lens module 130, where the specific surfaces intersect with the Y direction corresponding to the thickness direction of the imaging module 100.
  • optical image stabilization and/or automatic focusing may be implemented without increasing the thickness of the imaging module 100. This may realize slim and compact apparatuses with the high-performance camera capability provided by the imaging module 100 according to the embodiment of the present disclosure.
  • each lens arranged along the second optical axis may have an elliptical aperture shape, and a minor axis of the elliptical aperture shape may be configured to match with the thickness direction of the imaging module 100.
  • each lens arranged along the second optical axis may have a circular aperture shape with partially missing portions, and the missing portions may be configured to face each other along a direction matching with the thickness direction of the imaging module 100.
  • Figs. 10-16 schematically show a specific structure of a moving lens module 200 according to a first variation of the embodiment of the present disclosure. It is to be noted that a part of the structure is omitted in Figs. 10-16 for simplicity of the description.
  • Fig. 10 is a perspective view of a lens module according to a first variation of the embodiment of the present disclosure
  • Fig. 11 is a top view of the lens module according to the first variation of the embodiment of the present disclosure
  • Fig. 12 is a bottom view of the lens module according to the first variation of the embodiment of the present disclosure
  • Fig. 13 is a first side view (+X direction) of the lens module according to the first variation of the embodiment of the present disclosure
  • Fig. 10 is a perspective view of a lens module according to a first variation of the embodiment of the present disclosure
  • Fig. 11 is a top view of the lens module according to the first variation of the embodiment of the present disclosure
  • Fig. 12 is a bottom view of the lens module according to the first variation
  • Fig. 14 is a second side view (-X direction) of the lens module according to the first variation of the embodiment of the present disclosure
  • Fig. 15 is a third side view (-Y direction) of the lens module according to the first variation of the embodiment of the present disclosure
  • Fig. 16 is a fourth side view (+Y direction) of the lens module according to the first variation of the embodiment of the present disclosure.
  • Fig. 10 schematically shows the shape of the moving lens module 200 when the moving lens module 200 is viewed obliquely.
  • Fig. 11 schematically shows the shape of the moving lens module 200 when the moving lens module 200 is viewed from the top.
  • Fig. 12 schematically shows the shape of the moving lens module 200 when the moving lens module 200 is viewed from the bottom.
  • Fig. 13 schematically shows the shape of the moving lens module 200 when one side surface of the moving lens module 200 is viewed in a +X direction.
  • Fig. 14 schematically shows the shape of the moving lens module 200 when one side surface of the moving lens module 200 is viewed in a -X direction.
  • Fig. 15 schematically shows the shape of the moving lens module 200 when one side surface of the moving lens module 200 is viewed in a +Y direction.
  • Fig. 16 schematically shows the shape of the moving lens module 200 when one side surface of the moving lens module 200 is viewed in a -Y direction.
  • the moving lens module 200 includes coils 201a, 201b, 201c and 201d.
  • the positions of the coils 201a, 201b, 201c and 201d may be fixed; for example, the coils may be held by a fixing member fixed to the inner wall surface of the module M3.
  • the moving lens module 200 further includes a housing 202 and a lens unit 203.
  • the housing 202 has an internal space for enclosing the lens unit 203.
  • the lens unit 203 is disposed inside the housing 202.
  • the lens unit 203 is connected to the housing 202 via a spring and/or an indirect member such as viscous fluid, and may be movable at least in a +Z direction and a -Z direction within the internal space of the housing 202.
  • Magnets 202a, 202b, 202c, 202d, 202e, 202f, 202g, 202h, 202i and 202j are mounted on the housing 202.
  • the lens unit 203 has a lens 203a and a coil 203b.
  • the lens unit 203 may have a plurality of lenses.
  • the coils 201a, 201b, 201c, 201d and 203b are examples of electromagnetic members according to the present disclosure.
  • the magnets 202a, 202b, 202c, 202d, 202e, 202f, 202g, 202h, 202i and 202j are examples of magnetic members according to the present disclosure.
  • a set of the housing 202 and the lens unit 203 is an example of a lens module according to the present disclosure.
  • the magnets 202a and 202b are disposed side by side in the Z direction on that side surface of the housing 202 which intersects with the X direction.
  • the coil 201a is disposed so as to face the magnets 202a and 202b, and may be disposed so as to extend across the boundary between the magnets 202a and 202b in a non-energization state.
  • the lengthwise direction of the coil 201a may match with the Y direction.
  • the magnet 202a has a first polarity (for example, N-pole) .
  • the magnet 202b has a second polarity (for example, S-pole) different from the first polarity.
  • the mutual interaction (attractive force and repulsive force) between the coil 201a generating magnetism and the magnets 202a and 202b produces force that moves the moving lens module 200 in the +Z direction or -Z direction.
  • the magnets 202c and 202d are disposed side by side in the Z direction on that side surface of the housing 202 which intersects with the X direction.
  • the positional relationship among the coil 201b and the magnets 202c and 202d corresponds to the positional relationship among the coil 201a and the magnets 202a and 202b.
  • the magnet 202c has the second polarity.
  • the magnet 202d has the first polarity.
  • the direction and the level of the current flowing through the coil 201a and the direction and the level of the current flowing through the coil 201b may be controlled independently of each other.
  • the configuration may be modified in such a way that the magnet 202c has the first polarity and the magnet 202d has the second polarity.
  • the force obtained by combining those forces may act to rotate the moving lens module 200 about the X axis as the rotational axis.
  • the magnets 202e and 202f are disposed side by side in the Z direction on that side surface of the housing 202 which intersects with the X direction.
  • the coil 201c is disposed so as to face the magnets 202e and 202f, and may be disposed so as to extend across the boundary between the magnets 202e and 202f in a non-energization state.
  • the lengthwise direction of the coil 201c may match with the Y direction.
  • the magnet 202e has a third polarity (for example, N-pole) .
  • the magnet 202f has a fourth polarity (for example, S-pole) different from the third polarity.
  • the mutual interaction (attractive force and repulsive force) between the coil 201c generating magnetism and the magnets 202e and 202f produces force that moves the moving lens module 200 in the +Z direction or -Z direction.
  • the magnets 202g and 202h are disposed side by side in the Z direction on that side surface of the housing 202 which intersects with the X direction.
  • the positional relationship among the coil 201d and the magnets 202g and 202h corresponds to the positional relationship among the coil 201c and the magnets 202e and 202f.
  • the magnet 202g has the fourth polarity.
  • the magnet 202h has the third polarity.
  • the direction and the level of the current flowing through the coil 201c and the direction and the level of the current flowing through the coil 201d may be controlled independently of each other.
  • the configuration may be modified in such a way that the magnet 202g has the third polarity and the magnet 202h has the fourth polarity.
  • the force obtained by combining those forces may act to rotate the moving lens module 200 about the X axis as the rotational axis.
  • the magnets 202i and 202j are disposed side by side in the Z direction on the internal surface of the housing 202 intersecting with the X direction.
  • the coil 203b is disposed on that surface of the surfaces of the lens unit 203 which intersects with the X direction.
  • the coil 203b is disposed so as to face the magnets 202i and 202j, and may be disposed so as to extend across the boundary between the magnets 202i and 202j in a non-energization state.
  • the lengthwise direction of the coil 203b may match with the Y direction.
  • the magnet 202i has a fifth polarity (for example, N-pole) .
  • the magnet 202j has a sixth polarity (for example, S-pole) different from the fifth polarity.
  • the mutual interaction (attractive force and repulsive force) between the coil 203b generating magnetism and the magnets 202i and 202j produces force that moves the lens unit 203 in a direction corresponding to the optical axis of the lens 203a.
  • the optical axis of the lens 203a can be tilted with respect to the second optical axis by controlling the magnetism generated on the coils 201a, 201b, 201c and 201d.
  • This mechanism to adequately control the optical axis of the lens 203a may provide the function of optical image stabilization.
  • the position of the lens 203a can be shifted along the second optical axis by controlling the magnetism generated on the coil 203b.
  • This mechanism may provide the function of automatic focusing. Any coil and any magnet are not provided on that surface of the surfaces of the moving lens module 200 which intersects with the Y direction corresponding to the thickness direction of the imaging module 100.
  • the functions of optical image stabilization and/or automatic focusing can be provided without increasing the thickness of the imaging module 100. This may realize slim and compact apparatuses with the high-performance camera capability provided by the imaging module 100 according to the embodiment of the present disclosure.
  • each lens arranged along the second optical axis may have an elliptical aperture shape, and a minor axis of the elliptical aperture shape may be configured to match with the thickness direction of the imaging module 100.
  • each lens arranged along the second optical axis may have a circular aperture shape with partially missing portions, and the missing portions may be configured to face each other along a direction matching with the thickness direction of the imaging module 100.
  • Figs. 17-23 schematically show a specific structure of the moving lens module 300 according to a second variation of the embodiment of the present disclosure. It is to be noted that a part of the structure is omitted in Figs. 17-23 for simplicity of the description.
  • Fig. 17 is a perspective view of a lens module according to a second variation of the embodiment of the present disclosure
  • Fig. 18 is a top view of the lens module according to the second variation of the embodiment of the present disclosure
  • Fig. 19 is a bottom view of the lens module according to the second variation of the embodiment of the present disclosure
  • Fig. 20 is a first side view (+X direction) of the lens module according to the second variation of the embodiment of the present disclosure
  • Fig. 21 is a second side view (-X direction) of the lens module according to the second variation of the embodiment of the present disclosure
  • Fig. 22 is a third side view (-Y direction) of the lens module according to the second variation of the embodiment of the present disclosure
  • Fig. 23 is a fourth side view (+Y direction) of the lens module according to the second variation of the embodiment of the present disclosure.
  • Fig. 17 schematically shows the shape of the moving lens module 300 when the moving lens module 300 is viewed obliquely.
  • Fig. 18 schematically shows the shape of the moving lens module 300 when the moving lens module 300 is viewed from the top.
  • Fig. 19 schematically shows the shape of the moving lens module 300 when the moving lens module 300 is viewed from the bottom.
  • Fig. 20 schematically shows the shape of the moving lens module 300 when one side surface of the moving lens module 300 is viewed in a +X direction.
  • Fig. 21 schematically shows the shape of the moving lens module 300 when one side surface of the moving lens module 300 is viewed in a -X direction.
  • Fig. 22 schematically shows the shape of the moving lens module 300 when one side surface of the moving lens module 300 is viewed in a +Y direction.
  • Fig. 23 schematically shows the shape of the moving lens module 300 when one side surface of the moving lens module 300 is viewed in a -Y direction.
  • the moving lens module 300 includes coils 301a, 301b, 301c and 301d.
  • the positions of the coils 301a, 301b, 301c and 301d may be fixed; for example, the coils may be held by a fixing member fixed to the inner wall surface of the module M3.
  • the moving lens module 300 further includes a housing 302.
  • Magnets 302a, 302b, 302c, 302d, 302e, 302f, 302g and 302h are mounted on the lens unit 302.
  • the lens unit 302 may have a plurality of lenses.
  • the coils 301a, 301b, 301c and 301d are examples of electromagnetic members according to the present disclosure.
  • the magnets 302a, 302b, 302c, 302d, 302e, 302f, 302g and 302h are examples of magnetic members according to the present disclosure.
  • the lens unit 302 is an example of a lens module according to the present disclosure.
  • the magnets 302a and 302b are disposed side by side in the Z direction on that side surface of the lens unit 302 which intersects with the X direction.
  • the coil 301a is disposed so as to face the magnets 302a and 302b, and may be disposed so as to extend across the boundary between the magnets 302a and 302b in a non-energization state.
  • the lengthwise direction of the coil 301a may match with the Y direction.
  • the magnet 302a has a first polarity (for example, N-pole) .
  • the magnet 302b has a second polarity (for example, S-pole) different from the first polarity.
  • the mutual interaction (attractive force and repulsive force) between the coil 301a generating magnetism and the magnets 302a and 302b produces force that moves the moving lens module 300 in the +Z direction or -Z direction.
  • the magnets 302c and 302d are disposed side by side in the Z direction on that side surface of the lens unit 302 which intersects with the X direction.
  • the positional relationship among the coil 301b and the magnets 302c and 302d corresponds to the positional relationship among the coil 301a and the magnets 302a and 302b.
  • the magnet 302c has the first polarity.
  • the magnet 302d has the second polarity.
  • the direction and the level of the current flowing through the coil 301a and the direction and the level of the current flowing through the coil 301b may be controlled independently of each other.
  • the configuration may be modified in such a way that the magnet 302c has the second polarity and the magnet 302d has the first polarity.
  • the magnets 302e and 302f are disposed side by side in the Z direction on that side surface of the lens unit 302 which intersects with the X direction.
  • the coil 301c is disposed so as to face the magnets 302e and 302f, and may be disposed so as to extend across the boundary between the magnets 302e and 302f in a non-energization state.
  • the lengthwise direction of the coil 301c may match with the Y direction.
  • the magnet 302e has a third polarity (for example, N-pole) .
  • the magnet 302f has a fourth polarity (for example, S-pole) different from the third polarity.
  • the mutual interaction (attractive force and repulsive force) between the coil 301c generating magnetism and the magnets 302e and 302f produces force that moves the moving lens module 300 in the +Z direction or -Z direction.
  • the magnets 302g and 302h are disposed side by side in the Z direction on that side surface of the lens unit 302 which intersects with the X direction.
  • the positional relationship among the coil 301d and the magnets 302g and 302h corresponds to the positional relationship among the coil 301c and the magnets 302e and 302f.
  • the magnet 302g has the third polarity.
  • the magnet 302h has the fourth polarity.
  • the direction and the level of the current flowing through the coil 301c and the direction and the level of the current flowing through the coil 301d may be controlled independently of each other.
  • the configuration may be modified in such a way that the magnet 302g has the fourth polarity and the magnet 302h has the third polarity.
  • the moving lens module 130 may move in the direction corresponding to the second optical axis by controlling the directions and the levels of the currents flowing through the coils 301a, 301b, 301c and 301d to be the same direction and level.
  • the moving lens module 130 may change its direction to a direction of rotation about the X axis as the rotational axis.
  • the optical axis of the lens 303 can be tilted with respect to the second optical axis by controlling the magnetism generated on the coils 301a, 301b, 301c and 301d.
  • This mechanism to adequately control the optical axis of the lens 303 may provide the function of optical image stabilization.
  • the position of the lens 303 can be shifted along the second optical axis by controlling the magnetism generated on the coils 301a, 301b, 301c and 301d.
  • This mechanism may provide the function of automatic focusing. Any coil and any magnet are not provided on that surface of the surfaces of the moving lens module 300 which intersects with the Y direction corresponding to the thickness direction of the imaging module 100.
  • the functions of optical image stabilization and/or automatic focusing can be provided without increasing the thickness of the imaging module 100. This may realize slim and compact apparatuses with the high-performance camera capability provided by the imaging module 100 according to the embodiment of the present disclosure.
  • each lens arranged along the second optical axis may have an elliptical aperture shape, and a minor axis of the elliptical aperture shape may be configured to match with the thickness direction of the imaging module 100.
  • each lens arranged along the second optical axis may have a circular aperture shape with partially missing portions, and the missing portions may be configured to face each other along a direction matching with the thickness direction of the imaging module 100.
  • Fig. 24 shows the hardware configuration of an imaging apparatus 10 on which the above-described imaging module 100 can be mounted.
  • Fig. 24 is a block diagram of an imaging apparatus according to the embodiment of the present disclosure.
  • the imaging apparatus 10 may include an optical apparatus 11, an image sensor 12, processing circuitry 13, a storage device 14 and a display 15.
  • the optical apparatus 11 corresponds to the modules M1, M2, M3 and M4 in the imaging module 100.
  • the image sensor 12 corresponds to the imaging sensor 151 included in the module M5 in the imaging module 100.
  • the processing circuitry 13 is a hardware element capable of processing an output signal from the image sensor 12 to generate image data, and may be at least one CPU (Central Processing Unit) , at least one FPGA (Field-Programmable Gate Array) , at least one GPU (Graphics Processing Unit) or the like.
  • the storage device 14 is a hardware element which may store image data, and may be an SSD (Solid State Drive) , HDD (Hard Disk Drive) , RAM (Random Access Memory) , ROM (Read Only Memory) , flash memory, memory card or the like, or may be a non-transitory computer readable removable storage medium.
  • the display 15 is a hardware element for displaying information such as a video, an image and a text, and may be an LCD (Liquid Crystal Display) , ELD (Electro-Luminescent Display) or the like.
  • Fig. 25 shows the hardware configuration of an electronic device 20 on which the above-described imaging module 100 can be mounted.
  • Fig. 25 is a block diagram of an electronic device according to the embodiment of the present disclosure.
  • the electronic device 20 may include an optical apparatus 21, an image sensor 22, processing circuitry 23, a storage device 24, a display 25 and a communication unit 26.
  • the optical apparatus 21 corresponds to the modules M1, M2, M3 and M4 in the imaging module 100.
  • the image sensor 22 corresponds to the imaging sensor 151 included in the module M5 in the imaging module 100.
  • the processing circuitry 23 is a hardware element capable of processing an output signal from the image sensor 22 to generate image data, and may be at least one CPU, at least one FPGA, at least one GPU or the like.
  • the storage device 24 is a hardware element which may store image data, and may be an SSD, HDD, RAM, ROM, flash memory, memory card or the like, or may be a non-transitory computer readable removable storage medium.
  • the display 25 is a hardware element for displaying information such as a video, an image and a text, and may be an LCD, ELD or the like.
  • the communication unit 26 is a hardware element for connecting to a wireless or cabled network, and may be used to post information such as a video, an image and a text to an SNS and to upload such information to a cloud storage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

