WO2021035647A1 - 指纹识别电路及其驱动方法、指纹识别模组和显示装置 - Google Patents

指纹识别电路及其驱动方法、指纹识别模组和显示装置 Download PDF

Info

Publication number
WO2021035647A1
WO2021035647A1 PCT/CN2019/103445 CN2019103445W WO2021035647A1 WO 2021035647 A1 WO2021035647 A1 WO 2021035647A1 CN 2019103445 W CN2019103445 W CN 2019103445W WO 2021035647 A1 WO2021035647 A1 WO 2021035647A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
collection
lines
signal receiving
circuit
Prior art date
Application number
PCT/CN2019/103445
Other languages
English (en)
French (fr)
Inventor
王鹏鹏
王海生
丁小梁
刘英明
崔亮
王玉波
李扬冰
李秀锋
曹学友
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/959,220 priority Critical patent/US20220004729A1/en
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980001551.0A priority patent/CN112753062B/zh
Priority to PCT/CN2019/103445 priority patent/WO2021035647A1/zh
Publication of WO2021035647A1 publication Critical patent/WO2021035647A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Definitions

  • the embodiments of the present disclosure relate to a fingerprint identification circuit, a driving method of the fingerprint identification circuit, a fingerprint identification module, and a display device.
  • Fingerprint recognition technology can identify the minutiae feature points of different fingerprints, so as to achieve the function of identity recognition.
  • fingerprint identification technology can be divided into optical fingerprint identification technology, silicon chip fingerprint identification technology and ultrasonic fingerprint identification technology.
  • the ultrasonic fingerprint recognition structure is mainly a three-layer structure, including a driving electrode, a receiving electrode, and a piezoelectric layer located between the two.
  • a driving voltage is applied to the driving electrode and the receiving electrode, the piezoelectric layer is excited by the voltage to produce an inverse piezoelectric effect, and the first ultrasonic wave is emitted outward.
  • the first ultrasonic wave touches the finger, it is reflected by the finger back to the second ultrasonic wave. Since the fingerprint includes valleys and ridges, the vibration intensity of the second ultrasonic wave reflected by the fingerprint back to the piezoelectric layer is different.
  • a fixed voltage is applied to the driving electrode, and the piezoelectric layer can convert the second ultrasonic wave into a voltage signal.
  • the voltage signal is transmitted to the fingerprint recognition module through the receiving electrode, and the position of the valley and ridge in the fingerprint is determined according to the voltage signal.
  • the embodiments of the present disclosure provide a fingerprint identification circuit, a driving method of the fingerprint identification circuit, a fingerprint identification module, and a display device.
  • the fingerprint identification circuit includes: a plurality of signal receiving circuits arranged in an array along a first direction and a second direction to form a plurality of first signal receiving circuit groups arranged in the first direction and a plurality of second signals arranged in the second direction A receiving circuit group; and a plurality of first signal collection lines, each first signal collection line extending along the second direction, a plurality of first signal collection lines arranged along the first direction, each signal receiving circuit includes a collection sub-circuit and an output sub-circuit ,
  • the acquisition sub-circuit includes a first acquisition signal input terminal and a first acquisition signal output terminal
  • the output sub-circuit includes a first read control terminal, a first data output terminal and a data input terminal, the first acquisition signal output terminal, the data input terminal Connected to the first node, the first node is configured to be connected to the receiving electrode of the ultra
  • the fingerprint identification circuit can apply collection signals with different timings to the plurality of first signal receiving circuits through the plurality of first signal collection lines, so as to realize the receiving focusing function, thereby improving the fingerprint identification performance.
  • the fingerprint identification circuit can improve the signal volume and the signal-to-noise ratio, and can also realize simultaneous reading and calculation, which can improve the speed and efficiency of fingerprint identification while ensuring a high signal-to-noise ratio.
  • At least one embodiment of the present disclosure provides a fingerprint recognition circuit, which includes: a plurality of signal receiving circuits arranged in an array along a first direction and a second direction to form an array that is arranged along the first direction and extends along the second direction.
  • a plurality of first signal receiving circuit groups and a plurality of second signal receiving circuit groups arranged along the second direction and extending along the first direction; and a plurality of first signal collecting lines, each of the first signal collecting lines The line extends along the second direction, the plurality of first signal collection lines are arranged along the first direction, each of the signal receiving circuits includes a collection sub-circuit and an output sub-circuit, and the collection sub-circuit includes the first A collection signal input terminal and a first collection signal output terminal, the output sub-circuit includes a first read control terminal, a first data output terminal and a data input terminal, the first collection signal output terminal and the data input terminal Connected to the first node, the first node is configured to be connected to the receiving electrode of the ultrasonic sensor
  • the fingerprint identification circuit further includes: a plurality of first read control lines, each of the first read control lines extends along the first direction, and the plurality of first read control lines Lines are arranged along the second direction; and a plurality of first data read lines, each of the first data read lines extends along the second direction, and the plurality of first data read lines extend along the first Arranged in one direction, the plurality of first read control lines and the plurality of second signal receiving circuit groups are arranged in one-to-one correspondence, the plurality of first data read lines and the plurality of first signal receiving circuits The groups are arranged in one-to-one correspondence, and each of the first read control lines corresponds to the first read control terminals of the plurality of signal receiving circuits in the corresponding second signal receiving circuit group that are arranged along the first direction. Connected, each of the first read control lines is connected to the first data output terminals of the plurality of signal receiving circuits that are arranged along the second direction in the corresponding first signal receiving circuit
  • the fingerprint identification circuit further includes: a plurality of second signal collection lines, each of the second signal collection lines extends along the first direction, and the plurality of second signal collection lines extend along all the second signal collection lines.
  • the collection sub-circuit further includes a second collection signal input terminal and a second collection signal output terminal, the second collection signal output terminal is connected to the first node, and the plurality of second signals
  • the collection lines are arranged in a one-to-one correspondence with the plurality of second signal receiving circuit groups, and each of the second signal collection lines corresponds to the plurality of second signal receiving circuit groups arranged along the first direction.
  • the second collection signal input ends of the signal receiving circuit are respectively connected.
  • the fingerprint identification circuit further includes: a plurality of second read control lines, each of the second read control lines extends along the second direction, and the plurality of second read control lines Lines are arranged along the first direction; and a plurality of second data read lines, each of the second data read lines extends along the first direction, and the plurality of second data read lines extend along the first direction Arranged in two directions, the output sub-circuit includes a second read control terminal and a second data output terminal, the plurality of second read control lines are arranged in a one-to-one correspondence with the plurality of first signal receiving circuit groups, so The plurality of second data reading lines are arranged in a one-to-one correspondence with the plurality of second signal receiving circuit groups, and each of the second reading control lines and the corresponding first signal receiving circuit group are arranged along the first signal receiving circuit group.
  • the second reading control terminals of a plurality of the signal receiving circuits arranged in two directions are connected, and each of the second reading control lines is arranged along the first direction in the corresponding second signal receiving circuit group.
  • the second data output ends of a plurality of the signal receiving circuits are connected.
  • the collection sub-circuit includes: a first diode, including a first anode and a first cathode, wherein the first signal collection line is connected to the second An anode is connected, the first cathode is connected to the first node, the first anode is the first collection signal input terminal, and the first cathode is the first collection signal output terminal.
  • the acquisition sub-circuit includes: a first thin film transistor including a first gate, a first source, and a first drain, and the fingerprint identification circuit further includes A plurality of first collection control lines, each of the first collection control lines extends along the second direction, the plurality of first collection control lines are arranged along the first direction, and the plurality of first collection control lines And the plurality of first signal receiving circuit groups are arranged in one-to-one correspondence, and each of the first collection control lines corresponds to the plurality of signal receiving circuits arranged along the second direction in the corresponding first signal receiving circuit group
  • the first gates of the circuit are respectively connected, the first source is the first collection signal input terminal, and the first drain is the first collection signal output terminal.
  • the output sub-circuit includes: a second thin film transistor, including a second gate, a second source, and a second drain; and a third thin film transistor, including A third gate, a third source, and a third drain, the second gate is connected to the first node, the second source is configured to be connected to a high voltage source, and the second drain is connected to The second node is connected, the third source is connected to the second node, the second gate is the data input terminal, the third gate is the first read control terminal, and the third The drain is the first data output terminal.
  • the acquisition sub-circuit further includes: a fourth thin film transistor including a fourth gate, a fourth source, and a fourth drain, and the fingerprint identification circuit also It includes a plurality of second acquisition control lines, each of the second acquisition control lines extends along the first direction, the plurality of second acquisition control lines are arranged along the second direction, and the plurality of second acquisition control lines The lines are arranged in a one-to-one correspondence with the plurality of second signal receiving circuit groups, and each of the second collection control lines corresponds to the plurality of signals arranged along the first direction in the corresponding second signal receiving circuit group.
  • the fourth gates of the receiving circuit are respectively connected, the fourth source is the second collection signal input terminal, and the fourth drain is the second collection signal output terminal.
  • the collection sub-circuit further includes: a second diode, including a second anode and a second cathode, the first drain and the fourth drain The pole is connected to the second anode, and the second cathode is connected to the first node.
  • the output sub-circuit includes: a second thin film transistor, including a second gate, a second source, and a second drain; a third thin film transistor, including a first A triple gate, a third source, and a third drain; and a fifth thin film transistor, including a fifth gate, a fifth source, and a fifth drain, the second gate is connected to the first node,
  • the second source is configured to be connected to a high voltage source
  • the second drain is connected to a second node
  • the third source is connected to the second node
  • the second gate is the data input Terminal
  • the third gate is the first read control terminal
  • the third drain is the first data output terminal
  • the fifth source is connected to the second node
  • the fifth gate is Is the second read control terminal
  • the fifth drain is the second data output terminal.
  • each of the signal receiving circuits further includes a reset sub-circuit
  • the reset sub-circuit includes a sixth thin film transistor
  • the sixth thin film transistor includes a sixth gate
  • a sixth source and a sixth drain the sixth gate is connected to a reset control line
  • the sixth source is connected to the reset voltage source
  • the sixth drain is connected to the first node.
  • At least one embodiment of the present disclosure also provides a fingerprint identification module, including the fingerprint identification circuit described in any one of the above.
  • the fingerprint recognition module further includes: a plurality of ultrasonic sensors, each of the ultrasonic sensors includes a transmitting electrode, a receiving electrode, and a piezoelectric material layer located between the transmitting electrode and the receiving electrode, so The multiple ultrasonic sensors are arranged in a one-to-one correspondence with the multiple signal receiving circuits, and the first node of each signal receiving circuit is connected to the receiving electrode of the corresponding ultrasonic sensor.
  • the plurality of ultrasonic sensors are arranged in an array along a first direction and a second direction to form a plurality of first ultrasonic sensor groups arranged along the first direction and A plurality of second ultrasonic sensor groups arranged along the second direction, the transmitting electrodes of the plurality of ultrasonic sensors arranged along the second direction in each of the first ultrasonic sensor groups are different, and each second ultrasonic sensor A plurality of ultrasonic sensors arranged along the first direction in the group share a strip-shaped emitting electrode.
  • At least one embodiment of the present disclosure further provides a display device including any one of the fingerprint identification modules described above.
  • At least one embodiment of the present disclosure also provides a method for driving a fingerprint identification circuit.
  • the fingerprint identification circuit may be the aforementioned fingerprint identification circuit.
  • the driving method includes: dividing the plurality of first signal collection lines into N first signal collection line groups, and each first signal collection line group includes at least two first signal collection lines; After that, according to the arrival time of the reflected echo, the at least two first signal collection lines in each first signal collection line group move to the corresponding first signal receiving circuit group along the first signal collection line at different time points.
  • the first collection signal input ends of the plurality of signal receiving circuits arranged in two directions apply collection signals to receive reflected echoes; and the first signal receiving circuit corresponding to the at least two first collection signal lines
  • the data output by the first data output terminal of the group is weighted and summed to obtain the first fingerprint information, and N is a positive integer greater than or equal to 1.
  • the fingerprint identification circuit further includes: a plurality of first read control lines, and each of the first read control lines runs along the first Extending along the second direction, the plurality of first read control lines are arranged along the second direction; and a plurality of first data read lines, each of the first data read lines extends along the second direction, the A plurality of first data reading lines are arranged along the first direction, the plurality of first reading control lines are arranged in a one-to-one correspondence with the plurality of second signal receiving circuit groups, and the plurality of first data reading lines
  • the fetching lines are arranged in a one-to-one correspondence with the plurality of first signal receiving circuit groups, and each of the first read control lines and the corresponding second signal receiving circuit groups are arranged along the first direction.
  • the first reading control terminal of the signal receiving circuit is connected, and each of the first reading control lines is connected to a plurality of the signal receiving circuits that extend along the second direction in the corresponding first signal receiving circuit group.
  • the first data output terminal of the circuit is connected, and the driving method further includes: after the plurality of first signal collection lines send the collection signal, sending the collection signal to the corresponding one through the plurality of first read control lines.
  • the first reading control terminals of the plurality of signal receiving circuits that are arranged along the first direction in the second signal receiving circuit group apply an opening signal.
  • the fingerprint recognition driving circuit further includes a plurality of second signal collection lines, and each of the second signal collection lines extends along the first direction, The plurality of second signal collection lines are arranged along the second direction, the collection sub-circuit further includes a second collection signal input terminal and a second collection signal output terminal, and the second collection signal output terminal is connected to the In the first node, the plurality of second signal collection lines are arranged in a one-to-one correspondence with the plurality of second signal receiving circuit groups, and each of the second signal collection lines corresponds to the middle edge of the second signal receiving circuit group.
  • the second collection signal input ends of the plurality of signal receiving circuits arranged in the first direction are respectively connected, and the driving method further includes: dividing the plurality of second signal collection lines into M second signals Collection line group, each second signal collection line group includes at least two second signal collection lines; after the ultrasonic sensor emits ultrasonic waves, according to the arrival time of the reflected echo, the at least two signal collection line groups in each second signal collection line group The two second signal collection lines apply collection to the second collection signal input ends of the plurality of signal receiving circuits arranged along the first direction in the corresponding second signal receiving circuit group at different time points.
  • M is a positive integer greater than or equal to 1.
  • the method for driving a fingerprint identification circuit further includes: processing the first fingerprint information and the second fingerprint information to obtain third fingerprint information.
  • the fingerprint identification circuit further includes a plurality of second reading control lines, each of the second reading control lines extending along the second direction , The plurality of second read control lines are arranged along the first direction; and a plurality of second data read lines, each of the second data read lines extends along the first direction, the plurality of The second data reading lines are arranged along the second direction, the output sub-circuit includes a second reading control terminal and a second data output terminal, and the plurality of second reading control lines are connected to the plurality of first reading control lines.
  • the signal receiving circuit groups are arranged in one-to-one correspondence, the plurality of second data reading lines are arranged in one-to-one correspondence with the plurality of second signal receiving circuit groups, and each of the second reading control lines is corresponding to the corresponding first
  • the second reading control terminals of a plurality of the signal receiving circuits that extend along the second direction in a signal receiving circuit group are connected, and each of the second reading control lines is connected to the corresponding second signal receiving circuit
  • the second data output ends of the plurality of signal receiving circuits that are arranged in a group extending along the first direction are connected, and the driving method further includes: after the plurality of second signal collection lines send the collection signal, Through the plurality of second read control lines, respectively, an opening signal is applied to the second read control ends of the plurality of signal receiving circuits that are arranged in the corresponding first signal receiving circuit group and are arranged in the second direction.
  • Figure 1 is a schematic diagram of a fingerprint recognition module emitting ultrasonic waves
  • Figure 2 is a schematic diagram of a fingerprint recognition module receiving ultrasound
  • Figure 3 is a schematic diagram of a fingerprint identification module for fingerprint identification
  • Figure 4 is a schematic diagram of the structure of a fingerprint recognition module
  • FIG. 5 is a schematic diagram of a fingerprint identification circuit according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of a receiving focus function according to an embodiment of the present disclosure.
  • FIG. 7 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 5;
  • FIG. 8 is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a fingerprint identification module with emission focusing function provided by an embodiment of the present disclosure.
  • FIG. 10 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 8;
  • FIG. 11 is a timing diagram of another driving method of the fingerprint identification circuit shown in FIG. 8;
  • FIG. 12 is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure.
  • FIG. 13 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 12;
  • FIG. 14 is a timing diagram of another driving method of the fingerprint identification circuit shown in FIG. 12;
  • FIG. 15 is a schematic diagram of another fingerprint identification circuit provided by an embodiment of the present disclosure.
  • FIG. 16 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 15;
  • FIG. 17 is a timing diagram of another driving method of the fingerprint identification circuit shown in FIG. 15;
  • FIG. 18 is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure.
  • FIG. 19 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 18;
  • FIG. 20 is a timing diagram of another driving method of the fingerprint identification circuit shown in FIG. 18
  • FIG. 21 is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure.
  • 22A is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure.
  • FIG. 22B is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure
  • FIG. 23 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 22A;
  • FIG. 24 is a timing diagram of another driving method of the fingerprint identification circuit shown in FIG. 22B;
  • FIG. 25 is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure.
  • FIG. 26 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 25;
  • FIG. 27 is a timing diagram of another driving method of the fingerprint identification circuit shown in FIG. 25;
  • FIG. 28 is a schematic diagram of another fingerprint identification circuit provided by an embodiment of the present disclosure.
  • FIG. 29 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 28;
  • FIG. 30 is a timing diagram of another driving method of the fingerprint identification circuit shown in FIG. 28
  • FIG. 31 is a schematic diagram of a fingerprint identification module according to an embodiment of the present disclosure.
  • FIG. 32 is a schematic diagram of a display device provided according to an embodiment of the present disclosure.
  • Fig. 1 is a schematic diagram of a fingerprint recognition module transmitting ultrasonic waves
  • Fig. 2 is a schematic diagram of a fingerprint recognition module receiving ultrasonic waves.
  • the fingerprint recognition module includes an ultrasonic sensor 10; the ultrasonic sensor 10 includes an upper electrode 11, a lower electrode 12, and a piezoelectric layer 13 located between the upper electrode 11 and the lower electrode 12; Made of electrical materials, it can be excited by voltage to produce the inverse piezoelectric effect.
  • the upper electrode 11 and the lower electrode 12 input alternating voltage (AC voltage) (for example, the upper electrode 11 is grounded and the lower electrode 12 is applied with an alternating square wave)
  • the piezoelectric layer 13 is due to the inverse piezoelectric effect. Deformation occurs or drives the film layers above and below the piezoelectric layer 13 to vibrate together, so that ultrasonic waves can be generated and emitted outward.
  • the ultrasonic waves emitted by the ultrasonic sensor will be strengthened. Thereby, the ultrasonic wave can be transmitted out better.
  • the ultrasonic wave emitted by the ultrasonic sensor 10 is reflected by the fingerprint 500, and the reflected ultrasonic wave is converted into an alternating voltage in the piezoelectric layer; at this time, the upper electrode 11 is grounded, and the lower electrode 12 can be used as a receiving electrode. Receive the alternating voltage generated by the piezoelectric layer. Since the fingerprint 500 includes the valley 510 and the ridge 520, their ability to reflect ultrasonic waves is different (the valley 510 has a stronger ability to reflect ultrasonic waves), resulting in different intensities of the ultrasonic waves reflected by the valley 510 and the ridge 520. Therefore, it can be judged whether the ultrasonic wave is reflected by the valley or the ridge by the alternating voltage received by the receiving electrode.
  • Fig. 3 is a schematic diagram of a fingerprint recognition module performing fingerprint recognition.
  • the fingerprint recognition module includes an upper electrode 11, a plurality of lower electrodes 12, a piezoelectric layer 13 between the upper electrode 11 and the plurality of lower electrodes 12, and an upper electrode 11 away from the piezoelectric layer 13
  • the substrate 80 on one side and the protective layer 90 on the side of the plurality of lower electrodes 12 away from the piezoelectric layer 13; the ultrasonic sensor 10 composed of the lower electrode 12, the piezoelectric layer 13 and the plurality of upper electrodes 11 can emit ultrasonic waves and is acceptable Ultrasonic, that is, the ultrasonic sensor 10 serves as both an ultrasonic transmitting sensor and an ultrasonic receiving sensor.
  • the ultrasonic wave emitted by the ultrasonic sensor 10 is reflected by the fingerprint 500, and the reflected ultrasonic wave is converted into an alternating voltage in the piezoelectric layer; at this time, the upper electrode 11 is grounded, and the multiple lower electrodes 12 can be As the receiving electrode, it can receive the alternating voltage generated by the piezoelectric layer at different positions. Since the fingerprint 500 includes the valley 510 and the ridge 520, their ability to reflect ultrasonic waves is different (the valley 510 has a stronger ability to reflect ultrasonic waves), resulting in different intensities of the ultrasonic waves reflected by the valley 510 and the ridge 520. Therefore, the position information of the valleys and ridges of the fingerprint 500 can be obtained through the alternating voltages received by the plurality of lower electrodes 12, so that fingerprint identification can be realized.
  • Fig. 4 is a schematic diagram of the structure of a fingerprint recognition module. As shown in FIG. 4, the upper electrode 11, the lower electrode 12 and the piezoelectric layer 13 can all be fabricated on the same side of the thin film transistor substrate 91.
