WO2021033610A1 - Method for producing glass article - Google Patents

Method for producing glass article Download PDF

Info

Publication number
WO2021033610A1
WO2021033610A1 PCT/JP2020/030698 JP2020030698W WO2021033610A1 WO 2021033610 A1 WO2021033610 A1 WO 2021033610A1 JP 2020030698 W JP2020030698 W JP 2020030698W WO 2021033610 A1 WO2021033610 A1 WO 2021033610A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
etching
glass
laser
modified portion
Prior art date
Application number
PCT/JP2020/030698
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 河原
康章 渡邉
浩平 堀内
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2021033610A1 publication Critical patent/WO2021033610A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching

Definitions

  • the present invention relates to a method for manufacturing a glass article.
  • a desired shape can be separated from a glass substrate by irradiating the glass substrate with a laser, forming a plurality of defect lines so as to draw a contour line of a desired shape on the surface, and etching the glass substrate.
  • Patent Document 1 a technique is known that promotes penetration and expansion of initial holes by irradiating a glass substrate with a laser to form initial holes and then applying ultrasonic waves when etching the glass substrate (patented).
  • Document 2 discloses etching the glass substrate.
  • an object of the present disclosure is to provide a method for producing a high-quality glass article by suppressing deterioration of the surface texture of the glass substrate that occurs during ultrasonic etching.
  • a step of preparing a glass substrate having a first surface and a second surface facing each other a step of forming an initial hole or a modified portion in the glass substrate by using a laser, and the glass.
  • the substrate, the dissolved air concentration is immersed in the etching solution is 8.0wtppm or less dissolved oxygen concentration D O conversion, by applying at least a portion of the period, the ultrasound on the glass substrate, etching the glass substrate.
  • a glass article is manufactured by separating a desired shape from the glass substrate or forming holes having a desired diameter in the glass substrate while maintaining good surface texture of the glass substrate. it can.
  • FIG. 2B is a schematic view showing from the upper surface how a modified portion is formed on the surface of a glass substrate along a contour line having a desired shape in one manufacturing method of the present invention, and is a top view of FIG. 2B.
  • a method for manufacturing a glass article according to an embodiment of the present invention will be described.
  • a modified portion is formed on the glass substrate by a laser irradiation step so as to draw an outline of a desired shape, the modified portion is removed by etching, and the desired shape is separated.
  • a method for manufacturing a glass article will be described.
  • a method of forming an initial hole in a glass substrate by a laser irradiation step and expanding the initial hole by etching to form a hole to manufacture a glass article will be described.
  • the embodiment of the present invention is not limited to this, and for example, holes may be formed from the modified portion, or the glass substrate may be separated using the initial holes.
  • FIG. 1 shows a flow of a method for manufacturing a glass article according to the first embodiment of the present invention.
  • step S110 a step of preparing a glass substrate having a first surface and a second surface facing each other (step S110).
  • step S110 Glass substrate preparation step
  • Step S120 a step of forming a modified portion on the glass substrate using a laser (laser irradiation step)
  • Step S130 the glass substrate having a dissolved atmospheric concentration and dissolved oxygen. immersed in the etching solution is 8.0wtppm or less at a concentration D O terms, at least part of the period, by applying ultrasonic waves to the glass substrate, and wherein the etching the glass substrate (etching step) ..
  • FIG. 2 schematically shows how the hollow portion 23 is formed on the glass substrate by the steps S120 to S130 by using a cross-sectional view.
  • Step S110 First, a glass substrate 20 for processing as shown in FIG. 2A is prepared.
  • the glass substrate has a first surface 20b and a second surface 20c facing each other.
  • the material of the glass substrate 20 is not particularly limited.
  • the glass substrate 20 may be soda lime glass, aluminosilicate glass, non-alkali glass, quartz, sapphire glass, crystallized glass or the like.
  • the thickness of the glass substrate 20 is not particularly limited, but is, for example, in the range of 0.05 mm to 3 mm.
  • the thickness of the glass substrate 20 is preferably 1 mm or less from the viewpoint that a homogeneous modified portion can be easily formed by a laser.
  • the thickness is preferably 0.7 mm or less, more preferably 0.5 mm or less, from the viewpoint of easily suppressing the narrowing of the hole or the hollow portion in the etching step.
  • the thickness of the glass substrate 20 is preferably 0.1 mm, more preferably 0.2 mm or more, from the viewpoint of easily suppressing cracking of the glass substrate due to handling during manufacturing.
  • Step S120 Next, the laser is applied to the first surface 20b of the glass substrate 20.
  • the reforming portion 21 is formed along the contour line 30 of the planned separation portion 22. Multiple are formed.
  • FIG. 3 is a top view of FIG. 2 (b).
  • the modified portion 21 is formed inside the glass substrate 20 from the surface 20b to 20c of the glass substrate 20.
  • FIG. 2 corresponds to the AA'cross section of FIG.
  • the modified portion 21 refers to a region where the glass structure has been altered, which is formed inside the glass substrate 20.
  • the modified portion 21 is removed at a higher speed than the surrounding glass portion in the subsequent etching step.
  • the modified portion 21 is removed relatively faster than the non-modified portion, so that the planned separation portion 22 is separated, and FIG. 2 (c) ),
  • the hollow portion 23 is formed.
  • FIG. 4 schematically shows the configuration of the apparatus that can be used in step S120.
  • the laser irradiation device 400 includes a stage 450, a laser oscillator 460, a beam adjusting optical system 470, a condenser lens 480, and the like.
  • the glass substrate 20 is installed on the stage 450 so that the second surface 20c is on the stage side.
  • the glass substrate may be fixed to the stage.
  • the fixing method is not particularly limited, but it may be suppressed by a jig or the like, and may be suction-fixed or adhesively fixed.
  • the adsorption is, for example, vacuum adsorption, electrostatic adsorption, or the like.
  • the laser beam 465 is oscillated from the laser oscillator 460.
  • the laser beam 465 is incident on the beam adjusting optical system 470, and the beam diameter and the beam shape are adjusted by the beam adjusting optical system to become the laser beam 475.
  • the beam adjusting optical system 470 is formed by, for example, a combination of a concave lens and a convex lens.
  • the beam adjusting optical system 470 may have an aperture.
  • the laser beam 475 is incident on the condenser lens 480 and is condensed to become the laser beam 485.
  • the laser beam 485 is incident on the first surface 20b of the glass substrate 20 to form the modified portion 21 inside the glass substrate 20.
  • the wavelength of the laser beam 485 in the first embodiment is not particularly limited, but if it is, for example, 3000 nm or less, it is easy to form a modified portion and the heat effect on the glass substrate can be suppressed.
  • the wavelength of the laser beam 485 is preferably 2050 nm or less, more preferably 1090 nm or less, from the viewpoint that the energy of the laser becomes sufficiently large and the modified portion is easily formed.
  • the wavelength is preferably 350 nm or more, more preferably 500 nm or more.
  • the laser oscillator 460 in the first embodiment is not particularly limited, and is, for example, a He-Ne laser, an Ar ion laser, an Exima XeF laser, an Er: YAG laser, an Nd: YAG laser, and a second harmonic laser of Nd: YAG. And the third harmonic laser, ruby laser, fiber laser and the like.
  • the average output of the laser beam 485 is preferably 18 W or more, more preferably 35 W or more, from the viewpoint that sufficient energy can be obtained to form the modified portion.
  • the average output is preferably 200 W or less from the viewpoint that it is easy to suppress the generation of cracks around the modified portion 21 when the modified portion 21 is formed.
  • the laser beam 465 may be continuously oscillated or may be pulse oscillated.
  • the peak output becomes large and sufficient energy can be obtained, so that the modified portion is easily formed, which is preferable.
  • the pulse oscillation may be a normal pulse mode or may be oscillated as a burst pulse.
  • FIG. 5 schematically shows an example 500 of the waveform of the laser beam 485 when oscillated in the normal pulse mode.
  • the pulse width 501 is preferably 1 nsec or less from the viewpoint that the thermal influence is small and the generation of cracks around the modified portion can be suppressed. On the other hand, the pulse width 501 is preferably 100 fsec or more.
  • FIG. 6 schematically shows an example 600 of a burst pulse waveform.
  • the burst pulse is a pulse composed of burst 610 generated by dividing a single pulse.
  • the interval 611 of each burst 610 (hereinafter referred to as burst interval 611) is, for example, in the picosecond order, and the interval 621 of each pulse 620 (hereinafter, referred to as pulse interval 621) is, for example, in the nanosecond order.
  • the burst interval 611 is preferably 10 psec or more.
  • the pulse interval 621 is preferably 1 nsec or less.
  • Each pulse 620 comprises, for example, two or more bursts 610, preferably four or more bursts 610.
  • each pulse 620 includes, for example, 20 or less bursts 610, preferably 10 or less bursts 610. Under the above conditions, it is easy to form a modified portion, and it is easy to suppress thermal melting and crack generation around the holes.
  • the modified portion 21 is formed inside the glass substrate 20. Further, by scanning the laser beam 485 so as to draw a contour line having a desired shape and irradiating the laser beam 485, a plurality of modified portions 21 are formed along the contour line 30 of the planned separation portion 22 as shown in FIG. Will be done.
  • the distance between the modified portions 21 is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, from the viewpoint that the time required for hollowing out in the etching step can be shortened.
  • the distance between the modified portions 21 is preferable from the viewpoint that the laser is absorbed more by the modified portion 21 formed earlier and the modified portion to be formed next is not formed well. It is 2 ⁇ m or more.
  • FIG. 7 schematically shows an example of the etching apparatus 700 used in the etching process.
  • the etching apparatus 700 includes an external tank 710, an etching tank 720, and an ultrasonic wave generator 730.
  • the etching tank 720 is installed inside the outer tank 710, and the outer tank 710 contains the propagation liquid 715, and the etching tank 720 contains the etching liquid 725.
  • the propagation liquid 715 is not particularly limited, but is, for example, water, and has a role of propagating the ultrasonic wave 735 generated from the ultrasonic wave generator 730 to the etching tank 720.
  • the etching solution is not particularly limited, but for example, a solution containing hydrofluoric acid (an aqueous solution of hydrogen fluoride) is selected.
  • the etching solution may be hydrofluoric acid alone, or may contain a mixed acid with hydrochloric acid (aqueous solution of hydrogen chloride), an aqueous solution of nitric acid, or the like.
  • the etching solution preferably contains a mixed acid containing either hydrochloric acid or an aqueous nitric acid solution, or a mixed acid containing both, from the viewpoint of dissolving the salt generated during etching and suppressing the phenomenon that the salt blocks the modified portion. You can go out.
  • the etching solution is more preferably an aqueous nitric acid solution. If the etching solution is an aqueous nitric acid solution, a high effect can be expected.
  • the concentration of hydrogen fluoride in the etching solution is preferably 0.5 wt% or more, more preferably 1.0 wt% or more, based on the entire etching solution, from the viewpoint that etching proceeds sufficiently.
  • the concentration of hydrogen fluoride is preferably 5.0 wt% or less, more preferably 3.5 wt% or less, based on the entire etching solution, from the viewpoint of increasing the selectivity and easily forming pores with high verticality. Is.
  • the concentration of hydrogen chloride is preferably 1 wt% or more, more preferably 5 wt% or more, and further, with respect to the entire etching solution, from the viewpoint that the effect of dissolving the salt is significantly exhibited. It is preferably 8 wt% or more.
  • the removal speed of the modified portion by hydrofluoric acid it is preferably 20 wt% or less, more preferably 15 wt% or less, still more preferably 12 wt% or less with respect to the entire etching solution.
  • the concentration of nitric acid is preferably 1 wt% or more, more preferably 5 wt% or more, still more preferably 5 wt% or more, based on the entire etching solution, from the viewpoint that the effect of dissolving the salt is significantly exhibited. Is 8 wt% or more.
  • the concentration of nitric acid is preferably 20 wt% or less, more preferably 15 wt% or less, still more preferably 12 wt% or less with respect to the entire etching solution from the viewpoint of easily maintaining the removal speed of the modified portion by hydrofluoric acid. is there.
  • the glass substrate 20 is etched using such an etching apparatus 700.
  • the glass substrate 20 is arranged in the etching tank 720 and immersed in the etching solution 725.
  • the support tool for the glass substrate 20 is omitted, and the method of supporting the glass substrate 20 is not particularly limited as long as the surface is not damaged, and a known method can be applied.
  • the ultrasonic wave 735 is generated from the ultrasonic wave generator 730, and the ultrasonic wave 735 propagates the propagating liquid 715 to vibrate the etching tank 720.
  • the vibration of the etching tank 720 propagates through the etching solution 725, and as a result, ultrasonic waves are also propagated to the glass substrate 20. As a result, the glass substrate 20 vibrates.
  • a mechanism in which a hollow portion is formed on the glass substrate by ultrasonic wave application etching will be described with reference to FIGS. 2 (b) and 2 (c).
  • FIGS. 2B and 2C the glass substrate 20 is etched by the above method and the modified portion 21 is removed, so that the planned separation portion 22 is separated and the hollowed portion 23 is formed.
  • the cross-sectional view of is schematically shown.
  • the broken line 24 in FIG. 2C represents the boundary line between the non-modified portion (the portion other than the modified portion of the glass substrate) and the modified portion of the glass substrate in FIG. 2B, and the alternate long and short dash line 25 is FIG. Represents the surface of the glass substrate in (b).
  • the modified portion 21 of the glass substrate 20 is removed as shown in FIG. 2C, and at the same time, the modified portion 21 of the glass substrate 20 is removed.
  • the glass portion other than that, that is, the non-modified portion is also removed.
  • the planned separation portion 22 is separated from the glass substrate, and the modified portion 21 and the surrounding non-modified portion 21 are not formed.
  • a hollow portion 23 including a modified portion can be formed. Then, the planned separation portion 22 can be separated from the glass substrate by bringing the adjacent hollow portions 23 close to each other or joining them.
  • the planned separation portion 22 can be separated in a short time.
  • the outermost surface of the modified portion 21 is removed by reacting with the etching solution 725 to form a recess on the surface of the glass substrate 20.
  • the etching solution 725 is vibrated by ultrasonic waves, the surface tension is reduced and the penetrating power of the etching solution into the recess is improved. Further, when the glass substrate 20 is vibrated by ultrasonic waves, the removed modified portion is quickly separated from the non-modified portion and rapidly diffuses into the entire etching solution.
  • the application of ultrasonic waves may cause damage to the surface of the glass substrate.
  • the dissolved air concentration in the etching solution 725 with the dissolved oxygen concentration in terms D O conversion, for example, in an alternative dissolved oxygen concentration in terms of pure water (described below), is below 8.0wtppm
  • D O conversion for example, in an alternative dissolved oxygen concentration in terms of pure water (described below)
  • cavitation By applying ultrasonic waves, cavitation (cavitation) occurs in the etching solution, and a phenomenon occurs in which the surface of the glass substrate is impacted when cavitation collapses.
  • the impact force due to cavitation can cause minute fracture regions on the surface of the glass substrate.
  • these minute fracture regions may expand and connect to become rough surfaces and become apparent. In the present application, these minute fracture areas and surface roughness are referred to as damage.
  • the amount of cavitation generated increases as the concentration of gas dissolved in the etching solution 725 increases. Therefore, in order to prevent damage to the surface of the glass substrate due to cavitation, it is effective to reduce the concentration of the dissolved gas.
  • the etching apparatus 700 is installed in an atmospheric atmosphere and the gas is artificially dissolved in the etching solution 725, the gas dissolved in the etching solution 725 is the atmosphere. Therefore, by controlling the atmospheric concentration dissolved in the etching solution, damage to the glass substrate surface due to cavitation can be suppressed.
  • the method for adjusting the dissolved atmospheric concentration in the etching solution is not particularly limited, but it can be adjusted by, for example, degassing using a hollow fiber filter and a vacuum pump.
  • the gas dissolved in the etching solution is composed of atmospheric components, that is, oxygen, carbon dioxide, nitrogen, and other gases, unless otherwise specified.
  • an index value that reflects the amount of dissolved air can be used, for example the dissolved oxygen concentration D O.
  • Dissolved oxygen concentration D O generally is advantageous in that it can conveniently measured.
  • the dissolved oxygen concentration in one embodiment of the present invention is, for example, in pure water measured by the following procedure. Can be replaced by the measured value of. (Procedure 1) Adjust the dissolved atmospheric concentration of the etching solution under certain conditions.
  • (Procedure 2) Adjust the dissolved atmospheric concentration of pure water under the same conditions as in step 1.
  • procedure 2 for example, if the method for adjusting the dissolved atmosphere is degassing using a hollow fiber filter and a vacuum pump, the conditions can be met by making the decompression value equal to the decompression value in procedure 1.
  • the dissolved air concentration in the etching solution can be below 8.0wtppm in dissolved oxygen concentration D O conversion, thereby suppressing the occurrence of cavitation, the glass substrate surface It was found that the damage of can be significantly suppressed.
  • Dissolved air concentration, the dissolved oxygen concentration D O conversion preferably 7.5wtppm or less, more preferably 7.0wtppm or less, still more preferably not more than 6.5Wtppm.
  • the dissolved air concentration the reduced gradually from 8.0wtppm in dissolved oxygen concentration D O conversion, the occurrence of cavitation decreases, dissolved air concentration in the vicinity of 4.0wtppm in dissolved oxygen D O terms .
  • the amount of cavitation generated increases again, and a phenomenon that reaches a maximum value may occur.
  • the amount of cavitation generated begins to decrease again. This is because, when the amount of dissolved air is large, the surplus atmosphere that does not contribute to cavitation consumes energy, but when the dissolved atmosphere decreases to around 4.0 wtppm in terms of dissolved oxygen concentration, most of the dissolved atmosphere is cavitation. It is thought that this is because there is no surplus atmosphere and energy loss is reduced. Further, when the dissolved atmospheric concentration is reduced, the number of bubbles accumulated in the pores is reduced, the minimum diameter is easily expanded, and the degree of stenosis, which will be described later, is improved.
  • the dissolved air concentration in the dissolved oxygen concentration D O conversion preferably
  • the dissolved air concentration in the dissolved oxygen concentration D O terms generally 0.05wtppm above, in view of the control cost, preferably 0.1wtppm or more.
  • the frequency of the ultrasonic wave 735 is not particularly limited, but is preferably 200 kHz or less, more preferably 100 kHz or less, from the viewpoint that the effect of promoting the removal of the modified portion by the ultrasonic wave can be easily obtained. Further, from the viewpoint of suppressing the degree of stenosis described below and significantly improving the selection ratio, it is preferably 40 kHz or less, more preferably less than 40 kHz. Generally, ultrasonic waves of 20 kHz or higher are used.
  • the hollowed-out portion 23 formed by removing the modified portion 21 and the portion including the non-modified portion around the modified portion 21 after separating the planned separation portion 22 is as shown in FIG. 2 (c). May have a stenosis.
  • the narrowed portion refers to a portion where the inner width of the hollowed portion 23 is smaller than the width of the hollowed portion on the surface of the glass substrate. Such a narrowed portion is formed by the progress of removal of the surrounding glass portion while the modified portion 21 is removed. By reducing the degree of stenosis, the shape of the inner wall of the hollowed out portion 23 can be made closer to vertical, and the time required for hollowed out can be shortened.
  • the degree of stenosis is expressed using the degree of stenosis C 1 ( ⁇ ).
  • the degree of stenosis C 1 ( ⁇ ) is expressed by the following equation (2).
  • C 1 ( ⁇ ) (D 1- D 2 ) / t 1 ... (2)
  • represents the time when the glass substrate 20 is etched for the separation of the planned separation portion 22 (FIG. 3)
  • D 1 is the width of the hollow portion 23 on the first surface 20 b
  • D 2 is the hollow portion.
  • the minimum value of the inner width of the portion 23 is represented by t 1
  • t 1 represents the thickness of the glass substrate 20 after time ⁇ etching.
  • the selection ratio S ( ⁇ ) represented by the following formula (3) is defined as an index showing the selectivity of the reforming unit 21 with respect to the glass.
  • represents the time when the glass substrate 20 is etched for the separation of the planned separation portion 22
  • t 0 is the thickness of the glass substrate 20 before etching
  • t 1 is the time ⁇ after etching the glass substrate. Represents a thickness of 20.
  • the selection ratio S takes a value in the range of 0 to 1, and the closer S is to 1, the more preferable it is because the modified portion is selectively removed. Further, by increasing the selection ratio S, the amount of removal of the first surface 20b and the second surface 20c until the hollowed portion is formed can be reduced, which is caused by the handling of the glass substrate 20 or cavitation. It is easy to manufacture glass articles with little surface damage by suppressing the phenomenon that latent scratches expand and deepen and become apparent.
  • the lower the ultrasonic frequency the larger the size of the cavitation generated, and the larger the shock wave generated when the cavitation collapses. Therefore, when lower frequency ultrasonic waves are used, the effect of suppressing cavitation damage by controlling the dissolved atmosphere in the etching solution becomes remarkable.
  • the method of modulation is not particularly limited, and examples thereof include stepwise switching of frequencies and sweeping.
  • the frequency modulation method is not particularly limited, but the above effect can be easily obtained by, for example, changing the frequency periodically.
  • ultrasonic waves may be applied at a medium frequency of 40 kHz to 200 kHz at the initial stage of etching, and then switched to a low frequency of 40 kHz or less.
  • Ultrasonic waves are applied for at least a part of the time while the glass substrate is immersed in the etching solution.
  • it may be applied over the entire period, or intermittent operation may be performed by repeating the applied period and the non-applied period.
  • the intermittent operation raises large bubbles staying in the liquid that hinders the propagation of ultrasonic waves during the period when the ultrasonic waves are not applied, and collapses at the liquid surface, so that the ultrasonic waves are efficient. Propagation can be maintained.
  • the output of the ultrasonic wave is preferably 0.5 W / cm 2 or more, more preferably set to 0.7 W / cm 2 or more. On the other hand, the output of ultrasonic waves is 2 W / cm 2 or less.
  • the ultrasonic output may be changed during the etching period.
  • the initial etching period is set to low power and then changed to high power. By setting in this way, it is possible to suppress the growth of cracks generated around the modified portion by laser irradiation at the initial stage of etching, and the tips of the cracks are rounded by etching to achieve high output after the cracks do not grow. By changing it, the removal time of the modified part can be shortened.
  • FIG. 8 shows a flow of a method for manufacturing a glass article according to the second embodiment of the present invention.
  • Step S810 A step of preparing a glass substrate having a first surface and a second surface facing each other (glass substrate preparation step) and (step S820) forming initial holes in the glass substrate using a laser. and step (laser irradiation step), and (step S830) the glass substrate, the dissolved air is immersed in the etching solution is 8.0wtppm or less dissolved oxygen concentration D O terms, at least part of the period, on the glass substrate ultra It is characterized in that the glass substrate is etched by applying a sound wave.
  • Step S810 is the same as (Step S110).
  • the initial hole 91 is formed in place of the modified portion.
  • the initial hole means a fine hole having an opening on at least one surface and extending inside the glass substrate 20.
  • the initial hole 91 may penetrate or may have a closed portion in the middle. When the initial hole is etched, the closed portion is removed and the initial hole is expanded, so that the hole 93 can be formed.
  • the hole may be a through hole or a stop hole (stop hole) in which one side is closed.
  • the initial hole may be formed so as to communicate from the first surface 20b to the second surface 20c, while when it is desired to form a stop hole, an opening is formed only on one surface. It suffices to form an initial hole having.
  • the laser optical system is designed according to a known technique.
  • a plurality of initial holes 91 may be formed. It is preferable to form the initial holes at a distance of 10 ⁇ m or more because it is possible to prevent the holes from joining each other after etching and the cracks from growing to the adjacent holes.
  • Step S830 Next, the glass substrate 20 on which the initial holes 91 are formed is etched.
  • the structure and preferred embodiment of the etching step conform to step S130 of the first embodiment.
  • the application of ultrasonic waves is also effective in expanding the initial hole 91.
  • the glass substrate 20 vibrates due to the application of ultrasonic waves, the exchange between the reacted etching solution inside the initial hole 91 and the external etching solution is promoted, and the unreacted etching solution is always supplied to the inside of the initial hole 91. Therefore, the expansion of the initial hole 91 is promoted.
  • the etching step is carried out until the hole 93 has a desired opening diameter.
  • the hole 93 thus formed may also have a narrowed portion, similar to the hollowed portion 23 described in the first embodiment.
  • the degree of stenosis C 2 ( ⁇ ) is defined by the following equation (4).
  • (d 1 ⁇ d 2 ) / t 1 ... (4)
  • represents the time for etching the glass substrate 20 for forming the hole 93
  • d 1 is the opening diameter of the hole 93 on the first surface 20b
  • d 2 is the minimum value of the inner diameter of the hole 93
  • T 1 represents the thickness of the glass substrate 20 after time ⁇ etching.
  • the selection ratio S ( ⁇ ) is defined as the following equation (5).
  • the selectivity is an indicator of how fast the initial hole expansion has progressed compared to the removal of the glass substrate surface.
  • represents the time when the glass substrate 20 is etched to form the holes 93
  • t 0 is the thickness of the glass substrate 20 before etching
  • t 1 is the thickness of the glass substrate 20 after time ⁇ etching. Represents.
  • the selection ratio S takes a value in the range of 0 to 1, and the closer S is to 1, the faster the expansion of the initial hole proceeds, so that the time required for forming the hole 93 can be shortened, which is preferable. Further, by increasing the selectivity S, the amount of removal of the first surface 20b and the second surface 20c until the holes 93 are formed can be reduced, which is caused by the handling of the glass substrate 20 or cavitation. It is possible to manufacture glass articles with less surface damage by suppressing the phenomenon that latent scratches expand and deepen and become apparent.
  • one manufacturing method of the present invention can also be applied to cutting a glass substrate.
  • the degree of stenosis C 3 is a protrusion amount d 3 of the cut surface 101 instead of the formulas (2) and (4). It may be evaluated by using the following equation (6).
  • Experiment 1 the dissolved atmospheric concentration of the etching solution and the damage to the glass substrate surface during ultrasonic etching were examined.
  • the etching apparatus As the etching apparatus, the same apparatus as the etching apparatus 700 of FIG. 7 was used.
  • the outer tank 710 was filled with pure water as the propagation liquid 715, and the sample was placed directly in the pure water.
  • the etching tank 720 was not used in this experiment.
  • the ultrasonic generator 730 60200VS (in the case of frequencies 26kHz, 78kHz, 130kHz) or 60300VS type (in the case of frequencies 38kHz, 100kHz, 160kHz) of the ultrasonic oscillator QUAVA Multi manufactured by Kaijo Co., Ltd. was used.
  • Example 1-1 The detailed experimental procedure is shown below.
  • the outer tank was filled with ultrapure water in which the dissolved atmospheric concentration was adjusted to a desired dissolved oxygen concentration, and the sample contained in the cassette was fixed at a predetermined position in the outer tank.
  • the ultrasonic oscillator was set to a desired frequency, and ultrasonic waves having a maximum output of 600 w and a frequency of 26 kHz were irradiated for 10 minutes to impart minute damage due to cavitation to the sample surface.
  • the dissolved air concentration, 1.0Wtppm in dissolved oxygen concentration D O conversion was 2.0wtppm, 3.0wtppm, 4.0wtppm, 5.0wtppm, 6.0wtppm, 7.0wtppm, varied with 8.0Wtppm.
  • the dissolved oxygen concentration in pure water was adjusted by degassing with a hollow fiber membrane and degassing with a vacuum pump.
  • Example 1-2 to Example 1-6 In the same manner as in Example 1-1, the dissolved atmospheric concentration was changed to inflict minute damage and the damage was expanded, except that the frequencies were 38 kHz, 78 kHz, 100 kHz, 130 kHz, and 160 kHz, respectively. The number of defects was counted.
  • FIG. 11A shows the result of Example 1-1 (frequency 26 Hz)
  • FIG. 11B shows the result of Example 1-3 (frequency 78 Hz).
  • Example 2-1 to 2--7 experiments were carried out using glass having composition 1 (aluminosilicate glass).
  • the glass substrate was irradiated with a laser.
  • the laser irradiation device a device having the same configuration as that shown in FIG. 3 was used.
  • the irradiated laser was a burst pulse laser having a wavelength of 1064 mm, an output of 35.5 W, and an oscillation frequency of 75 kHz, and fine holes were formed in the glass substrate by the above steps.
  • the glass substrate was etched.
  • the etching apparatus the same apparatus as the etching apparatus 700 of FIG. 8 was used.
  • the outer tank 710 was filled with pure water as the propagation liquid 715
  • the etching tank 720 was filled with the etching liquid 725.
  • the etching solution contained 2.3 wt% of HF and 12 wt% of HNO 3, and the temperature of the etching solution was 16 ° C.
  • a sample housed in a cassette was placed in the etching tank 720, and an ultrasonic generator 730 similar to that used in Experiment 1 was used.
  • an experiment was carried out by applying ultrasonic waves having the frequencies shown in Table 1. In each example, the etching was carried out until the holes penetrated and the ultrasonic waves were continuously applied during the etching period.
  • Example 2-8 to Example 2-14 the experiment was carried out by applying ultrasonic waves having different frequencies in the same manner as in Examples 2-1 to 2-7, except that the glass of composition 2 (soda-lime glass) was used. went. Table 1 also shows the frequencies of the ultrasonic waves used in Examples 2-8 to 2-14.
  • Examples 2-1 to 2-14 holes were formed in the glass substrate.
  • the diameter of the formed hole is d 1
  • the minimum diameter inside the hole is d 2
  • the thickness of the glass substrate before etching is t 0
  • the thickness of the glass substrate after etching is t 1
  • the cut surface after etching is summarized in Table 1 below.
  • FIG. 12A graphically shows the stenosis degree C and the selection ratio S of Examples 2-1 to 2-7
  • FIG. 12A shows the stenosis degree C and the selection ratio S of Examples 2-8 to 2-14. Shown in a graph.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

