WO2021033500A1 - Wire for electric discharge machining and manufacturing method thereof - Google Patents

Wire for electric discharge machining and manufacturing method thereof Download PDF

Info

Publication number
WO2021033500A1
WO2021033500A1 PCT/JP2020/028851 JP2020028851W WO2021033500A1 WO 2021033500 A1 WO2021033500 A1 WO 2021033500A1 JP 2020028851 W JP2020028851 W JP 2020028851W WO 2021033500 A1 WO2021033500 A1 WO 2021033500A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
electric discharge
tungsten
discharge machining
less
Prior art date
Application number
PCT/JP2020/028851
Other languages
French (fr)
Japanese (ja)
Inventor
吉弘 児玉
利春 末永
章夫 田久保
健史 辻
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021033500A1 publication Critical patent/WO2021033500A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/12Pickling; Descaling in melts
    • C25F1/16Refractory metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/08Etching of refractory metals

Definitions

  • the present invention relates to an electric discharge machining wire and a method for manufacturing the same.
  • a wire electric discharge machine is known as a technique for processing metal or the like into a desired shape.
  • a thin metal wire is used as an electrode wire for electric discharge machining (also referred to as an electric discharge machining wire or a cut wire).
  • Patent Document 1 discloses an electrode wire for electric discharge machining, which contains cerium oxide and is composed of tungsten and unavoidable impurities.
  • the conventional electric discharge machining wire has a problem that the start of electric discharge is delayed and the time required for electric discharge machining becomes long. Further, it is required that the electric discharge machining wire itself is less likely to be broken.
  • an object of the present invention is to provide a wire for electric discharge machining and a method for manufacturing the same, which is less likely to cause disconnection during electric discharge machining and can shorten the time required for electric discharge machining.
  • the electric discharge machining wire includes a tungsten wire containing cerium oxide in a content of 0.2 wt% or more and 0.4 wt% or less, and the surface of the tungsten wire is provided.
  • the roughness Rz is 0.6 ⁇ m or more and 2.0 ⁇ m or less.
  • the method for manufacturing an electric discharge machining wire is a method for manufacturing an electric discharge machining wire including a tungsten wire containing a cerium oxide, which is a drawing step for drawing the tungsten wire and a drawing step.
  • the electrolytic discharge rate in the electrolytic step is 6% or more and 11% or less, including the subsequent electrolytic step of electrolyzing the tungsten wire.
  • the present invention it is possible to provide a wire for electric discharge machining and a method for manufacturing the same, which is less likely to cause disconnection during electric discharge machining and can shorten the time required for electric discharge machining.
  • FIG. 1 is a flowchart showing a method of manufacturing an electric discharge machining wire according to the present embodiment.
  • an ingot containing cerium oxide and tungsten is prepared (S10).
  • an aggregate of cerium oxide-doped tungsten powder (hereinafter referred to as doped tungsten powder) is prepared by mixing an aqueous solution of cerium nitrate and a tungsten powder.
  • the mass ratio of the cerium nitrate aqueous solution and the tungsten powder is adjusted so that the content of the cerium oxide in the produced tungsten wire is 0.2 wt% or more and 0.4 wt% or less.
  • An ingot is prepared by pressing and sintering (sintering) the aggregate of the doped tungsten powder.
  • the average particle size of the tungsten powder is, for example, in the range of 3 ⁇ m or more and 4 ⁇ m or less.
  • the method of preparing an ingot containing cerium oxide and tungsten is not limited to the method of using an aqueous solution of cerium nitrate.
  • an ingot may be produced by pressing and sintering a mixture of tungsten powder and cerium oxide powder.
  • the produced ingot is subjected to aging processing (S12). Specifically, a wire-shaped tungsten wire is formed by forging, compressing, and stretching the ingot from the surroundings. In addition, you may perform rolling processing instead of aging processing.
  • an ingot having a diameter of about 15 mm or more and about 25 mm or less is formed into a tungsten wire having a wire diameter of about 3 mm.
  • the annealing treatment in the process during the aging process, the workability in the subsequent process is ensured.
  • an annealing treatment at 2400 ° C. is carried out in a range of 8 mm or more and 10 mm or less in diameter.
  • the annealing treatment is not performed in the aging step having a diameter of less than 8 mm.
  • the tungsten wire is heated to form an oxide layer on the surface.
  • the tungsten wire is directly heated using a burner or the like at a heating temperature of 900 ° C.
  • a heating temperature of 900 ° C By forming the oxide layer on the surface, it is possible to suppress the occurrence of disconnection in the subsequent drawing process.
  • the tungsten wire is heated and drawn using one drawing die. That is, the drawing (thinning) of the tungsten wire is performed while heating. The heating wire drawing is repeated while exchanging the wire drawing die.
  • the cross-sectional reduction rate of the tungsten wire by one heating drawing using one wire drawing die is, for example, 10% or more and 40% or less.
  • a lubricant in which graphite is dispersed in water may be used.
  • a wire drawing die having a smaller hole diameter than the wire drawing die used in the immediately preceding heating wire drawing is used. Further, as the number of repetitions increases, the heating temperature is lowered. That is, in the heating wire drawing using a small wire drawing die, the heating temperature is lowered as compared with the heating wire drawing using a large wire drawing die.
  • electrolysis may be performed in the middle of the repetition of heating and drawing.
  • the wire drawing dies used are carbide dies up to a wire diameter of 0.38 mm, sintered diamond dies in the wire diameter range of 0.38 mm to 0.18 mm, and single crystals in the wire diameter range of 0.18 mm to 0.020 mm. Use a diamond die.
  • a tungsten wire having a wire diameter substantially equal to the wire diameter required for electric discharge machining wire can be obtained.
  • the tungsten wire is electrolyzed (S16). Specifically, a voltage is applied between the tungsten wire and the counter electrode in a state where the drawn tungsten wire and the counter electrode are immersed in an electrolytic solution such as an aqueous potassium hydroxide solution. As a result, the surface of the tungsten wire is polished, so that oxides and graphite adhering to the surface can be removed. Therefore, the wire diameter of the tungsten wire after electrolysis is smaller than the wire diameter of the tungsten wire before electrolysis.
  • the electrolysis rate in the electrolysis step is 6% or more and 11% or less.
  • the electrolysis rate is the ratio of the mass lost by the tungsten wire in the electrolysis step to the mass of the tungsten wire before electrolysis. The larger the electrolysis rate, the greater the amount of decrease in the diameter of the tungsten wire.
  • the wire diameter of the tungsten wire after electrolysis is, for example, 50 ⁇ m, when the tungsten wire having a large wire diameter is electrolyzed, the electrolysis rate in the electrolysis step becomes large.
  • the electrolysis rate is made smaller than before, so that the surface of the tungsten wire has irregularities.
  • the surface roughness Rz of the surface of the tungsten wire is set to 0.6 ⁇ m or more and 2.0 ⁇ m or less.
  • the unevenness is specifically a die mark formed by a wire drawing die. The die mark is a long groove extending along the axial direction of the tungsten wire.
  • the tungsten wire according to this embodiment is manufactured.
  • the length of the tungsten wire immediately after manufacturing is, for example, 50 km or more, and it can be industrially used.
  • the tungsten wire can also be cut to an appropriate length depending on the mode in which it is used and used in the form of a needle or rod.
  • each step shown in the method for manufacturing a tungsten wire is performed in-line, for example.
  • the plurality of wire drawing dies used in step S14 are arranged on the production line in the order of decreasing hole diameter.
  • a heating device such as a burner is arranged between the wire drawing dies.
  • An electrolyzer is arranged on the downstream side of the wire drawing die used in the final wire drawing process.
  • each step may be performed individually.
  • the electric discharge machining wire includes a tungsten wire containing tungsten as a main component.
  • the tungsten wire contains cerium oxide and tungsten.
  • the tungsten wire may contain unavoidable impurities.
  • the unavoidable impurities are substances that are unavoidably mixed in the raw material of the tungsten wire and in the manufacturing process of the tungsten wire, and mean substances that are not intentionally mixed.
  • the tungsten wire is manufactured, for example, by the manufacturing method described with reference to FIG. In this embodiment, the tungsten wire itself is an electric discharge machining wire.
  • the content of cerium oxide in the tungsten wire is 0.2 wt% or more and 0.4 wt% or less.
  • the content of cerium oxide may be 0.26 wt% or more and 0.30 wt% or less.
  • the content of cerium oxide is the ratio of the mass of cerium oxide to the total mass of the tungsten wire. The same applies to the content of other substances such as tungsten and unavoidable impurities.
  • the cerium oxide is CeO 2 (cerium (IV) oxide).
  • the cerium oxide may contain Ce 2 O 3 (cerium (III) oxide).
  • the amount of current flowing through the tungsten wire (electric discharge machining wire) during electric discharge machining can be reduced. As a result, it is possible to suppress an increase in wire temperature during electric discharge machining. When the wire temperature rises, the tensile strength of the tungsten wire decreases, so that disconnection is likely to occur. In the tungsten wire according to the present embodiment, since the decrease in tensile strength is suppressed, the occurrence of disconnection is also suppressed. As the content of cerium oxide becomes larger than 0.2 wt%, the amount of current during electric discharge machining can be further suppressed, and the temperature rise can be further suppressed.
  • the content of cerium oxide is 0.4 wt% or less, it is possible to ensure the ease of processing (specifically, thinning) the tungsten wire. Further, when the content of the cerium oxide is 0.4 wt% or less, the high temperature strength characteristic of tungsten makes it strong against a high temperature state and makes it difficult for disconnection to occur during electric discharge machining. The smaller the content of cerium oxide is less than 0.4 wt%, the more the occurrence of disconnection can be suppressed.
  • the content of tungsten in the tungsten wire is 99.6 wt% or more and 99.8 wt% or less.
  • the content of tungsten may be 99.7 wt% or more and 99.74 wt% or less. Since the tungsten wire may contain unavoidable impurities, the tungsten content may be less than 99.6 wt%.
  • the content of unavoidable impurities may be 0.1 wt% or less, and the content of tungsten may be 99.5 wt% or more.
  • the wire diameter of the tungsten wire is, for example, 20 ⁇ m or more and 100 ⁇ m or less.
  • the wire diameter of the tungsten wire may be 80 ⁇ m or less, 70 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m or less.
  • the wire diameter of the tungsten wire is 100 ⁇ m or less, fine machining in electric discharge machining becomes possible. As the diameter of the tungsten wire becomes smaller than 100 ⁇ m, finer processing is realized.
  • the discharge can be stably performed.