An optical apparatus includes: a lens module (130) configured to have at least one first lens and magnetic members (132a-132j); a plurality of electromagnetic members (131a-131d, 133b) configured to generate magnetism and to face the magnetic members (132a-132j); and a controller configured to control the magnetism of the plurality of electromagnetic members (131a-131d, 133b) to move the lens module (130), wherein the magnetic members (132a-132j) are located on first surfaces of the lens module (130), and the first surfaces are surfaces which intersect with a first direction corresponding to an optical axis of the at least one first lens.

Description

OPTICAL APPARATUS, IMAGING APPARATUS AND ELECTRONIC DEVICE TECHNICAL FIELD
The present disclosure relates to an optical apparatus, an imaging apparatus and an electronic device. Furthermore, the disclosure relates to a method to actuate a lens module for automatic focusing and/or optical image stabilization, and a method for capturing an image by using an apparatus having the optical apparatus and an imaging sensor, such as an imaging apparatus and an electronic device.
BACKGROUND
In recent, there exists an electronic device (e.g. a mobile phone, a smart phone, a wireless communication terminal, a tablet device, a personal computer, or the like) having a high-performance camera capability which may perform automatic focusing and/or optical image stabilization. Such a camera capability may be realized by using a high-quality optical apparatus and an imaging sensor such as CMOS (Complementary Metal-Oxide-Semiconductor) and CCD (Charge Coupled Device) .
The high-quality optical apparatus has a lens system including multiple lenses for aberration correction and a controller to move the lens system for the automatic focusing and/or the optical image stabilization. In such a lens system, the multiple lenses are usually arranged along a common optical axis, and a length of the lens system along the optical axis is larger than that of an average-quality lens system. Therefore, such a conventional structure of the optical apparatus causes increasing in size and thickness of the electronic device.
To reduce the size of the electronic device, US 2018/0024329 A1 and US 2018/0120674 A1 suggest to use a bending optical element such as a mirror or a prism for bending the optical axis of the lens system in order to improve freedom in arranging the optical apparatus and make it possible to implement optimal arrangement of the optical apparatus in the electronic device. In these prior arts, the controller of the optical apparatus is configured to move the entire lens system for the automatic focusing and the optical image stabilization. The entire lens system including the multiple lenses is heavy, and the controller to move the entire lens system needs to have multiple large actuating members and/or a complicated actuating system. This also causes increasing in size and thickness of the electronic device.
SUMMARY
Embodiments provide an optical apparatus, an imaging apparatus, an electronic device, a method for actuating a lens module for automatic focusing and/or optical image stabilization, and a method for capturing an image by using an apparatus having the optical apparatus and an imaging sensor, such as an imaging apparatus and an electronic device. For example, the electronic device may be a mobile phone, a smart phone, a wireless communication terminal, a tablet device, a personal computer, or the like. The imaging apparatus may be a still camera, a video camera, a movie camera, or the like.
To achieve the foregoing objective, a possible implementation form of an embodiment provides an optical apparatus comprising: a lens system including a plurality of lenses; and a controller configured to move only a part of the plurality of lenses for automatic focusing and/or optical image stabilization.
According to this structure of the optical apparatus, the controller moves only the part of the plurality of lenses lighter than the entire lens system, and  does not need to have the multiple large actuating members and/or the complicated actuating system. This makes it possible to reduce the size of the optical apparatus as well as that of the electronic device and the imaging apparatus which are equipped with the optical apparatus. In addition, following aspects of the embodiments provide technical solution to reduce the thickness of the optical apparatus, the electronic device and the imaging apparatus.
A first aspect of an embodiment provides an optical apparatus. In a first possible implementation form of the first aspect, the optical apparatus comprises: a lens module configured to have at least one first lens and magnetic members; a plurality of electromagnetic members configured to generate magnetism and to face the magnetic members; and a controller configured to control the magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on first surfaces of the lens module, and the first surfaces are surfaces which intersect with a first direction corresponding to an optical axis of the at least one first lens.
According to the first possible implementation form of the first aspect, the magnetic members and the electromagnetic members may move the lens module and implement at least the optical image stabilization. Furthermore, the magnetic members are not located on specific surfaces of the lens module that intersect with a specific direction perpendicular to the first direction, and the electromagnetic members are also not located at positions facing these specific surfaces. This structure makes it possible to reduce a thickness of the optical apparatus along the specific direction and to reduce a thickness of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
A second possible implementation form of the first aspect provides: the optical apparatus according to the first or second possible implementation form  of the first aspect, where the controller controls the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens. The plurality of electromagnetic members may generate magnetism with first or second magnetic polarity by applying current thereto. The controller may control the current applied to a specific electromagnetic member among the plurality of electromagnetic members to generate attractive or repulsive force between the specific electromagnetic member and a magnetic member facing the specific electromagnetic member.
According to the second possible implementation form of the first aspect, the controller may move the lens module in a plane defined by the second and third directions to implement the optical image stabilization.
A third possible implementation form of the first aspect provides: the optical apparatus according to the first or second implementation form of the first aspect, where the lens module is further configured to have a moving unit for moving the at least one first lens along the first direction, wherein the at least one first lens moves inside the lens module.
According to the third possible implementation form of the first aspect, the controller may move the lens module along the first direction to implement the automatic focusing.
A fourth possible implementation form of the first aspect provides: the optical apparatus according to any one of the first to third possible implementation forms of the first aspect, further comprising: a bending optical element configured to direct an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
According to the fourth possible implementation form of the first aspect,  an incident direction of the light entering into the optical apparatus may be set to be different from the optical axis of the at least one first lens. This makes it easy to match the specific direction perpendicular to the first direction with a thickness direction of the electronic device which is equipped with the optical apparatus, when the fore-front lens is located on the back of the slim-type electronic device.
A fifth possible implementation form of the first aspect provides: the optical apparatus according to the fourth possible implementation form of the first aspect, where the optical apparatus is embedded in an electronic device, wherein the first direction corresponding to the optical axis of the at least one first lens is perpendicular to the thickness direction of the electronic device.
According to the fifth possible implementation form of the first aspect, the thickness of the electronic device may be reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
A sixth possible implementation form of the first aspect provides: the optical apparatus according to the fifth possible implementation form of the first aspect, where a first set of magnetic members located on an object-side surface among the first surfaces is used for movement of the lens module along a first axis in a plane perpendicular to the optical axis of the at least one first lens; and a second set of magnetic members located on an image-side surface among the first surfaces is used for movement of the lens module along a second axis in the plane perpendicular to the optical axis of the at least one first lens.
According to the sixth possible implementation form of the first aspect, the first set of magnetic members and the second set of magnetic members are separately located on the sides different from each other, thereby simplifying the structure of the members in the optical apparatus.
A seventh possible implementation form of the first aspect, the optical  apparatus comprising: a lens module configured to have at least one first lens and magnetic members; a plurality of electromagnetic members configured to generate magnetism and to face the magnetic members; and a controller configured to control the magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on second surfaces of the lens module, and the second surfaces are surfaces which intersect with a specific direction perpendicular to a first direction corresponding to an optical axis of the at least one first lens.
According to the seventh possible implementation form of the first aspect, the magnetic members and the electromagnetic members may move the lens module and implement at least one of the optical image stabilization and the automatic focusing. Furthermore, the magnetic members are not located on specific surfaces of the lens module that intersect with the specific direction perpendicular to the first direction, and the electromagnetic members are also not located at positions facing these specific surfaces. This structure makes it possible to reduce a thickness of the optical apparatus along the specific direction and to reduce a thickness of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
An eighth possible implementation form of the first aspect provides: the optical apparatus according to the seventh possible implementation form of the first aspect, where the controller controls the magnetism of the plurality of electromagnetic members to move the lens module along the first directions corresponding to the optical axis of the at least one first lens.
According to the eighth possible implementation form of the first aspect, the controller may move the lens module along the first direction to implement the automatic focusing.
A ninth possible implementation form of the first aspect provides: the  optical apparatus according to the seventh or eighth possible implementation form of the first aspect, where the controller controls the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
According to the ninth possible implementation form of the first aspect, the controller may move the lens module in the plane defined by the second and third directions to implement the optical image stabilization.
A tenth possible implementation form of the first aspect provides: the optical apparatus according to any one of the seventh to ninth possible implementation forms of the first aspect, further comprising: a bending optical element configured to direct an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
According to the tenth possible implementation form of the first aspect, the incident direction of the light entering into the optical apparatus may be set to be different from the optical axis of the at least one first lens. This makes it easy to match the specific direction perpendicular to the first direction with the thickness direction of the electronic device which is equipped with the optical apparatus, when the fore-front lens is located on the back of the slim-type electronic device.
An eleventh possible implementation form of the first aspect provides: the optical apparatus according to the tenth possible implementation form of the first aspect, where the optical apparatus is embedded in an electronic device, wherein the specific direction is perpendicular to a thickness direction of the electronic device.
According to the eleventh possible implementation form of the first  aspect, the thickness of the electronic device may be reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
A twelfth possible implementation form of the first aspect provides: the optical apparatus according to the eleventh possible implementation form of the first aspect, where a third set of magnetic members located on one surface of the second surfaces and a fourth set of magnetic members located on another surface of the second surfaces are used for movement of the lens module along second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
According to the twelfth possible implementation form of the first aspect, the third set of magnetic members and the fourth set of magnetic members are separately located on the surfaces different from each other, thereby simplifying the structure of the members in the optical apparatus.
A thirteenth possible implementation form of the first aspect provides: the optical apparatus according to the twelfth possible implementation form of the first aspect, where the third and fourth sets of magnetic members are also used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