This method for manufacturing a glass article comprises: a step for preparing a glass substrate having a first surface and a second surface facing each other; a step for forming an initial hole or a modified portion on the glass substrate using a laser; and a step for etching the glass substrate by immersing the glass substrate in an etching solution having a dissolved atmospheric concentration of at most 8.0 wtppm in terms of a dissolved oxygen concentration DO and applying ultrasonic waves to the glass substrate for at least a part of the etching duration.

Description

ガラス物品の製造方法Manufacturing method of glass goods
 本発明は、ガラス物品の製造方法に関する。 The present invention relates to a method for manufacturing a glass article.
 従来、ガラス基板にレーザを照射し、表面に所望の形状の輪郭線を描くように複数の欠陥線を形成し、ガラス基板をエッチングすることで、ガラス基板から所望の形状を分離することができることが知られている(特許文献1)。また、ガラス基板にレーザを照射し、初期孔を形成した後、ガラス基板をエッチングする際に、超音波を印加することで、初期孔の貫通および拡張を促進する技術が知られている(特許文献2)。 Conventionally, a desired shape can be separated from a glass substrate by irradiating the glass substrate with a laser, forming a plurality of defect lines so as to draw a contour line of a desired shape on the surface, and etching the glass substrate. Is known (Patent Document 1). Further, a technique is known that promotes penetration and expansion of initial holes by irradiating a glass substrate with a laser to form initial holes and then applying ultrasonic waves when etching the glass substrate (patented). Document 2).
米国特許出願公開第2019/0119150号明細書U.S. Patent Application Publication No. 2019/0119150 特表2016-534017号公報Special Table 2016-534017
 しかしながら、ガラス基板のエッチング時に超音波を印加すると、ガラス基板の表面性状が悪化することがあった。 However, when ultrasonic waves are applied during etching of the glass substrate, the surface texture of the glass substrate may deteriorate.
 そこで、本開示は、超音波エッチング時に発生するガラス基板表面性状の悪化を抑制し、品質の高いガラス物品を製造する方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a method for producing a high-quality glass article by suppressing deterioration of the surface texture of the glass substrate that occurs during ultrasonic etching.
 本開示は、相互に対向する第1の表面と第2の表面とを有するガラス基板を準備する工程と、前記ガラス基板にレーザを用いて初期孔または改質部を形成する工程と、前記ガラス基板を、溶存大気濃度が溶存酸素濃度D換算で8.0wtppm以下であるエッチング溶液に浸漬し、少なくとも一部の期間、前記ガラス基板に超音波を印加することで、前記ガラス基板をエッチングする工程を備えた、ガラス物品の製造方法、を提供する。 In the present disclosure, a step of preparing a glass substrate having a first surface and a second surface facing each other, a step of forming an initial hole or a modified portion in the glass substrate by using a laser, and the glass. the substrate, the dissolved air concentration is immersed in the etching solution is 8.0wtppm or less dissolved oxygen concentration D O conversion, by applying at least a portion of the period, the ultrasound on the glass substrate, etching the glass substrate Provided is a method for manufacturing a glass article, which comprises a process.
 本開示の製造方法によれば、ガラス基板の表面性状を良好に保ちながら、ガラス基板から所望の形状を分離し、またはガラス基板に所望の直径を有する孔を形成することで、ガラス物品を製造できる。 According to the manufacturing method of the present disclosure, a glass article is manufactured by separating a desired shape from the glass substrate or forming holes having a desired diameter in the glass substrate while maintaining good surface texture of the glass substrate. it can.
本発明の一製造方法における製造フローを示した図である。It is a figure which showed the manufacturing flow in one manufacturing method of this invention. 本発明の一製造方法において、図3のAA'断面での(a)ガラス基板を準備する工程の模式図、(b)レーザ照射工程においてガラス基板に改質部を形成する工程の模式図、および(c)エッチング工程においてガラス基板から所望の形状がくり抜かれる様子を示した模式図である。In one manufacturing method of the present invention, (a) a schematic diagram of a step of preparing a glass substrate in the AA'cross section of FIG. 3, and (b) a schematic diagram of a step of forming a modified portion on the glass substrate in the laser irradiation step. And (c) is a schematic view showing how a desired shape is hollowed out from a glass substrate in the etching step. 本発明の一製造方法における、ガラス基板表面に所望の形状の輪郭線に沿って改質部が形成される様子を上面から示した模式図であり、図2(b)の上面図である。FIG. 2B is a schematic view showing from the upper surface how a modified portion is formed on the surface of a glass substrate along a contour line having a desired shape in one manufacturing method of the present invention, and is a top view of FIG. 2B. 本発明の一製造方法におけるレーザ照射装置の模式図である。It is a schematic diagram of the laser irradiation apparatus in one manufacturing method of this invention. 本発明の一製造方法における発振レーザのパルス形状を示す模式図である。It is a schematic diagram which shows the pulse shape of the oscillation laser in one manufacturing method of this invention. 本発明の一製造方法における発振レーザのバーストパルスのパルス形状を示す模式図である。It is a schematic diagram which shows the pulse shape of the burst pulse of the oscillation laser in one manufacturing method of this invention. 本発明の一製造方法におけるエッチング装置の模式図である。It is a schematic diagram of the etching apparatus in one manufacturing method of this invention. 本発明の一製造方法における製造フローを示した図である。It is a figure which showed the manufacturing flow in one manufacturing method of this invention. 本発明の一製造方法において、(a)ガラス基板を準備する工程の模式図、(b)レーザ照射工程においてガラス基板に初期孔を形成する工程の模式図、および(c)エッチング工程においてガラス基板に貫通孔が形成される様子を示した模式図である。In one manufacturing method of the present invention, (a) a schematic diagram of a step of preparing a glass substrate, (b) a schematic diagram of a step of forming initial holes in the glass substrate in the laser irradiation step, and (c) a glass substrate in the etching step. It is a schematic diagram which showed the appearance that the through hole is formed in. 本発明の一製造方法における、ガラス基板の切断面を示した模式図である。It is a schematic diagram which showed the cut surface of the glass substrate in one manufacturing method of this invention. 本発明の実施例(例1-1)における溶存大気濃度とガラス基板表面ダメージの関係を示すグラフである。It is a graph which shows the relationship between the dissolved atmospheric concentration and the glass substrate surface damage in Example (Example 1-1) of this invention. 本発明の実施例(例1-3)における溶存大気濃度とガラス基板表面ダメージの関係を示すグラフである。It is a graph which shows the relationship between the dissolved atmospheric concentration and the glass substrate surface damage in Example (Example 1-3) of this invention. 本発明の実施例(例2-1~例2-7)における超音波周波数とガラス基板の孔の選択比および狭窄度との関係を示すグラフである。It is a graph which shows the relationship between the ultrasonic frequency, the selection ratio of the hole of a glass substrate, and the degree of stenosis in the Example (Example 2-1 to Example 2-7) of this invention. 本発明の実施例(例2-8~例2-14)における超音波周波数とガラス基板の孔の選択比および狭窄度との関係を示すグラフである。It is a graph which shows the relationship between the ultrasonic frequency, the selection ratio of a hole of a glass substrate, and the degree of stenosis in an Example (Example 2-8 to Example 2-14) of this invention.
 本発明の実施形態によるガラス物品の製造方法について説明する。以下で、第1の実施形態では、レーザ照射工程によりガラス基板上に所望の形状の輪郭を描くように改質部を形成し、エッチングにより改質部を除去し、所望の形状を分離してガラス物品を製造する方法について説明する。また、第2の実施形態では、レーザ照射工程によりガラス基板に初期孔を形成し、エッチングにより初期孔を拡張して孔を形成し、ガラス物品を製造する方法について、説明する。なお、本発明の実施形態はこれに限られず、例えば改質部から孔を形成してもよく、初期孔を用いてガラス基板を分離してもよい。 A method for manufacturing a glass article according to an embodiment of the present invention will be described. In the following, in the first embodiment, a modified portion is formed on the glass substrate by a laser irradiation step so as to draw an outline of a desired shape, the modified portion is removed by etching, and the desired shape is separated. A method for manufacturing a glass article will be described. Further, in the second embodiment, a method of forming an initial hole in a glass substrate by a laser irradiation step and expanding the initial hole by etching to form a hole to manufacture a glass article will be described. The embodiment of the present invention is not limited to this, and for example, holes may be formed from the modified portion, or the glass substrate may be separated using the initial holes.
 (第1の実施形態)
 まず、本発明の第1の実施形態によるガラス物品の製造方法について、図1~図7を参照にしながら説明する。
(First Embodiment)
First, a method for manufacturing a glass article according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 7.
 図1には、本発明の第1の実施形態によるガラス物品の製造方法のフローを示す。 FIG. 1 shows a flow of a method for manufacturing a glass article according to the first embodiment of the present invention.
 図1に示すように、本発明の第1の実施形態における、ガラス物品の製造方法では、(工程S110)相互に対向する第1の表面と第2の表面とを有するガラス基板を準備する工程(ガラス基板準備工程)と、(工程S120)前記ガラス基板にレーザを用いて改質部を形成する工程(レーザ照射工程)と、(工程S130)前記ガラス基板を、溶存大気濃度が、溶存酸素濃度D換算で8.0wtppm以下であるエッチング溶液に浸漬し、少なくとも一部の期間、前記ガラス基板に超音波を印加することで、前記ガラス基板をエッチングすることを特徴とする(エッチング工程)。 As shown in FIG. 1, in the method for manufacturing a glass article in the first embodiment of the present invention, (step S110) a step of preparing a glass substrate having a first surface and a second surface facing each other (step S110). (Glass substrate preparation step), (Step S120) a step of forming a modified portion on the glass substrate using a laser (laser irradiation step), and (Step S130) the glass substrate having a dissolved atmospheric concentration and dissolved oxygen. immersed in the etching solution is 8.0wtppm or less at a concentration D O terms, at least part of the period, by applying ultrasonic waves to the glass substrate, and wherein the etching the glass substrate (etching step) ..
 以下で、図2~図7を用いて各工程の詳細を説明する。図2には、工程S120~S130によりガラス基板にくり抜き部23が形成される様子を、断面図を用いて模式的に示した。 The details of each process will be described below with reference to FIGS. 2 to 7. FIG. 2 schematically shows how the hollow portion 23 is formed on the glass substrate by the steps S120 to S130 by using a cross-sectional view.
 (工程S110)
 まず、図2(a)に示すような被加工用のガラス基板20が準備される。ガラス基板は相互に対向する第1の表面20bおよび第2の表面20cを有する。
(Step S110)
First, a glass substrate 20 for processing as shown in FIG. 2A is prepared. The glass substrate has a first surface 20b and a second surface 20c facing each other.
 ガラス基板20の材質は、特に限られない。例えば、ガラス基板20は、ソーダライムガラス、アルミノシリケートガラス、無アルカリガラス、石英、サファイアガラス、結晶化ガラス等であっても良い。 The material of the glass substrate 20 is not particularly limited. For example, the glass substrate 20 may be soda lime glass, aluminosilicate glass, non-alkali glass, quartz, sapphire glass, crystallized glass or the like.
 ガラス基板20の厚さは、特に限られないが、例えば、0.05mm~3mmの範囲である。ガラス基板20の厚さは、レーザにより均質な改質部を形成しやすいという観点から、好ましくは1mm以下である。また、厚さは、エッチング工程において孔またはくり抜き部の狭窄を抑制しやすいという観点から、好ましくは0.7mm以下、より好ましくは0.5mm以下である。一方、ガラス基板20の厚さは、製造時の取り扱いによるガラス基板の割れを抑制しやすいという観点から、好ましくは0.1mm、より好ましくは0.2mm以上である。 The thickness of the glass substrate 20 is not particularly limited, but is, for example, in the range of 0.05 mm to 3 mm. The thickness of the glass substrate 20 is preferably 1 mm or less from the viewpoint that a homogeneous modified portion can be easily formed by a laser. The thickness is preferably 0.7 mm or less, more preferably 0.5 mm or less, from the viewpoint of easily suppressing the narrowing of the hole or the hollow portion in the etching step. On the other hand, the thickness of the glass substrate 20 is preferably 0.1 mm, more preferably 0.2 mm or more, from the viewpoint of easily suppressing cracking of the glass substrate due to handling during manufacturing.
 (工程S120)
 次に、ガラス基板20の第1の表面20bにレーザが照射される。第1の実施形態では、図3の上面図に示すように、ガラス基板から所望の形状をとる分離予定部22を分離するため、分離予定部22の輪郭線30に沿って改質部21が複数形成される。図3は、図2(b)における上面図である。また、この時、図2(b)の断面図に示すように、ガラス基板20の表面20bから20cにかけて、ガラス基板20の内部に改質部21が形成されている。図2は図3のAA'断面にあたる。
(Step S120)
Next, the laser is applied to the first surface 20b of the glass substrate 20. In the first embodiment, as shown in the top view of FIG. 3, in order to separate the planned separation portion 22 having a desired shape from the glass substrate, the reforming portion 21 is formed along the contour line 30 of the planned separation portion 22. Multiple are formed. FIG. 3 is a top view of FIG. 2 (b). At this time, as shown in the cross-sectional view of FIG. 2B, the modified portion 21 is formed inside the glass substrate 20 from the surface 20b to 20c of the glass substrate 20. FIG. 2 corresponds to the AA'cross section of FIG.
 ここで、改質部21とは、ガラス基板20の内部に形成された、ガラス構造が変質した領域を指す。改質部21は、後のエッチング工程において、周囲のガラス部分よりも除去される速度が速くなっている。これにより、改質部21を有するガラス基板20をエッチングすることで、改質部21が非改質部よりも相対的に速く除去されるため、分離予定部22が分離され、図2(c)に示すように、くり抜き部23が形成される。なお、改質部21内には、微細な穴やクラックが存在してもよい。微細な穴やクラックが存在する場合、エッチング液が改質部分に浸透しやすくなり、改質部分のエッチング速度がさらに早くなる。 Here, the modified portion 21 refers to a region where the glass structure has been altered, which is formed inside the glass substrate 20. The modified portion 21 is removed at a higher speed than the surrounding glass portion in the subsequent etching step. As a result, by etching the glass substrate 20 having the modified portion 21, the modified portion 21 is removed relatively faster than the non-modified portion, so that the planned separation portion 22 is separated, and FIG. 2 (c) ), The hollow portion 23 is formed. There may be fine holes or cracks in the modified portion 21. When there are fine holes or cracks, the etching solution easily penetrates into the modified portion, and the etching rate of the modified portion becomes even faster.
