WO2021033282A1 - Terminal device, base station device, and wireless communication method - Google Patents

Terminal device, base station device, and wireless communication method Download PDF

Info

Publication number
WO2021033282A1
WO2021033282A1 PCT/JP2019/032592 JP2019032592W WO2021033282A1 WO 2021033282 A1 WO2021033282 A1 WO 2021033282A1 JP 2019032592 W JP2019032592 W JP 2019032592W WO 2021033282 A1 WO2021033282 A1 WO 2021033282A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
reception quality
measurement
terminal device
unit
Prior art date
Application number
PCT/JP2019/032592
Other languages
French (fr)
Japanese (ja)
Inventor
雅 伏木
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2019/032592 priority Critical patent/WO2021033282A1/en
Priority to JP2021541401A priority patent/JPWO2021033282A1/ja
Publication of WO2021033282A1 publication Critical patent/WO2021033282A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a base station device, a terminal device, and a wireless communication method.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • eMBB enhanced Mobile Broad Band
  • URLLC Ultra-Reliable and Low Latency Communication
  • IoT Internet of Things
  • Non-Patent Documents 1 and 2 technologies such as MDT (Minimization of Driving Test) that collects network information necessary for coverage measures, etc. measured by a terminal device have been adopted or studied (Non-Patent Documents 1 and 2). See). In addition, it is planned to support communication with extraterrestrial networks (NTN: Non-Terrestrial Networks) such as radio base station equipment installed on artificial satellites and high altitude pseudo satellites (HAPS: High Attitude Pseudo Satellite) in NR. (See Non-Patent Document 3).
  • NTN Non-Terrestrial Networks
  • HAPS High Attitude Pseudo Satellite
  • radio base station equipment installed on artificial satellites
  • ground base station equipment radio base station equipment installed on the ground
  • the reception quality of the cells formed in the ground base station device is unlikely to fluctuate, whereas in the sky base station device, there is no change in the terminal device itself due to the movement of artificial satellites, etc.
  • the reception quality of the cells formed by the sky base station device may fluctuate in a short time. Therefore, when the predetermined measurement interval is set to a long time in the measurement of the reception quality of the cell, the terminal device can measure the reception quality of the cell formed by the sky base station device only at a long discrete interval, and the reception fluctuates quickly. Quality cannot be measured sufficiently.
  • the terminal device redundantly measures the reception quality of the cells formed by the ground base station device, and notifies the ground base station device of the measurement result. This consumes resources in the ground base station equipment.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a base station device, a terminal device, and a wireless communication method capable of appropriately measuring and notifying fluctuations in cell reception quality. And.
  • the terminal device includes a measuring unit that measures the reception quality of cells formed by the base station device at predetermined time intervals, and the measured reception quality varies from the reception quality before the measurement. It is provided with a determination unit for determining whether or not the measurement has been performed, and a response unit for responding to the request from the base station apparatus with the reception quality determined to have changed.
  • the terminal device includes a receiving unit that receives a measurement interval associated with the base station device from the base station device, and a cell formed by the base station device at each time interval according to the measurement interval. It is provided with a measuring unit for measuring reception quality.
  • the terminal device determines the reception quality of a receiving unit that receives a first measurement interval and a second measurement interval different from the first measurement interval from the base station device and a cell formed by the base station device. It is provided with a measuring unit that alternately performs a first measurement that measures at a time interval corresponding to a first measurement interval and a second measurement that measures the reception quality of a cell at a time interval corresponding to a second measurement interval.
  • the base station apparatus is a base station apparatus that wirelessly communicates with a terminal apparatus, and is a measurement instruction for instructing measurement of reception quality of a cell formed by the base station apparatus. It is provided with a transmitting unit for transmitting a measurement instruction including a measurement interval associated with the terminal device to the terminal device, and a receiving unit for receiving the reception quality measured by the terminal device from the terminal device.
  • the base station apparatus is a base station apparatus that wirelessly communicates with a terminal apparatus, and is a measurement instruction for instructing measurement of reception quality of a cell formed by the base station apparatus, and is a first measurement.
  • a transmission unit that transmits a measurement instruction including an interval and a second measurement interval different from the first measurement interval to the terminal device, and a reception unit that receives the reception quality measured by the terminal device from the terminal device. Be prepared.
  • the wireless communication method is a wireless communication method used for a terminal device, and is measured as a step of measuring the reception quality of cells formed by the base station device at predetermined time intervals. It includes a step of determining whether or not the reception quality has changed from the reception quality before the measurement, and a step of responding to the request from the base station apparatus with the reception quality determined to have changed.
  • FIG. 1 is a configuration diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device and the base station device.
  • FIG. 3 is a configuration diagram showing an example of a functional block configuration of the terminal device.
  • FIG. 4 is a configuration diagram showing an example of a functional block configuration of the base station apparatus.
  • FIG. 5 is a configuration diagram showing a specific example of the wireless communication system.
  • FIG. 6 is a time chart for explaining a first example of a processing procedure performed by a wireless communication system.
  • FIG. 7 is a diagram for explaining the measurement result in the first example of the processing procedure performed by the wireless communication system.
  • FIG. 1 is a configuration diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device and the base station device.
  • FIG. 3 is a configuration diagram showing an example of a
  • FIG. 8 is a time chart for explaining a second example of the processing procedure performed by the wireless communication system.
  • FIG. 9 is a diagram for explaining the measurement of reception quality in the second example of the processing procedure performed by the wireless communication system.
  • FIG. 10 is a time chart for explaining a third example of the processing procedure performed by the wireless communication system.
  • FIG. 11 is a diagram for explaining the measurement of reception quality in the third example of the processing procedure performed by the wireless communication system.
  • FIG. 12 is a flowchart for explaining an example of a processing procedure performed by the terminal device.
  • FIG. 13 is a flowchart for explaining an example of a processing procedure performed by the base station apparatus.
  • FIG. 1 is a configuration diagram showing an example of a schematic configuration of a wireless communication system 100 according to an embodiment.
  • the wireless communication system 100 includes a terminal device 10-1 to a terminal device 10-m, a base station device 50-1 to a base station device 50-n, and a core network device 90. It is composed.
  • the wireless communication system 100 is, for example, a wireless communication system for NR.
  • the present invention is applicable to any wireless communication system including at least a terminal device and a base station device, and is not limited to those targeting NR.
  • the present invention is also applicable to LTE and LTE-Advanced. It can also be applied to a wireless communication system that uses NR as a part of the wireless communication system.
  • LTE and LTE-Advanced are also referred to as E-UTRA (Evolved Universal Terrestrial Radio Access), but their meanings are the same.
  • the area (cover area) formed by the base station apparatus is called a cell, and E-UTRA and NR are cellular communication systems constructed by a plurality of cells.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the terminal device 10-1 to the terminal device 10-m are wirelessly connected to any one of the base station device 50-1 to the base station device 50-n, respectively. Further, each of the terminal devices 10-1 to the terminal device 10-m may be wirelessly connected to two or more of the base station devices 50-1 to the base station device 50-n at the same time.
  • E-UTRA or NR can be used for the base station apparatus 50-1 to the base station apparatus 50-n, respectively.
  • the base station apparatus 50-1 may use the NR and the base station apparatus 50n may use the E-UTRA, and vice versa.
  • the base station device in E-UTRA is called eNB (evolved NodeB), and the base station device in NR is called gNB (g-NodeB).
  • the term “base station apparatus” when used, it means that both eNB and gNB are included.
  • the terminal device in E-UTRA and NR is referred to as UE (User Equipment).
  • the base station device gNB in the NR may be connected to the terminal device by using a part of the frequency band (BWP: Carrier bandwidth part) used.
  • BWP Carrier bandwidth part
  • FIG. 1 illustrates terminal devices 10-1 to 10-m as terminal devices in the m range (m is an integer of 2 or more). In the following description, when these m-unit terminal devices are described without distinction, a part of the reference numerals is omitted and the term “terminal device 10” is simply referred to. Further, FIG. 1 illustrates base station devices 50-1 to 50-n as n base station devices (n is an integer of 2 or more). In the following description, when these n base station devices are described without distinction, a part of the reference numerals is omitted, and the term “base station device 50" is simply referred to.
  • the terminal device 10 may be connected to the base station device 50 in cell units, for example, and may be connected using a plurality of cells, for example, carrier aggregation.
  • the base station device to be initially connected is the master node (MN: MasterNode), and the base station device to be additionally connected is It is called a secondary node (SN: Secondary Node).
  • MN MasterNode
  • SN Secondary Node
  • the base station devices are connected by a base station interface.
  • the base station device 50 and the core network device 90 are connected by a core interface.
  • the base station interface is used for exchanging control signals necessary for handover and cooperative operation between base station devices.
  • the core network device 90 has, for example, a base station device 50 under its control, and mainly handles load control between base station devices, call (paging) of the terminal device 10, and movement control such as location registration.
  • the NR defines AMF (Access and Mobility Management Function) for managing mobility and SMF (Session Management Function) for managing sessions as a function group of the control plane (C-plane) in the core network device 90.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • C-plane control plane
  • E-UTRA defines MME (Mobility Management Entity) corresponding to AMF.
  • FIG. 1 shows an example in which the core network device 90 is composed of one device, but the present invention is not limited to this.
  • the core network device may include a server, a gateway, and the like, and may be composed of a plurality of devices.
  • the terminal device 10 and the base station device 50 send and receive RRC messages in the radio resource control (RRC: Radio Resource Control) layer to proceed with session processing (also referred to as a connection sequence).
  • RRC Radio Resource Control
  • session processing also referred to as a connection sequence.
  • the terminal device 10 changes from the idle state (RRC Idle) to the connected state (RRC Connected) to the base station device 50.
  • the idle state corresponds to the standby state of the terminal device 10.
  • the terminal device 10 and the base station device 50 transmit and receive a MAC control element (MAC CE: MAC Control Element) in the medium access control (MAC: Medium Access Control) layer.
  • the RRC message is transmitted as an RRC PDU (Protocol Data Unit), and as the mapped logical channels, a common control channel (CCCH: Common Control Channel), an individual control channel (DCCH: Dedicated Control Channel), and a paging control channel (PCCH:).
  • a Paging Control Channel), a Broadcast Control Channel (BCCH: Broadcast Control Channel), or a multicast control channel (MCCH: Multicast Control Channel) is used.
  • the MAC CE is transmitted as a MAC PDU (or MAC sub PDU).
  • a MAC subPDU is equivalent to a service data unit (SDU: Service Data Unit) in the MAC layer plus, for example, an 8-bit header, and a MAC PDU includes one or more MAC subPDUs.
  • SDU Service Data Unit
  • a physical broadcast channel (PBCH: Physical Broadcast Channel), a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal), and a physical random access channel (SSS: Secondary Synchronization Signal).
  • the PRACH Physical Random Access Channel
  • the physical downlink control channel (PDCCH: Physical Downlink Control Channel)
  • a physical uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel)
  • PUSCH Physical Uplink shared channel
  • PUSCH Physical uplink shared channel
  • PUSCH Physical uplink shared channel
  • PUSCH Physical uplink shared channel
  • PUSCH Physical uplink shared channel
  • the physical broadcast channel (PBCH) is transmitted from the base station device 50 to the terminal device 10 and is used to notify the common parameters (system information) in the cells under the base station device 50.
  • System information is further classified into a master information block (MIB: Master Information Block) and a system information block (SIB: System Information Block).
  • MIB Master Information Block
  • SIB System Information Block
  • the system information block is further subdivided into SIB1, SIB2, ..., And transmitted.
  • the system information includes information necessary for connecting to the cell.
  • the MIB includes information such as a system frame number and information indicating whether or not to camp on the cell.
  • SIB1 contains parameters for calculating cell quality (cell selection parameters), cell-common channel information (random access control information, PUCCH control information, PUSCH control information), scheduling information of other system information, and the like.
  • the physical broadcast channel (PBCH) is a synchronization signal block (SSB: Synchronization Signal Block (or SS / PBSH)), which is a set with a synchronization signal composed of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). Is transmitted periodically.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the system information notified by the physical notification channel (PBCH) or the like is also called “system notification information” or “notification information”.
  • PBCH physical notification channel
  • the terminal device 10 completes cell selection and / or cell reselection, and the terminal device 10 selects a cell for monitoring system notification information and paging information. It means to be in a state of being.
  • the terminal device 10 establishes the above-mentioned RRC connection with the base station device 50 forming the camp-on cell.
  • the primary sync signal is used by the terminal device 10 to synchronize with the reception symbol timing and frequency of the downlink signal of the base station device 50.
  • the primary synchronization signal is a signal that the terminal device 10 first attempts to detect in a procedure for detecting a cell of the base station device 50 (hereinafter, also referred to as a “cell search procedure”).
  • As the primary synchronization signal (PSS) three types of signals "0" to "2" are repeatedly used based on the physical cell ID.
  • the physical cell ID is a physical cell identifier, and 504 IDs are used in E-UTRA and 1008 IDs are used in NR.
  • the secondary sync signal (SSS) is used by the terminal device 10 to detect the physical ID of the base station device 50.
  • the secondary synchronization signal (SSS) is a signal for the terminal device 10 to detect the physical cell ID in the cell search procedure.
  • SSS secondary synchronization signal
  • 168 signals from “0" to "167” are repeatedly used in E-UTRA
  • 336 signals from "0" to "335" are repeatedly used in NR based on the physical cell ID. ..
  • the physical random access channel (PRACH) is used by the terminal device 10 to transmit a random access preamble to the base station device 50.
  • the physical random access channel (PRACH) is generally used in a state where uplink synchronization has not been established between the terminal device 10 and the base station device 50, and is used for transmission timing adjustment information (timing advance) and uplink radio. Used for resource requests.
  • Information indicating a radio resource capable of transmitting a random access preamble is transmitted to a terminal using broadcast information or an RRC message.
  • the physical downlink control channel (PDCCH) is transmitted from the base station apparatus 50 to notify the terminal apparatus 10 of downlink control information (DCI).
  • the downlink control information includes uplink radio resource information (uplink grant (UL grant)) that can be used by the terminal device 10 or downlink radio resource information (downlink grant (DL grant)).
  • the downlink grant is information indicating the scheduling of the physical downlink shared data channel (PDSCH).
  • the uplink grant is information indicating the scheduling of the physical uplink shared channel (PUSCH).
  • the physical downlink shared data channel (PDSCH) indicated by the physical downlink control channel (PDCCH) is a random access response and a random access preamble.
  • Index information, transmission timing adjustment information, uplink grant, etc. are included.
  • FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device 10 and the base station device 50.
  • the terminal device 10 and the base station device 50 include, for example, a processor 21, a memory 22, a storage device 23, a communication device 24, an input device 25, an output device 26, and an antenna 27, respectively.
  • the processor 21 is configured to control the operation of each part of the terminal device 10 or the base station device 50.
  • the processor 21 includes, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and a SoC (System-on-a). -chip) and other integrated circuits are included.
  • the memory 22 and the storage device 23 are each configured to store programs, data, and the like.
  • the memory 22 is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory).
  • the storage device 23 is composed of, for example, storage such as an HDD (Hard Disk Drive), an SSD (Solid State Drive) and / or an eMMC (embedded MultiMediaCard).
  • the communication device 24 is configured to communicate via a wired and / or wireless network.
  • the communication device 24 includes, for example, a network card, a communication module, and the like. Further, the communication device 24 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device for example, performs D / A (Digital to Analog) conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device to generate a radio signal transmitted from the antenna 27. Generate. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D (Analog to Digital) conversion, etc. on the radio signal received from the antenna 27 and transmits it to the BB device.
  • the BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
  • the input device 25 is configured so that information can be input by a user operation.
  • the input device 25 includes, for example, a keyboard, a touch panel, a mouse, and / or a microphone.
  • the output device 26 is configured to output information.
  • the output device 26 includes, for example, a display device such as a liquid crystal display, an EL (Electroluminescence) display, a plasma display, and / or a speaker.
  • a display device such as a liquid crystal display, an EL (Electroluminescence) display, a plasma display, and / or a speaker.
  • FIG. 3 is a configuration diagram showing an example of a functional block configuration of the terminal device 10. Note that FIG. 3 is for showing the functional blocks required in the description of the present embodiment, and does not exclude that the terminal device 10 includes the functional blocks other than those shown in the drawings.
  • the terminal device 10 includes a receiving unit 11, a measuring unit 12, an acquisition unit 13, a determination unit 14, and a response unit 15 as functional blocks.
  • the receiving unit 11 is configured to receive a measurement instruction from the base station device 50.
  • the measurement instruction instructs the measurement of the reception quality of the cell formed by the base station apparatus 50.
  • the measurement instruction includes, for example, a measurement time indicating the time from the start to the end in the measurement of reception quality, and a measurement interval indicating the time interval for performing the measurement in the measurement time.
  • the measurement time is set to 10 minutes or more and 120 minutes or less, and the measurement interval is set to 1.28 seconds or more and 61.44 seconds or less. Therefore, the terminal device 10 measures the reception quality of the cell a plurality of times during the measurement time.
  • the measurement instruction may further include a base station ID which is an identifier of the base station apparatus 50, and a tracking area composed of one or a plurality of adjacent cells.
  • the tracking area can be identified by a tracking area code (TAC: TA Code) or the like.
  • TAC tracking area code
  • the measurement interval included in the measurement instruction may be associated with the base station device 50. That is, the measurement interval can be set by associating different times with each of the plurality of base station devices 50.
  • the correspondence between the measurement interval and the base station apparatus 50 is not limited to the case of one-to-one.
  • the correspondence between the measurement interval and the base station device 50 may be, for example, 1 to N (N is an integer of 2 or more), and a plurality of base station devices 50 are divided into one group, and each group is divided into one group.
  • the measurement interval is associated.
  • the measurement instruction includes a group ID for identifying the group.
  • the measurement instruction may include two measurement intervals, that is, a first measurement interval and a second measurement interval, instead of the measurement interval described above.
  • the first measurement interval and the second measurement interval are different times from each other. For example, a relatively long time is set for the first measurement interval and a relatively short time is set for the second measurement interval. ..
  • the measuring unit 12 is configured to measure the reception quality of the cells formed by the base station apparatus 50 at predetermined time intervals.
  • the predetermined time interval is, for example, a measurement interval included in the measurement instruction received by the receiving unit 11.
  • the measurement unit 12 updates the parameter for measuring the reception quality of the cell (hereinafter, referred to as "measurement parameter") based on the information included in the measurement instruction. As a result, the measurement time and the measurement interval are set. Then, the measuring unit 12 measures the reception quality of the cell formed by the base station apparatus 50 at intervals according to the measurement interval during the measurement time.
  • measurement parameter the parameter for measuring the reception quality of the cell
  • the received quality of the measured cell is, for example, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (received signal strength indicator), RS-SINR (Reference Signal-Signal to Interference and Noise Ratio), Or a combination of these.
  • the received quality of the measured cell is stored and held in the memory 22 or the storage device 23.
  • the measuring unit 12 measures the reception quality of the cell formed by the base station apparatus 50 at each time interval according to the measurement interval associated with the base station apparatus 50, which is included in the received measurement instruction. It may be configured as follows.
  • the measuring unit 12 measures the reception quality of the cell formed by the base station device 50 at a time interval corresponding to the first measurement interval, and measures the reception quality of the cell of the base station device 50 at a second measurement interval.
  • the second measurement which is measured at time intervals according to the above, may be alternately performed.
  • the acquisition unit 13 is configured to acquire position information indicating the position of the terminal device 10 at predetermined time intervals.
  • the predetermined time interval is the same time as the predetermined time interval in the measurement of the reception quality of the cell by the measuring unit 12, and is, for example, the measurement interval included in the measurement instruction received by the receiving unit 11. That is, the acquisition of the position information is performed at the same timing as or substantially the same as the measurement of the reception quality of the cell.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the acquisition unit 13 uses, for example, OTDOA (Observed Time Difference Of Arrival), A-GPS (Assisted GPS), SUPL (Secure User Plane Location), etc. in place of GNSS or together with GNSS, and the terminal device 10 You may acquire the position information of.
  • OTDOA Observed Time Difference Of Arrival
  • A-GPS Assisted GPS
  • SUPL Secure User Plane Location
  • the determination unit 14 is configured to determine whether or not the measured reception quality has changed from the reception quality before the measurement.
  • the reception quality before the measurement is, for example, the reception quality measured immediately before.
  • the reception quality before the measurement may be, for example, the reception quality measured before a predetermined time, or a plurality of receptions measured before the measurement. It may be an average of quality. When calculating the average of a plurality of reception qualities, a simple average may be calculated, or a weighted average may be calculated according to the order in which the reception qualities are measured.
  • the determination unit 14 determines that the measured reception quality did not change when the amount of variation in the measured reception quality from the reception quality before the measurement was within a predetermined range. It is configured as follows. In other words, when the amount of change in the measured reception quality from the reception quality before the measurement is out of the predetermined range, it is determined that the measured reception quality has changed.
  • the predetermined range may be included in the above-mentioned measurement instruction transmitted from the base station apparatus 50, or may be included in the measurement result request described later.
  • the amount of variation in the measured reception quality from the reception quality before the measurement is within a predetermined range, it is determined that the measured reception quality has not changed, so that the amount of variation is If it is small and within a predetermined range, it can be considered that there is no change in reception quality. Therefore, when the fluctuation amount of the reception quality of the cell is small, the notification to the base station device 50 can be suppressed, and the resource consumption of the base station device 50 can be reduced.
  • the determination unit 14 is configured to further determine whether or not the acquired position information has changed from the position information before the acquisition.