  • ⁇ Cross-sectional shape The shape of the cross section orthogonal to the line axis direction of the tungsten wire is, for example, circular. Alternatively, the cross-sectional shape of the tungsten wire may be elliptical, square or rectangular.
  • the straightness of the tungsten wire is represented by the natural hanging length of the tungsten wire having a length of 1000 mm.
  • the straightness of the tungsten wire according to this embodiment is 950 mm or more.
  • the straightness of the tungsten wire may be 990 mm or more, or 995 mm or more.
  • the straightness may be represented by the natural hanging length of a tungsten wire having a length of 500 mm.
  • the straightness is 950 mm or more
  • the setting to the electric discharge machine becomes easy, and the occurrence of disconnection at the time of setting can be suppressed.
  • the tensile strength of the tungsten wire at 20 ° C. is 3500 MPa or more.
  • the tensile strength of the tungsten wire may be 3800 MPa or more, or 4000 MPa or more.
  • the tensile strength of the tungsten wire may be 4200 MPa or more, 4500 MPa or more, 4800 MPa or more, or 5000 MPa or more.
  • "tensile strength” means the tensile strength at 20 degreeC unless otherwise specified.
  • the tensile strength is 3500 MPa or more
  • the setting to the electric discharge machine becomes easy, and the occurrence of disconnection at the time of setting can be suppressed.
  • the tensile strength becomes higher than 3500 MPa, the occurrence of disconnection during setting and electric discharge machining can be further suppressed.
  • the surface roughness Rz of the tungsten wire is 0.6 ⁇ m or more and 2.0 ⁇ m or less.
  • the surface roughness Rz may be 0.6 ⁇ m or more and 1.5 ⁇ m or less.
  • the surface roughness Rz may be 0.7 ⁇ m or more and 1.2 ⁇ m or less.
  • the surface roughness Rz is the maximum height of surface irregularities defined by JIS B 0601-2001 (Non-Patent Document).
  • the surface roughness Rz is the surface roughness of the outer peripheral side surface around the line axis of the tungsten wire.
  • the surface roughness of the end faces at both ends in the axial direction of the tungsten wire is not particularly limited.
  • the surface roughness Rz of the tungsten wire according to the present embodiment is 2.0 ⁇ m or less, the occurrence of disconnection can be suppressed. The smaller the surface roughness Rz is than 2.0 ⁇ m, the less likely it is that disconnection will occur.
  • the tungsten wire according to the present embodiment is less likely to be broken during electric discharge machining, and the time required for electric discharge machining can be shortened.
  • the surface roughness Rz of the tungsten wire corresponds to the size of the die mark given by the wire drawing die used in the drawing process.
  • the size of the die mark depends on the electrolysis rate in the electrolysis process after drawing. That is, as the electrolysis rate increases, the residual die marks decrease, the surface of the tungsten wire becomes smooth, and the surface roughness Rz decreases. The smaller the electrolysis rate, the more the die marks remain, and the unevenness on the surface of the tungsten wire remains, and the surface roughness Rz increases.
  • the surface roughness Rz can be set in the range of 0.6 ⁇ m or more and 2.0 ⁇ m or less by setting the electrolysis rate in the electrolysis step to 6% or more and 11% or less.
  • Table 1 shows the electrolysis conditions of the samples according to Comparative Examples and Examples.
  • the black wire in Table 1 is a tungsten wire immediately after drawing and before electrolysis.
  • the conditions for satisfying the electrolysis rate are different between the samples according to Comparative Examples 1 and 2 and the samples according to Examples 1 to 4. Specifically, the samples according to Examples 1 to 4 satisfy the range of the electrolysis rate of 6% or more and 11% or less, whereas the samples according to Comparative Examples 1 and 2 satisfy the range. Absent. Electrolysis was performed three times by applying an AC voltage.
  • the MG (wire diameter) of the black wire was adjusted so that the wire diameter of the tungsten wire after electrolysis was in the range of 50 ⁇ m ⁇ 0.5 ⁇ m. Further, in the sample according to Comparative Example 2, the MG of the black wire was adjusted so that the wire diameter of the tungsten wire after electrolysis was in the range of 100 ⁇ m ⁇ 1 ⁇ m.
  • the steps up to the production of the black wire are substantially the same in Comparative Examples and Examples.
  • the difference between the comparative example and the embodiment is that the hole diameter of the drawing die used in the final drawing step is different in order to adjust the MG of the black wire.
  • Table 3 in the samples according to Comparative Example 1 and Examples 1 to 4, tungsten powder and nitrate were prepared so that the content of cerium oxide contained in the produced tungsten wire was about 0.3 wt%. While the mixing ratio with the cerium aqueous solution was adjusted, in the sample according to Comparative Example 2, the mixing ratio was adjusted so that the content of the cerium oxide was less than 0.1 wt%.
  • Tables 2 and 3 show the measurement results of the characteristic values of each sample produced based on the conditions shown in Table 1, respectively.
  • the depth of the dice mark in Table 2 shows the results measured at three points A to C on the surface of the sample and their average values.
  • the maximum depth of the three points in each sample is regarded as the surface roughness Rz.
  • the surface roughness Rz was less than 0.6 ⁇ m.
  • the surface roughness Rz was in the range of 0.6 ⁇ m or more and 2.0 ⁇ m or less.
  • the average value of MG, the tensile strength, the straightness, and the content of cerium oxide are substantially equal to each other.
  • the sample according to Comparative Example 2 is substantially the same as the other samples in terms of straightness.
  • the average value of MG and the content of cerium oxide are different values depending on the difference in production conditions.
  • the electric discharge machine is an NC electric discharge wire cutting machine (AP200L manufactured by Sodick Co., Ltd.).
  • the work to be processed is a 9 mm square SKD11.
  • the feed rate of the wire is 9 m / min.
  • Table 4 shows the results of whether or not the wire can be set for the electric discharge machine and whether or not the work can be cut.
  • the workpiece could be cut without breaking the wires.
  • the discharge was started in a state where the wire and the work were separated from each other as compared with the sample according to the comparative example.
  • the work could be appropriately cut without welding of the wire and the work and without disconnection. Since the time required to start the electric discharge was also shortened, the time required for the electric discharge machining could be shortened.
  • the content of cerium oxide was contained in the range of 0.2 wt% or more and 0.4 wt% or less, while the surface was as shown in Table 2.
  • the roughness Rz is less than 0.6 ⁇ m.
  • the surface roughness Rz is included in the range of 0.6 ⁇ m or more and 2.0 ⁇ m or less, while as shown in Table 3, the cerium oxide is contained.
  • the content of is less than 0.2 wt%.
  • the surface roughness Rz is included in the range of 0.6 ⁇ m or more and 2.0 ⁇ m or less, and the cerium oxide is contained. Is included in the range of 0.2 wt% or more and 0.4 wt% or less. Therefore, based on the results shown in Table 4, since both the surface roughness Rz and the content of the cerium oxide are included in the above range, disconnection is unlikely to occur during the electric discharge machining, and the electric discharge machining is required. It turns out that the time can be shortened.
  • cerium oxide content is 0.26 wt% or more and 0.30 wt% or less is shown as an example, but the case where the cerium oxide content is 0.20 wt% or more and less than 0.26 wt%, and It has been confirmed that even in the case of greater than 0.30 wt% and 0.40 wt% or less, wire setting and work cutting are performed satisfactorily as in the above embodiment.
  • the surface roughness Rz the case where the surface roughness of the tungsten wire is about 0.9 ⁇ m or more and about 1.5 ⁇ m or less is shown as an example, but the surface roughness of the tungsten wire is 0.6 ⁇ m or more and 0.9 ⁇ m or more. It has been confirmed that the wire setting and the work cutting are performed well in the following cases and in the case of 1.5 ⁇ m or more and 2.0 ⁇ m or less as in the above embodiment.
  • the electric discharge machining wire according to the present embodiment includes a tungsten wire containing cerium oxide in a content of 0.2 wt% or more and 0.4 wt% or less.
  • the surface roughness Rz of the tungsten wire is 0.6 ⁇ m or more and 2.0 ⁇ m or less.
  • the wire diameter of the tungsten wire is 20 ⁇ m or more and 100 ⁇ m or less.
  • the method for manufacturing an electric discharge machining wire is a method for manufacturing an electric discharge machining wire including a tungsten wire containing a cerium oxide, and includes a wire drawing step for drawing a tungsten wire and a wire drawing. It includes an electrolytic step of electrolyzing the tungsten wire after that.
  • the electrolysis rate in the electrolysis step is 6% or more and 11% or less.
  • the tungsten wire contains cerium oxide at a content of 0.2 wt% or more and 0.4 wt% or less.
  • the current value of the current flowing through the wire during electric discharge machining can be lowered, so that the temperature rise of the wire can be suppressed and the occurrence of wire breakage can be suppressed.
  • the tungsten wire may contain a substance intentionally mixed in addition to the cerium oxide.
  • the tungsten wire may contain rhenium, and the alloy wire of rhenium and tungsten (that is, the rhenium-tungsten alloy wire) may contain cerium oxide.
  • the rhenium content in this case is, for example, 0.1 wt% or more and 10 wt% or less.
  • the tungsten wire may contain potassium, and the potassium-doped tungsten wire (that is, the potassium-doped tungsten wire) may contain cerium oxide.
  • the potassium content in this case is, for example, 0.003 wt% or more and 0.008 wt% or less.
  • the method of reducing the surface roughness Rz of the tungsten wire to 0.6 ⁇ m or more and 2.0 ⁇ m or less may be performed other than the adjustment of the electrolysis rate in the electrolysis step.
  • the surface roughness Rz may be set to 0.6 ⁇ m or more and 2.0 ⁇ m or less by producing a tungsten wire having a surface roughness Rz of less than 0.6 ⁇ m and then roughening the surface with a chemical agent. That is, the electrolysis rate in the electrolysis step may be a value larger than 11%, and the surface roughness Rz of the tungsten wire immediately after electrolysis may be less than 0.6 ⁇ m. Further, the electrolysis rate in the electrolysis step may be less than 6%.
  • the electric discharge machining wire may be composed of only the tungsten wire according to the above embodiment, or may include a tungsten wire and a thin film formed on the surface of the tungsten wire.
  • a thin film such as an oxide film may be formed on the surface of the tungsten wire. The thin film is formed so as to follow the uneven shape of the surface of the tungsten wire, and the surface roughness Rz of the thin film is equivalent to the surface roughness Rz of the tungsten wire.
  • the electric discharge machining wire is used for cutting a work
  • the electric discharge machining wire may be used for partial cutting of workpieces, or may be used for welding two or more workpieces.
  • the tungsten wire according to the above embodiment may be used for applications other than electric discharge machining.
  • one aspect of the present invention may be a tungsten product comprising the tungsten wire according to the above embodiment.
  • Tungsten products include, for example, saw wires, medical device components (eg, catheters), stranded wires or ropes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Metal Extraction Processes (AREA)