 図4には、工程S120で使用され得る装置の構成を概略的に示す。図4に示すように、レーザ照射装置400は、ステージ450、レーザ発振器460と、ビーム調整光学系470と、集光レンズ480等を有する。 FIG. 4 schematically shows the configuration of the apparatus that can be used in step S120. As shown in FIG. 4, the laser irradiation device 400 includes a stage 450, a laser oscillator 460, a beam adjusting optical system 470, a condenser lens 480, and the like.
 まず、ステージ450に、ガラス基板20が、第2の表面20cがステージの側になるように設置される。ガラス基板は、ステージに固定されても良い。固定方法は特に限られないが、冶具などで抑えられても良く、吸着固定または接着固定されても良い。吸着は、例えば真空吸着、または静電吸着等である。 First, the glass substrate 20 is installed on the stage 450 so that the second surface 20c is on the stage side. The glass substrate may be fixed to the stage. The fixing method is not particularly limited, but it may be suppressed by a jig or the like, and may be suction-fixed or adhesively fixed. The adsorption is, for example, vacuum adsorption, electrostatic adsorption, or the like.
 次に、レーザ発振器460からレーザビーム465が発振される。レーザビーム465は、ビーム調整光学系470に入射し、ビーム調整光学系でビーム径やビーム形状が調整されレーザビーム475となる。ビーム調整光学系470は、例えば凹レンズや凸レンズの組み合わせで形成される。ビーム調整光学系470は、アパーチャを有しても良い。 Next, the laser beam 465 is oscillated from the laser oscillator 460. The laser beam 465 is incident on the beam adjusting optical system 470, and the beam diameter and the beam shape are adjusted by the beam adjusting optical system to become the laser beam 475. The beam adjusting optical system 470 is formed by, for example, a combination of a concave lens and a convex lens. The beam adjusting optical system 470 may have an aperture.
 レーザビーム475は、集光レンズ480に入射し、集光されてレーザビーム485となる。レーザビーム485は、ガラス基板20の第1の表面20bに入射し、ガラス基板20の内部に改質部21を形成する。 The laser beam 475 is incident on the condenser lens 480 and is condensed to become the laser beam 485. The laser beam 485 is incident on the first surface 20b of the glass substrate 20 to form the modified portion 21 inside the glass substrate 20.
 第1の実施形態におけるレーザビーム485の波長は特に限られないが、例えば3000nm以下であると、改質部を形成しやすく、またガラス基板への熱影響を抑えられる。レーザビーム485の波長は、レーザの持つエネルギーが十分大きくなり、改質部を形成しやすいという観点から、好ましくは2050nm以下、より好ましくは1090nm以下である。一方、波長は、好ましくは350nm以上、より好ましくは500nm以上である。 The wavelength of the laser beam 485 in the first embodiment is not particularly limited, but if it is, for example, 3000 nm or less, it is easy to form a modified portion and the heat effect on the glass substrate can be suppressed. The wavelength of the laser beam 485 is preferably 2050 nm or less, more preferably 1090 nm or less, from the viewpoint that the energy of the laser becomes sufficiently large and the modified portion is easily formed. On the other hand, the wavelength is preferably 350 nm or more, more preferably 500 nm or more.
 第1の実施形態におけるレーザ発振器460は、特に限られないが、例えばHe-Neレーザ、Arイオンレーザ、エキシマXeFレーザ、Er:YAGレーザ、Nd:YAGレーザ、Nd:YAGの第2高調波レーザおよび第3高調波レーザ、ルビーレーザ、ファイバーレーザなどが挙げられる。 The laser oscillator 460 in the first embodiment is not particularly limited, and is, for example, a He-Ne laser, an Ar ion laser, an Exima XeF laser, an Er: YAG laser, an Nd: YAG laser, and a second harmonic laser of Nd: YAG. And the third harmonic laser, ruby laser, fiber laser and the like.
 レーザビーム485の平均出力は、改質部を形成するのに十分なエネルギーが得られるという観点から、好ましくは18W以上、より好ましくは35W以上である。一方、改質部21の形成時に改質部21の周囲のクラック発生を抑制しやすいという観点から、平均出力は好ましくは200W以下である。 The average output of the laser beam 485 is preferably 18 W or more, more preferably 35 W or more, from the viewpoint that sufficient energy can be obtained to form the modified portion. On the other hand, the average output is preferably 200 W or less from the viewpoint that it is easy to suppress the generation of cracks around the modified portion 21 when the modified portion 21 is formed.
 レーザビーム465は、連続発振されても良く、パルス発振されても良い。パルス発振されると、ピーク出力が大きくなり、十分なエネルギーが得られるため、改質部が形成しやすいので、好ましい。パルス発振は、通常のパルスモードでも良く、バーストパルスとして発振されても良い。 The laser beam 465 may be continuously oscillated or may be pulse oscillated. When the pulse is oscillated, the peak output becomes large and sufficient energy can be obtained, so that the modified portion is easily formed, which is preferable. The pulse oscillation may be a normal pulse mode or may be oscillated as a burst pulse.
 図5には通常のパルスモードで発振された場合のレーザビーム485の波形の一例500を模式的に示した。パルス幅501は、熱的影響が小さく、改質部周辺でのクラックの発生を抑制できるという観点から、好ましくは1nsec以下である。一方、パルス幅501は、好ましくは100fsec以上である。 FIG. 5 schematically shows an example 500 of the waveform of the laser beam 485 when oscillated in the normal pulse mode. The pulse width 501 is preferably 1 nsec or less from the viewpoint that the thermal influence is small and the generation of cracks around the modified portion can be suppressed. On the other hand, the pulse width 501 is preferably 100 fsec or more.
 図6には、バーストパルスの波形の一例600を模式的に示す。図6に示すように、バーストパルスは、単一パルスを分割することで生成されるバースト610からなるパルスである。各バースト610の間隔611(以下、バースト間隔611と称する)は、例えばピコ秒オーダーであり、各パルス620の間隔621(以下、パルス間隔621と称する)は例えばナノ秒オーダーである。バースト間隔611は、10psec以上であることが好ましい。パルス間隔621は、好ましくは1nsec以下である。各パルス620は、例えば2つ以上のバースト610を含み、好ましくは4つ以上のバースト610を含む。一方、各パルス620は例えば20以下のバースト610を含み、好ましくは10以下のバースト610を含む。以上の条件であると、改質部を形成しやすく、また孔周辺の熱溶融やクラック発生を抑制しやすい。 FIG. 6 schematically shows an example 600 of a burst pulse waveform. As shown in FIG. 6, the burst pulse is a pulse composed of burst 610 generated by dividing a single pulse. The interval 611 of each burst 610 (hereinafter referred to as burst interval 611) is, for example, in the picosecond order, and the interval 621 of each pulse 620 (hereinafter, referred to as pulse interval 621) is, for example, in the nanosecond order. The burst interval 611 is preferably 10 psec or more. The pulse interval 621 is preferably 1 nsec or less. Each pulse 620 comprises, for example, two or more bursts 610, preferably four or more bursts 610. On the other hand, each pulse 620 includes, for example, 20 or less bursts 610, preferably 10 or less bursts 610. Under the above conditions, it is easy to form a modified portion, and it is easy to suppress thermal melting and crack generation around the holes.
 以上のようなレーザ照射工程により、ガラス基板20の内部に改質部21が形成される。また、所望の形状の輪郭線を描くようにレーザビーム485を走査し、照射していくことで、図3に示すように分離予定部22の輪郭線30に沿って改質部21が複数形成される。改質部21同士の間隔は、エッチング工程でくり抜くまでにかかる時間を短くできるという観点から、好ましくは10μm以下であり、より好ましくは7μm以下である。一方、改質部21同士の間隔は、先に形成した改質部21にレーザがより吸収され、次に形成しようとする改質部がうまく形成されないという現象を抑制できるという観点から、好ましくは2μm以上である。 By the laser irradiation process as described above, the modified portion 21 is formed inside the glass substrate 20. Further, by scanning the laser beam 485 so as to draw a contour line having a desired shape and irradiating the laser beam 485, a plurality of modified portions 21 are formed along the contour line 30 of the planned separation portion 22 as shown in FIG. Will be done. The distance between the modified portions 21 is preferably 10 μm or less, more preferably 7 μm or less, from the viewpoint that the time required for hollowing out in the etching step can be shortened. On the other hand, the distance between the modified portions 21 is preferable from the viewpoint that the laser is absorbed more by the modified portion 21 formed earlier and the modified portion to be formed next is not formed well. It is 2 μm or more.
 (工程S130)
 次に、改質部21が形成されたガラス基板20をエッチングする。図7にはエッチング工程で使用するエッチング装置700の一例を模式的に示した。図7に示すように、エッチング装置700は、外部槽710と、エッチング槽720と、超音波発生装置730を有する。エッチング槽720は、外部槽710の内部に設置され、外部槽710には伝播液715が入っており、エッチング槽720には、エッチング液725が入っている。
(Step S130)
Next, the glass substrate 20 on which the modified portion 21 is formed is etched. FIG. 7 schematically shows an example of the etching apparatus 700 used in the etching process. As shown in FIG. 7, the etching apparatus 700 includes an external tank 710, an etching tank 720, and an ultrasonic wave generator 730. The etching tank 720 is installed inside the outer tank 710, and the outer tank 710 contains the propagation liquid 715, and the etching tank 720 contains the etching liquid 725.
 伝播液715は、特に限られないが、例えば水であり、超音波発生装置730から発生した超音波735をエッチング槽720に伝播させる役割を持つ。 The propagation liquid 715 is not particularly limited, but is, for example, water, and has a role of propagating the ultrasonic wave 735 generated from the ultrasonic wave generator 730 to the etching tank 720.
 エッチング液は、特に限られないが、例えばフッ酸(フッ化水素の水溶液)を含む溶液が選択される。エッチング液は、フッ酸だけでも良く、塩酸(塩化水素の水溶液)、硝酸水溶液などとの混酸を含んでいても良い。エッチング液は、エッチング時に発生した塩を溶解し、塩が改質部を塞ぐ現象を抑制できるという観点から、好ましくは、塩酸、硝酸水溶液のいずれか一方を含むか、または両方を含む混酸を含んでいてよい。エッチング液は、より好ましくは硝酸水溶液である。エッチング液が硝酸水溶液であると、高い効果が期待できる。 The etching solution is not particularly limited, but for example, a solution containing hydrofluoric acid (an aqueous solution of hydrogen fluoride) is selected. The etching solution may be hydrofluoric acid alone, or may contain a mixed acid with hydrochloric acid (aqueous solution of hydrogen chloride), an aqueous solution of nitric acid, or the like. The etching solution preferably contains a mixed acid containing either hydrochloric acid or an aqueous nitric acid solution, or a mixed acid containing both, from the viewpoint of dissolving the salt generated during etching and suppressing the phenomenon that the salt blocks the modified portion. You can go out. The etching solution is more preferably an aqueous nitric acid solution. If the etching solution is an aqueous nitric acid solution, a high effect can be expected.
 エッチング液中のフッ化水素の濃度は、エッチングが十分に進むという観点から、エッチング液全体に対して、好ましくは0.5wt%以上、より好ましくは1.0wt%以上である。一方、フッ化水素の濃度は、選択比を高め、垂直度の高い孔が形成しやすいという観点から、エッチング液全体に対して、好ましくは5.0wt%以下、より好ましくは3.5wt%以下である。 The concentration of hydrogen fluoride in the etching solution is preferably 0.5 wt% or more, more preferably 1.0 wt% or more, based on the entire etching solution, from the viewpoint that etching proceeds sufficiently. On the other hand, the concentration of hydrogen fluoride is preferably 5.0 wt% or less, more preferably 3.5 wt% or less, based on the entire etching solution, from the viewpoint of increasing the selectivity and easily forming pores with high verticality. Is.
 エッチング液が塩酸を含む場合、塩を溶解する効果が有意に発揮されるという観点から、塩化水素の濃度は、エッチング液全体に対して、好ましくは1wt%以上、より好ましくは5wt%以上、更に好ましくは8wt%以上である。一方、フッ酸による改質部の除去スピードを保ちやすいという観点から、エッチング液全体に対して、好ましくは20wt%以下、より好ましくは15wt%以下、更に好ましくは12wt%以下である。 When the etching solution contains hydrochloric acid, the concentration of hydrogen chloride is preferably 1 wt% or more, more preferably 5 wt% or more, and further, with respect to the entire etching solution, from the viewpoint that the effect of dissolving the salt is significantly exhibited. It is preferably 8 wt% or more. On the other hand, from the viewpoint that the removal speed of the modified portion by hydrofluoric acid can be easily maintained, it is preferably 20 wt% or less, more preferably 15 wt% or less, still more preferably 12 wt% or less with respect to the entire etching solution.
 エッチング液が硝酸を含む場合、塩を溶解する効果が有意に発揮されるという観点から、硝酸の濃度は、エッチング液全体に対して、好ましくは1wt%以上、より好ましくは5wt%以上、更に好ましくは8wt%以上である。一方、硝酸の濃度は、フッ酸による改質部の除去スピードを保ちやすいという観点から、エッチング液全体に対して、好ましくは20wt%以下、より好ましくは15wt%以下、更に好ましくは12wt%以下である。 When the etching solution contains nitric acid, the concentration of nitric acid is preferably 1 wt% or more, more preferably 5 wt% or more, still more preferably 5 wt% or more, based on the entire etching solution, from the viewpoint that the effect of dissolving the salt is significantly exhibited. Is 8 wt% or more. On the other hand, the concentration of nitric acid is preferably 20 wt% or less, more preferably 15 wt% or less, still more preferably 12 wt% or less with respect to the entire etching solution from the viewpoint of easily maintaining the removal speed of the modified portion by hydrofluoric acid. is there.
 このようなエッチング装置700を用い、ガラス基板20をエッチングする。ガラス基板20は、エッチング槽720内に配置され、エッチング液725に浸漬される。なお、図7では、ガラス基板20の支持具は省略されており、ガラス基板20の支持の仕方は、表面が傷つかない構成であれば特に限られず、公知の方法が適用可能である。 The glass substrate 20 is etched using such an etching apparatus 700. The glass substrate 20 is arranged in the etching tank 720 and immersed in the etching solution 725. In FIG. 7, the support tool for the glass substrate 20 is omitted, and the method of supporting the glass substrate 20 is not particularly limited as long as the surface is not damaged, and a known method can be applied.
 次に、超音波発生装置730から超音波735が発生され、超音波735は伝播液715を伝播し、エッチング槽720を振動させる。エッチング槽720の振動はエッチング液725を伝播し、結果、ガラス基板20にも超音波が伝播される。これにより、ガラス基板20が振動する。以下、図2(b)および(c)を用いて、超音波印加エッチングによりガラス基板にくり抜き部が形成される機構を説明する。 Next, the ultrasonic wave 735 is generated from the ultrasonic wave generator 730, and the ultrasonic wave 735 propagates the propagating liquid 715 to vibrate the etching tank 720. The vibration of the etching tank 720 propagates through the etching solution 725, and as a result, ultrasonic waves are also propagated to the glass substrate 20. As a result, the glass substrate 20 vibrates. Hereinafter, a mechanism in which a hollow portion is formed on the glass substrate by ultrasonic wave application etching will be described with reference to FIGS. 2 (b) and 2 (c).