  • the position information before the acquisition is the same as the reception quality before the measurement, whether it is the position information acquired immediately before or the position information acquired before a predetermined time, a plurality of positions acquired before the acquisition. It may be the average of information.
  • the determination unit 14 determines that the acquired position information has not changed when the amount of change in the acquired position information from the position information before the acquisition is within a predetermined range. It is configured as follows. In other words, when the amount of change in the acquired position information from the position information before the acquisition is outside the predetermined range, it is determined that the acquired position information has changed.
  • the predetermined range is different from the predetermined range for the reception quality, and may be included in the above-mentioned measurement instruction transmitted from the base station apparatus 50, or may be included in the measurement result request described later. ..
  • the response unit 15 is configured to respond to the request from the base station device 50 with the reception quality determined to have changed. Specifically, when a measurement result request (hereinafter referred to as "measurement result request") is received from the base station apparatus 50, the reception quality determined to have fluctuated is determined by the base station that is the source of the measurement result request. It is transmitted to the device 50 as a response.
  • measurement result request a measurement result request
  • the reception quality determined to have fluctuated is determined by the base station that is the source of the measurement result request. It is transmitted to the device 50 as a response.
  • the response unit 15 is configured to respond to the request from the base station apparatus 50 with the time during which the reception quality is measured, which is determined to have not changed. That is, when it is determined that there is no change, the response unit 15 responds only with the time of measurement, and the measured reception quality itself is not transmitted as a response.
  • the base station device 50 by responding to the request from the base station device 50 with the time during which the reception quality measurement determined to have not fluctuated is performed, the base station device 50 has no or small fluctuation and the terminal device. It is possible to separate the case where 10 is out of the cell range. Therefore, it can be avoided that the base station apparatus 50 is considered to be unable to log.
  • the response unit 15 is configured to further respond to the request from the base station device 50 with the position information determined to have changed. Specifically, when the measurement result request is received from the base station device 50, the reception quality and position information determined to have changed are transmitted as a response to the base station device 50 which is the source of the measurement result request.
  • the response unit 15 is configured to respond to the request from the base station apparatus 50 with the time when the position information determined to have not changed is acquired. Good. That is, when it is determined that there is no change, the response unit 15 responds only with the acquisition time, and does not transmit the acquired position information itself as a response.
  • the response unit 15 is configured to respond to the request from the base station apparatus 50 with the reception quality and the position information, regardless of the determination result by the determination unit 14 or the determination by the determination unit 14. You may be.
  • the receiving unit 11, the measuring unit 12, the acquiring unit 13, and the responding unit 15 may be realized by, for example, the communication device 24, and the processor 21 in addition to the communication device 24 stores the program stored in the storage device 23. It may be realized by executing.
  • the determination unit 14 may be realized by the processor 21 executing the program stored in the storage device 23.
  • the program When executing a program, the program may be stored in a storage medium.
  • the storage medium in which the program is stored may be a computer-readable non-transitory storage medium (Non-transitory computer readable medium).
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
  • FIG. 4 is a configuration diagram showing an example of a functional block configuration of the base station device 50. Note that FIG. 4 is for showing the functional blocks required in the description of the present embodiment, and does not exclude that the base station apparatus 50 includes functional blocks other than those shown in the drawings.
  • the base station apparatus 50 includes a generation unit 51, a transmission unit 52, a request unit 53, and a reception unit 54 as functional blocks.
  • the generation unit 51 is configured to generate a measurement instruction instructing the measurement of the reception quality of the cell formed by the base station device 50.
  • the generated measurement instruction includes the measurement time and the measurement interval, and may further include the base station ID and the tracking area. Further, the measurement interval included in the measurement instruction may be set in association with the base station device 50, or may be set in association with each group of a plurality of base station devices 50. May be good. In this case, the measurement instruction is generated including the group ID. Further, the generated measurement instruction may include a first measurement interval and a second measurement interval different from the first measurement interval. Furthermore, the generated measurement instruction may include a predetermined range for determining the reception quality and / or a predetermined range for determining the position information.
  • the transmission unit 52 is configured to transmit the generated measurement instruction to the terminal device 10.
  • the request unit 53 is configured to transmit a measurement result request to the terminal device 10 that has transmitted the measurement instruction.
  • the measurement result request may include a predetermined range for determining the reception quality and / or a predetermined range for determining the position information.
  • the terminal device 10 When transmitting the measurement result request, the terminal device 10 may be in an idle state or may be in a connected state.
  • the receiving unit 54 is configured to receive the reception quality measured by the terminal device 10 from the terminal device 10 as a response to the measurement result request.
  • the receiving unit 54 is configured to receive the position information acquired by the terminal device 10 from the terminal device 10 as a response to the measurement result request.
  • the transmission unit 52, the request unit 53, and the reception unit 54 may be realized by, for example, the communication device 24, or the processor 21 in addition to the communication device 24 executes a program stored in the storage device 23. It may be realized.
  • the generation unit 51 may be realized by the processor 21 executing the program stored in the storage device 23.
  • the program When executing a program, the program may be stored in a storage medium.
  • the storage medium in which the program is stored may be a non-temporary storage medium that can be read by a computer.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
  • FIG. 5 is a configuration diagram showing a specific example of the wireless communication system 100A. Note that in FIG. 5, drawing of the core network device 90 included in the wireless communication system 100A is omitted.
  • the wireless communication system 100A includes two base station devices 50-1 and 50-2.
  • the base station device 50-1 is installed on the ground.
  • Each base station device 50-1 forms a relatively small cell, for example, a cell having a radius of several hundred meters to a dozen kilometers.
  • the base station device 50-2 is installed on an object flying over the sky, such as an artificial satellite, a high altitude pseudo satellite (HAPS: High Attitude Pseudo Satellite), or a high altitude projectile.
  • HAPS High Attitude Pseudo Satellite
  • a high altitude projectile When the base station device 50-2 is installed on an artificial satellite, its orbit may be low earth orbit (LEO: Low Earth Orbit) or geosynchronous orbit (GEO: Geosynchronous Equatorial Orbit). May be good.
  • the base station apparatus 50-2 forms a relatively large cell, for example, a cell having a radius of several hundred kilometers to a thousand and several hundred kilometers. In the example shown in FIG. 5, the base station device 50-2 is installed in a high-altitude projectile having a lower altitude than the GPS satellite GS.
  • the base station device 50-2 is turning to maintain its altitude. As the base station device 50-2 turns, the cell formed by the base station device 50-2 moves to, for example, the area represented by the alternate long and short dash line in FIG. 5 or the area indicated by the broken line in FIG. Therefore, the reception quality of the cell of the base station device 50-2 measured by the terminal device 10 tends to fluctuate quickly in a relatively short time. On the other hand, the base station device 50-1 installed on the ground generally does not move. Therefore, the reception quality of the cell of the base station device 50-1 measured by the terminal device 10 tends to be relatively small.
  • the reception quality of the cell is improved.
  • the terminal device 10 can measure the reception quality of the cells formed by the base station device 50-2 only at a long discrete interval, and the reception quality with rapid fluctuation is sufficiently sufficient. Cannot measure.
  • the terminal device 10 will redundantly measure the reception quality of the cell formed by the base station device 50-1.
  • FIG. 6 is a time chart for explaining a first example of a processing procedure performed by the wireless communication system 100A.
  • FIG. 7 is a diagram for explaining the measurement result in the first example of the processing procedure performed by the wireless communication system 100A.
  • FIG. 8 is a time chart for explaining a second example of the processing procedure performed by the wireless communication system 100A.
  • FIG. 9 is a diagram for explaining the measurement of reception quality in the second example of the processing procedure performed by the wireless communication system 100A.
  • FIG. 10 is a time chart for explaining a third example of the processing procedure performed by the wireless communication system 100A.
  • FIG. 11 is a diagram for explaining the measurement of reception quality in the third example of the processing procedure performed by the wireless communication system 100A. Note that FIGS. 6 to 11 describe the processing procedure of the wireless communication system 100A shown in FIG.
  • the generation unit 51 generates a measurement instruction, and the transmission unit 52 transmits the generated measurement instruction to the terminal device 10. (S101).
  • the transmission unit 52 transmits the generated measurement instruction, for example, by the Logged Measurement Configuration in the log recording MDT (Logged MDT).
  • the receiving unit 11 receives the measurement instruction transmitted from the base station device 50-1 or the base station device 50-2, and the measuring unit 12 updates the measurement parameter based on the received measurement instruction. (S102).
  • the measurement unit 12 measures the reception quality of the cells formed by the base station devices 50-1, 50-2 that have transmitted the measurement instructions, and the acquisition unit 13 self from the GPS satellite GS.
  • the position information of the above is acquired (S103). As described above, usually, the measurement of the reception quality and the acquisition of the position information are performed a plurality of times, respectively.
  • the requesting unit 53 transmits the measurement result request to the terminal device 10 that has transmitted the measurement instruction (S104).
  • the request unit 53 transmits the measurement result request, for example, by the UE Information Request in the log recording MDT (Logged MDT).
  • the determination unit 14 of the terminal device 10 determines whether or not the measured reception quality has changed from the reception quality before the measurement, and whether the acquired position information has changed from the reception quality before the measurement. Whether or not it is determined (S105). The determination unit 14 determines whether or not each of the plurality of reception qualities and the plurality of position information has changed.
  • the response unit 15 determines that the reception quality determined to have changed, the position information determined to have changed, and the measurement result request from the base station devices 50-1 and 50-2 have not changed.
  • the time for measuring the reception quality and the time for acquiring the position information determined to have not fluctuated are responded to the base station devices 50-1, 50-2 that transmitted the measurement result request (S106).
  • the response unit 15 transmits the response by, for example, UE Information Response in the logging MDT (Logged MDT).
  • the reception quality of the cell is measured and the position information of the terminal device 10 is acquired, for example, every 30 seconds as the measurement interval.
  • the reception quality is RSRP [dBm]
  • the reception quality is measured and the position information is acquired at the same time.
  • the reception quality of the cell measured by the terminal device 10 at the time "0.00: 30” is "-89 [dBm]", which is an amount of variation from the immediately preceding reception quality 1 [.
  • [dBm] is within a predetermined range, it is determined that the reception quality has not changed, the time “0.00: 30” is transmitted to the base station device 50, and the reception quality is not transmitted to the base station device 50. ..
  • the reception quality of the cell measured by the terminal device 10 at the time "0.01: 00" is "-89 [dBm]", and the amount of variation from the immediately preceding reception quality is zero, so that the reception quality is It is determined that there is no change, the time "0.01: 00" is transmitted to the base station device 50, and the reception quality is not transmitted to the base station device 50. Further, the reception quality of the cell measured by the terminal device 10 at the time "0.01: 30” is "-80 [dBm]", and 8 [dBm], which is the amount of variation from the immediately preceding reception quality, is predetermined.
  • the reception quality has fluctuated, and the time "0.01: 30" and the reception quality "-80 [dBm]" are transmitted to the base station apparatus 50. Furthermore, the reception quality of the cell measured by the terminal device 10 at the time "0.02:00” is "-78 [dBm]", and 2 [dBm], which is the amount of variation from the immediately preceding reception quality, is If it is within a predetermined range, it is determined that the reception quality has not changed, the time "0.02:00" is transmitted to the base station device 50, and the reception quality is not transmitted to the base station device 50. Since the location information is the same as the description of the reception quality described above, the description thereof will be omitted.
  • the terminal device 10 responds to the measurement result request from the base station devices 50-1, 50-2 with the reception quality determined to have fluctuated, so that, for example, a predetermined time interval is set for a short time.
  • the reception quality is less frequently responded, and it becomes possible to suppress redundant reception quality responses. Therefore, it is possible to appropriately notify the fluctuation of the reception quality according to the speed at which the reception quality of the cell fluctuates.
  • the generation unit 51 instead of step S101 shown in FIG. 6, the generation unit 51 generates a measurement instruction including the group ID and the measurement interval, and the transmission unit 52 outputs the generated measurement instruction to the terminal device 10. Is transmitted to (S107).
  • the measurement interval is associated with the group of base station apparatus 50-1 or base station apparatus 50-2 identified by the group ID.
  • the measurement unit is set at each time interval according to the measurement interval associated with the group of the base station device 50-1 or the base station device 50-2. 12 measures the reception quality of the cells formed by the base station devices 50-1 and 50-2 that have transmitted the measurement instruction, and the acquisition unit 13 acquires its own position information from the GPS satellite GS (S108).
  • the terminal device 10 does not perform the determination in step S105 shown in FIG. That is, all of the measured reception quality and the acquired position information are transmitted as a response to the base station devices 50-1 and 50-2 that have transmitted the measurement result request.
  • the measurement of the reception quality of the cell is performed at the measurement interval associated with the group of the base station device 50-1 or the base station device 50-2.
  • the group ID of the group of the base station apparatus 50-1 is "1", as shown in the upper part, the first measurement interval of a relatively long time is associated.
  • the terminal device 10 measures the reception quality of the cell at each first measurement interval.
  • the group ID of the group of the base station apparatus 50-2 is "2”, as shown in the upper part, the second measurement interval of a relatively short time is associated. In this case, the terminal device 10 measures the reception quality of the cell at each second measurement interval.
  • the acquisition of position information is also performed at each first measurement interval or every second measurement interval.
  • the terminal device 10 is the base station device 50-1 or the base station device 50 at each time interval corresponding to the measurement interval associated with the group of the base station device 50-1 or the base station device 50-2.
  • the first measurement interval of a relatively long time is associated with the base station device 50-1, and the base station device 50-2 is relatively short.
  • the second measurement interval of time it becomes possible to set the measurement interval according to the speed at which the reception quality fluctuates. Therefore, the fluctuation of the reception quality of the cell can be appropriately measured according to the speed at which the reception quality of the cell fluctuates.
  • the base station devices 50-1 and 50-2 transmit the measurement instruction including the measurement interval associated with the base station device 50-1 or the group of the base station device 50-2 to the terminal device 10.
  • the reception quality varies by associating the base station apparatus 50-1 with the first measurement interval having a relatively long time and associating the base station apparatus 50-2 with the second measurement interval having a relatively short time. It is possible to set the measurement interval according to the speed of measurement. Therefore, it is possible to appropriately receive the fluctuation of the reception quality of the cell according to the speed at which the reception quality of the cell fluctuates.
  • step S101 shown in FIG. 6 the generation unit 51 generates a measurement instruction including the first measurement interval and the second measurement interval, and the transmission unit 52 generates the generated measurement instruction. , Transmit to the terminal device 10 (S109).
  • the measurement unit 12 measures the reception quality of the cells formed by the base station devices 50-1 and 50-2 that have transmitted the measurement instructions.
  • the first measurement which measures at a time interval corresponding to one measurement interval
  • the second measurement which measures the reception quality of the cell at a time interval corresponding to a second measurement interval
  • the acquisition unit 13 obtains the first acquisition of its own position information from the GPS satellite GS at a time interval corresponding to the first measurement interval, and the acquisition of the position information according to the second measurement interval.
  • the second acquisition which is acquired at different time intervals, is alternately performed.
  • the terminal device 10 does not perform the determination in step S105 shown in FIG. That is, all of the measured reception quality and the acquired position information are transmitted as a response to the base station devices 50-1 and 50-2 that have transmitted the measurement result request.
  • the measurement of the reception quality of the cell is performed by alternately switching between the first measurement interval and the second measurement interval. For example, after measuring the reception quality of the cell at the first measurement interval of a relatively long time, the reception quality of the cell is measured at the second measurement interval of a relatively short time. The first measurement by the first measurement interval and the second measurement by the second measurement interval are alternately repeated during the measurement time. Although illustration and description thereof will be omitted, similarly, with respect to the acquisition of position information, the first acquisition by the first measurement interval and the second acquisition by the second measurement interval are alternately repeated during the measurement time. Be told.
  • the terminal device 10 measures the reception quality of the cells formed by the base station devices 50-1 and 50-2 at the time interval corresponding to the first measurement interval, and the first measurement and the cell.
  • the first measurement is compared with the case where the reception quality of the cell is measured at a fixed time interval.
  • the reception quality of the cell of the base station device 50-1 with little fluctuation of the reception quality is measured to suppress redundant measurement and response, and the reception of the cell of the base station device 50-1 with a rapid fluctuation of the reception quality in the second measurement. It is possible to measure the quality. Therefore, it is possible to easily receive the reception quality of the cell corresponding to the different speeds of the fluctuation of the reception quality of the cell.
  • the base station device 50 transmits a measurement instruction including the first measurement interval and the second measurement interval different from the first measurement interval to the terminal device 10 by the base station devices 50-1 and 50-2.
  • the terminal device 10 can alternately measure the reception quality of cells having different measurement intervals, so that the reception quality is received in the first measurement as compared with the case where the reception quality of cells is measured at regular time intervals.
  • the reception quality of the cell of the base station device 50-1 with little fluctuation in quality is measured to suppress redundant measurement and response, and the reception quality of the cell of the base station device 50-1 with fast fluctuation of reception quality in the second measurement. Can be measured. Therefore, the reception quality of the cell can be easily measured corresponding to the different speeds of the fluctuation of the reception quality of the cell.
  • FIG. 12 is a flowchart for explaining an example of the processing procedure performed by the terminal device 10.
  • FIG. 13 is a flowchart for explaining an example of the processing procedure performed by the base station apparatus 50.
  • the receiving unit 11 receives the measurement instruction from the base station apparatus 50 (S201).
  • the measurement unit 12 updates the measurement parameters based on the received measurement instruction (S202).
  • the measuring unit 12 measures the reception quality of the cell formed by the base station device 50, and the acquiring unit 13 acquires its own position information from the GPS satellite GS (S203).
  • the determination unit 14 determines whether or not there is a measurement result request from the base station device 50 (S204). The determination unit 14 repeats the determination of S204 until there is a measurement result request from the base station apparatus 50.
  • the determination unit 14 determines whether or not the measured reception quality has changed from the reception quality before the measurement. It is determined whether or not the acquired position information has changed from the reception quality before the measurement (S205).
  • the response unit 15 responds to the measurement result request from the base station apparatus 50 with the reception quality determined to have changed and the position information determined to have changed (S206).
  • the generation unit 51 generates a measurement instruction (S251).
  • the transmission unit 52 transmits the measurement instruction generated in step S251 to the terminal device 10 (S252).
  • the requesting unit 53 After the elapse of the predetermined time, the requesting unit 53 transmits the measurement result request to the terminal device 10 that has transmitted the measurement instruction in step S253 (S253).
  • the receiving unit 54 receives the reception quality measured by the terminal device 10 and the position information acquired by the terminal device 10 as a response from the terminal device 10 (S254).
  • the reception quality determined to have fluctuated is responded to the measurement result request from the base station devices 50-1 and 50-2.
  • the fluctuation of the reception quality can be measured quickly, and the fluctuation of the reception quality can be measured.
  • the reception quality is less frequently responded, and it becomes possible to suppress the redundant reception quality response. Therefore, it is possible to appropriately notify the fluctuation of the reception quality according to the speed at which the reception quality of the cell fluctuates.
  • the reception quality of the cells formed by the base station device 50-1 or the base station device 50-2 is measured.
  • the base station apparatus 50-1 is associated with the first measurement interval having a relatively long time
  • the base station apparatus 50-2 is associated with the second measurement interval having a relatively short time. It becomes possible to set the measurement interval according to the fluctuating speed. Therefore, the fluctuation of the reception quality of the cell can be appropriately measured according to the speed at which the reception quality of the cell fluctuates.
  • the measurement of the reception quality of the cells formed by the base station devices 50-1 and 50-2 is performed at the first measurement interval.
  • the first measurement which measures at the corresponding time interval
  • the second measurement which measures the reception quality of the cell at the time interval corresponding to the second measurement interval
  • the measurement is redundant. It is possible to suppress the response and measure the reception quality of the cell of the base station apparatus 50-1 in which the reception quality fluctuates quickly in the second measurement. Therefore, it is possible to easily receive the reception quality of the cell corresponding to the different speeds of the fluctuation of the reception quality of the cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are a terminal device, a base station device, and a wireless communication method that suppress communication between the terminal device and the base station device. A terminal device 10 that comprises, a measurement unit 12 that, at a prescribed time interval, measures the reception quality of cells that are formed by base station devices, a determination unit 14 that determines whether the measured reception qualities have fluctuated from reception qualities from before the measurement, and a response unit 15 that responds to requests from the base station devices 50 with reception qualities that have been determined to have fluctuated. As a result, if, for example, the prescribed interval is set to be short, rapid fluctuations in reception quality could be measured for the cells of a base station device 50-2 that had rapid fluctuations in reception quality, but the frequency of reception quality responses for the cells of a base station device 50-1 that had few fluctuations in reception quality would decrease, making it possible to suppress redundant reception quality responses.