Abstract

A wire for electric discharge machining comprises a tungsten wire including cerium oxide in an amount of 0.2-0.4 wt% (inclusive), and the surface roughness Rz of the tungsten wire is 0.6-2.0 μm (inclusive).

Description

放電加工用ワイヤ及びその製造方法Wire for electric discharge machining and its manufacturing method
 本発明は、放電加工用ワイヤ及びその製造方法に関する。 The present invention relates to an electric discharge machining wire and a method for manufacturing the same.
 従来、金属などを所望の形状に加工する技術としてワイヤ放電加工機が知られている。ワイヤ放電加工機では、細い金属線が放電加工用電極線(放電加工用ワイヤ又はカットワイヤとも言う)として用いられる。特許文献1には、セリウム酸化物を含有し、タングステンと不可避的不純物とからなる放電加工用電極線が開示されている。 Conventionally, a wire electric discharge machine is known as a technique for processing metal or the like into a desired shape. In a wire electric discharge machine, a thin metal wire is used as an electrode wire for electric discharge machining (also referred to as an electric discharge machining wire or a cut wire). Patent Document 1 discloses an electrode wire for electric discharge machining, which contains cerium oxide and is composed of tungsten and unavoidable impurities.
特許第5734352号公報Japanese Patent No. 5734352
 従来の放電加工用ワイヤでは、放電の開始が遅く、放電加工に要する時間が長くなるという問題がある。また、放電加工用ワイヤ自体の断線が起こりにくいことが要求されている。 The conventional electric discharge machining wire has a problem that the start of electric discharge is delayed and the time required for electric discharge machining becomes long. Further, it is required that the electric discharge machining wire itself is less likely to be broken.
 そこで、本発明は、放電加工中に断線が発生しにくく、かつ、放電加工に要する時間を短くすることができる放電加工用ワイヤ及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a wire for electric discharge machining and a method for manufacturing the same, which is less likely to cause disconnection during electric discharge machining and can shorten the time required for electric discharge machining.
 上記目的を達成するため、本発明の一態様に係る放電加工用ワイヤは、セリウム酸化物を0.2wt%以上0.4wt%以下の含有率で含有するタングステン線を備え、前記タングステン線の表面粗さRzは、0.6μm以上2.0μm以下である。 In order to achieve the above object, the electric discharge machining wire according to one aspect of the present invention includes a tungsten wire containing cerium oxide in a content of 0.2 wt% or more and 0.4 wt% or less, and the surface of the tungsten wire is provided. The roughness Rz is 0.6 μm or more and 2.0 μm or less.
 また、本発明の一態様に係る放電加工用ワイヤの製造方法は、セリウム酸化物を含有するタングステン線を備える放電加工用ワイヤの製造方法であって、前記タングステン線を線引きする線引き工程と、線引き後の前記タングステン線を電解する電解工程とを含み、前記電解工程における電解率は、6%以上11%以下である。 Further, the method for manufacturing an electric discharge machining wire according to one aspect of the present invention is a method for manufacturing an electric discharge machining wire including a tungsten wire containing a cerium oxide, which is a drawing step for drawing the tungsten wire and a drawing step. The electrolytic discharge rate in the electrolytic step is 6% or more and 11% or less, including the subsequent electrolytic step of electrolyzing the tungsten wire.
 本発明によれば、放電加工中に断線が発生しにくく、かつ、放電加工に要する時間を短くすることができる放電加工用ワイヤ及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a wire for electric discharge machining and a method for manufacturing the same, which is less likely to cause disconnection during electric discharge machining and can shorten the time required for electric discharge machining.
実施の形態に係る放電加工用ワイヤの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electric discharge machining wire which concerns on embodiment.
 以下では、本発明の実施の形態に係る放電加工用ワイヤ及びその製造方法について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 In the following, the electric discharge machining wire and the manufacturing method thereof according to the embodiment of the present invention will be described in detail with reference to the drawings. In addition, all the embodiments described below show a specific example of the present invention. Therefore, the numerical values, shapes, materials, components, arrangement and connection forms of the components, steps, the order of steps, etc. shown in the following embodiments are examples, and are not intended to limit the present invention. Therefore, among the components in the following embodiments, the components not described in the independent claims will be described as arbitrary components.
 (実施の形態)
 [製造方法]
 まず、本実施の形態に係る放電加工用ワイヤの製造方法について、図1を用いて説明する。図1は、本実施の形態に係る放電加工用ワイヤの製造方法を示すフローチャートである。
(Embodiment)
[Production method]
First, a method of manufacturing an electric discharge machining wire according to the present embodiment will be described with reference to FIG. FIG. 1 is a flowchart showing a method of manufacturing an electric discharge machining wire according to the present embodiment.
 図1に示されるように、まず、セリウム酸化物とタングステンとを含むインゴットを準備する(S10)。具体的には、硝酸セリウム水溶液とタングステン粉末とを混合することで、セリウム酸化物がドープされたタングステン粉末(以下、ドープタングステン粉末と記載)の集合物を準備する。硝酸セリウム水溶液とタングステン粉末との質量比率は、製造後のタングステン線におけるセリウム酸化物の含有量が0.2wt%以上0.4wt%以下になるように調整される。ドープタングステン粉末の集合物に対して、プレス及び焼結(シンター)を行うことで、インゴットを作製する。タングステン粉末の平均粒径は、例えば3μm以上4μm以下の範囲である。 As shown in FIG. 1, first, an ingot containing cerium oxide and tungsten is prepared (S10). Specifically, an aggregate of cerium oxide-doped tungsten powder (hereinafter referred to as doped tungsten powder) is prepared by mixing an aqueous solution of cerium nitrate and a tungsten powder. The mass ratio of the cerium nitrate aqueous solution and the tungsten powder is adjusted so that the content of the cerium oxide in the produced tungsten wire is 0.2 wt% or more and 0.4 wt% or less. An ingot is prepared by pressing and sintering (sintering) the aggregate of the doped tungsten powder. The average particle size of the tungsten powder is, for example, in the range of 3 μm or more and 4 μm or less.
 なお、セリウム酸化物とタングステンとを含むインゴットを準備する方法は、硝酸セリウム水溶液を利用する方法に限られない。例えば、タングステン粉末とセリウム酸化物粉末とを混合した混合物に対して、プレス及び焼結を行うことで、インゴットを作製してもよい。 The method of preparing an ingot containing cerium oxide and tungsten is not limited to the method of using an aqueous solution of cerium nitrate. For example, an ingot may be produced by pressing and sintering a mixture of tungsten powder and cerium oxide powder.
 次に、作製したインゴットに対してスエージング加工を行う(S12)。具体的には、インゴットを周囲から鍛造圧縮して伸展させることで、ワイヤ状のタングステン線を成形する。なお、スエージング加工の代わりに、圧延加工を行ってもよい。 Next, the produced ingot is subjected to aging processing (S12). Specifically, a wire-shaped tungsten wire is formed by forging, compressing, and stretching the ingot from the surroundings. In addition, you may perform rolling processing instead of aging processing.
 例えば、スエージング加工を繰り返し行うことで、直径が約15mm以上約25mm以下のインゴットを、線径が約3mmのタングステン線に成形する。スエージング加工の途中の工程においてアニール処理を実施することにより、以降の処理における加工性を確保する。例えば、径が8mm以上10mm以下の範囲で、2400℃のアニール処理を実施する。ただし、結晶粒の微細化による引張強度の向上のため、径が8mm未満のスエージング工程では、アニール処理を実施しない。 For example, by repeating the aging process, an ingot having a diameter of about 15 mm or more and about 25 mm or less is formed into a tungsten wire having a wire diameter of about 3 mm. By performing the annealing treatment in the process during the aging process, the workability in the subsequent process is ensured. For example, an annealing treatment at 2400 ° C. is carried out in a range of 8 mm or more and 10 mm or less in diameter. However, in order to improve the tensile strength by refining the crystal grains, the annealing treatment is not performed in the aging step having a diameter of less than 8 mm.
 次に、タングステン線の線引きを行う(S14)。具体的には、まずタングステン線を加熱し、表面に酸化物層を形成する。例えば、900℃の加熱温度で、バーナーなどを用いて直接的にタングステン線を加熱する。表面に酸化物層が形成されることにより、以降の線引き工程中での断線の発生を抑制することができる。 Next, draw a tungsten wire (S14). Specifically, first, the tungsten wire is heated to form an oxide layer on the surface. For example, the tungsten wire is directly heated using a burner or the like at a heating temperature of 900 ° C. By forming the oxide layer on the surface, it is possible to suppress the occurrence of disconnection in the subsequent drawing process.
 線引き工程(S14)では、1つの伸線ダイスを用いたタングステン線の加熱線引きを行う。すなわち、タングステン線の伸線(細線化)を加熱しながら行う。加熱線引きは、伸線ダイスを交換しながら繰り返し行われる。1つの伸線ダイスを用いた1回の加熱線引きによるタングステン線の断面減少率は、例えば10%以上40%以下である。加熱線引きでは、黒鉛を水に分散させた潤滑剤を用いてもよい。 In the drawing step (S14), the tungsten wire is heated and drawn using one drawing die. That is, the drawing (thinning) of the tungsten wire is performed while heating. The heating wire drawing is repeated while exchanging the wire drawing die. The cross-sectional reduction rate of the tungsten wire by one heating drawing using one wire drawing die is, for example, 10% or more and 40% or less. For heating delineation, a lubricant in which graphite is dispersed in water may be used.
 加熱線引きの繰り返しにおいては、直前の加熱線引きで用いた伸線ダイスよりも孔径が小さい伸線ダイスが用いられる。また、繰り返し回数が多くなる程、加熱温度を低下させる。すなわち、小さい伸線ダイスを用いた加熱線引きでは、大きい伸線ダイスを用いた加熱線引きよりも加熱温度を低くする。なお、加熱線引きの繰り返しの途中段階で電解が行われてもよい。使用する伸線ダイスとしては、線径0.38mmまでは超硬ダイス、線径0.38mmから0.18mmの範囲は焼結ダイヤモンドダイス、線径0.18mmから0.020mmの範囲では単結晶ダイヤモンドダイスを用いる。 In repeating the heating wire drawing, a wire drawing die having a smaller hole diameter than the wire drawing die used in the immediately preceding heating wire drawing is used. Further, as the number of repetitions increases, the heating temperature is lowered. That is, in the heating wire drawing using a small wire drawing die, the heating temperature is lowered as compared with the heating wire drawing using a large wire drawing die. In addition, electrolysis may be performed in the middle of the repetition of heating and drawing. The wire drawing dies used are carbide dies up to a wire diameter of 0.38 mm, sintered diamond dies in the wire diameter range of 0.38 mm to 0.18 mm, and single crystals in the wire diameter range of 0.18 mm to 0.020 mm. Use a diamond die.
 加熱線引き工程が行われることによって、放電加工用ワイヤとして求められる線径に実質的に等しい線径のタングステン線が得られる。 By performing the heating wire drawing process, a tungsten wire having a wire diameter substantially equal to the wire diameter required for electric discharge machining wire can be obtained.
 線引き工程の後、タングステン線を電解する(S16)。具体的には、水酸化カリウム水溶液などの電解液に、線引き後のタングステン線と対向電極とを浸した状態で、タングステン線と対向電極との間に電圧を印加する。これにより、タングステン線の表面が研磨されることにより、表面に付着した酸化物及び黒鉛などを除去することができる。このため、電解後のタングステン線の線径は、電解を行う前のタングステン線の線径よりも小さくなる。 After the drawing process, the tungsten wire is electrolyzed (S16). Specifically, a voltage is applied between the tungsten wire and the counter electrode in a state where the drawn tungsten wire and the counter electrode are immersed in an electrolytic solution such as an aqueous potassium hydroxide solution. As a result, the surface of the tungsten wire is polished, so that oxides and graphite adhering to the surface can be removed. Therefore, the wire diameter of the tungsten wire after electrolysis is smaller than the wire diameter of the tungsten wire before electrolysis.