 図2(b)および(c)には、上述の方法によりガラス基板20がエッチングされ、改質部21が除去されることで、分離予定部22が分離され、くり抜き部23が形成される様子の断面図を模式的に示す。図2(c)の破線24は、図2(b)におけるガラス基板の非改質部(ガラス基板の改質部以外の部分)と改質部の境界線を表し、一点鎖線25は図2(b)におけるガラス基板の表面を表す。 In FIGS. 2B and 2C, the glass substrate 20 is etched by the above method and the modified portion 21 is removed, so that the planned separation portion 22 is separated and the hollowed portion 23 is formed. The cross-sectional view of is schematically shown. The broken line 24 in FIG. 2C represents the boundary line between the non-modified portion (the portion other than the modified portion of the glass substrate) and the modified portion of the glass substrate in FIG. 2B, and the alternate long and short dash line 25 is FIG. Represents the surface of the glass substrate in (b).
 図7に示すように、エッチング液725に浸漬されることで、図2(c)に示すようにガラス基板20の改質部21が除去されると同時に、ガラス基板20の、改質部21以外のガラス部分、すなわち非改質部も除去されていく。しかしながら、前述のように、改質部21の除去される速度は、周囲のガラスに比べ速いため、ガラス基板から分離予定部22が分離され、改質部21および改質部21の周囲の非改質部を含むくり抜き部23が形成できる。そして、隣接するくり抜き部23同士が近接または接合することにより、分離予定部22はガラス基板から分離できる。 As shown in FIG. 7, by immersing in the etching solution 725, the modified portion 21 of the glass substrate 20 is removed as shown in FIG. 2C, and at the same time, the modified portion 21 of the glass substrate 20 is removed. The glass portion other than that, that is, the non-modified portion is also removed. However, as described above, since the speed at which the modified portion 21 is removed is faster than that of the surrounding glass, the planned separation portion 22 is separated from the glass substrate, and the modified portion 21 and the surrounding non-modified portion 21 are not formed. A hollow portion 23 including a modified portion can be formed. Then, the planned separation portion 22 can be separated from the glass substrate by bringing the adjacent hollow portions 23 close to each other or joining them.
 更に、超音波を印加することにより、以下の現象が進行し、分離予定部22の分離が短時間で可能になると考えられる。(i)改質部21の最表面が、エッチング液725と反応することで除去され、ガラス基板20の表面に凹部を形成する。(ii)エッチング液725が超音波により振動することで、表面張力が減少し、凹部へのエッチング液の浸透力が向上する。更に、ガラス基板20が超音波により振動することで、除去された改質部が、非改質部から速やかに離れ、エッチング液全体に速やかに拡散する。(iii)これにより、前記凹部の底に露出した改質部の新たな表面に、未反応のエッチング液が供給される。上記(i)~(iii)の現象が繰り返されることにより、改質部が選択的に除去され、分離予定部22の分離が短時間で可能になる。 Further, by applying ultrasonic waves, the following phenomenon progresses, and it is considered that the planned separation portion 22 can be separated in a short time. (I) The outermost surface of the modified portion 21 is removed by reacting with the etching solution 725 to form a recess on the surface of the glass substrate 20. (Ii) When the etching solution 725 is vibrated by ultrasonic waves, the surface tension is reduced and the penetrating power of the etching solution into the recess is improved. Further, when the glass substrate 20 is vibrated by ultrasonic waves, the removed modified portion is quickly separated from the non-modified portion and rapidly diffuses into the entire etching solution. (Iii) As a result, the unreacted etching solution is supplied to the new surface of the modified portion exposed at the bottom of the recess. By repeating the above-mentioned phenomena (i) to (iii), the modified portion is selectively removed, and the planned separation portion 22 can be separated in a short time.
 一方、超音波を印加することで、ガラス基板表面にダメージが発生する場合がある。そこで、本発明の一実施形態では、エッチング液725中の溶存大気濃度を、溶存酸素濃度換算D換算で、例えば純水での代替溶存酸素濃度換算(後述)で、8.0wtppm以下にすることで、エッチングによる改質部の除去に悪影響を与えずに、ガラス基板表面のダメージを有意に抑制できることを発見した。以下で原理を説明するが、上記効果を奏する原理としては、これに限定されない。 On the other hand, the application of ultrasonic waves may cause damage to the surface of the glass substrate. Accordingly, in one embodiment of the present invention, the dissolved air concentration in the etching solution 725, with the dissolved oxygen concentration in terms D O conversion, for example, in an alternative dissolved oxygen concentration in terms of pure water (described below), is below 8.0wtppm As a result, it was discovered that damage to the surface of the glass substrate can be significantly suppressed without adversely affecting the removal of the modified portion by etching. The principle will be described below, but the principle for achieving the above effect is not limited to this.
 超音波を印加することにより、エッチング液中にキャビテーション(空洞)が発生し、キャビテーション崩壊時にガラス基板表面に衝撃を与える現象が発生する。キャビテーションによる衝撃力により、ガラス基板の表面に微小な破壊領域が発生し得る。更にエッチングを続けることで、この微小な破壊領域が拡大、連結し表面荒れとなって顕在化することがある。本願では、これらの微小な破壊領域や表面荒れをダメージと称する。 By applying ultrasonic waves, cavitation (cavitation) occurs in the etching solution, and a phenomenon occurs in which the surface of the glass substrate is impacted when cavitation collapses. The impact force due to cavitation can cause minute fracture regions on the surface of the glass substrate. By further etching, these minute fracture regions may expand and connect to become rough surfaces and become apparent. In the present application, these minute fracture areas and surface roughness are referred to as damage.
 キャビテーションの発生量は、エッチング液725中に溶存する気体濃度が高いほど多くなる。従って、キャビテーションによりガラス基板表面にダメージが発生することを抑制するには、溶存気体の濃度を小さくすることが有効である。 The amount of cavitation generated increases as the concentration of gas dissolved in the etching solution 725 increases. Therefore, in order to prevent damage to the surface of the glass substrate due to cavitation, it is effective to reduce the concentration of the dissolved gas.
 ここで、エッチング装置700が大気雰囲気下に設置されており、エッチング液725に人為的に気体を溶存させない限りは、エッチング液725に溶存する気体は、大気である。従って、エッチング液中に溶存する大気濃度をコントロールすることで、キャビテーションによるガラス基板表面のダメージを抑制できる。 Here, unless the etching apparatus 700 is installed in an atmospheric atmosphere and the gas is artificially dissolved in the etching solution 725, the gas dissolved in the etching solution 725 is the atmosphere. Therefore, by controlling the atmospheric concentration dissolved in the etching solution, damage to the glass substrate surface due to cavitation can be suppressed.
 なお、エッチング液中の溶存大気濃度の調節方法は、特に限られないが、例えば中空糸フィルターと真空ポンプを用いた脱気により調整できる。 The method for adjusting the dissolved atmospheric concentration in the etching solution is not particularly limited, but it can be adjusted by, for example, degassing using a hollow fiber filter and a vacuum pump.
 エッチング液に溶存する気体は、特に工夫を施さない限り、大気の成分、すなわち、酸素、二酸化炭素、窒素、その他の気体で構成される。溶存大気の量を反映した指標値として、例えば溶存酸素濃度Dを用いることができる。溶存酸素濃度Dは、一般には簡便に測定できる点で利点がある。但し、フッ酸溶液中の溶存酸素濃度のより精密な測定は技術的に困難な場合があるため、本発明の一実施形態における溶存酸素濃度は、例えば、下記手順で測定される純水中での測定値で代替することができる。(手順1)エッチング液の溶存大気濃度をとある条件で調節する。(手順2)手順1と同条件で純水の溶存大気濃度を調節する。(手順3)純水の溶存酸素濃度を、ポータブルの蛍光式溶存酸素計を用いて測定する。ポータブルの蛍光式溶存酸素計としては、例えばHACH社のHQ30dが用いられる。この時の測定値が「純水での代替溶存酸素濃度」であり、当該測定値を、エッチング溶液の「溶存酸素濃度D」として用いることができる。 The gas dissolved in the etching solution is composed of atmospheric components, that is, oxygen, carbon dioxide, nitrogen, and other gases, unless otherwise specified. As an index value that reflects the amount of dissolved air, can be used, for example the dissolved oxygen concentration D O. Dissolved oxygen concentration D O generally is advantageous in that it can conveniently measured. However, since it may be technically difficult to measure the dissolved oxygen concentration in the hydrofluoric acid solution more precisely, the dissolved oxygen concentration in one embodiment of the present invention is, for example, in pure water measured by the following procedure. Can be replaced by the measured value of. (Procedure 1) Adjust the dissolved atmospheric concentration of the etching solution under certain conditions. (Procedure 2) Adjust the dissolved atmospheric concentration of pure water under the same conditions as in step 1. (Procedure 3) Measure the dissolved oxygen concentration of pure water using a portable fluorescent dissolved oxygen meter. As a portable fluorescent dissolved oxygen meter, for example, HQ30d manufactured by HACH is used. Measured at this time is "alternative dissolved oxygen concentration in the pure water", the measured value can be used as a "dissolved oxygen concentration D O" of the etching solution.
 手順2について、例えば溶存大気の調節方法が中空糸フィルターおよび真空ポンプを用いた脱気であれば、減圧値を手順1での減圧値と等しくすることで、条件をそろえることができる。 Regarding procedure 2, for example, if the method for adjusting the dissolved atmosphere is degassing using a hollow fiber filter and a vacuum pump, the conditions can be met by making the decompression value equal to the decompression value in procedure 1.
 本発明の一実施形態では、好ましくは、エッチング液中の溶存大気濃度を、溶存酸素濃度D換算で8.0wtppm以下にすることができ、これにより、キャビテーションの発生を抑制し、ガラス基板表面のダメージを有意に抑制できることが分かった。溶存大気濃度は、溶存酸素濃度D換算では、好ましくは7.5wtppm以下、より好ましくは7.0wtppm以下、更に好ましくは6.5wtppm以下である。 In one embodiment of the present invention, preferably, the dissolved air concentration in the etching solution can be below 8.0wtppm in dissolved oxygen concentration D O conversion, thereby suppressing the occurrence of cavitation, the glass substrate surface It was found that the damage of can be significantly suppressed. Dissolved air concentration, the dissolved oxygen concentration D O conversion, preferably 7.5wtppm or less, more preferably 7.0wtppm or less, still more preferably not more than 6.5Wtppm.
 ここで、溶存大気濃度を、溶存酸素濃度D換算で8.0wtppmから小さくしていくと、キャビテーションの発生は減少していくが、溶存大気濃度が溶存酸素D換算で4.0wtppm付近において、再びキャビテーションの発生量が増加し、極大値をとる現象が起きることがある。更に溶存大気濃度を小さくしていく、とキャビテーションの発生量は再び減少に転じる。これは、溶存大気量が多い状態では、キャビテーションに寄与しない余剰な大気がエネルギーを消費するのに対し、溶存大気が溶存酸素濃度換算で4.0wtppm付近まで減少すると、溶存する大気のほとんどがキャビテーションに寄与できるようになるため、余剰な大気が存在せず、エネルギーの損失が減少するためであると考えられる。更に、溶存大気濃度を小さくしていくと、孔中に溜まる気泡が減少し、最小径が広がりやすくなり、後述する狭窄度が改善される効果も得られる。 Here, the dissolved air concentration, the reduced gradually from 8.0wtppm in dissolved oxygen concentration D O conversion, the occurrence of cavitation decreases, dissolved air concentration in the vicinity of 4.0wtppm in dissolved oxygen D O terms , The amount of cavitation generated increases again, and a phenomenon that reaches a maximum value may occur. As the dissolved atmospheric concentration is further reduced, the amount of cavitation generated begins to decrease again. This is because, when the amount of dissolved air is large, the surplus atmosphere that does not contribute to cavitation consumes energy, but when the dissolved atmosphere decreases to around 4.0 wtppm in terms of dissolved oxygen concentration, most of the dissolved atmosphere is cavitation. It is thought that this is because there is no surplus atmosphere and energy loss is reduced. Further, when the dissolved atmospheric concentration is reduced, the number of bubbles accumulated in the pores is reduced, the minimum diameter is easily expanded, and the degree of stenosis, which will be described later, is improved.
 従って、溶存大気濃度は、溶存酸素濃度D換算で、好ましくは|D-4.0|>0wtppm、より好ましくは|D-4.0|≧0.1wtppm、更に好ましくは|D-4.0|≧0.2wtppm、更に好ましくは|D-4.0|≧0.3wtppm、更に好ましくは|D-4.0|≧0.4wtppm、更に好ましくは|D-4.0|≧0.5wtppm、更に好ましくは|D-4.0|≧0.6wtppm、更に好ましくは|D-4.0|≧0.7wtppm、更に好ましくは|D-4.0|≧0.8wtppm、更に好ましくは|D-4.0|≧0.9wtppmを満たす。 Thus, the dissolved air concentration in the dissolved oxygen concentration D O conversion, preferably | D O -4.0 |> 0wtppm, more preferably | D O -4.0 |0.1wtppm, more preferably | D O -4.0 | ≧ 0.2wtppm, more preferably | D O -4.0 |0.3wtppm, more preferably | D O -4.0 |0.4wtppm, more preferably | D O -4 .0 | ≧ 0.5wtppm, more preferably | D O -4.0 |0.6wtppm, more preferably | D O -4.0 |0.7wtppm, more preferably | D O -4.0 | ≧ 0.8wtppm, more preferably | satisfy ≧ 0.9wtppm | D O -4.0.
 また、溶存大気濃度は、溶存酸素濃度D換算で、一般的に0.05wtppm以上、制御コストを鑑みて、好ましくは0.1wtppm以上である。 Further, the dissolved air concentration in the dissolved oxygen concentration D O terms generally 0.05wtppm above, in view of the control cost, preferably 0.1wtppm or more.
 次に、超音波735の周波数範囲について説明する。超音波735の周波数は、特に制限されないが、超音波により改質部の除去を促進する効果が得られやすいという観点から、好ましくは200kHz以下であり、より好ましくは100kHz以下である。また、下記で説明する狭窄度を抑制し、選択比を有意に向上できるという観点から、好ましくは40kHz以下、より好ましくは40kHz未満である。超音波は一般的に、20kHz以上のものが使用される。 Next, the frequency range of the ultrasonic wave 735 will be described. The frequency of the ultrasonic wave 735 is not particularly limited, but is preferably 200 kHz or less, more preferably 100 kHz or less, from the viewpoint that the effect of promoting the removal of the modified portion by the ultrasonic wave can be easily obtained. Further, from the viewpoint of suppressing the degree of stenosis described below and significantly improving the selection ratio, it is preferably 40 kHz or less, more preferably less than 40 kHz. Generally, ultrasonic waves of 20 kHz or higher are used.