Description

端末装置、基地局装置、及び無線通信方法Terminal equipment, base station equipment, and wireless communication methods
 本発明は、基地局装置、端末装置、及び無線通信方法に関する。 The present invention relates to a base station device, a terminal device, and a wireless communication method.
 国際標準化団体である3GPP(Third Generation Partnership Project)において、第5世代(5G:Fifth Generation)のセルラー通信システムに向けた新しい無線アクセス技術であるNR(New Radio)の検討が行われている。NRは、第4世代のセルラー通信システムであるLTE(Long Term Evolution)-Advancedよりも、多種多様なサービスを実現可能とするための技術として検討されている。例えば、NRでは高速・大容量通信を実現するeMBB(enhanced Mobile Broad Band)、超高信頼・低遅延通信を実現するURLLC(Ultra-Reliable and Low Latency Communication)、及びIoT(Internet of Things)デバイスの多数同時接続を実現するmMTC(massive Machine Type Communication)といった、用途の異なる利用シナリオが実現要件として定められている。 The 3GPP (Third Generation Partnership Project), an international standardization organization, is studying NR (New Radio), which is a new wireless access technology for 5th generation (5G: Fifth Generation) cellular communication systems. NR is being studied as a technology that enables a wider variety of services to be realized than LTE (Long Term Evolution) -Advanced, which is a fourth-generation cellular communication system. For example, in NR, eMBB (enhanced Mobile Broad Band) that realizes high-speed and large-capacity communication, URLLC (Ultra-Reliable and Low Latency Communication) that realizes ultra-high reliability and low latency communication, and IoT (Internet of Things) devices Usage scenarios for different purposes, such as mMTC (massive Machine Type Communication) that realizes multiple simultaneous connections, are defined as realization requirements.
 従来、LTE及びNRでは、カバレッジ対策等に必要なネットワークの情報を端末装置が測定したものを収集するMDT(Minimization of Driving Test)といった技術が採用、もしくは検討されている(非特許文献1及び2を参照)。また、NRにおいて、人工衛星や高高度疑似衛星(HAPS:High Attitude Pseudo Satellite)に設置される無線基地局装置等の地球外ネットワーク(NTN:Non-Terrestrial Networks)との通信をサポートすることが計画されている(非特許文献3を参照)。 Conventionally, in LTE and NR, technologies such as MDT (Minimization of Driving Test) that collects network information necessary for coverage measures, etc. measured by a terminal device have been adopted or studied (Non-Patent Documents 1 and 2). See). In addition, it is planned to support communication with extraterrestrial networks (NTN: Non-Terrestrial Networks) such as radio base station equipment installed on artificial satellites and high altitude pseudo satellites (HAPS: High Attitude Pseudo Satellite) in NR. (See Non-Patent Document 3).
 地球外ネットワークを含むネットワークでは、人工衛星等に設置される無線基地局装置(以下、「上空基地局装置」という)と、地上に設置される無線基地局装置(以下、「地上基地局装置」という)とが共存(混在)することにある。 In networks including extraterrestrial networks, radio base station equipment installed on artificial satellites (hereinafter referred to as "air base station equipment") and radio base station equipment installed on the ground (hereinafter "ground base station equipment") To coexist (mix) with.
 端末装置自体に変化がない場合、地上基地局装置では形成するセルの受信品質が変動することが少ないのに対し、上空基地局装置では人工衛星の移動等によって、端末装置自体に変化がない場合でも、上空基地局装置が形成するセルの受信品質が短時間で変動することがある。そのため、セルの受信品質の測定において、所定の測定間隔を長い時間に設定すると、端末装置は、上空基地局装置が形成するセルの受信品質を長い離散間隔でしか測定できず、変動の速い受信品質を十分に測定できない。一方、所定の測定間隔を短い時間に設定すると、端末装置は、地上基地局装置が形成するセルの受信品質の測定を冗長に行うことになり、その測定結果を地上基地局装置に通知することで、地上基地局装置におけるリソースを消費してしまう。 When there is no change in the terminal device itself, the reception quality of the cells formed in the ground base station device is unlikely to fluctuate, whereas in the sky base station device, there is no change in the terminal device itself due to the movement of artificial satellites, etc. However, the reception quality of the cells formed by the sky base station device may fluctuate in a short time. Therefore, when the predetermined measurement interval is set to a long time in the measurement of the reception quality of the cell, the terminal device can measure the reception quality of the cell formed by the sky base station device only at a long discrete interval, and the reception fluctuates quickly. Quality cannot be measured sufficiently. On the other hand, if the predetermined measurement interval is set to a short time, the terminal device redundantly measures the reception quality of the cells formed by the ground base station device, and notifies the ground base station device of the measurement result. This consumes resources in the ground base station equipment.
 本発明はこのような事情に鑑みてなされたものであり、セルの受信品質の変動を適切に測定、通知することのできる、基地局装置、端末装置、及び無線通信方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a base station device, a terminal device, and a wireless communication method capable of appropriately measuring and notifying fluctuations in cell reception quality. And.
 本発明の一側面に係る端末装置は、所定の時間間隔ごとに基地局装置が形成するセルの受信品質の測定を行う測定部と、測定された受信品質が該測定の前の受信品質から変動したか否かを判定する判定部と、基地局装置からの要求に対し、変動したと判定された受信品質を応答する応答部と、を備える。 The terminal device according to one aspect of the present invention includes a measuring unit that measures the reception quality of cells formed by the base station device at predetermined time intervals, and the measured reception quality varies from the reception quality before the measurement. It is provided with a determination unit for determining whether or not the measurement has been performed, and a response unit for responding to the request from the base station apparatus with the reception quality determined to have changed.
 本発明の一側面に係る端末装置は、基地局装置に対応付けられた測定間隔を該基地局装置から受信する受信部と、測定間隔に応じた時間間隔ごとに基地局装置が形成するセルの受信品質の測定を行う測定部と、を備える。 The terminal device according to one aspect of the present invention includes a receiving unit that receives a measurement interval associated with the base station device from the base station device, and a cell formed by the base station device at each time interval according to the measurement interval. It is provided with a measuring unit for measuring reception quality.
 本発明の一側面に係る端末装置は、第1測定間隔と該第1測定間隔と異なる第2測定間隔とを基地局装置から受信する受信部と、基地局装置が形成するセルの受信品質を第1測定間隔に応じた時間間隔で測定する第1測定と、セルの受信品質を第2測定間隔に応じた時間間隔で測定する第2測定とを交互に行う測定部と、を備える。 The terminal device according to one aspect of the present invention determines the reception quality of a receiving unit that receives a first measurement interval and a second measurement interval different from the first measurement interval from the base station device and a cell formed by the base station device. It is provided with a measuring unit that alternately performs a first measurement that measures at a time interval corresponding to a first measurement interval and a second measurement that measures the reception quality of a cell at a time interval corresponding to a second measurement interval.
 本発明の一側面に係る基地局装置は、端末装置と無線通信を行う基地局装置であって、基地局装置が形成するセルの受信品質の測定を指示する測定指示であって、基地局装置に対応付けられた測定間隔を含む測定指示を、端末装置に送信する送信部と、端末装置から、該端末装置によって測定された受信品質を受信する受信部と、を備える。 The base station apparatus according to one aspect of the present invention is a base station apparatus that wirelessly communicates with a terminal apparatus, and is a measurement instruction for instructing measurement of reception quality of a cell formed by the base station apparatus. It is provided with a transmitting unit for transmitting a measurement instruction including a measurement interval associated with the terminal device to the terminal device, and a receiving unit for receiving the reception quality measured by the terminal device from the terminal device.
 本発明の一側面に係る基地局装置は、端末装置と無線通信を行う基地局装置であって、基地局装置が形成するセルの受信品質の測定を指示する測定指示であって、第1測定間隔と該第1測定間隔と異なる第2測定間隔とを含む測定指示を、端末装置に送信する送信部と、端末装置から、該端末装置によって測定された受信品質を受信する受信部と、を備える。 The base station apparatus according to one aspect of the present invention is a base station apparatus that wirelessly communicates with a terminal apparatus, and is a measurement instruction for instructing measurement of reception quality of a cell formed by the base station apparatus, and is a first measurement. A transmission unit that transmits a measurement instruction including an interval and a second measurement interval different from the first measurement interval to the terminal device, and a reception unit that receives the reception quality measured by the terminal device from the terminal device. Be prepared.
 本発明の一側面に係る無線通信方法は、端末装置に使用される無線通信方法であって、所定の時間間隔ごとに基地局装置が形成するセルの受信品質の測定を行うステップと、測定された受信品質が該測定の前の受信品質から変動したか否かを判定するステップと、基地局装置からの要求に対し、変動したと判定された受信品質を応答するステップと、を含む。 The wireless communication method according to one aspect of the present invention is a wireless communication method used for a terminal device, and is measured as a step of measuring the reception quality of cells formed by the base station device at predetermined time intervals. It includes a step of determining whether or not the reception quality has changed from the reception quality before the measurement, and a step of responding to the request from the base station apparatus with the reception quality determined to have changed.
 本発明によれば、セルの受信品質の変動を適切に測定、通知することができる。 According to the present invention, fluctuations in cell reception quality can be appropriately measured and notified.
図1は、一実施形態における無線通信システムの概略構成の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図2は、端末装置及び基地局装置のハードウェア構成の一例を示す構成図である。FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device and the base station device. 図3は、端末装置の機能ブロック構成の一例を示す構成図である。FIG. 3 is a configuration diagram showing an example of a functional block configuration of the terminal device. 図4は、基地局装置の機能ブロック構成の一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of a functional block configuration of the base station apparatus. 図5は、無線通信システムの具体例を示す構成図である。FIG. 5 is a configuration diagram showing a specific example of the wireless communication system. 図6は、無線通信システムが行う処理手順の第1例を説明するためのタイムチャートである。FIG. 6 is a time chart for explaining a first example of a processing procedure performed by a wireless communication system. 図7は、無線通信システムが行う処理手順の第1例における測定結果を説明するための図である。FIG. 7 is a diagram for explaining the measurement result in the first example of the processing procedure performed by the wireless communication system. 図8は、無線通信システムが行う処理手順の第2例を説明するためのタイムチャートである。FIG. 8 is a time chart for explaining a second example of the processing procedure performed by the wireless communication system. 図9は、無線通信システムが行う処理手順の第2例における受信品質の測定を説明するための図である。FIG. 9 is a diagram for explaining the measurement of reception quality in the second example of the processing procedure performed by the wireless communication system. 図10は、無線通信システムが行う処理手順の第3例を説明するためのタイムチャートである。FIG. 10 is a time chart for explaining a third example of the processing procedure performed by the wireless communication system. 図11は、無線通信システムが行う処理手順の第3例における受信品質の測定を説明するための図である。FIG. 11 is a diagram for explaining the measurement of reception quality in the third example of the processing procedure performed by the wireless communication system. 図12は、端末装置が行う処理手順の一例を説明するためのフローチャートである。FIG. 12 is a flowchart for explaining an example of a processing procedure performed by the terminal device. 図13は、基地局装置が行う処理手順の一例を説明するためのフローチャートである。FIG. 13 is a flowchart for explaining an example of a processing procedure performed by the base station apparatus.
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号で表している。但し、図面は模式的なものである。従って、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。さらに、本発明の技術的範囲は、当該実施形態に限定して解するべきではない。 An embodiment of the present invention will be described below. In the description of the drawings below, the same or similar parts are represented by the same or similar reference numerals. However, the drawings are schematic. Therefore, the specific dimensions and the like should be determined in light of the following explanations. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other. Furthermore, the technical scope of the present invention should not be construed as limited to the embodiment.
 まず、図1を参照しつつ、一実施形態に従う無線通信システムの概略構成について説明する。図1は、一実施形態における無線通信システム100の概略構成の一例を示す構成図である。 First, with reference to FIG. 1, a schematic configuration of a wireless communication system according to one embodiment will be described. FIG. 1 is a configuration diagram showing an example of a schematic configuration of a wireless communication system 100 according to an embodiment.
 図1に示すように、無線通信システム100は、端末装置10-1から端末装置10-mと、基地局装置50-1から基地局装置50-nと、コアネットワーク装置90と、を含んで構成される。 As shown in FIG. 1, the wireless communication system 100 includes a terminal device 10-1 to a terminal device 10-m, a base station device 50-1 to a base station device 50-n, and a core network device 90. It is composed.
 無線通信システム100は、例えばNRを対象とする無線通信システムである。なお、本発明は、少なくとも端末装置と基地局装置とを備える無線通信システムであれば適用可能であり、NRを対象とするものに限定されない。例えば、本発明はLTEやLTE-Advancedに対しても適用可能である。また、無線通信システムの一部にNRを用いる無線通信システムにおいても適用可能である。以降において、LTEとLTE-AdvancedのことをE-UTRA(Evolved Universal Terrestrial Radio Access)ともいうが、その意味は同じである。基地局装置が形成するエリア(カバーエリア)をセルといい、E-UTRA及びNRは、複数セルにより構築されるセルラー通信システムである。本実施形態に係る無線通信システムは、TDD(Time Division Duplex)とFDD(Frequency Division Duplex)のどちらの方式を適用しても良く、セルごとに異なる方式が適用されてもよい。 The wireless communication system 100 is, for example, a wireless communication system for NR. The present invention is applicable to any wireless communication system including at least a terminal device and a base station device, and is not limited to those targeting NR. For example, the present invention is also applicable to LTE and LTE-Advanced. It can also be applied to a wireless communication system that uses NR as a part of the wireless communication system. Hereinafter, LTE and LTE-Advanced are also referred to as E-UTRA (Evolved Universal Terrestrial Radio Access), but their meanings are the same. The area (cover area) formed by the base station apparatus is called a cell, and E-UTRA and NR are cellular communication systems constructed by a plurality of cells. As the wireless communication system according to the present embodiment, either TDD (Time Division Duplex) or FDD (Frequency Division Duplex) method may be applied, and a different method may be applied to each cell.
 端末装置10-1から端末装置10-mは、それぞれ、基地局装置50-1から基地局装置50-nのいずれか1つと無線接続する。また、端末装置10-1から端末装置10-mのそれぞれは、基地局装置50-1から基地局装置50-nのうちの2つ以上と同時に無線接続してもよい。基地局装置50-1から基地局装置50-nは、それぞれ、E-UTRA、あるいはNRを用いることができる。例えば、基地局装置50-1がNRを使用し、基地局装置50-nがE-UTRAを使用してもよいし、その逆でもよい。E-UTRAにおける基地局装置をeNB(evolved NodeB)、NRにおける基地局装置をgNB(g-NodeB)という。以降において、基地局装置と記載した場合はeNBとgNBとの両方を含む意味である。また、E-UTRA及びNRにおける端末装置をUE(User Equipment)という。NRにおける基地局装置gNBは、その使用する周波数帯域の一部(BWP: Carrier bandwidth part)を用いて端末装置と接続してもよい。以降において、セルと記載した場合はBWPを含むものとする。 The terminal device 10-1 to the terminal device 10-m are wirelessly connected to any one of the base station device 50-1 to the base station device 50-n, respectively. Further, each of the terminal devices 10-1 to the terminal device 10-m may be wirelessly connected to two or more of the base station devices 50-1 to the base station device 50-n at the same time. E-UTRA or NR can be used for the base station apparatus 50-1 to the base station apparatus 50-n, respectively. For example, the base station apparatus 50-1 may use the NR and the base station apparatus 50n may use the E-UTRA, and vice versa. The base station device in E-UTRA is called eNB (evolved NodeB), and the base station device in NR is called gNB (g-NodeB). Hereinafter, when the term “base station apparatus” is used, it means that both eNB and gNB are included. Further, the terminal device in E-UTRA and NR is referred to as UE (User Equipment). The base station device gNB in the NR may be connected to the terminal device by using a part of the frequency band (BWP: Carrier bandwidth part) used. Hereinafter, when the term "cell" is used, BWP is included.
 なお、図1には、m台(mは2以上の整数)の端末装置として、端末装置10-1から端末装置10-mを図示している。以下の説明において、これらm台の端末装置を区別することなく説明する場合には、符号の一部を省略して、単に「端末装置10」という。また、図1には、n台(nは2以上の整数)の基地局装置として、基地局装置50-1から基地局装置50-nを図示している。以下の説明において、これらn台の基地局装置を区別することなく説明する場合には、符号の一部を省略して、単に「基地局装置50」という。 Note that FIG. 1 illustrates terminal devices 10-1 to 10-m as terminal devices in the m range (m is an integer of 2 or more). In the following description, when these m-unit terminal devices are described without distinction, a part of the reference numerals is omitted and the term “terminal device 10” is simply referred to. Further, FIG. 1 illustrates base station devices 50-1 to 50-n as n base station devices (n is an integer of 2 or more). In the following description, when these n base station devices are described without distinction, a part of the reference numerals is omitted, and the term "base station device 50" is simply referred to.
 端末装置10は、例えば、基地局装置50とセル単位で接続され、複数のセルを用いた接続、例えばキャリアアグリゲーションされてもよい。端末装置10が複数の基地局装置を介して接続される場合、つまり、デュアルコネクティビティの場合、初期接続される基地局装置をマスターノード(MN: Master Node)、追加で接続される基地局装置をセカンダリノード(SN: Secondary Node)という。基地局装置間は、基地局インターフェースにより接続されている。また、基地局装置50とコアネットワーク装置90とは、コアインターフェースにより接続されている。基地局インターフェースは、ハンドオーバーや基地局装置間の連携動作に必要な制御信号をやり取りするためなどに使用される。 The terminal device 10 may be connected to the base station device 50 in cell units, for example, and may be connected using a plurality of cells, for example, carrier aggregation. When the terminal device 10 is connected via a plurality of base station devices, that is, in the case of dual connectivity, the base station device to be initially connected is the master node (MN: MasterNode), and the base station device to be additionally connected is It is called a secondary node (SN: Secondary Node). The base station devices are connected by a base station interface. Further, the base station device 50 and the core network device 90 are connected by a core interface. The base station interface is used for exchanging control signals necessary for handover and cooperative operation between base station devices.
 コアネットワーク装置90は、例えば、基地局装置50を配下に持ち、基地局装置間の負荷制御や、端末装置10の呼び出し(ページング)、位置登録などの移動制御を主に取り扱う。NRでは、コアネットワーク装置90において、制御プレーン(C-plane)の機能群として、モビリティを管理するAMF(Access and Mobility Management Function)、セッションを管理するSMF(Session Management Function)とを規定している。E-UTRAでは、AMFに対応するMME(Mobility Management Entity)を規定している。 The core network device 90 has, for example, a base station device 50 under its control, and mainly handles load control between base station devices, call (paging) of the terminal device 10, and movement control such as location registration. The NR defines AMF (Access and Mobility Management Function) for managing mobility and SMF (Session Management Function) for managing sessions as a function group of the control plane (C-plane) in the core network device 90. .. E-UTRA defines MME (Mobility Management Entity) corresponding to AMF.
 なお、図1では、コアネットワーク装置90が1つの装置で構成される例を示したが、これに限定されるものではない。例えば、コアネットワーク装置は、サーバー、ゲートウェイ等を含み、複数の装置で構成されていてもよい。 Note that FIG. 1 shows an example in which the core network device 90 is composed of one device, but the present invention is not limited to this. For example, the core network device may include a server, a gateway, and the like, and may be composed of a plurality of devices.
 端末装置10と基地局装置50とは、無線リソース制御(RRC: Radio Resource Control)層において、RRCメッセージを送受信し、セッション処理(接続シーケンスともいう)を進める。セッション処理を進めると、端末装置10は、アイドル状態(RRC Idle)から、基地局装置50への接続状態(RRC Connected)に変わる。アイドル状態は、端末装置10の待ち受け状態に相当する。 The terminal device 10 and the base station device 50 send and receive RRC messages in the radio resource control (RRC: Radio Resource Control) layer to proceed with session processing (also referred to as a connection sequence). As the session processing proceeds, the terminal device 10 changes from the idle state (RRC Idle) to the connected state (RRC Connected) to the base station device 50. The idle state corresponds to the standby state of the terminal device 10.
 また、端末装置10と基地局装置50は、媒体アクセス制御(MAC: Medium Access Control)層において、MAC制御要素(MAC CE: MAC Control Element)を送受信する。RRCメッセージは、RRC PDU(Protocol Data Unit)として送信され、マッピングされる論理チャネルとして、共通制御チャネル(CCCH: Common Control Channel)、個別制御チャネル(DCCH: Dedicated Control Channel)、ページング制御チャネル(PCCH: Paging Control Channel)、ブロードキャスト制御チャネル(BCCH: Broadcast Control Channel)、又は、マルチキャスト制御チャネル(MCCH: Multicast Control Channel)が用いられる。MAC CEは、MAC PDU(又は、MAC subPDU)として送信される。MAC subPDUは、MAC層におけるサービスデータユニット(SDU: Service Data Unit)に、例えば8ビットのヘッダーを加えたものに等しく、MAC PDUは、一つ以上のMAC subPDUを含む。 Further, the terminal device 10 and the base station device 50 transmit and receive a MAC control element (MAC CE: MAC Control Element) in the medium access control (MAC: Medium Access Control) layer. The RRC message is transmitted as an RRC PDU (Protocol Data Unit), and as the mapped logical channels, a common control channel (CCCH: Common Control Channel), an individual control channel (DCCH: Dedicated Control Channel), and a paging control channel (PCCH:). A Paging Control Channel), a Broadcast Control Channel (BCCH: Broadcast Control Channel), or a multicast control channel (MCCH: Multicast Control Channel) is used. The MAC CE is transmitted as a MAC PDU (or MAC sub PDU). A MAC subPDU is equivalent to a service data unit (SDU: Service Data Unit) in the MAC layer plus, for example, an 8-bit header, and a MAC PDU includes one or more MAC subPDUs.
 本実施形態に関わる物理チャネルおよび物理シグナルについて説明する。本発明の実施形態に関わる物理チャネルのうち、物理報知チャネル(PBCH: Physical Broadcast Channel)、プライマリ同期信号(PSS: Primary Synchronization Signal)、セカンダリ同期信号(SSS: Secondary Synchronization Signal)、物理ランダムアクセスチャネル(PRACH: Physical Random Access Channel)、及び物理下りリンク制御チャネル(PDCCH: Physical Downlink Control Channel)について以下に説明する。なお、実施形態に係る無線通信システムにおいて、他に物理上りリンク制御チャネル(PUCCH: Physical Uplink Control Channel)、物理下りリンク共有チャネル(PDSCH: Physical Downlink Shared Channel)、物理上りリンク共有チャネル(PUSCH: Physical Uplink Shared Channel)、スケジューリング参照信号(SRS: Scheduling Reference Signal)、復調参照信号(DMRS: Demodulation Reference Signal)が少なくとも存在するが、詳細な説明を省略する。 The physical channels and physical signals related to this embodiment will be described. Among the physical channels according to the embodiment of the present invention, a physical broadcast channel (PBCH: Physical Broadcast Channel), a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal), and a physical random access channel (SSS: Secondary Synchronization Signal). The PRACH: Physical Random Access Channel) and the physical downlink control channel (PDCCH: Physical Downlink Control Channel) will be described below. In the wireless communication system according to the embodiment, a physical uplink control channel (PUCCH: Physical Uplink Control Channel), a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel), and a physical uplink shared channel (PUSCH: Physical) are also used. Uplink Shared Channel), scheduling reference signal (SRS: Scheduling Reference Signal), and demodulation reference signal (DMRS: Demodulation Reference Signal) exist at least, but detailed description will be omitted.
 <物理報知チャネル(PBCH)>