 本実施の形態では、電解工程における電解率は、6%以上11%以下である。電解率とは、電解を行う前のタングステン線の質量に対する、電解工程でタングステン線が失った質量の割合である。電解率が大きい程、タングステン線の線径の減少量が大きくなる。電解後のタングステン線の線径が例えば50μmである場合、線径が大きいタングステン線に対して電解を行ったとき、当該電解工程における電解率が大きくなる。 In the present embodiment, the electrolysis rate in the electrolysis step is 6% or more and 11% or less. The electrolysis rate is the ratio of the mass lost by the tungsten wire in the electrolysis step to the mass of the tungsten wire before electrolysis. The larger the electrolysis rate, the greater the amount of decrease in the diameter of the tungsten wire. When the wire diameter of the tungsten wire after electrolysis is, for example, 50 μm, when the tungsten wire having a large wire diameter is electrolyzed, the electrolysis rate in the electrolysis step becomes large.
 本実施の形態では、電解率を従来よりも小さくすることにより、タングステン線の表面に凹凸を残している。具体的には、タングステン線の表面の表面粗さRzを0.6μm以上2.0μm以下にしている。凹凸は、具体的には、伸線ダイスによって形成されたダイスマークである。ダイスマークは、タングステン線の線軸方向に沿って延びる長尺状の溝である。 In the present embodiment, the electrolysis rate is made smaller than before, so that the surface of the tungsten wire has irregularities. Specifically, the surface roughness Rz of the surface of the tungsten wire is set to 0.6 μm or more and 2.0 μm or less. The unevenness is specifically a die mark formed by a wire drawing die. The die mark is a long groove extending along the axial direction of the tungsten wire.
 以上の工程を経て、本実施の形態に係るタングステン線が製造される。上記製造工程を経ることで、製造直後のタングステン線の長さは、例えば50km以上の長さであり、工業的に利用できる。タングステン線は、使用される態様に応じて適切な長さに切断され、針又は棒の形状として使用することもできる。 Through the above steps, the tungsten wire according to this embodiment is manufactured. By going through the above manufacturing process, the length of the tungsten wire immediately after manufacturing is, for example, 50 km or more, and it can be industrially used. The tungsten wire can also be cut to an appropriate length depending on the mode in which it is used and used in the form of a needle or rod.
 なお、タングステン線の製造方法に示される各工程は、例えばインラインで行われる。具体的には、ステップS14で使用される複数の伸線ダイスは、生産ライン上で孔径が小さくなる順で配置される。また、各伸線ダイス間にはバーナーなどの加熱装置が配置されている。最終線引き工程に用いられる伸線ダイスの下流側には、電解装置が配置される。なお、各工程は、個別に行われてもよい。 Note that each step shown in the method for manufacturing a tungsten wire is performed in-line, for example. Specifically, the plurality of wire drawing dies used in step S14 are arranged on the production line in the order of decreasing hole diameter. In addition, a heating device such as a burner is arranged between the wire drawing dies. An electrolyzer is arranged on the downstream side of the wire drawing die used in the final wire drawing process. In addition, each step may be performed individually.
 [放電加工用ワイヤ]
 続いて、本実施の形態に係る放電加工用ワイヤについて説明する。
[Wire for electric discharge machining]
Subsequently, the electric discharge machining wire according to the present embodiment will be described.
 放電加工用ワイヤは、タングステンを主成分として含むタングステン線を備える。タングステン線は、セリウム酸化物とタングステンとを含有している。なお、タングステン線は、不可避的不純物が含まれていてもよい。不可避的不純物とは、タングステン線の原材料中、及び、タングステン線の製造工程で不可避的に混入される物質であり、意図して混入されていない物質を意味する。タングステン線は、例えば、図1を用いて説明された製造方法によって製造される。本実施の形態では、タングステン線そのものが放電加工用ワイヤである。 The electric discharge machining wire includes a tungsten wire containing tungsten as a main component. The tungsten wire contains cerium oxide and tungsten. The tungsten wire may contain unavoidable impurities. The unavoidable impurities are substances that are unavoidably mixed in the raw material of the tungsten wire and in the manufacturing process of the tungsten wire, and mean substances that are not intentionally mixed. The tungsten wire is manufactured, for example, by the manufacturing method described with reference to FIG. In this embodiment, the tungsten wire itself is an electric discharge machining wire.
 <含有率>
 タングステン線におけるセリウム酸化物の含有率は、0.2wt%以上0.4wt%以下である。セリウム酸化物の含有率は、0.26wt%以上0.30wt%以下であってもよい。なお、セリウム酸化物の含有率とは、タングステン線の全体の質量に対するセリウム酸化物の質量の割合である。タングステン及び不可避的不純物などの他の物質の含有率についても同様である。
<Content rate>
The content of cerium oxide in the tungsten wire is 0.2 wt% or more and 0.4 wt% or less. The content of cerium oxide may be 0.26 wt% or more and 0.30 wt% or less. The content of cerium oxide is the ratio of the mass of cerium oxide to the total mass of the tungsten wire. The same applies to the content of other substances such as tungsten and unavoidable impurities.
 セリウム酸化物は、具体的には、CeO(酸化セリウム(IV))である。なお、セリウム酸化物には、Ce(酸化セリウム(III))が含まれてもよい。 Specifically, the cerium oxide is CeO 2 (cerium (IV) oxide). The cerium oxide may contain Ce 2 O 3 (cerium (III) oxide).
 セリウム酸化物の含有量が0.2wt%以上であることにより、放電加工時にタングステン線(放電加工用ワイヤ)に流れる電流量を少なくすることができる。これにより、放電加工時におけるワイヤ温度の上昇を抑制することができる。ワイヤ温度が上昇した場合には、タングステン線の引張強度が低下するため、断線が発生しやすくなる。本実施の形態に係るタングステン線では、引張強度の低下が抑制されるので、断線の発生も抑制される。セリウム酸化物の含有率が0.2wt%よりも大きくなる程、放電加工時の電流量を更に抑制することができ、温度上昇を更に抑制することができる。 When the content of cerium oxide is 0.2 wt% or more, the amount of current flowing through the tungsten wire (electric discharge machining wire) during electric discharge machining can be reduced. As a result, it is possible to suppress an increase in wire temperature during electric discharge machining. When the wire temperature rises, the tensile strength of the tungsten wire decreases, so that disconnection is likely to occur. In the tungsten wire according to the present embodiment, since the decrease in tensile strength is suppressed, the occurrence of disconnection is also suppressed. As the content of cerium oxide becomes larger than 0.2 wt%, the amount of current during electric discharge machining can be further suppressed, and the temperature rise can be further suppressed.
 また、セリウム酸化物の含有量が0.4wt%以下であることにより、タングステン線の加工(具体的には、細線化)のし易さを確保することができる。また、セリウム酸化物の含有量が0.4wt%以下であることにより、タングステンの高温強度特性によって、高温状態に強くて放電加工時に断線が発生しにくくすることができる。セリウム酸化物の含有量が0.4wt%よりも少なくなる程、断線の発生をより抑制することができる。 Further, when the content of cerium oxide is 0.4 wt% or less, it is possible to ensure the ease of processing (specifically, thinning) the tungsten wire. Further, when the content of the cerium oxide is 0.4 wt% or less, the high temperature strength characteristic of tungsten makes it strong against a high temperature state and makes it difficult for disconnection to occur during electric discharge machining. The smaller the content of cerium oxide is less than 0.4 wt%, the more the occurrence of disconnection can be suppressed.
 タングステン線におけるタングステンの含有率は、99.6wt%以上99.8wt%以下である。タングステンの含有率は、99.7wt%以上99.74wt%以下であってもよい。なお、タングステン線には不可避的不純物が含まれる場合があるため、タングステンの含有率は、99.6wt%未満であってもよい。例えば、不可避的不純物の含有率は0.1wt%以下であり、タングステンの含有率は99.5wt%以上であってもよい。 The content of tungsten in the tungsten wire is 99.6 wt% or more and 99.8 wt% or less. The content of tungsten may be 99.7 wt% or more and 99.74 wt% or less. Since the tungsten wire may contain unavoidable impurities, the tungsten content may be less than 99.6 wt%. For example, the content of unavoidable impurities may be 0.1 wt% or less, and the content of tungsten may be 99.5 wt% or more.
 <線径>
 タングステン線の線径は、例えば、20μm以上100μm以下である。タングステン線の線径は、80μm以下、70μm以下、60μm以下、50μm以下、40μm以下又は30μm以下であってもよい。
<Wire diameter>
The wire diameter of the tungsten wire is, for example, 20 μm or more and 100 μm or less. The wire diameter of the tungsten wire may be 80 μm or less, 70 μm or less, 60 μm or less, 50 μm or less, 40 μm or less, or 30 μm or less.
 本実施の形態では、タングステン線の線径が100μm以下であることにより、放電加工における微細加工が可能になる。タングステン線の線径が100μmよりも細くなる程、より精細な加工が実現される。 In the present embodiment, since the wire diameter of the tungsten wire is 100 μm or less, fine machining in electric discharge machining becomes possible. As the diameter of the tungsten wire becomes smaller than 100 μm, finer processing is realized.
 また、タングステン線の線径が20μm以上であることにより、放電を安定して行わせることができる。タングステン線の線径が20μmより太くなる程、放電をより安定させることができる。 Further, when the diameter of the tungsten wire is 20 μm or more, the discharge can be stably performed. The larger the diameter of the tungsten wire is, the more stable the discharge can be.
 <断面形状>
 タングステン線の線軸方向に直交する断面の形状は、例えば円形である。あるいは、タングステン線の断面の形状は、楕円形状であってもよく、正方形又は長方形であってもよい。
<Cross-sectional shape>
The shape of the cross section orthogonal to the line axis direction of the tungsten wire is, for example, circular. Alternatively, the cross-sectional shape of the tungsten wire may be elliptical, square or rectangular.
 <真直性>
 タングステン線の真直性は、長さ1000mmのタングステン線の自然垂下長で表される。本実施の形態に係るタングステン線の真直性は、950mm以上である。タングステン線の真直性は、990mm以上であってもよく、995mm以上であってもよい。なお、真直性は、長さ500mmのタングステン線の自然垂下長で表されてもよい。
<Straightness>
The straightness of the tungsten wire is represented by the natural hanging length of the tungsten wire having a length of 1000 mm. The straightness of the tungsten wire according to this embodiment is 950 mm or more. The straightness of the tungsten wire may be 990 mm or more, or 995 mm or more. The straightness may be represented by the natural hanging length of a tungsten wire having a length of 500 mm.
 真直性が950mm以上であることで、放電加工機へのセッティングが容易になり、セッティング時の断線の発生を抑制することができる。真直性が950mmより高い程、放電加工機へのセッティングが更に容易になり、セッティング時の断線の発生を更に抑制することができる。 When the straightness is 950 mm or more, the setting to the electric discharge machine becomes easy, and the occurrence of disconnection at the time of setting can be suppressed. The higher the straightness is than 950 mm, the easier the setting to the electric discharge machine is, and the occurrence of disconnection at the time of setting can be further suppressed.
 <引張強度>
 タングステン線の20℃における引張強度は、3500MPa以上である。タングステン線の引張強度は、3800MPa以上であってもよく、4000MPa以上であってもよい。タングステン線の引張強度は、4200MPa以上、4500MPa以上、4800MPa以上、又は5000MPa以上であってもよい。なお、本明細書において「引張強度」とは、特別な記載がない場合、20℃における引張強度を意味している。
<Tensile strength>
The tensile strength of the tungsten wire at 20 ° C. is 3500 MPa or more. The tensile strength of the tungsten wire may be 3800 MPa or more, or 4000 MPa or more. The tensile strength of the tungsten wire may be 4200 MPa or more, 4500 MPa or more, 4800 MPa or more, or 5000 MPa or more. In addition, in this specification, "tensile strength" means the tensile strength at 20 degreeC unless otherwise specified.
 引張強度が3500MPa以上であることで、放電加工機へのセッティングが容易になり、セッティング時の断線の発生を抑制することができる。また、放電加工時の断線の発生も抑制することができる。引張強度が3500MPaより高くなる程、セッティング時及び放電加工時の断線の発生を更に抑制することができる。 When the tensile strength is 3500 MPa or more, the setting to the electric discharge machine becomes easy, and the occurrence of disconnection at the time of setting can be suppressed. In addition, it is possible to suppress the occurrence of disconnection during electric discharge machining. As the tensile strength becomes higher than 3500 MPa, the occurrence of disconnection during setting and electric discharge machining can be further suppressed.