  • the fingerprint recognition module further includes: a bias resistor 60 and a binding pad 70; the bias resistor 60 can be used to calibrate the voltage, and the binding pad 70 can be used to bind an external circuit.
  • the inventor of the present application noticed that because the ultrasonic fingerprint signal is relatively weak, coupled with the need to use high-frequency driving in the ultrasonic detection, the interference is large, which makes the ultrasonic fingerprint detection performance poor.
  • the fingerprint identification circuit includes: a plurality of signal receiving circuits arranged in an array along a first direction and a second direction to form a plurality of first signal receiving circuit groups arranged in the first direction and a plurality of second signals arranged in the second direction A receiving circuit group; and a plurality of first signal collection lines, each first signal collection line extending along the second direction, a plurality of first signal collection lines arranged along the first direction, each signal receiving circuit includes a collection sub-circuit and an output sub-circuit ,
  • the acquisition sub-circuit includes a first acquisition signal input terminal and a first acquisition signal output terminal
  • the output sub-circuit includes a first read control terminal, a first data output terminal and a data input terminal, the first acquisition signal output terminal, the data input terminal Connected to the first node, the first node is configured to be connected to the receiving electrode of the ultrasonic sensor
  • the fingerprint identification circuit can apply collection signals with different timings to the plurality of first signal receiving circuits through the plurality of first signal collection lines, so as to realize the receiving focusing function, thereby improving the fingerprint identification performance.
  • the fingerprint identification circuit can improve the signal volume and the signal-to-noise ratio, and can also realize simultaneous reading and calculation, which can improve the speed and efficiency of fingerprint identification while ensuring a high signal-to-noise ratio.
  • the fingerprint identification circuit the driving method of the fingerprint identification circuit, the fingerprint identification module, and the display device provided by the embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
  • FIG. 5 is a schematic diagram of a fingerprint identification circuit according to an embodiment of the present disclosure.
  • the fingerprint identification circuit includes a plurality of signal receiving circuits 110 and a plurality of first signal collection lines 121.
  • the plurality of signal receiving circuits 110 are arranged in an array along the first direction and the second direction to form a plurality of first signal receiving circuit groups 1101 arranged in the first direction and a plurality of second signal receiving circuit groups arranged in the second direction 1102.
  • FIG. 5 is a schematic diagram of a fingerprint identification circuit according to an embodiment of the present disclosure.
  • the fingerprint identification circuit includes a plurality of signal receiving circuits 110 and a plurality of first signal collection lines 121.
  • the plurality of signal receiving circuits 110 are arranged in an array along the first direction and the second direction to form a plurality of first signal receiving circuit groups 1101 arranged in the first direction and a plurality of second signal receiving circuit groups arranged in the second direction 1102.
  • FIG. 1 is a schematic diagram of a fingerprint identification circuit according to
  • the first signal receiving circuit group 1101 may be a column of signal receiving circuits 110 arranged in the second direction
  • the second signal receiving circuit group 1102 may be a row of signal receiving circuits 110 arranged in the first direction.
  • the first signal collection line 121 extends along the second direction
  • a plurality of first signal collection lines 121 are arranged along the first direction
  • the extension direction of the first signal collection line 121 is the same as the signal receiving circuit in the first signal receiving circuit group 1101
  • the arrangement direction of 110 is the same.
  • the first signal receiving circuit group and the second signal receiving circuit group are only divided according to signal circuits arranged in different directions, and it does not mean that the first signal circuit group and the second signal circuit group include different Signal circuit.
  • the first signal circuit group may be a signal circuit column in the signal circuit array
  • the second signal circuit group may be a signal circuit row in the signal circuit array.
  • the signal receiving circuit 110 includes a collection sub-circuit 112 and an output sub-circuit 114.
  • the collection sub-circuit 112 includes a first collection signal input terminal 1121 and a first collection signal output terminal 1123.
  • the output sub-circuit 114 includes a first reading Take the control terminal 1141, the first data output terminal 1143, and the data input terminal 1145.
  • the first collection signal output terminal 1123 and the data input terminal 1145 are connected to the first node N1, and the first node N1 is configured to be connected to the receiving electrode of the ultrasonic sensor 200 220 connected. At this time, the first collection signal output terminal 1123 and the data input terminal 1145 are both connected to the receiving electrode 220 of the ultrasonic sensor 200.
  • the plurality of first signal collection lines 121 are arranged in a one-to-one correspondence with the plurality of first signal receiving circuit groups 1101, and each first signal collection line 121 corresponds to the plurality of signals arranged along the second direction in the corresponding first signal receiving circuit group 1101.
  • the first collection signal input terminals 1121 of the receiving circuit 110 are respectively connected.
  • a plurality of first signal collection lines are arranged in a one-to-one correspondence with a plurality of first signal receiving circuit groups, and each first signal collection line is associated with the first signal receiving circuit group along the first edge of the corresponding first signal receiving circuit group.
  • the first collection signal input ends of the multiple signal receiving circuits arranged in two directions are respectively connected; that is, the multiple first signal receiving circuit groups are connected to different first signal collection lines.
  • the time for the reflected echo to reach the first signal receiving circuit group arranged in the first direction is different, so it can be sent to multiple first signal receiving circuits through multiple first signal collection lines
  • the receiving focusing function of the plurality of first signal receiving circuit groups can obtain fingerprint data with higher intensity and higher signal-to-noise ratio.
  • the fingerprint identification circuit can apply acquisition signals with different timings to the plurality of first signal receiving circuits through the plurality of first signal acquisition lines, so as to realize the receiving focusing function, thereby improving the fingerprint identification performance.
  • first direction may be a row direction
  • second direction may be a column direction; in this case, the fingerprint identification circuit can realize the column receiving and focusing function.
  • FIG. 6 is a schematic diagram of a receiving focusing function according to an embodiment of the present disclosure
  • Rx1 to Rx5 in FIG. 6 respectively represent side views of receiving electrodes corresponding to a plurality of first signal receiving circuit groups arranged along a first direction.
  • the receiving electrodes at different positions for example, Rx1, Rx2, Rx3, Rx4, and Rx5 are also The reflected signal will be received at different times.
  • collection signals with different timings can be applied to the plurality of first signal receiving circuits through the multiple first signal collection lines to collect the signals received by the reflective electrodes corresponding to the different first signal receiving circuit groups.
  • the distance between the finger and Rx3 is d1
  • the time for the reflected echo to reach Rx3 is t1
  • the distance between the finger and Rx2 and Rx4 is d2
  • the time for the reflected echo to reach Rx2 and Rx4 is t2
  • the distance between the finger and Rx1 and Rx5 is d3
  • the time for the reflected echo to reach Rx1 and Rx5 is t3
  • t1 is less than t2
  • t2 is less than t3; therefore, it can be corresponded by Rx3
  • the first signal collection line applies the collection signal to the first signal receiving circuit corresponding to Rx3 at the first time
  • the first signal collection line corresponding to Rx2 and Rx4 sends the collection signal to the Rx2 and Rx4 at the second time that is delayed from the first time.
  • the first signal receiving circuit applies the acquisition signal, and the acquisition signal is applied to the first signal receiving circuit corresponding to Rx1 and Rx5 through the first signal acquisition line corresponding to Rx1 and Rx5 at the third time delayed from the second time to collect Rx1 and Rx2 , Rx3, Rx4 and Rx5 reflected signals.
  • the first moment, the second moment, and the third moment need to be accurately set.
  • the time interval between the second moment and the first moment may be (d3-d1)/speed of ultrasonic sound.
  • the fingerprint identification circuit further includes a plurality of first read control lines 131 and a plurality of first data read lines 141; each first read control line 131 extends along the first direction , The plurality of first reading control lines 131 are arranged along the second direction; each first data reading line 141 extends along the second direction, and the plurality of first data reading lines 141 are arranged along the first direction.
  • the plurality of first reading control lines 131 and the plurality of second signal receiving circuit groups 1102 are arranged in a one-to-one correspondence, and the plurality of first data reading lines 141 are arranged in a one-to-one correspondence with the plurality of first signal receiving circuit groups 1101.
  • a read control line 131 is connected to the first read control terminal 1141 of the plurality of signal receiving circuits 110 extending along the first direction in the corresponding second signal receiving circuit group 1102, and each first read control line 141 is connected to the corresponding The first data output terminals 1143 of the plurality of signal receiving circuits 110 extending in the second direction in the first signal receiving circuit group 1101 are connected. In this way, the collected reflection signals can be output through the multiple first read control lines 131 and the multiple first data read lines 141 described above.
  • the collection sub-circuit 112 includes a first thin film transistor 310; the first thin film transistor 310 includes a first gate 311, a first source 312 and a first drain 313.
  • the fingerprint identification circuit also includes a plurality of first collection control lines 151, each of the first collection control lines 151 extends along the second direction, and the plurality of first collection control lines 151 are arranged along the first direction.
  • the first collection control line 151 and the plurality of first signal receiving circuit groups 1101 are arranged in one-to-one correspondence.
  • Each first collection control line 151 is respectively connected to the first gate 311 of the plurality of signal receiving circuits 110 arranged in the second direction in the corresponding first signal receiving circuit group 1101, and the first source 312 is the first collection signal input
  • the terminal 1121 and the first drain 313 are the first collection signal output terminal 1123. That is, each first signal collection line 121 is respectively connected to the first source 312 of the plurality of signal receiving circuits 110 arranged in the second direction in the corresponding first signal receiving circuit group 1101; the first drain 313 is connected to the first source 312 of the signal receiving circuit 110 arranged in the second direction.
  • a node N1 is connected.
  • the output sub-circuit 114 includes: a second thin film transistor 320 and a third thin film transistor 330.
  • the second thin film transistor 320 includes a second gate 321, a second source 322 and a second drain 323;
  • the third thin film transistor 330 includes a third gate 331, a third source 332 and a third drain 333.
  • the second gate 321 is connected to the first node N1, the second source 322 is configured to be connected to the high voltage source Vdd, the second drain 323 is connected to the second node N2, and the third source 332 is connected to the second node N2.
  • the second gate 321 is the data input terminal 1145, the third gate 331 is the first read control terminal 1141, and the third drain 333 is the first data output terminal 1143.
  • the second thin film transistor 320 may be an oxide thin film transistor, such as an indium gallium zinc oxide (IGZO) thin film transistor. Since the voltage of the first node N1 will leak from the second thin film transistor, and the leakage current of an oxide thin film transistor, such as an IGZO thin film transistor, is in the order of 10-15 A. When the second thin film transistor 320 is an oxide thin film transistor, it can be reduced The overall leakage current of the driving circuit ensures the stability of the reflected signal on the first node N1, thereby improving the fingerprint recognition performance of the fingerprint recognition module.
  • IGZO indium gallium zinc oxide
  • FIG. 7 is a timing diagram of a driving method of the fingerprint recognition circuit shown in FIG. 5;
  • FIG. 7 is driving a plurality of first signal receiving circuit groups (Rx1-Rx5) arranged along the first direction shown in FIG. 6 to realize receiving Timing chart of the driving method of the focus function.
  • the first signal acquisition line and the first acquisition control line are both applied with reference voltages.
  • the reference voltage on the first node can not only be used to transmit the driving voltage on the driving electrode of the ultrasonic sensor.
  • Ultrasound can also be used for reset; in the reflected signal collection phase, the first signal collection line and the first collection control line corresponding to Rx3 apply the collection voltage at the first moment, and the first signal collection line and the first collection control line corresponding to Rx2 and Rx4 are applied
  • the line applies the acquisition signal at the second time delayed from the first time, and the first signal acquisition line and the first acquisition control line corresponding to Rx1 and Rx5 apply the acquisition signal at the third time delayed from the second time to collect Rx1, Rx2 , Rx3, Rx4 and Rx5 reflected signals.
  • the turn-on signal is sequentially applied to the plurality of first reading control lines, so that the reflection signal is read out through the plurality of first data reading lines.
  • the weighted summation of these reflected signals can realize the receiving focus function of the plurality of first signal receiving circuit groups arranged along the first direction.
  • the reference voltage, the acquisition signal, and the start signal are all high levels, and the voltage of the acquisition signal is greater than the reference voltage.
  • the reference voltage can be 0-3.3V, and the voltage of the collected signal can be about 10V.
  • FIG. 7 is only an example of a timing diagram illustrating the driving method of the fingerprint identification circuit provided by the embodiment of the present disclosure to realize the receiving and focusing function, and the receiving and focusing function provided by the embodiment of the present disclosure is not limited to 5 first signals.
  • the receiving circuit group, other number of first signal receiving circuit groups can also realize the receiving focusing function.
  • the high-level acquisition signal can raise the alternating voltage received by the receiving electrode to obtain a detection signal with greater contrast.
  • FIG. 8 is a schematic diagram of another fingerprint identification circuit provided according to an embodiment of the present disclosure. As shown in FIG. 8, the fingerprint identification circuit is not provided with the above-mentioned first read control line and first data read line.
  • the fingerprint identification circuit includes a plurality of second read control lines 132 and a plurality of second data read lines 142; each second read control line 132 extends along the second direction, and the plurality of second read control lines 132 extend along the first Arranged in one direction; each second data reading line 142 extends along the first direction, and a plurality of second data reading lines 142 are arranged along the second direction.
  • the output sub-circuit 114 includes a second reading control terminal 1142 and a second data output terminal 1144; a plurality of second reading control lines 132 and a plurality of first signal receiving circuit groups 1101 are arranged in one-to-one correspondence, and a plurality of second data reading
  • the fetching line 142 is arranged in a one-to-one correspondence with the plurality of second signal receiving circuit groups 1102; each second read control line 132 corresponds to the plurality of signal receiving circuits 110 extending along the second direction in the corresponding first signal receiving circuit group 1102
  • the second reading control terminal 1142 is connected to each second reading control line 142 is connected to the second data output terminal 1144 of the plurality of signal receiving circuits 110 extending along the first direction in the corresponding second signal receiving circuit group 1101 .
  • the collected reflection signals can be output through the multiple second read control lines 132 and the multiple second data read lines 142 described above.
  • the fingerprint identification circuit shown in FIG. 8 can be applied to a fingerprint identification module with a transmitting and focusing function. At this time, the fingerprint recognition circuit shown in FIG. 8 can not only realize the receiving focus function of the multiple first signal receiving circuit groups arranged along the first direction, but also the multiple first signal receiving circuit groups arranged along the second direction in the fingerprint recognition module.
  • the second reading control line applies the turn-on signal to the plurality of signal receiving circuits that extend along the first direction in the corresponding second signal receiving circuit group, and reads through the plurality of second data. Take the line to read the reflected signal to improve the signal reading efficiency.
  • the output sub-circuit 114 includes: a second thin film transistor 320 and a fifth thin film transistor 350.
  • the second thin film transistor 320 includes a second gate 321, a second source 322 and a second drain 323;
  • the fifth thin film transistor 350 includes a fifth gate 351, a fifth source 352 and a fifth drain 353.
  • the second gate 321 is connected to the first node N1, the second source 322 is configured to be connected to the high voltage source Vdd, the second drain 323 is connected to the second node N2, and the fifth source 352 is connected to the second node N2.
  • the second gate 321 is a data input terminal 1145, the fifth gate 351 is a second read control terminal 1142, and the fifth drain 353 is a second data output terminal 1144.
  • FIG. 9 is a schematic diagram of a fingerprint identification module with emission focusing function provided by an embodiment of the present disclosure.
  • a plurality of ultrasonic sensors 200 are arranged in an array along a first direction and a second direction to form a plurality of first ultrasonic sensor groups 2001 arranged in the first direction and a plurality of second ultrasonic sensors arranged in the second direction.
  • the transmitting electrodes 210 of the plurality of ultrasonic sensors 200 arranged in the second direction in each first ultrasonic sensor group 2001 are different, and the plurality of ultrasonic sensors 200 arranged in the first direction in each second ultrasonic sensor group 2002 are shared A strip-shaped emitter electrode 210.
  • the fingerprint recognition module can realize the emission focusing function by applying driving voltages with different timings to different strip-shaped emission electrodes 210.
  • the ultrasonic wave at the position corresponding to the specific second ultrasonic sensor group in the fingerprint recognition module is enhanced. If the first reading control line extending in the first direction and the first data reading extending in the second direction are used, Taking the line to read the reflected signal, in addition to the reflected signal of the second ultrasonic sensor group corresponding to the position where the ultrasonic wave is enhanced, the reflected signal of other ultrasonic sensors will also be read, so the signal reading efficiency is low.
  • the fingerprint identification module shown in FIG. 9 adopts the fingerprint identification module shown in FIG.
  • the second reading control line extending in the second direction and the second data reading line extending in the first direction can be used to Only the reflected signal of the second ultrasonic sensor group corresponding to the position where the ultrasonic wave is enhanced is read, so that the signal reading efficiency can be improved.
  • different strip-shaped emitter electrodes 210 are connected to the emitter driver 800 through different driving lines.
  • FIG. 10 is a timing diagram of a driving method of the fingerprint recognition circuit shown in FIG. 8;
  • FIG. 10 is driving a plurality of first signal receiving circuit groups (Rx1-Rx5) arranged along the first direction shown in FIG. 6 to realize receiving Timing chart of the driving method of the focus function.
  • Rx1-Rx5 first signal receiving circuit groups
  • FIG. 10 in the ultrasonic emission stage, all driving electrodes are simultaneously applied with driving voltages, and the first signal collection line and the first collection control line are both applied with reference voltages.
  • the reference voltage on the first node can not only be used to communicate with the ultrasonic
  • the drive voltage on the drive electrode of the sensor emits ultrasonic waves, which can also be used for reset; in the reflected signal collection stage, the first signal collection line corresponding to Rx3 and the first collection control line apply the collection voltage at the first moment, and the second signal collection line corresponding to Rx2 and Rx4 is applied at the first moment.
  • a signal acquisition line and the first acquisition control line apply the acquisition signal at a second time that is delayed from the first time, and the first signal acquisition line and the first acquisition control line corresponding to Rx1 and Rx5 are at a third time that is delayed from the second time.
  • the acquisition signal to acquire the reflection signals of Rx1, Rx2, Rx3, Rx4, and Rx5.
  • the turn-on signal is sequentially applied to the plurality of second reading control lines, so that the reflection signal is read out through the plurality of second data reading lines.
  • the weighted summation of these reflected signals can realize the receiving focus function of the plurality of first signal receiving circuit groups arranged along the first direction.
  • the reference voltage, the acquisition signal, and the start signal are all high levels, and the voltage of the acquisition signal is greater than the reference voltage. It should be noted that FIG.
  • the receiving and focusing function provided by the embodiment of the present disclosure is not limited to 5 first signals.
  • the receiving circuit group, other number of first signal receiving circuit groups can also realize the receiving focusing function.
  • FIG. 11 is a timing diagram of another driving method of the fingerprint identification circuit shown in FIG. 8;
  • FIG. 11 is a driving method of driving a plurality of second ultrasonic sensor groups arranged in the second direction shown in FIG. 9 to realize the transmission focusing function Timing diagram.
  • the driving voltage is applied to Tx1 and Tx3 at the fourth time, and then the driving voltage is applied to Tx2 at the fifth time, so that the ultrasonic can be realized at the position corresponding to Tx2 (directly above Tx2) Focusing, all the first signal collection line and the first collection control line are applied with a reference voltage.
  • the reference voltage on the first node can be used not only to transmit ultrasonic waves with the driving voltage on the driving electrode of the ultrasonic sensor, but also to reset;
  • all the first signal collection lines and the first collection control line apply collection signals to collect the reflection signals.
  • only the second reading control line corresponding to the ultrasonic focus position is applied with an open signal, so that only the reflected signal of the second ultrasonic sensor group corresponding to the position where the ultrasonic wave is enhanced is read, thereby improving the signal reading effectiveness.
  • the multiple first signal receiving circuit groups arranged along the first direction can be first received and focused. Then, the multiple second ultrasonic sensor groups arranged along the second direction are emitted and focused to realize the two-dimensional focusing function. Then, the fingerprint information obtained twice is processed to obtain more accurate fingerprint information, which can further improve the fingerprint recognition performance.
  • Fig. 12 is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure.
  • the fingerprint identification circuit in addition to the above-mentioned first signal collection line 121, the fingerprint identification circuit also includes a plurality of second signal collection lines 122, each of the second signal collection lines 122 extends along the first direction, and a plurality of second signal collection lines 122 The wires 122 are arranged along the second direction.
  • the acquisition sub-circuit 112 also includes a second acquisition signal input terminal 1122 and a second acquisition signal output terminal 1124.
  • the second acquisition signal output terminal 1124 is connected to the first node N1, a plurality of second signal acquisition lines 122 and a plurality of second signal
  • the receiving circuit group 1102 is arranged in one-to-one correspondence, and each second signal collecting line 122 is respectively connected to the second collecting signal input terminals 1122 of the plurality of signal receiving circuits 441 arranged along the first direction in the corresponding second signal receiving circuit group 1102. Since the plurality of second signal collection lines are arranged in a one-to-one correspondence with the plurality of second signal receiving circuit groups, each second signal collection line corresponds to the number of signal receiving circuits arranged along the first direction in the corresponding second signal receiving circuit group.
  • the second collection signal input ends are respectively connected; that is, multiple second signal receiving circuit groups are connected to different second signal collection lines.
  • the time for the reflected echo to reach the second signal receiving circuit group arranged in the second direction is different, so it can be sent to multiple second signal receiving circuits through multiple second signal collection lines
  • Apply collection signals with different timings to collect the reflected signals generated by the reflected echoes received by the ultrasonic sensors corresponding to different second signal receiving circuit groups, and the weighted summation of these reflected signals can be performed to achieve the receiving focus function, thereby Fingerprint data with higher intensity and higher signal-to-noise ratio can be obtained.
  • the fingerprint recognition circuit can apply collection signals with different timings to multiple second signal receiving circuits through multiple second signal collection lines, thereby realizing the receiving focus function, thereby improving fingerprint recognition performance.
  • first direction may be a row direction
  • second direction may be a column direction; in this case, the fingerprint identification circuit may realize the row receiving and focusing function through the second signal collection line.