 物理報知チャネル(PBCH)は、基地局装置50から端末装置10に対して送信され、基地局装置50の配下のセルにおける共通パラメータ(システムインフォメーション)を通知するために使用される。システムインフォメーションは、更にマスターインフォメーションブロック(MIB: Master Information Block)とシステムインフォメーションブロック(SIB: System Information Block)に分類される。なお、システムインフォメーションブロックは、更にSIB1、SIB2、・・・のように細分化されて送信される。システムインフォメーションはセルに接続するために必要な情報が含まれており、例えばMIBにはシステムフレーム番号やセルへのキャンプオン可否を示す情報等が含まれている。また、SIB1には、セルの品質を計算するためのパラメータ(セル選択パラメータ)、セル共通のチャネル情報(ランダムアクセス制御情報、PUCCH制御情報、PUSCH制御情報)、その他のシステムインフォメーションのスケジューリング情報などが含まれている。また、物理報知チャネル(PBCH)は、同期信号ブロック(SSB: Synchronization Signal Block(あるいはSS/PBSH))として、プライマリ同期信号(PSS)及びセカンダリ同期信号(SSS)から構成される同期信号とセットとなって周期的に送信される。端末装置10は、同期信号ブロック(SSB)を受信することによって、セル識別子(セルID)情報や受信タイミングの取得に加え、当該セルの信号の品質を測定することができる。
<Physical notification channel (PBCH)>
The physical broadcast channel (PBCH) is transmitted from the base station device 50 to the terminal device 10 and is used to notify the common parameters (system information) in the cells under the base station device 50. System information is further classified into a master information block (MIB: Master Information Block) and a system information block (SIB: System Information Block). The system information block is further subdivided into SIB1, SIB2, ..., And transmitted. The system information includes information necessary for connecting to the cell. For example, the MIB includes information such as a system frame number and information indicating whether or not to camp on the cell. Further, SIB1 contains parameters for calculating cell quality (cell selection parameters), cell-common channel information (random access control information, PUCCH control information, PUSCH control information), scheduling information of other system information, and the like. include. The physical broadcast channel (PBCH) is a synchronization signal block (SSB: Synchronization Signal Block (or SS / PBSH)), which is a set with a synchronization signal composed of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). Is transmitted periodically. By receiving the synchronization signal block (SSB), the terminal device 10 can measure the signal quality of the cell in addition to acquiring the cell identifier (cell ID) information and the reception timing.
 物理報知チャネル(PBCH)等によって通知されるシステムインフォメーションは、「システム報知情報」又は「報知情報」とも呼ばれる。また、セルにキャンプオンするとは、端末装置10がセル選択(cell selection)及び/又はセル再選択(cell reselection)を完了し、当該端末装置10がシステム報知情報とページング情報をモニタするセルを選択した状態になることをいう。端末装置10は、キャンプオンしたセルを形成する基地局装置50との間で、前述したRRC接続を確立する。 The system information notified by the physical notification channel (PBCH) or the like is also called "system notification information" or "notification information". Further, when camping on a cell, the terminal device 10 completes cell selection and / or cell reselection, and the terminal device 10 selects a cell for monitoring system notification information and paging information. It means to be in a state of being. The terminal device 10 establishes the above-mentioned RRC connection with the base station device 50 forming the camp-on cell.
 <プライマリ同期信号(PSS)>
 プライマリ同期信号(PSS)は、端末装置10が基地局装置50の下り信号の受信シンボルタイミング及び周波数に同期するために使用される。プライマリ同期信号(PSS)は、端末装置10が基地局装置50のセルを検出する手順(以下、「セルサーチ手順」ともいう)において、最初に検出を試みる信号である。プライマリ同期信号(PSS)は、物理セルIDに基づいて、「0」~「2」の3通りの信号が繰り返し利用される。なお、物理セルIDは、物理的なセルの識別子であり、E-UTRAでは504通りのIDが使用され、NRでは1008通りのIDが使用される。
<Primary Sync Signal (PSS)>
The primary sync signal (PSS) is used by the terminal device 10 to synchronize with the reception symbol timing and frequency of the downlink signal of the base station device 50. The primary synchronization signal (PSS) is a signal that the terminal device 10 first attempts to detect in a procedure for detecting a cell of the base station device 50 (hereinafter, also referred to as a “cell search procedure”). As the primary synchronization signal (PSS), three types of signals "0" to "2" are repeatedly used based on the physical cell ID. The physical cell ID is a physical cell identifier, and 504 IDs are used in E-UTRA and 1008 IDs are used in NR.
 <セカンダリ同期信号(SSS)>
 セカンダリ同期信号(SSS)は、端末装置10が基地局装置50の物理IDを検出するために使用される。具体的には、セカンダリ同期信号(SSS)は、端末装置10がセルサーチ手順において、物理セルIDを検出するための信号である。セカンダリ同期信号(SSS)は、物理セルIDに基づいて、E-UTRAでは「0」~「167」の168通り、NRでは「0」から「335」までの336通りの信号が繰り返し利用される。
<Secondary sync signal (SSS)>
The secondary sync signal (SSS) is used by the terminal device 10 to detect the physical ID of the base station device 50. Specifically, the secondary synchronization signal (SSS) is a signal for the terminal device 10 to detect the physical cell ID in the cell search procedure. As the secondary synchronization signal (SSS), 168 signals from "0" to "167" are repeatedly used in E-UTRA, and 336 signals from "0" to "335" are repeatedly used in NR based on the physical cell ID. ..
 <物理ランダムアクセスチャネル(PRACH)>
 物理ランダムアクセスチャネル(PRACH)は、端末装置10が、ランダムアクセスプリアンブルを基地局装置50に送信するために用いられる。物理ランダムアクセスチャネル(PRACH)は、一般的に端末装置10と基地局装置50との間で上りリンク同期が確立していない状態において使用され、送信タイミング調整情報(タイミングアドバンス)や上りリンクの無線リソース要求に用いられる。ランダムアクセスプリアンブルを送信可能な無線リソースを示す情報は、報知情報やRRCメッセージを用いて端末に送信される。
<Physical Random Access Channel (PRACH)>
The physical random access channel (PRACH) is used by the terminal device 10 to transmit a random access preamble to the base station device 50. The physical random access channel (PRACH) is generally used in a state where uplink synchronization has not been established between the terminal device 10 and the base station device 50, and is used for transmission timing adjustment information (timing advance) and uplink radio. Used for resource requests. Information indicating a radio resource capable of transmitting a random access preamble is transmitted to a terminal using broadcast information or an RRC message.
 <物理下りリンク制御チャネル(PDCCH)>
 物理下りリンク制御チャネル(PDCCH)は、端末装置10に対し、下りリンク制御情報(DCI: Downlink Control Information)を通知するために基地局装置50から送信される。下りリンク制御情報は、端末装置10が使用可能な上りリンクの無線リソース情報(上りリンクグラント(UL grant))、又は、下りリンクの無線リソース情報(下りリンクグラント(DL grant))を含む。下りリンクグラントは、物理下りリンク共有データチャネル(PDSCH)のスケジューリングを示す情報である。上りリンクグラントは、物理上りリンク共有チャネル(PUSCH)のスケジューリングを示す情報である。物理下りリンク制御チャネル(PDCCH)がランダムアクセスプリアンブルの応答として送信される場合、物理下りリンク制御チャネル(PDCCH)によって示される物理下りリンク共有データチャネル(PDSCH)はランダムアクセスレスポンスであり、ランダムアクセスプリアンブルのインデックス情報、送信タイミング調整情報、上りリンクグラントなどが含まれる。
<Physical downlink control channel (PDCCH)>
The physical downlink control channel (PDCCH) is transmitted from the base station apparatus 50 to notify the terminal apparatus 10 of downlink control information (DCI). The downlink control information includes uplink radio resource information (uplink grant (UL grant)) that can be used by the terminal device 10 or downlink radio resource information (downlink grant (DL grant)). The downlink grant is information indicating the scheduling of the physical downlink shared data channel (PDSCH). The uplink grant is information indicating the scheduling of the physical uplink shared channel (PUSCH). When the physical downlink control channel (PDCCH) is sent in response to a random access preamble, the physical downlink shared data channel (PDSCH) indicated by the physical downlink control channel (PDCCH) is a random access response and a random access preamble. Index information, transmission timing adjustment information, uplink grant, etc. are included.
 <ハードウェア構成>
 次に、図2を参照しつつ、一実施形態に従う端末装置及び基地局装置のハードウェア構成について説明する。図2は、端末装置10及び基地局装置50のハードウェア構成の一例を示す構成図である。
<Hardware configuration>
Next, with reference to FIG. 2, the hardware configuration of the terminal device and the base station device according to the embodiment will be described. FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device 10 and the base station device 50.
 図2に示すように、端末装置10及び基地局装置50は、それぞれ、例えば、プロセッサ21、メモリ22、記憶装置23、通信装置24、入力装置25、出力装置26、及びアンテナ27を備える。 As shown in FIG. 2, the terminal device 10 and the base station device 50 include, for example, a processor 21, a memory 22, a storage device 23, a communication device 24, an input device 25, an output device 26, and an antenna 27, respectively.
 プロセッサ21は、端末装置10又は基地局装置50の各部の動作を制御するように構成されている。プロセッサ21は、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、SoC(System-on-a-chip)等の集積回路を含んで構成される。 The processor 21 is configured to control the operation of each part of the terminal device 10 or the base station device 50. The processor 21 includes, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and a SoC (System-on-a). -chip) and other integrated circuits are included.
 メモリ22及び記憶装置23は、それぞれ、プログラムやデータ等を記憶するように構成されている。メモリ22は、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及び/又はRAM(Random Access Memory)等から構成される。記憶装置23は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及び/又はeMMC(embedded Multi Media Card)等のストレージから構成される。 The memory 22 and the storage device 23 are each configured to store programs, data, and the like. The memory 22 is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory). The storage device 23 is composed of, for example, storage such as an HDD (Hard Disk Drive), an SSD (Solid State Drive) and / or an eMMC (embedded MultiMediaCard).
 通信装置24は、有線及び/又は無線ネットワークを介して通信を行うように構成されている。通信装置24は、例えば、ネットワークカード、通信モジュール等を含んで構成される。また、通信装置24には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んで構成されていてもよい。 The communication device 24 is configured to communicate via a wired and / or wireless network. The communication device 24 includes, for example, a network card, a communication module, and the like. Further, the communication device 24 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A(Digital to Analog)変換、変調、周波数変換、電力増幅等を行うことで、アンテナ27から送信する無線信号を生成する。また、RF装置は、アンテナ27から受信した無線信号に対して、周波数変換、復調、A/D(Analog to Digital)変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をIPパケットに変換する処理、及び、IPパケットをデジタルベースバンド信号に変換する処理を行う。 The RF device, for example, performs D / A (Digital to Analog) conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device to generate a radio signal transmitted from the antenna 27. Generate. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D (Analog to Digital) conversion, etc. on the radio signal received from the antenna 27 and transmits it to the BB device. The BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
 入力装置25は、ユーザの操作により情報を入力できるように構成されている。入力装置25は、例えば、キーボード、タッチパネル、マウス、及び/又はマイク等を含んで構成される。 The input device 25 is configured so that information can be input by a user operation. The input device 25 includes, for example, a keyboard, a touch panel, a mouse, and / or a microphone.
 出力装置26は、情報を出力するように構成されている。出力装置26は、例えば液晶ディスプレイ、EL(Electro Luminescence)ディスプレイ、プラズマディスプレイ等の表示装置、及び/又はスピーカ等を含んで構成される。 The output device 26 is configured to output information. The output device 26 includes, for example, a display device such as a liquid crystal display, an EL (Electroluminescence) display, a plasma display, and / or a speaker.
 <機能ブロック構成>
 (端末装置)
 次に、図3を参照しつつ、一実施形態に従う端末装置の機能ブロック構成について説明する。図3は、端末装置10の機能ブロック構成の一例を示す構成図である。なお、図3は、本実施形態の説明において必要な機能ブロックを示すためのものであり、端末装置10が図示以外の機能ブロックを備えることを排除するものではない。
<Functional block configuration>
(Terminal device)
Next, with reference to FIG. 3, the functional block configuration of the terminal device according to one embodiment will be described. FIG. 3 is a configuration diagram showing an example of a functional block configuration of the terminal device 10. Note that FIG. 3 is for showing the functional blocks required in the description of the present embodiment, and does not exclude that the terminal device 10 includes the functional blocks other than those shown in the drawings.
 図3に示すように、端末装置10は、機能ブロックとして、受信部11と、測定部12、取得部13と、判定部14と、応答部15と、を備える。 As shown in FIG. 3, the terminal device 10 includes a receiving unit 11, a measuring unit 12, an acquisition unit 13, a determination unit 14, and a response unit 15 as functional blocks.
 受信部11は、基地局装置50から測定指示を受信するように構成されている。測定指示は、当該基地局装置50が形成するセルの受信品質の測定を指示するものである。 The receiving unit 11 is configured to receive a measurement instruction from the base station device 50. The measurement instruction instructs the measurement of the reception quality of the cell formed by the base station apparatus 50.
 測定指示は、例えば、受信品質の測定における開始から終了までの時間を示す測定時間と、当該測定時間において測定を行う時間間隔を示す測定間隔と、を含んでいる。通常、測定時間は10分以上120分以下の時間が設定され、測定間隔は、1.28秒以上61.44秒以下の時間が設定される。そのため、端末装置10は、測定時間の間に、セルの受信品質の測定を複数回行うことになる。また、測定指示は、基地局装置50の識別子である基地局IDと、1つ又は隣り合う複数のセルから構成されるトラッキングエリアと、をさらに含んでいてもよい。トラッキングエリアは、トラッキングエリア符号(TAC: TA Code)等で識別可能である。 The measurement instruction includes, for example, a measurement time indicating the time from the start to the end in the measurement of reception quality, and a measurement interval indicating the time interval for performing the measurement in the measurement time. Usually, the measurement time is set to 10 minutes or more and 120 minutes or less, and the measurement interval is set to 1.28 seconds or more and 61.44 seconds or less. Therefore, the terminal device 10 measures the reception quality of the cell a plurality of times during the measurement time. Further, the measurement instruction may further include a base station ID which is an identifier of the base station apparatus 50, and a tracking area composed of one or a plurality of adjacent cells. The tracking area can be identified by a tracking area code (TAC: TA Code) or the like.
 測定指示に含まれる測定間隔は、基地局装置50に対応付けられたものであってもよい。すなわち、測定間隔は、複数の基地局装置50のそれぞれに、異なる時間を対応付けて設定することが可能となる。なお、測定間隔と基地局装置50との対応付けは、1対1である場合に限定されるものではない。測定間隔と基地局装置50との対応付けは、例えば、1対N(Nは2以上の整数)であってもよく、複数台の基地局装置50が1つのグループに分けられ、グループごとに測定間隔が対応付けられる。この場合、測定指示は、当該グループを識別するためのグループIDを含んでいる。 The measurement interval included in the measurement instruction may be associated with the base station device 50. That is, the measurement interval can be set by associating different times with each of the plurality of base station devices 50. The correspondence between the measurement interval and the base station apparatus 50 is not limited to the case of one-to-one. The correspondence between the measurement interval and the base station device 50 may be, for example, 1 to N (N is an integer of 2 or more), and a plurality of base station devices 50 are divided into one group, and each group is divided into one group. The measurement interval is associated. In this case, the measurement instruction includes a group ID for identifying the group.
 また、測定指示は、前述した測定間隔に代えて、2つの測定間隔、つまり、第1測定間隔及び第2測定間隔を含んでいてもよい。第1測定間隔と第2測定間隔とは、互いに異なる時間であり、例えば、第1測定間隔には相対的に長い時間が、第2測定間隔に相対的に短い時間が、それぞれ設定されている。 Further, the measurement instruction may include two measurement intervals, that is, a first measurement interval and a second measurement interval, instead of the measurement interval described above. The first measurement interval and the second measurement interval are different times from each other. For example, a relatively long time is set for the first measurement interval and a relatively short time is set for the second measurement interval. ..
 測定部12は、所定の時間間隔ごとに基地局装置50が形成するセルの受信品質の測定を行うように構成されている。所定の時間間隔は、例えば、受信部11によって受信された測定指示に含まれる測定間隔である。 The measuring unit 12 is configured to measure the reception quality of the cells formed by the base station apparatus 50 at predetermined time intervals. The predetermined time interval is, for example, a measurement interval included in the measurement instruction received by the receiving unit 11.
 具体的には、測定部12は、測定指示に含まれる情報に基づいて、セルの受信品質を測定するためのパラメータ(以下、「測定パラメータ」という)を更新する。これにより、測定時間及び測定間隔が設定される。そして、測定部12は、測定時間の間、測定間隔に応じた時間ごとに、基地局装置50が形成するセルの受信品質を測定する。 Specifically, the measurement unit 12 updates the parameter for measuring the reception quality of the cell (hereinafter, referred to as "measurement parameter") based on the information included in the measurement instruction. As a result, the measurement time and the measurement interval are set. Then, the measuring unit 12 measures the reception quality of the cell formed by the base station apparatus 50 at intervals according to the measurement interval during the measurement time.
 測定されるセルの受信品質は、例えば、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(received signal strength indicator)、RS-SINR(Reference Signal-Signal to Interference and Noise Ratio)、又はこれらの組合せである。測定されたセルの受信品質は、メモリ22や記憶装置23に記憶され、保持される。 The received quality of the measured cell is, for example, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (received signal strength indicator), RS-SINR (Reference Signal-Signal to Interference and Noise Ratio), Or a combination of these. The received quality of the measured cell is stored and held in the memory 22 or the storage device 23.
 また、測定部12は、受信された測定指示に含まれ、基地局装置50に対応付けられた測定間隔に応じた時間間隔ごとに、基地局装置50が形成するセルの受信品質の測定を行うように構成されていてもよい。 Further, the measuring unit 12 measures the reception quality of the cell formed by the base station apparatus 50 at each time interval according to the measurement interval associated with the base station apparatus 50, which is included in the received measurement instruction. It may be configured as follows.
 さらに、測定部12は、基地局装置50が形成するセルの受信品質を第1測定間隔に応じた時間間隔で測定する第1測定と、基地局装置50のセルの受信品質を第2測定間隔に応じた時間間隔で測定する第2測定と、を交互に行うように構成されていてもよい。 Further, the measuring unit 12 measures the reception quality of the cell formed by the base station device 50 at a time interval corresponding to the first measurement interval, and measures the reception quality of the cell of the base station device 50 at a second measurement interval. The second measurement, which is measured at time intervals according to the above, may be alternately performed.
 取得部13は、所定の時間間隔ごとに端末装置10の位置を示す位置情報を取得するように構成されている。所定の時間間隔は、測定部12によるセルの受信品質の測定における所定の時間間隔と同じ時間であり、例えば、受信部11によって受信された測定指示に含まれる測定間隔である。すなわち、位置情報の取得は、セルの受信品質の測定と同一又は略同一のタイミングで行われる。 The acquisition unit 13 is configured to acquire position information indicating the position of the terminal device 10 at predetermined time intervals. The predetermined time interval is the same time as the predetermined time interval in the measurement of the reception quality of the cell by the measuring unit 12, and is, for example, the measurement interval included in the measurement instruction received by the receiving unit 11. That is, the acquisition of the position information is performed at the same timing as or substantially the same as the measurement of the reception quality of the cell.
 位置情報の取得は、例えば、GPS(Global Positioning System)等のGNSS(Global Navigation Satellite System)を用いた測位によって行わる。なお、取得部13は、GNSSに代えて、又は、GNSSとともに、例えば、OTDOA(Observed Time Difference Of Arrival)、A-GPS(Assisted GPS)、SUPL(Secure User Plane Location)等を用い、端末装置10の位置情報を取得してもよい。 Location information is acquired by positioning using GNSS (Global Navigation Satellite System) such as GPS (Global Positioning System), for example. In addition, the acquisition unit 13 uses, for example, OTDOA (Observed Time Difference Of Arrival), A-GPS (Assisted GPS), SUPL (Secure User Plane Location), etc. in place of GNSS or together with GNSS, and the terminal device 10 You may acquire the position information of.
 判定部14は、測定された受信品質が当該測定の前の受信品質から変動したか否かを判定するように構成されている。当該測定の前の受信品質とは、例えば、直前に測定された受信品質である。なお、当該測定の前の受信品質は、直前に測定された受信品質以外に、例えば、所定時間前に測定された受信品質であってもよいし、当該測定の前に測定された複数の受信品質の平均であってもよい。複数の受信品質の平均を求める場合、単純平均を算出してもよいし、受信品質が測定された順序に応じて重み付けされた加重平均を算出してもよい。 The determination unit 14 is configured to determine whether or not the measured reception quality has changed from the reception quality before the measurement. The reception quality before the measurement is, for example, the reception quality measured immediately before. In addition to the reception quality measured immediately before, the reception quality before the measurement may be, for example, the reception quality measured before a predetermined time, or a plurality of receptions measured before the measurement. It may be an average of quality. When calculating the average of a plurality of reception qualities, a simple average may be calculated, or a weighted average may be calculated according to the order in which the reception qualities are measured.
 より詳細には、判定部14は、測定された受信品質における当該測定の前の受信品質からの変動量が、所定の範囲以内であるときに、測定された受信品質は変動しなかったと判定するように構成されている。言い換えれば、測定された受信品質における当該測定の前の受信品質からの変動量が、所定の範囲外であるときに、測定された受信品質は変動したと判定される。所定の範囲は、基地局装置50から送信される前述の測定指示に含まれていてもよいし、後述する測定結果要求に含まれていてもよい。 More specifically, the determination unit 14 determines that the measured reception quality did not change when the amount of variation in the measured reception quality from the reception quality before the measurement was within a predetermined range. It is configured as follows. In other words, when the amount of change in the measured reception quality from the reception quality before the measurement is out of the predetermined range, it is determined that the measured reception quality has changed. The predetermined range may be included in the above-mentioned measurement instruction transmitted from the base station apparatus 50, or may be included in the measurement result request described later.
 このように、測定された受信品質における当該測定の前の受信品質からの変動量が、所定の範囲以内であるときに、測定された受信品質は変動しなかったと判定することにより、変動量が少なく、所定の範囲以内である場合に、受信品質の変動がなかったももとみなすことができる。従って、セルの受信品質の変動量が少ない場合に基地局装置50への通知を抑制することができ、基地局装置50のリソース消費を低減することができる。 In this way, when the amount of variation in the measured reception quality from the reception quality before the measurement is within a predetermined range, it is determined that the measured reception quality has not changed, so that the amount of variation is If it is small and within a predetermined range, it can be considered that there is no change in reception quality. Therefore, when the fluctuation amount of the reception quality of the cell is small, the notification to the base station device 50 can be suppressed, and the resource consumption of the base station device 50 can be reduced.
 また、判定部14は、取得された位置情報が当該取得の前の位置情報から変動したか否かをさらに判定するように構成されている。当該取得の前の位置情報は、測定の前の受信品質と同様に、直前に取得された位置情報でも、所定時間前に取得された位置情報でも、当該取得の前に取得された複数の位置情報の平均であってもよい。 Further, the determination unit 14 is configured to further determine whether or not the acquired position information has changed from the position information before the acquisition. The position information before the acquisition is the same as the reception quality before the measurement, whether it is the position information acquired immediately before or the position information acquired before a predetermined time, a plurality of positions acquired before the acquisition. It may be the average of information.
 より詳細には、判定部14は、取得された位置情報における当該取得の前の位置情報からの変動量が、所定の範囲以内であるときに、取得された位置情報は変動しなかったと判定するように構成されている。言い換えれば、取得された位置情報における当該取得の前の位置情報からの変動量が、所定の範囲外であるときに、取得された位置情報は変動したと判定される。所定の範囲は、受信品質に対する所定の範囲と異なるものであり、基地局装置50から送信される前述の測定指示に含まれていてもよいし、後述する測定結果要求に含まれていてもよい。 More specifically, the determination unit 14 determines that the acquired position information has not changed when the amount of change in the acquired position information from the position information before the acquisition is within a predetermined range. It is configured as follows. In other words, when the amount of change in the acquired position information from the position information before the acquisition is outside the predetermined range, it is determined that the acquired position information has changed. The predetermined range is different from the predetermined range for the reception quality, and may be included in the above-mentioned measurement instruction transmitted from the base station apparatus 50, or may be included in the measurement result request described later. ..