 <表面粗さRz>
 タングステン線の表面粗さRzは、0.6μm以上2.0μm以下である。表面粗さRzは、0.6μm以上1.5μm以下であってもよい。あるいは、表面粗さRzは、0.7μm以上1.2μm以下であってもよい。なお、表面粗さRzは、JIS B 0601-2001(非特許文献)によって定義される表面の凹凸の最大高さである。表面粗さRzは、タングステン線の線軸回りの外周側面の表面粗さである。タングステン線の線軸方向における両端の端面の表面粗さは、特に限定されない。
<Surface roughness Rz>
The surface roughness Rz of the tungsten wire is 0.6 μm or more and 2.0 μm or less. The surface roughness Rz may be 0.6 μm or more and 1.5 μm or less. Alternatively, the surface roughness Rz may be 0.7 μm or more and 1.2 μm or less. The surface roughness Rz is the maximum height of surface irregularities defined by JIS B 0601-2001 (Non-Patent Document). The surface roughness Rz is the surface roughness of the outer peripheral side surface around the line axis of the tungsten wire. The surface roughness of the end faces at both ends in the axial direction of the tungsten wire is not particularly limited.
 表面粗さRzが0.6μm以上であることにより、放電加工用ワイヤの表面で放電が開始されやすくなる。表面粗さRzが0.6μmより大きくなる程、放電が開始されやすくなるので、放電加工が始まるまでに要する時間を短縮することができる。放電加工用ワイヤをワーク(すなわち、放電加工機による加工対象物)に近づけた場合に、放電加工用ワイヤの表面粗さRzが大きい部分とワークとの間に電界が集中しやすくなって、放電が行われやすいためと推定される。 When the surface roughness Rz is 0.6 μm or more, electric discharge is likely to be started on the surface of the electric discharge machining wire. As the surface roughness Rz becomes larger than 0.6 μm, the electric discharge is more likely to be started, so that the time required for the electric discharge machining to be started can be shortened. When the electric discharge machining wire is brought close to the work (that is, the object to be machined by the electric discharge machine), the electric field tends to concentrate between the portion of the electric discharge machining wire having a large surface roughness Rz and the work, resulting in electric discharge. It is presumed that this is easy to do.
 一方で、表面粗さRzが大きすぎる場合、放電加工中に断線が発生しやすくなる。これに対して、本実施の形態に係るタングステン線の表面粗さRzが2.0μm以下であることにより、断線の発生を抑制することができる。表面粗さRzが2.0μmより小さくなる程、断線が発生しにくくすることができる。 On the other hand, if the surface roughness Rz is too large, disconnection is likely to occur during electric discharge machining. On the other hand, when the surface roughness Rz of the tungsten wire according to the present embodiment is 2.0 μm or less, the occurrence of disconnection can be suppressed. The smaller the surface roughness Rz is than 2.0 μm, the less likely it is that disconnection will occur.
 このように、本実施の形態に係るタングステン線は、放電加工中に断線が発生しにくく、かつ、放電加工に要する時間を短くすることができる。 As described above, the tungsten wire according to the present embodiment is less likely to be broken during electric discharge machining, and the time required for electric discharge machining can be shortened.
 なお、タングステン線の表面粗さRzは、線引き工程において用いた伸線ダイスによって付与されたダイスマークの大きさに対応している。ダイスマークの大きさは、線引き後の電解工程における電解率に依存する。すなわち、電解率が大きくなる程、ダイスマークの残存が少なくなり、タングステン線の表面が滑らかになって表面粗さRzが小さくなる。電解率が小さくなる程、ダイスマークの残存が多くなり、タングステン線の表面の凹凸が残ったままになって表面粗さRzが大きくなる。本実施の形態では、電解工程での電解率を6%以上11%以下にすることによって、表面粗さRzを0.6μm以上2.0μm以下の範囲にすることができる。 The surface roughness Rz of the tungsten wire corresponds to the size of the die mark given by the wire drawing die used in the drawing process. The size of the die mark depends on the electrolysis rate in the electrolysis process after drawing. That is, as the electrolysis rate increases, the residual die marks decrease, the surface of the tungsten wire becomes smooth, and the surface roughness Rz decreases. The smaller the electrolysis rate, the more the die marks remain, and the unevenness on the surface of the tungsten wire remains, and the surface roughness Rz increases. In the present embodiment, the surface roughness Rz can be set in the range of 0.6 μm or more and 2.0 μm or less by setting the electrolysis rate in the electrolysis step to 6% or more and 11% or less.
 [実施例]
 続いて、放電加工用ワイヤの比較例及び実施例について説明する。
[Example]
Subsequently, a comparative example and an example of the electric discharge machining wire will be described.
 <電解条件>
 以下の表1は、比較例及び実施例に係るサンプルの電解条件を示している。
<Electrolysis conditions>
Table 1 below shows the electrolysis conditions of the samples according to Comparative Examples and Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1におけるブラック線とは、線引き直後で、かつ、電解前のタングステン線である。MGは、長さ200mmのタングステン線の質量をミリグラムで表した数値である。純タングステン線の場合、MG=3016×D(Dは線径)の関係を満たしている。 The black wire in Table 1 is a tungsten wire immediately after drawing and before electrolysis. MG is a numerical value expressing the mass of a tungsten wire having a length of 200 mm in milligrams. In the case of pure tungsten wire, the relationship of MG = 3016 × D 2 (D is the wire diameter) is satisfied.
 比較例1及び2に係るサンプルと、実施例1~4に係るサンプルとでは、電解率の満たす条件が異なっている。具体的には、実施例1~4に係るサンプルは、電解率が6%以上11%以下の範囲を満たしているのに対して、比較例1及び2に係るサンプルは、当該範囲を満たしていない。電解は、交流電圧を印加することにより、3回行った。 The conditions for satisfying the electrolysis rate are different between the samples according to Comparative Examples 1 and 2 and the samples according to Examples 1 to 4. Specifically, the samples according to Examples 1 to 4 satisfy the range of the electrolysis rate of 6% or more and 11% or less, whereas the samples according to Comparative Examples 1 and 2 satisfy the range. Absent. Electrolysis was performed three times by applying an AC voltage.
 比較例1及び実施例1~4に係るサンプルでは、電解後のタングステン線の線径が50μm±0.5μmの範囲になるように、ブラック線のMG(線径)を調整した。また、比較例2に係るサンプルでは、電解後のタングステン線の線径が100μm±1μmの範囲になるように、ブラック線のMGを調整した。 In the samples according to Comparative Example 1 and Examples 1 to 4, the MG (wire diameter) of the black wire was adjusted so that the wire diameter of the tungsten wire after electrolysis was in the range of 50 μm ± 0.5 μm. Further, in the sample according to Comparative Example 2, the MG of the black wire was adjusted so that the wire diameter of the tungsten wire after electrolysis was in the range of 100 μm ± 1 μm.
 ブラック線を製造するまでの工程(すなわち、図1に示されるステップS10~S14)は、比較例及び実施例において略同じである。比較例及び実施例において異なる点は、ブラック線のMGの調整のために、最終線引き工程に用いた伸線ダイスの孔径が異なる点である。また、表3に示すが、比較例1及び実施例1~4に係るサンプルでは、製造後のタングステン線に含まれるセリウム酸化物の含有率が約0.3wt%になるようにタングステン粉末と硝酸セリウム水溶液との混合比率を調整したのに対して、比較例2に係るサンプルでは、セリウム酸化物の含有率が0.1wt%未満になるように混合比率を調整した。 The steps up to the production of the black wire (that is, steps S10 to S14 shown in FIG. 1) are substantially the same in Comparative Examples and Examples. The difference between the comparative example and the embodiment is that the hole diameter of the drawing die used in the final drawing step is different in order to adjust the MG of the black wire. Further, as shown in Table 3, in the samples according to Comparative Example 1 and Examples 1 to 4, tungsten powder and nitrate were prepared so that the content of cerium oxide contained in the produced tungsten wire was about 0.3 wt%. While the mixing ratio with the cerium aqueous solution was adjusted, in the sample according to Comparative Example 2, the mixing ratio was adjusted so that the content of the cerium oxide was less than 0.1 wt%.
 <タングステン線の特性値>
 表2及び表3はそれぞれ、表1に示される条件に基づいて製造した各サンプルの特性値の測定結果を示している。
<Characteristic value of tungsten wire>
Tables 2 and 3 show the measurement results of the characteristic values of each sample produced based on the conditions shown in Table 1, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2におけるダイスマークの深さは、サンプルの表面のA点~C点の3点で測定した結果と、その平均値とを示している。ここでは、各サンプルにおいて3点のうち、最大の深さを表面粗さRzとみなしている。 The depth of the dice mark in Table 2 shows the results measured at three points A to C on the surface of the sample and their average values. Here, the maximum depth of the three points in each sample is regarded as the surface roughness Rz.
 表2に示されるように、比較例1に係るサンプルでは、表面粗さRzが0.6μm未満であった。比較例2及び実施例1~4に係るサンプルでは、表面粗さRzが0.6μm以上2.0μm以下の範囲であった。 As shown in Table 2, in the sample according to Comparative Example 1, the surface roughness Rz was less than 0.6 μm. In the samples according to Comparative Example 2 and Examples 1 to 4, the surface roughness Rz was in the range of 0.6 μm or more and 2.0 μm or less.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、比較例1及び実施例1~4に係るサンプルでは、MGの平均値、引張強度、真直性及びセリウム酸化物の含有率は、互いに略等しくなっている。比較例2に係るサンプルでは、真直性については他のサンプルと略同じである。MGの平均値及びセリウム酸化物の含有率は、製造条件の差によって異なる値となっている。 As shown in Table 3, in the samples according to Comparative Example 1 and Examples 1 to 4, the average value of MG, the tensile strength, the straightness, and the content of cerium oxide are substantially equal to each other. The sample according to Comparative Example 2 is substantially the same as the other samples in terms of straightness. The average value of MG and the content of cerium oxide are different values depending on the difference in production conditions.
 <放電加工機による加工結果>
 各比較例及び各実施例に係るサンプルを放電加工用ワイヤとして放電加工機にセッティングし、実際にワークを切断した。
<Processing results by electric discharge machine>
The samples according to each Comparative Example and each Example were set in an electric discharge machine as a wire for electric discharge machining, and the work was actually cut.
 放電加工機は、NC放電ワイヤカット機(株式会社ソディック(SODICK)製 AP200L)である。加工対象物であるワークは、9mm角のSKD11である。ワイヤの送り速度は、9m/minである。 The electric discharge machine is an NC electric discharge wire cutting machine (AP200L manufactured by Sodick Co., Ltd.). The work to be processed is a 9 mm square SKD11. The feed rate of the wire is 9 m / min.
 表4は、放電加工機に対するワイヤのセッティングの可否、及び、ワークの切断の可否の結果を示している。 Table 4 shows the results of whether or not the wire can be set for the electric discharge machine and whether or not the work can be cut.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、表4において「○」は、放電加工機に対するワイヤのセッティング、又は、ワークの切断が良好に行われたことを意味する。「×」は、ワークの切断の途中でワイヤが断線したことを意味する。 In Table 4, "○" means that the wire setting for the electric discharge machine or the work cutting was performed well. "X" means that the wire was broken in the middle of cutting the work.
 表4に示されるように、比較例及び実施例に係るいずれのサンプルも、放電加工機に適切にセッティングすることができた。 As shown in Table 4, both the samples according to the comparative example and the example could be appropriately set in the electric discharge machine.
 一方で、比較例1及び2に係るサンプルを放電加工用ワイヤとして用いた場合、ワークを切断することができなかった。具体的には、比較例1及び2に係るサンプルでは、サンプル(ワイヤ)とワークとが十分に接近するまで放電が開始せず、ワイヤを流れる電流による発熱の影響でワイヤの一部がワークに溶着し、ワイヤが断線した。 On the other hand, when the samples according to Comparative Examples 1 and 2 were used as wires for electric discharge machining, the work could not be cut. Specifically, in the samples according to Comparative Examples 1 and 2, the discharge did not start until the sample (wire) and the work were sufficiently close to each other, and a part of the wire became a work due to the influence of heat generated by the current flowing through the wire. Welded and the wire was broken.