  • the fingerprint recognition circuit shown in Figure 12 can implement the receiving focus function for a plurality of first receiving circuit groups arranged in a first direction and a plurality of second receiving circuit groups arranged in a second direction respectively, and then , And then process the fingerprint information obtained twice to obtain more accurate fingerprint information. Therefore, the fingerprint identification circuit can realize the two-dimensional receiving and focusing function, thereby further improving the fingerprint identification performance.
  • the collection sub-circuit 112 further includes a fourth thin film transistor 340; the fourth thin film transistor 340 includes a fourth gate 341, a fourth source 342, and a fourth drain 343.
  • the fingerprint identification circuit further includes a plurality of second collection control lines 152, each of the second collection control lines 152 extends along the first direction, and the plurality of second collection control lines 152 are arranged along the second direction.
  • the second collection control line 152 is arranged in a one-to-one correspondence with the plurality of second signal receiving circuit groups 1102, and each second collection control line 152 corresponds to the plurality of signal receiving circuits arranged along the first direction in the corresponding second signal receiving circuit group 1102
  • the fourth gates 341 of the 110 are respectively connected, the fourth source 342 is the second collection signal input terminal 1122, and the fourth drain 343 is the second collection signal output terminal 1124. That is, each second signal collection line 122 is respectively connected to the fourth source 342 of the plurality of signal receiving circuits 110 arranged along the first direction in the corresponding second signal receiving circuit group 1102; the fourth drain 343 is connected to the fourth source 342 of the signal receiving circuit 110 arranged in the first direction.
  • a node N1 is connected.
  • FIG. 13 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 12;
  • FIG. 13 is a driving method of multiple first signal receiving circuit groups (Rx1-Rx5) arranged along the first direction shown in FIG. 6 to realize receiving Timing chart of the driving method of the focus function.
  • the first signal acquisition line and the first acquisition control line are both applied with reference voltages.
  • the reference voltage on the first node can not only be used to transmit the driving voltage on the driving electrode of the ultrasonic sensor.
  • Ultrasound can also be used for reset; in the reflected signal collection phase, the first signal collection line and the first collection control line corresponding to Rx3 apply the collection voltage at the first moment, and the first signal collection line and the first collection control line corresponding to Rx2 and Rx4 are applied
  • the line applies the acquisition signal at the second time delayed from the first time, and the first signal acquisition line and the first acquisition control line corresponding to Rx1 and Rx5 apply the acquisition signal at the third time delayed from the second time to collect Rx1, Rx2 , Rx3, Rx4 and Rx5 reflected signals.
  • the turn-on signal is sequentially applied to the plurality of first reading control lines, so that the reflection signal is read out through the plurality of first data reading lines.
  • the weighted summation of these reflected signals can realize the receiving focus function of the plurality of first signal receiving circuit groups arranged along the first direction.
  • the reference voltage, the acquisition signal, and the start signal are all high levels, and the voltage of the acquisition signal is greater than the reference voltage.
  • FIG. 13 is only an example of a timing diagram illustrating the driving method of the fingerprint recognition circuit provided by the embodiment of the present disclosure to realize the receiving and focusing function, and the receiving and focusing function provided by the embodiment of the present disclosure is not limited to 5 first signals.
  • the receiving circuit group, other number of first signal receiving circuit groups can also realize the receiving focusing function.
  • FIG. 14 is a timing diagram of another driving method of the fingerprint identification circuit shown in FIG. 12;
  • FIG. 14 is a timing diagram of a driving method of driving a plurality of second signal receiving circuit groups arranged in a second direction to achieve a receiving focus function.
  • the second signal acquisition line and the second acquisition control line are both applied with reference voltages.
  • the reference voltage on the first node can be used not only to connect to the driving electrode of the ultrasonic sensor.
  • the driving voltage emits ultrasonic waves, which can also be used for reset; in the reflected signal collection stage, collection signals with different timings can be applied to the multiple second signal receiving circuit groups arranged in the second direction to collect the signals arranged in the second direction.
  • the second signal receives the reflected signal of the circuit group.
  • the turn-on signal is sequentially applied to the plurality of first reading control lines, so that the reflection signal is read out through the plurality of first data reading lines.
  • the weighted summation of these reflected signals can realize the receiving focus function of the plurality of first signal receiving circuit groups arranged along the first direction.
  • the reference voltage, the acquisition signal, and the start signal are all high levels, and the voltage of the acquisition signal is greater than the reference voltage.
  • FIG. 15 is a schematic diagram of another fingerprint identification circuit provided by an embodiment of the disclosure.
  • the output sub-circuit 114 includes a second thin film transistor 320, a third thin film transistor 330, and a fifth thin film transistor 350.
  • the second thin film transistor 320 includes a second gate 321, a second source 322, and a second drain 323;
  • the third thin film transistor 330 includes a third gate 331, a third source 332, and a third drain 333; and a fifth
  • the thin film transistor 350 includes a fifth gate 351, a fifth source 352, and a fifth drain 353.
  • the second gate 321 is connected to the first node N1, the second source 322 is configured to be connected to the high voltage source Vdd, the second drain 323 is connected to the second node N2, and the third source 332 is connected to the second node N2.
  • the second gate 331 is the data input terminal 1145, the third gate 331 is the first read control terminal 1141, the third drain 333 is the first data output terminal 1143, and the fifth source 352 is connected to the second node N2,
  • the fifth gate 351 is the second read control terminal 1142, and the fifth drain 353 is the second data output terminal 1144.
  • the fingerprint identification circuit is provided with the above-mentioned multiple first read control lines 131, multiple first data read lines 141, multiple second read control lines 132, and multiple second read control lines 132 at the same time.
  • Two data read line 142 The specific arrangement of the plurality of first read control lines 131, the plurality of first data read lines 141, the plurality of second read control lines 132, and the plurality of second data read lines 142 can be referred to the related descriptions of the previous embodiments. The description will not be repeated here.
  • FIG. 16 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 15;
  • FIG. 16 is a driving method of a plurality of first signal receiving circuit groups (Rx1-Rx5) arranged along the first direction shown in FIG. 6 to realize receiving Timing chart of the driving method of the focus function.
  • the first signal collection line and the first collection control line are both applied with reference voltages.
  • the reference voltage on the first node can not only be used to transmit the driving voltage on the driving electrode of the ultrasonic sensor.
  • Ultrasound can also be used for reset; in the reflected signal acquisition phase, the first signal acquisition line and the first acquisition control line corresponding to Rx3 apply the acquisition voltage at the first moment, and the first signal acquisition line and the first acquisition control corresponding to Rx2 and Rx4 The line applies the acquisition signal at the second time delayed from the first time, and the first signal acquisition line and the first acquisition control line corresponding to Rx1 and Rx5 apply the acquisition signal at the third time delayed from the second time to collect Rx1, Rx2 , Rx3, Rx4 and Rx5 reflected signals. After the reflection signal is collected, the turn-on signal is sequentially applied to the plurality of first reading control lines, so that the reflection signal is read out through the plurality of first data reading lines.
  • each first read control line is connected to the first read control end of the plurality of signal receiving circuits that extend along the first direction in the corresponding second signal receiving circuit group
  • each first data read line is connected to The first data output ends of the multiple signal receiving circuits that are arranged along the second direction in the corresponding first signal receiving circuit group are connected.
  • the first read control terminal of the plurality of signal receiving circuits extending in the first direction in the corresponding second signal receiving circuit group can be applied with the opening signal through the first read control line, so that the first read control terminal can pass through the plurality of second signal receiving circuits.
  • a data reading line simultaneously reads the reflected signals collected by multiple signal receiving circuits that extend along the first direction in the corresponding second signal receiving circuit group.
  • the read reflected signals can be processed directly (for example, Weighted sum) and apply an opening signal to the first reading control end of the plurality of signal receiving circuits extending along the first direction in the corresponding second signal receiving circuit group through the next first reading control line to read
  • the reflected signal collected by the plurality of signal receiving circuits extending along the first direction in the next second signal receiving circuit group. Therefore, the fingerprint identification circuit can realize reading and processing at the same time, thereby improving the reading speed and processing speed, thereby greatly improving the efficiency of fingerprint identification.
  • the corresponding first signal receiving circuit group or second signal receiving circuit group can be read out flexibly and quickly through the above-mentioned side reading and side processing, and the speed can be greatly increased in some applications such as non-square detection areas.
  • the receiving and focusing function provided by the embodiment of the present disclosure is not limited to five first signal receiving circuit groups. The number of first signal receiving circuit groups can also realize the receiving focus function.
  • Fig. 17 is a timing diagram of another driving method of the fingerprint recognition circuit shown in Fig. 15; Fig. 17 is a timing diagram of a driving method of driving a plurality of second signal receiving circuit groups arranged in a second direction to realize the receiving focus function. As shown in Figure 17, similar to the receiving and focusing function shown in Figure 16, in the ultrasonic transmission stage, the second signal collection line and the second collection control line are both applied with reference voltages.
  • the reference voltage on the first node can be used not only
  • the driving voltage on the driving electrode of the ultrasonic sensor emits ultrasonic waves, which can also be used for reset; in the reflected signal collection stage, different second signal collection lines and second collection control lines apply collection signals with different timings to collect along the second direction
  • the arranged multiple second signal receiving circuit groups correspond to the reflected signals generated by the ultrasonic sensors. After the reflection signal is collected, the turn-on signal is sequentially applied to the plurality of second reading control lines, so that the reflection signal is read out through the plurality of second data reading lines.
  • each second read control line is connected to the second read control end of the plurality of signal receiving circuits that extend in the second direction in the corresponding first signal receiving circuit group
  • each second data read line is connected to The second data output ends of the plurality of signal receiving circuits that extend along the first direction in the corresponding second signal receiving circuit group are connected.
  • the second reading control terminal of the plurality of signal receiving circuits extending in the second direction in the corresponding first signal receiving circuit group can be applied with the opening signal through the second reading control line, so that the second reading control terminal can pass through the plurality of first signal receiving circuit groups.
  • the two data reading lines simultaneously read the reflected signals collected by the multiple signal receiving circuits that extend along the second direction in the corresponding first signal receiving circuit group.
  • the read reflected signals can be directly processed (for example, Weighted sum) and apply an opening signal to the second reading control end of the plurality of signal receiving circuits extending in the second direction in the corresponding first signal receiving circuit group through the next second reading control line to read
  • the reflected signal collected by the plurality of signal receiving circuits extending along the second direction in the next first signal receiving circuit group. Therefore, when the fingerprint recognition circuit performs the receiving and focusing function of the plurality of second signal receiving circuit groups arranged in the second direction, it can also realize reading and processing at the same time, so that the reading speed and processing speed can be improved, and the reading speed and processing speed can be improved. Greatly improve the efficiency of fingerprint recognition.
  • the fingerprint recognition circuit shown in FIG. 15 can implement the receiving focusing function for the multiple first receiving circuit groups arranged along the first direction and the multiple second receiving circuit groups arranged along the second direction respectively, and then, The fingerprint information obtained twice is processed again to obtain more accurate fingerprint information. Therefore, the fingerprint identification circuit can realize the two-dimensional receiving and focusing function, thereby further improving the fingerprint identification performance.
  • the fingerprint identification circuit is provided with the first read control line, the first data read line, the second read control line, and the second data read line at the same time, the fingerprint identification circuit is aligned with the first
  • the multiple first receiving circuit groups arranged in the direction and the multiple second receiving circuit groups arranged in the second direction realize the receiving focusing function, both reading and processing can be realized, thereby having high fingerprint recognition efficiency.
  • FIG. 18 is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure.
  • the fingerprint identification circuit is only provided with a plurality of first signal collection lines 121 and a plurality of first collection control lines 151, but not a second signal collection line and a second collection control line; in addition, the fingerprint The identification circuit is also provided with the above-mentioned multiple first read control lines 131, multiple first data read lines 141, multiple second read control lines 132, and multiple second data read lines 142 at the same time.
  • the fingerprint identification circuit can realize the receiving focus function on the multiple first receiving circuit groups arranged along the first direction, and can also pass multiple first read control lines and multiple first data read lines Realize reading and processing at the same time.
  • the fingerprint identification circuit shown in FIG. 18 can be applied to a fingerprint identification module with a transmitting and focusing function. At this time, the fingerprint recognition circuit shown in FIG.
  • the second reading control line applies the turn-on signal to the plurality of signal receiving circuits that extend along the first direction in the corresponding second signal receiving circuit group, and reads through the plurality of second data. Take the line to read the reflected signal to improve the signal reading efficiency.
  • FIG. 19 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 18;
  • FIG. 19 is a driving method of a plurality of first signal receiving circuit groups (Rx1-Rx5) arranged along the first direction shown in FIG. 6 to realize receiving Timing chart of the driving method of the focus function.
  • the first signal acquisition line and the first acquisition control line are both applied with reference voltages.
  • the reference voltage on the first node can not only be used to transmit the driving voltage on the driving electrode of the ultrasonic sensor.
  • Ultrasound can also be used for reset; in the reflected signal collection phase, the first signal collection line and the first collection control line corresponding to Rx3 apply the collection voltage at the first moment, and the first signal collection line and the first collection control line corresponding to Rx2 and Rx4 are applied
  • the line applies the acquisition signal at the second time delayed from the first time, and the first signal acquisition line and the first acquisition control line corresponding to Rx1 and Rx5 apply the acquisition signal at the third time delayed from the second time to collect Rx1, Rx2 , Rx3, Rx4 and Rx5 reflected signals.
  • the turn-on signal is sequentially applied to the plurality of first reading control lines, so that the reflection signal is read out through the plurality of first data reading lines.
  • each first read control line is connected to the first read control end of the plurality of signal receiving circuits that extend along the first direction in the corresponding second signal receiving circuit group
  • each first data read line is connected to The first data output ends of the multiple signal receiving circuits that are arranged along the second direction in the corresponding first signal receiving circuit group are connected.
  • the first read control terminal of the plurality of signal receiving circuits extending in the first direction in the corresponding second signal receiving circuit group can be applied with the opening signal through the first read control line, so that the first read control terminal can pass through the plurality of second signal receiving circuits.
  • a data reading line simultaneously reads the reflected signals collected by multiple signal receiving circuits that extend along the first direction in the corresponding second signal receiving circuit group.
  • the read reflected signals can be processed directly (for example, Weighted sum) and apply an opening signal to the first reading control end of the plurality of signal receiving circuits extending along the first direction in the corresponding second signal receiving circuit group through the next first reading control line to read
  • the reflected signal collected by the plurality of signal receiving circuits extending along the first direction in the next second signal receiving circuit group. Therefore, the fingerprint identification circuit can realize reading and processing at the same time, thereby improving the reading speed and processing speed, thereby greatly improving the efficiency of fingerprint identification.
  • FIG. 19 is only an example of a timing diagram illustrating the driving method of the fingerprint identification circuit provided by the embodiment of the present disclosure to realize the receiving and focusing function.
  • the receiving and focusing function provided by the embodiment of the present disclosure is not limited to five first signal receiving circuit groups. The number of first signal receiving circuit groups can also realize the receiving focus function.
  • FIG. 20 is a timing diagram of another driving method of the fingerprint recognition circuit shown in FIG. 18;
  • FIG. 20 is a driving method of driving a plurality of second ultrasonic sensor groups arranged in the second direction shown in FIG. 9 to realize the transmission focusing function Timing diagram.
  • the driving voltage is applied to Tx1 and Tx3 at the fourth time, and then the driving voltage is applied to Tx2 at the fifth time, so as to realize the ultrasonic wave at the position corresponding to Tx2 (directly above Tx2) Focusing, all the first signal collection line and the first collection control line are applied with a reference voltage.
  • the reference voltage on the first node can be used not only to transmit ultrasonic waves with the driving voltage on the driving electrode of the ultrasonic sensor, but also to reset;
  • all the first signal collection lines and the first collection control line apply collection signals to collect the reflection signals.
  • only the second reading control line corresponding to the ultrasonic focus position is applied with an open signal, so that only the reflected signal of the second ultrasonic sensor group corresponding to the position where the ultrasonic wave is enhanced is read, thereby improving the signal reading effectiveness.
  • FIG. 21 is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure.
  • each signal receiving circuit 110 further includes a reset sub-circuit 116, and the reset sub-circuit 116 includes a sixth thin film transistor 360;
  • the sixth thin film transistor 360 includes a sixth thin film transistor 360;
  • the gate 361, the sixth source 362 and the sixth drain 363, the sixth gate 361 is connected to the reset control line Reset, the sixth source 162 is connected to the reset voltage source Vreset, and the sixth drain 363 is connected to the first node N1 Connected.
  • the reset control line Reset can be connected to the sixth gates of all signal receiving circuits in the fingerprint identification circuit at the same time, so that a reset signal can be applied to the sixth gates of all signal receiving circuits in the fingerprint identification circuit through the reset control line Reset. So as to realize the reset.
  • the first signal collection line or the second signal collection line does not need to apply a reference voltage during the ultrasonic transmission phase, which can simplify the timing control of the first signal collection line or the second signal collection line, and thus simplify the control of the first signal collection Line or the control circuit of the second signal acquisition line.
  • the first thin film transistor or the fourth thin film transistor is only used to load the acquisition signal, and the reference voltage or the reset voltage is not required to be loaded, the stability of the first thin film transistor or the fourth thin film transistor is better.
  • FIG. 22A is a schematic diagram of another fingerprint identification circuit provided according to an embodiment of the present disclosure
  • FIG. 22B is a schematic diagram of another fingerprint identification circuit provided according to an embodiment of the present disclosure.
  • the collection sub-circuit 112 in each signal receiving circuit 110 does not use a thin film transistor but a diode.
  • the collection sub-circuit 112 includes a first diode 410 and the aforementioned reset sub-circuit 116, and includes a first anode 411 and a first cathode 412.
  • the first signal collection line 121 is connected to the first anode 411, and the first cathode 412 is connected to the first node N1, the first anode 411 is the first collection signal input terminal 1121, and the first cathode 412 is the first collection signal output terminal 1123.
  • the collection sub-circuit 112 in each signal receiving circuit 110 does not use a thin film transistor but a diode.
  • the collection sub-circuit 112 includes a first diode 410 and the aforementioned reset sub-circuit 116, and includes a first anode 411 and a first cathode 412.
  • the first signal collection line 121 is connected to the first anode 411, and the first cathode 412 is connected to the first node N1, the first anode 411 is the first collection signal input terminal 1121, and the first cathode 412 is the first collection signal output terminal 1123. Therefore, the fingerprint recognition circuit may not be provided with the first collection control line, so The circuit structure can be simplified.
  • FIG. 23 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 22A;
  • FIG. 23 is a driving method of a plurality of first signal receiving circuit groups (Rx1-Rx5) arranged along the first direction shown in FIG. 6 to realize receiving Timing chart of the driving method of the focus function.
  • the reset control line Reset applies a reference voltage.
  • the reference voltage on the first node can be used not only to transmit ultrasonic waves with the driving voltage on the driving electrode of the ultrasonic sensor, but also to reset;
  • the first signal acquisition line corresponding to Rx3 applies the acquisition voltage at the first time
  • the first signal acquisition line corresponding to Rx2 and Rx4 applies the acquisition signal at the second time that is delayed from the first time.
  • Rx1 and Rx5 correspond to The first signal collection line applies a collection signal at a third time that is delayed from the second time to collect the reflection signals of Rx1, Rx2, Rx3, Rx4, and Rx5.
  • the turn-on signal is sequentially applied to the plurality of second reading control lines, so that the reflection signal is read out through the plurality of second data reading lines.
  • the weighted summation of these reflected signals can realize the receiving focus function of the plurality of first signal receiving circuit groups arranged along the first direction.
  • FIG. 24 is a timing diagram of another driving method of the fingerprint identification circuit shown in FIG. 22B;
  • FIG. 24 is a driving method of driving a plurality of second ultrasonic sensor groups arranged in the second direction shown in FIG. 9 to realize the transmission focusing function Timing diagram.
  • the driving voltage is applied to Tx1 and Tx3 at the fourth time, and then the driving voltage is applied to Tx2 at the fifth time, so that the ultrasonic wave can be realized at the position corresponding to Tx2 (directly above Tx2) Focus, at this time, the reset control line Reset applies the reference voltage.
  • the reference voltage on the first node can be used not only to transmit ultrasonic waves with the driving voltage on the driving electrode of the ultrasonic sensor, but also to reset; in the reflected signal acquisition phase, all The first signal collection line applies collection signals to collect reflection signals. After the reflected signal is collected, only the second reading control line corresponding to the ultrasonic focus position is applied with an open signal, so that only the reflected signal of the second ultrasonic sensor group corresponding to the position where the ultrasonic wave is enhanced is read, thereby improving the signal reading effectiveness.
  • FIG. 25 is a schematic diagram of another fingerprint identification circuit according to an embodiment of the present disclosure.
  • the collection sub-circuit 112 in each signal receiving circuit 110 further includes a second diode 420, and each signal receiving circuit 110 includes the above-mentioned reset sub-circuit 116.
  • the second diode 420 includes a second anode 421 and a second cathode 422, the first drain 313 and the fourth drain 343 are connected to the second anode 421, and the second cathode 422 is connected to the first node N1. Therefore, the first thin film transistor and the second thin film transistor in the fingerprint identification circuit only function as switches.
  • FIG. 26 is a timing diagram of a driving method of the fingerprint identification circuit shown in FIG. 25;
  • FIG. 26 is driving a plurality of first signal receiving circuit groups (Rx1-Rx5) arranged along the first direction shown in FIG. 6 to realize receiving Timing chart of the driving method of the focus function.