 応答部15は、基地局装置50からの要求に対し、変動したと判定された受信品質を応答するように構成されている。具体的には、基地局装置50から測定結果の要求(以下、「測定結果要求」という)を受信したときに、変動したと判定された受信品質を、測定結果要求の送信元である基地局装置50に応答として送信する。 The response unit 15 is configured to respond to the request from the base station device 50 with the reception quality determined to have changed. Specifically, when a measurement result request (hereinafter referred to as "measurement result request") is received from the base station apparatus 50, the reception quality determined to have fluctuated is determined by the base station that is the source of the measurement result request. It is transmitted to the device 50 as a response.
 また、応答部15は、基地局装置50からの要求に対し、変動しなかったと判定された受信品質の測定を行った時間を応答するように構成されている。すなわち、変動しなかったと判定された場合、応答部15は、測定の時間のみを応答し、測定された受信品質自体は応答として送信しない。 Further, the response unit 15 is configured to respond to the request from the base station apparatus 50 with the time during which the reception quality is measured, which is determined to have not changed. That is, when it is determined that there is no change, the response unit 15 responds only with the time of measurement, and the measured reception quality itself is not transmitted as a response.
 このように、基地局装置50からの要求に対し、変動しなかったと判定された受信品質の測定を行った時間を応答することにより、基地局装置50は、変動がない又は小さい場合と端末装置10がセルの圏外になった場合等とを切り分けることが可能にある。従って、基地局装置50にログ記録(ロギング)不可とみなされるのを避けることができる。 In this way, by responding to the request from the base station device 50 with the time during which the reception quality measurement determined to have not fluctuated is performed, the base station device 50 has no or small fluctuation and the terminal device. It is possible to separate the case where 10 is out of the cell range. Therefore, it can be avoided that the base station apparatus 50 is considered to be unable to log.
 さらに、応答部15は、基地局装置50からの要求に対し、変動したと判定された位置情報をさらに応答するように構成されている。具体的には、基地局装置50から測定結果要求を受信したときに、変動したと判定された受信品質及び位置情報を、測定結果要求の送信元である基地局装置50に応答として送信する。 Further, the response unit 15 is configured to further respond to the request from the base station device 50 with the position information determined to have changed. Specifically, when the measurement result request is received from the base station device 50, the reception quality and position information determined to have changed are transmitted as a response to the base station device 50 which is the source of the measurement result request.
 このように、基地局装置50からの要求に対し、変動したと判定された位置情報をさらに応答することにより、例えば、端末装置10の位置が変わらない又はほとんど変わらない場合に取得された位置情報が応答されないので、冗長な位置情報の通知を抑制することができる。従って、端末装置の位置情報の変動を適切に通知することができる。 In this way, by further responding to the request from the base station device 50 with the position information determined to have changed, for example, the position information acquired when the position of the terminal device 10 does not change or hardly changes. Is not responded, so it is possible to suppress redundant notification of location information. Therefore, it is possible to appropriately notify the change of the position information of the terminal device.
 なお、受信品質の判定と同様に、応答部15は、基地局装置50からの要求に対し、変動しなかったと判定された位置情報の取得を行った時間を応答するように構成されていてもよい。すなわち、変動しなかったと判定された場合、応答部15は、取得の時間のみを応答し、取得された位置情報自体は応答として送信しない。 Similar to the determination of reception quality, the response unit 15 is configured to respond to the request from the base station apparatus 50 with the time when the position information determined to have not changed is acquired. Good. That is, when it is determined that there is no change, the response unit 15 responds only with the acquisition time, and does not transmit the acquired position information itself as a response.
 あるいは、判定部14による判定結果によらず、又は、判定部14による判定を行わず、応答部15は、基地局装置50からの要求に対し、受信品質及び位置情報を応答するように構成されていてもよい。 Alternatively, the response unit 15 is configured to respond to the request from the base station apparatus 50 with the reception quality and the position information, regardless of the determination result by the determination unit 14 or the determination by the determination unit 14. You may be.
 なお、受信部11、測定部12、取得部13、及び応答部15は、例えば通信装置24により実現されてもよいし、通信装置24に加えてプロセッサ21が記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。判定部14は、プロセッサ21が、記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、記憶媒体に格納されていてもよい。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は、特に限定されないが、例えば、USB(Universal Serial Bus)メモリ、又はCD-ROM(Compact Disc ROM)等の記憶媒体であってもよい。 The receiving unit 11, the measuring unit 12, the acquiring unit 13, and the responding unit 15 may be realized by, for example, the communication device 24, and the processor 21 in addition to the communication device 24 stores the program stored in the storage device 23. It may be realized by executing. The determination unit 14 may be realized by the processor 21 executing the program stored in the storage device 23. When executing a program, the program may be stored in a storage medium. The storage medium in which the program is stored may be a computer-readable non-transitory storage medium (Non-transitory computer readable medium). The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
 (基地局装置)
 次に、図4を参照しつつ、一実施形態に従う基地局装置の機能ブロック構成について説明する。図4は、基地局装置50の機能ブロック構成の一例を示す構成図である。なお、図4は、本実施形態の説明において必要な機能ブロックを示すためのものであり、基地局装置50が図示以外の機能ブロックを備えることを排除するものではない。
(Base station equipment)
Next, the functional block configuration of the base station apparatus according to one embodiment will be described with reference to FIG. FIG. 4 is a configuration diagram showing an example of a functional block configuration of the base station device 50. Note that FIG. 4 is for showing the functional blocks required in the description of the present embodiment, and does not exclude that the base station apparatus 50 includes functional blocks other than those shown in the drawings.
 図4に示すように、基地局装置50は、機能ブロックとして、生成部51と、送信部52と、要求部53と、受信部54と、を備える。 As shown in FIG. 4, the base station apparatus 50 includes a generation unit 51, a transmission unit 52, a request unit 53, and a reception unit 54 as functional blocks.
 生成部51は、基地局装置50が形成するセルの受信品質の測定を指示する測定指示を生成するように構成されている。生成される測定指示は、前述したように、測定時間と測定間隔とを含み、基地局IDとトラッキングエリアとをさらに含んでいてもよい。また、測定指示に含まれる測定間隔は、基地局装置50に対応付けて設定されたものであってもよく、複数台の基地局装置50のグループごとに対応付けて設定されたものであってもよい。この場合、測定指示はグループIDを含んで生成される。さらに、生成される測定指示は、第1測定間隔と、当該第1測定間隔と異なる第2測定間隔とを含んでいてもよい。さらにまた、生成される測定指示は、受信品質の判定のための所定範囲、及び/又は、位置情報の判定のための所定範囲を含んでいてもよい。 The generation unit 51 is configured to generate a measurement instruction instructing the measurement of the reception quality of the cell formed by the base station device 50. As described above, the generated measurement instruction includes the measurement time and the measurement interval, and may further include the base station ID and the tracking area. Further, the measurement interval included in the measurement instruction may be set in association with the base station device 50, or may be set in association with each group of a plurality of base station devices 50. May be good. In this case, the measurement instruction is generated including the group ID. Further, the generated measurement instruction may include a first measurement interval and a second measurement interval different from the first measurement interval. Furthermore, the generated measurement instruction may include a predetermined range for determining the reception quality and / or a predetermined range for determining the position information.
 送信部52は、生成された測定指示を端末装置10に送信するように構成されている。 The transmission unit 52 is configured to transmit the generated measurement instruction to the terminal device 10.
 要求部53は、測定指示を送信した端末装置10に対して測定結果要求を送信するように構成されている。測定結果要求は、受信品質の判定のための所定範囲、及び/又は、位置情報の判定のための所定範囲を含んでいてもよい。測定結果要求を送信するとき、端末装置10は、アイドル状態であってもよいし、接続状態であってもよい。 The request unit 53 is configured to transmit a measurement result request to the terminal device 10 that has transmitted the measurement instruction. The measurement result request may include a predetermined range for determining the reception quality and / or a predetermined range for determining the position information. When transmitting the measurement result request, the terminal device 10 may be in an idle state or may be in a connected state.
 受信部54は、測定結果要求の応答として、端末装置10から、当該端末装置10によって測定された受信品質を受信するように構成されている。 The receiving unit 54 is configured to receive the reception quality measured by the terminal device 10 from the terminal device 10 as a response to the measurement result request.
 また、受信部54は、測定結果要求の応答として、端末装置10から、当該端末装置10によって取得された位置情報を受信するように構成されている。 Further, the receiving unit 54 is configured to receive the position information acquired by the terminal device 10 from the terminal device 10 as a response to the measurement result request.
 なお、送信部52、要求部53、及び受信部54は、例えば通信装置24により実現されてもよいし、通信装置24に加えてプロセッサ21が記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。生成部51は、プロセッサ21が、記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、記憶媒体に格納されていてもよい。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は、特に限定されないが、例えば、USBメモリ、又はCD-ROM等の記憶媒体であってもよい。 The transmission unit 52, the request unit 53, and the reception unit 54 may be realized by, for example, the communication device 24, or the processor 21 in addition to the communication device 24 executes a program stored in the storage device 23. It may be realized. The generation unit 51 may be realized by the processor 21 executing the program stored in the storage device 23. When executing a program, the program may be stored in a storage medium. The storage medium in which the program is stored may be a non-temporary storage medium that can be read by a computer. The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
 <無線通信システムの具体例>
 次に、図5を参照しつつ、一実施形態に従う無線通信システムの具体例について説明する。図5は、無線通信システム100Aの一具体例を示す構成図である。なお、図5では、無線通信システム100Aが備えるコアネットワーク装置90の描画を省略している。
<Specific example of wireless communication system>
Next, a specific example of the wireless communication system according to the embodiment will be described with reference to FIG. FIG. 5 is a configuration diagram showing a specific example of the wireless communication system 100A. Note that in FIG. 5, drawing of the core network device 90 included in the wireless communication system 100A is omitted.
 (無線通信システムの具体例)
 図5に示すように、無線通信システム100Aは、2つの基地局装置50-1,50-2を含んで構成される。基地局装置50-1は地上に設置されるものである。基地局装置50-1は、それぞれ、相対的に小さいセル、例えば半径数百メートルから十数キロメートルのセルを形成する。
(Specific example of wireless communication system)
As shown in FIG. 5, the wireless communication system 100A includes two base station devices 50-1 and 50-2. The base station device 50-1 is installed on the ground. Each base station device 50-1 forms a relatively small cell, for example, a cell having a radius of several hundred meters to a dozen kilometers.
 基地局装置50-2は、人工衛星、高高度疑似衛星(HAPS:High Attitude Pseudo Satellite)、高高度飛翔体等、上空を飛翔する物体に設置されるものである。基地局装置50-2が人工衛星に設置される場合、その軌道は、地球低軌道(LEO: Low Earth Orbit)であってもよいし、対地同期赤道上軌道(GEO: Geosynchronous Equatorial Orbit)であってもよい。基地局装置50-2は、相対的に大きいセル、例えば半径数百キロメールから千数百キロメートルのセルを形成する。図5に示す例では、基地局装置50-2は、GPS衛星GSよりも高度の低い高高度飛翔体に設置されている。 The base station device 50-2 is installed on an object flying over the sky, such as an artificial satellite, a high altitude pseudo satellite (HAPS: High Attitude Pseudo Satellite), or a high altitude projectile. When the base station device 50-2 is installed on an artificial satellite, its orbit may be low earth orbit (LEO: Low Earth Orbit) or geosynchronous orbit (GEO: Geosynchronous Equatorial Orbit). May be good. The base station apparatus 50-2 forms a relatively large cell, for example, a cell having a radius of several hundred kilometers to a thousand and several hundred kilometers. In the example shown in FIG. 5, the base station device 50-2 is installed in a high-altitude projectile having a lower altitude than the GPS satellite GS.
 図5に示すように、基地局装置50-2は、その高度を維持するために旋回している。基地局装置50-2の旋回に伴い、基地局装置50-2が形成するセルは、例えば、図5において一点鎖線で表すエリアや図5において破線で示すエリアに移動する。そのため、端末装置10で測定される基地局装置50-2のセルの受信品質は、相対的に、短時間に速く変動する傾向にある。一方、地上に設置されている基地局装置50-1は、一般的に移動することがない。よって、端末装置10で測定される基地局装置50-1のセルの受信品質は、相対的に変動することが少ない傾向にある。 As shown in FIG. 5, the base station device 50-2 is turning to maintain its altitude. As the base station device 50-2 turns, the cell formed by the base station device 50-2 moves to, for example, the area represented by the alternate long and short dash line in FIG. 5 or the area indicated by the broken line in FIG. Therefore, the reception quality of the cell of the base station device 50-2 measured by the terminal device 10 tends to fluctuate quickly in a relatively short time. On the other hand, the base station device 50-1 installed on the ground generally does not move. Therefore, the reception quality of the cell of the base station device 50-1 measured by the terminal device 10 tends to be relatively small.
 このように、地上に設置されている基地局装置50-1と高高度飛翔体に設置されている基地局装置50-2とが共存(混在)する無線通信システム100Aにおいて、セルの受信品質の測定における時間間隔を相対的に長い時間に設定すると、端末装置10は、基地局装置50-2が形成するセルの受信品質を長い離散間隔でしか測定できず、変動の速い受信品質を十分に測定することができない。一方、セルの受信品質の測定における時間間隔を相対的に短い時間に設定すると、端末装置10は、基地局装置50-1が形成するセルの受信品質の測定を冗長に行うことになり、その測定結果を基地局装置50-1に応答することで、基地局装置50-1における回線数、周波数帯域等のリソースを消費してしまう。 In this way, in the wireless communication system 100A in which the base station device 50-1 installed on the ground and the base station device 50-2 installed on the high altitude projectile coexist (mix), the reception quality of the cell is improved. When the time interval in the measurement is set to a relatively long time, the terminal device 10 can measure the reception quality of the cells formed by the base station device 50-2 only at a long discrete interval, and the reception quality with rapid fluctuation is sufficiently sufficient. Cannot measure. On the other hand, if the time interval in the measurement of the reception quality of the cell is set to a relatively short time, the terminal device 10 will redundantly measure the reception quality of the cell formed by the base station device 50-1. By responding to the base station device 50-1 with the measurement result, resources such as the number of lines and the frequency band in the base station device 50-1 are consumed.
 <処理手順>
 次に、図6から図11を参照しつつ、一実施形態に従う無線通信システムが行う処理手順について説明する。図6は、無線通信システム100Aが行う処理手順の第1例を説明するためのタイムチャートである。図7は、無線通信システム100Aが行う処理手順の第1例における測定結果を説明するための図である。図8は、無線通信システム100Aが行う処理手順の第2例を説明するためのタイムチャートである。図9は、無線通信システム100Aが行う処理手順の第2例における受信品質の測定を説明するための図である。図10は、無線通信システム100Aが行う処理手順の第3例を説明するためのタイムチャートである。図11は、無線通信システム100Aが行う処理手順の第3例における受信品質の測定を説明するための図である。なお、図6から図11では、図5に示す無線通信システム100Aの処理手順について説明する。
<Processing procedure>
Next, the processing procedure performed by the wireless communication system according to the embodiment will be described with reference to FIGS. 6 to 11. FIG. 6 is a time chart for explaining a first example of a processing procedure performed by the wireless communication system 100A. FIG. 7 is a diagram for explaining the measurement result in the first example of the processing procedure performed by the wireless communication system 100A. FIG. 8 is a time chart for explaining a second example of the processing procedure performed by the wireless communication system 100A. FIG. 9 is a diagram for explaining the measurement of reception quality in the second example of the processing procedure performed by the wireless communication system 100A. FIG. 10 is a time chart for explaining a third example of the processing procedure performed by the wireless communication system 100A. FIG. 11 is a diagram for explaining the measurement of reception quality in the third example of the processing procedure performed by the wireless communication system 100A. Note that FIGS. 6 to 11 describe the processing procedure of the wireless communication system 100A shown in FIG.
 (第1例の処理手順)
 図6に示すように、まず、基地局装置50-1又は基地局装置50-2において、生成部51は測定指示を生成し、送信部52は生成された測定指示を、端末装置10に送信する(S101)。送信部52は、生成された測定指示を、例えば、ログ記録MDT(Logged MDT)におけるLoggedMeasurementConfigurationで送信する。
(Processing procedure of the first example)
As shown in FIG. 6, first, in the base station device 50-1 or the base station device 50-2, the generation unit 51 generates a measurement instruction, and the transmission unit 52 transmits the generated measurement instruction to the terminal device 10. (S101). The transmission unit 52 transmits the generated measurement instruction, for example, by the Logged Measurement Configuration in the log recording MDT (Logged MDT).
 次に、端末装置10において、受信部11は基地局装置50-1又は基地局装置50-2から送信された測定指示を受信し、測定部12は受信した測定指示に基づいて測定パラメータを更新する(S102)。 Next, in the terminal device 10, the receiving unit 11 receives the measurement instruction transmitted from the base station device 50-1 or the base station device 50-2, and the measuring unit 12 updates the measurement parameter based on the received measurement instruction. (S102).
 そして、所定の測定間隔ごとに、測定部12は測定指示を送信した基地局装置50-1,50-2が形成するセルの受信品質の測定を行うとともに、取得部13はGPS衛星GSから自己の位置情報の取得を行う(S103)。前述したように、通常、受信品質の測定及び位置情報の取得は、それぞれ、複数回行われる。 Then, at predetermined measurement intervals, the measurement unit 12 measures the reception quality of the cells formed by the base station devices 50-1, 50-2 that have transmitted the measurement instructions, and the acquisition unit 13 self from the GPS satellite GS. The position information of the above is acquired (S103). As described above, usually, the measurement of the reception quality and the acquisition of the position information are performed a plurality of times, respectively.
 測定時間が経過した後、測定指示を送信した基地局装置50-1,50-2において、要求部53は、測定指示を送信した端末装置10に測定結果要求を送信する(S104)。要求部53は、測定結果要求を、例えば、ログ記録MDT(Logged MDT)におけるUEInformationRequestで送信する。 After the measurement time has elapsed, in the base station devices 50-1 and 50-2 that have transmitted the measurement instruction, the requesting unit 53 transmits the measurement result request to the terminal device 10 that has transmitted the measurement instruction (S104). The request unit 53 transmits the measurement result request, for example, by the UE Information Request in the log recording MDT (Logged MDT).
 端末装置10の判定部14は、測定された受信品質が当該測定の前の受信品質から変動したか否かを判定するとともに、取得された位置情報が当該測定の前の受信品質から変動したか否かを判定する(S105)。判定部14は、複数の受信品質及び複数の位置情報のそれぞれについて、変動したか否かを判定する。 The determination unit 14 of the terminal device 10 determines whether or not the measured reception quality has changed from the reception quality before the measurement, and whether the acquired position information has changed from the reception quality before the measurement. Whether or not it is determined (S105). The determination unit 14 determines whether or not each of the plurality of reception qualities and the plurality of position information has changed.
 そして、応答部15は、基地局装置50-1,50-2からの測定結果要求に対し、変動したと判定された受信品質、変動したと判定された位置情報、変動しなかったと判定された受信品質の測定の時間を、及び、変動しなかったと判定された位置情報の取得の時間を、測定結果要求を送信した基地局装置50-1,50-2に応答する(S106)。
応答部15は、応答を、例えば、ログ記録MDT(Logged MDT)におけるUEInformationResponseで送信する。
Then, the response unit 15 determines that the reception quality determined to have changed, the position information determined to have changed, and the measurement result request from the base station devices 50-1 and 50-2 have not changed. The time for measuring the reception quality and the time for acquiring the position information determined to have not fluctuated are responded to the base station devices 50-1, 50-2 that transmitted the measurement result request (S106).
The response unit 15 transmits the response by, for example, UE Information Response in the logging MDT (Logged MDT).
 図7に示すように、測定間隔として例えば30秒ごとに、セルの受信品質の測定と端末装置10の位置情報の取得とを行う。なお、図7に示すでは、受信品質はRSRP[dBm]であり、説明の便宜上、受信品質の測定及び位置情報の取得は同時に行っている。例えば、受信品質において、時間“0.00:30”に端末装置10で測定されたセルの受信品質は、“-89[dBm]”であり、直前の受信品質からの変動量である1[dBm]が所定の範囲以内である場合、当該受信品質は変動しなかったと判定され、時間“0.00:30”が基地局装置50に送信され、当該受信品質は基地局装置50に送信されない。図7の例では、基地局装置50に送信されない場合に“-”と表記されている。また、時間“0.01:00”に端末装置10で測定されたセルの受信品質は、“-89[dBm]”であり、直前の受信品質からの変動量がゼロなので、当該受信品質は変動しなかったと判定され、時間“0.01:00”が基地局装置50に送信され、当該受信品質は基地局装置50に送信されない。さらに、時間“0.01:30”に端末装置10で測定されたセルの受信品質は、“-80[dBm]”であり、直前の受信品質からの変動量である8[dBm]が所定の範囲外である場合、当該受信品質は変動したと判定され、時間“0.01:30”と受信品質は、“-80[dBm]”とが基地局装置50に送信される。さらにまた、時間“0.02:00”に端末装置10で測定されたセルの受信品質は、“-78[dBm]”であり、直前の受信品質からの変動量である2[dBm]が所定の範囲以内である場合、当該受信品質は変動しなかったと判定され、時間“0.02:00”が基地局装置50に送信され、当該受信品質は基地局装置50に送信されない。なお、位置情報においても、前述した受信品質の説明と同様であるため、その説明を省略する。 As shown in FIG. 7, the reception quality of the cell is measured and the position information of the terminal device 10 is acquired, for example, every 30 seconds as the measurement interval. In addition, in FIG. 7, the reception quality is RSRP [dBm], and for convenience of explanation, the reception quality is measured and the position information is acquired at the same time. For example, in the reception quality, the reception quality of the cell measured by the terminal device 10 at the time "0.00: 30" is "-89 [dBm]", which is an amount of variation from the immediately preceding reception quality 1 [. When [dBm] is within a predetermined range, it is determined that the reception quality has not changed, the time “0.00: 30” is transmitted to the base station device 50, and the reception quality is not transmitted to the base station device 50. .. In the example of FIG. 7, when it is not transmitted to the base station apparatus 50, it is indicated as “−”. Further, the reception quality of the cell measured by the terminal device 10 at the time "0.01: 00" is "-89 [dBm]", and the amount of variation from the immediately preceding reception quality is zero, so that the reception quality is It is determined that there is no change, the time "0.01: 00" is transmitted to the base station device 50, and the reception quality is not transmitted to the base station device 50. Further, the reception quality of the cell measured by the terminal device 10 at the time "0.01: 30" is "-80 [dBm]", and 8 [dBm], which is the amount of variation from the immediately preceding reception quality, is predetermined. If it is out of the range of, it is determined that the reception quality has fluctuated, and the time "0.01: 30" and the reception quality "-80 [dBm]" are transmitted to the base station apparatus 50. Furthermore, the reception quality of the cell measured by the terminal device 10 at the time "0.02:00" is "-78 [dBm]", and 2 [dBm], which is the amount of variation from the immediately preceding reception quality, is If it is within a predetermined range, it is determined that the reception quality has not changed, the time "0.02:00" is transmitted to the base station device 50, and the reception quality is not transmitted to the base station device 50. Since the location information is the same as the description of the reception quality described above, the description thereof will be omitted.
 このように、端末装置10が、基地局装置50-1,50-2からの測定結果要求に対し、変動したと判定された受信品質を応答することにより、例えば、所定の時間間隔を短い時間に設定すれば、受信品質の変動が速い基地局装置50-2のセルの場合、受信品質の速い変動を測定することができ、受信品質の変動が少ない基地局装置50-1のセルの場合、受信品質が応答される頻度が少なくなり、冗長な受信品質の応答を抑制することが可能になる。従って、セルの受信品質が変動する速さに応じて受信品質の変動を適切に通知することができる。 In this way, the terminal device 10 responds to the measurement result request from the base station devices 50-1, 50-2 with the reception quality determined to have fluctuated, so that, for example, a predetermined time interval is set for a short time. When set to, in the case of the cell of the base station device 50-2 in which the fluctuation of the reception quality is fast, the rapid fluctuation of the reception quality can be measured, and in the case of the cell of the base station device 50-1 in which the fluctuation of the reception quality is small. , The reception quality is less frequently responded, and it becomes possible to suppress redundant reception quality responses. Therefore, it is possible to appropriately notify the fluctuation of the reception quality according to the speed at which the reception quality of the cell fluctuates.
 (第2例の処理手順)
 図8に示す第2例の処理手順は、図6に示す第1例の処理手順と略同一であるため、第1例の処理手順との相違点について主に説明する。
(Processing procedure of the second example)
Since the processing procedure of the second example shown in FIG. 8 is substantially the same as the processing procedure of the first example shown in FIG. 6, the differences from the processing procedure of the first example will be mainly described.
 図8に示すように、図6に示すステップS101に代えて、生成部51は、グループIDと測定間隔とを含む測定指示を生成し、送信部52は生成された測定指示を、端末装置10に送信する(S107)。測定間隔は、グループIDで識別される基地局装置50-1又は基地局装置50-2のグループに対応付けられている。 As shown in FIG. 8, instead of step S101 shown in FIG. 6, the generation unit 51 generates a measurement instruction including the group ID and the measurement interval, and the transmission unit 52 outputs the generated measurement instruction to the terminal device 10. Is transmitted to (S107). The measurement interval is associated with the group of base station apparatus 50-1 or base station apparatus 50-2 identified by the group ID.
 次に、ステップ102において測定指示に基づいて測定パラメータを更新した後、基地局装置50-1又は基地局装置50-2のグループに対応付けられた測定間隔に応じた時間間隔ごとに、測定部12は測定指示を送信した基地局装置50-1,50-2が形成するセルの受信品質の測定を行うとともに、取得部13はGPS衛星GSから自己の位置情報の取得を行う(S108)。 Next, after updating the measurement parameters based on the measurement instructions in step 102, the measurement unit is set at each time interval according to the measurement interval associated with the group of the base station device 50-1 or the base station device 50-2. 12 measures the reception quality of the cells formed by the base station devices 50-1 and 50-2 that have transmitted the measurement instruction, and the acquisition unit 13 acquires its own position information from the GPS satellite GS (S108).
 なお、端末装置10は、図6に示すステップS105の判定を行わない。すなわち、測定された受信品質及び取得された位置情報の全ては、測定結果要求を送信した基地局装置50-1,50-2に応答として送信される。 Note that the terminal device 10 does not perform the determination in step S105 shown in FIG. That is, all of the measured reception quality and the acquired position information are transmitted as a response to the base station devices 50-1 and 50-2 that have transmitted the measurement result request.
 図9に示すように、セルの受信品質の測定は、基地局装置50-1又は基地局装置50-2のグループに対応付けられた測定間隔で行われる。例えば、基地局装置50-1のグループのグループIDが“1”である場合、上段に示すように、相対的に長い時間の第1測定間隔が対応付けられている。この場合、端末装置10は、第1測定間隔ごとにセルの受信品質の測定を行う。一方、基地局装置50-2のグループのグループIDが“2”である場合、上段に示すように、相対的に短い時間の第2測定間隔が対応付けられている。この場合、端末装置10は、第2測定間隔ごとにセルの受信品質の測定を行う。なお、図示及びその説明を省略するが、位置情報の取得についても、同様に、第1測定間隔ごと又は第2測定間隔ごとに行う。 As shown in FIG. 9, the measurement of the reception quality of the cell is performed at the measurement interval associated with the group of the base station device 50-1 or the base station device 50-2. For example, when the group ID of the group of the base station apparatus 50-1 is "1", as shown in the upper part, the first measurement interval of a relatively long time is associated. In this case, the terminal device 10 measures the reception quality of the cell at each first measurement interval. On the other hand, when the group ID of the group of the base station apparatus 50-2 is "2", as shown in the upper part, the second measurement interval of a relatively short time is associated. In this case, the terminal device 10 measures the reception quality of the cell at each second measurement interval. Although illustration and description thereof will be omitted, the acquisition of position information is also performed at each first measurement interval or every second measurement interval.
 このように、端末装置10が、基地局装置50-1又は基地局装置50-2のグループに対応付けられた測定間隔に応じた時間間隔ごとに、基地局装置50-1又は基地局装置50-2が形成するセルの受信品質の測定を行うことにより、例えば、基地局装置50-1に相対的に長い時間の第1測定間隔を対応付け、基地局装置50-2に相対的に短い時間の第2測定間隔を対応付けることで、受信品質が変動する速さに応じた測定間隔に設定することが可能になる。従って、セルの受信品質が変動する速さに応じてセルの受信品質の変動を適切に測定することができる。 As described above, the terminal device 10 is the base station device 50-1 or the base station device 50 at each time interval corresponding to the measurement interval associated with the group of the base station device 50-1 or the base station device 50-2. By measuring the reception quality of the cell formed by -2, for example, the first measurement interval of a relatively long time is associated with the base station device 50-1, and the base station device 50-2 is relatively short. By associating the second measurement interval of time, it becomes possible to set the measurement interval according to the speed at which the reception quality fluctuates. Therefore, the fluctuation of the reception quality of the cell can be appropriately measured according to the speed at which the reception quality of the cell fluctuates.
 また、基地局装置50-1,50-2が、基地局装置50-1又は基地局装置50-2のグループに対応付けられた測定間隔を含む測定指示を、端末装置10に送信することにより、例えば、基地局装置50-1に相対的に長い時間の第1測定間隔を対応付け、基地局装置50-2に相対的に短い時間の第2測定間隔を対応付けることで、受信品質が変動する速さに応じた測定間隔に設定することが可能になる。従って、セルの受信品質が変動する速さに応じてセルの受信品質の変動を適切に受信することができる。 Further, the base station devices 50-1 and 50-2 transmit the measurement instruction including the measurement interval associated with the base station device 50-1 or the group of the base station device 50-2 to the terminal device 10. For example, the reception quality varies by associating the base station apparatus 50-1 with the first measurement interval having a relatively long time and associating the base station apparatus 50-2 with the second measurement interval having a relatively short time. It is possible to set the measurement interval according to the speed of measurement. Therefore, it is possible to appropriately receive the fluctuation of the reception quality of the cell according to the speed at which the reception quality of the cell fluctuates.
 (第3例の処理手順)
 図10に示す第3例の処理手順は、図6に示す第1例の処理手順と略同一であるため、第1例の処理手順との相違点について主に説明する。
(Processing procedure of the third example)
Since the processing procedure of the third example shown in FIG. 10 is substantially the same as the processing procedure of the first example shown in FIG. 6, the differences from the processing procedure of the first example will be mainly described.
 図10に示すように、図6に示すステップS101に代えて、生成部51は、第1測定間隔と第2測定間隔とを含む測定指示を生成し、送信部52は生成された測定指示を、端末装置10に送信する(S109)。 As shown in FIG. 10, instead of step S101 shown in FIG. 6, the generation unit 51 generates a measurement instruction including the first measurement interval and the second measurement interval, and the transmission unit 52 generates the generated measurement instruction. , Transmit to the terminal device 10 (S109).
 次に、ステップ102において測定指示に基づいて測定パラメータを更新した後、測定部12は、測定指示を送信した基地局装置50-1,50-2が形成するセルの受信品質の測定を、第1測定間隔に応じた時間間隔で測定する第1測定と、当該セルの受信品質の測定を第2測定間隔に応じた時間間隔で測定する第2測定とを交互に行う(S110)。このとき、取得部13は、GPS衛星GSから自己の位置情報の取得を、第1測定間隔に応じた時間間隔で取得する第1取得と、当該位置情報の取得を、第2測定間隔に応じた時間間隔で取得する第2取得とを交互に行う。 Next, after updating the measurement parameters based on the measurement instructions in step 102, the measurement unit 12 measures the reception quality of the cells formed by the base station devices 50-1 and 50-2 that have transmitted the measurement instructions. The first measurement, which measures at a time interval corresponding to one measurement interval, and the second measurement, which measures the reception quality of the cell at a time interval corresponding to a second measurement interval, are alternately performed (S110). At this time, the acquisition unit 13 obtains the first acquisition of its own position information from the GPS satellite GS at a time interval corresponding to the first measurement interval, and the acquisition of the position information according to the second measurement interval. The second acquisition, which is acquired at different time intervals, is alternately performed.
 なお、端末装置10は、図6に示すステップS105の判定を行わない。すなわち、測定された受信品質及び取得された位置情報の全ては、測定結果要求を送信した基地局装置50-1,50-2に応答として送信される。 Note that the terminal device 10 does not perform the determination in step S105 shown in FIG. That is, all of the measured reception quality and the acquired position information are transmitted as a response to the base station devices 50-1 and 50-2 that have transmitted the measurement result request.
 図11に示すように、セルの受信品質の測定は、第1測定間隔と第2測定間隔とが交互に切り替えられて行われる。例えば、相対的に長い時間の第1測定間隔でセルの受信品質を測定した後、相対的に短い時間の第2測定間隔でセルの受信品質を測定する。第1測定間隔による第1測定と第2測定間隔による第2測定とは、測定時間の間、交互に繰り返し行われる。なお、図示及びその説明を省略するが、位置情報の取得についても、同様に、第1測定間隔による第1取得と第2測定間隔による第2取得とが、測定時間の間、交互に繰り返し行われる。 As shown in FIG. 11, the measurement of the reception quality of the cell is performed by alternately switching between the first measurement interval and the second measurement interval. For example, after measuring the reception quality of the cell at the first measurement interval of a relatively long time, the reception quality of the cell is measured at the second measurement interval of a relatively short time. The first measurement by the first measurement interval and the second measurement by the second measurement interval are alternately repeated during the measurement time. Although illustration and description thereof will be omitted, similarly, with respect to the acquisition of position information, the first acquisition by the first measurement interval and the second acquisition by the second measurement interval are alternately repeated during the measurement time. Be told.
 このように、端末装置10が、基地局装置50-1,50-2が形成するセルの受信品質の測定を、第1測定間隔に応じた時間間隔で測定する第1測定と、当該セルの受信品質の測定を第2測定間隔に応じた時間間隔で測定する第2測定とを交互に行うことにより、一定の時間間隔でセルの受信品質を測定する場合と比較して、第1測定で受信品質の変動が少ない基地局装置50-1のセルの受信品質を測定して冗長な測定及び応答を抑制し、第2測定で受信品質の変動が速い基地局装置50-1のセルの受信品質を測定することが可能となる。従って、セルの受信品質の変動の異なる速さに対応してセルの受信品質を簡易に受信することができる。 In this way, the terminal device 10 measures the reception quality of the cells formed by the base station devices 50-1 and 50-2 at the time interval corresponding to the first measurement interval, and the first measurement and the cell. By alternately performing the second measurement in which the reception quality is measured at the time interval corresponding to the second measurement interval, the first measurement is compared with the case where the reception quality of the cell is measured at a fixed time interval. The reception quality of the cell of the base station device 50-1 with little fluctuation of the reception quality is measured to suppress redundant measurement and response, and the reception of the cell of the base station device 50-1 with a rapid fluctuation of the reception quality in the second measurement. It is possible to measure the quality. Therefore, it is possible to easily receive the reception quality of the cell corresponding to the different speeds of the fluctuation of the reception quality of the cell.
 また、基地局装置50が、基地局装置50-1,50-2が、第1測定間隔と当該第1測定間隔と異なる第2測定間隔とを含む測定指示を、端末装置10に送信することにより、端末装置10は測定間隔の異なるセルの受信品質の測定を交互に行うことが可能になるので、一定の時間間隔でセルの受信品質を測定する場合と比較して、第1測定で受信品質の変動が少ない基地局装置50-1のセルの受信品質を測定して冗長な測定及び応答を抑制し、第2測定で受信品質の変動が速い基地局装置50-1のセルの受信品質を測定することが可能となる。従って、セルの受信品質の変動の異なる速さに対応してセルの受信品質を簡易に測定することができる。 Further, the base station device 50 transmits a measurement instruction including the first measurement interval and the second measurement interval different from the first measurement interval to the terminal device 10 by the base station devices 50-1 and 50-2. As a result, the terminal device 10 can alternately measure the reception quality of cells having different measurement intervals, so that the reception quality is received in the first measurement as compared with the case where the reception quality of cells is measured at regular time intervals. The reception quality of the cell of the base station device 50-1 with little fluctuation in quality is measured to suppress redundant measurement and response, and the reception quality of the cell of the base station device 50-1 with fast fluctuation of reception quality in the second measurement. Can be measured. Therefore, the reception quality of the cell can be easily measured corresponding to the different speeds of the fluctuation of the reception quality of the cell.
 次に、図12及び図13を参照しつつ、一実施形態に従う端末装置及び基地局装置が行う処理手順について説明する。図12は、端末装置10が行う処理手順の一例を説明するためのフローチャートである。図13は、基地局装置50が行う処理手順の一例を説明するためのフローチャートである。 Next, with reference to FIGS. 12 and 13, the processing procedure performed by the terminal device and the base station device according to one embodiment will be described. FIG. 12 is a flowchart for explaining an example of the processing procedure performed by the terminal device 10. FIG. 13 is a flowchart for explaining an example of the processing procedure performed by the base station apparatus 50.
 (端末装置の処理手順)
 図12に示すように、最初に、受信部11は、基地局装置50から測定指示を受信する(S201)。
(Terminal device processing procedure)
As shown in FIG. 12, first, the receiving unit 11 receives the measurement instruction from the base station apparatus 50 (S201).
 次に、測定部12は、受信した測定指示に基づいて測定パラメータを更新する(S202)。 Next, the measurement unit 12 updates the measurement parameters based on the received measurement instruction (S202).
 次に、所定の時間間隔ごとに、測定部12は基地局装置50が形成するセルの受信品質を測定するとともに、取得部13はGPS衛星GSから自己の位置情報を取得する(S203)。 Next, at predetermined time intervals, the measuring unit 12 measures the reception quality of the cell formed by the base station device 50, and the acquiring unit 13 acquires its own position information from the GPS satellite GS (S203).
 次に、判定部14は、基地局装置50からの測定結果要求があったか否かを判定する(S204)。判定部14は、基地局装置50からの測定結果要求があるまでS204の判定を繰り返す。 Next, the determination unit 14 determines whether or not there is a measurement result request from the base station device 50 (S204). The determination unit 14 repeats the determination of S204 until there is a measurement result request from the base station apparatus 50.
 ステップS204の判定の結果、基地局装置50からの測定結果要求があった場合、判定部14は、測定された受信品質が当該測定の前の受信品質から変動したか否かを判定するとともに、取得された位置情報が当該測定の前の受信品質から変動したか否かを判定する(S205)。 When there is a measurement result request from the base station apparatus 50 as a result of the determination in step S204, the determination unit 14 determines whether or not the measured reception quality has changed from the reception quality before the measurement. It is determined whether or not the acquired position information has changed from the reception quality before the measurement (S205).
 次に、応答部15は、基地局装置50からの測定結果要求に対し、変動したと判定された受信品質及び変動したと判定された位置情報を応答する(S206)。 Next, the response unit 15 responds to the measurement result request from the base station apparatus 50 with the reception quality determined to have changed and the position information determined to have changed (S206).
 (基地局装置の処理手順)
 図13に示すように、最初に、生成部51は測定指示を生成する(S251)。送信部52は、ステップS251で生成された測定指示を、端末装置10に送信する(S252)。
(Processing procedure of base station equipment)
As shown in FIG. 13, first, the generation unit 51 generates a measurement instruction (S251). The transmission unit 52 transmits the measurement instruction generated in step S251 to the terminal device 10 (S252).
 所定時間の経過後、要求部53は、ステップS253で測定指示を送信した端末装置10に、測定結果要求を送信する(S253)。 After the elapse of the predetermined time, the requesting unit 53 transmits the measurement result request to the terminal device 10 that has transmitted the measurement instruction in step S253 (S253).
 そして、受信部54は、端末装置10からの応答として、端末装置10によって測定された受信品質と端末装置10によって取得された位置情報とを受信する(S254)。 Then, the receiving unit 54 receives the reception quality measured by the terminal device 10 and the position information acquired by the terminal device 10 as a response from the terminal device 10 (S254).
 なお、本実施形態で説明したシーケンス及びフローチャートは、処理に矛盾が生じない限り、順序を入れ替えてもよい。 The order of the sequences and flowcharts described in the present embodiment may be changed as long as there is no contradiction in processing.
 以上、本発明の例示的な実施形態について説明した。本実施形態の端末装置10及び無線通信方法によれば、基地局装置50-1,50-2からの測定結果要求に対し、変動したと判定された受信品質が応答される。これにより、例えば、所定の時間間隔を短い時間に設定すれば、受信品質の変動が速い基地局装置50-2のセルの場合、受信品質の速い変動を測定することができ、受信品質の変動が少ない基地局装置50-1のセルの場合、受信品質が応答される頻度が少なくなり、冗長な受信品質の応答を抑制することが可能になる。従って、セルの受信品質が変動する速さに応じて受信品質の変動を適切に通知することができる。 The exemplary embodiments of the present invention have been described above. According to the terminal device 10 and the wireless communication method of the present embodiment, the reception quality determined to have fluctuated is responded to the measurement result request from the base station devices 50-1 and 50-2. Thereby, for example, if a predetermined time interval is set to a short time, in the case of the cell of the base station apparatus 50-2 in which the fluctuation of the reception quality is fast, the fluctuation of the reception quality can be measured quickly, and the fluctuation of the reception quality can be measured. In the case of the cell of the base station apparatus 50-1 with a small number, the reception quality is less frequently responded, and it becomes possible to suppress the redundant reception quality response. Therefore, it is possible to appropriately notify the fluctuation of the reception quality according to the speed at which the reception quality of the cell fluctuates.
 また、本実施形態の端末装置10及び基地局装置50-1,50-2によれば、基地局装置50-1又は基地局装置50-2のグループに対応付けられた測定間隔に応じた時間間隔ごとに、基地局装置50-1又は基地局装置50-2が形成するセルの受信品質の測定が行われる。これにより、例えば、基地局装置50-1に相対的に長い時間の第1測定間隔を対応付け、基地局装置50-2に相対的に短い時間の第2測定間隔を対応付けることで、受信品質が変動する速さに応じた測定間隔に設定することが可能になる。従って、セルの受信品質が変動する速さに応じてセルの受信品質の変動を適切に測定することができる。 Further, according to the terminal device 10 and the base station devices 50-1 and 50-2 of the present embodiment, the time corresponding to the measurement interval associated with the group of the base station device 50-1 or the base station device 50-2. At each interval, the reception quality of the cells formed by the base station device 50-1 or the base station device 50-2 is measured. Thereby, for example, the base station apparatus 50-1 is associated with the first measurement interval having a relatively long time, and the base station apparatus 50-2 is associated with the second measurement interval having a relatively short time. It becomes possible to set the measurement interval according to the fluctuating speed. Therefore, the fluctuation of the reception quality of the cell can be appropriately measured according to the speed at which the reception quality of the cell fluctuates.
 また、本実施形態の端末装置10及び基地局装置50-1,50-2によれば、基地局装置50-1,50-2が形成するセルの受信品質の測定を、第1測定間隔に応じた時間間隔で測定する第1測定と、当該セルの受信品質の測定を第2測定間隔に応じた時間間隔で測定する第2測定とが交互に行われる。これにより、一定の時間間隔でセルの受信品質を測定する場合と比較して、第1測定で受信品質の変動が少ない基地局装置50-1のセルの受信品質を測定して冗長な測定及び応答を抑制し、第2測定で受信品質の変動が速い基地局装置50-1のセルの受信品質を測定することが可能となる。従って、セルの受信品質の変動の異なる速さに対応してセルの受信品質を簡易に受信することができる。 Further, according to the terminal device 10 and the base station devices 50-1 and 50-2 of the present embodiment, the measurement of the reception quality of the cells formed by the base station devices 50-1 and 50-2 is performed at the first measurement interval. The first measurement, which measures at the corresponding time interval, and the second measurement, which measures the reception quality of the cell at the time interval corresponding to the second measurement interval, are alternately performed. As a result, compared to the case where the reception quality of the cell is measured at regular time intervals, the reception quality of the cell of the base station apparatus 50-1 with less fluctuation in the reception quality is measured in the first measurement, and the measurement is redundant. It is possible to suppress the response and measure the reception quality of the cell of the base station apparatus 50-1 in which the reception quality fluctuates quickly in the second measurement. Therefore, it is possible to easily receive the reception quality of the cell corresponding to the different speeds of the fluctuation of the reception quality of the cell.
 なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。 It should be noted that the embodiments described above are for facilitating the understanding of the present invention, and are not for limiting and interpreting the present invention. The present invention can be modified / improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof. That is, those skilled in the art with appropriate design changes to each embodiment are also included in the scope of the present invention as long as they have the features of the present invention. For example, each element included in the embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be changed as appropriate. Further, the embodiments are exemplary, and it goes without saying that the configurations shown in different embodiments can be partially replaced or combined, and these are also included in the scope of the present invention as long as the features of the present invention are included.
 10…端末装置、11…受信部、12…測定部、13…取得部、14…判定部、15…応答部、21…プロセッサ、22…メモリ、23…記憶装置、24…通信装置、25…入力装置、26…出力装置、27…アンテナ、50,50-1,50-2…基地局装置、51…生成部、52…送信部、53…要求部、54…受信部、90…コアネットワーク装置、100,100A…無線通信システム、GS…GPS衛星。 10 ... Terminal device, 11 ... Receiver unit, 12 ... Measurement unit, 13 ... Acquisition unit, 14 ... Judgment unit, 15 ... Response unit, 21 ... Processor, 22 ... Memory, 23 ... Storage device, 24 ... Communication device, 25 ... Input device, 26 ... Output device, 27 ... Antenna, 50, 50-1, 50-2 ... Base station device, 51 ... Generation unit, 52 ... Transmission unit, 53 ... Request unit, 54 ... Receiver unit, 90 ... Core network Equipment, 100, 100A ... wireless communication system, GS ... GPS satellite.

Claims (9)

  1.  所定の時間間隔ごとに基地局装置が形成するセルの受信品質の測定を行う測定部と、
     測定された前記受信品質が該測定の前の前記受信品質から変動したか否かを判定する判定部と、
     前記基地局装置からの要求に対し、変動したと判定された前記受信品質を応答する応答部と、を備える、
     端末装置。
    A measuring unit that measures the reception quality of cells formed by the base station device at predetermined time intervals,
    A determination unit that determines whether or not the measured reception quality has changed from the reception quality before the measurement.
    A response unit that responds to the request from the base station apparatus with the reception quality determined to have fluctuated.
    Terminal equipment.
  2.  判定部は、測定された前記受信品質における該測定の前の前記受信品質からの変動量が所定の範囲以内であるときに、測定された前記受信品質は変動しなかったと判定する、
     請求項1に記載の端末装置。
    The determination unit determines that the measured reception quality has not changed when the amount of variation from the reception quality before the measurement in the measured reception quality is within a predetermined range.
    The terminal device according to claim 1.
  3.  前記応答部は、前記基地局装置からの要求に対し、変動しなかったと判定された前記受信品質の測定を行った時間を応答する、
     請求項1又は2に記載の端末装置。
    The response unit responds to the request from the base station apparatus for the time during which the reception quality measurement determined to have not changed is performed.
    The terminal device according to claim 1 or 2.
  4.  前記所定の時間間隔ごとに前記端末装置の位置を示す位置情報の取得を行う取得部をさらに備え、
     前記判定部は、取得された前記位置情報が該取得の前の前記位置情報から変動したか否かをさらに判定し、
     前記応答部は、前記基地局装置からの要求に対し、変動したと判定された前記位置情報をさらに応答する、
     請求項1から3のいずれか一項に記載の端末装置。
    Further, an acquisition unit for acquiring position information indicating the position of the terminal device is provided at each predetermined time interval.
    The determination unit further determines whether or not the acquired position information has changed from the position information before the acquisition.
    The response unit further responds to the request from the base station apparatus with the position information determined to have changed.
    The terminal device according to any one of claims 1 to 3.
  5.  基地局装置に対応付けられた測定間隔を該基地局装置から受信する受信部と、
     前記測定間隔に応じた時間間隔ごとに前記基地局装置が形成するセルの受信品質の測定を行う測定部と、を備える、
     端末装置。
    A receiver that receives the measurement interval associated with the base station device from the base station device, and
    A measuring unit for measuring the reception quality of a cell formed by the base station apparatus is provided at each time interval corresponding to the measurement interval.
    Terminal equipment.
  6.  第1測定間隔と該第1測定間隔と異なる第2測定間隔とを基地局装置から受信する受信部と、
     前記基地局装置が形成するセルの受信品質を前記第1測定間隔に応じた時間間隔で測定する第1測定と、前記セルの受信品質を前記第2測定間隔に応じた時間間隔で測定する第2測定とを交互に行う測定部と、を備える、
     端末装置。
    A receiving unit that receives the first measurement interval and the second measurement interval different from the first measurement interval from the base station apparatus, and
    A first measurement in which the reception quality of a cell formed by the base station apparatus is measured at a time interval corresponding to the first measurement interval, and a first measurement in which the reception quality of the cell is measured at a time interval corresponding to the second measurement interval. A measuring unit that alternately performs two measurements is provided.
    Terminal equipment.
  7.  端末装置と無線通信を行う基地局装置であって、
     前記基地局装置が形成するセルの受信品質の測定を指示する測定指示であって、前記基地局装置に対応付けられた測定間隔を含む測定指示を、端末装置に送信する送信部と、
     前記端末装置から、該端末装置によって測定された前記受信品質を受信する受信部と、を備える、
     基地局装置。
    A base station device that wirelessly communicates with a terminal device.
    A transmission unit that is a measurement instruction for instructing the measurement of the reception quality of the cell formed by the base station apparatus, and transmits the measurement instruction including the measurement interval associated with the base station apparatus to the terminal apparatus.
    A receiving unit that receives the reception quality measured by the terminal device from the terminal device.
    Base station equipment.
  8.  端末装置と無線通信を行う基地局装置であって、
     前記基地局装置が形成するセルの受信品質の測定を指示する測定指示であって、第1測定間隔と該第1測定間隔と異なる第2測定間隔とを含む測定指示を、端末装置に送信する送信部と、
     前記端末装置から、該端末装置によって測定された前記受信品質を受信する受信部と、を備える、
     基地局装置。
    A base station device that wirelessly communicates with a terminal device.
    A measurement instruction for instructing the measurement of the reception quality of the cell formed by the base station apparatus, the measurement instruction including the first measurement interval and the second measurement interval different from the first measurement interval is transmitted to the terminal apparatus. With the transmitter
    A receiving unit that receives the reception quality measured by the terminal device from the terminal device.
    Base station equipment.
  9.  端末装置に使用される無線通信方法であって、
     所定の時間間隔ごとに基地局装置が形成するセルの受信品質の測定を行うステップと、
     測定された前記受信品質が該測定の前の前記受信品質から変動したか否かを判定するステップと、
     前記基地局装置からの要求に対し、変動したと判定された前記受信品質を応答するステップと、を含む、
     無線通信方法。
    A wireless communication method used for terminal devices.
    The step of measuring the reception quality of the cells formed by the base station apparatus at predetermined time intervals, and
    A step of determining whether or not the measured reception quality deviates from the reception quality before the measurement, and
    In response to a request from the base station apparatus, the step of responding to the reception quality determined to have changed includes.
    Wireless communication method.
PCT/JP2019/032592 2019-08-21 2019-08-21 Terminal device, base station device, and wireless communication method WO2021033282A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/032592 WO2021033282A1 (en) 2019-08-21 2019-08-21 Terminal device, base station device, and wireless communication method
JP2021541401A JPWO2021033282A1 (en) 2019-08-21 2019-08-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032592 WO2021033282A1 (en) 2019-08-21 2019-08-21 Terminal device, base station device, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2021033282A1 true WO2021033282A1 (en) 2021-02-25