 分離予定部22を分離した後の、改質部21および改質部21の周囲の非改質部を含む部分が除去されて形成されたくり抜き部23は、図2(c)に示すような狭窄部を有することがある。狭窄部とは、くり抜き部23の内部の幅がくり抜き部のガラス基板表面における幅よりも小さくなっている部分を指す。このような狭窄部は、改質部21が除去される間に、周囲のガラス部分の除去が進行することにより形成される。狭窄度を小さくすることにより、くり抜き部23の内壁の形状を垂直に近づけることができ、またくり抜きにかかる時間を短縮することができる。 The hollowed-out portion 23 formed by removing the modified portion 21 and the portion including the non-modified portion around the modified portion 21 after separating the planned separation portion 22 is as shown in FIG. 2 (c). May have a stenosis. The narrowed portion refers to a portion where the inner width of the hollowed portion 23 is smaller than the width of the hollowed portion on the surface of the glass substrate. Such a narrowed portion is formed by the progress of removal of the surrounding glass portion while the modified portion 21 is removed. By reducing the degree of stenosis, the shape of the inner wall of the hollowed out portion 23 can be made closer to vertical, and the time required for hollowed out can be shortened.
 ここで、狭窄の程度を、狭窄度C(τ)を用いて表す。狭窄度C(τ)は下記式(2)で表される。 Here, the degree of stenosis is expressed using the degree of stenosis C 1 (τ). The degree of stenosis C 1 (τ) is expressed by the following equation (2).
  C(τ)=(D-D)/t・・・(2)
ここで、τは、分離予定部22(図3)の分離のために、ガラス基板20をエッチングした時間を表し、Dは第1の表面20bにおけるくり抜き部23の幅を、Dはくり抜き部23の内部の幅の最小値を、tは時間τエッチングした後のガラス基板20の厚さを表す。
C 1 (τ) = (D 1- D 2 ) / t 1 ... (2)
Here, τ represents the time when the glass substrate 20 is etched for the separation of the planned separation portion 22 (FIG. 3), D 1 is the width of the hollow portion 23 on the first surface 20 b, and D 2 is the hollow portion. The minimum value of the inner width of the portion 23 is represented by t 1 , and t 1 represents the thickness of the glass substrate 20 after time τ etching.
 また、短時間で効率よくエッチングし、狭窄度の低い孔を形成するためには、改質部21を周囲のガラスより選択的に除去する必要がある。ここで、改質部21のガラスに対する選択性を表す指標として、下記式(3)で表される選択比S(τ)を定義する。 Further, in order to efficiently etch in a short time and form a hole having a low degree of stenosis, it is necessary to selectively remove the modified portion 21 from the surrounding glass. Here, the selection ratio S (τ) represented by the following formula (3) is defined as an index showing the selectivity of the reforming unit 21 with respect to the glass.
  S(τ)=t/t・・・(3)
ここで、τは、分離予定部22の分離のために、ガラス基板20をエッチングした時間を表し、tはエッチング前のガラス基板20の厚さ、tは時間τエッチングした後のガラス基板20の厚さを表す。
S (τ) = t 1 / t 0 ... (3)
Here, τ represents the time when the glass substrate 20 is etched for the separation of the planned separation portion 22, t 0 is the thickness of the glass substrate 20 before etching, and t 1 is the time τ after etching the glass substrate. Represents a thickness of 20.
 狭窄度Cは0に近いほど、くり抜き部23における内壁が垂直に近い形状になるため、好ましい。また、分離予定部22の分離までにかかる時間を短縮できるため、生産効率の観点からも好ましい。 The closer the degree of stenosis C 1 is to 0, the more the inner wall of the hollow portion 23 has a shape closer to vertical, which is preferable. Further, it is preferable from the viewpoint of production efficiency because the time required for the separation of the planned separation portion 22 can be shortened.
 選択比Sは0~1の範囲の値をとり、Sは1に近いほど、改質部が選択的に除去されるため好ましい。更に、選択比Sを高くすることによりくり抜き部を形成するまでの第1の表面20b、第2の表面20cの除去量を小さくすることができるため、ガラス基板20の取り扱い時やキャビテーションにより生じた潜傷が拡大、深化して顕在化する現象を抑制し、表面ダメージの少ないガラス物品を製造しやすい。 The selection ratio S takes a value in the range of 0 to 1, and the closer S is to 1, the more preferable it is because the modified portion is selectively removed. Further, by increasing the selection ratio S, the amount of removal of the first surface 20b and the second surface 20c until the hollowed portion is formed can be reduced, which is caused by the handling of the glass substrate 20 or cavitation. It is easy to manufacture glass articles with little surface damage by suppressing the phenomenon that latent scratches expand and deepen and become apparent.
 狭窄度Cを0に近付け、また選択比Sを1に近付けることができ、潜傷が拡大、深化して顕在化する上述の現象等を優位に抑制できるという観点から、超音波735の周波数は、好ましくは200kHz以下、より好ましくは100kHz以下、更に好ましくは40kHz以下である。 The frequency of the ultrasonic wave 735 from the viewpoint that the degree of stenosis C 1 can be brought close to 0 and the selection ratio S can be brought close to 1, and the above-mentioned phenomenon in which the latent injury expands and deepens and becomes apparent can be suppressed predominantly. Is preferably 200 kHz or less, more preferably 100 kHz or less, still more preferably 40 kHz or less.
 一方、超音波の周波数が低くなるほど、発生するキャビテーションのサイズが大きくなり、キャビテーションが崩壊した際に発生する衝撃波も大きくなる。したがって、より低周波の超音波を使用する場合、エッチング液中の溶存大気を制御することによるキャビテーションのダメージ抑制の効果が顕著に表れる。 On the other hand, the lower the ultrasonic frequency, the larger the size of the cavitation generated, and the larger the shock wave generated when the cavitation collapses. Therefore, when lower frequency ultrasonic waves are used, the effect of suppressing cavitation damage by controlling the dissolved atmosphere in the etching solution becomes remarkable.
 更に、超音波の周波数は、変調させることが好ましい。変調の仕方は特に限られないが、例えば周波数の段階的切り替え、スイープなどが挙げられる。周波数を変調させることにより、槽内で定在波位置が変化するため、エッチングのムラを抑制でき、更に、キャビテーションの発生位置が変化するため、ガラス基板20表面への特定の位置にダメージが集中することを防げるため好ましい。周波数の変調方法は特に限られないが、例えば周波数を周期的に変化させることにより、上記効果を得られやすい。一方、エッチングの初期に40kHz~200kHzの中周波で超音波を印加し、その後40kHz以下の低周波に切り替えてもよい。このようにすることで、レーザ照射により改質部の周囲に生じたクラックが低周波の超音波印加により進展することを抑制し、エッチングによりクラックの先端が丸まりクラックが進展しなくなった後に低周波に切り替えることで、狭窄部を抑制し、選択比を向上させられるため、好ましい。 Furthermore, it is preferable to modulate the ultrasonic frequency. The method of modulation is not particularly limited, and examples thereof include stepwise switching of frequencies and sweeping. By modulating the frequency, the standing wave position changes in the tank, so etching unevenness can be suppressed, and the cavitation generation position changes, so damage is concentrated at a specific position on the surface of the glass substrate 20. It is preferable because it can prevent this from happening. The frequency modulation method is not particularly limited, but the above effect can be easily obtained by, for example, changing the frequency periodically. On the other hand, ultrasonic waves may be applied at a medium frequency of 40 kHz to 200 kHz at the initial stage of etching, and then switched to a low frequency of 40 kHz or less. By doing so, it is possible to suppress the growth of cracks generated around the modified portion by laser irradiation due to the application of low-frequency ultrasonic waves, and after the tips of the cracks are rounded by etching and the cracks do not grow, the low frequency By switching to, the narrowed portion can be suppressed and the selection ratio can be improved, which is preferable.
 超音波は、ガラス基板がエッチング液に浸漬されている間の少なくとも一部の期間で印加される。例えば全期間で印加されてもよく、印加されている期間と、印加されていない期間を繰り返す間欠運転がなされてもよい。好ましくは間欠運転されることにより、超音波が印可されていない期間に超音波の伝搬を阻害する液中で滞留している大きな気泡が上昇し、液面で崩壊することで超音波の効率的な伝搬を維持することが出来る。 Ultrasonic waves are applied for at least a part of the time while the glass substrate is immersed in the etching solution. For example, it may be applied over the entire period, or intermittent operation may be performed by repeating the applied period and the non-applied period. Preferably, the intermittent operation raises large bubbles staying in the liquid that hinders the propagation of ultrasonic waves during the period when the ultrasonic waves are not applied, and collapses at the liquid surface, so that the ultrasonic waves are efficient. Propagation can be maintained.
 超音波の出力は、好ましくは0.5W/cm以上、より好ましくは0.7W/cm以上に設定される。一方、超音波の出力は2W/cm以下である。超音波の出力はエッチングの期間中に変更されてもよい。好ましくはエッチング期間の初期は、低出力に設定し、その後高出力に変更する。このように設定することで、レーザ照射により改質部の周りに生じたクラックが、エッチング初期に進展することを抑制でき、エッチングによりクラックの先端が丸まり、クラックが進展しなくなった後高出力に変更することで、改質部の除去時間を短縮できる。 The output of the ultrasonic wave is preferably 0.5 W / cm 2 or more, more preferably set to 0.7 W / cm 2 or more. On the other hand, the output of ultrasonic waves is 2 W / cm 2 or less. The ultrasonic output may be changed during the etching period. Preferably, the initial etching period is set to low power and then changed to high power. By setting in this way, it is possible to suppress the growth of cracks generated around the modified portion by laser irradiation at the initial stage of etching, and the tips of the cracks are rounded by etching to achieve high output after the cracks do not grow. By changing it, the removal time of the modified part can be shortened.
 (第2の実施形態)
 次に、図8と図9を用いて、第2の実施形態について説明する。第2の実施形態では、レーザ照射工程においてガラス基板に初期孔を形成した後、エッチングにより初期孔を拡張し、所望の開口径を有する孔を形成する。図8には、本発明の第2の実施形態によるガラス物品の製造方法のフローを示す。
(Second Embodiment)
Next, the second embodiment will be described with reference to FIGS. 8 and 9. In the second embodiment, after the initial holes are formed in the glass substrate in the laser irradiation step, the initial holes are expanded by etching to form holes having a desired opening diameter. FIG. 8 shows a flow of a method for manufacturing a glass article according to the second embodiment of the present invention.
 図8に示すように、本発明の第1の実施形態における、ガラス物品の製造方法では、
(工程S810)相互に対向する第1の表面と第2の表面を有するガラス基板を準備する工程(ガラス基板準備工程)と、(工程S820)前記ガラス基板にレーザを用いて初期孔を形成する工程(レーザ照射工程)と、(工程S830)前記ガラス基板を、溶存大気が溶存酸素濃度D換算で8.0wtppm以下であるエッチング溶液に浸漬し、少なくとも一部の期間、前記ガラス基板に超音波を印加することで、前記ガラス基板をエッチングすることを特徴とする。
As shown in FIG. 8, in the method for producing a glass article in the first embodiment of the present invention,
(Step S810) A step of preparing a glass substrate having a first surface and a second surface facing each other (glass substrate preparation step) and (step S820) forming initial holes in the glass substrate using a laser. and step (laser irradiation step), and (step S830) the glass substrate, the dissolved air is immersed in the etching solution is 8.0wtppm or less dissolved oxygen concentration D O terms, at least part of the period, on the glass substrate ultra It is characterized in that the glass substrate is etched by applying a sound wave.
 以下、第1の実施形態との相違点について説明する。(工程S810)は、(工程S110)と同様である。 The differences from the first embodiment will be described below. (Step S810) is the same as (Step S110).
 (工程S820)
 図9に示すように、第2の実施形態におけるレーザ照射工程では、改質部の代わりに初期孔91が形成される。ここで、初期孔とは、少なくとも一方の表面に開口部を有し、ガラス基板20の内部に伸びる微細な孔を意味する。初期孔91は貫通していてもよく、途中に閉塞部を有していても良い。初期孔がエッチングされると、閉塞部が除去され、初期孔が拡張されることにより、孔93が形成できる。孔は、貫通孔であってもよく、一方が塞がった打ち止め孔(止まり孔)であってもよい。最終的に貫通孔を形成したい場合、初期孔は第1の表面20bから第2の表面20cまで連通するように形成すればよく、一方、打ち止め孔を形成したい場合、一方の表面にのみ開口部を有する初期孔を形成すればよい。なお、レーザ光学系は、公知の技術に従って設計される。
(Step S820)
As shown in FIG. 9, in the laser irradiation step in the second embodiment, the initial hole 91 is formed in place of the modified portion. Here, the initial hole means a fine hole having an opening on at least one surface and extending inside the glass substrate 20. The initial hole 91 may penetrate or may have a closed portion in the middle. When the initial hole is etched, the closed portion is removed and the initial hole is expanded, so that the hole 93 can be formed. The hole may be a through hole or a stop hole (stop hole) in which one side is closed. When it is desired to finally form a through hole, the initial hole may be formed so as to communicate from the first surface 20b to the second surface 20c, while when it is desired to form a stop hole, an opening is formed only on one surface. It suffices to form an initial hole having. The laser optical system is designed according to a known technique.
 初期孔91は複数形成されてもよい。初期孔同士の間隔は10μm以上で形成すると、エッチング後に孔同士が接合することや、隣接する孔までクラックが進展することを抑制できるため好ましい。 A plurality of initial holes 91 may be formed. It is preferable to form the initial holes at a distance of 10 μm or more because it is possible to prevent the holes from joining each other after etching and the cracks from growing to the adjacent holes.
 (工程S830)
 次に、初期孔91が形成されたガラス基板20をエッチングする。エッチング工程の構成や好ましい態様は、第1の実施形態の工程S130に準じる。
(Step S830)
Next, the glass substrate 20 on which the initial holes 91 are formed is etched. The structure and preferred embodiment of the etching step conform to step S130 of the first embodiment.
 なお、超音波の印加は初期孔91の拡張においても有効である。超音波の印加によりガラス基板20が振動すると、初期孔91の内部の反応済みのエッチング液と、外部のエッチング液の交換が促進され、初期孔91の内部に、常に未反応のエッチング液供給されるため、初期孔91の拡張が促進される。 It should be noted that the application of ultrasonic waves is also effective in expanding the initial hole 91. When the glass substrate 20 vibrates due to the application of ultrasonic waves, the exchange between the reacted etching solution inside the initial hole 91 and the external etching solution is promoted, and the unreacted etching solution is always supplied to the inside of the initial hole 91. Therefore, the expansion of the initial hole 91 is promoted.
 エッチング工程は孔93が所望の開口径になるまで実施される。このようにして形成された孔93も、第1の実施形態において説明したくり抜き部23と同様、狭窄部を有することがある。狭窄度C(τ)は、以下の式(4)により定義される。 The etching step is carried out until the hole 93 has a desired opening diameter. The hole 93 thus formed may also have a narrowed portion, similar to the hollowed portion 23 described in the first embodiment. The degree of stenosis C 2 (τ) is defined by the following equation (4).
  C(τ)=(d-d)/t ・・・(4)
ここで、τは、孔93形成のため、ガラス基板20をエッチングした時間を表し、dは第1の表面20bにおける孔93の開口径を、dは孔93の内部の直径の最小値を、tは時間τエッチングした後のガラス基板20の厚さを表す。