  • the reset control line Reset applies a reference voltage.
  • the reference voltage on the first node can be used not only to transmit ultrasonic waves with the driving voltage on the driving electrode of the ultrasonic sensor, but also to reset;
  • the first signal acquisition line corresponding to Rx3 applies the acquisition voltage at the first moment
  • the first acquisition control line corresponding to Rx3 applies the open signal at the first moment
  • the first signal acquisition line corresponding to Rx2 and Rx4 is delayed by
  • the acquisition signal is applied at the second time of the first time
  • the first acquisition control line corresponding to Rx2 and Rx4 applies the open signal at the second time
  • the first signal acquisition line corresponding to Rx1 and Rx5 is applied at the third time delayed from the second time
  • the first collection control line corresponding to Rx1 and Rx5 applies an open signal at the third moment to collect the reflection signals of Rx1, Rx2, Rx3, Rx4, and Rx5.
  • the turn-on signal is sequentially applied to the plurality of second reading control lines, so that the reflection signal is read out through the plurality of second data reading lines.
  • the weighted summation of these reflected signals can realize the receiving focus function of the plurality of first signal receiving circuit groups arranged along the first direction. It should be noted that the timings of the above-mentioned opening signal and the above-mentioned acquisition signal are the same, and the above-mentioned opening signal and the above-mentioned acquisition signal may be signals of different voltages.
  • FIG. 27 is a timing diagram of another driving method of the fingerprint recognition circuit shown in FIG. 26;
  • FIG. 27 is a timing diagram of a driving method of driving a plurality of second signal receiving circuit groups arranged in a second direction to realize the receiving focus function. Similar to the driving method shown in Figure 26, in the ultrasonic transmission phase, the reset control line Reset applies a reference voltage.
  • the reference voltage on the first node can be used not only to transmit ultrasonic waves with the driving voltage on the driving electrode of the ultrasonic sensor, but also In the reset; in the reflection signal collection stage, the second signal collection line applies collection signals with different timings to the plurality of second signal receiving circuit groups arranged in the second direction, and the second signal control line applies to the plurality of second signal receiving circuit groups arranged in the second direction.
  • the two second signal receiving circuit groups apply turn-on signals with different timings to collect the reflected signals of the plurality of second signal receiving circuit groups arranged along the second direction. After the reflection signal is collected, the turn-on signal is sequentially applied to the plurality of second reading control lines, so that the reflection signal is read out through the plurality of second data reading lines.
  • the weighted summation of these reflected signals can realize the receiving focus function of the plurality of first signal receiving circuit groups arranged along the first direction. It should be noted that the timings of the above-mentioned opening signal and the above-mentioned acquisition signal are the same, and the above-mentioned opening signal and the above-mentioned acquisition signal may be signals of different voltages.
  • FIG. 28 is a schematic diagram of another fingerprint identification circuit provided by an embodiment of the present disclosure.
  • the collection sub-circuit 112 in each signal receiving circuit 110 further includes a second diode 420, and each signal receiving circuit 110 includes the above-mentioned reset sub-circuit 116.
  • the second diode 420 includes a second anode 421 and a second cathode 422, the first drain 313 and the fourth drain 343 are connected to the second anode 421, and the second cathode 422 is connected to the first node N1. Therefore, the first thin film transistor and the second thin film transistor in the fingerprint identification circuit only function as switches.
  • the fingerprint recognition circuit is provided with the above-mentioned multiple first read control lines 131, multiple first data read lines 141, multiple second read control lines 132, and multiple first read control lines 132.
  • Two data read line 142 The specific arrangement of the plurality of first read control lines 131, the plurality of first data read lines 141, the plurality of second read control lines 132, and the plurality of second data read lines 142 can be referred to the related descriptions of the previous embodiments. The description will not be repeated here.
  • FIG. 29 is a timing diagram of a driving method of the fingerprint recognition circuit shown in FIG. 28;
  • FIG. 29 is a driving method of a plurality of first signal receiving circuit groups (Rx1-Rx5) arranged along the first direction shown in FIG. 6 to realize receiving Timing chart of the driving method of the focus function.
  • the reset control line Reset applies a reference voltage.
  • the reference voltage on the first node can be used not only to transmit ultrasonic waves with the driving voltage on the driving electrode of the ultrasonic sensor, but also to reset;
  • the first signal acquisition line corresponding to Rx3 applies the acquisition voltage at the first moment
  • the first acquisition control line corresponding to Rx3 applies the turn-on signal at the first moment
  • the first signal acquisition line corresponding to Rx2 and Rx4 applies the switch-on signal at the first moment.
  • the signal acquisition line applies the acquisition signal at the second time that is delayed from the first time.
  • the first acquisition control line corresponding to Rx2 and Rx4 applies the open signal at the second time.
  • the first signal acquisition line corresponding to Rx1 and Rx5 is delayed from the second time.
  • the collection signal is applied at the third moment of time, and the first collection control line corresponding to Rx1 and Rx5 applies an open signal at the third moment to collect the reflection signals of Rx1, Rx2, Rx3, Rx4, and Rx5.
  • the turn-on signal is sequentially applied to the plurality of first reading control lines, so that the reflection signal is read out through the plurality of first data reading lines.
  • each first read control line is connected to the first read control end of the plurality of signal receiving circuits that extend along the first direction in the corresponding second signal receiving circuit group, each first data read line is connected to The first data output ends of the multiple signal receiving circuits that are arranged along the second direction in the corresponding first signal receiving circuit group are connected.
  • the first read control terminal of the plurality of signal receiving circuits extending in the first direction in the corresponding second signal receiving circuit group can be applied with the opening signal through the first read control line, so that the first read control terminal can pass through the plurality of second signal receiving circuits.
  • a data reading line simultaneously reads the reflected signals collected by multiple signal receiving circuits that extend along the first direction in the corresponding second signal receiving circuit group.
  • the read reflected signals can be processed directly (for example, Weighted summation) and apply an opening signal to the first reading control end of the plurality of signal receiving circuits extending in the first direction in the corresponding second signal receiving circuit group through the next first reading control line to read
  • the reflected signal collected by the plurality of signal receiving circuits extending along the first direction in the next second signal receiving circuit group. Therefore, the fingerprint identification circuit can realize reading and processing at the same time, thereby improving the reading speed and processing speed, thereby greatly improving the efficiency of fingerprint identification.
  • FIG. 29 is only an example of a timing diagram illustrating the driving method of the fingerprint recognition circuit provided by the embodiment of the present disclosure to realize the receiving and focusing function.
  • the receiving and focusing function provided by the embodiment of the present disclosure is not limited to five first signal receiving circuit groups. The number of first signal receiving circuit groups can also realize the receiving focus function.
  • FIG. 30 is a timing diagram of another driving method of the fingerprint recognition circuit shown in FIG. 28;
  • FIG. 30 is a timing diagram of a driving method of driving a plurality of second signal receiving circuit groups arranged in a second direction to achieve a receiving focus function.
  • the reset control line Reset applies a reference voltage.
  • the reference voltage on the first node can not only be used to communicate with the driving electrode of the ultrasonic sensor.
  • the driving voltage emits ultrasonic waves, which can also be used for reset; in the reflected signal collection stage, the second signal collection line applies collection signals with different timings to the multiple second signal receiving circuit groups arranged along the second direction, and the second signal control line is directed to The plurality of second signal receiving circuit groups arranged in the second direction apply open signals with different timings to collect the reflected signals of the plurality of second signal receiving circuit groups arranged in the second direction. After the reflection signal is collected, the turn-on signal is sequentially applied to the plurality of second reading control lines, so that the reflection signal is read out through the plurality of second data reading lines.
  • each second read control line is connected to the second read control end of the plurality of signal receiving circuits that extend in the second direction in the corresponding first signal receiving circuit group
  • each second data read line is connected to The second data output ends of the plurality of signal receiving circuits that extend along the first direction in the corresponding second signal receiving circuit group are connected.
  • the second reading control terminal of the plurality of signal receiving circuits extending in the second direction in the corresponding first signal receiving circuit group can be applied with the opening signal through the second reading control line, so that the second reading control terminal can pass through the plurality of first signal receiving circuit groups.
  • the two data reading lines simultaneously read the reflected signals collected by the multiple signal receiving circuits that extend along the second direction in the corresponding first signal receiving circuit group.
  • the read reflected signals can be directly processed (for example, Weighted sum) and apply an opening signal to the second reading control end of the plurality of signal receiving circuits extending in the second direction in the corresponding first signal receiving circuit group through the next second reading control line to read A reflected signal collected by a plurality of signal receiving circuits extending along the second direction in the next first signal receiving circuit group. Therefore, when the fingerprint recognition circuit performs the receiving and focusing function of the plurality of second signal receiving circuit groups arranged in the second direction, it can also realize reading and processing at the same time, so that the reading speed and processing speed can be improved, and the reading speed and processing speed can be improved. Greatly improve the efficiency of fingerprint recognition.
  • FIG. 31 is a schematic diagram of a fingerprint identification module provided according to an embodiment of the present disclosure. As shown in FIG. 31, the fingerprint identification module includes the aforementioned fingerprint identification circuit 100. Therefore, the fingerprint identification module has the same or corresponding beneficial technical effects as the aforementioned fingerprint identification circuit 100. For details, please refer to the relevant description of the aforementioned embodiment, which will not be repeated here.
  • the fingerprint recognition module further includes a base substrate 180, and the above-mentioned fingerprint recognition circuit 100 may be disposed in the base substrate 180.
  • the fingerprint recognition module includes a plurality of ultrasonic sensors 200, and each ultrasonic sensor 200 includes a transmitting electrode 210, a receiving electrode 220, and a piezoelectric material located between the transmitting electrode 210 and the receiving electrode 220.
  • a plurality of ultrasonic sensors 200 and a plurality of signal receiving circuits 110 are arranged in one-to-one correspondence, and the first node N1 of each signal receiving circuit 110 is connected to the receiving electrode 220 of the corresponding ultrasonic sensor 200.
  • the material of the driving electrode 210 includes one or more of copper, silver, and aluminum.
  • the fingerprint recognition module may be a fingerprint recognition module with emission focusing function.
  • a plurality of ultrasonic sensors 200 are arranged in an array along a first direction and a second direction to form a plurality of first ultrasonic sensor groups 2001 arranged in the first direction and a plurality of second ultrasonic sensors arranged in the second direction.
  • the transmitting electrodes 220 of the plurality of ultrasonic sensors 200 arranged in the second direction in each first ultrasonic sensor group 2001 are different, and the plurality of ultrasonic sensors 200 arranged in the first direction in each second ultrasonic sensor group 2002 are shared A strip-shaped emitter electrode 220.
  • the fingerprint recognition module can realize the emission focusing function by applying driving voltages with different timings to different strip-shaped emission electrodes 220. At this time, the ultrasonic wave at the position corresponding to the specific second ultrasonic sensor group in the fingerprint recognition module is enhanced.
  • the fingerprint recognition module improves the intensity or energy of the emitted ultrasonic wave in a specific area or a specific direction by realizing the emission and focusing of the ultrasonic wave, the fingerprint recognition module can not only realize fingerprint recognition, but also penetrate the finger to distinguish whether the fingerprint is Real skin.
  • An embodiment of the present disclosure is also a driving method of a fingerprint identification circuit.
  • the fingerprint identification circuit may be the fingerprint identification circuit provided in the above embodiment.
  • the driving method includes: dividing a plurality of first signal collection lines into N first signal collection line groups, each first signal collection line group includes at least two first signal collection lines; after the ultrasonic sensor emits ultrasonic waves, according to reflection When the echo arrives, at least two of the first signal collection lines in each first signal collection line group are at different time points to the multiple signal receiving circuits arranged in the second direction in the corresponding first signal receiving circuit group.
  • the first collection signal input terminal applies the collection signal to receive the reflected echo; and performs a weighted summation on the data output from the first data output terminal of the first signal receiving circuit group corresponding to the at least two first collection signal lines to obtain the first A fingerprint information, where N is a positive integer greater than or equal to 1.
  • the driving method of the fingerprint recognition circuit when the ultrasonic wave emitted by the ultrasonic sensor is reflected by the finger, the time for the reflected echo to reach the first signal receiving circuit group arranged in the first direction is different, and the first signal collection At least two first signal acquisition lines in the line group apply acquisition signals to the first acquisition signal input ends of the plurality of signal receiving circuits arranged in the second direction in the corresponding first signal receiving circuit group at different time points to receive Reflect the echo, and by performing a weighted summation of the data output from the first data output terminal of the first signal receiving circuit group corresponding to at least two first collection signal lines, a plurality of first data arranged in the first direction can be realized.
  • the receiving focus function of the signal receiving circuit group can obtain the first fingerprint information with higher intensity and higher signal-to-noise ratio, thereby improving the fingerprint recognition performance. It should be noted that the above-mentioned different time points can be calculated according to the distance between the first signal receiving circuit group and the reflection position on the finger and the speed of the ultrasonic wave. For details, please refer to the related description of FIG. 6.
  • the fingerprint identification circuit further includes: a plurality of first read control lines, each of the first read control lines extends in a first direction, and the plurality of first read control lines are arranged along the second direction; and a plurality of first read control lines are arranged along the second direction; A first data read line, each first data read line extends along the second direction, a plurality of first data read lines are arranged along the first direction, a plurality of first read control lines and a plurality of second signal receiving circuits
  • the groups are arranged in one-to-one correspondence, a plurality of first data reading lines are arranged in a one-to-one correspondence with a plurality of first signal receiving circuit groups, and each of the first reading control lines and the corresponding second signal receiving circuit group extends along the first direction
  • the first reading control terminals of the arranged plurality of signal receiving circuits are connected, and each first reading control line is connected to the first data output of the plurality of signal receiving circuits extending in the second direction in the corresponding first signal receiving circuit group.
  • the plurality of first read control lines are respectively sent to the corresponding second signal receiving circuit group in the first direction.
  • the first reading control terminal of each signal receiving circuit applies an open signal, so that multiple first data reading lines can be used to simultaneously read a plurality of signal receivers arranged along the first direction in the corresponding second signal receiving circuit group.
  • the reflected signal collected by the circuit can directly process the read reflected signal (such as weighted summation) and extend in the first direction to the corresponding second signal receiving circuit group through the next first read control line
  • the first reading control end of the arranged plurality of signal receiving circuits applies an open signal to read the reflected signals collected by the plurality of signal receiving circuits extending in the first direction in the next second signal receiving circuit group. Therefore, the fingerprint identification circuit can realize reading and processing at the same time, thereby improving the reading speed and processing speed, thereby greatly improving the efficiency of fingerprint identification.
  • the fingerprint recognition circuit further includes a plurality of second signal collection lines, each of the second signal collection lines extends along the first direction, the plurality of second signal collection lines are arranged along the second direction, and the collection sub-circuit further includes a second signal collection line.
  • the acquisition signal input terminal and the second acquisition signal output terminal, the second acquisition signal output terminal is connected to the first node, and multiple second signal acquisition lines are set in one-to-one correspondence with multiple second signal receiving circuit groups, and each second signal acquisition The lines are respectively connected to the second collection signal input terminals of the plurality of signal receiving circuits arranged along the first direction in the corresponding second signal receiving circuit group, and the driving method further includes: dividing the plurality of second signal collection lines into M Two signal collection line groups, each of the second signal collection line groups includes at least two second signal collection lines; after the ultrasonic sensor emits ultrasonic waves, according to the arrival time of the reflected echo, at least two of each second signal collection line group The second signal collection line applies the collection signal to the second collection signal input end of the plurality of signal receiving circuits arranged along the first direction in the corresponding second signal receiving circuit group at different time points to receive the reflected echo; and The data output from the second data output end of the second signal receiving circuit group corresponding to the two second collection signal lines are weighted and summed
  • the time for the reflected echo to reach the second signal receiving circuit group arranged in the second direction is different, and at least the second signal collection line group
  • the two second signal collection lines apply collection signals to the second collection signal input ends of the plurality of signal receiving circuits arranged in the first direction in the corresponding second signal receiving circuit group at different time points to receive the reflected echo, and By performing a weighted summation of the data output from the second data output end of the second signal receiving circuit group corresponding to at least two second collection signal lines, the multiple second signal receiving circuit groups arranged in the second direction can be realized.
  • Receiving focus function which can obtain fingerprint data with higher intensity and high signal-to-noise ratio, thereby improving fingerprint recognition performance.
  • the driving method realizes the receiving focus function of the plurality of first receiving circuit groups arranged in the first direction and the plurality of second receiving circuit groups arranged in the second direction, so as to obtain higher intensity and signal-to-noise ratio. Higher second fingerprint information.
  • the driving method further includes: processing the first fingerprint information and the second fingerprint information to obtain the third fingerprint information.
  • processing the fingerprint information obtained twice more accurate fingerprint information can be obtained. Therefore, the fingerprint identification circuit can realize the two-dimensional receiving and focusing function, thereby further improving the fingerprint identification performance.
  • the fingerprint identification circuit further includes a plurality of second reading control lines, each of the second reading control lines extends in the second direction, and the plurality of second reading control lines are arranged along the first direction; and a plurality of second reading control lines are arranged along the first direction; Two data read lines, each second data read line extends along the first direction, a plurality of second data read lines are arranged along the second direction, and the output sub-circuit includes a second read control terminal and a second data output terminal, The plurality of second reading control lines are arranged in one-to-one correspondence with the plurality of first signal receiving circuit groups, and the plurality of second data reading lines are arranged in one-to-one correspondence with the plurality of second signal receiving circuit groups, and each second reading control line is arranged in one-to-one correspondence.
  • the line is connected to the second reading control end of the plurality of signal receiving circuits extending in the second direction in the corresponding first signal receiving circuit group, and each second reading control line is connected to the middle edge of the corresponding second signal receiving circuit group.
  • the second data output ends of the plurality of signal receiving circuits extending in the first direction are connected, and the driving method further includes: after the plurality of second signal acquisition lines send the acquisition signals, the second read control lines respectively send the corresponding signals to the corresponding The second reading control terminal of the plurality of signal receiving circuits extending along the second direction in the first signal receiving circuit group applies an opening signal.
  • the plurality of second read control lines are respectively sent to the corresponding first signal receiving circuit group in the first direction extending and arranged in the first direction.
  • the second reading control terminal of each signal receiving circuit applies an opening signal, so that multiple second data reading lines can be used to simultaneously read multiple signal receiving circuits that extend along the second direction in the corresponding first signal receiving circuit group.
  • the reflected signal collected by the circuit can directly process the read reflected signal (such as weighted sum) and extend in the second direction to the corresponding first signal receiving circuit group through the next second read control line
  • the second reading control end of the arranged plurality of signal receiving circuits applies an opening signal to read the reflected signals collected by the plurality of signal receiving circuits extending in the second direction in the next first signal receiving circuit group. Therefore, the fingerprint identification circuit can realize simultaneous reading and processing, which can increase the reading speed and processing speed, thereby greatly improving the efficiency of fingerprint identification.
  • the driving method of the fingerprint recognition circuit can also realize reading while performing the receiving focusing function for the plurality of first receiving circuit groups arranged in the first direction and the plurality of second receiving circuit groups arranged in the second direction. Fetch and edge processing, which has a higher fingerprint recognition efficiency.
  • FIG. 32 is a schematic diagram of a display device provided according to an embodiment of the present disclosure.
  • the display device includes the fingerprint identification module 600 provided in the above embodiment. Therefore, the display device has the same or corresponding beneficial technical effects as the above-mentioned fingerprint identification module 600. For details, please refer to the relevant description of the above-mentioned embodiment, which will not be repeated here.
  • the display device further includes a display module 700, and the area of the display module 700 is approximately the same as that of the fingerprint identification module 600, so that full-screen fingerprint identification can be realized.
  • the fingerprint recognition module can also implement a touch function, so that no additional touch device, such as a capacitive touch panel, can be provided, so that the cost of the display device can be reduced.
  • the embodiments of the present disclosure include but are not limited to this.
  • the area of the display module and the area of the fingerprint identification module may not be equal, and the fingerprint identification module may only be arranged in the area where fingerprint identification is required.
  • the display device may be an electronic device with a display function, such as a television, a mobile phone, a computer, a notebook computer, an electronic photo album, and a navigator.
  • a display function such as a television, a mobile phone, a computer, a notebook computer, an electronic photo album, and a navigator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种指纹识别电路及其驱动方法、指纹识别模组和显示装置。指纹识别电路包括:沿第一方向排列的多个第一信号接收电路组(1101)和沿第二方向排列的多个第二信号接收电路组(1102);以及多条第一信号采集线(121),各信号接收电路(110)包括采集子电路(112)和输出子电路(114),采集子电路(112)包括第一采集信号输入端(1121)和第一采集信号输出端(1123),输出子电路(114)包括第一读取控制端(1141)、第一数据输出端(1143)和数据输入端(1145),第一采集信号输出端(1123)、数据输入端(1145)连接至第一节点(N1),第一节点(N1)被配置为与超声波传感器(200)的接收电极(220)相连,多条第一信号采集线(121)与多个第一信号接收电路组(1101)一一对应设置,各第一信号采集线(121)与对应的第一信号接收电路组(1101)中的多个信号接收电路(110)的第一采集信号输入端(1121)分别相连。由此,指纹识别电路可提高指纹识别性能。

Description

指纹识别电路及其驱动方法、指纹识别模组和显示装置 技术领域
本公开的实施例涉及一种指纹识别电路、指纹识别电路的驱动方法、指纹识别模组和显示装置。
背景技术
随着科学技术的不断发展,指纹识别技术已经逐渐应用到人们的日常生活中。指纹识别技术可通过比较不同指纹的细节特征点来进行鉴别,从而达到身份识别的功能。通常,指纹识别技术可分为光学式指纹识别技术、硅芯片式指纹识别技术和超声波式指纹识别技术。
目前,超声波式指纹识别技术是各大厂商热门的研究方向。超声波指纹识别结构主要为三叠层结构,包括驱动电极、接收电极以及位于两者之间的压电层。当对驱动电极和接收电极加载驱动电压时,压电层受到电压激发产生逆压电效应,向外发射第一超声波。该第一超声波接触手指后,被手指反射回第二超声波。由于指纹包括谷和脊,所以被指纹反射回到压电层的第二超声波震动强度有差异,此时,对驱动电极加载固定电压,则压电层可将第二超声波转换成电压信号,该电压信号通过接收电极传输给指纹识别模块,根据该电压信号判断指纹中谷和脊的位置。
发明内容
本公开实施例提供一种指纹识别电路、指纹识别电路的驱动方法、指纹识别模组和显示装置。该指纹识别电路包括:多个信号接收电路,沿第一方向和第二方向阵列设置以形成沿第一方向排列的多个第一信号接收电路组和沿第二方向排列的多个第二信号接收电路组;以及多条第一信号采集线,各第一信号采集线沿第二方向延伸,多条第一信号采集线沿第一方向排列,各信号接收电路包括采集子电路和输出子电路,采集子电路包括第一采集信号输入端和第一采集信号输出端,输出子电路包括第一读取控制端、第一数据输出端和数据输入端,第一采集信号输出端、数据输入端连接至第一节点,第一节点被配置为与超声波传感器的接收电极相连,多条第一信号采集线与多个第一信号接收电路组一一对应设置,各第一信号采集线与对应的第一信号接收电路组中沿第 二方向排列的多个信号接收电路的第一采集信号输入端分别相连。由此,该指纹识别电路可通过多条第一信号采集线向多个第一信号接收电路施加时序不同的采集信号,从而实现接收聚焦功能,从而可提高指纹识别性能。具体而言,该指纹识别电路可提升信号量和信噪比、并且还可实现边读取、边运算,在保证高信噪比的同时提升指纹识别的速度和效率。
本公开至少一个实施例提供一种指纹识别电路,其包括:多个信号接收电路,沿第一方向和第二方向阵列设置以形成沿所述第一方向排列且沿所述第二方向延伸的多个第一信号接收电路组和沿所述第二方向排列且沿所述第一方向延伸的多个第二信号接收电路组;以及多条第一信号采集线,各所述第一信号采集线沿所述第二方向延伸,所述多条第一信号采集线沿所述第一方向排列,各所述信号接收电路包括采集子电路和输出子电路,所述采集子电路包括所述第一采集信号输入端和第一采集信号输出端,所述输出子电路包括第一读取控制端、第一数据输出端和数据输入端,所述第一采集信号输出端、所述数据输入端连接至第一节点,所述第一节点被配置为与超声波传感器的接收电极相连,所述多条第一信号采集线与所述多个第一信号接收电路组一一对应设置,各所述第一信号采集线与对应的所述第一信号接收电路组中沿所述第二方向排列的多个所述信号接收电路的所述第一采集信号输入端分别相连。
例如,本公开一实施例提供的指纹识别电路还包括:多条第一读取控制线,各所述第一读取控制线沿所述第一方向延伸,所述多条第一读取控制线沿所述第二方向排列;以及多条第一数据读取线,各所述第一数据读取线沿所述第二方向延伸,所述多条第一数据读取线沿所述第一方向排列,所述多条第一读取控制线与所述多个第二信号接收电路组一一对应设置,所述多条第一数据读取线与所述多个第一信号接收电路组一一对应设置,各所述第一读取控制线与对应的所述第二信号接收电路组中沿所述第一方向延伸排列的多个所述信号接收电路的第一读取控制端相连,各所述第一读取控制线与对应的所述第一信号接收电路组中沿所述第二方向延伸排列的多个所述信号接收电路的第一数据输出端相连。
例如,本公开一实施例提供的指纹识别电路还包括:多条第二信号采集线,各所述第二信号采集线沿所述第一方向延伸,所述多条第二信号采集线沿所述第二方向排列,所述采集子电路还包括第二采集信号输入端和第二采集信号输出端,所述第二采集信号输出端连接至所述第一节点,所述多条第二信号采集 线与所述多个第二信号接收电路组一一对应设置,各所述第二信号采集线与对应的所述第二信号接收电路组中沿所述第一方向排列的多个所述信号接收电路的所述第二采集信号输入端分别相连。
例如,本公开一实施例提供的指纹识别电路还包括:多条第二读取控制线,各所述第二读取控制线沿所述第二方向延伸,所述多条第二读取控制线沿所述第一方向排列;以及多条第二数据读取线,各所述第二数据读取线沿所述第一方向延伸,所述多条第二数据读取线沿所述第二方向排列,所述输出子电路包括第二读取控制端和第二数据输出端,所述多条第二读取控制线与所述多个第一信号接收电路组一一对应设置,所述多条第二数据读取线与所述多个第二信号接收电路组一一对应设置,各所述第二读取控制线与对应的所述第一信号接收电路组中沿所述第二方向延伸排列的多个所述信号接收电路的第二读取控制端相连,各所述第二读取控制线与对应的所述第二信号接收电路组中沿所述第一方向延伸排列的多个所述信号接收电路的第二数据输出端相连。
例如,在本公开一实施例提供的指纹识别电路中,所述采集子电路包括:第一二极管,包括第一阳极和第一阴极,其中,所述第一信号采集线与所述第一阳极相连,所述第一阴极与连接至所述第一节点,所述第一阳极为所述第一采集信号输入端,所述第一阴极为所述第一采集信号输出端。
例如,在本公开一实施例提供的指纹识别电路中,所述采集子电路包括:第一薄膜晶体管,包括第一栅极、第一源极和第一漏极,所述指纹识别电路还包括多个第一采集控制线,各所述第一采集控制线沿所述第二方向延伸,所述多条第一采集控制线沿所述第一方向排列,所述多个第一采集控制线与所述多个第一信号接收电路组一一对应设置,各所述第一采集控制线与对应的所述第一信号接收电路组中沿所述第二方向排列的多个所述信号接收电路的所述第一栅极分别相连,所述第一源极为所述第一采集信号输入端,所述第一漏极为所述第一采集信号输出端。
例如,在本公开一实施例提供的指纹识别电路中,所述输出子电路包括:第二薄膜晶体管,包括第二栅极、第二源极和第二漏极;以及第三薄膜晶体管,包括第三栅极、第三源极和第三漏极,所述第二栅极与所述第一节点相连,所述第二源极被配置为与高压源相连,所述第二漏极与第二节点相连,所述第三源极与所述第二节点相连,所述第二栅极为所述数据输入端,所述第三栅极为所述第一读取控制端,所述第三漏极为所述第一数据输出端。
例如,在本公开一实施例提供的指纹识别电路中,所述采集子电路还包括:第四薄膜晶体管,包括第四栅极、第四源极和第四漏极,所述指纹识别电路还包括多个第二采集控制线,各所述第二采集控制线沿所述第一方向延伸,所述多条第二采集控制线沿所述第二方向排列,所述多个第二采集控制线与所述多个第二信号接收电路组一一对应设置,各所述第二采集控制线与对应的所述第二信号接收电路组中沿所述第一方向排列的多个所述信号接收电路的所述第四栅极分别相连,所述第四源极为所述第二采集信号输入端,所述第四漏极为所述第二采集信号输出端。
例如,在本公开一实施例提供的指纹识别电路中,所述采集子电路还包括:第二二极管,包括第二阳极和第二阴极,所述第一漏极和所述第四漏极与所述第二阳极相连,所述第二阴极与所述第一节点相连。
例如,在本公开一实施例提供的指纹识别电路中,所述输出子电路包括:第二薄膜晶体管,包括第二栅极、第二源极和第二漏极;第三薄膜晶体管,包括第三栅极、第三源极和第三漏极;以及第五薄膜晶体管,包括第五栅极、第五源极和第五漏极,所述第二栅极与所述第一节点相连,所述第二源极被配置为与高压源相连,所述第二漏极与第二节点相连,所述第三源极与所述第二节点相连,所述第二栅极为所述数据输入端,所述第三栅极为所述第一读取控制端,所述第三漏极为所述第一数据输出端,所述第五源极连接至所述第二节点,所述第五栅极为所述第二读取控制端,所述第五漏极为所述第二数据输出端。
例如,在本公开一实施例提供的指纹识别电路中,各所述信号接收电路还包括复位子电路,所述复位子电路包括第六薄膜晶体管,所述第六薄膜晶体管包括第六栅极、第六源极和第六漏极,所述第六栅极与复位控制线相连,所述第六源极与所述复位电压源相连,所述第六漏极与所述第一节点相连。
本公开至少一个实施例还提供一种指纹识别模组,包括上述任一项所述的指纹识别电路。
例如,本公开一实施例提供的指纹识别模组还包括:多个超声波传感器,各所述超声波传感器包括发射电极、接收电极和位于所述发射电极和接收电极之间的压电材料层,所述多个超声波传感器与所述多个信号接收电路一一对应设置,各所述信号接收电路的所述第一节点与对应的所述超声波传感器的接收电极相连。
例如,在本公开一实施例提供的指纹识别模组中,所述多个超声波传感器 沿第一方向和第二方向阵列设置以形成沿所述第一方向排列的多个第一超声波传感器组和沿所述第二方向排列的多个第二超声波传感器组,各所述第一超声波传感器组中的沿所述第二方向排列的多个超声波传感器的发射电极不同,各所述第二超声波传感器组中的沿所述第一方向排列的多个超声波传感器共用一个条状发射电极。
本公开至少一个实施例还提供一种显示装置,包括上述任一项的指纹识别模组。
本公开至少一个实施例还提供一种指纹识别电路的驱动方法,该指纹识别电路可为上述的指纹识别电路。该驱动方法包括:将所述多条第一信号采集线分为N个第一信号采集线组,各第一信号采集线组包括至少两个第一信号采集线;在所述超声波传感器发出超声波之后,根据反射回波到达的时间,各第一信号采集线组中的所述至少两个第一信号采集线在不同的时间点向对应的所述第一信号接收电路组中沿所述第二方向排列的多个所述信号接收电路的所述第一采集信号输入端施加采集信号以接收反射回波;以及将所述至少两个第一采集信号线对应的所述第一信号接收电路组的所述第一数据输出端输出的数据进行加权求和以得到第一指纹信息,N为大于等于1的正整数。
例如,在本公开一实施例提供的指纹识别电路的驱动方法中,所述指纹识别电路,还包括:多条第一读取控制线,各所述第一读取控制线沿所述第一方向延伸,所述多条第一读取控制线沿所述第二方向排列;以及多条第一数据读取线,各所述第一数据读取线沿所述第二方向延伸,所述多条第一数据读取线沿所述第一方向排列,所述多条第一读取控制线与所述多个第二信号接收电路组一一对应设置,所述多条第一数据读取线与所述多个第一信号接收电路组一一对应设置,各所述第一读取控制线与对应的所述第二信号接收电路组中沿所述第一方向延伸排列的多个所述信号接收电路的第一读取控制端相连,各所述第一读取控制线与对应的所述第一信号接收电路组中沿所述第二方向延伸排列的多个所述信号接收电路的第一数据输出端相连,所述驱动方法还包括:在所述多条第一信号采集线发送所述采集信号之后,通过所述多条第一读取控制线分别向对应的所述第二信号接收电路组中沿所述第一方向延伸排列的多个所述信号接收电路的第一读取控制端施加开启信号。
例如,在本公开一实施例提供的指纹识别电路的驱动方法中,所述指纹识别驱动电路还包括多条第二信号采集线,各所述第二信号采集线沿所述第一方 向延伸,所述多条第二信号采集线沿所述第二方向排列,所述采集子电路还包括第二采集信号输入端和第二采集信号输出端,所述第二采集信号输出端连接至所述第一节点,所述多条第二信号采集线与所述多个第二信号接收电路组一一对应设置,各所述第二信号采集线与对应的所述第二信号接收电路组中沿所述第一方向排列的多个所述信号接收电路的所述第二采集信号输入端分别相连,所述驱动方法还包括:将所述多条第二信号采集线分为M个第二信号采集线组,各第二信号采集线组包括至少两个第二信号采集线;在所述超声波传感器发出超声波之后,根据反射回波到达的时间,各第二信号采集线组中的所述至少两个第二信号采集线在不同的时间点向对应的所述第二信号接收电路组中沿所述第一方向排列的多个所述信号接收电路的所述第二采集信号输入端施加采集信号以接收反射回波;以及将所述至少两个第二采集信号线对应的所述第二信号接收电路组的所述第二数据输出端输出的数据进行加权求和,以得到第二指纹信息,M为大于等于1的正整数。
例如,本公开一实施例提供的指纹识别电路的驱动方法还包括:对所述第一指纹信息和所述第二指纹信息进行处理以得到第三指纹信息。
例如,在本公开一实施例提供的指纹识别电路的驱动方法中,所述指纹识别电路还包括多条第二读取控制线,各所述第二读取控制线沿所述第二方向延伸,所述多条第二读取控制线沿所述第一方向排列;以及多条第二数据读取线,各所述第二数据读取线沿所述第一方向延伸,所述多条第二数据读取线沿所述第二方向排列,所述输出子电路包括第二读取控制端和第二数据输出端,所述多条第二读取控制线与所述多个第一信号接收电路组一一对应设置,所述多条第二数据读取线与所述多个第二信号接收电路组一一对应设置,各所述第二读取控制线与对应的所述第一信号接收电路组中沿所述第二方向延伸排列的多个所述信号接收电路的第二读取控制端相连,各所述第二读取控制线与对应的所述第二信号接收电路组中沿所述第一方向延伸排列的多个所述信号接收电路的第二数据输出端相连,所述驱动方法还包括:在所述多条第二信号采集线发送所述采集信号之后,通过所述多条第二读取控制线分别向对应的所述第一信号接收电路组中沿所述第二方向延伸排列的多个所述信号接收电路的第二读取控制端施加开启信号。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种指纹识别模组发射超声波的示意图;
图2为一种指纹识别模组接收超声波的示意图;
图3为一种指纹识别模组进行指纹识别的示意图;
图4为一种指纹识别模组的结构示意图;
图5为根据本公开一实施例提供一种指纹识别电路的示意图;
图6为根据本公开一实施例提供的一种接收聚焦功能的示意图;
图7为图5所示的指纹识别电路的一种驱动方法的时序图;
图8为根据本公开一实施例提供的另一种指纹识别电路的示意图;
图9为本公开一实施例提供的一种具有发射聚焦功能的指纹识别模组的示意图;
图10为图8所示的指纹识别电路的一种驱动方法的时序图;
图11为图8所示的指纹识别电路的另一种驱动方法的时序图;
图12为根据本公开一实施例提供的另一种指纹识别电路的示意图;
图13为图12所示的指纹识别电路的一种驱动方法的时序图;
图14为图12所示的指纹识别电路的另一种驱动方法的时序图;
图15为本公开一实施例提供的另一种指纹识别电路的示意图;
图16为图15所示的指纹识别电路的一种驱动方法的时序图;
图17为图15所示的指纹识别电路的另一种驱动方法的时序图;
图18为根据本公开一实施例提供的另一种指纹识别电路的示意图;
图19为图18所示的指纹识别电路的一种驱动方法的时序图;
图20为图18所示的指纹识别电路的另一种驱动方法的时序图
图21为根据本公开一实施例提供的另一种指纹识别电路的示意图;
图22A为根据本公开一实施例提供的另一种指纹识别电路的示意图;
图22B为根据本公开一实施例提供的另一种指纹识别电路的示意图
图23为图22A所示的指纹识别电路的一种驱动方法的时序图;
图24为图22B所示的指纹识别电路的另一种驱动方法的时序图;
图25为根据本公开一实施例提供的另一种指纹识别电路的示意图;
图26为图25所示的指纹识别电路的一种驱动方法的时序图;
图27为图25所示的指纹识别电路的另一种驱动方法的时序图;
图28为本公开一实施例提供的另一种指纹识别电路的示意图;
图29为图28所示的指纹识别电路的一种驱动方法的时序图;
图30为图28所示的指纹识别电路的另一种驱动方法的时序图
图31为根据本公开一实施例提供的指纹识别模组的示意图;以及
图32为根据本公开一实施例提供的显示装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
图1为一种指纹识别模组发射超声波的示意图;图2为一种指纹识别模组接收超声波的示意图。
如图1所示,该指纹识别模组包括超声波传感器10;超声波传感器10包括上电极11、下电极12和位于上电极11和下电极12之间的压电层13;压电层13采用压电材料制作,可被电压激发产生逆压电效应。如图1所示,当上电极11和下电极12输入交变电压(AC电压)时(例如,上电极11接地,下电极12上施加交流方波),压电层13因逆压电效应会发生形变或者带动压电层13的上方和下方的膜层一起振动,从而可产生超声波并向外发射。需要说明的是,当上电极11远离压电层13的一侧或者下电极12远离压电层13的一侧设置有空腔(例如空气腔)时,该超声波传感器发出的超声波会得到加强,从而可更好地将超声波发射出去。
如图2所示,超声波传感器10发出的超声波被指纹500反射,反射回来的超声波在压电层会转化为交变电压;此时,将上电极11接地,下电极12则可作为接收电极,接收压电层产生的交变电压。由于指纹500包括谷510和脊520,它们对于超声波的反射能力不同(谷510对超声波的反射能力较强),导致被谷510和脊520反射回来的超声波的强度不同。因此,可通过接收电极接收到的交变电压判断该超声波是被谷还是脊反射的超声波。
图3为一种指纹识别模组进行指纹识别的示意图。如图3所示,该指纹识别模组包括上电极11、多个下电极12、位于上电极11和多个下电极12之间的压电层13、位于上电极11远离压电层13的一侧的基板80和位于多个下电极12远离压电层13的一侧的保护层90;下电极12、压电层13和多个上电极11组成的超声波传感器10可发射超声波也可接受超声波,也就是说,该超声波传感器10即作为超声波发射传感器又作为超声波接收传感器。当指纹与基板80接触时,超声波传感器10发射的超声波被指纹500反射,反射回来的超声波在压电层会转化为交变电压;此时,将上电极11接地,多个下电极12则可作为接收电极,从而实现在不同的位置接收压电层产生的交变电压。由于指纹500包括谷510和脊520,它们对于超声波的反射能力不同(谷510对超声波的反射能力较强),导致被谷510和脊520反射回来的超声波的强度不同。因此,可通过多个下电极12接收到的交变电压来得到该指纹500中谷和脊的位置信息,从而可实现指纹识别。
图4为一种指纹识别模组的结构示意图。如图4所示,上电极11、下电极12和压电层13可均制作在薄膜晶体管基板91的同一侧。该指纹识别模组还包括:偏置电阻60和绑定垫片70;偏置电阻60可用于校准电压,绑定垫片70可用于绑定外接的电路。
在研究中,本申请的发明人注意到,由于超声波指纹信号比较微弱,再加之超声波检测中需要使用高频驱动,干扰较大,使得超声指纹检测性能较差。
对此,本公开实施例提供一种指纹识别电路、指纹识别电路的驱动方法、指纹识别模组和显示装置。该指纹识别电路包括:多个信号接收电路,沿第一方向和第二方向阵列设置以形成沿第一方向排列的多个第一信号接收电路组和沿第二方向排列的多个第二信号接收电路组;以及多条第一信号采集线,各第一信号采集线沿第二方向延伸,多条第一信号采集线沿第一方向排列,各信号接收电路包括采集子电路和输出子电路,采集子电路包括第一采集信号输入 端和第一采集信号输出端,输出子电路包括第一读取控制端、第一数据输出端和数据输入端,第一采集信号输出端、数据输入端连接至第一节点,第一节点被配置为与超声波传感器的接收电极相连,多条第一信号采集线与多个第一信号接收电路组一一对应设置,各第一信号采集线与对应的第一信号接收电路组中沿第二方向排列的多个信号接收电路的第一采集信号输入端分别相连。由此,该指纹识别电路可通过多条第一信号采集线向多个第一信号接收电路施加时序不同的采集信号,从而实现接收聚焦功能,从而可提高指纹识别性能。具体而言,该指纹识别电路可提升信号量和信噪比、并且还可实现边读取、边运算,在保证高信噪比的同时提升指纹识别的速度和效率。
下面,结合附图对本公开实施例提供的指纹识别电路、指纹识别电路的驱动方法、指纹识别模组和显示装置进行详细的说明。
本公开一实施例提供的一种指纹识别电路。图5为根据本公开一实施例提供一种指纹识别电路的示意图。如图5所示,该指纹识别电路包括多个信号接收电路110和多条第一信号采集线121。多个信号接收电路110沿第一方向和第二方向阵列设置以形成沿所述第一方向排列的多个第一信号接收电路组1101和沿第二方向排列的多个第二信号接收电路组1102。例如,如图5所示,第一信号接收电路组1101可为沿第二方向排列的一列信号接收电路110,第二信号接收电路组1102可为沿第一方向排列的一行信号接收电路110。第一信号采集线121沿第二方向延伸,多条第一信号采集线121沿所述第一方向排列,第一信号采集线121的延伸方向与第一信号接收电路组1101中的信号接收电路110的排列方向相同。
需要说明的是,第一信号接收电路组和第二信号接收电路组仅仅是根据沿不同方向排列的信号电路来划分的,并不意味着第一信号电路组和第二信号电路组包括不同的信号电路。例如,对于某一个信号电路,其可以同时属于某个第一信号电路组和某个第二信号电路组。又例如,第一信号电路组可以是信号电路阵列中的信号电路列,第二信号电路组可以是信号电路阵列中的信号电路行。
如图5所示,信号接收电路110包括采集子电路112和输出子电路114,采集子电路112包括第一采集信号输入端1121和第一采集信号输出端1123,输出子电路114包括第一读取控制端1141、第一数据输出端1143和数据输入端1145,第一采集信号输出端1123、数据输入端1145连接至第一节点N1, 第一节点N1被配置为与超声波传感器200的接收电极220相连。此时,第一采集信号输出端1123和数据输入端1145均与超声波传感器200的接收电极220相连。多条第一信号采集线121与多个第一信号接收电路组1101一一对应设置,各第一信号采集线121与对应的第一信号接收电路组1101中沿第二方向排列的多个信号接收电路110的第一采集信号输入端1121分别相连。
在本实施例提供的指纹识别电路中,多条第一信号采集线与多个第一信号接收电路组一一对应设置,各第一信号采集线与对应的第一信号接收电路组中沿第二方向排列的多个信号接收电路的第一采集信号输入端分别相连;也就是说,多个第一信号接收电路组与不同的第一信号采集线相连。当超声波传感器发出的超声波被手指反射后,反射回波到达沿第一方向上排列的第一信号接收电路组的时间不同,因此可通过多条第一信号采集线向多个第一信号接收电路施加时序不同的采集信号以采集不同第一信号接收电路组对应的超声波传感器接收到的反射回波产生的反射信号,并且可通过对这些反射信号进行加权求和,即可实现沿第一方向排列的多个第一信号接收电路组的接收聚焦功能,从而可得到强度较高、信噪比较高的指纹数据。因此,该指纹识别电路可通过多条第一信号采集线向多个第一信号接收电路施加时序不同的采集信号,从而实现接收聚焦功能,从而可提高指纹识别性能。需要说明的是,上述的第一方向可为行方向,第二方向可为列方向;此时,该指纹识别电路可实现列接收聚焦功能。
图6为根据本公开一实施例提供的一种接收聚焦功能的示意图;图6中的Rx1至Rx5分别代表沿第一方向排列的多个第一信号接收电路组对应的接收电极的侧视图。如图6所示,当超声波传感器发出的超声波经过手指反射后,反射回波会向不同位置的超声波传感器发射,因此在不同位置的接收电极(例如,Rx1、Rx2、Rx3、Rx4和Rx5)也会在不同时刻接收到反射信号。此时,可根据反射回波到达的时间,通过多条第一信号采集线向多个第一信号接收电路施加时序不同的采集信号以采集不同第一信号接收电路组对应的反射电极接收到的反射回波产生的反射信号;当所有的反射信号被采集后,通过处理器900对反射信号进行带有不同权重的求和,最后得到增强后的指纹数据(指纹谷脊信号)。例如,手指与Rx3的距离为d1,反射回波到达Rx3的时间为t1,手指与Rx2和Rx4的距离为d2,反射回波到达Rx2和Rx4的时间为t2,手指与Rx2和Rx4的距离为d2,反射回波到达Rx2和Rx4的时间为t2,手指与Rx1 和Rx5的距离为d3,反射回波到达Rx1和Rx5的时间为t3,t1小于t2,t2小于t3;因此,可通过Rx3对应的第一信号采集线在第一时刻向Rx3对应的第一信号接收电路施加采集信号,通过Rx2和Rx4对应的第一信号采集线在延迟于第一时刻的第二时刻向Rx2和Rx4对应的第一信号接收电路施加采集信号,通过Rx1和Rx5对应的第一信号采集线在延迟于第二时刻的第三时刻向Rx1和Rx5对应的第一信号接收电路施加采集信号,以采集Rx1、Rx2、Rx3、Rx4和Rx5的反射信号。需要说明的是,第一时刻、第二时刻和第三时刻需要精确的设置,例如,第二时刻和第一时刻的时间间隔可为(d3-d1)/超声波的声速。
在一些示例中,如图5所示,该指纹识别电路还包括多条第一读取控制线131和多条第一数据读取线141;各第一读取控制线131沿第一方向延伸,多条第一读取控制线131沿第二方向排列;各第一数据读取线141沿第二方向延伸,多条第一数据读取线141沿第一方向排列。多条第一读取控制线131与多个第二信号接收电路组1102一一对应设置,多条第一数据读取线141与多个第一信号接收电路组1101一一对应设置,各第一读取控制线131与对应的第二信号接收电路组1102中沿第一方向延伸排列的多个信号接收电路110的第一读取控制端1141相连,各第一读取控制线141与对应的第一信号接收电路组1101中沿第二方向延伸排列的多个信号接收电路110的第一数据输出端1143相连。由此,可通过上述的多条第一读取控制线131和多条第一数据读取线141将采集的反射信号输出。
在一些示例中,如图5所示,采集子电路112包括第一薄膜晶体管310;第一薄膜晶体管310包括第一栅极311、第一源极312和第一漏极313。在这种情况下,该指纹识别电路还包括多个第一采集控制线151,各第一采集控制线151沿第二方向延伸,多条第一采集控制线151沿第一方向排列,多个第一采集控制线151与多个第一信号接收电路组1101一一对应设置。各第一采集控制线151与对应的第一信号接收电路组1101中沿第二方向排列的多个信号接收电路110的第一栅极311分别相连,第一源极312为第一采集信号输入端1121,第一漏极313为第一采集信号输出端1123。也就是说,各第一信号采集线121与对应的第一信号接收电路组1101中沿第二方向排列的多个信号接收电路110的第一源极312分别相连;第一漏极313与第一节点N1相连。
在一些示例中,如图5所示,输出子电路114包括:第二薄膜晶体管320 和第三薄膜晶体管330。第二薄膜晶体管320包括第二栅极321、第二源极322和第二漏极323;第三薄膜晶体管330包括第三栅极331、第三源极332和第三漏极333。第二栅极321与第一节点N1相连,第二源极322被配置为与高压源Vdd相连,第二漏极323与第二节点N2相连,第三源极332与第二节点N2相连,第二栅极321为数据输入端1145,第三栅极331为第一读取控制端1141,第三漏极333为第一数据输出端1143。
例如,第二薄膜晶体管320可为氧化物薄膜晶体管,例如铟镓锌氧化物(IGZO)薄膜晶体管。由于第一节点N1的电压会从第二薄膜晶体管进行漏电,而氧化物薄膜晶体管,例如IGZO薄膜晶体管的漏电流量级为10 -15A,当第二薄膜晶体管320为氧化物薄膜晶体管,可降低该驱动电路的整体漏电流,从而保证了第一节点N1上的反射信号的稳定性,从而可提高该指纹识别模组的指纹识别性能。
图7为图5所示的指纹识别电路的一种驱动方法的时序图;图7为驱动图6所示的沿第一方向排列的多个第一信号接收电路组(Rx1-Rx5)实现接收聚焦功能的驱动方法的时序图。如图7所示,在超声波发射阶段,第一信号采集线和第一采集控制线均施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,Rx3对应的第一信号采集线和第一采集控制线在第一时刻施加采集电压,Rx2和Rx4对应的第一信号采集线和第一采集控制线在延迟于第一时刻的第二时刻施加采集信号,Rx1和Rx5对应的第一信号采集线和第一采集控制线在延迟于第二时刻的第三时刻施加采集信号,以采集Rx1、Rx2、Rx3、Rx4和Rx5的反射信号。在反射信号采集完毕之后,依次向多条第一读取控制线施加开启信号,从而通过多条第一数据读取线将反射信号读出。最后,对这些反射信号进行加权求和可实现在沿第一方向排列的多个第一信号接收电路组的接收聚焦功能。例如,参考电压、采集信号和开启信号均为高电平,并且采集信号的电压大于参考电压。例如,参考电压可在0-3.3V,采集信号的电压可为10V左右。需要说明的是,图7仅为说明本公开实施例提供的指纹识别电路实现接收聚焦功能的驱动方法的时序图的一个示例,本公开实施例提供的接收聚焦功能并不限于5个第一信号接收电路组,其他数量的第一信号接收电路组也可实现接收聚焦功能。另外,高电平的采集信号可对接收电极接收到的交变电压进行抬升,得到对比度较大的检测信号。
图8为根据本公开一实施例提供的另一种指纹识别电路的示意图。如图8所示,该指纹识别电路没有设置上述的第一读取控制线和第一数据读取线。该指纹识别电路包括多条第二读取控制线132和多条第二数据读取线142;各第二读取控制线132沿第二方向延伸,多条第二读取控制线132沿第一方向排列;各第二数据读取线142沿第一方向延伸,多条第二数据读取线142沿第二方向排列。输出子电路114包括第二读取控制端1142和第二数据输出端1144;多条第二读取控制线132与多个第一信号接收电路组1101一一对应设置,多条第二数据读取线142与多个第二信号接收电路组1102一一对应设置;各第二读取控制线132与对应的第一信号接收电路组1102中沿第二方向延伸排列的多个信号接收电路110的第二读取控制端1142相连,各第二读取控制线142与对应的第二信号接收电路组1101中沿第一方向延伸排列的多个信号接收电路110的第二数据输出端1144相连。由此,可通过上述的多条第二读取控制线132和多条第二数据读取线142将采集的反射信号输出。
图8所示的指纹识别电路可应用于具有发射聚焦功能的指纹识别模组中。此时,图8所示的指纹识别电路不仅可以实现在沿第一方向排列的多个第一信号接收电路组的接收聚焦功能,还可在该指纹识别模组中沿第二方向排列的多个超声波传感器组进行发射聚焦时,通过第二读取控制线向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路施加开启信号,并通过多个第二数据读取线读出反射信号来提高信号读取效率。
在一些示例中,如图8所示,输出子电路114包括:第二薄膜晶体管320和第五薄膜晶体管350。第二薄膜晶体管320包括第二栅极321、第二源极322和第二漏极323;第五薄膜晶体管350包括第五栅极351、第五源极352和第五漏极353。第二栅极321与第一节点N1相连,第二源极322被配置为与高压源Vdd相连,第二漏极323与第二节点N2相连,第五源极352与第二节点N2相连,第二栅极321为数据输入端1145,第五栅极351为第二读取控制端1142,第五漏极353为第二数据输出端1144。
图9为本公开一实施例提供的一种具有发射聚焦功能的指纹识别模组的示意图。如图9所示,多个超声波传感器200沿第一方向和第二方向阵列设置以形成沿第一方向排列的多个第一超声波传感器组2001和沿第二方向排列的多个第二超声波传感器组2002,各第一超声波传感器组2001中的沿第二方向排列的多个超声波传感器200的发射电极210不同,各第二超声波传感器组2002 中的沿第一方向排列的多个超声波传感器200共用一个条状发射电极210。由此,指纹识别模组可通过向不同的条状发射电极210施加具有不同时序的驱动电压来实现发射聚焦功能。此时,该指纹识别模组中特定的第二超声波传感器组对应的位置的超声波得到增强,若采用上述沿第一方向延伸的第一读取控制线和沿第二方向延伸的第一数据读取线来读取反射信号,除了超声波得到增强的位置对应的第二超声波传感器组的反射信号,还会读取到其他超声波传感器的反射信号,因此信号读取效率较低。当图9所示的指纹识别模组采用图8所示的指纹识别模组时,可通过沿第二方向延伸的第二读取控制线和沿第一方向延伸的第二数据读取线来仅读取超声波得到增强的位置对应的第二超声波传感器组的反射信号,从而可提高信号读取效率。例如,如图9所示,不同的条状发射电极210通过不同的驱动线与发射驱动器800相连。
图10为图8所示的指纹识别电路的一种驱动方法的时序图;图10为驱动图6所示的沿第一方向排列的多个第一信号接收电路组(Rx1-Rx5)实现接收聚焦功能的驱动方法的时序图。如图10所示,在超声波发射阶段,所有的驱动电极同时施加驱动电压,第一信号采集线和第一采集控制线均施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,Rx3对应的第一信号采集线和第一采集控制线在第一时刻施加采集电压,Rx2和Rx4对应的第一信号采集线和第一采集控制线在延迟于第一时刻的第二时刻施加采集信号,Rx1和Rx5对应的第一信号采集线和第一采集控制线在延迟于第二时刻的第三时刻施加采集信号,以采集Rx1、Rx2、Rx3、Rx4和Rx5的反射信号。在反射信号采集完毕之后,依次向多条第二读取控制线施加开启信号,从而通过多条第二数据读取线将反射信号读出。最后,对这些反射信号进行加权求和可实现在沿第一方向排列的多个第一信号接收电路组的接收聚焦功能。例如,参考电压、采集信号和开启信号均为高电平,并且采集信号的电压大于参考电压。需要说明的是,图10仅为说明本公开实施例提供的指纹识别电路实现接收聚焦功能的驱动方法的时序图的一个示例,本公开实施例提供的接收聚焦功能并不限于5个第一信号接收电路组,其他数量的第一信号接收电路组也可实现接收聚焦功能。
图11为图8所示的指纹识别电路的另一种驱动方法的时序图;图11为驱动图9所示的沿第二方向排列的多个第二超声波传感器组实现发射聚焦功能的 驱动方法的时序图。如图11所示,在超声波发射阶段,在第四时刻向Tx1和Tx3施加驱动电压,然后在第五时刻向Tx2施加驱动电压,从而可实现在Tx2对应的位置(Tx2的正上方)实现超声波聚焦,所有的第一信号采集线和第一采集控制线均施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,所有的第一信号采集线和第一采集控制线均施加采集信号,以采集反射信号。在反射信号采集完毕之后,仅向超声波聚焦位置对应的第二读取控制线施加开启信号,从而仅读取超声波得到增强的位置对应的第二超声波传感器组的反射信号,从而可提高信号读取效率。
值的注意的是,当图8所示的指纹识别电路应用在具有发射聚焦功能的指纹识别模组中时,可先对沿第一方向排列的多个第一信号接收电路组进行接收聚焦,然后在对沿第二方向排列的多个第二超声波传感器组进行发射聚焦,即可实现二维聚焦功能。然后,再将两次得到的指纹信息进行处理,从而得到更加精准的指纹信息,从而可进一步提高指纹识别性能。
图12为根据本公开一实施例提供的另一种指纹识别电路的示意图。如图12所示,除了上述的第一信号采集线121,该指纹识别电路还包括多条第二信号采集线122,各第二信号采集线122沿第一方向延伸,多条第二信号采集线122沿第二方向排列。采集子电路112还包括第二采集信号输入端1122和第二采集信号输出端1124,第二采集信号输出端1124连接至第一节点N1,多条第二信号采集线122与多个第二信号接收电路组1102一一对应设置,各第二信号采集线122与对应的第二信号接收电路组1102中沿第一方向排列的多个信号接收电路441的第二采集信号输入端1122分别相连。由于多条第二信号采集线与多个第二信号接收电路组一一对应设置,各第二信号采集线与对应的第二信号接收电路组中沿第一方向排列的多个信号接收电路的第二采集信号输入端分别相连;也就是说,多个第二信号接收电路组与不同的第二信号采集线相连。当超声波传感器发出的超声波被手指反射后,反射回波到达沿第二方向上排列的第二信号接收电路组的时间不同,因此可通过多条第二信号采集线向多个第二信号接收电路施加时序不同的采集信号以采集不同第二信号接收电路组对应的超声波传感器接收到的反射回波产生的反射信号,并且可通过对这些反射信号进行加权求和,即可实现接收聚焦功能,从而可得到强度较高、信噪比较高的指纹数据。因此,该指纹识别电路可通过多条第二信号采集线向多 个第二信号接收电路施加时序不同的采集信号,从而实现接收聚焦功能,从而可提高指纹识别性能。需要说明的是,上述的第一方向可为行方向,第二方向可为列方向;此时,该指纹识别电路可通过第二信号采集线实现行接收聚焦功能。
值的注意的是,图12所示的指纹识别电路可分别对沿第一方向排列的多个第一接收电路组和沿第二方向排列的多个第二接收电路组实现接收聚焦功能,然后,再将两次得到的指纹信息进行处理,从而得到更加精准的指纹信息,由此,该指纹识别电路可实现二维接收聚焦功能,从而可进一步提高指纹识别性能。
在一些示例中,如图12所示,采集子电路112还包括第四薄膜晶体管340;第四薄膜晶体管340包括第四栅极341、第四源极342和第四漏极343。在这种情况下,该指纹识别电路还包括多个第二采集控制线152,各第二采集控制线152沿第一方向延伸,多条第二采集控制线152沿第二方向排列,多个第二采集控制线152与多个第二信号接收电路组1102一一对应设置,各第二采集控制线152与对应的第二信号接收电路组1102中沿第一方向排列的多个信号接收电路110的第四栅极341分别相连,第四源极342为第二采集信号输入端1122,第四漏极343为第二采集信号输出端1124。也就是说,各第二信号采集线122与对应的第二信号接收电路组1102中沿第一方向排列的多个信号接收电路110的第四源极342分别相连;第四漏极343与第一节点N1相连。
图13为图12所示的指纹识别电路的一种驱动方法的时序图;图13为驱动图6所示的沿第一方向排列的多个第一信号接收电路组(Rx1-Rx5)实现接收聚焦功能的驱动方法的时序图。如图13所示,在超声波发射阶段,第一信号采集线和第一采集控制线均施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,Rx3对应的第一信号采集线和第一采集控制线在第一时刻施加采集电压,Rx2和Rx4对应的第一信号采集线和第一采集控制线在延迟于第一时刻的第二时刻施加采集信号,Rx1和Rx5对应的第一信号采集线和第一采集控制线在延迟于第二时刻的第三时刻施加采集信号,以采集Rx1、Rx2、Rx3、Rx4和Rx5的反射信号。在反射信号采集完毕之后,依次向多条第一读取控制线施加开启信号,从而通过多条第一数据读取线将反射信号读出。最后,对这些反射信号进行加权求和可实现在沿第一方向排列的多个第一信号接收 电路组的接收聚焦功能。例如,参考电压、采集信号和开启信号均为高电平,并且采集信号的电压大于参考电压。需要说明的是,图13仅为说明本公开实施例提供的指纹识别电路实现接收聚焦功能的驱动方法的时序图的一个示例,本公开实施例提供的接收聚焦功能并不限于5个第一信号接收电路组,其他数量的第一信号接收电路组也可实现接收聚焦功能。
图14为图12所示的指纹识别电路的另一种驱动方法的时序图;图14为驱动沿第二方向排列的多个第二信号接收电路组实现接收聚焦功能的驱动方法的时序图。与图13所示的驱动方法类似,在超声波发射阶段,第二信号采集线和第二采集控制线均施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,可向沿第二方向排列的多个第二信号接收电路组施加具有不同时序的采集信号,以采集沿第二方向排列的多个第二信号接收电路组的反射信号。在反射信号采集完毕之后,依次向多条第一读取控制线施加开启信号,从而通过多条第一数据读取线将反射信号读出。最后,对这些反射信号进行加权求和可实现在沿第一方向排列的多个第一信号接收电路组的接收聚焦功能。例如,参考电压、采集信号和开启信号均为高电平,并且采集信号的电压大于参考电压。
图15为本公开一实施例提供的另一种指纹识别电路的示意图。如图15所示,输出子电路114包括第二薄膜晶体管320、第三薄膜晶体管330和第五薄膜晶体管350。第二薄膜晶体管320包括第二栅极321、第二源极322和第二漏极323;第三薄膜晶体管330包括第三栅极331、第三源极332和第三漏极333;第五薄膜晶体管350包括第五栅极351、第五源极352和第五漏极353。第二栅极321与第一节点N1相连,第二源极322被配置为与高压源Vdd相连,第二漏极323与第二节点N2相连,第三源极332与第二节点N2相连,第二栅极331为数据输入端1145,第三栅极331为第一读取控制端1141,第三漏极333为第一数据输出端1143,第五源极352连接至第二节点N2,第五栅极351为第二读取控制端1142,第五漏极353为第二数据输出端1144。
此外,如图15所示,该指纹识别电路同时设置了上述的多条第一读取控制线131、多条第一数据读取线141、多条第二读取控制线132和多条第二数据读取线142。多条第一读取控制线131、多条第一数据读取线141、多条第二读取控制线132和多条第二数据读取线142的具体设置方式可参见前面实施例 的相关描述,在此不再赘述。
图16为图15所示的指纹识别电路的一种驱动方法的时序图;图16为驱动图6所示的沿第一方向排列的多个第一信号接收电路组(Rx1-Rx5)实现接收聚焦功能的驱动方法的时序图。如图16所示,在超声波发射阶段,第一信号采集线和第一采集控制线均施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,Rx3对应的第一信号采集线和第一采集控制线在第一时刻施加采集电压,Rx2和Rx4对应的第一信号采集线和第一采集控制线在延迟于第一时刻的第二时刻施加采集信号,Rx1和Rx5对应的第一信号采集线和第一采集控制线在延迟于第二时刻的第三时刻施加采集信号,以采集Rx1、Rx2、Rx3、Rx4和Rx5的反射信号。在反射信号采集完毕之后,依次向多条第一读取控制线施加开启信号,从而通过多条第一数据读取线将反射信号读出。此时,由于各第一读取控制线与对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端相连,各第一数据读取线与对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第一数据输出端相连。由此,可通过第一读取控制线向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端施加开启信号,从而可通过多个第一数据读取线同时读出沿对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路采集到的反射信号,此时可直接对读取的反射信号进行处理(例如加权求和)并通过下一个第一读取控制线向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端施加开启信号,以读取下一个第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路采集到的反射信号。因此,该指纹识别电路可实现边读取、边处理,从而可提升读取速度和处理速度,进而可大大提高指纹识别效率。另外,通过上述的边读取、边处理可灵活快速读出对应的第一信号接收电路组或第二信号接收电路组,并且还在某些非正方形检测区域等应用中可以大幅度提速。图16仅为说明本公开实施例提供的指纹识别电路实现接收聚焦功能的驱动方法的时序图的一个示例,本公开实施例提供的接收聚焦功能并不限于5个第一信号接收电路组,其他数量的第一信号接收电路组也可实现接收聚焦功能。
图17为图15所示的指纹识别电路的另一种驱动方法的时序图;图17为驱动沿第二方向排列的多个第二信号接收电路组实现接收聚焦功能的驱动方 法的时序图。如图17所示,与图16所示的接收聚焦功能类似,在超声波发射阶段,第二信号采集线和第二采集控制线均施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,不同的第二信号采集线和第二采集控制线施加时序不同的采集信号,以采集沿第二方向排列的多个第二信号接收电路组对应的超声波传感器产生的反射信号。在反射信号采集完毕之后,依次向多条第二读取控制线施加开启信号,从而通过多条第二数据读取线将反射信号读出。此时,由于各第二读取控制线与对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第二读取控制端相连,各第二数据读取线与对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第二数据输出端相连。由此,可通过第二读取控制线向对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第二读取控制端施加开启信号,从而可通过多个第二数据读取线同时读出沿对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路采集到的反射信号,此时可直接对读取的反射信号进行处理(例如加权求和)并通过下一个第二读取控制线向对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第二读取控制端施加开启信号,以读取下一个第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路采集到的反射信号。因此,该指纹识别电路在进行沿第二方向排列的多个第二信号接收电路组的接收聚焦功能时,也可实现边读取、边处理,从而可提升读取速度和处理速度,进而可大大提高指纹识别效率。
值得注意的是,图15所示的指纹识别电路可分别对沿第一方向排列的多个第一接收电路组和沿第二方向排列的多个第二接收电路组实现接收聚焦功能,然后,再将两次得到的指纹信息进行处理,从而得到更加精准的指纹信息。由此,该指纹识别电路可实现二维接收聚焦功能,从而可进一步提高指纹识别性能。并且,由于该指纹能识别电路同时设置了第一读取控制线、第一数据读取线、第二读取控制线和第二数据读取线,因此该指纹识别电路在分别对沿第一方向排列的多个第一接收电路组和沿第二方向排列的多个第二接收电路组实现接收聚焦功能时均可实现边读取、边处理,从而具有较高的指纹识别效率。
图18为根据本公开一实施例提供的另一种指纹识别电路的示意图。如图18所示,该指纹识别电路仅设置了多条第一信号采集线121和多条第一采集控制线151,而没有设置第二信号采集线和第二采集控制线;另外,该指纹识别 电路还同时设置了上述的多条第一读取控制线131、多条第一数据读取线141、多条第二读取控制线132和多条第二数据读取线142。多条第一信号采集线121、多条第一采集控制线151、多条第一读取控制线131、多条第一数据读取线141、多条第二读取控制线132和多条第二数据读取线142的具体设置方式可参见前面实施例的相关描述,在此不再赘述。由此可知,该指纹识别电路可在对沿第一方向排列的多个第一接收电路组实现接收聚焦功能,并且还可通过多条第一读取控制线和多条第一数据读取线实现边读取、边处理。当图18所示的指纹识别电路可应用于具有发射聚焦功能的指纹识别模组中。此时,图18所示的指纹识别电路不仅可以实现在沿第一方向排列的多个第一信号接收电路组的接收聚焦功能,还可在该指纹识别模组中沿第二方向排列的多个超声波传感器组进行发射聚焦时,通过第二读取控制线向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路施加开启信号,并通过多个第二数据读取线读出反射信号来提高信号读取效率。
图19为图18所示的指纹识别电路的一种驱动方法的时序图;图19为驱动图6所示的沿第一方向排列的多个第一信号接收电路组(Rx1-Rx5)实现接收聚焦功能的驱动方法的时序图。如图19所示,在超声波发射阶段,第一信号采集线和第一采集控制线均施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,Rx3对应的第一信号采集线和第一采集控制线在第一时刻施加采集电压,Rx2和Rx4对应的第一信号采集线和第一采集控制线在延迟于第一时刻的第二时刻施加采集信号,Rx1和Rx5对应的第一信号采集线和第一采集控制线在延迟于第二时刻的第三时刻施加采集信号,以采集Rx1、Rx2、Rx3、Rx4和Rx5的反射信号。在反射信号采集完毕之后,依次向多条第一读取控制线施加开启信号,从而通过多条第一数据读取线将反射信号读出。此时,由于各第一读取控制线与对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端相连,各第一数据读取线与对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第一数据输出端相连。由此,可通过第一读取控制线向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端施加开启信号,从而可通过多个第一数据读取线同时读出沿对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路采集到的反射信号,此时可直接对读取的反射信 号进行处理(例如加权求和)并通过下一个第一读取控制线向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端施加开启信号,以读取下一个第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路采集到的反射信号。因此,该指纹识别电路可实现边读取、边处理,从而可提升读取速度和处理速度,进而可大大提高指纹识别效率。图19仅为说明本公开实施例提供的指纹识别电路实现接收聚焦功能的驱动方法的时序图的一个示例,本公开实施例提供的接收聚焦功能并不限于5个第一信号接收电路组,其他数量的第一信号接收电路组也可实现接收聚焦功能。
图20为图18所示的指纹识别电路的另一种驱动方法的时序图;图20为驱动图9所示的沿第二方向排列的多个第二超声波传感器组实现发射聚焦功能的驱动方法的时序图。如图20所示,在超声波发射阶段,在第四时刻向Tx1和Tx3施加驱动电压,然后在第五时刻向Tx2施加驱动电压,从而可实现在Tx2对应的位置(Tx2的正上方)实现超声波聚焦,所有的第一信号采集线和第一采集控制线均施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,所有的第一信号采集线和第一采集控制线均施加采集信号,以采集反射信号。在反射信号采集完毕之后,仅向超声波聚焦位置对应的第二读取控制线施加开启信号,从而仅读取超声波得到增强的位置对应的第二超声波传感器组的反射信号,从而可提高信号读取效率。
图21为根据本公开一实施例提供的另一种指纹识别电路的示意图。如图21所示,与图15所示的指纹识别电路不同的是,各信号接收电路110还包括复位子电路116,复位子电路116包括第六薄膜晶体管360;第六薄膜晶体管360包括第六栅极361、第六源极362和第六漏极363,第六栅极361与复位控制线Reset相连,第六源极162与复位电压源Vreset相连,第六漏极363与第一节点N1相连。例如,复位控制线Reset可同时相连该指纹识别电路中所有信号接收电路的第六栅极,从而可通过复位控制线Reset向该指纹识别电路中所有信号接收电路的第六栅极施加复位信号,从而实现复位。此时,第一信号采集线或者第二信号采集线可不用在超声波发射阶段施加参考电压,从而可简化第一信号采集线或者第二信号采集线的时序控制,进而可简化控制第一信号采集线或者第二信号采集线的控制电路。另外,由于第一薄膜晶体管或第四薄膜晶体管仅用于加载采集信号,不用加载参考电压或复位电压,从而使得第一 薄膜晶体管或第四薄膜晶体管的稳定性更好。
图22A为根据本公开一实施例提供的另一种指纹识别电路的示意图;图22B为根据本公开一实施例提供的另一种指纹识别电路的示意图。如图22A所示,与图5提供的指纹识别电路不同的是,各信号接收电路110中的采集子电路112不采用薄膜晶体管而采用二极管。此时,该采集子电路112包括第一二极管410和上述的复位子电路116,包括第一阳极411和第一阴极412,第一信号采集线121与第一阳极411相连,第一阴极412与连接至第一节点N1,第一阳极411为第一采集信号输入端1121,第一阴极412为第一采集信号输出端1123。如图22B所示,与图8提供的指纹识别电路不同的是,各信号接收电路110中的采集子电路112不采用薄膜晶体管而采用二极管。此时,该采集子电路112包括第一二极管410和上述的复位子电路116,包括第一阳极411和第一阴极412,第一信号采集线121与第一阳极411相连,第一阴极412与连接至第一节点N1,第一阳极411为第一采集信号输入端1121,第一阴极412为第一采集信号输出端1123由此,该指纹识别电路可不设置第一采集控制线,从而可简化电路结构。
图23为图22A所示的指纹识别电路的一种驱动方法的时序图;图23为驱动图6所示的沿第一方向排列的多个第一信号接收电路组(Rx1-Rx5)实现接收聚焦功能的驱动方法的时序图。如图23所示,在超声波发射阶段,复位控制线Reset施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,Rx3对应的第一信号采集线在第一时刻施加采集电压,Rx2和Rx4对应的第一信号采集线在延迟于第一时刻的第二时刻施加采集信号,Rx1和Rx5对应的第一信号采集线在延迟于第二时刻的第三时刻施加采集信号,以采集Rx1、Rx2、Rx3、Rx4和Rx5的反射信号。在反射信号采集完毕之后,依次向多条第二读取控制线施加开启信号,从而通过多条第二数据读取线将反射信号读出。最后,对这些反射信号进行加权求和可实现在沿第一方向排列的多个第一信号接收电路组的接收聚焦功能。
图24为图22B所示的指纹识别电路的另一种驱动方法的时序图;图24为驱动图9所示的沿第二方向排列的多个第二超声波传感器组实现发射聚焦功能的驱动方法的时序图。如图24所示,在超声波发射阶段,在第四时刻向Tx1和Tx3施加驱动电压,然后在第五时刻向Tx2施加驱动电压,从而可实现在 Tx2对应的位置(Tx2的正上方)实现超声波聚焦,此时复位控制线Reset施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,所有的第一信号采集线均施加采集信号,以采集反射信号。在反射信号采集完毕之后,仅向超声波聚焦位置对应的第二读取控制线施加开启信号,从而仅读取超声波得到增强的位置对应的第二超声波传感器组的反射信号,从而可提高信号读取效率。
图25为根据本公开一实施例提供的另一种指纹识别电路的示意图。如图25所示,与图12所示的指纹识别电路不同的是,各信号接收电路110中的采集子电路112还包括第二二极管420,各信号接收电路110包括上述的复位子电路116,第二二极管420包括第二阳极421和第二阴极422,第一漏极313和第四漏极343与第二阳极421相连,第二阴极422与第一节点N1相连。由此,该指纹识别电路中的第一薄膜晶体管和第二薄膜晶体管仅起到开关的作用。
图26为图25所示的指纹识别电路的一种驱动方法的时序图;图26为驱动图6所示的沿第一方向排列的多个第一信号接收电路组(Rx1-Rx5)实现接收聚焦功能的驱动方法的时序图。如图26所示,在超声波发射阶段,复位控制线Reset施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,Rx3对应的第一信号采集线在第一时刻施加采集电压,Rx3对应的第一采集控制线在第一时刻施加打开信号,Rx2和Rx4对应的第一信号采集线在延迟于第一时刻的第二时刻施加采集信号,Rx2和Rx4对应的第一采集控制线在第二时刻施加打开信号,Rx1和Rx5对应的第一信号采集线在延迟于第二时刻的第三时刻施加采集信号,Rx1和Rx5对应的第一采集控制线在第三时刻施加打开信号,以采集Rx1、Rx2、Rx3、Rx4和Rx5的反射信号。在反射信号采集完毕之后,依次向多条第二读取控制线施加开启信号,从而通过多条第二数据读取线将反射信号读出。最后,对这些反射信号进行加权求和可实现在沿第一方向排列的多个第一信号接收电路组的接收聚焦功能。需要说明的是,上述的打开信号和上述的采集信号的时序相同,上述的打开信号和上述的采集信号可为不同电压的信号。
图27为图26所示的指纹识别电路的另一种驱动方法的时序图;图27为 驱动沿第二方向排列的多个第二信号接收电路组实现接收聚焦功能的驱动方法的时序图。与图26所示的驱动方法类似,在超声波发射阶段,复位控制线Reset施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,第二信号采集线向沿第二方向排列的多个第二信号接收电路组施加具有不同时序的采集信号,第二信号控制线向沿第二方向排列的多个第二信号接收电路组施加具有不同时序的打开信号,以采集沿第二方向排列的多个第二信号接收电路组的反射信号。在反射信号采集完毕之后,依次向多条第二读取控制线施加开启信号,从而通过多条第二数据读取线将反射信号读出。最后,对这些反射信号进行加权求和可实现在沿第一方向排列的多个第一信号接收电路组的接收聚焦功能。需要说明的是,上述的打开信号和上述的采集信号的时序相同,上述的打开信号和上述的采集信号可为不同电压的信号。