Family

ID=74660676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032592 WO2021033282A1 (en) 2019-08-21 2019-08-21 Terminal device, base station device, and wireless communication method

Country Status (2)

Country Link
JP (1) JPWO2021033282A1 (en)
WO (1) WO2021033282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048428A (en) * 2019-09-15 2021-03-25 古河電気工業株式会社 Terminal device and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508328A (en) * 2013-01-07 2016-03-17 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. Method, apparatus, and system for collecting information about access points in a wireless local area network
JP2017522791A (en) * 2014-07-01 2017-08-10 エルジー エレクトロニクス インコーポレイティド Method and apparatus for performing handover in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508328A (en) * 2013-01-07 2016-03-17 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. Method, apparatus, and system for collecting information about access points in a wireless local area network
JP2017522791A (en) * 2014-07-01 2017-08-10 エルジー エレクトロニクス インコーポレイティド Method and apparatus for performing handover in a wireless communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048428A (en) * 2019-09-15 2021-03-25 古河電気工業株式会社 Terminal device and control method thereof

Also Published As

Publication number Publication date
JPWO2021033282A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US10638263B2 (en) Electronic device in wireless communication system and wireless communication method
US10602473B2 (en) Facilitated positioning of wireless communication devices
US10594414B2 (en) Electron device and wireless communication method in wireless communication system
EP3001716B1 (en) Communication control method and user terminal
US20200084746A1 (en) UE, Network Node and Methods in a Wireless Communications Network
JP6636038B2 (en) User equipment and method for link quality determination
WO2020199972A1 (en) Communication method and apparatus
TWI692260B (en) Wireless device, network node, and methods performed thereby for handling measurements on a set of cells
KR20230129988A (en) Radio Resource Control (RRC) Disabled and RRC Idle Mode Positioning Configuration
WO2018228038A1 (en) Methods and apparatus for radio resource measurement in wireless communication systems
WO2022064672A1 (en) Base station device, wireless communication system and wireless communication method
US20230254801A1 (en) Tracking area code transmission in non-terrestrial networks
US20230085425A1 (en) L1-sinr measurement procedure based on measurement restrictions
US20170223760A1 (en) User terminal and base station
KR20230119131A (en) User Equipment (UE) Centric Positioning Techniques in 5G New Radio with Multiple Bandwidth Portions
KR20230124922A (en) RADIO RESOURCE CONTROL (RADIO RESOURCE CONTROL) inactive mode positioning
WO2021033282A1 (en) Terminal device, base station device, and wireless communication method
US20230217328A1 (en) Rss measurement in case of unknown number of crs ports
JP7394856B2 (en) Terminal device, base station device, and wireless communication method
WO2021156984A1 (en) Terminal device and wireless communication method
WO2021156994A1 (en) Terminal device, base station device, and wireless communication method
WO2022215151A1 (en) Terminal device, base station device, and wireless communication method
WO2021130901A1 (en) Terminal apparatus, base station apparatus, and radio communication method
WO2023053449A1 (en) Terminal device, base station device, and wireless communication method
WO2023199433A1 (en) Terminal device, base station device, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541401

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942092

Country of ref document: EP

Kind code of ref document: A1