WO2021033841A1 - Dipole antenna array for millimeter wave band wireless communication - Google Patents

Dipole antenna array for millimeter wave band wireless communication Download PDF

Info

Publication number
WO2021033841A1
WO2021033841A1 PCT/KR2019/016085 KR2019016085W WO2021033841A1 WO 2021033841 A1 WO2021033841 A1 WO 2021033841A1 KR 2019016085 W KR2019016085 W KR 2019016085W WO 2021033841 A1 WO2021033841 A1 WO 2021033841A1
Authority
WO
WIPO (PCT)
Prior art keywords
dipole antenna
dielectric layer
dipole
antenna array
radiation
Prior art date
Application number
PCT/KR2019/016085
Other languages
French (fr)
Korean (ko)
Inventor
한영하
나승현
정현
Original Assignee
(주)밀리웨이브
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)밀리웨이브 filed Critical (주)밀리웨이브
Publication of WO2021033841A1 publication Critical patent/WO2021033841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • H01Q1/46Electric supply lines or communication lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

Definitions

  • the present invention relates to a dipole antenna array for wireless communication, and more particularly, to a dipole antenna array for millimeter wave band wireless communication of 60 GHz band.
  • the 60GHz-based millimeter wave band (57 ⁇ 66GHz) is allocated as a license-exempt band in Korea, Japan, the United States, Canada, and Europe. Interest in its use is focused. In addition to the advantage that it can be used worldwide without interference with other wireless communication systems, it is easy to use a communication technology with low frequency efficiency by using a continuous frequency band of at least 7GHz. )'can be built.
  • 60GHz The most important advantage of 60GHz is that it enables wideband signal transmission. Since the higher the frequency, the more the signal can be transmitted by occupying a wider band, so when transmitting a signal using a 60GHz frequency, for example, if the signal is transmitted by occupying 5% of the center frequency, the signal can be transmitted in the 3GHz frequency band. Even if a signal is simply transmitted with /Hz frequency efficiency, wireless data transmission is possible at a transmission rate of 3 gigabits per second.
  • a wireless circuit since a wireless circuit is generally implemented in relation to a wavelength, the size of the circuit may be reduced in inverse proportion to the frequency. That is, a circuit using a frequency of 60 GHz is advantageous for miniaturization. Since most of the wireless devices are oriented toward mobility, it has a great advantage if a small and light circuit can be implemented. Moreover, since the antenna can be included in the package, the wireless device can be implemented in one package without external additional elements.
  • the beamforming technology is a technology that realizes high-quality wireless communication by adjusting the antenna beam direction to a direction with good signal quality to obtain a transmission/reception gain.
  • additional antennas and RF signal paths are required as many as the number of beam widths for the total angle of transmission and reception to be accommodated. Therefore, it is necessary to efficiently design a space for antenna arrangement and to minimize interference between antennas in a limited space to form an antenna array in which a plurality of antennas are arranged.
  • the technical problem to be achieved by the present invention is to provide a dipole antenna array for millimeter wave band wireless communication of 60 GHz band, which can efficiently design a space for antenna arrangement and minimize interference between antennas in a limited space. .
  • a dipole antenna array for millimeter wave band wireless communication for solving the above technical problem comprises: a dielectric substrate comprising a multilayer dielectric layer; And a plurality of dipole antennas arranged on the dielectric substrate, wherein the dielectric substrate includes a first dielectric layer and a second dielectric layer below the first dielectric layer, and each of the plurality of dipole antennas is on the first dielectric layer.
  • a power supply line disposed in the; A first radiation line disposed on the first dielectric layer and extending in a first direction from an end of the power supply line; And a second radiation line disposed on the second dielectric layer and having one end positioned below the end of the power supply line and extending in a second direction from the one end.
  • the second radiation line may be independently disposed without being electrically connected to other circuit elements.
  • a current having a phase difference of 180 degrees from the current flowing through the power supply line may flow through the second radiation line.
  • Two dipole antennas adjacent to each other among the plurality of dipole antennas may be disposed such that the first radiation line of one dipole antenna and the second radiation line of the other dipole antenna are adjacent to each other.
  • the dielectric substrate may be made of an FR4 material.
  • the first direction and the second direction may be opposite to each other.
  • the plurality of dipole antennas include a first dipole antenna set consisting of dipole antennas arranged in one direction, a second dipole antenna set consisting of dipole antennas arranged in another direction, and a second dipole antenna set arranged in another direction.
  • a third dipole antenna set made of dipole antennas may be configured.
  • FIG. 1 shows the overall structure of a dipole antenna array for millimeter wave band wireless communication according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a beam formed by the dipole antenna array of FIG. 1.
  • FIG. 3 is a plan view of the dipole antenna array of FIG. 1.
  • FIG. 4 shows a detailed structure of a dipole antenna constituting the dipole antenna array of FIG. 1.
  • FIG. 5 is a cross-sectional view of a dipole antenna array module according to an embodiment of the present invention.
  • FIG. 1 shows the overall structure of a dipole antenna array for millimeter wave band wireless communication according to an embodiment of the present invention.
  • the dipole antenna array according to the present embodiment may include a dielectric substrate 10 made of a multilayer dielectric layer and a plurality of dipole antennas 20-1, ..., 20-16 arranged on the dielectric substrate 10. have.
  • the dielectric substrate 10 may be composed of, for example, 5 layers of dielectric layers and 6 layers of circuit layers. Each dielectric layer may be made of FR4 material, and each circuit layer may be made of copper material.
  • the plurality of dipole antennas 20-1, ..., 20-16 may be divided into three dipole antenna sets, for example, so that each dipole antenna set may form beams in different directions.
  • the dipole antennas 20-1, ..., 20-6 are arranged along the x direction toward the y direction to form a first dipole antenna set
  • the dipole antennas 20-7, .. ., 20-10) are arranged along the y direction toward the x direction to constitute a second dipole antenna set
  • the dipole antennas 20-11, ..., 20-17 are x toward the y direction.
  • Columns along the direction may constitute a third antenna set.
  • FIG. 2 is a schematic diagram illustrating a beam formed by the dipole antenna array of FIG. 1. As shown, the first dipole antenna set forms a beam in the y direction, the second dipole antenna set forms a beam in the x direction, and the third dipole antenna set forms a beam in the y direction. can do.
  • FIG. 3 is a plan view of the dipole antenna array of FIG. 1, and FIG. 4 shows a specific structure of each dipole antenna 20-1, ..., 20-16, hereinafter unified with reference numeral 20 for convenience, constituting the dipole antenna array. .
  • FIG. 4 shows a dipole antenna 20 facing the x direction.
  • a part marked in green indicates a first-layer (top layer) circuit
  • a part marked in blue indicates a two-layer circuit located below the first floor.
  • the one-layer circuit is disposed on the first dielectric layer 11 and the two-layer circuit is disposed on the second dielectric layer 12 under the first dielectric layer 11.
  • the dielectric substrate 10 includes a first dielectric layer 11 and a second dielectric layer 12 under the first dielectric layer 11, and the dipole antenna 20 includes a feed line 21 ), a first radiation line 22 and a second radiation line 23.
  • the power supply line 21 is disposed on the first dielectric layer 11 along the x direction.
  • the power supply line 21 is connected to a circuit element of the first-layer circuit to apply a current.
  • the first radiation line 22 is disposed on the first dielectric layer 11 so as to be connected to the end of the power supply line 21, and from the end of the power supply line 21 in the ??y direction (that is, perpendicular to the power supply line 21). Direction).
  • the length of the first radiation line 22 is about ⁇ /4.
  • the second radiation line 23 is disposed on the second dielectric layer 12 in a different layer from the feed line 21 and the first radiation line 22.
  • the second radiation lines 23 are not electrically connected to other circuit elements and are arranged independently. That is, a separate feed line is not connected to the second radiation line 23.
  • One end of the second radiation line 23 is located below the end of the feed line 21, and from one end in the y direction (ie, a direction perpendicular to the feed line 21, opposite to the first radiation line 22) Is extended to
  • the length of the second radiation line 23 is about ⁇ /4, and the total length of the first radiation line 22 and the second radiation line 23 is about ⁇ /2.
  • a current in phase with the feed line 21 flows through the first radiation line 22 connected to the feed line 21.
  • the second radiation line 23 is not connected to the power supply line 21 and the first radiation line 22, but the power supply line 21 and the second radiation line through the first dielectric layer 11 ( Due to the capacitive coupling between 23), a current having a phase difference of 180 degrees from the current flowing through the power supply line 21 flows through the second radiation line 23. That is, a current having a phase difference of 180 degrees from each other flows through the first radiation line 22 and the second radiation line 23. Accordingly, a current having a phase difference of 180 degrees from the first radiation line 22 can flow through the second radiation line 23 without a separate feed line. As such, since a separate feed line for the second radiation line 23 is not required, a space for antenna arrangement can be efficiently designed.
  • two dipole antennas adjacent to each other among the dipole antennas 20-1, ..., 20-16 are the first radiation line 22 of one dipole antenna and the second dipole antenna. 2
  • the radiation lines 23 are arranged to be adjacent to each other.
  • radio wave interference may occur between adjacent dipole antennas.
  • portions adjacent to each other between adjacent dipole antennas are different from the first radiation line 22 of one dipole antenna. Since the antenna is located on different layers as the second radiation lines 23, radio wave interference between dipole antennas can be improved compared to a case where adjacent portions are located on the same floor.
  • the dipole antenna array module includes a dielectric substrate 10 composed of first to fifth dielectric layers 11, 12, 13, 14, 15, a one-layer circuit 31, a two-layer circuit 32, and a three- and four-layer circuit. (Not shown), a circuit layer 30 comprising a five-layer circuit 35 and a six-layer circuit 36, and a via 40 comprising vias 41 and 42 connecting the layers of the circuit layer 30 It may include.
  • the power supply line 21 and the first radiation line 22 may be part of the first layer circuit 31, and the second radiation line 23 may be part of the second layer circuit 32.
  • the first to fifth dielectric layers 11, 12, 13, 14, and 15 may be made of FR4 material, and the circuit layer 30 and via 40 may be made of copper material.
  • the thickness of the first, second, third, and fifth dielectric layers 11, 12, 13, 15 may be 0.0762 mm
  • the thickness of the fourth dielectric layer 14 may be 0.2032 mm
  • the thickness of each circuit layer 30 may be 0.0355 mm. have.

Abstract

A dipole antenna array for millimeter wave band wireless communication according to the present invention comprises: a dielectric substrate including a multi-layered dielectric layer; and a plurality of dipole antennas arranged on the dielectric substrate, wherein the dielectric substrate comprises a first dielectric layer and a second dielectric layer below the first dielectric layer, and each of the plurality of dipole antennas comprises: a power feeding line disposed on the first dielectric layer; a first radiation line disposed on the first dielectric layer and extending in a first direction from a distal end of the power feeding line; and a second radiation line disposed on the second dielectric layer, having one end disposed below the distal end of the power feeding line, and extending in a second direction from the one end.

Description

밀리미터파 대역 무선통신을 위한 다이폴 안테나 어레이Dipole antenna array for millimeter wave band wireless communication
본 발명은 무선통신을 위한 다이폴 안테나 어레이에 관한 것으로, 보다 상세하게는 60GHz 대역의 밀리미터파 대역 무선통신을 위한 다이폴 안테나 어레이에 관한 것이다.The present invention relates to a dipole antenna array for wireless communication, and more particularly, to a dipole antenna array for millimeter wave band wireless communication of 60 GHz band.
통신에 사용되는 무선 주파수 자원이 점점 고갈되는 전 세계적 상황에서, 60GHz 기반의 밀리미터파 대역(57~66GHz)이 우리나라를 비롯해 일본, 미국, 캐나다, 유럽에서 비허가(License-exempt) 대역으로 할당되면서 그 활용에 대한 관심이 집중되고 있다. 다른 무선 통신 시스템과의 간섭없이 전 세계 공통으로 사용할 수 있다는 장점 외에도, 최소 7GHz의 연속된 주파수 대역을 사용함으로써 낮은 주파수 효율을 갖는 통신 기술로도 손쉽게 '기가급 무선 시스템(MGWS: Multiple Gigabit Wireless Systems)'을 구축할 수 있다.In a global situation where radio frequency resources used for communication are increasingly depleted, the 60GHz-based millimeter wave band (57~66GHz) is allocated as a license-exempt band in Korea, Japan, the United States, Canada, and Europe. Interest in its use is focused. In addition to the advantage that it can be used worldwide without interference with other wireless communication systems, it is easy to use a communication technology with low frequency efficiency by using a continuous frequency band of at least 7GHz. )'can be built.
60GHz의 가장 중요한 장점은 광대역 신호전송이 가능하다는 것이다. 주파수가 높을수록 보다 넓은 대역을 점유하여 신호를 전송할 수 있다는 장점 때문에 60GHz 주파수를 사용하여 신호를 전송할 때 가령 중심주파수의 5%를 점유하여 신호를 보낸다면, 3GHz 주파수 대역으로 신호를 전송할 수 있어서 1Bit/Hz 주파수 효율로 간단히 신호를 전송한다고 해도 초당 3기가비트 전송 속도로 무선 데이터 전송이 가능하다.The most important advantage of 60GHz is that it enables wideband signal transmission. Since the higher the frequency, the more the signal can be transmitted by occupying a wider band, so when transmitting a signal using a 60GHz frequency, for example, if the signal is transmitted by occupying 5% of the center frequency, the signal can be transmitted in the 3GHz frequency band. Even if a signal is simply transmitted with /Hz frequency efficiency, wireless data transmission is possible at a transmission rate of 3 gigabits per second.
또한 일반적으로 무선 회로는 파장과 연관하여 회로가 구현되기 때문에 주파수에 반비례하여 회로의 크기가 작아질 수 있다. 즉, 60GHz 주파수를 사용한 회로는 소형화에 유리하다. 무선 장치는 대부분 이동성을 지향하는 경우가 많으므로 작고 가볍게 회로를 구현할 수 있다면 큰 장점을 갖는다. 더욱이 안테나까지 패키지 안에 포함시킬 수 있어서 무선장치를 외부의 추가 소자 없이 하나의 패키지로 구현할 수 있다는 장점을 갖는다.In addition, since a wireless circuit is generally implemented in relation to a wavelength, the size of the circuit may be reduced in inverse proportion to the frequency. That is, a circuit using a frequency of 60 GHz is advantageous for miniaturization. Since most of the wireless devices are oriented toward mobility, it has a great advantage if a small and light circuit can be implemented. Moreover, since the antenna can be included in the package, the wireless device can be implemented in one package without external additional elements.
60GHz 전파의 특성상 전파 장애에 대해서도 끊김 없이 신호를 전달할 수 있어야 하기 때문에 빔포밍 기술이 필수적으로 요구된다. 빔포밍 기술은 안테나 빔 방향을 신호의 품질이 좋은 방향으로 조정하여 송수신 이득을 얻도록 하여 품질이 높은 무선통신을 구현하는 기술이다. 빔포밍 기술 구현을 위해서는 수용하고자 하는 송수신 전체 각도에 대하여 빔폭의 수만큼 추가적인 안테나 및 RF 신호 경로가 요구된다. 따라서 안테나 배치를 위한 공간을 효율적으로 설계할 수 있고 한정된 공간에서 안테나 간의 간섭을 최소화하여 다수의 안테나를 배열한 안테나 어레이를 구성할 수 있어야 한다. Due to the nature of 60GHz radio waves, beamforming technology is indispensable because it must be able to transmit signals without interruption even against radio interference. The beamforming technology is a technology that realizes high-quality wireless communication by adjusting the antenna beam direction to a direction with good signal quality to obtain a transmission/reception gain. In order to implement the beamforming technology, additional antennas and RF signal paths are required as many as the number of beam widths for the total angle of transmission and reception to be accommodated. Therefore, it is necessary to efficiently design a space for antenna arrangement and to minimize interference between antennas in a limited space to form an antenna array in which a plurality of antennas are arranged.
본 발명이 이루고자 하는 기술적 과제는 안테나 배치를 위한 공간을 효율적으로 설계할 수 있고 한정된 공간에서 안테나 간의 간섭을 최소화할 수 있는, 60GHz 대역의 밀리미터파 대역 무선통신을 위한 다이폴 안테나 어레이를 제공하는 데 있다. The technical problem to be achieved by the present invention is to provide a dipole antenna array for millimeter wave band wireless communication of 60 GHz band, which can efficiently design a space for antenna arrangement and minimize interference between antennas in a limited space. .
상기 기술적 과제를 해결하기 위한 본 발명에 따른 밀리미터파 대역 무선통신을 위한 다이폴 안테나 어레이는, 다층의 유전체층으로 이루어지는 유전체 기판; 및 상기 유전체 기판에 배열되는 복수의 다이폴 안테나들을 포함하고, 상기 유전체 기판은 제1 유전체층 및 상기 제1 유전체층 아래의 제2 유전체층을 포함하고, 상기 복수의 다이폴 안테나들 각각은, 상기 제1 유전체층 상에 배치되는 급전라인; 상기 제1 유전체층 상에 배치되고 상기 급전라인의 끝단으로부터 제1 방향으로 연장되는 제1 방사라인; 및 상기 제2 유전체층 상에 배치되고 상기 급전라인의 끝단 아래에 일단이 위치하여 상기 일단으로부터 제2 방향으로 연장되는 제2 방사라인을 포함한다. A dipole antenna array for millimeter wave band wireless communication according to the present invention for solving the above technical problem comprises: a dielectric substrate comprising a multilayer dielectric layer; And a plurality of dipole antennas arranged on the dielectric substrate, wherein the dielectric substrate includes a first dielectric layer and a second dielectric layer below the first dielectric layer, and each of the plurality of dipole antennas is on the first dielectric layer. A power supply line disposed in the; A first radiation line disposed on the first dielectric layer and extending in a first direction from an end of the power supply line; And a second radiation line disposed on the second dielectric layer and having one end positioned below the end of the power supply line and extending in a second direction from the one end.
상기 제2 방사라인은 다른 회로 요소에 전기적으로 연결되지 않고 독립적으로 배치될 수 있다.The second radiation line may be independently disposed without being electrically connected to other circuit elements.
상기 제1 유전체층을 매개로 하는 상기 급전라인과 상기 제2 방사라인 간의 용량성 커플링(capacitive coupling)으로 인해 상기 제2 방사라인에는 상기 급전라인에 흐르는 전류와 180도 위상차를 가지는 전류가 흐를 수 있다.Due to the capacitive coupling between the power supply line and the second radiation line via the first dielectric layer, a current having a phase difference of 180 degrees from the current flowing through the power supply line may flow through the second radiation line. have.
상기 복수의 다이폴 안테나들 중 서로 인접한 두 다이폴 안테나는, 한 다이폴 안테나의 상기 제1 방사라인과 다른 다이폴 안테나의 상기 제2 방사라인이 서로 인접하도록 배치될 수 있다.Two dipole antennas adjacent to each other among the plurality of dipole antennas may be disposed such that the first radiation line of one dipole antenna and the second radiation line of the other dipole antenna are adjacent to each other.
상기 유전체 기판은 FR4 재질로 이루어질 수 있다.The dielectric substrate may be made of an FR4 material.
상기 제1 방향과 상기 제2 방향은 서로 반대 방향일 수 있다.The first direction and the second direction may be opposite to each other.
상기 복수의 다이폴 안테나들은, 일 방향을 향해 배열되는 다이폴 안테나들로 이루어지는 제1 다이폴 안테나 세트와, 다른 방향을 향해 배열되는 다이폴 안테나들로 이루어지는 제2 다이폴 안테나 세트와, 또 다른 방향을 향해 배열되는 다이폴 안테나들로 이루어지는 제3 다이폴 안테나 세트를 구성할 수 있다.The plurality of dipole antennas include a first dipole antenna set consisting of dipole antennas arranged in one direction, a second dipole antenna set consisting of dipole antennas arranged in another direction, and a second dipole antenna set arranged in another direction. A third dipole antenna set made of dipole antennas may be configured.
상기된 본 발명에 의하면, 안테나 배치를 위한 공간을 효율적으로 설계할 수 있고 한정된 공간에서 안테나 간의 간섭을 최소화할 수 있는, 60GHz 대역의 밀리미터파 대역 무선통신을 위한 다이폴 안테나 어레이를 제공할 수 있다.According to the present invention described above, it is possible to efficiently design a space for antenna arrangement and to minimize interference between antennas in a limited space, it is possible to provide a dipole antenna array for a millimeter wave band wireless communication of a 60 GHz band.
도 1은 본 발명의 일 실시예에 따른, 밀리미터파 대역 무선통신을 위한 다이폴 안테나 어레이의 전체적인 구조를 나타낸다.1 shows the overall structure of a dipole antenna array for millimeter wave band wireless communication according to an embodiment of the present invention.
도 2는 도 1의 다이폴 안테나 어레이가 형성하는 빔을 나타낸 모식도이다. FIG. 2 is a schematic diagram illustrating a beam formed by the dipole antenna array of FIG. 1.
도 3은 도 1의 다이폴 안테나 어레이의 평면도이다.3 is a plan view of the dipole antenna array of FIG. 1.
도 4는 도 1의 다이폴 안테나 어레이를 구성하는 다이폴 안테나의 구체적인 구조를 나타낸다. 4 shows a detailed structure of a dipole antenna constituting the dipole antenna array of FIG. 1.
도 5는 본 발명의 실시예에 따른 다이폴 안테나 어레이 모듈의 단면도를 나타낸다.5 is a cross-sectional view of a dipole antenna array module according to an embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이하 설명 및 첨부된 도면들에서 실질적으로 동일한 구성요소들은 각각 동일한 부호들로 나타냄으로써 중복 설명을 생략하기로 한다. 또한 본 발명을 설명함에 있어 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. In the following description and the accompanying drawings, substantially the same components are denoted by the same reference numerals, and redundant descriptions will be omitted. In addition, when it is determined that a detailed description of known functions or configurations related to the present invention may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른, 밀리미터파 대역 무선통신을 위한 다이폴 안테나 어레이의 전체적인 구조를 나타낸다.1 shows the overall structure of a dipole antenna array for millimeter wave band wireless communication according to an embodiment of the present invention.
본 실시예에 따른 다이폴 안테나 어레이는 다층의 유전체층으로 이루어지는 유전체 기판(10)과 유전체 기판(10)에 배열되는 복수의 다이폴 안테나들(20-1, ..., 20-16)을 포함할 수 있다.The dipole antenna array according to the present embodiment may include a dielectric substrate 10 made of a multilayer dielectric layer and a plurality of dipole antennas 20-1, ..., 20-16 arranged on the dielectric substrate 10. have.
유전체 기판(10)은 예컨대 5층의 유전체층과 6층의 회로층으로 구성될 수 있고 각 유전체층은 FR4 재질로, 각 회로층은 구리 재질로 이루어질 수 있다.The dielectric substrate 10 may be composed of, for example, 5 layers of dielectric layers and 6 layers of circuit layers. Each dielectric layer may be made of FR4 material, and each circuit layer may be made of copper material.
복수의 다이폴 안테나들(20-1, ..., 20-16)은 예컨대 3개의 다이폴 안테나 세트로 나뉘어, 각 다이폴 안테나 세트가 서로 다른 방향으로의 빔을 형성할 수 있다. 예를 들어, 다이폴 안테나들(20-1, ..., 20-6)은 y 방향을 향해 x 방향을 따라 배열되어 제1 다이폴 안테나 세트를 구성하고, 다이폴 안테나들(20-7, ..., 20-10)은 x 방향을 향해 y 방향을 따라 배열되어 제2 다이폴 안테나 세트를 구성하고, 다이폴 안테나들(20-11, ..., 20-17)은 ??y 방향을 향해 x 방향을 따라 열되어 제3 안테나 세트를 구성할 수 있다. The plurality of dipole antennas 20-1, ..., 20-16 may be divided into three dipole antenna sets, for example, so that each dipole antenna set may form beams in different directions. For example, the dipole antennas 20-1, ..., 20-6 are arranged along the x direction toward the y direction to form a first dipole antenna set, and the dipole antennas 20-7, .. ., 20-10) are arranged along the y direction toward the x direction to constitute a second dipole antenna set, and the dipole antennas 20-11, ..., 20-17 are x toward the y direction. Columns along the direction may constitute a third antenna set.
도 2는 도 1의 다이폴 안테나 어레이가 형성하는 빔을 나타낸 모식도이다. 도시된 바와 같이, 제1 다이폴 안테나 세트는 y 방향으로의 빔을 형성하고, 제2 다이폴 안테나 세트는 x 방향으로의 빔을 형성하고, 제3 다이폴 안테나 세트는 ??y 방향으로의 빔을 형성할 수 있다.FIG. 2 is a schematic diagram illustrating a beam formed by the dipole antenna array of FIG. 1. As shown, the first dipole antenna set forms a beam in the y direction, the second dipole antenna set forms a beam in the x direction, and the third dipole antenna set forms a beam in the y direction. can do.
도 3은 도 1의 다이폴 안테나 어레이의 평면도이고, 도 4는 다이폴 안테나 어레이를 구성하는 각 다이폴 안테나(20-1, ..., 20-16, 이하 편의상 부호 20으로 통일)의 구체적인 구조를 나타낸다. 편의상 도 4는 x 방향을 향하는 다이폴 안테나(20)를 도시하였다. 3 is a plan view of the dipole antenna array of FIG. 1, and FIG. 4 shows a specific structure of each dipole antenna 20-1, ..., 20-16, hereinafter unified with reference numeral 20 for convenience, constituting the dipole antenna array. . For convenience, FIG. 4 shows a dipole antenna 20 facing the x direction.
도 3에서 녹색으로 표시된 부분은 1층(최상층) 회로를 나타내고, 파란색으로 표시된 부분은 1층 아래에 있는 2층 회로를 나타낸다. 1층 회로는 제1 유전체층(11) 상에 배치되고, 2층 회로는 제1 유전체층(11) 아래의 제2 유전체층(12) 상에 배치된다.In FIG. 3, a part marked in green indicates a first-layer (top layer) circuit, and a part marked in blue indicates a two-layer circuit located below the first floor. The one-layer circuit is disposed on the first dielectric layer 11 and the two-layer circuit is disposed on the second dielectric layer 12 under the first dielectric layer 11.
도 3 및 도 4를 참조하면, 유전체 기판(10)은 제1 유전체층(11) 및 제1 유전체층(11) 아래의 제2 유전체층(12)을 포함하고, 다이폴 안테나(20)는 급전라인(21), 제1 방사라인(22) 및 제2 방사라인(23)을 포함한다.3 and 4, the dielectric substrate 10 includes a first dielectric layer 11 and a second dielectric layer 12 under the first dielectric layer 11, and the dipole antenna 20 includes a feed line 21 ), a first radiation line 22 and a second radiation line 23.
급전라인(21)은 제1 유전체층(11) 상에 x 방향을 따라 배치된다. 급전라인(21)은 1층 회로의 회로 요소와 연결되어 전류가 인가된다. The power supply line 21 is disposed on the first dielectric layer 11 along the x direction. The power supply line 21 is connected to a circuit element of the first-layer circuit to apply a current.
제1 방사라인(22)은 제1 유전체층(11) 상에 급전라인(21)의 끝단과 연결되도록 배치되고 급전라인(21)의 끝단으로부터 ??y 방향(즉, 급전라인(21)과 수직 방향)으로 연장된다. 제1 방사라인(22)의 길이는 약 λ/4이다. The first radiation line 22 is disposed on the first dielectric layer 11 so as to be connected to the end of the power supply line 21, and from the end of the power supply line 21 in the ??y direction (that is, perpendicular to the power supply line 21). Direction). The length of the first radiation line 22 is about λ/4.
제2 방사라인(23)은 급전라인(21) 및 제1 방사라인(22)과 층을 달리하여 제2 유전체층(12) 상에 배치된다. 제2 방사라인(23)은 다른 회로 요소에 전기적으로 연결되지 않고 독립적으로 배치된다. 즉, 제2 방사라인(23)에는 별도의 급전라인이 연결되지 않는다. 제2 방사라인(23)의 일단은 급전라인(21)의 끝단 아래에 위치하며, 그 일단으로부터 y 방향(즉, 급전라인(21)과 수직 방향으로서 제1 방사라인(22)과 반대 방향)으로 연장된다. 제2 방사라인(23)의 길이는 약 λ/4로서, 제1 방사라인(22)과 제2 방사라인(23) 전체의 길이는 약 λ/2가 된다. The second radiation line 23 is disposed on the second dielectric layer 12 in a different layer from the feed line 21 and the first radiation line 22. The second radiation lines 23 are not electrically connected to other circuit elements and are arranged independently. That is, a separate feed line is not connected to the second radiation line 23. One end of the second radiation line 23 is located below the end of the feed line 21, and from one end in the y direction (ie, a direction perpendicular to the feed line 21, opposite to the first radiation line 22) Is extended to The length of the second radiation line 23 is about λ/4, and the total length of the first radiation line 22 and the second radiation line 23 is about λ/2.
급전라인(21)에 전류가 인가되면, 급전라인(21)과 연결된 제1 방사라인(22)에는 급전라인(21)과 동위상의 전류가 흐른다. 한편, 제2 방사라인(23)은 급전라인(21) 및 제1 방사라인(22)과 연결되어 있지는 않지만, 제1 유전체층(11)을 매개로 하는 급전라인(21)과 제2 방사라인(23) 간의 용량성 커플링(capacitive coupling)으로 인해 제2 방사라인(23)에는 급전라인(21)에 흐르는 전류와 180도 위상차를 가지는 전류가 흐른다. 즉, 제1 방사라인(22)과 제2 방사라인(23)에는 서로 180도의 위상차를 가지는 전류가 흐르게 된다. 따라서 제2 방사라인(23)에는 별도의 급전라인 없이도 제1 방사라인(22)과 180도 위상차를 가지는 전류가 흐르도록 할 수 있다. 이처럼 제2 방사라인(23)을 위한 별도의 급전라인이 필요 없으므로, 안테나 배치를 위한 공간을 효율적으로 설계할 수 있다. When a current is applied to the feed line 21, a current in phase with the feed line 21 flows through the first radiation line 22 connected to the feed line 21. On the other hand, the second radiation line 23 is not connected to the power supply line 21 and the first radiation line 22, but the power supply line 21 and the second radiation line through the first dielectric layer 11 ( Due to the capacitive coupling between 23), a current having a phase difference of 180 degrees from the current flowing through the power supply line 21 flows through the second radiation line 23. That is, a current having a phase difference of 180 degrees from each other flows through the first radiation line 22 and the second radiation line 23. Accordingly, a current having a phase difference of 180 degrees from the first radiation line 22 can flow through the second radiation line 23 without a separate feed line. As such, since a separate feed line for the second radiation line 23 is not required, a space for antenna arrangement can be efficiently designed.
또한 도 1 및 3을 참조하면, 다이폴 안테나들(20-1, ..., 20-16) 중 서로 인접한 두 다이폴 안테나는, 한 다이폴 안테나의 제1 방사라인(22)과 다른 다이폴 안테나의 제2 방사라인(23)이 서로 인접하도록 배치된다. 협소한 공간에 다이폴 안테나들을 배열하는 경우 인접한 다이폴 안테나 간에 전파 간섭이 발생할 수 있는데, 본 발명의 실시예에 의하면 인접한 다이폴 안테나 간에 서로 인접한 부분이 한 다이폴 안테나의 제1 방사라인(22)과 다른 다이폴 안테나의 제2 방사라인(23)으로써 서로 다른 층에 위치하므로, 인접한 부분이 동일 층에 위치하는 경우에 비해 다이폴 안테나 간의 전파 간섭을 개선할 수 있다. In addition, referring to FIGS. 1 and 3, two dipole antennas adjacent to each other among the dipole antennas 20-1, ..., 20-16 are the first radiation line 22 of one dipole antenna and the second dipole antenna. 2 The radiation lines 23 are arranged to be adjacent to each other. When dipole antennas are arranged in a narrow space, radio wave interference may occur between adjacent dipole antennas. According to an embodiment of the present invention, portions adjacent to each other between adjacent dipole antennas are different from the first radiation line 22 of one dipole antenna. Since the antenna is located on different layers as the second radiation lines 23, radio wave interference between dipole antennas can be improved compared to a case where adjacent portions are located on the same floor.
도 5는 본 발명의 실시예에 따른 다이폴 안테나 어레이 모듈의 단면도를 나타낸다. 다이폴 안테나 어레이 모듈은 제1 내지 제5 유전체층(11, 12, 13, 14, 15)으로 이루어지는 유전체 기판(10)과, 1층 회로(31), 2층 회로(32), 3, 4층 회로(미도시), 5층 회로(35), 6층 회로(36)로 이루어지는 회로층(30)과, 회로층(30)의 층간을 연결하는 비아들(41, 42)로 이루어지는 비아(40)를 포함할 수 있다. 급전라인(21)과 제1 방사라인(22)은 1층 회로(31)의 일부일 수 있고, 제2 방사라인(23)은 2층 회로(32)의 일부일 수 있다. 5 is a cross-sectional view of a dipole antenna array module according to an embodiment of the present invention. The dipole antenna array module includes a dielectric substrate 10 composed of first to fifth dielectric layers 11, 12, 13, 14, 15, a one-layer circuit 31, a two-layer circuit 32, and a three- and four-layer circuit. (Not shown), a circuit layer 30 comprising a five-layer circuit 35 and a six-layer circuit 36, and a via 40 comprising vias 41 and 42 connecting the layers of the circuit layer 30 It may include. The power supply line 21 and the first radiation line 22 may be part of the first layer circuit 31, and the second radiation line 23 may be part of the second layer circuit 32.
제1 내지 제5 유전체층(11, 12, 13, 14, 15)은 FR4 재질로 이루어질 수 있고, 회로층(30) 및 비아(40)는 구리 재질로 이루어질 수 있다. 예컨대 제1, 2, 3, 5 유전체층(11, 12, 13, 15)의 두께는 0.0762mm, 제4 유전체층(14)의 두께는 0.2032mm, 각 회로층(30)의 두께는 0.0355mm일 수 있다.The first to fifth dielectric layers 11, 12, 13, 14, and 15 may be made of FR4 material, and the circuit layer 30 and via 40 may be made of copper material. For example, the thickness of the first, second, third, and fifth dielectric layers 11, 12, 13, 15 may be 0.0762 mm, the thickness of the fourth dielectric layer 14 may be 0.2032 mm, and the thickness of each circuit layer 30 may be 0.0355 mm. have.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at around its preferred embodiments. Those of ordinary skill in the art to which the present invention pertains will be able to understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative point of view rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the above description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (7)

  1. 밀리미터파 대역 무선통신을 위한 다이폴 안테나 어레이에 있어서,In the dipole antenna array for millimeter wave band wireless communication,
    다층의 유전체층으로 이루어지는 유전체 기판; 및A dielectric substrate made of a multilayer dielectric layer; And
    상기 유전체 기판에 배열되는 복수의 다이폴 안테나들을 포함하고,A plurality of dipole antennas arranged on the dielectric substrate,
    상기 유전체 기판은 제1 유전체층 및 상기 제1 유전체층 아래의 제2 유전체층을 포함하고, The dielectric substrate includes a first dielectric layer and a second dielectric layer below the first dielectric layer,
    상기 복수의 다이폴 안테나들 각각은,Each of the plurality of dipole antennas,
    상기 제1 유전체층 상에 배치되는 급전라인;A feed line disposed on the first dielectric layer;
    상기 제1 유전체층 상에 배치되고 상기 급전라인의 끝단으로부터 제1 방향으로 연장되는 제1 방사라인; 및A first radiation line disposed on the first dielectric layer and extending in a first direction from an end of the power supply line; And
    상기 제2 유전체층 상에 배치되고 상기 급전라인의 끝단 아래에 일단이 위치하여 상기 일단으로부터 제2 방향으로 연장되는 제2 방사라인을 포함하는 다이폴 안테나 어레이.A dipole antenna array comprising a second radiation line disposed on the second dielectric layer and having one end positioned below the end of the feed line and extending in a second direction from the one end.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 방사라인은 다른 회로 요소에 전기적으로 연결되지 않고 독립적으로 배치되는 다이폴 안테나 어레이.The second radiation lines are not electrically connected to other circuit elements and are independently disposed.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1 유전체층을 매개로 하는 상기 급전라인과 상기 제2 방사라인 간의 용량성 커플링(capacitive coupling)으로 인해 상기 제2 방사라인에는 상기 급전라인에 흐르는 전류와 180도 위상차를 가지는 전류가 흐르는 다이폴 안테나 어레이.A dipole through which a current having a phase difference of 180 degrees from a current flowing through the feed line flows through the second radiation line due to capacitive coupling between the feed line and the second radiation line via the first dielectric layer Antenna array.
  4. 제1항에 있어서,The method of claim 1,
    상기 복수의 다이폴 안테나들 중 서로 인접한 두 다이폴 안테나는, 한 다이폴 안테나의 상기 제1 방사라인과 다른 다이폴 안테나의 상기 제2 방사라인이 서로 인접하도록 배치되는 다이폴 안테나 어레이.Two dipole antennas adjacent to each other among the plurality of dipole antennas are arranged such that the first radiation line of one dipole antenna and the second radiation line of another dipole antenna are adjacent to each other.
  5. 제1항에 있어서,The method of claim 1,
    상기 유전체 기판은 FR4 재질로 이루어지는 다이폴 안테나 어레이.The dielectric substrate is a dipole antenna array made of FR4 material.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 방향과 상기 제2 방향은 서로 반대 방향인 다이폴 안테나 어레이.A dipole antenna array in which the first direction and the second direction are opposite to each other.
  7. 제1항에 있어서,The method of claim 1,
    상기 복수의 다이폴 안테나들은, 일 방향을 향해 배열되는 다이폴 안테나들로 이루어지는 제1 다이폴 안테나 세트와, 다른 방향을 향해 배열되는 다이폴 안테나들로 이루어지는 제2 다이폴 안테나 세트와, 또 다른 방향을 향해 배열되는 다이폴 안테나들로 이루어지는 제3 다이폴 안테나 세트를 구성하는 다이폴 안테나 어레이.The plurality of dipole antennas include a first dipole antenna set consisting of dipole antennas arranged in one direction, a second dipole antenna set consisting of dipole antennas arranged in another direction, and a second dipole antenna set arranged in another direction. A dipole antenna array constituting a third dipole antenna set consisting of dipole antennas.
PCT/KR2019/016085 2019-08-20 2019-11-22 Dipole antenna array for millimeter wave band wireless communication WO2021033841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190101689A KR102215275B1 (en) 2019-08-20 2019-08-20 Dipole Antenna Array for Millimeter Wave Band Wireless Communication
KR10-2019-0101689 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021033841A1 true WO2021033841A1 (en) 2021-02-25

Family

ID=74560527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016085 WO2021033841A1 (en) 2019-08-20 2019-11-22 Dipole antenna array for millimeter wave band wireless communication

Country Status (2)

Country Link
KR (1) KR102215275B1 (en)
WO (1) WO2021033841A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345622A (en) * 2000-05-31 2001-12-14 Samsung Electronics Co Ltd Planar antenna
KR20040004218A (en) * 2003-11-20 2004-01-13 주식회사 선우커뮤니케이션 Wide band chip antenna for wireless LAN
US20090224996A1 (en) * 2008-03-04 2009-09-10 Samsung Electro-Mechanics Co., Ltd. Antenna device
KR101350562B1 (en) * 2012-07-20 2014-01-15 주식회사 에이스테크놀로지 Multi band dual polarization antenna
KR101901101B1 (en) * 2018-07-02 2018-09-20 국방과학연구소 Print type dipole antenna and electric device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345622A (en) * 2000-05-31 2001-12-14 Samsung Electronics Co Ltd Planar antenna
KR20040004218A (en) * 2003-11-20 2004-01-13 주식회사 선우커뮤니케이션 Wide band chip antenna for wireless LAN
US20090224996A1 (en) * 2008-03-04 2009-09-10 Samsung Electro-Mechanics Co., Ltd. Antenna device
KR101350562B1 (en) * 2012-07-20 2014-01-15 주식회사 에이스테크놀로지 Multi band dual polarization antenna
KR101901101B1 (en) * 2018-07-02 2018-09-20 국방과학연구소 Print type dipole antenna and electric device using the same

Also Published As

Publication number Publication date
KR102215275B1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
US11545761B2 (en) Dual-band cross-polarized 5G mm-wave phased array antenna
JP6569915B2 (en) Antenna and antenna module including the same
WO2011136576A2 (en) Mimo antenna for improved isolation
US7403171B2 (en) System for isolating an auxiliary antenna from a main antenna mounted in a common antenna assembly
KR102211746B1 (en) Chip antenna
CN102904019A (en) Wide-band linked-ring antenna element for phased arrays
EP2449621B1 (en) Hybrid single aperture inclined antenna
CN102511110A (en) Circuit device with signal line transition element
US20220181766A1 (en) Antenna module and communication device equipped with the same
WO2013016293A9 (en) Loop antenna
WO2020241271A1 (en) Sub-array antenna, array antenna, antenna module, and communication device
JP6981550B2 (en) Antenna module and communication device
US10483621B2 (en) Antenna and wireless communications assembly
KR20160042740A (en) Antenna, antenna package and communication module
US20230378661A1 (en) Method And Apparatus For Millimeter Wave Antenna Array
WO2021033841A1 (en) Dipole antenna array for millimeter wave band wireless communication
US9906202B1 (en) Multi-layer wideband antenna with integrated impedance matching
US20220094074A1 (en) Antenna module, communication apparatus including the same, and circuit substrate
WO2022130877A1 (en) Antenna module and communication device equipped with same
CN112242612A (en) Patch antenna
US20180212323A1 (en) Radiating Element of Antenna and Antenna
US20230019212A1 (en) Antenna assembly and base station antenna
CN211376931U (en) Antenna assembly and base station antenna
US10505276B2 (en) Wireless communications assembly with integrated active phased-array antenna
US20210408682A1 (en) Beam Steering Antenna Structure and Electronic Device Comprising Said Structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 27.06.2022.)

122 Ep: pct application non-entry in european phase

Ref document number: 19942189

Country of ref document: EP

Kind code of ref document: A1