图28为本公开一实施例提供的另一种指纹识别电路的示意图。如图28所示,与图15所示的指纹识别电路不同的是,各信号接收电路110中的采集子电路112还包括第二二极管420,各信号接收电路110包括上述的复位子电路116,第二二极管420包括第二阳极421和第二阴极422,第一漏极313和第四漏极343与第二阳极421相连,第二阴极422与第一节点N1相连。由此,该指纹识别电路中的第一薄膜晶体管和第二薄膜晶体管仅起到开关的作用。
此外,如图28所示,该指纹识别电路同时设置了上述的多条第一读取控制线131、多条第一数据读取线141、多条第二读取控制线132和多条第二数据读取线142。多条第一读取控制线131、多条第一数据读取线141、多条第二读取控制线132和多条第二数据读取线142的具体设置方式可参见前面实施例的相关描述,在此不再赘述。
图29为图28所示的指纹识别电路的一种驱动方法的时序图;图29为驱动图6所示的沿第一方向排列的多个第一信号接收电路组(Rx1-Rx5)实现接收聚焦功能的驱动方法的时序图。如图29所示,在超声波发射阶段,复位控制线Reset施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,在反射信号采集阶段,Rx3对应的第一信号采集线在第一时刻施加采集电压,Rx3对应的第一采集控制线在第一时刻施加打开信号,Rx2和Rx4对应的第一信号采集线在延迟于第一时刻的第二时刻施加采集信号,Rx2和Rx4对应 的第一采集控制线在第二时刻施加打开信号,Rx1和Rx5对应的第一信号采集线在延迟于第二时刻的第三时刻施加采集信号,Rx1和Rx5对应的第一采集控制线在第三时刻施加打开信号,以采集Rx1、Rx2、Rx3、Rx4和Rx5的反射信号。在反射信号采集完毕之后,依次向多条第一读取控制线施加开启信号,从而通过多条第一数据读取线将反射信号读出。此时,由于各第一读取控制线与对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端相连,各第一数据读取线与对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第一数据输出端相连。由此,可通过第一读取控制线向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端施加开启信号,从而可通过多个第一数据读取线同时读出沿对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路采集到的反射信号,此时可直接对读取的反射信号进行处理(例如加权求和)并通过下一个第一读取控制线向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端施加开启信号,以读取下一个第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路采集到的反射信号。因此,该指纹识别电路可实现边读取、边处理,从而可提升读取速度和处理速度,进而可大大提高指纹识别效率。图29仅为说明本公开实施例提供的指纹识别电路实现接收聚焦功能的驱动方法的时序图的一个示例,本公开实施例提供的接收聚焦功能并不限于5个第一信号接收电路组,其他数量的第一信号接收电路组也可实现接收聚焦功能。
图30为图28所示的指纹识别电路的另一种驱动方法的时序图;图30为驱动沿第二方向排列的多个第二信号接收电路组实现接收聚焦功能的驱动方法的时序图。如图30所示,与图29所示的接收聚焦功能类似,在超声波发射阶段,复位控制线Reset施加参考电压,此时第一节点上的参考电压不仅可用于与超声波传感器的驱动电极上的驱动电压发射超声波,还可用于复位;在反射信号采集阶段,第二信号采集线向沿第二方向排列的多个第二信号接收电路组施加具有不同时序的采集信号,第二信号控制线向沿第二方向排列的多个第二信号接收电路组施加具有不同时序的打开信号,以采集沿第二方向排列的多个第二信号接收电路组的反射信号。在反射信号采集完毕之后,依次向多条第二读取控制线施加开启信号,从而通过多条第二数据读取线将反射信号读出。此时,由于各第二读取控制线与对应的第一信号接收电路组中沿第二方向延伸 排列的多个信号接收电路的第二读取控制端相连,各第二数据读取线与对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第二数据输出端相连。由此,可通过第二读取控制线向对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第二读取控制端施加开启信号,从而可通过多个第二数据读取线同时读出沿对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路采集到的反射信号,此时可直接对读取的反射信号进行处理(例如加权求和)并通过下一个第二读取控制线向对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第二读取控制端施加开启信号,以读取下一个第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路采集到的反射信号。因此,该指纹识别电路在进行沿第二方向排列的多个第二信号接收电路组的接收聚焦功能时,也可实现边读取、边处理,从而可提升读取速度和处理速度,进而可大大提高指纹识别效率。
本公开一实施例提供的一种指纹识别模组。图31为根据本公开一实施例提供的指纹识别模组的示意图。如图31所示,该指纹识别模组包括上述的指纹识别电路100。因此,该指纹识别模组具有与上述的指纹识别电路100相同或相应的有益技术效果,具体可参见上述实施例的相关描述,在此不再赘述。
在一些示例中,如图31所示,该指纹识别模组还包括衬底基板180,上述的指纹识别电路100可设置在衬底基板180中。
在一些示例中,如图31所示,该指纹识别模组包括多个超声波传感器200,各超声波传感器200包括发射电极210、接收电极220和位于发射电极210和接收电极220之间的压电材料层230,多个超声波传感器200与多个信号接收电路110一一对应设置,各信号接收电路110的第一节点N1与对应的超声波传感器200的接收电极220相连。
例如,驱动电极210的材料包括铜、银和铝中的一种或多种。
在一些示例中,该指纹能识别模组可为具有发射聚焦功能的指纹识别模组。如图9所示,多个超声波传感器200沿第一方向和第二方向阵列设置以形成沿第一方向排列的多个第一超声波传感器组2001和沿第二方向排列的多个第二超声波传感器组2002,各第一超声波传感器组2001中的沿第二方向排列的多个超声波传感器200的发射电极220不同,各第二超声波传感器组2002中的沿第一方向排列的多个超声波传感器200共用一个条状发射电极220。由此,指纹识别模组可通过向不同的条状发射电极220施加具有不同时序的驱动 电压来实现发射聚焦功能。此时,该指纹识别模组中特定的第二超声波传感器组对应的位置的超声波得到增强。当该指纹识别模组通过实现超声波的发射聚焦来提高发出的超声波在特定区域或特定方向的强度或能量时,该指纹识别模组不仅可实现指纹识别,还可穿透手指,分辨该指纹是否为真的皮肤。
本公开一实施例还挺一种指纹识别电路的驱动方法。该指纹识别电路可为上述实施例提供的指纹识别电路。该驱动方法包括:将多条第一信号采集线分为N个第一信号采集线组,各第一信号采集线组包括至少两个第一信号采集线;在超声波传感器发出超声波之后,根据反射回波到达的时间,各第一信号采集线组中的至少两个第一信号采集线在不同的时间点向对应的第一信号接收电路组中沿第二方向排列的多个信号接收电路的第一采集信号输入端施加采集信号以接收反射回波;以及将至少两个第一采集信号线对应的第一信号接收电路组的第一数据输出端输出的数据进行加权求和,以得到第一指纹信息,其中N为大于等于1的正整数。
在本实施例提供的指纹识别电路的驱动方法中,当超声波传感器发出的超声波被手指反射后,反射回波到达沿第一方向上排列的第一信号接收电路组的时间不同,第一信号采集线组中的至少两个第一信号采集线在不同的时间点向对应的第一信号接收电路组中沿第二方向排列的多个信号接收电路的第一采集信号输入端施加采集信号以接收反射回波,并且通过对至少两个第一采集信号线对应的第一信号接收电路组的第一数据输出端输出的数据进行加权求和,即可实现沿第一方向排列的多个第一信号接收电路组的接收聚焦功能,从而可得到强度较高、信噪比较高的第一指纹信息,进而可提高指纹识别性能。需要说明的是,上述的不同时间点可根据第一信号接收电路组与手指上反射位置的距离和超声波的速度进行计算,具体可参见图6的相关描述。
在一些示例中,指纹识别电路还包括:多条第一读取控制线,各第一读取控制线沿第一方向延伸,多条第一读取控制线沿第二方向排列;以及多条第一数据读取线,各第一数据读取线沿第二方向延伸,多条第一数据读取线沿第一方向排列,多条第一读取控制线与多个第二信号接收电路组一一对应设置,多条第一数据读取线与多个第一信号接收电路组一一对应设置,各第一读取控制线与对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端相连,各第一读取控制线与对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第一数据输出端相连,上述驱动方法 还包括:在多条第一信号采集线发送采集信号之后,通过多条第一读取控制线分别向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端施加开启信号。
在本示例提供的驱动方法中,在多条第一信号采集线发送采集信号之后,通过多条第一读取控制线分别向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端施加开启信号,从而可通过多个第一数据读取线同时读出沿对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路采集到的反射信号,此时可直接对读取的反射信号进行处理(例如加权求和)并通过下一个第一读取控制线向对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第一读取控制端施加开启信号,以读取下一个第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路采集到的反射信号。因此,该指纹识别电路可实现边读取、边处理,从而可提升读取速度和处理速度,进而可大大提高指纹识别效率。
在一些示例中,指纹识别电路还包括多条第二信号采集线,各第二信号采集线沿第一方向延伸,多条第二信号采集线沿第二方向排列,采集子电路还包括第二采集信号输入端和第二采集信号输出端,第二采集信号输出端连接至第一节点,多条第二信号采集线与多个第二信号接收电路组一一对应设置,各第二信号采集线与对应的第二信号接收电路组中沿第一方向排列的多个信号接收电路的第二采集信号输入端分别相连,驱动方法还包括:将多条第二信号采集线分为M个第二信号采集线组,各第二信号采集线组包括至少两个第二信号采集线;在超声波传感器发出超声波之后,根据反射回波到达的时间,各第二信号采集线组中的至少两个第二信号采集线在不同的时间点向对应的第二信号接收电路组中沿第一方向排列的多个信号接收电路的第二采集信号输入端施加采集信号以接收反射回波;以及将至少两个第二采集信号线对应的第二信号接收电路组的第二数据输出端输出的数据进行加权求和以得到第二指纹信息,其中M为大于等于1的正整数。
在本示例提供的驱动方法中,当超声波传感器发出的超声波被手指反射后,反射回波到达沿第二方向上排列的第二信号接收电路组的时间不同,第二信号采集线组中的至少两个第二信号采集线在不同的时间点向对应的第二信号接收电路组中沿第一方向排列的多个信号接收电路的第二采集信号输入端施加采集信号以接收反射回波,并且通过对至少两个第二采集信号线对应的第 二信号接收电路组的第二数据输出端输出的数据进行加权求和,即可实现沿第二方向排列的多个第二信号接收电路组的接收聚焦功能,从而可得到强度较高、信噪比较高的指纹数据,进而可提高指纹识别性能。另外,该驱动方法通过分别对沿第一方向排列的多个第一接收电路组和沿第二方向排列的多个第二接收电路组实现接收聚焦功能,从而可得到强度较高、信噪比较高的第二指纹信息。
在一些示例中,该驱动方法还包括:对第一指纹信息和第二指纹信息进行处理以得到第三指纹信息。由此,通过将两次得到的指纹信息进行处理,从而得到更加精准的指纹信息。由此,该指纹识别电路可实现二维接收聚焦功能,从而可进一步提高指纹识别性能。
在一些示例中,指纹识别电路还包括多条第二读取控制线,各第二读取控制线沿第二方向延伸,多条第二读取控制线沿第一方向排列;以及多条第二数据读取线,各第二数据读取线沿第一方向延伸,多条第二数据读取线沿第二方向排列,输出子电路包括第二读取控制端和第二数据输出端,多条第二读取控制线与多个第一信号接收电路组一一对应设置,多条第二数据读取线与多个第二信号接收电路组一一对应设置,各第二读取控制线与对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第二读取控制端相连,各第二读取控制线与对应的第二信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第二数据输出端相连,驱动方法还包括:在多条第二信号采集线发送采集信号之后,通过多条第二读取控制线分别向对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第二读取控制端施加开启信号。
在本示例提供的驱动方法中,在多条第二信号采集线发送采集信号之后,通过多条第二读取控制线分别向对应的第一信号接收电路组中沿第一方向延伸排列的多个信号接收电路的第二读取控制端施加开启信号,从而可通过多个第二数据读取线同时读出沿对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路采集到的反射信号,此时可直接对读取的反射信号进行处理(例如加权求和)并通过下一个第二读取控制线向对应的第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路的第二读取控制端施加开启信号,以读取下一个第一信号接收电路组中沿第二方向延伸排列的多个信号接收电路采集到的反射信号。因此,该指纹识别电路可实现边读取、边处理,从 而可提升读取速度和处理速度,进而可大大提高指纹识别效率。并且,该指纹识别电路的驱动方法还在分别对沿第一方向排列的多个第一接收电路组和沿第二方向排列的多个第二接收电路组实现接收聚焦功能时均可实现边读取、边处理,从而具有较高的指纹识别效率。
本公开一实施例还提供一种显示装置。图32为根据本公开一实施例提供的显示装置的示意图。该显示装置包括上述实施例提供的指纹识别模组600。由此,该显示装置具有与上述的指纹识别模组600相同或相应的有益技术效果,具体可参见上述实施例的相关描述,在此不再赘述。
例如,在一些示例中,如图32所示,该显示装置还包括显示模组700,显示模组700的面积与指纹识别模组600的面积大致相同,从而可实现全屏指纹识别。此时,该指纹识别模组还可实现触控功能,从而可不用设置额外的触控装置,例如,电容式触控面板,从而可降低该显示装置的成本。当然,本公开实施例包括但不限于此,显示模组的面积与指纹识别模组的面积也可不相等,指纹识别模组可仅设置在需要进行指纹识别的区域。
例如,该显示装置可为电视机、手机、电脑、笔记本电脑、电子相册、导航仪等具有显示功能的电子设备。
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种指纹识别电路,包括:
    多个信号接收电路,沿第一方向和第二方向阵列设置以形成沿所述第一方向排列且沿所述第二方向延伸的多个第一信号接收电路组和沿所述第二方向排列且沿所述第一方向延伸的多个第二信号接收电路组;以及
    多条第一信号采集线,各所述第一信号采集线沿所述第二方向延伸,所述多条第一信号采集线沿所述第一方向排列,
    其中,各所述信号接收电路包括采集子电路和输出子电路,所述采集子电路包括所述第一采集信号输入端和第一采集信号输出端,所述输出子电路包括第一读取控制端、第一数据输出端和数据输入端,所述第一采集信号输出端、所述数据输入端连接至第一节点,所述第一节点被配置为与超声波传感器的接收电极相连,
    所述多条第一信号采集线与所述多个第一信号接收电路组一一对应设置,各所述第一信号采集线与对应的所述第一信号接收电路组中沿所述第二方向排列的多个所述信号接收电路的所述第一采集信号输入端分别相连。
  2. 根据权利要求1所述的指纹识别电路,还包括:
    多条第一读取控制线,各所述第一读取控制线沿所述第一方向延伸,所述多条第一读取控制线沿所述第二方向排列;以及
    多条第一数据读取线,各所述第一数据读取线沿所述第二方向延伸,所述多条第一数据读取线沿所述第一方向排列,
    其中,所述多条第一读取控制线与所述多个第二信号接收电路组一一对应设置,所述多条第一数据读取线与所述多个第一信号接收电路组一一对应设置,
    各所述第一读取控制线与对应的所述第二信号接收电路组中沿所述第一方向延伸排列的多个所述信号接收电路的第一读取控制端相连,各所述第一读取控制线与对应的所述第一信号接收电路组中沿所述第二方向延伸排列的多个所述信号接收电路的第一数据输出端相连。
  3. 根据权利要求1或2所述的指纹识别电路,还包括:
    多条第二信号采集线,各所述第二信号采集线沿所述第一方向延伸,所述多条第二信号采集线沿所述第二方向排列,
    其中,所述采集子电路还包括第二采集信号输入端和第二采集信号输出端,所述第二采集信号输出端连接至所述第一节点,所述多条第二信号采集线与所述多个第二信号接收电路组一一对应设置,各所述第二信号采集线与对应的所述第二信号接收电路组中沿所述第一方向排列的多个所述信号接收电路的所述第二采集信号输入端分别相连。
  4. 根据权利要求1-3中任一项所述的指纹识别电路,还包括:
    多条第二读取控制线,各所述第二读取控制线沿所述第二方向延伸,所述多条第二读取控制线沿所述第一方向排列;以及
    多条第二数据读取线,各所述第二数据读取线沿所述第一方向延伸,所述多条第二数据读取线沿所述第二方向排列,
    其中,所述输出子电路包括第二读取控制端和第二数据输出端,所述多条第二读取控制线与所述多个第一信号接收电路组一一对应设置,所述多条第二数据读取线与所述多个第二信号接收电路组一一对应设置,
    各所述第二读取控制线与对应的所述第一信号接收电路组中沿所述第二方向延伸排列的多个所述信号接收电路的第二读取控制端相连,各所述第二读取控制线与对应的所述第二信号接收电路组中沿所述第一方向延伸排列的多个所述信号接收电路的第二数据输出端相连。
  5. 根据权利要求1-4中任一项所述的指纹识别电路,其中,所述采集子电路包括:
    第一二极管,包括第一阳极和第一阴极,
    其中,所述第一信号采集线与所述第一阳极相连,所述第一阴极与连接至所述第一节点,所述第一阳极为所述第一采集信号输入端,所述第一阴极为所述第一采集信号输出端。
  6. 根据权利要求1-4中任一项所述的指纹识别电路,其中,所述采集子电路包括:
    第一薄膜晶体管,包括第一栅极、第一源极和第一漏极,
    其中,所述指纹识别电路还包括多个第一采集控制线,各所述第一采集控制线沿所述第二方向延伸,所述多条第一采集控制线沿所述第一方向排列,所述多个第一采集控制线与所述多个第一信号接收电路组一一对应设置,
    各所述第一采集控制线与对应的所述第一信号接收电路组中沿所述第二方向排列的多个所述信号接收电路的所述第一栅极分别相连,所述第一源极为 所述第一采集信号输入端,所述第一漏极为所述第一采集信号输出端。
  7. 根据权利要求1-6中任一项所述的指纹识别电路,其中,所述输出子电路包括:
    第二薄膜晶体管,包括第二栅极、第二源极和第二漏极;以及
    第三薄膜晶体管,包括第三栅极、第三源极和第三漏极,
    其中,所述第二栅极与所述第一节点相连,所述第二源极被配置为与高压源相连,所述第二漏极与第二节点相连,所述第三源极与所述第二节点相连,所述第二栅极为所述数据输入端,所述第三栅极为所述第一读取控制端,所述第三漏极为所述第一数据输出端。
  8. 根据权利要求3所述的指纹识别电路,其中,所述采集子电路还包括:
    第四薄膜晶体管,包括第四栅极、第四源极和第四漏极,
    其中,所述指纹识别电路还包括多个第二采集控制线,各所述第二采集控制线沿所述第一方向延伸,所述多条第二采集控制线沿所述第二方向排列,所述多个第二采集控制线与所述多个第二信号接收电路组一一对应设置,
    各所述第二采集控制线与对应的所述第二信号接收电路组中沿所述第一方向排列的多个所述信号接收电路的所述第四栅极分别相连,所述第四源极为所述第二采集信号输入端,所述第四漏极为所述第二采集信号输出端。
  9. 根据权利要求8所述的指纹识别电路,其中,所述采集子电路还包括:
    第二二极管,包括第二阳极和第二阴极,
    其中,所述第一漏极和所述第四漏极与所述第二阳极相连,所述第二阴极与所述第一节点相连。
  10. 根据权利要求4所述的指纹识别电路,其中,所述输出子电路包括:
    第二薄膜晶体管,包括第二栅极、第二源极和第二漏极;
    第三薄膜晶体管,包括第三栅极、第三源极和第三漏极;以及
    第五薄膜晶体管,包括第五栅极、第五源极和第五漏极,
    其中,所述第二栅极与所述第一节点相连,所述第二源极被配置为与高压源相连,所述第二漏极与第二节点相连,所述第三源极与所述第二节点相连,所述第二栅极为所述数据输入端,所述第三栅极为所述第一读取控制端,所述第三漏极为所述第一数据输出端,
    所述第五源极连接至所述第二节点,所述第五栅极为所述第二读取控制端,所述第五漏极为所述第二数据输出端。
  11. 根据权利要求1-10中任一项所述的指纹识别电路,其中,各所述信号接收电路还包括复位子电路,所述复位子电路包括第六薄膜晶体管,
    所述第六薄膜晶体管包括第六栅极、第六源极和第六漏极,所述第六栅极与复位控制线相连,所述第六源极与所述复位电压源相连,所述第六漏极与所述第一节点相连。
  12. 一种指纹识别模组,包括根据权利要求1-11中任一项所述的指纹识别电路。
  13. 根据权利要求12所述的指纹识别模组,还包括:
    多个超声波传感器,各所述超声波传感器包括发射电极、接收电极和位于所述发射电极和接收电极之间的压电材料层,
    其中,所述多个超声波传感器与所述多个信号接收电路一一对应设置,各所述信号接收电路的所述第一节点与对应的所述超声波传感器的接收电极相连。
  14. 根据权利要求13所述的指纹识别模组,其中,所述多个超声波传感器沿第一方向和第二方向阵列设置以形成沿所述第一方向排列的多个第一超声波传感器组和沿所述第二方向排列的多个第二超声波传感器组,
    各所述第一超声波传感器组中的沿所述第二方向排列的多个超声波传感器的发射电极不同,各所述第二超声波传感器组中的沿所述第一方向排列的多个超声波传感器共用一个条状发射电极。
  15. 一种显示装置,包括根据权利要求12-14中任一项所述的指纹识别模组。
  16. 一种根据权利要求1所述的指纹识别电路的驱动方法,包括:
    将所述多条第一信号采集线分为N个第一信号采集线组,各第一信号采集线组包括至少两个第一信号采集线;
    在所述超声波传感器发出超声波之后,根据反射回波到达的时间,各第一信号采集线组中的所述至少两个第一信号采集线在不同的时间点向对应的所述第一信号接收电路组中沿所述第二方向排列的多个所述信号接收电路的所述第一采集信号输入端施加采集信号以接收反射回波;以及
    将所述至少两个第一采集信号线对应的所述第一信号接收电路组的所述第一数据输出端输出的数据进行加权求和以得到第一指纹信息,
    其中,N为大于等于1的正整数。
  17. 根据权利要求16所述的指纹识别电路的驱动方法,其中,所述指纹识别电路,还包括:多条第一读取控制线,各所述第一读取控制线沿所述第一方向延伸,所述多条第一读取控制线沿所述第二方向排列;以及多条第一数据读取线,各所述第一数据读取线沿所述第二方向延伸,所述多条第一数据读取线沿所述第一方向排列,所述多条第一读取控制线与所述多个第二信号接收电路组一一对应设置,所述多条第一数据读取线与所述多个第一信号接收电路组一一对应设置,各所述第一读取控制线与对应的所述第二信号接收电路组中沿所述第一方向延伸排列的多个所述信号接收电路的第一读取控制端相连,各所述第一读取控制线与对应的所述第一信号接收电路组中沿所述第二方向延伸排列的多个所述信号接收电路的第一数据输出端相连,所述驱动方法还包括:
    在所述多条第一信号采集线发送所述采集信号之后,通过所述多条第一读取控制线分别向对应的所述第二信号接收电路组中沿所述第一方向延伸排列的多个所述信号接收电路的第一读取控制端施加开启信号。
  18. 根据权利要求17所述的指纹识别电路的驱动方法,其中,所述指纹识别驱动电路还包括多条第二信号采集线,各所述第二信号采集线沿所述第一方向延伸,所述多条第二信号采集线沿所述第二方向排列,所述采集子电路还包括第二采集信号输入端和第二采集信号输出端,所述第二采集信号输出端连接至所述第一节点,所述多条第二信号采集线与所述多个第二信号接收电路组一一对应设置,各所述第二信号采集线与对应的所述第二信号接收电路组中沿所述第一方向排列的多个所述信号接收电路的所述第二采集信号输入端分别相连,所述驱动方法还包括:
    将所述多条第二信号采集线分为M个第二信号采集线组,各第二信号采集线组包括至少两个第二信号采集线;
    在所述超声波传感器发出超声波之后,根据反射回波到达的时间,各第二信号采集线组中的所述至少两个第二信号采集线在不同的时间点向对应的所述第二信号接收电路组中沿所述第一方向排列的多个所述信号接收电路的所述第二采集信号输入端施加采集信号以接收反射回波;以及
    将所述至少两个第二采集信号线对应的所述第二信号接收电路组的所述第二数据输出端输出的数据进行加权求和,以得到第二指纹信息,
    其中,M为大于等于1的正整数。
  19. 根据权利要求18所述的指纹识别电路的驱动方法,还包括:
    对所述第一指纹信息和所述第二指纹信息进行处理以得到第三指纹信息。
  20. 根据权利要求18所述的指纹识别电路的驱动方法,其中,所述指纹识别电路还包括多条第二读取控制线,各所述第二读取控制线沿所述第二方向延伸,所述多条第二读取控制线沿所述第一方向排列;以及多条第二数据读取线,各所述第二数据读取线沿所述第一方向延伸,所述多条第二数据读取线沿所述第二方向排列,所述输出子电路包括第二读取控制端和第二数据输出端,所述多条第二读取控制线与所述多个第一信号接收电路组一一对应设置,所述多条第二数据读取线与所述多个第二信号接收电路组一一对应设置,各所述第二读取控制线与对应的所述第一信号接收电路组中沿所述第二方向延伸排列的多个所述信号接收电路的第二读取控制端相连,各所述第二读取控制线与对应的所述第二信号接收电路组中沿所述第一方向延伸排列的多个所述信号接收电路的第二数据输出端相连,所述驱动方法还包括:
    在所述多条第二信号采集线发送所述采集信号之后,通过所述多条第二读取控制线分别向对应的所述第一信号接收电路组中沿所述第二方向延伸排列的多个所述信号接收电路的第二读取控制端施加开启信号。
PCT/CN2019/103445 2019-08-29 2019-08-29 指纹识别电路及其驱动方法、指纹识别模组和显示装置 WO2021035647A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/959,220 US20220004729A1 (en) 2019-08-29 2019-08-21 Fingerprint identification circuit and driving method thereof, fingerprint identification module, and display device
CN201980001551.0A CN112753062B (zh) 2019-08-29 2019-08-29 指纹识别电路及其驱动方法、指纹识别模组和显示装置
PCT/CN2019/103445 WO2021035647A1 (zh) 2019-08-29 2019-08-29 指纹识别电路及其驱动方法、指纹识别模组和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103445 WO2021035647A1 (zh) 2019-08-29 2019-08-29 指纹识别电路及其驱动方法、指纹识别模组和显示装置