 実施例1~4に係るサンプルを放電加工用ワイヤとして用いた場合はいずれも、ワイヤが断線することなく、ワークを切断することができた。具体的には、実施例1~4に係るサンプルでは、比較例に係るサンプルの場合よりもワイヤとワークとが離れた状態で放電が開始された。これにより、ワイヤとワークとの溶着が発生せずに、断線が生じることなく、ワークを適切に切断することができた。放電が開始するまでに要する時間も短くなったので、放電加工に要する時間を短くすることができた。 When the samples according to Examples 1 to 4 were used as electric discharge machining wires, the workpiece could be cut without breaking the wires. Specifically, in the samples according to Examples 1 to 4, the discharge was started in a state where the wire and the work were separated from each other as compared with the sample according to the comparative example. As a result, the work could be appropriately cut without welding of the wire and the work and without disconnection. Since the time required to start the electric discharge was also shortened, the time required for the electric discharge machining could be shortened.
 比較例1に係るサンプルでは、表3に示されるように、セリウム酸化物の含有率が0.2wt%以上0.4wt%以下の範囲に含まれる一方で、表2に示されるように、表面粗さRzが0.6μm未満である。また、比較例2に係るサンプルでは、表2に示されるように、表面粗さRzが0.6μm以上2.0μm以下の範囲に含まれる一方で、表3に示されるように、セリウム酸化物の含有率が0.2wt%未満である。 In the sample according to Comparative Example 1, as shown in Table 3, the content of cerium oxide was contained in the range of 0.2 wt% or more and 0.4 wt% or less, while the surface was as shown in Table 2. The roughness Rz is less than 0.6 μm. Further, in the sample according to Comparative Example 2, as shown in Table 2, the surface roughness Rz is included in the range of 0.6 μm or more and 2.0 μm or less, while as shown in Table 3, the cerium oxide is contained. The content of is less than 0.2 wt%.
 これらに対して、実施例1~4に係るサンプルでは、表2及び表3に示されるように、表面粗さRzが0.6μm以上2.0μm以下の範囲に含まれ、かつ、セリウム酸化物の含有率が0.2wt%以上0.4wt%以下の範囲に含まれている。したがって、表4に示される結果を踏まえると、表面粗さRz及びセリウム酸化物の含有率の両方が上記範囲に含まれることにより、放電加工中に断線が発生しにくく、かつ、放電加工に要する時間を短くすることができることが分かる。 On the other hand, in the samples according to Examples 1 to 4, as shown in Tables 2 and 3, the surface roughness Rz is included in the range of 0.6 μm or more and 2.0 μm or less, and the cerium oxide is contained. Is included in the range of 0.2 wt% or more and 0.4 wt% or less. Therefore, based on the results shown in Table 4, since both the surface roughness Rz and the content of the cerium oxide are included in the above range, disconnection is unlikely to occur during the electric discharge machining, and the electric discharge machining is required. It turns out that the time can be shortened.
 なお、セリウム酸化物の含有率が0.26wt%以上0.30wt%以下の場合を実施例として示したが、セリウム酸化物の含有率が0.20wt%以上0.26wt%未満の場合、及び、0.30wt%より大きく0.40wt%以下の場合においても、上記実施例と同様に、ワイヤのセッティング及びワークの切断が良好に行われることが確認できている。表面粗さRzについても同様に、タングステン線の表面粗さが約0.9μm以上約1.5μm以下の場合を実施例として示したが、タングステン線の表面粗さが0.6μm以上0.9μm以下の場合、及び、1.5μm以上2.0μm以下の場合においても、上記実施例と同様に、ワイヤのセッティング及びワークの切断が良好に行われることが確認できている。 The case where the cerium oxide content is 0.26 wt% or more and 0.30 wt% or less is shown as an example, but the case where the cerium oxide content is 0.20 wt% or more and less than 0.26 wt%, and It has been confirmed that even in the case of greater than 0.30 wt% and 0.40 wt% or less, wire setting and work cutting are performed satisfactorily as in the above embodiment. Similarly, regarding the surface roughness Rz, the case where the surface roughness of the tungsten wire is about 0.9 μm or more and about 1.5 μm or less is shown as an example, but the surface roughness of the tungsten wire is 0.6 μm or more and 0.9 μm or more. It has been confirmed that the wire setting and the work cutting are performed well in the following cases and in the case of 1.5 μm or more and 2.0 μm or less as in the above embodiment.
 [効果など]
 以上のように、本実施の形態に係る放電加工用ワイヤは、セリウム酸化物を0.2wt%以上0.4wt%以下の含有率で含有するタングステン線を備える。当該タングステン線の表面粗さRzは、0.6μm以上2.0μm以下である。
[Effects, etc.]
As described above, the electric discharge machining wire according to the present embodiment includes a tungsten wire containing cerium oxide in a content of 0.2 wt% or more and 0.4 wt% or less. The surface roughness Rz of the tungsten wire is 0.6 μm or more and 2.0 μm or less.
 これにより、放電加工中に断線が発生しにくく、かつ、放電加工に要する時間を短くすることができる。 As a result, disconnection is less likely to occur during electric discharge machining, and the time required for electric discharge machining can be shortened.
 また、例えば、タングステン線の線径は、20μm以上100μm以下である。 Further, for example, the wire diameter of the tungsten wire is 20 μm or more and 100 μm or less.
 これにより、精細な加工を実現することができる。 This makes it possible to realize fine processing.
 また、例えば、本実施の形態に係る放電加工用ワイヤの製造方法は、セリウム酸化物を含有するタングステン線を備える放電加工用ワイヤの製造方法であって、タングステン線を線引きする線引き工程と、線引き後のタングステン線を電解する電解工程とを含む。電解工程における電解率は、6%以上11%以下である。 Further, for example, the method for manufacturing an electric discharge machining wire according to the present embodiment is a method for manufacturing an electric discharge machining wire including a tungsten wire containing a cerium oxide, and includes a wire drawing step for drawing a tungsten wire and a wire drawing. It includes an electrolytic step of electrolyzing the tungsten wire after that. The electrolysis rate in the electrolysis step is 6% or more and 11% or less.
 これにより、放電加工中に断線が発生しにくく、かつ、放電加工に要する時間を短くすることができる放電加工用ワイヤを実現することができる。 As a result, it is possible to realize a wire for electric discharge machining, which is less likely to cause disconnection during electric discharge machining and can shorten the time required for electric discharge machining.
 また、例えば、タングステン線は、セリウム酸化物を0.2wt%以上0.4wt%以下の含有率で含有する。 Further, for example, the tungsten wire contains cerium oxide at a content of 0.2 wt% or more and 0.4 wt% or less.
 これにより、放電加工中にワイヤに流れる電流の電流値を低くすることができるので、ワイヤの温度上昇を抑制することができ、ワイヤの断線の発生を抑制することができる。 As a result, the current value of the current flowing through the wire during electric discharge machining can be lowered, so that the temperature rise of the wire can be suppressed and the occurrence of wire breakage can be suppressed.
 (その他)
 以上、本発明に係る放電加工用ワイヤ及びその製造方法について、上記実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other)
The electric discharge machining wire and the method for manufacturing the electric discharge machining wire according to the present invention have been described above based on the above-described embodiment, but the present invention is not limited to the above-described embodiment.
 例えば、タングステン線は、セリウム酸化物以外に意図して混入された物質を含んでいてもよい。例えば、タングステン線は、レニウムを含んでいてもよく、レニウムとタングステンとの合金線(すなわち、レニウムタングステン合金線)にセリウム酸化物が含有されていてもよい。この場合のレニウムの含有率は、例えば0.1wt%以上10wt%以下である。 For example, the tungsten wire may contain a substance intentionally mixed in addition to the cerium oxide. For example, the tungsten wire may contain rhenium, and the alloy wire of rhenium and tungsten (that is, the rhenium-tungsten alloy wire) may contain cerium oxide. The rhenium content in this case is, for example, 0.1 wt% or more and 10 wt% or less.
 あるいは、タングステン線は、カリウムを含んでいてもよく、カリウムがドープされたタングステン線(すなわち、カリウムドープタングステン線)にセリウム酸化物が含有されていてもよい。この場合のカリウムの含有率は、例えば、0.003wt%以上0.008wt%以下である。 Alternatively, the tungsten wire may contain potassium, and the potassium-doped tungsten wire (that is, the potassium-doped tungsten wire) may contain cerium oxide. The potassium content in this case is, for example, 0.003 wt% or more and 0.008 wt% or less.
 また、例えば、タングステン線の表面粗さRzを0.6μm以上2.0μm以下にする方法は、電解工程における電解率の調整以外で行われてもよい。例えば、表面粗さRzが0.6μm未満になるタングステン線を製造した後、薬品を用いて表面を粗すことによって、表面粗さRzを0.6μm以上2.0μm以下にしてもよい。すなわち、電解工程における電解率は11%よりも大きい値であってもよく、電解直後のタングステン線の表面粗さRzは0.6μm未満であってもよい。また、電解工程における電解率は6%未満であってもよい。 Further, for example, the method of reducing the surface roughness Rz of the tungsten wire to 0.6 μm or more and 2.0 μm or less may be performed other than the adjustment of the electrolysis rate in the electrolysis step. For example, the surface roughness Rz may be set to 0.6 μm or more and 2.0 μm or less by producing a tungsten wire having a surface roughness Rz of less than 0.6 μm and then roughening the surface with a chemical agent. That is, the electrolysis rate in the electrolysis step may be a value larger than 11%, and the surface roughness Rz of the tungsten wire immediately after electrolysis may be less than 0.6 μm. Further, the electrolysis rate in the electrolysis step may be less than 6%.
 また、例えば、放電加工用ワイヤは、上記実施の形態に係るタングステン線のみから構成されていてもよく、タングステン線と、タングステン線の表面に形成された薄膜とを備えてもよい。例えば、タングステン線の表面には、酸化膜などの薄膜が形成されていてもよい。当該薄膜は、タングステン線の表面の凹凸形状に追従するように形成されており、薄膜の表面粗さRzは、タングステン線の表面粗さRzと同等になる。 Further, for example, the electric discharge machining wire may be composed of only the tungsten wire according to the above embodiment, or may include a tungsten wire and a thin film formed on the surface of the tungsten wire. For example, a thin film such as an oxide film may be formed on the surface of the tungsten wire. The thin film is formed so as to follow the uneven shape of the surface of the tungsten wire, and the surface roughness Rz of the thin film is equivalent to the surface roughness Rz of the tungsten wire.
 また、例えば、上記実施の形態では、放電加工用ワイヤをワークの切断に利用する例を示したが、これに限らない。放電加工用ワイヤは、ワークの部分的な切削に用いられてもよく、2つ以上のワークの溶接に用いられてもよい。 Further, for example, in the above embodiment, an example in which the electric discharge machining wire is used for cutting a work is shown, but the present invention is not limited to this. The electric discharge machining wire may be used for partial cutting of workpieces, or may be used for welding two or more workpieces.
 また、例えば、上記実施の形態に係るタングステン線を、放電加工用以外の用途に用いてもよい。例えば、本発明の一態様は、上記実施の形態に係るタングステン線を備えるタングステン製品であってもよい。タングステン製品は、例えば、ソーワイヤ、医療機器部材(例えば、カテーテル)、撚り線又はロープなどである。 Further, for example, the tungsten wire according to the above embodiment may be used for applications other than electric discharge machining. For example, one aspect of the present invention may be a tungsten product comprising the tungsten wire according to the above embodiment. Tungsten products include, for example, saw wires, medical device components (eg, catheters), stranded wires or ropes.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, it is realized by arbitrarily combining the components and functions in each embodiment within the range obtained by applying various modifications to each embodiment and the gist of the present invention. Forms are also included in the present invention.