C 2 (τ) = (d 1 − d 2 ) / t 1 ... (4)
Here, τ represents the time for etching the glass substrate 20 for forming the hole 93, d 1 is the opening diameter of the hole 93 on the first surface 20b, and d 2 is the minimum value of the inner diameter of the hole 93. , T 1 represents the thickness of the glass substrate 20 after time τ etching.
 この時、選択比S(τ)を以下の式(5)ように定義する。この場合、選択比は、初期孔の拡張が、ガラス基板表面の除去に比べどれだけ速く進んだかの指標となる。 At this time, the selection ratio S (τ) is defined as the following equation (5). In this case, the selectivity is an indicator of how fast the initial hole expansion has progressed compared to the removal of the glass substrate surface.
  S(τ)=t/t・・・(5)
ここで、τは、孔93形成のため、ガラス基板20をエッチングした時間を表し、tはエッチング前のガラス基板20の厚さ、tは時間τエッチングした後のガラス基板20の厚さを表す。
S (τ) = t 1 / t 0 ... (5)
Here, τ represents the time when the glass substrate 20 is etched to form the holes 93, t 0 is the thickness of the glass substrate 20 before etching, and t 1 is the thickness of the glass substrate 20 after time τ etching. Represents.
 狭窄度Cは0に近いほど、孔93の内壁が垂直に近い形状になるため、好ましい。 The closer the degree of stenosis C 2 is to 0, the more the inner wall of the hole 93 has a shape closer to vertical, which is preferable.
 選択比Sは0~1の範囲の値をとり、Sは1に近いほど、初期孔の拡張が速く進むため、孔93の形成までにかかる時間を短縮でき、好ましい。更に、選択比Sを高くすることにより孔93を形成するまでの第1の表面20b、第2の表面20cの除去量を小さくすることができるため、ガラス基板20の取り扱い時やキャビテーションにより生じた潜傷が拡大、深化して顕在化する現象を抑制し、表面ダメージの少ないガラス物品を製造できる。 The selection ratio S takes a value in the range of 0 to 1, and the closer S is to 1, the faster the expansion of the initial hole proceeds, so that the time required for forming the hole 93 can be shortened, which is preferable. Further, by increasing the selectivity S, the amount of removal of the first surface 20b and the second surface 20c until the holes 93 are formed can be reduced, which is caused by the handling of the glass substrate 20 or cavitation. It is possible to manufacture glass articles with less surface damage by suppressing the phenomenon that latent scratches expand and deepen and become apparent.
 また、本発明の一製造方法は、ガラス基板の切断にも適用できる。図10に示すように、本発明の一製造方法をガラス基板の切断に使用する場合、狭窄度Cは、式(2)、(4)の代わりに、切断面101の突出量dを用いて下記式(6)ように評価すればよい。 Further, one manufacturing method of the present invention can also be applied to cutting a glass substrate. As shown in FIG. 10, when one manufacturing method of the present invention is used for cutting a glass substrate, the degree of stenosis C 3 is a protrusion amount d 3 of the cut surface 101 instead of the formulas (2) and (4). It may be evaluated by using the following equation (6).
  C=d×2/t・・・(6) C 3 = d 3 x 2 / t 1 ... (6)
<実験1>
 実験1では、超音波エッチング時のエッチング液の溶存大気濃度とガラス基板表面のダメージについて検討した。サンプルとして、アルミノシリケートガラス製の、直径(外径)65mm、厚さ0.8mmであり、中心部に開口が形成されているドーナツ状の基板を用いた。
<Experiment 1>
In Experiment 1, the dissolved atmospheric concentration of the etching solution and the damage to the glass substrate surface during ultrasonic etching were examined. As a sample, a donut-shaped substrate made of aluminosilicate glass, having a diameter (outer diameter) of 65 mm and a thickness of 0.8 mm and having an opening formed in the center was used.
 エッチング装置は、図7のエッチング装置700と同様の装置を使用した。外部槽710内に伝播液715として純水を満たし、純水中に直接サンプルを設置した。なお、本実験ではエッチング槽720は用いていない。超音波発生装置730は、カイジョー社製超音波発振器QUAVA Multiの60200VS(周波数26kHz、78kHz、130kHzの場合)または60300VS型(周波数38kHz、100kHz、160kHzの場合)を使用した。 As the etching apparatus, the same apparatus as the etching apparatus 700 of FIG. 7 was used. The outer tank 710 was filled with pure water as the propagation liquid 715, and the sample was placed directly in the pure water. The etching tank 720 was not used in this experiment. As the ultrasonic generator 730, 60200VS (in the case of frequencies 26kHz, 78kHz, 130kHz) or 60300VS type (in the case of frequencies 38kHz, 100kHz, 160kHz) of the ultrasonic oscillator QUAVA Multi manufactured by Kaijo Co., Ltd. was used.
 (例1-1)
 以下に詳細な実験手順を示す。
(1)溶存大気濃度を、所望の溶存酸素濃度に調節した超純水を外部槽内に満たし、カセットに収容された上記サンプルを外部槽内所定の位置に固定した。超音波発振器を所望の周波数に設定し、最大出力600wで、周波数26kHzの超音波を10分間照射し、サンプル表面にキャビテーションによる微小なダメージを付与した。溶存大気濃度を、溶存酸素濃度D換算で1.0wtppm、2.0wtppm、3.0wtppm、4.0wtppm、5.0wtppm、6.0wtppm、7.0wtppm、8.0wtppmと変化させた。なお、純水中の溶存酸素濃度は、中空糸を用いた脱気膜と真空ポンプを用いた脱気により調節した。
(2)上記の微小なダメージの付与後、付与した微小なダメージを検出しやすいように、各サンプルを2wt%のフッ化水素酸に浸漬し、板厚が4μm減少するまでエッチングし、ダメージを拡大した。
(3)各サンプルに対し超純水超音波洗浄とIPA(イソプロピルアルコール)ベーパー乾燥を行った。
(4)各サンプルのダメージを、システム精工社製レーザ散乱式欠点検査機RSI-65200を用いて評価した。検出感度は0.12μmとし、検出される欠点の個数をカウントした。
(Example 1-1)
The detailed experimental procedure is shown below.
(1) The outer tank was filled with ultrapure water in which the dissolved atmospheric concentration was adjusted to a desired dissolved oxygen concentration, and the sample contained in the cassette was fixed at a predetermined position in the outer tank. The ultrasonic oscillator was set to a desired frequency, and ultrasonic waves having a maximum output of 600 w and a frequency of 26 kHz were irradiated for 10 minutes to impart minute damage due to cavitation to the sample surface. The dissolved air concentration, 1.0Wtppm in dissolved oxygen concentration D O conversion was 2.0wtppm, 3.0wtppm, 4.0wtppm, 5.0wtppm, 6.0wtppm, 7.0wtppm, varied with 8.0Wtppm. The dissolved oxygen concentration in pure water was adjusted by degassing with a hollow fiber membrane and degassing with a vacuum pump.
(2) After the above-mentioned minute damage is applied, each sample is immersed in 2 wt% hydrofluoric acid and etched until the plate thickness is reduced by 4 μm so that the applied minute damage can be easily detected. Enlarged.
(3) Each sample was subjected to ultrapure water ultrasonic cleaning and IPA (isopropyl alcohol) vapor drying.
(4) The damage of each sample was evaluated using a laser scattering type defect inspection machine RSI-65200 manufactured by System Seiko Co., Ltd. The detection sensitivity was 0.12 μm, and the number of defects detected was counted.
 (例1-2~例1-6)
 周波数を、それぞれ38kHz、78kHz、100kHz,130kHz、160kHzとしたこと以外は、例1-1と同様にして、溶存大気濃度を変化させて、微小なダメージを付与し、ダメージを拡大させた後、欠点の個数をカウントした。
(Example 1-2 to Example 1-6)
In the same manner as in Example 1-1, the dissolved atmospheric concentration was changed to inflict minute damage and the damage was expanded, except that the frequencies were 38 kHz, 78 kHz, 100 kHz, 130 kHz, and 160 kHz, respectively. The number of defects was counted.
 実験1の結果によれば、溶存酸素濃度Doが減少すると、ガラス基板表面の欠点の個数が減少していく傾向がみられた。また、溶存酸素濃度Doが4.0wtppm付近の時に、一時的に欠点の数が増加する傾向もみられた。代表として、図11Aに例1-1(周波数26Hz)の結果を、図11Bに例1-3(周波数78Hz)の結果を示す。 According to the results of Experiment 1, as the dissolved oxygen concentration Do decreased, the number of defects on the surface of the glass substrate tended to decrease. In addition, when the dissolved oxygen concentration Do was around 4.0 wtppm, the number of defects tended to increase temporarily. As a representative, FIG. 11A shows the result of Example 1-1 (frequency 26 Hz), and FIG. 11B shows the result of Example 1-3 (frequency 78 Hz).
<実験2>
 実験2では、エッチング時の超音波の周波数が、選択比Sや形成される孔の狭窄度Cに与える影響を検討した。
<Experiment 2>
In Experiment 2, the effect of the ultrasonic frequency during etching on the selectivity S and the degree of stenosis C of the formed holes was examined.
(例2-1~2-7)
 例2-1~例2-7では、組成1のガラス(アルミノシリケートガラス)を用いて実験を行った。まず、ガラス基板にレーザを照射した。レーザ照射装置は、図3に示したものと同様の構成を有する装置を使用した。照射したレーザは、波長1064mm、出力35.5W、発振周波数75kHzのバーストパルスレーザであり、以上の工程により、ガラス基板に微細な孔を形成した。
(Examples 2-1 to 2-7)
In Examples 2-1 to 2-7, experiments were carried out using glass having composition 1 (aluminosilicate glass). First, the glass substrate was irradiated with a laser. As the laser irradiation device, a device having the same configuration as that shown in FIG. 3 was used. The irradiated laser was a burst pulse laser having a wavelength of 1064 mm, an output of 35.5 W, and an oscillation frequency of 75 kHz, and fine holes were formed in the glass substrate by the above steps.
 次に、ガラス基板をエッチングした。エッチング装置は、図8のエッチング装置700と同様の装置を使用した。外部槽710内に伝播液715として純水を満たし、エッチング槽720内にエッチング液725を満たした。この時、エッチング溶液はHFを2.3wt%、HNOを12wt%含み、エッチング液の温度は16℃であった。エッチング槽720内にカセットに収容されたサンプルを設置し、実験1で用いたものと同様の超音波発生装置730を用いた。例2-1~例2-7それぞれにおいて、表1に示す周波数の超音波を印加し実験を行った。各例において、エッチングは、孔が貫通するまで実施され、超音波はエッチングの期間中、連続して印加し続けた。 Next, the glass substrate was etched. As the etching apparatus, the same apparatus as the etching apparatus 700 of FIG. 8 was used. The outer tank 710 was filled with pure water as the propagation liquid 715, and the etching tank 720 was filled with the etching liquid 725. At this time, the etching solution contained 2.3 wt% of HF and 12 wt% of HNO 3, and the temperature of the etching solution was 16 ° C. A sample housed in a cassette was placed in the etching tank 720, and an ultrasonic generator 730 similar to that used in Experiment 1 was used. In each of Examples 2-1 to 2-7, an experiment was carried out by applying ultrasonic waves having the frequencies shown in Table 1. In each example, the etching was carried out until the holes penetrated and the ultrasonic waves were continuously applied during the etching period.
 (例2-8~例2-14)
 例2-8~2-14では、組成2のガラス(ソーダライムガラス)を用いたこと以外は、例2-1~2-7と同様に、それぞれ周波数の異なる超音波を印加して実験を行った。表1に、例2-8~2-14で用いられた超音波の周波数も示す。
(Example 2-8 to Example 2-14)
In Examples 2-8 to 2-14, the experiment was carried out by applying ultrasonic waves having different frequencies in the same manner as in Examples 2-1 to 2-7, except that the glass of composition 2 (soda-lime glass) was used. went. Table 1 also shows the frequencies of the ultrasonic waves used in Examples 2-8 to 2-14.
 例2-1~例2-14のいずれにおいても、ガラス基板に孔が形成された。形成された孔の直径をd、孔の内部の直径の最小値をd、エッチング前のガラス基板の厚さt、エッチング後のガラス基板の厚さt、エッチング後の切断面の狭窄度C=(d-d)/t、選択比S=t/tを、下記表1にまとめた。また、図12Aに、例2-1~例2-7の狭窄度C及び選択比Sをグラフで示し、図12Aに、例2-8~例2-14の狭窄度C及び選択比Sをグラフで示す。 In all of Examples 2-1 to 2-14, holes were formed in the glass substrate. The diameter of the formed hole is d 1 , the minimum diameter inside the hole is d 2 , the thickness of the glass substrate before etching is t 0 , the thickness of the glass substrate after etching is t 1 , and the cut surface after etching. The degree of squeezing C = (d 1 − d 2 ) / t 1 and the selection ratio S = t 1 / t 0 are summarized in Table 1 below. Further, FIG. 12A graphically shows the stenosis degree C and the selection ratio S of Examples 2-1 to 2-7, and FIG. 12A shows the stenosis degree C and the selection ratio S of Examples 2-8 to 2-14. Shown in a graph.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1、図12A、及び図12Bに示すように、超音波の周波数を小さくすることにより、狭窄度Cが抑制され、選択比Sが向上していることが分かる。 As shown in Table 1, FIG. 12A, and FIG. 12B, it can be seen that the degree of stenosis C is suppressed and the selection ratio S is improved by reducing the frequency of the ultrasonic waves.
 本出願は、2019年8月19日に日本国特許庁に出願された特願2019-149982号に基づく優先権を主張するものであり、その全内容は参照をもってここに援用される。 This application claims priority based on Japanese Patent Application No. 2019-149982 filed with the Japan Patent Office on August 19, 2019, the entire contents of which are incorporated herein by reference.
20   ガラス基板
20b  ガラス基板の第1の表面
20c  ガラス基板の第2の表面
21   改質部
22   分離予定部
23   くり抜き部
24   エッチング前の改質部または初期孔とガラス部の境界線
25   エッチング前のガラス基板表面
30   輪郭線
91   初期孔
93   孔
101  切断面
   ガラス基板の孔の第1の表面における開口径
   ガラス基板の孔の内部の最小径
   ガラス基板切断面の突出量
   くり抜き部における第1の表面における幅
   くり抜き部内部おける幅の最小値
   エッチング工程前のガラス基板の厚さ
   エッチング工程後のガラス基板の厚さ
400  レーザ照射装置
450  ステージ
460  レーザ発振器
465  レーザビーム
470  ビーム調整光学系
475  レーザビーム
480  集光光学系
485  レーザビーム
500  レーザのパルス
501  パルス幅
600  レーザのバーストパルス
610  1バースト
611  バースト幅
620  1パルス
621  パルス幅
700  エッチング装置
710  外部槽
715  伝播液
720  エッチング槽
725  エッチング液
730  超音波発生装置
735  超音波
20 Glass substrate 20b First surface of glass substrate 20c Second surface of glass substrate 21 Modified part 22 Scheduled separation part 23 Hollowed part 24 Modified part before etching or boundary line between initial hole and glass part 25 Before etching Glass substrate surface 30 Contour line 91 Initial hole 93 Hole 101 Cut surface d 1 Opening diameter on the first surface of the hole of the glass substrate d 2 Minimum diameter inside the hole of the glass substrate d 3 Projection amount of the cut surface of the glass substrate D 1 Width on the first surface of the hollowed out part D 2 Minimum width inside the hollowed out part t 0 Thickness of the glass substrate before the etching process t 1 Thickness of the glass substrate after the etching process 400 Laser irradiation device 450 Stage 460 Laser oscillator 465 Laser beam 470 Beam adjustment optical system 475 Laser beam 480 Condensing optical system 485 Laser beam 500 Laser pulse 501 Pulse width 600 Laser burst pulse 610 1 burst 611 Burst width 620 1 pulse 621 Pulse width 700 Etching device 710 External tank 715 Propagation liquid 720 Etching tank 725 Etching liquid 730 Ultrasonic generator 735 Ultrasonic