Publications (1)

Publication Number Publication Date
WO2021035647A1 true WO2021035647A1 (zh) 2021-03-04

Family

ID=74683265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103445 WO2021035647A1 (zh) 2019-08-29 2019-08-29 指纹识别电路及其驱动方法、指纹识别模组和显示装置

Country Status (3)

Country Link
US (1) US20220004729A1 (zh)
CN (1) CN112753062B (zh)
WO (1) WO2021035647A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114694192A (zh) * 2022-03-31 2022-07-01 上海天马微电子有限公司 检测电路及其驱动方法和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678258A (zh) * 2016-01-05 2016-06-15 京东方科技集团股份有限公司 一种指纹识别器件、其驱动方法、显示面板及显示装置
CN107004125A (zh) * 2014-10-03 2017-08-01 原子能与替代能源委员会 指纹或掌纹传感器
CN107657210A (zh) * 2017-08-07 2018-02-02 吴露 复合式指纹识别方法、复合式指纹识别模组及电子设备
US10095907B2 (en) * 2016-08-11 2018-10-09 Qualcomm Incorporated Single transducer fingerprint system
CN108883435A (zh) * 2016-04-04 2018-11-23 高通股份有限公司 用于超声换能器像素读出的驱动方案
CN109829419A (zh) * 2019-01-28 2019-05-31 京东方科技集团股份有限公司 指纹识别模组及其驱动方法和制作方法、显示装置
CN110010046A (zh) * 2019-04-22 2019-07-12 京东方科技集团股份有限公司 显示面板、其检测方法及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004125A (zh) * 2014-10-03 2017-08-01 原子能与替代能源委员会 指纹或掌纹传感器
CN105678258A (zh) * 2016-01-05 2016-06-15 京东方科技集团股份有限公司 一种指纹识别器件、其驱动方法、显示面板及显示装置
CN108883435A (zh) * 2016-04-04 2018-11-23 高通股份有限公司 用于超声换能器像素读出的驱动方案
US10095907B2 (en) * 2016-08-11 2018-10-09 Qualcomm Incorporated Single transducer fingerprint system
CN107657210A (zh) * 2017-08-07 2018-02-02 吴露 复合式指纹识别方法、复合式指纹识别模组及电子设备
CN109829419A (zh) * 2019-01-28 2019-05-31 京东方科技集团股份有限公司 指纹识别模组及其驱动方法和制作方法、显示装置
CN110010046A (zh) * 2019-04-22 2019-07-12 京东方科技集团股份有限公司 显示面板、其检测方法及显示装置

Also Published As

Publication number Publication date
US20220004729A1 (en) 2022-01-06
CN112753062B (zh) 2023-03-10
CN112753062A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN109829419B (zh) 指纹识别模组及其驱动方法和制作方法、显示装置
US11120243B2 (en) Fingerprint identification module, manufacturing method and driving method thereof, display device
US20210305487A1 (en) Piezoelectric sensor and manufacturing method thereof, method for recognizing fingerprint, and electronic device
KR102136375B1 (ko) 통합된 압전 마이크로기계식 초음파 트랜스듀서 픽셀 및 어레이
US11263426B2 (en) Fingerprint identification device and driving method thereof, display device
CN110472606B (zh) 一种超声波识别模组、其驱动方法及显示装置
CN110245636B (zh) 一种指纹识别模组、显示面板、显示装置和指纹识别方法
US10942600B2 (en) Sensor pixel, ultrasonic sensor, OLED display panel, and OLED display device
WO2021032185A1 (zh) 指纹识别模组及其驱动方法和显示装置
US11269461B2 (en) Touch panel, driving method thereof, and display device
CN111062344B (zh) 超声波指纹识别方法、装置及系统、显示装置、存储介质
CN210324247U (zh) 指纹识别模组和显示装置
CN111695388B (zh) 指纹识别结构及其驱动方法、显示装置
WO2021035647A1 (zh) 指纹识别电路及其驱动方法、指纹识别模组和显示装置
CN110956125B (zh) 一种指纹识别电路、其驱动方法及触控显示面板
CN212569816U (zh) 指纹识别装置
US11908224B2 (en) Fingerprint identification structure, driving method thereof and electronic device
US11790685B2 (en) Fingerprint identification structure and display device
CN117058725A (zh) 一种超声波指纹识别模组、系统及电子设备
CN117690169A (zh) 一种基板电路、超声波指纹识别模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942846

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19942846

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19942846

Country of ref document: EP

Kind code of ref document: A1