Claims (4)

  1.  セリウム酸化物を0.2wt%以上0.4wt%以下の含有率で含有するタングステン線を備え、
     前記タングステン線の表面粗さRzは、0.6μm以上2.0μm以下である
     放電加工用ワイヤ。
    A tungsten wire containing cerium oxide in a content of 0.2 wt% or more and 0.4 wt% or less is provided.
    A wire for electric discharge machining in which the surface roughness Rz of the tungsten wire is 0.6 μm or more and 2.0 μm or less.
  2.  前記タングステン線の線径は、20μm以上100μm以下である
     請求項1に記載の放電加工用ワイヤ。
    The electric discharge machining wire according to claim 1, wherein the tungsten wire has a wire diameter of 20 μm or more and 100 μm or less.
  3.  セリウム酸化物を含有するタングステン線を備える放電加工用ワイヤの製造方法であって、
     前記タングステン線を線引きする線引き工程と、
     線引き後の前記タングステン線を電解する電解工程とを含み、
     前記電解工程における電解率は、6%以上11%以下である
     放電加工用ワイヤの製造方法。
    A method for manufacturing an electric discharge machining wire including a tungsten wire containing a cerium oxide.
    The wire drawing process for drawing the tungsten wire and
    Including an electrolysis step of electrolyzing the tungsten wire after drawing.
    A method for manufacturing an electric discharge machining wire, wherein the electrolysis rate in the electrolysis step is 6% or more and 11% or less.
  4.  前記タングステン線は、前記セリウム酸化物を0.2wt%以上0.4wt%以下の含有率で含有する
     請求項3に記載の放電加工用ワイヤの製造方法。
     