According to the thirteenth possible implementation form of the first aspect, the automatic focusing may be implemented by using the third and fourth sets of magnetic members and their corresponding electromagnetic members.
A fourteenth possible implementation form of the first aspect provides: the optical apparatus according to any one of the first to twelfth possible implementation forms of the first aspect, where the lens module comprises: a lens unit configured to have the at least one first lens and another electromagnetic member; a housing configured to enclose the lens unit and  have the magnetic members, wherein a fifth set of magnetic members is located on an inside surface of the housing to face said another electromagnetic member; and wherein the fifth set of magnetic members and said another electromagnetic member are used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
According to the fourteenth possible implementation form of the first aspect, the automatic focusing may be implemented by using said another electromagnetic member and the fifth set of magnetic members. Thus, the magnetic members on the second surfaces and the plurality of electromagnetic members may be used only for the optical image stabilization, thereby simplifying the structure of the members in the optical apparatus.
A fifteenth possible implementation form of the first aspect provides: the optical apparatus according to the fifth or eleventh possible implementation form of the first aspect, where each lens arranged along the optical axis of the at least one first lens has an elliptical aperture shape, wherein a minor axis of the elliptical aperture shape matches with the thickness direction of the electronic device.
According to the fifteenth possible implementation form of the first aspect, the thickness of the electronic device may be effectively reduced.
A sixteenth possible implementation form of the first aspect provides: the optical apparatus according to the fifth or eleventh possible implementation form of the first aspect, where each lens arranged along the optical axis of the at least one first lens has a circular aperture shape with partially missing portions, wherein the missing portions face each other along a direction matching with the thickness direction of the electronic device.
According to the sixteenth possible implementation form of the first aspect, the thickness of the electronic device may be effectively reduced.
A second aspect of an embodiment provides an imaging apparatus. In a possible implementation form of the second aspect, the imaging apparatus comprises: the optical apparatus according to any one of the first to sixteenth possible implementation forms of the first aspect, and an imaging sensor.
According to the possible implementation form of the second aspect, the thickness of the imaging apparatus may be effectively reduced and the slim-type imaging apparatus having the high-performance imaging capability may be realized.
A third aspect of an embodiment provides an electronic device with an imaging function. In a possible implementation of the third aspect, the electronic device comprises: the optical apparatus according to any one of the first to sixteenth possible implementation forms of the first aspect, and an imaging sensor.
According to the possible implementation form of the third aspect, the thickness of the electronic device may be effectively reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
A fourth aspect of an embodiment provides a method for actuating a lens module which includes at least one first lens and magnetic members facing a plurality of electromagnetic members. In a first possible implementation form of the fourth aspect, the method comprises: controlling, by a controller, magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on first surfaces of the lens module, and the first surfaces are surfaces which intersect with a first direction corresponding to an optical axis of the at least one first lens.
According to the first possible implementation form of the fourth aspect, the magnetic members and the electromagnetic members may move the lens  module and implement at least the optical image stabilization, where the magnetic members are not located on specific surfaces of the lens module that intersect with a specific direction perpendicular to the first direction, and the electromagnetic members are also not located at positions facing these specific surfaces. This makes it possible to reduce a thickness of the optical apparatus along the specific direction and to reduce a thickness of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
A second possible implementation form of the fourth aspect provides: the method according to the first or second possible implementation form of the fourth aspect, where the controlling comprises controlling, by the controller, the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
According to the second possible implementation form of the fourth aspect, the lens module may be moved, by the controller, in a plane defined by the second and third directions for the optical image stabilization.
A third possible implementation form of the fourth aspect provides: the method according to the first or second possible implementation form of the fourth aspect, where the controlling comprises moving, by a moving unit of the lens module, the at least one first lens along the first direction, wherein the at least one first lens moves inside the lens module.
According to the third possible implementation form of the first aspect, the lens module may be moved, by the controller, along the first direction for the automatic focusing.
A fourth possible implementation form of the fourth aspect provides: the method according to any one of the first to third possible implementation form of the fourth aspect, where directing, by a bending optical element, an incident light  to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
According to the fourth possible implementation form of the fourth aspect, an incident direction of the light entering into the optical apparatus may be set to be different from the optical axis of the at least one first lens. This makes it easy to match the specific direction perpendicular to the first direction with a thickness direction of the electronic device which is equipped with the optical apparatus, when the fore-front lens is located on the back of the slim-type electronic device.
A fifth possible implementation form of the fourth aspect provides: the method according to the fourth possible implementation form of the fourth aspect, where an optical apparatus including the lens module, the plurality of electromagnetic members and the controller is embedded in an electronic device, wherein the first direction corresponding to the optical axis of the at least one first lens is perpendicular to a thickness direction of the electronic device.
According to the fifth possible implementation form of the fourth aspect, the thickness of the electronic device may be reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
A sixth possible implementation form of the fourth aspect provides: the method according to the fifth possible implementation form of the fourth aspect, where a first set of magnetic members located on an object-side surface among the first surfaces is used for movement of the lens module along a first axis in a plane perpendicular to the optical axis of the at least one first lens; and a second set of magnetic members located on an image-side surface among the first surfaces is used for movement of the lens module along a second axis in the plane perpendicular to the optical axis of the at least one first lens.
According to the sixth possible implementation form of the fourth aspect, the first set of magnetic members and the second set of magnetic members are separately located on the sides different from each other, thereby simplifying the structure of the members in the optical apparatus.
A seventh possible implementation form of the fourth aspect provides: the method comprising: controlling, by a controller, magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on second surfaces of the lens module, and the second surfaces are surfaces which intersect with a specific direction perpendicular to a first direction corresponding to an optical axis of the at least one first lens.
According to the seventh possible implementation form of the fourth aspect, the magnetic members and the electromagnetic members may move the lens module and implement at least one of the optical image stabilization and the automatic focusing. Furthermore, the magnetic members are not located on specific surfaces of the lens module that intersect with the specific direction perpendicular to the first direction, and the electromagnetic members are also not located at positions facing these specific surfaces. This structure makes it possible to reduce a thickness of the optical apparatus along the specific direction and to reduce a thickness of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
An eighth possible implementation form of the fourth aspect provides: the method according to the seventh possible implementation form of the fourth aspect, where the controlling comprises controlling, by the controller, the magnetism of the plurality of electromagnetic members to move the lens module along the first directions corresponding to the optical axis of the at least one first lens for automatic focusing.
According to the eighth possible implementation form of the fourth  aspect, the controller may move the lens module along the first direction to implement the automatic focusing.
A ninth possible implementation form of the fourth aspect provides: the method according to the seventh or eighth possible implementation forms of the fourth aspect, where the controlling comprises controlling, by the controller, the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens for optical image stabilization.
According to the ninth possible implementation form of the first aspect, the controller may move the lens module in the plane defined by the second and third directions to implement the optical image stabilization.
A tenth possible implementation form of the fourth aspect provides: the method according to any one of the seventh to ninth possible implementation forms of the fourth aspect, where directing, by a bending optical element, an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
According to the tenth possible implementation form of the fourth aspect, the incident direction of the light entering into the optical apparatus may be set to be different from the optical axis of the at least one first lens. This makes it easy to match the specific direction perpendicular to the first direction with the thickness direction of the electronic device which is equipped with the optical apparatus, when the fore-front lens is located on the back of the slim-type electronic device.
An eleventh possible implementation form of the fourth aspect provides: the method according to the tenth possible implementation form of the fourth aspect, where an optical apparatus including the lens module, the plurality of electromagnetic members and the controller is embedded in an electronic device,  wherein the specific direction is perpendicular to a thickness direction of the electronic device.
According to the eleventh possible implementation form of the fourth aspect, the thickness of the electronic device may be reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
A twelfth possible implementation form of the fourth aspect provides: the method according to the eleventh possible implementation form of the fourth aspect, where a third set of magnetic members located on one surface of the second surfaces and a fourth set of magnetic members located on another surface of the second surfaces are used for movement of the lens module along second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
According to the twelfth possible implementation form of the fourth aspect, the third set of magnetic members and the fourth set of magnetic members are separately located on the surfaces different from each other, thereby simplifying the structure of the members in the optical apparatus.
A thirteenth possible implementation form of the fourth aspect provides: the method according to the twelfth possible implementation form of the fourth aspect, where the third and fourth sets of magnetic members are also used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
According to the thirteenth possible implementation form of the fourth aspect, the automatic focusing may be implemented by using the third and fourth sets of magnetic members and their corresponding electromagnetic members.
A fourteenth possible implementation form of the fourth aspect provides: the method according to any one of the seventh to twelfth possible  implementation forms of the fourth aspect, where the lens module comprises: a lens unit configured to have the at least one first lens and another electromagnetic member; a housing configured to enclose the lens unit and have the magnetic members, wherein a fifth set of magnetic members is located on an inside surface of the housing to face said another electromagnetic member; and wherein the fifth set of magnetic members and said another electromagnetic member are used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
According to the fourteenth possible implementation form of the fourth aspect, the automatic focusing may be implemented by using said another electromagnetic member and the fifth set of magnetic members. Thus, the magnetic members on the second surfaces and the plurality of electromagnetic members may be used only for the optical image stabilization, thereby simplifying the structure of the members in the optical apparatus.