Claims (4)

  1.  相互に対向する第1の表面と第2の表面とを有するガラス基板を準備する工程と、
     前記ガラス基板にレーザを用いて初期孔または改質部を形成する工程と、
     前記ガラス基板を、溶存大気濃度が溶存酸素濃度D換算で8.0wtppm以下であるエッチング溶液に浸漬し、少なくとも一部の期間、前記ガラス基板に超音波を印加することで、前記ガラス基板をエッチングする工程を備えた、
     ガラス物品の製造方法。
    A step of preparing a glass substrate having a first surface and a second surface facing each other, and
    A step of forming an initial hole or a modified portion on the glass substrate using a laser, and
    The glass substrate, the dissolved air concentration is immersed in the etching solution is 8.0wtppm or less dissolved oxygen concentration D O terms, at least part of the period, by applying ultrasonic waves to the glass substrate, the glass substrate Equipped with an etching process,
    Manufacturing method for glass articles.
  2.  前記溶存酸素濃度Dが式(1)を満たす、請求項1に記載のガラス物品の製造方法。
     |D-4.0|>0wtppm・・・(1)
    The dissolved oxygen concentration D O satisfies the expression (1), process for producing a glass article according to claim 1.
    | D O -4.0 |> 0wtppm ··· (1)
  3.  前記超音波の周波数は200kHz以下である、請求項1または2に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 1 or 2, wherein the frequency of the ultrasonic wave is 200 kHz or less.
  4.  前記超音波の周波数は40kHz未満である、請求項1~3のいずれか1項に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to any one of claims 1 to 3, wherein the frequency of the ultrasonic wave is less than 40 kHz.
PCT/JP2020/030698 2019-08-19 2020-08-12 Method for producing glass article WO2021033610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-149982 2019-08-19
JP2019149982A JP2022137321A (en) 2019-08-19 2019-08-19 Method of manufacturing glass article