    The method for manufacturing an electric discharge machining wire according to claim 3, wherein the tungsten wire contains the cerium oxide in a content of 0.2 wt% or more and 0.4 wt% or less.
PCT/JP2020/028851 2019-08-22 2020-07-28 Wire for electric discharge machining and manufacturing method thereof WO2021033500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-152015 2019-08-22
JP2019152015A JP7270164B2 (en) 2019-08-22 2019-08-22 Electric discharge machining wire and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2021033500A1 true WO2021033500A1 (en) 2021-02-25

Family

ID=74660898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028851 WO2021033500A1 (en) 2019-08-22 2020-07-28 Wire for electric discharge machining and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP7270164B2 (en)
TW (1) TWI754356B (en)
WO (1) WO2021033500A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113186438B (en) * 2021-01-20 2022-09-13 厦门虹鹭钨钼工业有限公司 Alloy wire and preparation method and application thereof
JP2023013329A (en) * 2021-07-15 2023-01-26 パナソニックIpマネジメント株式会社 Metal wire, and saw wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734352B2 (en) * 1978-04-06 1982-07-22
JPH0332524A (en) * 1989-06-29 1991-02-13 Hikari Tekkosho:Kk Wire to be used in discharge processing machine
JPH0349829A (en) * 1989-07-13 1991-03-04 Sumitomo Electric Ind Ltd Electrode wire for wire electric discharge
JP2014131827A (en) * 2012-12-07 2014-07-17 Sodick Co Ltd Manufacturing method of wire electrode and wire drawing dies

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030155A (en) * 2005-06-24 2007-02-08 Sumitomo Electric Ind Ltd Method for processing nitride semiconductor crystal
CN1745951A (en) * 2005-09-30 2006-03-15 西安交通大学 Electrode wire for long-life spark wire cutting and its production thereof
JP5734352B2 (en) 2013-06-19 2015-06-17 株式会社アライドマテリアル Electrode wire for electric discharge machining

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734352B2 (en) * 1978-04-06 1982-07-22
JPH0332524A (en) * 1989-06-29 1991-02-13 Hikari Tekkosho:Kk Wire to be used in discharge processing machine
JPH0349829A (en) * 1989-07-13 1991-03-04 Sumitomo Electric Ind Ltd Electrode wire for wire electric discharge
JP2014131827A (en) * 2012-12-07 2014-07-17 Sodick Co Ltd Manufacturing method of wire electrode and wire drawing dies

Also Published As

Publication number Publication date
JP2021030352A (en) 2021-03-01
TW202110561A (en) 2021-03-16
TWI754356B (en) 2022-02-01
JP7270164B2 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2021033500A1 (en) Wire for electric discharge machining and manufacturing method thereof
US9161752B2 (en) Rhenium tungsten wire, method of manufacturing the wire and medical needle using the wire
TWI813836B (en) Tungsten Wire and Saw Wire
TW201936939A (en) Metal wire, saw wire, cutting apparatus, and method of manufacturing metal wire
JP2005224913A (en) Electrode wire for wire electric discharge machining
JP5734352B2 (en) Electrode wire for electric discharge machining
JP2007113104A (en) Tungsten electrode material
JP2012126605A (en) Diamond sintered compact
US5028756A (en) Electrode wire for electric spark cutting
WO2012169304A1 (en) Titanium alloy member and production method therefor
JPS6143418B2 (en)
WO2023228833A1 (en) Tungsten wire
JP3569182B2 (en) Tungsten material for secondary processing
JP3769008B2 (en) Tungsten material for secondary processing
WO2023286633A1 (en) Metal wire and saw wire
JP3769009B2 (en) Tungsten material for secondary processing
JP5647410B2 (en) Electrode wire for electric discharge machining
JP3803675B2 (en) Manufacturing method of tungsten material for secondary processing
WO2022259927A1 (en) Electroplated wire and metal wire for saw wire and method for producing electroplated wire for saw wire
WO2021153451A1 (en) Wire including tungsten
JPH0691391A (en) Tungsten electrode material
WO2022176766A1 (en) Tungsten wire, tungsten wire processing method using same, and electrolysis wire
JP3769000B2 (en) Manufacturing method of tungsten material for secondary processing
KR20210075153A (en) copper electrode material
JPH042416A (en) Electrode wire for wire electric discharge machining

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855267

Country of ref document: EP

Kind code of ref document: A1