A fifteenth possible implementation form of the fourth aspect provides: the method according to the fifth or eleventh possible implementation form of the fourth aspect, where each lens arranged along the optical axis of the at least one first lens has an elliptical aperture shape, wherein a minor axis of the elliptical aperture shape matches with the thickness direction of the electronic device.
According to the fifteenth possible implementation form of the fourth aspect, the thickness of the electronic device may be effectively reduced.
A sixteenth possible implementation form of the fourth aspect provides: the method according to the fifth or eleventh possible implementation form of the fourth aspect, where each lens arranged along the optical axis of the at least one first lens has a circular aperture shape with partially missing portions, wherein the missing portions face each other along a direction matching with the thickness direction of the electronic device.
According to the sixteenth possible implementation form of the fourth aspect, the thickness of the electronic device may be effectively reduced.
A fifth aspect of an embodiment provides: a method applied to an optical apparatus with a lens system including a plurality of lenses, the method comprising: moving only a part of the plurality of lenses for automatic focusing and/or optical image stabilization.
According to the fifth aspect, only the part of the plurality of lenses lighter than the entire lens system moves, and the multiple large actuating members and/or the complicated actuating system does not required for the moving. This makes it possible to reduce the size of the optical apparatus as well as that of the electronic device and the imaging apparatus which are equipped with the optical apparatus.
A sixth aspect of an embodiment provides: a method for capturing an image by an imaging apparatus having the optical apparatus according to any one of the first to sixteenth possible implementation forms of the first aspect and an imaging sensor, where the method comprises: capturing, by the imaging sensor, the image based on a light which enters into the imaging sensor through the optical apparatus.
According to the sixth aspect, the thickness of the imaging apparatus may be effectively reduced and the slim-type imaging apparatus having the high-performance imaging capability may be realized.
A seventh aspect of an embodiment provides: a method for capturing an image by an electronic device having the optical apparatus according to any one of the first to sixteenth possible implementation forms of the first aspect and an imaging sensor, where the method comprises: capturing, by the imaging sensor, the image based on a light which enters into the imaging sensor through the optical apparatus.
According to the seventh aspect, the thickness of the electronic device may be effectively reduced and the slim-type electronic device having the high-performance imaging capability may be realized.
BRIEF DESCRIPTION OF DRAWINGS
Fig. 1 is a perspective view of an imaging module according to an embodiment of the present disclosure,
Fig. 2 is a disassembled perspective view of the imaging module according to the embodiment of the present disclosure,
Fig. 3 is a perspective view of a lens module according to the embodiment of the present disclosure,
Fig. 4 is a top view of the lens module according to the embodiment of the present disclosure,
Fig. 5 is a bottom view of the lens module according to the embodiment of the present disclosure,
Fig. 6 is a first side view (+X direction) of the lens module according to the embodiment of the present disclosure,
Fig. 7 is a second side view (-X direction) of the lens module according to the embodiment of the present disclosure,
Fig. 8 is a third side view (-Y direction) of the lens module according to the embodiment of the present disclosure,
Fig. 9 is a fourth side view (+Y direction) of the lens module according to the embodiment of the present disclosure,
Fig. 10 is a perspective view of a lens module according to a first variation of the embodiment of the present disclosure,
Fig. 11 is a top view of the lens module according to the first variation of the embodiment of the present disclosure,
Fig. 12 is a bottom view of the lens module according to the first variation of the embodiment of the present disclosure,
Fig. 13 is a first side view (+X direction) of the lens module according to the first variation of the embodiment of the present disclosure,
Fig. 14 is a second side view (-X direction) of the lens module according to the first variation of the embodiment of the present disclosure,
Fig. 15 is a third side view (-Y direction) of the lens module according to the first variation of the embodiment of the present disclosure,
Fig. 16 is a fourth side view (+Y direction) of the lens module according to the first variation of the embodiment of the present disclosure,
Fig. 17 is a perspective view of a lens module according to a second variation of the embodiment of the present disclosure,
Fig. 18 is a top view of the lens module according to the second variation of the embodiment of the present disclosure,
Fig. 19 is a bottom view of the lens module according to the second variation of the embodiment of the present disclosure,
Fig. 20 is a first side view (+X direction) of the lens module according to the second variation of the embodiment of the present disclosure,
Fig. 21 is a second side view (-X direction) of the lens module according to the second variation of the embodiment of the present disclosure,
Fig. 22 is a third side view (-Y direction) of the lens module according to the second variation of the embodiment of the present disclosure,
Fig. 23 is a fourth side view (+Y direction) of the lens module according to the second variation of the embodiment of the present disclosure,
Fig. 24 is a block diagram of an imaging apparatus according to the embodiment of the present disclosure, and
Fig. 25 is a block diagram of an electronic device according to the  embodiment of the present disclosure.
DESCRIPTION OF EMBODIMENTS
The following describes technical solutions of the embodiments, referring to the accompanying drawings. It will be understood that the embodiments described below are not all but just some of embodiments relating to the present disclosure. It is to be noted that all other embodiments which may be derived by a person skilled in the art based on the embodiments described below without creative efforts shall fall within the protection scope of the present disclosure.
Fig. 1 shows the external appearance of an imaging module 100 according to an embodiment. Fig. 1 is a perspective view of an imaging module according to an embodiment of the present disclosure. The imaging module 100 has an optical apparatus and an imaging sensor mounted therein. The imaging module 100 may be implemented on an apparatus having an imaging function. This apparatus may be compact and flat. The apparatus may be an imaging apparatus or an electronic device. The imaging apparatus may be a still camera, a video camera, a movie camera or the like. The electronic device may be a mobile phone, a smart phone, a wireless communication terminal, a tablet device, a personal computer or the like. For example, the apparatus may have an outer shape with a thickness D, a width W and a height H, where W is smaller than H and D is considerably smaller than W. In some embodiments, the thickness D Y of the imaging module 100 may be smaller than the thickness D of the apparatus.
The imaging module 100 may be constituted by five modules M1, M2, M3, M4 and M5. The module M1 has a lens 111 as a fore-front lens, where incident light from a subject enters the lens 111. Hereinafter, the optical axis of  the lens 111 will be referred to as "first optical axis" for simplicity of the description. The widthwise direction of the imaging module 100 will be referred to as "X direction, " a direction corresponding to the first optical axis will be referred to as "Y direction, " and the height direction of the imaging module 100 will be referred to as "Z direction. "
Fig. 2 is a disassembled perspective view of the imaging module according to the embodiment of the present disclosure. As shown in Fig. 2, the module M1 may include the lens 111 and a prism 112. Optionally, the prism 112 may be replaced by a mirror. Each of the prism 112 and the mirror is an example of a bending optical element according to the present disclosure. The module M2 may include  lenses  121, 122 and 123. The module M3 may include a moving lens module 130 which provides the functions of optical image stabilization and/or automatic focusing. The module M4 may include a lens 141. The module M5 may include an imaging sensor 151. The module M5 may also include a filter such as an infrared cut filter which is disposed in front of the imaging sensor 151.
The  lenses  111, 121, 122, 123 and 141, and the lens of the moving lens module 130 form a lens system in the imaging module 100. A module group including at least the modules M1 and M3 among the four modules M1, M2, M3 and M4 is an example of the optical apparatus according to the present disclosure. Hereinafter, an optical axis common to the  lenses  121, 122, 123 and 141, and the lens of the moving lens module 130 will be referred to as "second optical axis" for simplicity of the description. The second optical axis corresponds to the Z direction. The lens of the moving lens module 130 may move within an X-Y plane for optical image stabilization as described below. When the lens of the moving lens module 130 moves, the optical axis of this lens may be deviated from the second optical axis.
The incident light that has entered the lens 111 passes through the lens 111 to enter the prism 112. The prism 112 bends the optical path of the light output from the lens 111 to direct the light toward the lens 121. As apparent from the above, the imaging module 100 may adopt folded optics. The light that has entered the lens 121 passes through the  lenses  121, 122 and 123 to enter the lens of the moving lens module 130. The light output from the lens of the moving lens module 130 passes through the lens 141 to enter the imaging sensor 151. The imaging sensor 151 outputs an image signal based on the intensities of light input to the individual pixels.
Although the imaging module 100 shown in Fig. 2 has six lenses, the imaging module 100 may have a different number of lenses. Since various monochromatic aberrations and chromatic aberrations need to be corrected in order to implement a high-performance lens system, it is preferable to mount an adequate number of lenses. Mounting a large number of lenses inevitably increases the height (Z-directional length) of the imaging module 100. If the direction of the height H of the apparatus having the imaging module 100 mounted therein is matched with the Z direction, the increase in the number of lenses mounted does not interfere with making the apparatus compact and flat.
Figs. 3-9 schematically show a specific structure of the moving lens module 130 according to an embodiment of the present disclosure. Fig. 3 is a perspective view of a lens module according to the embodiment of the present disclosure, Fig. 4 is a top view of the lens module according to the embodiment of the present disclosure, Fig. 5 is a bottom view of the lens module according to the embodiment of the present disclosure, Fig. 6 is a first side view (+X direction) of the lens module according to the embodiment of the present disclosure, Fig. 7 is a second side view (-X direction) of the lens module according to the embodiment of the present disclosure, Fig. 8 is a third side view (-Y direction) of  the lens module according to the embodiment of the present disclosure, and Fig. 9 is a fourth side view (+Y direction) of the lens module according to the embodiment of the present disclosure. It is to be noted that a part of the structure is omitted in Figs. 3-9 for simplicity of the description.
Fig. 3 schematically shows the shape of the moving lens module 130 when the moving lens module 130 is viewed obliquely. Fig. 4 schematically shows the shape of the moving lens module 130 when the moving lens module 130 is viewed from the top. Fig. 5 schematically shows the shape of the moving lens module 130 when the moving lens module 130 is viewed from the bottom. Fig. 6 schematically shows the shape of the moving lens module 130 when one side surface of the moving lens module 130 is viewed in a +X direction. Fig. 7 schematically shows the shape of the moving lens module 130 when one side surface of the moving lens module 130 is viewed in a -X direction. Fig. 8 schematically shows the shape of the moving lens module 130 when one side surface of the moving lens module 130 is viewed in a +Y direction. Fig. 9 schematically shows the shape of the moving lens module 130 when one side surface of the moving lens module 130 is viewed in a -Y direction.
The moving lens module 130 includes  coils  131a, 131b, 131c and 131d. The positions of the  coils  131a, 131b, 131c and 131d may be fixed; for example, the coils may be held by a fixing member fixed to the inner wall surface of the module M3. The moving lens module 130 further includes a housing 132 and a lens unit 133. The housing 132 has an internal space for enclosing the lens unit 133. The lens unit 133 is disposed inside the housing 132. The lens unit 133 is connected to the housing 132 via a spring and/or an indirect member such as viscous fluid, and may be movable at least in a +Z direction and a -Z direction within the internal space of the housing 132.
Magnets  132a, 132b, 132c, 132d, 132e, 132f, 132g, 132h, 132i and 132j  are mounted on the housing 132. The lens unit 133 has a lens 133a and a coil 133b. Optionally, the lens unit 133 may have a plurality of lenses. The  coils  131a, 131b, 131c, 131d and 133b are examples of electromagnetic members according to the present disclosure. The  magnets  132a, 132b, 132c, 132d, 132e, 132f, 132g, 132h, 132i and 132j are examples of magnetic members according to the present disclosure. A set of the housing 132 and the lens unit 133 is an example of a lens module according to the present disclosure.
As shown in Figs. 4, 6 and 7, the  magnets  132a and 132b are disposed side by side in the X direction on the top surface of the housing 132 intersecting with the Z direction. The coil 131a is disposed so as to face the  magnets  132a and 132b, and may be disposed so as to extend across the boundary between the  magnets  132a and 132b in a non-energization state. The lengthwise direction of the coil 131a may match with the Y direction. The magnet 132a has a first polarity (for example, N-pole) . The magnet 132b has a second polarity (for example, S-pole) different from the first polarity. While a current flows through the coil 131a, the coil 131a generates magnetism. When the direction of the current is changed, the polarity of the magnetism generated by the coil 131a is inverted. The mutual interaction (attractive force and repulsive force) between the coil 131a generating magnetism and the  magnets  132a and 132b produces force that moves the moving lens module 130 in the +X direction or -X direction.
The  magnets  132c and 132d are disposed side by side in the X direction on the top surface of the housing 132 intersecting with the Z direction. The positional relationship among the coil 131b and the  magnets  132c and 132d corresponds to the positional relationship among the coil 131a and the  magnets  132a and 132b. The magnet 132c has the first polarity. The magnet 132d has the second polarity. The direction of the current flowing through the coil 131a  may be controlled to be the same as the direction of the current flowing through the coil 131b. The configuration may be modified in such a way that the magnet 132c has the second polarity, the magnet 132d has the first polarity, and the directions of the currents flowing through the  coils  131a and 131b may be controlled to differ from each other.
As shown in Figs. 5, 6 and 7, the  magnets  132e and 132f are disposed side by side in the Y direction on the bottom surface of the housing 132 intersecting with the Z direction. The coil 131c is disposed so as to face the  magnets  132e and 132f, and may be disposed so as to extend across the boundary between the  magnets  132e and 132f in a non-energization state. The lengthwise direction of the coil 131c may match with the X direction. The magnet 132e has a third polarity (for example, N-pole) . The magnet 132f has a fourth polarity (for example, S-pole) different from the third polarity. The mutual interaction (attractive force and repulsive force) between the coil 131c generating magnetism and the  magnets  132e and 132f produces force that moves the moving lens module 130 in the +Y direction or -Y direction.
The  magnets  132g and 132h are disposed side by side in the Y direction on the bottom surface of the housing 132 intersecting with the Z direction. The positional relationship among the coil 131d and the  magnets  132g and 132h corresponds to the positional relationship among the coil 131c and the  magnets  132e and 132f. The magnet 132g has the third polarity. The magnet 132h has the fourth polarity. The direction of the current flowing through the coil 131c may be controlled to be the same as the direction of the current flowing through the coil 131d. The configuration may be modified in such a way that the magnet 132g has the fourth polarity, the magnet 132h has the third polarity, and the directions of the currents flowing through the  coils  131c and 131d may be controlled to differ from each other.
As shown in Figs. 8 and 9, the  magnets  132i and 132j are disposed side by side in the Z direction on the internal surface of the housing 132 intersecting with the X direction. The coil 133b is disposed on that surface of the surfaces of the lens unit 133 which intersects with the X direction. The coil 133b is disposed so as to face the  magnets  132i and 132j, and may be disposed so as to extend across the boundary between the  magnets  132i and 132j in a non-energization state. The lengthwise direction of the coil 133b may match with the Y direction. The magnet 132i has a fifth polarity (for example, N-pole) . The magnet 132j has a sixth polarity (for example, S-pole) different from the fifth polarity. The mutual interaction (attractive force and repulsive force) between the coil 133b generating magnetism and the  magnets  132i and 132j produces force that moves the lens unit 133 in a direction corresponding to the optical axis of the lens 133a.
According to the above-described structural features, the position of the lens 133a can be shifted in an arbitrary direction on a plane perpendicular to the second optical axis by controlling the magnetism generated by using the  coils  131a, 131b, 131c and 131d. This mechanism to adequately control the optical axis of the lens 133a may provide the function of optical image stabilization. In addition, the position of the lens 133a can be shifted along the second optical axis by controlling the magnetism generated by using the coil 133b. This mechanism may provide the function of automatic focusing. Any coil and any magnet does not exist on specific surfaces among the surfaces of the moving lens module 130, where the specific surfaces intersect with the Y direction corresponding to the thickness direction of the imaging module 100. According to the above-described structural features, the functions of optical image stabilization and/or automatic focusing may be implemented without increasing the thickness of the imaging module 100. This may realize slim and compact  apparatuses with the high-performance camera capability provided by the imaging module 100 according to the embodiment of the present disclosure.
In addition, each lens arranged along the second optical axis may have an elliptical aperture shape, and a minor axis of the elliptical aperture shape may be configured to match with the thickness direction of the imaging module 100. Alternatively, each lens arranged along the second optical axis may have a circular aperture shape with partially missing portions, and the missing portions may be configured to face each other along a direction matching with the thickness direction of the imaging module 100. These make the apparatuses more slim and compact.
(First variation)
Figs. 10-16 schematically show a specific structure of a moving lens module 200 according to a first variation of the embodiment of the present disclosure. It is to be noted that a part of the structure is omitted in Figs. 10-16 for simplicity of the description. Fig. 10 is a perspective view of a lens module according to a first variation of the embodiment of the present disclosure, Fig. 11 is a top view of the lens module according to the first variation of the embodiment of the present disclosure, Fig. 12 is a bottom view of the lens module according to the first variation of the embodiment of the present disclosure, Fig. 13 is a first side view (+X direction) of the lens module according to the first variation of the embodiment of the present disclosure, Fig. 14 is a second side view (-X direction) of the lens module according to the first variation of the embodiment of the present disclosure, Fig. 15 is a third side view (-Y direction) of the lens module according to the first variation of the embodiment of the present disclosure, and Fig. 16 is a fourth side view (+Y direction) of the lens module according to the first variation of the embodiment of the present disclosure.
Fig. 10 schematically shows the shape of the moving lens module 200 when the moving lens module 200 is viewed obliquely. Fig. 11 schematically shows the shape of the moving lens module 200 when the moving lens module 200 is viewed from the top. Fig. 12 schematically shows the shape of the moving lens module 200 when the moving lens module 200 is viewed from the bottom. Fig. 13 schematically shows the shape of the moving lens module 200 when one side surface of the moving lens module 200 is viewed in a +X direction. Fig. 14 schematically shows the shape of the moving lens module 200 when one side surface of the moving lens module 200 is viewed in a -X direction. Fig. 15 schematically shows the shape of the moving lens module 200 when one side surface of the moving lens module 200 is viewed in a +Y direction. Fig. 16 schematically shows the shape of the moving lens module 200 when one side surface of the moving lens module 200 is viewed in a -Y direction.
The moving lens module 200 includes  coils  201a, 201b, 201c and 201d. The positions of the  coils  201a, 201b, 201c and 201d may be fixed; for example, the coils may be held by a fixing member fixed to the inner wall surface of the module M3. The moving lens module 200 further includes a housing 202 and a lens unit 203. The housing 202 has an internal space for enclosing the lens unit 203. The lens unit 203 is disposed inside the housing 202. The lens unit 203 is connected to the housing 202 via a spring and/or an indirect member such as viscous fluid, and may be movable at least in a +Z direction and a -Z direction within the internal space of the housing 202.
Magnets  202a, 202b, 202c, 202d, 202e, 202f, 202g, 202h, 202i and 202j are mounted on the housing 202. The lens unit 203 has a lens 203a and a coil 203b. Optionally, the lens unit 203 may have a plurality of lenses. The  coils  201a, 201b, 201c, 201d and 203b are examples of electromagnetic members according to the present disclosure. The  magnets  202a, 202b, 202c, 202d,  202e, 202f, 202g, 202h, 202i and 202j are examples of magnetic members according to the present disclosure. A set of the housing 202 and the lens unit 203 is an example of a lens module according to the present disclosure.
As shown in Figs. 11, 12 and 14, the  magnets  202a and 202b are disposed side by side in the Z direction on that side surface of the housing 202 which intersects with the X direction. The coil 201a is disposed so as to face the  magnets  202a and 202b, and may be disposed so as to extend across the boundary between the  magnets  202a and 202b in a non-energization state. The lengthwise direction of the coil 201a may match with the Y direction. The magnet 202a has a first polarity (for example, N-pole) . The magnet 202b has a second polarity (for example, S-pole) different from the first polarity. The mutual interaction (attractive force and repulsive force) between the coil 201a generating magnetism and the  magnets  202a and 202b produces force that moves the moving lens module 200 in the +Z direction or -Z direction.
The  magnets  202c and 202d are disposed side by side in the Z direction on that side surface of the housing 202 which intersects with the X direction. The positional relationship among the coil 201b and the  magnets  202c and 202d corresponds to the positional relationship among the coil 201a and the  magnets  202a and 202b. The magnet 202c has the second polarity. The magnet 202d has the first polarity. The direction and the level of the current flowing through the coil 201a and the direction and the level of the current flowing through the coil 201b may be controlled independently of each other. The configuration may be modified in such a way that the magnet 202c has the first polarity and the magnet 202d has the second polarity. Since the direction and the magnitude of the force that is produced by the coil 201a and the  magnets  202a and 202b and the direction and the magnitude of the force that is produced by the coil 201b and the  magnets  202c and 202d are controlled independently in  the first variation, the force obtained by combining those forces may act to rotate the moving lens module 200 about the X axis as the rotational axis.
As shown in Figs. 11, 12 and 13, the magnets 202e and 202f are disposed side by side in the Z direction on that side surface of the housing 202 which intersects with the X direction. The coil 201c is disposed so as to face the magnets 202e and 202f, and may be disposed so as to extend across the boundary between the magnets 202e and 202f in a non-energization state. The lengthwise direction of the coil 201c may match with the Y direction. The magnet 202e has a third polarity (for example, N-pole) . The magnet 202f has a fourth polarity (for example, S-pole) different from the third polarity. The mutual interaction (attractive force and repulsive force) between the coil 201c generating magnetism and the magnets 202e and 202f produces force that moves the moving lens module 200 in the +Z direction or -Z direction.
The  magnets  202g and 202h are disposed side by side in the Z direction on that side surface of the housing 202 which intersects with the X direction. The positional relationship among the coil 201d and the  magnets  202g and 202h corresponds to the positional relationship among the coil 201c and the magnets 202e and 202f. The magnet 202g has the fourth polarity. The magnet 202h has the third polarity. The direction and the level of the current flowing through the coil 201c and the direction and the level of the current flowing through the coil 201d may be controlled independently of each other. The configuration may be modified in such a way that the magnet 202g has the third polarity and the magnet 202h has the fourth polarity. Since the direction of the force that is produced by the coil 201c and the magnets 202e and 202f is opposite to the direction of the force that is produced by the coil 201d and the  magnets  202g and 202h in the first variation, the force obtained by combining those forces may act to rotate the moving lens module 200 about the X axis as the rotational axis.
As shown in Figs. 15 and 16, the magnets 202i and 202j are disposed side by side in the Z direction on the internal surface of the housing 202 intersecting with the X direction. The coil 203b is disposed on that surface of the surfaces of the lens unit 203 which intersects with the X direction. The coil 203b is disposed so as to face the magnets 202i and 202j, and may be disposed so as to extend across the boundary between the magnets 202i and 202j in a non-energization state. The lengthwise direction of the coil 203b may match with the Y direction. The magnet 202i has a fifth polarity (for example, N-pole) . The magnet 202j has a sixth polarity (for example, S-pole) different from the fifth polarity. The mutual interaction (attractive force and repulsive force) between the coil 203b generating magnetism and the magnets 202i and 202j produces force that moves the lens unit 203 in a direction corresponding to the optical axis of the lens 203a.
According to the above-described structural features, the optical axis of the lens 203a can be tilted with respect to the second optical axis by controlling the magnetism generated on the  coils  201a, 201b, 201c and 201d. This mechanism to adequately control the optical axis of the lens 203a may provide the function of optical image stabilization. In addition, the position of the lens 203a can be shifted along the second optical axis by controlling the magnetism generated on the coil 203b. This mechanism may provide the function of automatic focusing. Any coil and any magnet are not provided on that surface of the surfaces of the moving lens module 200 which intersects with the Y direction corresponding to the thickness direction of the imaging module 100. According to the above-described structural features, the functions of optical image stabilization and/or automatic focusing can be provided without increasing the thickness of the imaging module 100. This may realize slim and compact apparatuses with the high-performance camera capability provided by the  imaging module 100 according to the embodiment of the present disclosure.
In addition, each lens arranged along the second optical axis may have an elliptical aperture shape, and a minor axis of the elliptical aperture shape may be configured to match with the thickness direction of the imaging module 100. Alternatively, each lens arranged along the second optical axis may have a circular aperture shape with partially missing portions, and the missing portions may be configured to face each other along a direction matching with the thickness direction of the imaging module 100. These make the apparatuses more slim and compact.
(Second variation)
Figs. 17-23 schematically show a specific structure of the moving lens module 300 according to a second variation of the embodiment of the present disclosure. It is to be noted that a part of the structure is omitted in Figs. 17-23 for simplicity of the description. Fig. 17 is a perspective view of a lens module according to a second variation of the embodiment of the present disclosure, Fig. 18 is a top view of the lens module according to the second variation of the embodiment of the present disclosure, Fig. 19 is a bottom view of the lens module according to the second variation of the embodiment of the present disclosure, Fig. 20 is a first side view (+X direction) of the lens module according to the second variation of the embodiment of the present disclosure, Fig. 21 is a second side view (-X direction) of the lens module according to the second variation of the embodiment of the present disclosure, Fig. 22 is a third side view (-Y direction) of the lens module according to the second variation of the embodiment of the present disclosure, and Fig. 23 is a fourth side view (+Y direction) of the lens module according to the second variation of the embodiment of the present disclosure.
Fig. 17 schematically shows the shape of the moving lens module 300  when the moving lens module 300 is viewed obliquely. Fig. 18 schematically shows the shape of the moving lens module 300 when the moving lens module 300 is viewed from the top. Fig. 19 schematically shows the shape of the moving lens module 300 when the moving lens module 300 is viewed from the bottom. Fig. 20 schematically shows the shape of the moving lens module 300 when one side surface of the moving lens module 300 is viewed in a +X direction. Fig. 21 schematically shows the shape of the moving lens module 300 when one side surface of the moving lens module 300 is viewed in a -X direction. Fig. 22 schematically shows the shape of the moving lens module 300 when one side surface of the moving lens module 300 is viewed in a +Y direction. Fig. 23 schematically shows the shape of the moving lens module 300 when one side surface of the moving lens module 300 is viewed in a -Y direction.
The moving lens module 300 includes  coils  301a, 301b, 301c and 301d. The positions of the  coils  301a, 301b, 301c and 301d may be fixed; for example, the coils may be held by a fixing member fixed to the inner wall surface of the module M3. The moving lens module 300 further includes a housing 302.
Magnets  302a, 302b, 302c, 302d, 302e, 302f, 302g and 302h are mounted on the lens unit 302. Optionally, the lens unit 302 may have a plurality of lenses. The  coils  301a, 301b, 301c and 301d are examples of electromagnetic members according to the present disclosure. The  magnets  302a, 302b, 302c, 302d, 302e, 302f, 302g and 302h are examples of magnetic members according to the present disclosure. The lens unit 302 is an example of a lens module according to the present disclosure.
As shown in Figs. 18, 19 and 21-23, the  magnets  302a and 302b are disposed side by side in the Z direction on that side surface of the lens unit 302 which intersects with the X direction. The coil 301a is disposed so as to face the  magnets  302a and 302b, and may be disposed so as to extend across the  boundary between the  magnets  302a and 302b in a non-energization state. The lengthwise direction of the coil 301a may match with the Y direction. The magnet 302a has a first polarity (for example, N-pole) . The magnet 302b has a second polarity (for example, S-pole) different from the first polarity. The mutual interaction (attractive force and repulsive force) between the coil 301a generating magnetism and the  magnets  302a and 302b produces force that moves the moving lens module 300 in the +Z direction or -Z direction.
The  magnets  302c and 302d are disposed side by side in the Z direction on that side surface of the lens unit 302 which intersects with the X direction. The positional relationship among the coil 301b and the  magnets  302c and 302d corresponds to the positional relationship among the coil 301a and the  magnets  302a and 302b. The magnet 302c has the first polarity. The magnet 302d has the second polarity. The direction and the level of the current flowing through the coil 301a and the direction and the level of the current flowing through the coil 301b may be controlled independently of each other. The configuration may be modified in such a way that the magnet 302c has the second polarity and the magnet 302d has the first polarity.
As shown in Figs. 18-20, 22 and 23, the  magnets  302e and 302f are disposed side by side in the Z direction on that side surface of the lens unit 302 which intersects with the X direction. The coil 301c is disposed so as to face the  magnets  302e and 302f, and may be disposed so as to extend across the boundary between the  magnets  302e and 302f in a non-energization state. The lengthwise direction of the coil 301c may match with the Y direction. The magnet 302e has a third polarity (for example, N-pole) . The magnet 302f has a fourth polarity (for example, S-pole) different from the third polarity. The mutual interaction (attractive force and repulsive force) between the coil 301c generating magnetism and the  magnets  302e and 302f produces force that  moves the moving lens module 300 in the +Z direction or -Z direction.
The  magnets  302g and 302h are disposed side by side in the Z direction on that side surface of the lens unit 302 which intersects with the X direction. The positional relationship among the coil 301d and the  magnets  302g and 302h corresponds to the positional relationship among the coil 301c and the  magnets  302e and 302f. The magnet 302g has the third polarity. The magnet 302h has the fourth polarity. The direction and the level of the current flowing through the coil 301c and the direction and the level of the current flowing through the coil 301d may be controlled independently of each other. The configuration may be modified in such a way that the magnet 302g has the fourth polarity and the magnet 302h has the third polarity.
For example, when the  magnets  302a, 302c, 302e and 302g have the N pole, and the  magnets  302b, 302d, 302f and 302h have the S pole, the moving lens module 130 may move in the direction corresponding to the second optical axis by controlling the directions and the levels of the currents flowing through the  coils  301a, 301b, 301c and 301d to be the same direction and level. When the directions of the currents flowing through the  coils  301a and 301c are different from the directions of the currents flowing through the  coils  301b and 301d, the moving lens module 130 may change its direction to a direction of rotation about the X axis as the rotational axis.
According to the above-described structural features, the optical axis of the lens 303 can be tilted with respect to the second optical axis by controlling the magnetism generated on the  coils  301a, 301b, 301c and 301d. This mechanism to adequately control the optical axis of the lens 303 may provide the function of optical image stabilization. Moreover, the position of the lens 303 can be shifted along the second optical axis by controlling the magnetism generated on the  coils  301a, 301b, 301c and 301d. This mechanism may  provide the function of automatic focusing. Any coil and any magnet are not provided on that surface of the surfaces of the moving lens module 300 which intersects with the Y direction corresponding to the thickness direction of the imaging module 100. According to the above-described structural features, the functions of optical image stabilization and/or automatic focusing can be provided without increasing the thickness of the imaging module 100. This may realize slim and compact apparatuses with the high-performance camera capability provided by the imaging module 100 according to the embodiment of the present disclosure.
In addition, each lens arranged along the second optical axis may have an elliptical aperture shape, and a minor axis of the elliptical aperture shape may be configured to match with the thickness direction of the imaging module 100. Alternatively, each lens arranged along the second optical axis may have a circular aperture shape with partially missing portions, and the missing portions may be configured to face each other along a direction matching with the thickness direction of the imaging module 100. These make the apparatuses more slim and compact.
(Hardware configuration example of an imaging apparatus)
Fig. 24 shows the hardware configuration of an imaging apparatus 10 on which the above-described imaging module 100 can be mounted. Fig. 24 is a block diagram of an imaging apparatus according to the embodiment of the present disclosure. The imaging apparatus 10 may include an optical apparatus 11, an image sensor 12, processing circuitry 13, a storage device 14 and a display 15. The optical apparatus 11 corresponds to the modules M1, M2, M3 and M4 in the imaging module 100. The image sensor 12 corresponds to the imaging sensor 151 included in the module M5 in the imaging module 100. The processing circuitry 13 is a hardware element capable of processing an  output signal from the image sensor 12 to generate image data, and may be at least one CPU (Central Processing Unit) , at least one FPGA (Field-Programmable Gate Array) , at least one GPU (Graphics Processing Unit) or the like. The storage device 14 is a hardware element which may store image data, and may be an SSD (Solid State Drive) , HDD (Hard Disk Drive) , RAM (Random Access Memory) , ROM (Read Only Memory) , flash memory, memory card or the like, or may be a non-transitory computer readable removable storage medium. The display 15 is a hardware element for displaying information such as a video, an image and a text, and may be an LCD (Liquid Crystal Display) , ELD (Electro-Luminescent Display) or the like.
(Hardware configuration example of an electronic device)
Fig. 25 shows the hardware configuration of an electronic device 20 on which the above-described imaging module 100 can be mounted. Fig. 25 is a block diagram of an electronic device according to the embodiment of the present disclosure. The electronic device 20 may include an optical apparatus 21, an image sensor 22, processing circuitry 23, a storage device 24, a display 25 and a communication unit 26. The optical apparatus 21 corresponds to the modules M1, M2, M3 and M4 in the imaging module 100. The image sensor 22 corresponds to the imaging sensor 151 included in the module M5 in the imaging module 100. The processing circuitry 23 is a hardware element capable of processing an output signal from the image sensor 22 to generate image data, and may be at least one CPU, at least one FPGA, at least one GPU or the like. The storage device 24 is a hardware element which may store image data, and may be an SSD, HDD, RAM, ROM, flash memory, memory card or the like, or may be a non-transitory computer readable removable storage medium. The display 25 is a hardware element for displaying information such as a video, an image and a text, and may be an LCD, ELD or the like. The communication  unit 26 is a hardware element for connecting to a wireless or cabled network, and may be used to post information such as a video, an image and a text to an SNS and to upload such information to a cloud storage.
The foregoing disclosure merely discloses exemplary embodiments, and is not intended to limit the protection scope of the present invention. It will be appreciated by those skilled in the art that the foregoing embodiments and all or some of other embodiments and modifications which may be derived based on the scope of claims of the present invention will of course fall within the scope of the present invention.

Claims (37)

  1. An optical apparatus comprising:
    a lens module configured to have at least one first lens and magnetic members;
    a plurality of electromagnetic members configured to generate magnetism and to face the magnetic members; and
    a controller configured to control the magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on first surfaces of the lens module, and the first surfaces are surfaces which intersect with a first direction corresponding to an optical axis of the at least one first lens.
  2. The optical apparatus according to claim 1, wherein
    the controller controls the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  3. The optical apparatus according to claim 1 or 2, wherein
    the lens module is further configured to have a moving unit for moving the at least one first lens along the first direction, wherein the at least one first lens moves inside the lens module.
  4. The optical apparatus according to any one of claims 1 to 3, further comprising:
    a bending optical element configured to direct an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
  5. The optical apparatus according to claim 4, wherein
    the optical apparatus is embedded in an electronic device, wherein the first direction corresponding to the optical axis of the at least one first lens is perpendicular to a thickness direction of the electronic device.
  6. The optical apparatus according to claim 5, wherein
    a first set of magnetic members located on an object-side surface among the first surfaces is used for movement of the lens module along a first axis in a plane perpendicular to the optical axis of the at least one first lens; and
    a second set of magnetic members located on an image-side surface among the first surfaces is used for movement of the lens module along a second axis in the plane perpendicular to the optical axis of the at least one first lens.
  7. An optical apparatus comprising:
    a lens module configured to have at least one first lens and magnetic members;
    a plurality of electromagnetic members configured to generate magnetism and to face the magnetic members; and
    a controller configured to control the magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on second surfaces of the lens module, and the second surfaces are surfaces which intersect with a specific direction perpendicular to a first direction corresponding to an optical axis of the at least one first lens.
  8. The optical apparatus according to claim 7, wherein
    the controller controls the magnetism of the plurality of electromagnetic members to move the lens module along the first directions corresponding to the optical axis of the at least one first lens.
  9. The optical apparatus according to claim 7 or 8, wherein
    the controller controls the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  10. The optical apparatus according to any one of claims 7 to 9, further comprising:
    a bending optical element configured to direct an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
  11. The optical apparatus according to claim 10, wherein
    the optical apparatus is embedded in an electronic device, wherein the specific direction is perpendicular to a thickness direction of the electronic device.
  12. The optical apparatus according to claim 11, wherein
    a third set of magnetic members located on one surface of the second surfaces and a fourth set of magnetic members located on another surface of the second surfaces are used for movement of the lens module along second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  13. The optical apparatus according to claim 12, wherein
    the third and fourth sets of magnetic members are also used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
  14. The optical apparatus according to any one of claims 1 to 12, wherein
    the lens module comprises:
    a lens unit configured to have the at least one first lens and another electromagnetic member;
    a housing configured to enclose the lens unit and have the magnetic members, wherein a fifth set of magnetic members is located on an inside surface of the housing to face said another electromagnetic member; and
    wherein the fifth set of magnetic members and said another electromagnetic member are used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
  15. The optical apparatus according to claim 5 or 11, wherein
    each lens arranged along the optical axis of the at least one first lens has an elliptical aperture shape, wherein a minor axis of the elliptical aperture shape matches with the thickness direction of the electronic device.
  16. The optical apparatus according to claim 5 or 11, wherein
    each lens arranged along the optical axis of the at least one first lens has a circular aperture shape with partially missing portions, wherein the missing portions face each other along a direction matching with the thickness direction of the electronic device.
  17. An optical apparatus comprising:
    a lens system including a plurality of lenses; and
    a controller configured to move only a part of the plurality of lenses for automatic focusing and/or optical image stabilization.
  18. An imaging apparatus comprising: the optical apparatus according to any one of claims 1 to 17, and an imaging sensor.
  19. Electronic device with an imaging function, comprising: the optical apparatus according to any one of claims 1 to 17, and an imaging sensor.
  20. A method for actuating a lens module to implement automatic focusing and/or optical image stabilization, the lens module including at least one first lens and magnetic members facing a plurality of electromagnetic members, the method comprising:
    controlling, by a controller, magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on first surfaces of the lens module, and the first surfaces are surfaces which intersect with a first direction corresponding to an optical axis of the at least one first lens.
  21. The method according to claim 20, wherein
    the controlling comprises controlling, by the controller, the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  22. The method according to claim 20 or 21, wherein
    the controlling comprises moving, by a moving unit of the lens module, the at least one first lens along the first direction, wherein the at least one first lens moves inside the lens module.
  23. The method according to any one of claims 20 to 22, wherein
    directing, by a bending optical element, an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
  24. The method according to claim 23, wherein
    an optical apparatus including the lens module, the plurality of electromagnetic members and the controller is embedded in an electronic device, wherein the first direction corresponding to the optical axis of the at least one first lens is perpendicular to a thickness direction of the electronic device.
  25. The method according to claim 24, wherein
    a first set of magnetic members located on an object-side surface among the first surfaces is used for movement of the lens module along a first axis in a plane perpendicular to the optical axis of the at least one first lens; and
    a second set of magnetic members located on an image-side surface among the first surfaces is used for movement of the lens module along a second axis in the plane perpendicular to the optical axis of the at least one first lens.
  26. A method for actuating a lens module which includes at least one first lens and magnetic members facing a plurality of electromagnetic members, the  method comprising:
    controlling, by a controller, magnetism of the plurality of electromagnetic members to move the lens module, wherein the magnetic members are located on second surfaces of the lens module, and the second surfaces are surfaces which intersect with a specific direction perpendicular to a first direction corresponding to an optical axis of the at least one first lens.
  27. The method according to claim 26, wherein
    the controlling comprises controlling, by the controller, the magnetism of the plurality of electromagnetic members to move the lens module along the first directions corresponding to the optical axis of the at least one first lens.
  28. The method according to claim 26 or 27, wherein
    the controlling comprises controlling, by the controller, the magnetism of the plurality of electromagnetic members to move the lens module in second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  29. The method according to any one of claims 26 to 28, wherein
    directing, by a bending optical element, an incident light to the at least one first lens or at least one second lens located between the bending optical element and the at least one first lens.
  30. The method according to claim 29, wherein
    an optical apparatus including the lens module, the plurality of electromagnetic members and the controller is embedded in an electronic device, wherein the specific direction is perpendicular to a thickness direction of the  electronic device.
  31. The method according to claim 30, wherein
    a third set of magnetic members located on one surface of the second surfaces and a fourth set of magnetic members located on another surface of the second surfaces are used for movement of the lens module along second and third directions perpendicular to the first direction corresponding to the optical axis of the at least one first lens.
  32. The method according to claim 30, wherein
    the third and fourth sets of magnetic members are also used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
  33. The method according to any one of claims 26 to 31, wherein
    the lens module comprises:
    a lens unit configured to have the at least one first lens and another electromagnetic member;
    a housing configured to enclose the lens unit and have the magnetic members, wherein a fifth set of magnetic members is located on an inside surface of the housing to face said another electromagnetic member; and
    wherein the fifth set of magnetic members and said another electromagnetic member are used for movement of the lens module along the first direction corresponding to the optical axis of the at least one first lens.
  34. The method according to claim 24 or 30, wherein
    each lens arranged along the optical axis of the at least one first lens has  an elliptical aperture shape, wherein a minor axis of the elliptical aperture shape matches with the thickness direction of the electronic device.
  35. The method according to claim 24 or 30, wherein
    each lens arranged along the optical axis of the at least one first lens has a circular aperture shape with partially missing portions, wherein the missing portions face each other along a direction matching with the thickness direction of the electronic device.
  36. A method for capturing an image by an imaging apparatus having the optical apparatus according to any one of claims 1 to 17 and an imaging sensor, the method comprising: capturing, by the imaging sensor, the image based on a light which enters into the imaging sensor through the optical apparatus.
  37. A method for capturing an image by electronic device having the optical apparatus according to any one of claims 1 to 17 and an imaging sensor, the method comprising: capturing, by the imaging sensor, the image based on a light which enters into the imaging sensor through the optical apparatus.
PCT/CN2019/103515 2019-08-30 2019-08-30 Optical apparatus, imaging apparatus and electronic device WO2021035657A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/103515 WO2021035657A1 (en) 2019-08-30 2019-08-30 Optical apparatus, imaging apparatus and electronic device
CN201980099352.8A CN114258505B (en) 2019-08-30 2019-08-30 Optical device, imaging device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103515 WO2021035657A1 (en) 2019-08-30 2019-08-30 Optical apparatus, imaging apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2021035657A1 true WO2021035657A1 (en) 2021-03-04

Family

ID=74683719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103515 WO2021035657A1 (en) 2019-08-30 2019-08-30 Optical apparatus, imaging apparatus and electronic device

Country Status (2)

Country Link
CN (1) CN114258505B (en)
WO (1) WO2021035657A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663818B2 (en) * 2007-04-18 2010-02-16 Chung Huang Tien Voice coil type lens drive assembly
CN101924449A (en) * 2009-06-10 2010-12-22 鸿富锦精密工业(深圳)有限公司 Voice coil motor combination
CN101969530A (en) * 2009-07-27 2011-02-09 鸿富锦精密工业(深圳)有限公司 Camera module
CN104020546A (en) * 2014-06-19 2014-09-03 深圳市世尊科技有限公司 Focusing motor capable of achieving optical zooming and optical vibration prevention at the same time
CN104283396A (en) * 2014-10-21 2015-01-14 深圳市世尊科技有限公司 Voice coil motor for achieving optical vibration prevention through transverse movement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295781B2 (en) * 2014-03-05 2019-05-21 Lg Innotek Co., Ltd. Lens driving device and camera module comprising same
JP6513903B2 (en) * 2014-03-31 2019-05-15 旭化成エレクトロニクス株式会社 Camera module, position control method of optical element thereof and portable device
CN106291861B (en) * 2015-05-29 2019-08-20 磁化电子株式会社 Camera lens module
KR102640659B1 (en) * 2017-01-19 2024-02-26 엘지전자 주식회사 Camera module and camera device
KR102435025B1 (en) * 2017-09-25 2022-08-23 삼성전자주식회사 A camera module comprising a plurality of actuators having different directions of magnetic fields

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663818B2 (en) * 2007-04-18 2010-02-16 Chung Huang Tien Voice coil type lens drive assembly
CN101924449A (en) * 2009-06-10 2010-12-22 鸿富锦精密工业(深圳)有限公司 Voice coil motor combination
CN101969530A (en) * 2009-07-27 2011-02-09 鸿富锦精密工业(深圳)有限公司 Camera module
CN104020546A (en) * 2014-06-19 2014-09-03 深圳市世尊科技有限公司 Focusing motor capable of achieving optical zooming and optical vibration prevention at the same time
CN104283396A (en) * 2014-10-21 2015-01-14 深圳市世尊科技有限公司 Voice coil motor for achieving optical vibration prevention through transverse movement

Also Published As

Publication number Publication date
CN114258505B (en) 2023-09-29
CN114258505A (en) 2022-03-29

Similar Documents

Publication Publication Date Title
US10656396B1 (en) Auto focus and optical image stabilization in a compact folded camera
US20210055569A1 (en) Optical image stabilizing module and camera module including the same
US20230199314A1 (en) Multi-aperture cameras with at least one two state zoom camera
CN101842728B (en) Lens barrel and lens support structure
JP6643720B2 (en) Lens driving device, camera module and camera mounting device
US7855842B2 (en) Zoom lens unit, imaging apparatus and portable information terminal device
US20070229971A1 (en) Variable magnification optical system and image-taking apparatus
JP2010049263A (en) Electronic imaging apparatus
US20060285841A1 (en) Variable-magnification optical system and image-taking apparatus therewith
CN114747201A (en) Camera actuator and camera module comprising same
CN112584001B (en) Camera module and terminal equipment
CN104865775A (en) Jitter Correction Device, Lens Unit, Shooting Device And Driver
US7557852B2 (en) Image-taking apparatus, magnification variation control method, and lens unit
KR102345120B1 (en) A Folding Module, Camera Module and Mobile Terminal having the Same
WO2021035657A1 (en) Optical apparatus, imaging apparatus and electronic device
KR20210028635A (en) Actuator mounted with structure of multi magnetic pole magnet
US20230075967A1 (en) Lens module and camera module including same
US20220417406A1 (en) Camera module
KR102486408B1 (en) Scanning telecamera based on two optical path folding elements field of view scanning
US20220334453A1 (en) Lens module
KR20180029662A (en) Dual camera module and optical device
KR20180029664A (en) Dual camera module
CN117223292A (en) Camera actuator, and camera device and optical device including the same
KR20200105072A (en) A lens moving unit, and camera module and optical instrument including the same
KR20220020591A (en) Camera module and optical instrument including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943644

Country of ref document: EP

Kind code of ref document: A1