Publications (1)

Publication Number Publication Date
WO2021033610A1 true WO2021033610A1 (en) 2021-02-25

Family

ID=74661071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030698 WO2021033610A1 (en) 2019-08-19 2020-08-12 Method for producing glass article

Country Status (3)

Country Link
JP (1) JP2022137321A (en)
TW (1) TW202108537A (en)
WO (1) WO2021033610A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113478088A (en) * 2021-06-29 2021-10-08 杭州电子科技大学 Method for improving roughness of inner surface of laser ablation micropore and groove

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064870A (en) * 1996-05-28 1998-03-06 Canon Inc Method for cleaning porous surface and method for cleaning semiconductor surface
JP2005150768A (en) * 1996-07-05 2005-06-09 Toshiba Corp Cleaning method and cleaning method of electronic component
JP2007173677A (en) * 2005-12-26 2007-07-05 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2012081430A (en) * 2010-10-13 2012-04-26 Hitachi Kokusai Denki Engineering:Kk Ultrasonic cleaning apparatus
JP2017510531A (en) * 2013-12-17 2017-04-13 コーニング インコーポレイテッド High speed laser drilling method for glass and glass products
US20170326688A1 (en) * 2015-01-29 2017-11-16 Imra America, Inc. Laser-based modification of transparent materials
JP2018199605A (en) * 2017-05-29 2018-12-20 Agc株式会社 Production method for glass substrate and glass substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064870A (en) * 1996-05-28 1998-03-06 Canon Inc Method for cleaning porous surface and method for cleaning semiconductor surface
JP2005150768A (en) * 1996-07-05 2005-06-09 Toshiba Corp Cleaning method and cleaning method of electronic component
JP2007173677A (en) * 2005-12-26 2007-07-05 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2012081430A (en) * 2010-10-13 2012-04-26 Hitachi Kokusai Denki Engineering:Kk Ultrasonic cleaning apparatus
JP2017510531A (en) * 2013-12-17 2017-04-13 コーニング インコーポレイテッド High speed laser drilling method for glass and glass products
US20170326688A1 (en) * 2015-01-29 2017-11-16 Imra America, Inc. Laser-based modification of transparent materials
JP2018199605A (en) * 2017-05-29 2018-12-20 Agc株式会社 Production method for glass substrate and glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113478088A (en) * 2021-06-29 2021-10-08 杭州电子科技大学 Method for improving roughness of inner surface of laser ablation micropore and groove

Also Published As

Publication number Publication date
TW202108537A (en) 2021-03-01
JP2022137321A (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6734202B2 (en) Method and system for scribing and chemically etching brittle materials
EP2646384B1 (en) Methods of forming high-density arrays of holes in glass
JP5864988B2 (en) Tempered glass sheet cutting method
JP6911288B2 (en) Glass processing method
JP5352696B2 (en) Plane glass sheet manufacturing method and glass substrate dividing method
WO2007096958A1 (en) Glass processing method using laser and processing device
US20150209898A1 (en) Method and dicing device of processing transparent specimen using ultrafast pulse laser
JP2006290630A (en) Processing method of glass using laser
JP2006513121A (en) Glass plate cutting device {GLASS-PLATECHTINGMACHINE}
JP2005219960A (en) Cutting and separation method of glass, glass substrate for flat panel display, and flat panel display
CN104551412A (en) Disk-like glass substrate with magnetic recording medium and manufacturing method thereof
CN113767075B (en) Etching liquid for glass and method for producing glass substrate
WO2021033610A1 (en) Method for producing glass article
JP2007331983A (en) Scribing method for glass
WO2010044217A1 (en) Method for cutting mother glass substrate for display and brittle material substrate and method for manufacturing display
JP2006035710A (en) Glass processing method using laser and device
KR20210124384A (en) How to Laser Machining Transparent Workpieces Using Pulsed Laser Beam Focus Lines and Vapor Etching
JP5280825B2 (en) Substrate table and laser processing apparatus using the same
JP2018070429A (en) Manufacturing method of substrate with hole, manufacturing method of fine structure and laser modification device
Ren et al. Precise preparation of quartz pendulous reed by using picosecond laser modification assisted wet etching
JP2000117471A (en) Glass working method, and its device
JP5081086B2 (en) Plane glass sheet manufacturing method and glass substrate dividing method
JPH03276662A (en) Wafer cutting off process
JP7251704B2 (en) Etching liquid for glass and method for manufacturing glass substrate
JP2021106229A (en) Glass substrate having through hole and hollow portion and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP